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Abstract

Neural Networks are known to be black box models which are explained by interpretability based
approaches. ML Interpretability methods to explain the complex Neural Networks reasoning in human
understandable form. Humans think in abstract concepts like color, texture, shapes, etc. Explaining
black box models in these simple concepts aids human understanding of models leading to more trans-
parency, reliability and proactive identification of risks/biases in the models. The recent interpretability
based methods have started using concepts for explaining complex models in simple human understand-
able terms. In computer vision, concepts are defined as a set of images having a human-understandable
meaning associated with them (eg. striped images form stripiness concept). Current concept based
interpretability methods use the encoding of concepts in an intermediate layer of the model to define
concept representations. They further use these representations by perturbing model activations in the
intermediate layer and gauging its sensitivity to the perturbations. We use these CAV based sensitiv-
ity calculations for evaluation of desired properties by using the very definitions from the problem as
concepts. We further extend the use of CAVs from post-hoc analysis to ante-hoc training via our novel
concept loss and distillation paradigm. Concretely, we present a concept sensitivity based method to
measure disentanglement in an ill-posed ambiguous problem of Intrinsic Image Decomposition (IID)
followed by a novel method for concept based training of DNNs which utilizes conceptual knowledge
from large pre-trained models in a distillation paradigm.

IID involves decomposing an image into its constituent Reflectance and Shading components, which
are illumination-invariant and albedo-invariant, respectively. We use this definition of 1ID to define our
concepts and propose to use the sensitivity scores to directly measure the alignment of models predic-
tions with the definition. For this, we measure the illumination invariance of Reflectance prediction
and albedo invariance of Shading prediction by gazing model’s sensitivity to relevant concepts. We
thus define the evaluation of IID in abstract human centered concepts. We define Concept Sensitivity
Metric (CSM) to measure the disentanglement of Reflectance Shading in the models predictions for
evaluating IID methods. We evaluate and interpret three recent IID methods on our synthetic bench-
mark of controlled albedo and illumination invariance sets. We also compare our metric with existing
IID evaluation metrics on both natural and synthetic scenes and report our observations. Our metric
not only surpasses several limitations of the existing metrics but is also consistent in both synthetic and
real-world datasets. The concept based interpretability methods are post-hoc (after training) and can be

used for analyzing the models. We aim to use the feedback provided by these post-hoc methods to train
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the model for further improvements in an ante-hoc manner. For this we propose a novel concept loss
based on the CAV sensitivity. We argue that CAV learning in same model is not efficient and propose to
use a separate model having knowledge of concepts in a knowledge distillation paradigm. We present
Concept Distillation: a novel method for concept sensitive training of Deep Neural Networks. Concept
Distillation can be used to sensitize or desensitize the student model towards user desired concepts. We
show applications of our concept-sensitivity based training in debiasing in classification problems and
prior induction in IID. We also introduce the TextureMNIST dataset to evaluate the presence of com-
plex texture biases. Our concept-sensitive training can improve model interpretability, reduce biases,

and induce prior knowledge.
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Chapter 1

Introduction

With the success of Deep Learning, Deep Neural Networks (DNNs) are being used in various fields
like Computer Vision, Natural Language Processing, Speech Recognition, etc. [44]. They had surpassed
human-level performance in several tasks like playing Go (alphaGo [164]), image recognition (Resnet50
[70]), and speech recognition (Microsoft’s Deep Speech 2 [8]) long time back. While DNNs have been
successful in extracting patterns from data and learning, they are considered as black-box due to the
complexity/ambiguity of the functions approximated by them [123]. The complexity of DNNs makes it
difficult to understand how they arrive at their predictions or decisions, making them appear black-box
or incomprehensible to human understanding. The focus of recent research has shifted from models
merely trained to optimize accuracy to Human Interpretable models. Explainable Artificial Intelligence
(XAI) [66] techniques open the black-box of model decisions by providing insights into “why” the
model made a particular prediction. The field of XAI has grown tremendously in the past 4-5 years
with a multitude of XAI techniques [47, 112, 155, 184, 199]. There are various spurious correlations,
clever-hans, and biases induced in the model due to data or training procedures. This hampers human
trust in these models and their applicability in real-world deployment. There is a need for accountable
and transparent models which are not only accurate but fair and unbiased. ML interpretability provides
insights into the model’s hidden biases and unintended correlations. These insights can be used to
improve the model by debiasing (or biasing) the model for an intended cause. With the shift from black
box models to explainable models, a shift from explainable models to explanation driven models is
needed [55, 189].

Out of many XAl-based approaches, concept based approaches are the most human-interpretable.
Concepts are linked to their origin in Neuro-science literature, where they are defined as ideas derived
or inferred from facts [45], and they hold the human’s mental world together [127]. It has been observed
that humans learn by creating concept models of things around them, helping them gather generalized
knowledge [93]. In computer science, Concepts are defined as higher level human understandable units
[78] inherent to an entire class or the task itself, e.g., image ‘stripe-ness’ is a vital concept for all samples
in the zebra classification task. Beyond textures and colors, concept-based explanations are also quite

useful in interpreting hard-to-formulate class attributes like gender, age, etc.



Methods using concepts represent them in the model’s activation space [16, 51, 80]. Concept Acti-
vation Vector (CAVs) [80] are the most popular concept based representation method. CAV is typically
learned in model activation space as a decision boundary separating the concept of interest and its neg-
ative counterpart (or a neutral concept). By analyzing the importance given by the model to various
concepts, they are used to get insights into what was learned and used for prediction increasing trans-

parency. We now provide a brief overview of the terms throughout the thesis.

1.1 ML Interpretability

Machine Learning (ML) interpretability methods aim to open the black box of the model by ex-
plaining their predictions in a human-interpretable way [46]. Interpretability methods provide valuable
insights into the inner workings of ML models and can be used to identify biases or errors in the model.

They can also help to build trust and transparency with end-users, such as doctors, patients, or customers.

1.1.1 How ML interpretability differs from explainability

ML interpretability and explainability both aim to provide insights into the decision-making process
of ML models, but they approach this from different perspectives. Interpretability focuses on “human
understandability” while explainability focuses on mere ’justification or rationale behind a prediction”
[46, 122]. In other words, interpretability is concerned with how easily a human can understand the
model’s predictions, while explainability focuses on explaining and justifying predictions regardless of
human understandability [46]. Despite their subtle differences, interpretability and explainability are

often used interchangeably and are commonly referred to as eXplanable Artificial Intelligence (XAI).

In this thesis, we restrict our discussion to interpretability methods in Computer Vision.

1.1.2 Local vs. Global Interpretability

Based on the scope of explanation, interpretability methods can be divided into two categories:
Global and Local. Global interpretability methods focus on model interpretations that are true for the
entire class. In contrast, Local methods focus on explanations of a single data point that are true for
the specific sample and its neighbors [80]. Existing methods can fall into either or both of the above
categorizations. Local methods include pixel attribution methods like [1, 143, 157, 165] while global
methods include [60, 80], etc. Some methods like SHapley Additive exPlanations (SHAP) [118], LIME
[137], and Integrated Gradients [174] can provide both local and global interpretations.



1.1.3 Major ML interpretability Methods

Interpretability methods in Computer Vision can be broadly classified as methods visualizing the
importance given to pixels in models input space [1, 143, 157] or quantifying the importance given to
concepts [13, 26, 32, 80, 151] (also discusses this categorization [156]).

1.1.3.1 Pixel attribution methods

Pixel attribution methods attribute importance scores given by the model to individual pixels in the
given input image [1, 143, 157, 165]. These attributions can then be understood by humans and looked
upon to check which regions the model focuses on. GradCAM, or Gradient-weighted Class Activation
Mapping [157], is a popular pixel attribution method that generates a heat map indicating which regions
of an image contributed most to the model’s prediction. It works by calculating the gradients of the
output class score with respect to the feature maps of the last convolutional layer of the model. These
gradients are then used to weight the feature maps, and the resulting weighted feature maps are averaged
to generate the heat map. In addition to GradCAM, there are several other pixel attribution methods,
such as Guided Backpropagation [168], Integrated Gradients [174], and SmoothGrad [165], each with
its own strengths and weaknesses. Choosing the right pixel attribution method depends on the specific
task and the model’s characteristics. An example of some pixel attribution method visualizations is

shown in Fig. 1.1

1.1.3.2 Concept attribution methods

We discuss a few concept attribution methods and refer readers to [67] for details on more existing

Concept attribution methods.

(a) Original Image {b) Guided Backprop ‘Cat’  (¢) Grad-CAM ‘Cat’

(g) Original Image (h) Guided Backprop ‘Dog” (i) Grad-CAM ‘Dog’  (j)Guided Grad-CAM ‘Dog” (k) Occlusion map ‘Dog” (1)ResNet Grad-CAM ‘Dog’

Figure 1.1: Comparison of Pixel attribution methods. Source: [157]



Hidden Units Concept images alignment based Network Dissection [16] uses user-provided con-
cept sets and checks their alignment with individual hidden units at each layer of CNN. Since DNNs are
expected to learn partially non-local representations in denser layers, concepts can align with a combina-
tion of several hidden units. However, to assess disentanglement, they focus on measuring the alignment
of concepts with single units. This method hypothesizes that the interpretability of units is equivalent
to their random linear combination. They evaluate every individual convolutional unit in CNN as a
solution to binary segmentation tasks for each visual concept. They pass in all concept sets from the
model and determine the distribution of concept activations aj for each convolutional unit k. They then
determine the top quantile level T}, for each unit k such that P(a; > T) = 0.0005 over every spatial
location of the activation map in the concept set. This is followed by a selection of regions exceeding
the threshold 7}, and evaluating segmentations with every concept c in the concept set by computing the
intersection over union (foUy, ) of the above-selected regions with input concept annotation masks. A
concept detector is reported if ToUy, . is greater than a certain threshold. The interpretability of a layer
is quantified by the number of unique concepts aligned with its units (unique detectors). Since IoU is

an objective measure (not relative), it enables comparison of interpretability across networks.

Concept Embeddings Vectors Based Fong and Vedaldi [51] proposed Net2Vec, which aligns the
concepts with CNN filters. They first collect the pre-trained model’s activations for a concept dataset
(probe) and then learn the weights to recognize the concept in various semantic tasks. These weights
are interpreted as concept embeddings and analyzed to gain insights into how concepts are encoded in
the network.

Concept Activation Vectors (CAV) CAVs were first proposed by Kim et al. [80] as a Global inter-
pretability technique for model interpretation. CAVs estimate the sensitivity of a neural network to a
given concept. A binary linear classifier is used to separate concept examples from random examples
in a specific layer’s activation space. The CAV is then estimated as the normal to the linear decision
boundary separating concepts. The working of CAVs is explained in Fig. 1.2.

For a given concept C' in specific layer {, CAV is denoted by 'vlC. A sensitivity score Sc; of model
towards concept C is calculated as the directional derivative of the loss term V L (or logit) of the class

sample’s activation f;(z) in the direction of v&:

Scu(®) = VL (fi()) - v

The sensitivity scores are averaged across all class samples to measure class sensitivity and across all
classes for overall model sensitivity.
In summary, CAVs provide a useful tool for understanding the impact of concepts on neural network

models, which can aid in addressing biases and improving performance.
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Figure 1.2: CAV working: Given user-defined Concept set C' images (striped here), random images
C’ (a), images of class of interest (zebras) (b), and a trained network (c); Example images of C and
C’ are passed from a pre-trained model to get its activations in layer /. A linear classifier is trained to
distinguish between activations of C, f;(C;) and C* f;(C,). CAV vector vl is taken as the normal to
the hyperplane separating the two concepts’ activations. For the class of interest (zebras), Kim et al.

[80] use the directional derivative S¢ () to quantify conceptual sensitivity. Source: [80]

1.2 Bias in ML models

Bias in ML refers to a systematic error or deviation in a model’s predictions that can arise due to the
way the model was trained [121]. This can occur, for example, if the training data is not representative
of the population that the model will be applied to or if the model is designed to favor certain outcomes
over others. Bias can manifest itself in various ways, such as the under-representation of certain groups
or the overestimation of certain features. DNNSs can learn various spurious correlations which are wrong.

They also show clever-hans and shortcut learning phenomena [58].

1.2.1 Clever Hans

Clever Hans was a horse that was claimed to perform complex intellectual tasks as well as arithmetic
calculations. A formal investigation was done over it by psychologist Oskar Pfungst. It was found
that the horse was not performing the arithmetic or intellectual tasks but rather watching his trainer’s
reactions (body language, etc.), who was unaware of providing such cues. This phenomenon was named
as Clever Hans effect [43]. DNNs can also exhibit such phenomena, where they use unintended cues for

prediction while achieving good test performance [96].

1.2.2 Shortcut Learning in Neural Networks

The DNNSs learn various shortcuts for prediction [58], which are not intended to be learned (Fig. 1.3).
These shortcuts work well on a specific data distribution (similar to a training set) but fail on a different



Task for DNN Caption image Recognise abject Recognise pneumania Answer gquestion

Problem Describes green Hallucinates teapot if cer- Fails on scans from Changes answer if irmelevant
hillside as grazing sheep tain patberns are present new hospitals information is added

Shortout Uses background to Uses features irrecogni- Looks at hospital token, Only loaks at Last sentence and
recognise primary object sable to hurmans not lung ignores confext

Figure 1.3: Shortcut Learning Examples: DL models learn a lot of shortcuts as shown in the above four

tasks. Source:[58]

distribution. These include learning under covariate shift, anti-causal learning, dataset bias, tank legend,
and clever-hans effect. Shortcuts can arise from biases in the dataset (the training set has a particular
distribution that is biased) or biased decision rules (spurious correlations learned by the model (like
clever-hans)) [58]. Spurious Correlations are the faulty correlations learned by ML models that are
incorrect and shall not be used.

Distribution (ood) datasets can reveal shortcut learning in models by providing samples with differ-
ent distributions from the training set. In contrast, Identically Distributed (iid) datasets have identical
distributions to the training set and are typically used as validation sets. While iid datasets can detect
overfitting, they may not detect shortcut learning issues. For instance, consider the star-moon classifi-

cation dataset shown in Fig. 1.4.

1.2.3 Debiasing Models

Debiasing methods are used to address biases in machine learning models, which can lead to unfair or
discriminatory outcomes. These methods typically involve using various techniques, such as adversarial
training [98], counterfactuals [21], bias swapping [81], etc., to remove different types of biases from the
model. Adversarial training involves training the model on adversarial examples, which are designed
to be similar to the original data but with slight perturbations that cause the model to make incorrect
predictions. Counterfactuals involve generating hypothetical scenarios that could have led to different
outcomes and using them to train the model to be more robust to biases. Bias swapping involves swap-
ping data samples from different subgroups to ensure that the model does not learn to associate certain
features with certain outcomes [81, 110].

To evaluate the effectiveness of debiasing methods, models are typically trained and validated on
independent and identically distributed (iid) datasets and tested on out-of-distribution (ood) datasets
[58]. This helps ensure that the model is not just memorizing the training data and is able to generalize

to new and unseen data.
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Figure 1.4: iid vs ood distributions: Star vs Moon classification example. The training set has stars in
the top right and bottom left corners while the moon is in the top left and bottom right corners. The
model takes a shortcut and predicts based on position not learning the actual shape of the object. This
phenomenon of shortcut learning cannot be detected in an indentically distributed (i.i.d) dataset (set with
identical distribution to training set) wherein the model and human will have the same categorization but
can be detected in Out of Distribution (0.0.d) set wherein the model will perform poorly due to shortcut

learning and its predictions won’t match that of a human. Source:[58]

1.3 Various Learning paradigms using XAI

1.3.1 Explanation Guided Learning (EGL)

Explanation Guided Learning (EGL) [55] is learning using Explanations to train or improvise the
model. EGL can have one or both of the following aims: (i) improving the interpretability, (ii) im-
proving the model’s performance. The primary goal of EGL is to learn a model that can make accurate
predictions while generating meaningful explanations for its predictions. EGL typically involves jointly
optimizing the model prediction and the explanation by incorporating three key terms in the objective
function: task supervision, explanation supervision, and explanation regularization. Its objective func-

tion can be written as follows:

min Lpred (f(X),Y) + aLrsp(9(f, (X, Y)), M) + Bg(f, (X,Y)))

TV
task supervision explanation supervision explanation regularization

Where M incorporates the ‘right’ explanation provided via human annotation. The task supervision
term guides the model to learn task-specific information, while the explanation supervision term super-
vises the model explanation to ensure consistency with ground truth. The explanation regularization

term helps avoid overfitting and encourages the model to generate interpretable and meaningful expla-
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Figure 1.5: Broad Categorization of Explanation Guided Learning (EGL) methods.
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Figure 1.6: EGL performance evaluation. Source: [55]

nations. We divide EGL methods into General XAl based, which includes methods not using concepts
and methods using concepts. Furthermore, General XAl-based methods can be divided into methods
that use human interactions and feedback for improving the model (Explanatory Interactive Learning
[178]), methods that augment data, model, loss function, etc. (Augmentation based []) for providing
feedback to the model, and methods involving smart querying for labeling (Explanatory Active Learning
(XAL)). EGL is an umbrella that includes Explanatory Interactive Learning (XIL) [178], Explanatory
Active Learning (XAL) [59], and Concept Oriented Deep Learning (CODL) [31] approaches as shown
in Fig. 1.5. We describe each of the categories given in Fig. 1.5 below. Since we focus on concept-based

methods, we describe EGL as methods not using concepts and methods using concepts.

1.3.2 General XAl based (non-concept based)

The methods which use generic XAl but not concepts can be categorized in terms of using inter-
actions with an expert (Interaction Based) for guidance, augmenting some aspects of data/model/loss

function (Augmentations Based), or using active learning (Active Learning Based).
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Figure 1.7: Keys Steps of XIL approaches: A typical XIL method consists of four steps comprising

Select, Explain, Obtain, and Revise. Source: [53]

Interactions based: Explanatory Interactive Learning (XIL) Explanatory and Interactive Learning
(XIL) [178] is a framework for machine learning models to be inspected, interacted with, and revised
to ensure that their learned knowledge aligns with human knowledge. XIL methods aim to mitigate
learning shortcuts and provide explanations for the model’s decision-making process, enabling users to
interact with the model and provide feedback to improve its performance. Friedrich et al. [53] provides a
typology of existing XIL methods and a generalized XIL algorithm consisting of four essential steps of
Select, Explain, Obtain, and Revise as shown in Fig. 1.7. The XIL algorithm takes in a set of annotated
examples (A), a set of non-annotated examples (N), and an iteration budget (T). The Select module is
responsible for selecting samples from N to present to the teacher. The Explain module provides insights
to the teacher about the model’s reasoning process. The Obtain module allows the teacher to observe
whether the model’s prediction is correct or incorrect and to provide corrective feedback. Finally, the
Revise module uses the corrective feedback to update the model’s behavior towards the user.

Augmentation Based Weber et al. [189] classify XAl-based model improvement based on augmen-
tation made, which can be over data, loss, gradient, model, etc., as shown in Fig. 1.8.

* Augmenting the data It is one of the most common methods of XAl It involves using XAl to find
the spurious or undesirable effects in the model and removing them by augmenting the training
data used for the model.

* Augmenting the Intermediate Features Explanations offer valuable insights into the importance
of individual features in a machine-learning model. This information can be used to modify the

intermediate features of the model by scaling, masking, or transforming them.
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Figure 1.8: Categorisation of EGL based on Augmentation method used. Source: [189]

* Augmenting the Loss Function The behavior of a machine learning model is determined by its
loss function. Therefore, by augmenting the loss function with information from explanations, it
is possible to guide the model toward desired behaviors. Explanations can be used as feedback to
specify the desired behavior and improve the model’s overall performance.

* Augmenting the gradients Explanations can also be used to augment gradients during the back-
ward pass of the model. This is because the information about feature importance provided by
explanations can be applied to the calculation of parameter updates using the chain rule.

* Augmenting the model XAl can be used to prune or quantify the model to reduce the amount of
storage space required by the parameters.

Typically, these XAl-based augmentation techniques are applied one at a time. However, in theory,
multiple augmentations targeting the same model property could be applied at the same time, altering
different components of the training process. We introduce the categorization above while discussing

the works for each of these categorizations in subsection 2.2.1.

Active Learning based: Explanatory Active Learning (XAL) Explanatory Active Learning (XAL)
is an emerging learning paradigm that combines active learning with explanations [59]. Active Learn-
ing (AL) is a learning paradigm that allows a learning algorithm to intelligently select instances to be
labeled, which can lead to high performance with much less training data compared to traditional super-
vised learning approaches [136]. AL has become increasingly important in modern machine learning,
where labeled data can be expensive and time-consuming to obtain.

Active learning reduces labeling workload by intelligently selecting instances to query a machine

teacher for labels. However, the human-Al interface remains minimal and opaque, hindering the devel-
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opment of teacher-friendly interfaces for AL algorithms. XAL aims to introduce techniques from the
field of XAI into AL settings to make Al explanations a core element of the human-Al interface for
teaching machines. In this paradigm, the teacher should be able to understand the reasoning underlying
the model’s mistakes during the learning process. With further training of students, the teacher should
be able to recognize, trust and feel confident about their teaching outcome. The teacher here can be a

human or a large model.

1.3.3 Concept Oriented Deep Learning (CODL)

Concept Oriented Deep Learning (CODL) [31] uses concept-level supervision for models to improve
model interpretability and performance. The major aspects of CODL, as introduced by Chang [31], in-
clude concept graphs, concept representations, concept exemplars, and concept representation learning
systems supporting incremental and continual learning. CODL leverages a common or background
knowledge base, such as Microsoft Concept Graph, for the framework of conceptual understanding. By
focusing on learning and using concept representations and exemplars, CODL is able to address the
major limitations of deep learning, including interpretability, transferability, contextual adaptation, and
the requirement for a large amount of labeled training data. Our proposed Concept Distillation approach
is a type of CODL approach. Apart from de-biasing the models for spurious correlations or ensuring
fairness and transparency, XAl can be used for prior knowledge induction in the models in cases where

the dataset is limited or some prior knowledge is known apriori, which is to be respected by the model.

1.4 Prior Knowledge Induction

Prior knowledge refers to knowledge about a task that is known beforehand and can be utilized
to perform that task [18]. This knowledge may come from domain experts or established facts/rules
relevant to the task at hand. Leveraging this knowledge in a model can be facilitated by incorporating
explanations and ground truths provided by domain experts [17, 18].

In their review, [17, 18] examine methods that utilize prior knowledge to either increase explainabil-
ity or integrate it into a model via explainability techniques. These methods can be particularly useful

for tasks requiring domain-specific knowledge for accurate predictions or decision-making.

1.5 Knowledge Distillation

Knowledge Distillation [71] involves the transfer of knowledge from a large and complex model,
known as the teacher model, to a smaller and simpler model, known as the student model. This is done
by training the student model to mimic the output of the teacher model. The teacher model provides
’soft labels,” which are probability distributions over the possible outputs rather than just the single

most likely output. This allows the student model to learn from the teacher model’s knowledge and
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Figure 1.9: Traditional Knowledge Distillation: involves a soft loss coming from teacher’s predictions

apart from conventional GT loss coming from hard labels. Source: [2]

gain a better understanding of the problem being solved. Figure 1.9 illustrates the process of traditional
knowledge distillation, where the student model is trained to predict both the soft labels from the teacher
model and the true labels of the dataset. The objective of such training is to minimize the difference
between the output of the teacher model and the student model while also minimizing the difference

between the student model’s output and the true labels of the dataset.

1.6 Interpretability Transfer between models

Interpretability can be transferred from an interpretable model to another model that lacks inter-
pretability. This process can be particularly useful in cases where we have a pre-trained model that is
interpretable, and we want to transfer its interpretability to a new model that is not interpretable. By
transferring the interpretability from an interpretable model to a non-interpretable model, we can im-
prove the transparency and understanding of the non-interpretable model, making it easier to explain its
behavior and outcomes [79].

Generally, Prototypes refer to representative examples or instances used to define or classify a partic-
ular class or category. For example, in the context of clustering algorithms, prototypes are representative
points used to define the boundaries of the different clusters. These algorithms aim to group similar data
points together and assign them to the same cluster, with each cluster represented by a prototype.

Proto2Proto is a recent method proposed by Keswani et al. [79] that uses knowledge distillation to
transfer interpretability from a teacher model to a student model. Unlike traditional knowledge dis-
tillation, Proto2Proto focuses on aligning class prototypes and feature spaces between the teacher and
student models, as shown in Fig. 1.10. The class prototypes in Proto2Proto are the average representa-

tions of the examples in each class, and they are used to interpret the model’s decision-making process.

12



Prototypes ars arranged Inesrly n ProtoPNet

Teacher

=~
4 { e \ 0\ g
Input x Decision Module £
” e — Add-on module f
T v
N ) = t d AR & Ly £
- [y— A )
| BTN W L
oy Eyo | Legs | Tail | Feather +
- ' i ' =
© L +
i 'global
) — I\ITJ:Fif \ Global Explanation =~
Loss ‘2;
Teacher Active Mask Backbone i F -~ £
—
If Local F N w® t
1 pahief |l ‘ — d U |, e
. Teacher is L _ T Ve
M5 )4 Active ‘*f" ‘t v
o Otherwise h \-—-“‘ 3 p'g e IR
Add-on modulo ¥
. ‘v
g \ '/ Lmodel

Loss

Student

Figure 1.10: Proto2proto: Prototype based Interpretability tranfer from a large interpretabile model to a

small model via Knowledge Distillation. Source: [79]

1.7 Contributions

We leverage human centered concepts for post-hoc model evaluation and ante-hoc training. We use
the derive abstract concepts from the very definition of problem and show how those concepts can be
used to evaluate the problem and even improve it further. Specifically, we propose a new evaluation
strategy for Intrinsic Image Decomposition by measuring the quality of disentanglement between the
decomposed components R and S. We use the core IID concepts of illumination-invariance of R and
albedo-invariance of .S to measure disentanglement without specifically relying on synthetic images or
relative quality metrics computed on fixed sparsely annotated datasets. We choose an ML interpretability
technique based upon Concept Activation Vectors (CAV) [80] for this. We use as concepts two core
characteristics derived from the very definition of IID, i.e., illumination-invariance of R and albedo-
invariance of S. We assess disentanglement between them by measuring the model’s sensitivity to
these concepts in the form of Concept Sensitivity Metrics (CSM) (Fig. 3.1). The CSM provides a
generic framework applicable to problems other than IID using relevant concepts. We also release a
new configurable dataset of images and corresponding generation scripts with controlled illumination
and albedo variation. CSM is the first metric to evaluate IID via a disentanglement of R-S by measuring
models’ sensitivity to albedo and illumination. Our demonstrated results show that the existing IID

evaluation metrics fail to capture the quality of R-S disentanglement, while CSM can capture it well.

We extend the use of human concept based interpretability methods specifically Concept Activation
Vectors from post-hoc analysis to ante-hoc training by usage of our novel Concept Loss. Through our
concept loss we can sensitize or desensitize a model towards user desired concepts. For example, a con-
cept set comprising various face shapes vs. skin-tone patches can be used to learn the concept of ‘face
skin-tone invariance,” which can be used to improve a biased face detector model. We employ a novel
teacher student distillation [71] paradigm for this concept sensitive training by learning CAVs in teacher

and using them to (de)sensitize student. We additionally enhance the CAV sensitivity calculation giving
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it a more global sense with the proposed use of prototypes. We can encorporate the benefits of both
Local and Global interpretability techniques by our proposed Concept loss and additional existing local
losses. We show applications of our method in debiasing in classification problems having severe biases
and prior induction in a reconstruction problem (IID). By employing multiple concept sets and corre-
sponding CAVs, we can ameliorate several existing biases together or decompose a complex spurious
correlation into smaller debiasing steps. We substantiate our claims by showing results on multiple toy
and real-world classification tasks. We introduce a more challenging debiasing dataset: TextureMNIST,
for a more comprehensive analysis. Additionally, we also show how our method can be used beyond
classification in other challenging Computer Vision problems. Intrinsic Image Decomposition (IID)
[90] to induce priors into the model, improving the performance of current SOTA solutions.
The main contributions of this thesis are as follows:

* A novel method CAV based sensitivity method for measuring disentanglement in neural networks.
Specifically, we measure R-S disentanglement in IID and evaluate it via our proposed Concept
Sensitivity Metric (CSM) in Chapter 3.

* A novel Concept Distillation method for concept sensitive training of Deep Neural Networks de-
scribed in Chapter 4. Our proposed Concept Distillation method enables concept sensitive train-

ing of models by our novel sensitivity[80] inspired concept loss in a student teacher paradigm.

1.8 Thesis Roadmap

The thesis comprises five main chapters. Chapter 1 presents the briefing on ML interpretability,
specifically concept-based methods and the common terms used across thesis. In it, we discuss the
main approaches to ML interpretability followed by various biases in the model. We also discuss how
ML interpretability can be used for model improvement, specifically bias removal. We provide an
introduction to the problem of Intrinsic Image Decomposition and its evaluation methods.

Chapter 2 describes the related works to our thesis specifically discussing various concept based
XAI methods used for model improvement. Various IID evaluation methods and their limitations are
provided.

Chapter 3 presents a metric based on CAV sensitivity scores: Concept Sensitivity Metric, which
measures the quality of disentanglement in IID.

Chapter 4 presents our proposed Concept Distillation framework for Concept Sensitive training of

Deep Neural Networks via our proposed simple and effective concept loss in a distillation paradigm.
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Chapter 2

Related Works

We divide the related works into existing XAl approaches, specifically Concept Based Approaches
in subsection 2.1.2 followed by X Al-based model improvement methods (EGL) in section 2.2. To place
the existing XAI methods in more context we also discuss some taxonomies over them as well. Since
we show the applications of our concept sensitive training in debiasing and prior knowledge induction

in I[ID we additionally discuss their existing works in section 2.3 and section 2.4.

2.1 Explainable AI (XAI)

The goal of Neural Network Interpretation research is to go beyond the mere black box usage or
accuracy-based interpretation of Deep Learning architectures and develop an understanding of the in-
ternal workings of the learned model. Several techniques have been used for this purpose like activation
maps visualization [157], saliency estimation [147], model simplification [190], model perturbation
[52], adversarial exemplar analysis [63], etc. For more details on XAl techniques, we point the reador
to the recent surveys [3, 47, 112, 184, 199] which categorize XAl methods into various meaningful
hierarchies. Apart from XAI methods, the number of XAI method surveys has also outgrown and one
must not be shocked to see a survey on surveys Schwalbe and Finzel [155] too!

To understand various types of XAl methods we discuss the taxonomy by Zhang et al. [199] in
Fig. 2.1. In dimension 1, the methods are divided based on wherther they do post-hoc or ante-hoc
model explanations. In dimension 2, the methods are categorised on type of explanations as example-
based, attribution-based, hidden semantic-based, and rule-based. While in dimension 3, local vs. global
explainability seggregation is used (discussed in subsection 1.1.2). In this thesis, we focus on a specific

category of post-hoc model interpretation techniques based on the analysis of concepts.

2.1.1 General XAI approaches

Some of the XAl approaces include activation maps visualization [157], saliency estimation [147],

model simplification [190][137], model perturbation [52], adversarial exemplar analysis [63], etc.. Acti-
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Dimension 1 — Passive vs. Active Approaches

Passive Post hoc explain trained neural networks

Active Actively change the network architecture or training process for better interpretability

Dimension 2 — Type of Explanations (in the order of increasing explanatory power)
To explain a prediction/class by
T Examples Provide example(s) which may be considered similar or as prototype(s)
Attribution Assign credit (or blame) to the input features (e.g. feature importance, saliency masks)
Hidden semantics Make sense of certain hidden neurons/layers

v Rules Extract logic rules (e.g. decision trees, rule sets and other rule formats)

Dimension 3 — Local vs. Global Interpretability (in terms of the input space)

T Local Explain network’s predictions on individual samples (e.g. a saliency mask for an input image)
Semi-local In between, for example, explain a group of similar inputs together
vy Global Explain the network as a whole (e.g. a set of rules/a decision tree)

Figure 2.1: 3D taxonomy on XAI. Source: [199]

vation maps visualization [157] allows us to visualize which regions of an input image are most relevant
for a particular model prediction. Saliency estimation [147] is another technique used to highlight im-
portant regions of an input image, but it works by assigning a relevance score to each pixel based on how
much it contributes to the output prediction. Model simplification methods [190][137] aim to reduce the
complexity of a model while maintaining its performance, which can make it easier to understand and
interpret. This can be achieved through techniques such as pruning, which removes unimportant con-
nections between neurons, or distillation, which trains a smaller, simpler model to mimic the behavior
of a larger, more complex one. Model perturbation [52] involves introducing small changes to the input
data and observing how the model’s output changes in response, which can help identify which features
are most important for the model’s predictions. Adversarial exemplar analysis [63] focuses on generat-
ing examples that cause a model to make a specific prediction, which can help identify weaknesses or
vulnerabilities in the model. This technique has been used to expose biases in machine learning models
and test the model’s robustness to various forms of attack. For a more comprehensive overview of state-
of-the-art interpretability methods, the reader is referred to the work of Linardatos et al. [113], which
provides an extensive survey of existing techniques and their applications.

2.1.2 Concept based approaches

Since CNNs are known to extract higher level features, initial concept based approaches extracted
concept representations by analysing CNNs filters [16, 51]. For instance, Network Dissection [16] uses
user-provided concept sets and checks their alignment with individual hidden units at each layer of CNN.
Net2Vec Fong and Vedaldi [51] used a probe-dataset to collect CNNs features and then learn the weights
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Table 2.1: Concept Representations of existing ML interpretability literature

Concept type

Concept Representation Method

Papers

Non-hierarchial

Hidden Units Concept images alignment based

Network Dissection [16]

Concept Embeddings Vectos based

CAV [80], A-CAV [167], CG [13], ICB
[201], ICE [198], CaCE Goyal et al. [64],
ICS [153], ConceptSHAP [193], [37]

Proto-types

Bontempelli et al. [26, 26], Chen et al. [35],
Lietal. [103]

Neuro-Symbolic

RRC [170], COOL [120], RRR [170],

NeuroSC Marconato et al. [119],

Others

Multi Agent Debate [84]

Hierarchial

Neuron Attribution

HINT [185]

Weight Attribution

Concept Graphs: Kori et al. [85], Zhang
et al. [196]; Decision Trees: POEM [41],
CHAIN [187]

Symbolic features

Concept trees: Santhirasekaram et al.
[148], CNN2DT [75], TreeICE [128],
ACDTE [160]
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Table 2.2: Concept Discovery categorization

Type Method used Papers
Super-pixel ACE [61], CocoX [4]
Coorperative Attribution (shapeley) | ConceptSHAP [194]
Post-hoc Autoencoders based PACE [76]
Causality based MCE [183]
Using Probe Dataset ACDTE [160]
Using GANs Alipour et al. [5]
Saliency based HINT [185], Kori et al. [85]
Using Slot-attention [117] Stammer et al. [170]

Ante-hoc | Latent Space Disentanglement based | GAN based: EPE [162], StylEx [95], Dissect [60]
img2tab[166], Charachon et al. [33], Augustin et al. [10],
Tran et al. [180], Causality enforcing O’Shaughnessy
etal. [133]

XIL based iCSNs [171], RRC [170]

to recognize the concept in various semantic tasks. Kim et al. [80] quantified concepts via a linear
decision boundary separating the concept of interest and randoms learning Concept Activation Vectors
(CAV). This work became widely popular due to their simple but effective concept representation in

terms of concept vectors.

Mathematical details of our base method: CAV We now discuss the mathematical formulation of
CAVs. For input image x from the test set, layer {’s activation is given by f;(x). Given a concept of
interest C, a set of images of that concept are taken as positive samples, vs. a set of random images
is taken as a negative concept set (C’). A binary linear classifier (linear regression or SVM) is used to
distinguish between [’s activations for C' and C” (i.e., between sets f;(x) : x € C and fi(y) : y € C").
The vector representing the classifier hyperplane is stored as the CAV, vé;. Model’s concept sensitivity
Sc, € 10,1] for a given class sample z is estimated by calculating the alignment between the learned
CAV v}, and the gradient VL; (f;(z)) of loss with respect to activation for that layer (computed via
backpropagation) as:
OL(x)

- Oxap

Scyl(w) = VL[ (fl(a:)) . UZC, where VL[ (fl(:v)) (2.1)

TCAV has been used to analyze classifiers using a Cross-entropy (CE) loss between the predicted logit
and GT class label. We use TCAV to evaluate the disentanglement of image decomposition by intro-

ducing a pixel-wise loss instead of CE. For pixel location (a, b), L is calculated as MSE between the
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predicted R, S, and their respective GT values. Finally, the complete TCAV sensitivity score for con-
cept C' is computed as the fraction of inputs (z’s) in the complete concept set X, which were positively

aligned with vlc.
Hx € X : Scu(x) < 0}]
| X

Note that the sign is negative here because the gradient is taken with respect to loss instead of logit

TCAV¢, =

(2.2)

values. Thus when C has a positive influence, the loss is minimised'.

Other Concept Representation Methods [153, 167, 198] refined CAV representations further. Goyal
et al. [64] combinedCausal modelling with CAVs and qunatified Causal Concept Effect (CaCE). For
this they generate counterfactual examples of the concept of interest and check CaCE scores of them.
Another important measure for checking usefullness of concepts is via checking their Completeness:
how sufficient a particular set of concepts is for explaining the model’s prediction. ConceptSHAP [193]
measures the Completeness of concepts by using Shapeley values associated with cooperative game
theory. On the other hand, Concept Whitening [37] disentangles concepts by decorrelating the latent
space and projecting concepts such that they align in different directions. This ensures that concepts
are well decomposed and distributed in latent space. Adversarial TCAV Soni et al. [167] and Concept
Gradients Bai et al. [13] extends the CAVs to model non-linearity. While we are focused on CAVs in this
thesis we refer readers to recent surveys for more details on other Concept Based Representations and
advancements Gupta and Narayana [67], Hitzler and Sarker [73], Holmberg et al. [74, 74], Schwalbe
[154]. Hitzler and Sarker [73] present a survey on CAV [80] based representations whileSchwalbe
[154] survey various visual Concept Embeddings giving a taxonomy of Concept Analysis approaches.
Since many of the methods require user provided concepts there are many widely used concept datasets

[60, 111]. We categorize various existing concept representations as given in Tab. 2.1.

Automatic Concept Discovery Methods Since the current approaches require user given concept
sets, many concept discovery algorithms were propose to automate this. We provide the taxonomy of
varioous concept discovery algorithm in Tab. 2.2. ACE [61] and CocoX [4] use super-pixels followed
by saliency maps to discover concepts. ACE uses varying levels of super-pixels to generate both lower
(color, texture) and higher-level features (objects) and clusters their activations in the model’s activation
plane to get concepts. These clusters need to be identified with human interpretable concepts, which
need a human manually going through them. ACE automates this by using ImageNet-trained CNN
features as a guide. It compares the perceptual similarity of identified cluster segments with the guide to
label them. It also removes outliers to make the concepts coherent. It uses TCAV [80] scores to gauze
concept importance for prediction. On the other hand, CocoX [4] uses Grad-CAM [157] followed
by pooling to determine importance of super-pixels. It then selects the top p super-pixels for each
class based on the importance weights and clusters the actual image regions corresponding to important

super-pixels for getting concepts. ConceptSHAP [194] uses Shapeley values that attribute importance

"https://github.com/tensorflow/tcav
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to concepts when combined to discover a complete set of concepts. For the scope of the thesis, we do
not include more details on these methods in this chapter, but refer readers to our survey paper on the
same [67].

2.2 Using XAI to Improvise models: Explanation Guided Learning (EGL)

While XAI approaches offer post-hoc analysis of models and provide feedback regarding models
decision process, it is importance to use this feedback for improving the models. XAlI-based model
improvement, also referred to as Explanation Guided Learning (EGL), uses this feedback given by XAI
approaches to guide the models towards desired explanations. [18, 55, 69, 189] survey various XAl
approaches for model improvement.

Note that (i) includes (ii), as using explanations for better generalization will automatically improve
the interpretability of models. In the following subsections, we discuss the categorization of generic
XAI methods.

2.2.1 EGL categorization based on augmentation

Weber et al. [189] classify based on augmentation made for improvement, which can be over training
data, features, loss, gradient, model efc.(Fig. 1.8). The methods which augment data do it by removing
spurious correlations from training data, using class-prototypes [57, 79]. It is to be noted that Weber
et al. [189] include XIL-based methods into methods augmenting data while we categorize it differently
because of the very different nature of these methods requiring interactive feedback from methods that
augment training data directly. Among methods that augment the features, Attention Branch Network
[54] masks features based on class activation mapping [200] based interpretations to make the model
focus on correct attention masks. CIArC [9] augments intermediate activations (features) based on their
orientation with CAV. While RRR [139], CDEP [138], Selvaraju et al. [158], Chen et al. [36] includ-
ing our proposed method of concept distillation augment the loss function for enforcing explanation
alignment penalization on the model. ha Lee et al. [68], XAI-GAN [129] and augment the gradient in
different ways for enhancing learning via XAl. Among methods augmenting model, Yeom et al. [195]
prune the model according to LRP [22] while Sabih et al. [140] quantize the model using DeepLIFT
explanations [101].

2.2.2 EGL categorization based on goal

We categorize XAl-based model improvement in terms of the end goal as aiming (i) enhanced
interpretability and (ii) better generalization. Most of the existing literature focuses on the former
[7, 53,77, 79, 83, 92, 141, 150, 151, 170, 171, 177, 179, 186, 191] with some works addressing the
latter [9, 12, 25, 26, 53, 88, 152, 159, 163, 166, 170]. Such division concurs with Holmberg et al.
[74] that found that explanations with the goals of better understanding have a significant difference
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Table 2.3: Taxonomy of Concept based model improvement methods

Model Improvement Goal

Method

Sub Method: Papers

Better Interpretability

Concept Conditioned Prediction Based

Supervised: CBM [83], CME [77]

Partially-Supervised: CBM-AUC [151]

Unsupervised: SENN [7], XAL based:
CALI [177], C-SENN [150], Sarkar et al.
[149]

Concept Reasoning based

Neuro-Symbolic: RRC [170]

Interaction based

Human Interaction: Lage and Doshi-Velez

[92], NesyXIL [170]

Proto-type based: proto2proto [79], Xue
et al. [191], Wang et al. [186], Sacha et al.
[141]

Better Generalization

CAV based

few shot: CIATC [9]

zero shot: Concept Distillation chapter 3

Causality Based

Bahadori and Heckerman [12]

Latent Space Disentanglement based

Neuro-Symbolic ~ Reasoning  Based:

NeSyXIL [170]

GAN based: Img2Tab [166]

XAI based: ProtoPDebug [26], CAIPI
[152], Interactive CBM’s [34], Bontem-
pelli et al. [25]

Probability Distribution based

Kronenberger and Haselhoff [88]
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Figure 2.2: CBMs: Concept Bottleneck Models predict a set of concepts ¢, then use c to predict the final
output y. In bird identification the concepts like wing color etc are predicted first and this is further used

to predict bird label. Source: [83]

from explanations to find actionable decisions. Note (i) includes (ii) because using explanations for
better Generalization will automatically improve the Interpretability of models. We restrict ourselves to

Concept-Based Model Improvement Methods in this section.

2.2.2.1 Aiming better interpretability

These methods aim for no class accuracy impairment along with enhanced Interpretability of the
model and can be categorized broadly based on the type of interpretability methods used as shown in
Tab. 2.3.

* Concept Conditioned Prediction Based
— Supervised Concept Bottleneck Models (CBMs) [83] use concept mapping as an interme-
diate step in the model’s final prediction. Specifically, they map the input x to a concept ¢
using a concept prediction module g : * — ¢, which is then used to predict the target class
y using a classification module f : ¢ — y. This conditioning of the model’s prediction over
concepts improves the interpretability and generalization of the model. The authors tested
CBMs using three different training paradigms: independent training of g and f (with f
trained on ground truth concepts), sequential training (where f is given g’s predicted con-
cept ¢), and joint training (where both f and g are optimized over a joint objective). They
found that all three training paradigms produced similar classification accuracies for both
concept prediction and target class prediction. However, independently trained models had
better test-time interventions. They intervene not on the actual value of concept c but on the
model’s concepts predictions ¢. Thus they do not check the induction of concept ¢ unlike

our work: Concept Distillation discussed in chapter 3.
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Figure 2.3: Concept-based Model Extraction (CME): The CNN model processes input images in a
black-box fashion using pixel information to predict the class label. On the other hand, the CME ex-
tracted model computes concept information, such as bird wing or head color values, from the input
image using an Input-to-Concept function. Then, a Concept-to-Output function is used to generate the

output class label based on this concept information. Source: [77]

— Partially-Supervised Concept-based Model Extraction (CME) [77] approximates DNNs
using simpler interpretable models like linear, logistic regression, and decision trees. While
CBMs require binary concepts, CME can handle multi-valued concepts and can derive con-
cepts combining multiple layers (unlike TCAV, CBM, etc., which require one layer to be
chosen). Additionally, CME can train in a partially supervised manner with few labeled and
other unlabelled samples. Further, it assumes & different concepts forming concept repre-
sentation C C R¥ such that every basis vector in C spans all possible values of a particular
concept. They define two functions for mapping input to concept space (p : X — C)
and concepts to predicted class space (¢ : C — Y ). CME approximates f with f given
as f(x) = q(p(x)) where ¢ and p are extracted by CME. For this, they define a function
g H = C g and extract it by SSMTL [114] using an approximation of k separate tasks
(one for each concept). For every concept, ¢ [77] finds the best layer for predicting the

concept by minimizing a loss function [ I’ = arg min/ ( gﬁ, z) and finally approximating p as
leL

px) = (g o f" (). k 0 ().

23



reconstruction or
loss Lp Y
classification
0SS y

E>@ (o
dm e E> Oy Eclamabcl

concept 1érncn(Jer.h,( C1wp) N

N 4
$
manaal
s1daouon

%—/
relevance parametrizer 6( - (]'Jg) aggregator g( -3 wg)

S
-
' ]

%, B B 3 o
" E> E> |:> % - : @8 @8 explanation
£ . |t Bt
0 2‘ » “ {(h(r)ha(x)i)}f_l

robustness
0Ly loss ﬁg

(91,:;9

Figure 2.4: Select Explaining Neural Networks (SENNs) consist of a concept encoder (green), an input-
dependent parametrizer (orange) which generals relevance scores, and an aggregator which gives final

prediction. Source: [7]

g is approximated in a supervised manner using a mapped set of concept labels and target
labels (class labels)as a training set and fitting using Decision trees or logistic regression.
Concept Bottleneck Model with Additional Unsupervised Concepts (CBM-AUC) [151] com-
bines CBMs with SENNs to extend CBMs to additional unsupervised concepts along with
supervised concepts.

— Unsupervised Self-Explaining Neural Networks (SENN) [7] is a type of Unsupervised
method which learns interpretable basis concepts by approximating a model with a linear
classifier. They focus on explicitness, faithfulness, and stability via regularizing models.
For a linear classifier f(x) = 0(x)” h(z) where z is input, h(x) is function mapping in-
put to concepts, and 6 represents model parameters, they enforce the following constraints:
(i) The output of f is approximately same for two close inputs that is V, f(z) ~ 6 (x0)
for all x in a neighborhood of xg; (ii) model is linear in terms of concepts; (iii) Aggre-
gation function for features shall be generic enough such that it is permutation invariant,
isolate multiplicative interactions between concepts and preserve sign and relative magni-
tude of relevance values 6(z);. Finally, they define self-explaining prediction model as:
f(x) = g(01(x)h1(x),...,0k(x)hi(x)) with some additional constraints [7]. When the
above formulation is applied over a neural network, it becomes SENN (the condition being
g is continuous over concepts and model weights). SENN is capable of using user-provided

concepts as well as learning new concepts which satisfy Fidelity: concepts persevere rel-
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ative information and Diversity: concepts for a particular input are non-overlapping. For
SENN, they learn an autoencoder h and ensure sparsity constraint to increase diversity while
using proto-types for interpretations. They use a concept encoder that transforms inputs to
concepts, an input-dependent parameterizer for generating relevance scores, and an aggre-
gation function that combines them for the prediction of class labels. The concepts and their
relevance predictions form an explanation. SENN has reduced interpretability in real-world
tasks like autonomous driving, which is overcome by C-SENN [150]. C-SENN combines
Contrastive learning with concept learning of SENN to improve the discovered concepts and
task accuracy.

Sarkar et al. [149] use a base encoder (which is the same as the second last layer of the classi-
fier) followed by two branches: one for concept and one for classification. The classification
branch resembles the last layer of the classifier and gives the final class label prediction while
the concept head has a concept decoder that reconstructs the image given the intermediate
representation (features by the base encoder). Thus the intermediate representations act as
concepts. They additionally impose an image reconstruction loss apart from fidelity and
classification losses.

* Concept Reasoning Based (Neuro-Symbolic) Right for the Right Concept [170] uses a concept
embedding module that learns concepts via slot attention Interaction based[117] and a reasoning
module that reasons for the concepts. The concept embedding module creates a decomposed
representation of input space which can be mapped to concepts, while the reasoning module
makes predictions based on the above-obtained concepts.

* Interaction based Interaction based methods aiming for better interpretability need interaction
with an expert which is eigther done by a human expert or by using class prototypes. Henceforth,
they can be classified into broadly two categories as follows.

— Human interaction based Lage and Doshi-Velez [92] learn interpretable models via user
feedback on concepts(which ones are similar and which are not) and also which concepts
should(not) affect. Interactive Concept Swapping Networks iCSN’s [171] bind concepts to
prototypes by swapping the latent representations of paired images. They use prototypes for
interactively learning concepts with user feedback. A Human can query iCSN prototypes
and update them for concepts.

NesyXIL [170] adds a user interactive layer over Nesy [170] discussed above.
For a detailed survey on methods that use explanations in interactive ML please refer [53,
179].

— Proto-type based Proto2Proto [79] uses knowledge distillation to transfer interpretability
from (interpretable) teacher to a student model.

Xue et al. [191] use global and local prototypes for enhanced interpretability in Visual Trans-
formers (ViT). Wang et al. [186] use a macro (broader) and micro proto-types (more specific)

for interpretable models learning from mistakes. A similar idea of macro and micro proto-
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types is used by Sacha et al. [141] which leverages support prototypes capturing macro-level
features and trivial proto-types capturing specific micro features. The support (or macro)
proto-types provide a global overview of the concepts (or features) but cannot capture some

class-specific trivial features (thus captured by trivial (or micro) proto-types.

2.2.2.2 Aiming better generalization

These models typically remove bias or confounding factors and show accuracy improvement on
poisoned datasets. [53] gives a topology exploring mitigation of shortcut behavior in models which
involves steps of Select, Explain, Obtain feedback, and Revise model. We divide these methods as

follows.

* CAV based They use CAVs [80] for the representation of concepts and move activations to make
a model sensitive or insensitive to the concept.

— Few Shot Anders et al. [9] does artifact removal from models by moving activations of
images according to the CAV’s learned for class images containing artifact vs. non-artifact
class images. It is a few-shot method since it requires artifact and non-artifact images. It uses
two methods for the removal of artifacts: Augmentative and Projective. Augmentative Class
Artifact Compensation (ACIArC) augments the class samples trying to remove the artifact
by moving them according to the CAV direction and retraining the original model. Projective
Class Artifact Compensation (PCIArC) on the other hand moves the class activations to a
concept-neutral direction in the model’s activation space by a simple linear transformation.

— Zero Shot There is no existing zero-shot method to the best of our knowledge, and we pro-
vided the first zero-shot concept-based model improvement method: Concept Distillation,
which uses pre-trained model’s conceptual knowledge to train a student model via concept
and proto-typical losses. Our proposed method is discussed in chapter 3 in detail.

» Causality based Causal modeling involves checking for causes of a particular effect (here model’s
particular predictions). Bahadori and Heckerman [12] use causal graphs for debiasing CBM’s re-
moving confounding factors or clever-hans. It models the impacts of unobserved variables using
causal graphs and removes them with a two-stage regression technique aided by instrumental
variables.

* Latent Space Disentanglement Based They disentangle latent space to represent similar con-
cepts in similar spatial regions. Latent space disentanglement is typically achieved through the
use of generative models, such as autoencoders, variational autoencoders (VAEs) and Generative
Adversarial Networks.

— GAN based Img2Tab [166] as described above, allows user interventions on the model for
concept based debugging by identifying class-relevant concepts from W}, metric or classifier
and using those to filter the semantics our of classifier P by masking all unwanted features

across training samples.
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— Neuro-Symbolic Reasoning Based NeSyXIL [170] allows for user corrections to its con-
cept embedding module explanations or reasoning modules explanations.
— User Interaction for input based ProtoPDebug [26] debugs part-prototype networks using
a concept-level debugger with human supervision regarding what part-prototype is forgot-
ten or kept. Right for the Right Latent factors [159] provides a debiasing approach for
generative models via disentanglement of latent space with human feedback. They enforce
disentanglement via ELBO loss and a match pairing loss [163]. CAIPI [178] propose an XIL
framework where DNN’s query the user while the user explains the queries and corrects the
explanation. Right for the Right Scientific Reasons RRSR Schramowski et al. [152] use
CAIPI or RRR [139] depending on the task and demonstrate results removing clever-hans
phenomena. Interactive CBMs [34] extend CBMs to XIL using an interaction policy that
selects which concept labels to be queried from the user to improve prediction maximally.
Their policy combines concept prediction uncertainty and the influence of concept on model
prediction. [25] introduce a debugging technique for CBM’s debugging using human super-
vision. They can intervene on both concept-level and input-level bugs. CALI [177] extends
SENN to XAL setting learning SENNs from class labels and explanation guidance by users.
* Probability Distribution based [88] uses explanations to verify (accept or reject) the prediction.
They show results over GTSRB dataset [169], which consists of 43 different classes showing
german traffic light signs. They further use three attributions of varying complexity as concepts:
Simple: Color Medium: Primitive Shapes like squares, circles, triangles, octagonal, etc. Complex:
Numbers (0-9) and symbols (truck, animal, car, children, bicycle, etc) The examples above are

included as synthetic data.

2.3 Various Debiasing Methods

To restate, ante-hoc model improvement methods utilize explanations from the pre-trained model
to remove biases that degrade the performance on Out-Of-Distribution (OOD) samples in a corrupted
test set. We can subdivide them into three categories based on the amount of corruption information

available during retraining:

2.3.1 Multi-shot Scenario

If we have sufficient OOD samples available beforehand, we can pose them as target distribution and
directly use domain generalization techniques like feature augmentation [104, 124], adversarial learning
[99, 100]. Such methods debias the model by generalizing the features to appropriately represent cor-
rupted information by directly learning on the OOD samples. Hence such methods can directly penalize

biases using data without explicitly requiring their identification and modeling.
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Figure 2.5: Categorization of debiasing methods with ours highlighted.

2.3.2 Few-shot Scenario

If only a limited number of OOD samples are available, then they can be used to model the underlying
bias in a few-shot manner and then utilized for generalization. DFA Lee et al. [98] use a small percentage
(< 1%) of the corrupted test set as adversarial samples during training. They design separate encoders
for learning disentangled features for intrinsic and biased attributes, which they swap to improve feature
diversity during debiasing. Due to the limited OOD sample dependence, the extracted interpretations
might not be generic enough for complete debiasing and would require retraining in case of small
corruption parameters perturbation. A contemporary work Debiasing Alternate Networks (DebiAN)
[110] uses a bias discoverer coupled with a classifier that uses predicted class-softmax probabilities

differences across various samples to detect and mitigate biases.

2.3.3 Zero-shot Scenario

The last category is when we do not have any OOD samples available beforehand. Such methods
identify existing biases by interpreting the pre-trained model and induce this as prior knowledge to
generalize the learning to OOD cases in a zero-shot setting by augmenting loss functions [49, 98, 138,
139]. We split them into two types based on the scope of their interpretability:

Local Methods: These methods use local explanations (LXAI) for bias assessment i.e.they identify
bias on a per-sample basis and then use it for ante-hoc zero-shot improvement. Note that the methods
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do not require OOD samples for bias assessment and hence still fall under our zero-shot categoriza-
tion. RRR by Ross et al. [139] uses a penalization term if it does not prefer the Right answers for
Right Reasons by using explanations as constraints. Erion et al. [49] augment learning gradients with
a penalizing term to match with user-provided binary annotations. Sun et al. [172] use LRP [11] in a
cross-domain setting and later extend the idea [173] to weigh feature maps for fine-tuning image cap-
tioning models by modulating feature importance scores. Most relevant to our work is CDEP by Rieger
et al. [138], which introduces an explanation penalization based augmentation to the loss term computed
using the model’s current and the desired explanations. Their main idea is to use contextual decomposi-
tion [125] to estimate feature interactions in addition to pixel importance. Thus they require additional
user-provided feature importance scores for each input sample. For ColorMNIST, they minimize the
contribution of pixels in isolation (which represents color), forcing the model to focus on the interaction
between pixels (thereby learning shape). On the other hand, we can directly specify concepts like color
and shape via our concept set-based definition. Furthermore, it is not straightforward how to encode

complex concepts like age, gender, race, etc, using their method.

Global Methods: Contrary to the sample-specific explanations based on local methods, recently,
some global methods have come up which detect biases for an entire class or all the classes (i.e.complete
domain). They explicitly define and penalize the concepts behind the class/domain biasing attributes.
This is based on the understanding that we humans also construct class common concepts while learn-
ing [93] instead of mere sample specific interpretations. There are only a handful of methods in this
category. A couple of methods focus on improving the reasoning of models via neuro-symbolic concept
representations [170, 171]. RRC [170] maps the concepts to a better disentangled embedding space and
requires interactive user feedback for improving the model. Anders et al. [9] uses CAVs to perturb input
features towards or away from the concept. They leverage CAVs like us for concept identification, but
their concept definition is restrictive as they learn CAVs directly in the base model’s activation space.
We learn CAVs from a large teacher transformer which provides more unbiased conceptual knowledge.
Similarly, Proto2Proto by Keswani et al. [79] also uses knowledge distillation but focuses alignment of

classes proto-types and feature spaces instead of concepts.

Due to individual sample-specific modeling, several rich semantics emerging out of cross-sample/inter-
class relationships and abstract intrinsic class attributes are not explicitly encoded in the local methods.
This limits their utility in complex real-world problems. Our method falls in the global category model
class-wise instead of sample-wise, not directly requiring any OOD samples for debiasing. We directly
encode the class intrinsic and biasing attributes via concepts. Furthermore, our method can be easily
extended as a hybrid approach by supplementing it with local techniques and few-shot information for

additional performance gains.
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2.4 Intrinsic Image Decompostion

2.4.1 IID Methods

IID, as modeled in Eq. 3.1, was first proposed by Land and McCann [94]. Earlier IID solutions
were mostly unsupervised optimization-based approaches constrained by strong assumptions and spe-
cific auxiliary inputs like time-lapse video [109], multi-view images [48], IID using stereo images [91],
IID on RGBD data [14], focal stacks [146], etc. Single image IID methods depend upon complex cost
functions and optimization algorithms like IID by chromatic clustering [56], convex energy minimiza-
tion [62], hierarchical priors [144, 145], efc.. With the advent of Deep Learning, various supervised,
semi-supervised, and unsupervised Neural Network based solutions have been proposed in the literature.
Initially, Bell et al. [20] and Zhou et al. [202] proposed a hybrid DL and optimization-based framework
for IID. Narihira et al. [130] proposed a direct R and S regression framework trained on synthetic Sin-
tel dataset [27]. Li and Brown [106] introduced a relative loss function for reflectance estimation. Li
and Snavely [109] learned an unsupervised IID model using time-lapse videos and consistency loss.
Finally, Li and Snavely [108] and Fan et al. [50] trained multiple sequential modules supervised by
hybrid synthetic, sparse, and dense datasets with appropriately designed loss functions. A fully unsu-
pervised DL approach has been proposed [116], which poses IID as a style-transfer problem. PIE-Net
[42] has a hybrid-CNN approach for addressing shading-reflectance leakages in strong illumination con-
ditions whereas Baslamisli et al. [15] use photometric invariance and some other physics-based priors
in encoder-decoder architecture.

As earlier optimization-based approaches are interpretable by design, we focus on recent state-of-
the-art DL-based IID models. Specifically, we focus on 3 IID solutions:

— Intrinsic Images by Watching the World ITWW) [109] trained in a partially-supervised manner on
their self-introduced Bigtime dataset consisting of time-lapse videos of natural indoor and outdoor
scenes.

— CGlntrinsics (CGIID) [108] which does supervised training on their new synthetic dataset containing
physically based renderings with GT R and S, as well as natural scenes from ITW [20] and SAW [87]
datasets.

— Unsupervised Single Image Intrinsic Image Decomposition (USI3D) [116] which first disentangles
content from style features, then utilizes adversarial learning to separately learn R and S style do-
mains and performs content preserving image translation with consistency losses for IID in an unsu-

pervised training regime.

2.4.2 Evaluation Strategies

Since there is a lack of dense real-world GT annotations for R and S, all the above models are
evaluated on synthetic images (ARAP [23], Sintel [27]), small single object scenes (MIT Intrinsics
[65]) or sparse manual annotations (ITW [20], SAW [87]). Synthetic GT-based evaluation is affected by
synthetic-natural domain shift, whereas single object images do not capture the complexity of everyday
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natural scenes. Sparse manually annotated GT from IIW and SAW either provide only relative assess-
ments or use classification accuracies on fixed shading categories. Additionally, Bonneel et al. [24]
acknowledge the issue of IID evaluation and propose to evaluate IID quality by estimating the perfor-
mance in downstream image editing applications (logo removal, shadow removal, texture replacement,
and wrinkles attenuation) using the decomposed R and S components. None of these IID evaluation
strategies specifically capture the disentanglement quality of the decomposed R and S, and implicitly

assume that the small set of curated GT annotations/cases represents all the possible test scenarios.

2.4.3 Metrics

On densely annotated synthetic GT images, IID quality is measured using pixel-to-pixel comparisons
and metrics like Local Mean Square Error (LMSE), Mean Squared Error (MSE), and Difference in
Structural Similarity Index (DSSIM). These metrics are not robust to the ambiguous nature of the IID
problem (I = RO® S = AR © /\i VA € RT). For sparse human annotated GTs like ITW and SAW,
Weighted Human Disagreement Ratio [20] (WHDR) measures the percentage of disagreement between
human assessment and model prediction weighted by the confidence of each annotation. The SAW AP%
[87] is calculated based upon average precision on varying recall percentages over the classification of
pixels into smooth vs. non-smooth shading regions. Both of these metrics only assess a sparse set of
pixels and ignore specific cases like multiple shadows, colored highlights, material transmissivity, efc..
Also, they are specific to the dataset, which is comprised mostly of indoor scenes. Current limitations of
IID metrics motivate the search for a more comprehensive and fundamental evaluation strategy which

we attempt to address through our proposed approach in this thesis.
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Chapter 3

Interpreting Intrinsic Image Decomposition using Concept Activations

3.1 Introduction

Image-Based Inverse-Rendering (IBIR) problems like image stylization, image harmonization, illu-
mination estimation, palette extraction, efc., are often under-constrained and ill-posed in nature. They
are under-constrained as we need to estimate more output parameters than available inputs. For exam-
ple, style-content decomposition for single-image stylization lacks constraints. These problems are also
frequently ill-posed due to the underlying optical model approximations and assumptions like diffuse
surfaces, monochromatic illumination, point light source, efc.. As a result, performance evaluation of
their solutions becomes a challenging task. The issue is exacerbated due to the lack of a proper ground
truth dataset and evaluation metric. To address this issue, we propose a novel evaluation by interpreta-
tion technique in this paper thereby introducing a Concept Sensitivity Metric (CSM). We focus on one
such problem in this thesis. i.e., Intrinsic Image Decomposition (IID) [90].

IID is an IBIR task that involves decomposing a given image into its constituent illumination-
invariant Reflectance (R) and albedo-invariant Shading (S) components. The decomposition finds direct
use in many applications, such as shadow removal [89], image colorization [115], material manipulation
[24], relighting [48], and retexturing [24]. Current IID methods assume a simple Lambertian reflectance

model on diffuse surfaces:

I=ROS, (3.1)

where ® denotes element-wise multiplication. Due to the under-constrained nature, existing IID meth-
ods either depend on hand-crafted [20, 106, 161] or deep learned [42, 108, 109, 116] priors.
Performance evaluation of IID is carried out on a small number of natural images like MIT Intrinsics
[65], sparse human annotation datasets like Intrinsic Images in the Wild (ITW) [20], Shading Annotation
in the Wild (SAW) [87], etc., or synthetic datasets like Sintel [27], As-Realistic-As-Possible (ARAP)
[23], etc.. For densely annotated GT images, evaluation is carried using dense per pixel error estimation

or using quality score involving metrics like Peak Signal-to-Noise Ratio (PSNR), Local Mean Square

"https://avani17101.github.io/Concept-Sensitivity-Metric/
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Figure 3.1: Evaluation-via-interpretation: Given a pre-trained IID network, existing evaluation tech-
niques rely on comparison with ground truth or performance in a downstream application. We propose
a novel evaluation-via-interpretation strategy based on learned Concept Activation Vectors (CAV) [80].
We estimate concept sensitivity scores and evaluate IID performance by measuring the quality of albedo-

illumination disentanglement via our proposed Concept Sensitivity Metric (CSM).

Error (LMSE), Difference in Structural Similarity Index (DSSIM), efc.. For sparsely annotated GT
datasets, IID-specific metrics like Weighted Human Disagreement Ratio (WHDR) [20] and Average
Precision (AP%) of classified shading pixel regions [87] have been proposed. Yet another way to eval-
uate IID solutions is via the effectiveness of the decomposed components in a downstream application.
Bonneel et al. [23] propose hardcoded application scenarios like logo removal, shadow removal, tex-
ture replacement, and wrinkles attenuation on a fixed set of hand-picked 21 images to benchmark IID
solutions. These evaluation strategies either require dense GT annotations which are available only for
synthetic scenes [23, 27] (with exception of a few single object images from Grosse et al. [65]) or are
dataset specific with sparse human annotations [20] [87]. Since multiple R and S pairs can result in the
same image, even the “ground truth” is only one possible solution and measures on that is inadequate to

evaluate the method.

To address these issues, we propose a new evaluation strategy for ill-posed problems like IID by
measuring the quality of disentanglement between the decomposed components R and S. We use the
core IID concepts of illumination-invariance of R and albedo-invariance of S' to measure disentangle-
ment, without specifically relying on synthetic images or relative quality metrics computed on fixed
sparsely annotated datasets. We choose an ML interpretability technique based upon Testing with Con-
cept Activation Vectors (TCAV) [80] for this. Originally introduced for classifiers, TCAV is a post-hoc
Concept-based Model Extraction (CME) [77] method that interprets a Neural Network using human-
understandable concepts. Specifically, TCAV quantifies the importance of a user-defined concept in the

model’s prediction by extracting activation vectors from a provided concept set. For example, for a
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zebra classifier one may be interested in interpreting concepts like ‘striped-ness’ vs.‘dotted-ness’, which
are defined by learning Concept Activation Vectors w.r.t.the model from user provided sets with striped
and dotted textures respectively. We use as concepts two core characteristics derived from the very def-
inition of IID, i.e., illumination-invariance of R and albedo-invariance of .S. We assess disentanglement
between them by measuring the model’s sensitivity to these concepts in the form of Concept Sensitivity
Metrics (CSM) (Fig. 3.1). The CSM provides a generic framework applicable to problems other than
IID using concepts relevant to them. To summarise, the main contributions our work are:

* A novel method for using ML interpretability algorithms like TCAV to measure disentanglement.

* A novel IID performance evaluation metric: Concept Sensitivity Metric (CSM) and benchmarked

results on three state-of-the-art IID solutions.
* A new configurable dataset of images and corresponding generation scripts with controlled illumina-

tion and albedo variation.

3.2 Concept Sensitivity Metric: IID Evaluation by Interpretation

In this section, we first provide a quick primer on the background of Testing with CAV [80], followed
by our definition of IID concept sets for R illumination-invariance and .S albedo-invariance and proposed

IID evaluation strategy using our novel Concept Sensitivity Metric.

Concepts used for IID:  For IID evaluation-via-interpretation, we define two concepts: albedo-invariance
(Ca,) and illumination-invariance (C'a, ). For definition of associated concept sets (A; and A,), we ren-
der synthetic images of objects by varying one concept while fixing the other. We use random textures,
albedo maps and different illumination settings for this. For negative concept set, we randomly select

images from a large dataset (unrelated to IID).

R and S Sensitivity: By IID definition, in an ideal case A, should only affect R and A; should just
affect S. In other words, the sensitivity Ra, of R towards concept Ca, must be high and the sensitivity
R, towards concept C'a, must be low. Conversely, for S , the sensitivity Sa, towards concept Ca, must
be low and the sensitivity Sa, towards concept Ca,; must be high. In the ideal case of complete R-S
disentanglement, R, Sa, should be 1 and Ra,, Sa, should be 0. Due to several inherent assumptions
in the IID definition (diffuse surfaces, linear optics, etc.), total disentanglement is impossible and a

measure of disentanglement will be useful.

Concept Sensitivity Metric (CSM) We evaluate the model’s disentanglement quality by combining
the above sensitivity scores to gauge the model’s performance in the two experiments separately to give
Concept Sensitivity Metric (CSM) scores. CSM scores give a quantitative measure to gauge the quality

of R vs.S disentanglement. We introduce two CSM scores: C'S Mg which measures S albedo invariance
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Figure 3.2: TID Concept sets: Left grid of images shows four samples from our A, concept set with

varying textures and base colors. Image on the right illustrates light source variation setting (£22 in

either direction) for rendering A; concept set images.

and C'S Mg which measures R illumination invariance:

R SA,

CSMg = 22 and CSMp = 221, (3.2)
SA, Ra;

Higher value of C'SMg indicates less leakage of albedo information in S. Similarly, higher value of

C'S Mg, indicates less illumination leakage in R. We verify the same experimentally in section 3.4.

3.3 Experiments

3.3.1 Datasets

Concept Sets: For the two IID concepts, the respective concept sets (A, and A;) are rendered in
Blender [40] in a controlled environment. We generate two types of scenes: simple scenes with a single
object and complex scenes with multiple (3) objects. We setup the scene by randomly choosing from
a set of frequently used standard 3D meshes! and placing them on a white table-top. We place a point
light source of white color, 1000W power, 0.5m radius with fixed temperature 7" € {2500, 4500, 6500}.
Specifically, for A,, we render scenes with fixed viewpoint and illumination but randomly vary the base
color and surface texture. For A;, we vary illumination by rotating the light source every 2° in +45 left
and right directions as shown in Fig. 3.2 but keep the camera viewpoint and base color/surface texture
constant (thus getting 44 images: 22 in the left and 22 in right direction). For defining the negative

concept set C’, we take random images from Adobe-5k-dataset [28].

"https://github.com/alecjacobson/common-3d-test-models
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We also compare the CAVs learned from our synthetically rendered concept sets against available
natural scene datasets. For A, concept set, we found no suitable large enough dataset with natural
albedo variations, so we report on synthetic concept set only. For A; we use two publicly available
datasets which have natural illumination changes: (i) Multi-Illumination Images in the Wild dataset
(MIW) [126]: test split which consists of 30 scenes under 25 different illuminations. (ii) Photometric
Stereo dataset (PS) [6] consists of 3 objects (apple, gourdl, gourd2) under several illumination settings
in all directions (approximately 100 per object). Though MIT Intrinsics dataset [65] also has scenes in
varying illuminations (11), it cannot be used as concept set because at least 20 images are needed per

concept for a stable CAV estimation as recommended by Kim et al. [80].

Testsets: We take ARAP [23] dataset images as our input x for IID networks. ARAP contains realistic
synthetic renderings of both indoor and outdoor scenes. We remove the single object scenes (‘Katie’,
‘redhead’, ’skin’, ’strawberries’, 'toad’, ‘revolution’) to maintain inter-scene consistency taking the re-

maining complex scenes to get a total of 42 scenes which have 3-4 varying illuminations.

3.3.2 Implementation details

We use our PyTorch [134] implementation of TCAV. We use the pre-trained models and the infer-
ence codes for IWW [109], USI3D [116], and CGIID [108] from their official repositories and use
their respective hyper-parameter settings. Our sensitivity computation requires only activation values
of the pre-trained model and does not require full training. The hardware requirement of our frame-
work depends on the model being analysed for CAV estimation. We tested our framework on 2 Nvidia
GTX1080Ti GPUs, which were required by the largest model we analyzed (US13D).

We perform multiple iterations (100) of CAV estimation experiments for robust concept definition.
We decide upon the number of iterations through exhaustive experimentation as reported in section 3.4.
In each iteration, we use 100 rendered images per set with varying albedo for Ca, and 44 images with
varying illumination for Ca,. All images are resized to 256 x 256 dimensions. With each iteration,
we perform hypothesis significance testing (double-sided t-test with p = 0.01 kept same as [80]) and

average over the passing significant CAVs.

3.3.3 Experimental Details

We analyze our framework for different scenarios by enumerating over a combination of various
experimental conditions:

* Layer Selection: Original CAV sensitivity can be evaluated for any layer of the model. In our IID
adaptation, we restrict to the last layer sensitivities. There are two reasons for this design choice.
First, the IID concepts which we are trying to capture are high-level abstractions which are better
represented by the deeper layers. Second, different IID methods have different number of layers

making the choice of comparable layers difficult across architectures e.g. IIWW and CGIID both have
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Figure 3.3: Illumination temperatures: We use three temperatures for illumination which are 2500,

4500, 6500 as shown in from left to right.

separate branches of R and .S while USI3D has two generators of R and S styles plus a content
encoder. Computing CAV sensitivities on the last layer makes our method more stable and architecture
agnostic.

* Scene Domain: We analyze our technique under both synthetic and natural domains by choosing
appropriate concept sets.

* Concept Scene Complexity: We estimate CAVs for both simple and complex scene settings with
single object and multiple objects respectively.

¢ Concept Albedo Complexity: We render A, concept sets with two albedo complexity settings: Sim-
ple RGB base color change and texture variation. In the first case, each object has one randomly
assigned solid RGB color. In the second case, we apply a random texture map from DTD dataset [38]

on each object.

Overall, we have four experimental settings for each concept: Textured-Simple, Textured-Complex,
RGB-Simple and RGB-Complex. We perform comprehensive experiments by forming multiple con-
cept sets under each of above categories. Specifically, for C'a, concept we have 10 scenes rendered
under 4 different illumination directions with 3 illumination temperatures ¢ € {2500, 4500, 6500} (as
shown in Fig. 3.3), hence 10 x 3 x 4 = 120 concept sets each containing 100 albedo/texture variation
images. Similarly for C'a, we have 10 scenes x 3 temperatures x 3 albedos = 90 concept sets, each

with 44 (22 left + 22 right) illumination direction variation images.

3.4 Results and Analysis

We report our CSM disentanglement scores (C'SMg, CSMp) for Ca, and Cp, in Tab. 3.1 after
averaging over all the corresponding concepts sets. From Tab. 3.1, we find that USI3D does best dis-
entanglement of albedo from S (best S albedo invariance thus highest C'S Mg) while CGIID does best
disentanglement of illumination information from R (highest C'SMp) amongst the three models. We
also show illustrative qualitative results in Fig. 3.4 which show predicted R and S from the three meth-

ods for the same scene under 2 different albedo (Ag and A1) and illumination (Ip and I;) settings.
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Figure 3.4: Illustrative qualitative results for albedo variation (first and second rows) and illumination
variation (second and third row) experiments: A;I; represent scene in albedo i and illumination j. For
albedo variation (49 — Aj) , USI3D [116] followed by TWW [109] observes least changes in S
(green) and thus is best in disentangling albedo information from S while CGIID [108] (magenta) is
worst. For illumination variation (I — I;) CGIID observes least changes in R (teal) having least
leakage of shadows in R for all three rows while TWW and USI3D have comparatively more shadow
leakage (magenta). This is reflected in our CSMg and C'SMp scores in Tab. 3.2 unlike in existing

metrics (Tab. 3.4). (Best viewed in color).

Table 3.1: Disentanglement quality: Quality of disentanglement for albedo variation (as measured by
CSMg) and illumination variation (as measured by C'SMp). USI3D performs best in C'S Mg metric

and CGIID the worst. The trend is reversed for the C'S Mg metric. Note: Best is bold, second best is

underlined.
CSMs t CSMpgr 1T WHDR | SAWAP% t
Model Textured RGB Textured RGB
M, M
Simple Complex Simple Complex CSMs 1 Simple Complex Simple Complex CSMg T

IWW [109] 2.049 1.286 0.939 1.732 1.524 0857 0979 0936 0.741 0.878 20.3 91.87
UusSID [116] 2 1.943 2806 1.669 2139 0.648 0504 038  0.674 0.552 18.69 78.69
CGIID [108] 0.753  1.328 0.606  0.93 0.909 1.35 1.231 1806 1.79 1.544 14.8 97.93
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Table 3.2: Disentanglement quality in different temperatures: On an average a similar trend is followed

across temperatures.

CSMg 1 CSMp 1
Temp  Model Textured RGB Textured RGB
CSMg 1t CSMpg T
Simple Complex Simple Complex Simple Complex Simple Complex

IWW [109] 1.735 1.112 0.894 1.426 1.292 1.021 1.098 0.994 0.757 0.968
2500 USI3D [116] 4.138 2.802 4.11 2.643 3.423 0.449 0.406 0.275 0.646 0.444

CGIID [108] 0.901 1.379 0.554 1.051 0.971 1.166 1.412 1.52 1.66 1.44
IWW [109]  1.995 1.544 0.955 1.877 1.593 0.805 0.979 0.886 0.771 0.86
4500 USI3D [116] 2.352 2.248 2.697 1.54 2.209 0.646 0.497 0.385 0.645 0.543
CGIID [108] 0.745 1.334 0.706 0.9 0.921 1.347 1.282 1.858 1.862 1.587
IWW [109] 2.5 1.248 0.965 1.969 1.671 0.763 0.879 0.93 0.693 0.816

6500 USI3D[116] 1.091 1.285 2.063 1.253 1.423 0.942 0.74 0.512 0.727 0.73
CGIID [108] 0.611 1.278 0.558 0.837 0.821 1.624 1.295 2.147 1.865 1.733

!
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Figure 3.5: Illumination changes in ARAP dataset scenes: The first and second rows are bedroom scene
in different illuminations (BR1, BR2) while third and fourth are butterfly in different illuminations
(BY1, BY2). For both the scenes CGIDD has least leakage of illumination in R. In BRI and BR2,
the shadow information is leaked more in R for both IWW and USI3D (magenta), while it is leaked
lesser for CGIDD (green). From BY' 1 — BY 2, butterfly’s top wing has a drastic illumination change.
CGIDD predicts this top wing’s albedo correctly to huge extent(green) while IWW and USI3D have

that illumination directly leaked in R (magenta).



Table 3.3: Natural concept datasets: Similar to synthetic case in Tab. 3.1, CGIID significantly performs
the best in C'SMpg followed by IWW and USI3D on both natural image datasets. This shows no

significant shift between the two domains for CAV computation.

MIW [126] PS [6]
Model CSMgr T

R}l St CSMrpt Rl Sit CSMgpt

MWW [109] 0.391 0.296 0.757 0.409 0.501 1.225 0.991
USI3D [116] 0.173 0.133 0.751 0.75 0.612 0.816 0.784

CGIID [108] 0.373 0.462 1.239 0.061 0.587 9.623 5.431

Table 3.4: Limitation of standard IID metrics: For two exemplar images Aglp and A;1y in Fig. 3.4,
USI3D exhibits best performance for R although it contains shadow leakages. Whereas for the S com-

ponent, the metrics contradict each other.

MSE| LMSE| D-SSIM| LPIPS|[197]
Img Model

R S R S R S R S
IIWW [109] 0.025 0.021 0.006 0.004 0.254 0.365 0.336 0.429
Aoly USI3D[116] 0.013 0.058 0.006 0.006 0.188 0.431 0.185 0.396

CGIID [108] 0.021  0.02 0.006 0.003 0.28 0.421 0.364 0.396

IWW [109] 0.035 0.041 0.011 0.011 0.261 0.456 0.362 0.439
Ailp USI3D[116] 0.014 0.07 0.006 0.01 0.162 0.495 0.153 0.406

CGIID [108] 0.062 0.041 0.006 0.014 0.327 0.559 0.388 0.443
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Figure 3.6: Real-world illumination change results: First two rows are images from Gourd scene (G)
which belongs to PS [6] dataset, last two rows are scene lobby (L) from MIW[126]. For G1 and G2, R
illumination variance is most in USI3D (circular luminant) followed by IIWW while it is least by CGIID.
Though CGIID is unable to predict good R for the dark background of G1 and G2, its foreground’s Ris
good. In lobby scene (L1 and L2) USI3D has global intensity changes in R and ITWW also has a more
changes compared to CGIID which has lesser changes (as seen in black bag on right). Thus CGIID’s R

is less sensitive to A; followed by ITWW and then USI3D (which performs worst).
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Figure 3.7: Sensitivity scores with number of CAV iterations for RGB-Simple concepts Ca,. Both
sensitivity scores Ra, and Sa, plateau after 80 iterations for all three models. Note: Sa, for USI3D is

constantly low since Ca, is in-significant for its S.
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Figure 3.8: Albedo change experiments for T = 6500: Overall performance order is:
USI3D=IIWW >>CGIID. Rows 1 and 2 are scenes in Textured-Complex setting: USI3D has the least
Sprea variations followed by IIWW and CGIID which has significant global changes (shading intensity
variations from light to dark). Also, CGIID’s R,,.q for the second row is very smooth, and most texture
information is leaked in Sp,q4. The third and fourth rows have RGB-complex A,: IIWW followed
by USI3D have fewer changes in S),..q compared to CGIID which observes global changes. Fifth and
sixth rows are Textured-Simple A,: IIWW observes the least changes in S),..q over teapot followed by
USI3D. CGIID and IIWW have significant S),,..q variations in the background. For the second last and
last rows which is RGB-Simple A, setting: USI3D has a nearly constant S, while IWW has significant
variations in the background(at the top) where intensity changes become darker and CGIID has shading

intensity variations over teapot).

42



EEEEELEL
TT0IEEES
e s

.
.
.
.

4

(a)lnput  BIUWWR (JUWWS (QUSIBDR (e)USISDS (CGIDR (gCcGuUDS (W) GTR (i) GTR

Figure 3.9: Albedo change experiments for T = 4500 Order of performance: USI3D > [TWW > CGIID.
Note: Since shading is constant, we represent shading for rows 1, 2, 3, and 4 in row 1 and rows 5, 6, 7,

and 8 in row 5.
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Figure 3.10: Albedo change experiments for T = 2500 Order of performance: USI3D > IITWW >
CGIID. Note: Since shading is constant, we represent shading for rows 1, 2, 3, and 4 in row 1 and rows
5,6,7,and 8 in row 5. Note: USI3D has sharper textures in S; hence in textured settings, textures might
seem a bit change, but its light intensity is constantly compared to other models, which have both texture
leakage and light intensity changes. IIWW has a smoother S leading to lesser texture leakage but has
more light intensity changes(as seen from rows 5 and 6), while CGIID has both sharp texture leakages

and light intensity changes. Hence USI3D gets a good C'S Mg overall.
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Performance in S albedo invariance: CSMg Albedo variations for the same scene are rarely ob-
served in the training sets. Due to this, supervised methods like CGIID perform poorly on C'SMg
metric compared to unsupervised IWW and USI3D. USI3D being completely unsupervised performs
best, followed by IIWW which is partially unsupervised (assuming constant reflectance over time-lapse

videos of varying illumination scenes). From Fig. 3.4, USI3D has least changes in S for Aa.

Performance in R illumination invariance: CSMpz CGIID has significantly higher C'SMF, in all
the four experimental settings, followed by IWW and then USI3D as shown in Tab. 3.1 and verified
from qualitative results in Fig. 3.4 where CGIID observes least changes in R for illumination varia-
tions. It also does well on real-world concept sets as seen from Tab. 3.3 and qualitative results shown in
Fig. 3.6. The same trend is seen over complex scenes from ARAP dataset in Fig. 3.5 and MIT Intrinsics
[65]. This is because illumination variations are captured to some extent in existing IID datasets and
hence the concept Ca; can be learned by supervision. Thus, CGIID being a completely supervised net-
work, performs well on C'SMpr metric. IWW being trained on time-lapse videos of BigTime dataset
[109] comes next, followed by USI3D which is completely unsupervised and relies on style distribu-
tions of R and .S. The same trend is seen in MIT Intrinsics [65] (shown in qualitative results in the

supplementary video).

Effect of different temperature settings: We show results on different 7" in Tab. 3.2. For C'SMg,
the same trend is observed for T = 2500 and 4500: USI3D>IIWW >>CGIID, while for T=6500, IWW
is slightly better than USI3D (ITWW>USI3D>CGIID). With an increase in T, its occurrence gets rare
in training sets. Thus, USI3D being an unsupervised method, does significantly better than its partially
supervised (ITWW) and supervised (CGIID) counterparts. For T = 6500, IWW has slightly better
C'S Mg, the reason being its training on illumination varying BigTime dataset having temperatures in
that range (most natural images are near 6500 T). For C'SMp, same overall ordering of models is
observed across temperatures: CGIID>IITWW >USI3D. We provide additional results on A, concept
for each of our 4 experimental settings for T = 6500, 4500 and 2500 in Figures 3.8, 3.9 and 3.10
respectively.

Effect of number of CAV iterations: We experiment with the number of iterations for stable CAV
verification by t-testing as pointed in section 2.1.2 and find that any iterations above 80 work well
(Fig. 3.7). We thus take 100 as our number of cav iterations. Individual comparisons of R and S
with GT only consider how close R, S are to GT and do not consider disentanglement. R and S
closeness to GT does not guarantee disentanglement since the reconstruction can be good enough but
entain illumination-albedo leakages. As shown in Tab. 3.4, R gets better MSE, LMSE, D-SSIM and
LPIPS [197] values but still has shadow leakages because it resembles GT the most, except for pixels
where shadows are there. USI3D on the other hand, achieves best performance in R in terms of existing
metrics on MIT Intrinsics, ARAP as well as our synthetic concept sets, but it has clear illumination

leakages in R for which its score is penalised by our method which gauges disentanglement.
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Table 3.5: Pixel-wise comparison metrics on MIT Intrinsics datataset[65]

MSE| LMSE| DSSIM|
Model

R S R S R S
IIWW  0.0147 0.0135 0.0341 0.0253 0.1398 0.1266
USI3D 0.0156 0.0102 0.064 0.0474 0.1158 0.131

CGIID 0.0167 0.0127 0.0319 0.0211 0.1287 0.1376

Table 3.6: Pixel-wise comparison metrics on 42 scenes of ARAP dataset[23].

MSE| LMSE| D-SSIM.|,

Model
R S R S R S

OWW  0.056 0.033 0.066 0.054 0.448 0.522
USI3D 0.095 0.021 0.072 0.052 0.486 0.347

CGIID 0.073 0.037 0.064 0.054 0.512 0.498

WHDR and SAW AP% are not designed for measuring R-S disentanglement by their very definition,
which can be seen from Tab. 3.1 where they don’t align with CSMg and C'S Mg along with qualitative
results as shown in Fig. 3.4, 3.5, 3.6. Ideally R, and S must be disentangled by the definition of IID
but must also resemble GT. For example, though CGIID is best in terms of disentangling illumination
information from R, the closeness of R to GT achieved best by USI3D is important as well (Fig. 3.4
Tab. 3.4). Hence, our method must be combined with existing GT comparison metrics for the most
robust IID evaluation.

Cross-dataset performance: USI3D has significantly lower performance on SAW AP% metric
which measures the quality of S, but it exhibits the best performance in terms of pixel-wise comparisons
on MIT Intrinsics[65], ARAP dataset[23], and our synthetic concept set. This highlights the issue of
cross-dataset performance evaluation inconsistency for the standard IID metrics. On the other hand our
proposed C'S Mg metric performs consistently and exhibits the same trend in performance: CGIID >
IITWW > USI3D (see CSMp in Tab. 3.1 and Tab. 3.3)

Existing pixel-wise metrics: We report the D-SSIM, LMSE and MSE metrics over MIT Intrinsics
dataset[65], ARAP[23] and our newly introduced A, and A; concept sets in Tab. 3.5, Tab. 3.6 and
Tab. 3.7 respectively. Each of these metrics measures different aspects of closeness to Ground Truth.

MSE measures the average squared pixel-wise difference between predicted and GT. LMSE is local-
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Table 3.7: Pixel-wise comparison metrics on scenes of our concept sets: USI3D does best in general in

terms of the above metrics.

Ag concept set A; concept set

Scene type Albedo type Model R S R S

MSE LMSE D-SSIM MSE LMSE D-SSIM MSE LMSE D-SSIM MSE LMSE D-SSIM

oww 0.116 0.027 0277 0.053 0.006 0.409 0.145 0.031 0339 0.021 0.006 0415

RGB USI3BD 0.06 0.025 0.213 0.041 0.001 0.234 0.067 0.021 0.23  0.035 0.004 0.198
CGIID 0.134 0.033 0.344 0.014 0.002 0265 0.183 0.04 0426 0.012 0.005 0.23

Simple
' owWww 0.057 0.012 0208 0.075 0.005 0348 0.076 0.015 0.337 0.071 0.004 0.355
Textured USI3D 0.026 0.008 0.138 0.054 0.005 0.326 0.041 0.008 0.284 0.045 0.007 0.31
CGIID 0.062 0.016 0.255 0.018 0.002 0.287 0.08 0.019 0.359 0.016 0.005 0.269
oOwWww  0.07 0.014 0246 0.057 0.006 0382 0.09 0.016 0306 0.059 0.006 0.398
RGB USI3D 0.024 0.007  0.19 0.039 0.003 0.268 0.034 0.006 0.228 0.035 0.004  0.23
CGIID 0.082 0.019 0294 0.022 0.003 0.308 0.128 0.027 0396 0.02 0.005 0.272

Complex

IIWW 0.044 0.014 025 0.064 0.006 0383 0.048 0.014 0322 0.112 0.005 0.414
Textured  USI3D 0.019 0.009 0.184 0.062 0.007 04  0.031 0.01 031 0.071 0.01 0.449
CGIID 0.046 0.014 0284 0.02 0.005 0.372 005 0.013 0335 0.024 0.007 0.421

MSE and measures MSE patch-wise, while D-SSIM gives structural dis-similarity between predicted
and GT images. MSE measures absolute error, not taking spatial information of pixels into account,
whereas LMSE and D-SSIM consider spatially close pixels separately. On MIT Intrinsics[65] all models
have comparable performance Tab. 3.5 and there is no common trend of performance established as
such.

Raw sensitivity scores: Additionally, we report the raw sensitivity scores of experiments in Tab. 3.8.
Note these scores have been used to calculate our CSM disentanglement scores as mentioned above. We
observe that these scores are high for both R and S by models in some experiments. The concept cap-
tured by CAV vectors is dependent on the model’s activations and some models might be affected by
that concept for both R and S and hence the raw sensitivity scores by themselves do not provide much
information about the importance given by the model for R vs S. Note: TCAV does analysis in clas-
sification problems and thus calculates sensitivity over classifiers while we are using it in a decompo-
sition(reconstruction problem) for a multi-branch network. Hence the sensitivity scores are standalone
for classifier setting as by Kim et al. [80] but not for our problem of comparing outputs of multi-branch
network. We are interested in the R vs.. S sensitivity scores, hence the ratios of scores matter for us and

not the raw scores.

CSMs measure necessary condition for IID  Given ill-posed nature of IID wherein many R-S com-
binations can lead to same I, it is not straightforward or event possible to come up with a sufficient
metric for evaluation of IID. CSMs effectively measure the R-S disentanglement, a crucial aspect of
IID. This measurement is not just beneficial but a necessary condition for accurately assessing IID. Un-

like direct ground truth (GT) comparisons, which have limitations in this context, CSMs provide a more
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Table 3.8: TCAV sensitivity scores for concepts albedo change and illumination change in our 4 exper-

imental settings.

Aq Ay
Temp Model Textured RGB Textured RGB
Simple Complex Simple Complex Simple Complex Simple Complex
Ran, Sa, Ra, Sa, Ra, Sa, Ra, Sa, Ra, Sa, Ra, Sa, BRa, Sa, Ra, Sa,

IwWw 034 0.196 0.309 0278 0.336 0.376 0.338 0.237 0.326 0.333 0.307 0.337 0.349 0.347 0.346 0.262
2500 USI3D 0.331 0.08 0.311 0.111 0.337 0.082 0.296 0.112 037 0.166 0.36 0.146 0.375 0.103 0.285 0.184
CGIID 0.53 0.588 0.71 0.515 0.347 0.626 0.613 0.583 0.518 0.604 0.422 0.596 0.419 0.637 0.353 0.586

OWW 0.385 0.193 0.366 0.237 0.385 0.403 0.383 0.204 0.379 0.305 0.335 0.328 0.387 0.343 0.389 0.3
4500 USI3D 0.294 0.125 0.335 0.149 0.267 0.099 0.271 0.176 0325 021 0.352 0.175 0.301 0.116 0.304 0.196
CGIID 0.421 0.565 0.671 0.503 0.445 0.63 0.532 0.591 0447 0.602 0.468 0.6 0346 0.643 0.333 0.62

IIWW 0.395 0.158 0.378 0.303 0.386 04 0.386 0.196 0.384 0.293 0.34 0.299 0387 0.36 0.391 0.271
6500 USI3D 0.263 0.241 0.275 0.214 0.264 0.128 0.277 0.221 0.257 0.242 0.323 0.239 0.285 0.146 0.315 0.229
CGIID 0.365 0.597 0.648 0.507 0.353 0.633 0.487 0.582 0.375 0.609 0.468 0.606 0.3 0.644 0.327 0.61

IIWW  0.373 0.182 0.351 0.273 0.369 0.393 0.369 0.213 0.363 0311 0.327 0.322 0.374 0.35 0.375 0.278
Avg USI3D 0.296 0.148 0.307 0.158 0.289 0.103 0.282 0.169 0.318 0.206 0.345 0.187 0.321 0.122 0.301 0.203
CGIID 0.439 0.583 0.676 0.509 0.382 0.63 0.544 0.585 0.448 0.605 0.453 0.601 0.355 0.641 0.338 0.605

nuanced and effective evaluation method. They capture the subtleties of R-S disentanglement better
than a straightforward GT comparison. To maximize the effectiveness of IID evaluation, it’s advisable
to use CSMs in conjunction with existing ground truth comparison metrics. This combined approach
leverages the strengths of both methods, offering a more comprehensive and accurate assessment of 11D

performance.

Limitations of our concept sensitivity based approach: Models can be sensitive to concepts in ways
that are not desirable. For example, a model might predict noisy R which keeps on changing (as seen
from black foggy artifacts in CGIID predictions in Fig. 3.4) and get a high Ra, score. Similarly, artifacts
in § might lead to high sensitivity. In such rare cases, usually, R and S both have noise and taking the

ratios cancels out and gives a lower score to the model.

3.5 Conclusion

We presented Concept Sensitivity Metric, a framework that adapts an ML interpretability method,
to evaluate the quality of IID based on its definition. The C'SMpr and C'S Mg metrics evaluate the dis-
entanglement of the recovered reflectance and shading. These metrics overcome several shortcomings
of the current IID evaluation strategies. They are consistent over real-world and synthetic scenes and
have lesser dependence on the evaluation set as we use model’s sensitivity towards concepts rather than

direct pixel-to-pixel comparison with ground truth annotations.
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Since these metrics measure the quality of the output and can provide additional terms to the loss
being minimized to improve the IID calculations like in a fine-tuning step. We intend to work on this in
the future. The use of metrics defined for interpretability in a loop to improve the performance on the
original problem has a wide scope of applicability.

The approach underlying Concept Sensitivity Metric has wider potential application beyond the IID
problem. Choosing appropriate concepts and their activations, CSM can be used to evaluate results of

image harmonization, style transfer, image enhancement, efc.
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Chapter 4

Concept Distillation: Leveraging Human-Centered Explanations for

Model Improvement

4.1 Introduction

EXplainable Artificial Intelligence (XAI) methods are useful to understand a trained model’s be-
havior [199]. They open the black box of Deep Neural Networks (DNNs) to enable post-training
identification of unintended correlations or biases using similarity scores or saliency maps. Humans,
however, think in terms of abstract concepts, defined as groupings of similar entities [73]. Recent ef-
forts in XAl have focused on concept-based model explanations to make them more aligned with human
cognition. Kim et al. [80] introduce Concept Activation Vectors (CAVs) using a concept classifier hy-
perplane to quantify the importance given by the model to a particular concept. For instance, CAVs
can determine the model’s sensitivity on ‘striped-ness’ or ‘dotted-ness’ to classify Zebra or Cheetah
using user-provided concept samples. They measure the concept sensitivity of the model’s final layer
prediction with respect to intermediate layer activations (outputs). Such post-hoc analysis can evalu-
ate the transparency, accountability, and reliability of a learned model [32] and can identify biases or
unintended correlations acquired by the models via shortcut learning [9, 80].

The question we ask in this work is: If CAVs can identify and quantify sensitivity to concepts,
can they also be used to improve the model? Can we learn less biased and more human-centered
models? In this work, we extend CAVs to ante-hoc model improvement through a novel concept loss
to desensitize/sensitize against concepts. We also leverage the broader conceptual knowledge of a large
pre-trained model as a teacher in a concept distillation framework for it.

XAI has been used for ante-hoc model improvement during training [7, 77, 83]. They typically
make fundamental changes to the model architecture or need significant concept supervision, making
extensions to other applications difficult. For example, Koh et al. [83] condition the model by first
predicting the underlying concept and then using it for class prediction. Our method can sensitize
or desensitize the model to user-defined concepts without modifications to the architecture or direct

supervision.
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Figure 4.1: Overview of our approach: The generic conceptual knowledge of a capable teacher can be

distilled to a student for performance improvement through bias removal and prior induction.

Our approach relies on the sensitivity of a trained model to human-specified concepts. We want the
model to be sensitive to relevant concepts and indifferent to others. For instance, a cow classifier might
be focusing excessively on the grass associated with cow images. If we can estimate the sensitivities
of the classifier to different concepts, we can steer it away from irrelevant concepts. We do that using
a concept loss term Lo and fine-tuning the trained base model with it. Since the base models could be
small and biased in different ways, we use concept distillation using a large, pre-trained teacher model

that understands common concepts better.

We also extend concepts to work effectively on intermediate layers of the model, where the sensitivity
is more pronounced. Kim et al. [80] measure the final layer’s sensitivity to any intermediate layer
outputs. They ask the question: if any changes in activations are done in the intermediate layer, what
is its effect on the final layer prediction? They used the final layer’s loss/logit to estimate the model
sensitivity as their interest was to study concept sensitivities for interpretable model prediction. We,
on the other hand, aim to fine-tune a model by (de)sensitizing it towards a given concept which may
be strongest in another layer [4]. Thus, it is crucial for us to measure the sensitivity in any layer by
evaluating the effect of the changes in activations in one intermediate layer on another. We employ
prototypes or average class representations in that layer for this purpose. Prototypes are estimated by
clustering the class sample activations [29, 102, 107, 131, 132, 175, 192]. Our method, thus, allows

intervention in any layer.

In this work, we present a simple but powerful framework for model improvement using concept loss
and concept distillation for a user-given concept defined in any layer of the network. We leverage ideas
from post-hoc global explanation techniques and use them in an ante-hoc setting by encoding concepts
as CAVs via a teacher model. Our method also admits sample-specific explanations via a local loss

[139] along with the global concepts whenever possible. We improve state-of-the-art on classification
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problems like ColorMNIST and DecoyMNIST [9, 49, 138, 139], resulting in improved accuracies and

generalization. We introduce and benchmark on a new and more challenging TextureMNIST dataset

with texture bias associated with digits. We demonstrate concept distillation on two applications: (i)

debiasing extreme biases on classification problems involving synthetic MNIST datasets [49, 105] and

complex and sensitive age-vs.-gender bias in the real-world gender classification on BFFHQ dataset

[81] and (ii) prior induction by infusing domain knowledge in the reconstruction problem of Intrinsic

Image Decomposition (IID) [90] by measuring and improving disentanglement of albedo and shading

concepts. We also release code and refer readers to our website! for more details.

To summarize, we:

4.2

Extend CAVs from post-hoc explanations to ante-hoc model improvement method to sensitize/desensitize
models on specific concepts without changing the base architecture.

Propose a Novel Concept loss for concept sensitive finetuning of DNNs.

Extend the model CAV sensitivity calculation from only final layer to any layer and enhance it by
making it more global using prototypes.

Introduce concept distillation to exploit the inherent knowledge of large pretrained models as a
teacher in concept definition.

Benchmark results on standard biased MNIST datasets and on a challenging TextureMNIST
dataset that we introduce.

Show application on a severely biased classification problem involving age bias.

Show application beyond classification to the challenging multi-branch Intrinsic Image Decom-
position problem by inducing human-centered concepts as priors. To the best of our knowledge,

this is the first foray of concept-based techniques into non-classification problems.

Concept Guidance and Concept Distillation

Concepts have been used to explain model behavior in a post-hoc manner in the past. Response

to abstract concepts can also demonstrate the model’s intrinsic preferences, biases, etc. Can we use

concepts to guide the behavior of a trained base model in desirable ways in an ante-hoc manner? We

describe a method to add a concept loss to achieve this. We also present concept distillation as a way to

take advantage of large foundational models with more exposure to a wide variety of images.

4.2.1 Concept Sensitivity to Concept Loss

Building on Kim et al. [80], we represent a concept C using a Concept Activation Vector (CAV) as

the normal vlc to a linear decision boundary between concept samples C' from others C” in a layer [ of
the model’s activation space (Fig. 4.2). The model’s sensitivity Sc;(z) = VL, (fi(z)) - v& to C is the

directional derivative of final layer loss L, for samples « along vlc [80]. The sensitivity score quantifies

"https://avanil7101.github.io/Concept-Distilllation/

52


https://avani17101.github.io/Concept-Distilllation/

Test Concepts

fi (Cad) -
W)
fi ()

Figure 4.2: v is calculated as normal to the sep-

Random
Concept

Cc

arating hyperplane of concept set activations (tex-

tures C' vs.random set C’ here). A model biased to-

wards C' will have its class samples’s loss gradient
VL, along v'. (measured by sensitivity Sc k().
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be parallel to the decision boundary by minimizing

the cosine of the projection angle.

Figure 4.3: Datasets used: ColorMNIST (top
row), TextureMNIST (next row), DecoyMNIST
(third row), and BFFHQ (bottom rows). Concepts
used include color, textured and gray patches, and

bias-conflicting samples shown on the right.

the concept’s influence on the model’s prediction. A high sensitivity for color concept may indicate a

color bias in the model.

These scores were used for post-hoc analysis before ([80]). We use them ante-hoc to desensitize or
sensitize the base model to concepts by perturbing it away from or towards the CAV direction (Fig. 4.2).
The gradient of loss indicates the direction of maximum change. Nudging the gradients away from the
CAV direction encourages the model to be less sensitive to the concept and vice versa. For this, we
define a concept loss Lo as the absolute cosine of the angle between the loss gradient and the CAV

direction

Le (@) = [cos(VLo (fi(x)) v, .1
which is minimized when the CAV lies on the classifier hyperplane (Fig. 4.2). We use the absolute
value to not introduce the opposite bias by pushing the loss gradient in the opposite direction. A loss of
(1 — Lo (x)) will sensitize the model to C'. We fine-tune the trained base model for a few epochs using

atotal loss of L = L, + AL¢ to desensitize it to concept C, where L, the base model loss.
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4.2.2 Concepts using Prototypes

Concepts can be present in any layer /, though the above discussion focuses on the sensitivity calcu-
lation of the final layer using model loss L,. The final convolutional layer is proven to learn concepts
better than other layers [4]. We can estimate the concept sensitivity of any layer using a loss for that
layer. How do we get a loss for an intermediate layer, as no ground truth is available for it?

Class prototypes have been used as pseudo-labels in intermediate layers before [29, 102, 192]. We
adapt prototypes to define a loss in intermediate layers. Let f;(x) be the activation of layer [ for sample
x. We group the f;(x) values of the samples from each class into K clusters. The cluster centers P;
together form the prototype for that class. We then define prototype loss for each training sample x
using the prototype corresponding to its class as

K
Ly(z) = % > Ifizx) = Pl (4.2)
k=1

We use Ly, in place of L, in Eq. 4.1 to define the concept loss in layer [. The prototype loss facilitates the
use of intermediate layers for concept (de)sensitization. Experiments reported in Tab. 4.2 confirm the
effectiveness of L,,. Prototypes also capture sample sensitivity at a global level using all samples of a
class beyond the sample-specific levels. We update the prototypes after a few iterations as the activation
space evolves. If P is the prototype at Step n and P° the cluster centres using the current f;(z) values,

the next prototype is P,?H = (1 — )P} 4+ aPf for each cluster .

4.2.3 Concept Distillation using a teacher

Concepts are learned from the base model in the above formulation. Base models may have wrong
concept associations due to their training bias or limited exposure to concepts. Can we alleviate this
problem using a larger model that has seen vast amounts of data as a teacher in a distillation framework?

We use the DINO [30], a self-supervised model trained on a large number of images, as the teacher
and the base model as the student for concept distillation. The teacher and student models typically have
different activation spaces. We map the teacher space to the student space before concept learning. The
mapping uses an autoencoder [72] consisting of an encoder Ej; and a decoder D)y (Fig. 4.4). As a first
step, the autoencoder (Fig. 4.4) is trained to minimize the loss Lp,, + Lg,,. Lp,, is the pixel-wise
L2 loss between the original (f;) and decoded ( ft) teacher activations and Lg,, is the pixel-wise L2
loss between the mapped teacher ( fs) and the student (f,) activations. The mapping is learned over the
concept set of images C and C’. See the dashed purple lines in Fig. 4.4.

Next, we learn the CAVs in the distilled teacher space s, keeping the teacher, student, and mapping
modules fixed. This is computationally light as only a few (50-150) concept set images are involved.
The learned CAV is used in concept loss given in Eq. 4.1. Please note that I is used only to align the
two spaces and can be a small capacity encoder, even a single layer trained in a few epochs.
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Algorithm 1 Concept Distillation Pipeline

Given: A pretrained student model which is to be fine-tuned for concept (de)sensitization and a pretrained teacher model

which will be used for concept distillation. Known Concepts C and negative counterparts (or random samples) C’, student
training dataset D, and student bottleneck layer [, #iterations to recalculate CAVs cav_update_frequency, #iterations to update

prototypes proto_update_frequency.

1: Concept Distillation:

2:  For all class samples in D, estimate class prototypes P,?E {0,x} With K-means.
3:  Current iteration n = 0, initial prototypes P° = P°.
4:  While not converge do:
5: If n = 0 or (update_cavs and n % cav_update_frequency = 0) then:
6: Learn Mapping module:
7: Forward pass z € C'U C’ from Teacher and Student to get their concept activations f; and fs.
8: Learn the mapping module as autoencoders Ens and Dy .
9: CAV learning in mapped teacher’s space:
10: v% learned by binary linear classifier as normal to decision boundary of Eps(f:(x)) for z € C vs En(fe(z'))
forz’ € C'.
11: If n % proto_update_frequency = 0 and n # 0 then:
12: Estimate new class prototypes Ppc o j} with K-means.
13: Weighted Proto-type P! = (1 — a) P + aP§.
14: Else:
15: Pt =pp
16: Train student with loss L¢ + Lo.
17: n+ = 1.
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Figure 4.4: Our framework comprises a concept teacher and a student classifier and has the following
four steps: 1) Mapping teacher space to student space for concepts C' and C’ by training an autoencoder
FE; and Dy (dotted purple lines); 2) CAV (vlc) learning in mapped teacher space via a linear classifier
LC (dashed blue lines); 3) Training the student model with Concept Distillation (solid orange lines): We
use v., and class prototypes loss L, to define our concept distillation loss L. and use it with the original
training loss L, to (de)sensitize the model for concept C'; 4) Testing where the trained model is applied

(dotted red lines)

4.3 Experiments

We demonstrate the impact of the concept distillation method on the debiasing of classification prob-
lems as well as improving the results of a real-world reconstruction problem. Classification experiments
cover two categories of Fig. 2.5: the zero-shot scenario, where no unbiased data is seen, and the few-shot
scenario, which sees a few unbiased data samples. We use pretrained DINO ViT-B8 transformer [30] as
the teacher. We use the last convolution layer of the student model for concept distillation. Our frame-
work is computationally light. The mapping module (< 120K parameters, < 10MB), CAV estimations
(simple logistic regression, < 1MB), and prototype calculations all complete within a few iterations of
training, taking 15-30 secs on a single 12GB Nvidia 1080 Ti GPU. Where relevant, we report average

accuracy over five training runs with random seeds (+ indicates variance).

CAV learning: For CAV learning, we use a logistic regression implemented by a single perceptron
layer with sigmoid activation. We train it to distinguish between model activations of concept set (C)
and its negative counterpart (C’) in layer [ using a cross-entropy loss for binary classification. This
is theoretically the same but implementation-wise slightly different from [80], who also use a logistic
regression but from sklearn [135]. We get the same results from either of them though our perceptron

based implementation is slightly faster in terms of computation.
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Mapping Module details: For the mapping module, we choose a pair of one down-convolutional and
up-convolutional layers as encoder and decoder (depending on students and teacher’s dimensions, it is
determined whether the encoder is up or down-convolutional and vice versa). In our experiments, we
train the autoencoder for a maximum of five epochs and select the encoder from the best of the first
five epochs as our activation space mapping module M. We also tried with other deeper autoencoder
architectures in our initial experiments but found the above simple one to give good results while being
computationally cheapest. Due to the simple architecture (logistic regression or single up-down convo-
lutions), both our CAV learning and Mapping module training are very lightweight (< 120K parameters)
and train within a minute for 10-15 concept sets having a number of images between 50-200 on a single
12GB Nvidia 1080 Ti GPU. We store the CAVs which are just the weights (coefficients) of the logistic
regression model having negligible storage cost (< 1Mb) for each CAV.

Proto-type calculation cost is dependent on the number of classes. In our experiments, we pass 200
samples of each class in a single forward pass through the smaller student model and only store the
cluster means for each class as prototypes (<100Mb overall for the experiments in Table 1,2).

We experiment over the number of images for mnist tasks and find any number of images between
100-150 to work best while we fixate the number of images as 50 for BFFHQ.

Table 4.1: Comparison of the accuracy of our method with other zero-shot interpretable model-
improvement methods. All methods require user-level intervention: Our method requires concept sets,

while others (CDEP, RRR, EG) require user-provided rules.

Dataset Bias Base CDEP[138] RRR[139] EG[49] Ours w/o Teacher Ours Ours+L
ColorMNIST Digit color 0.1 31.0 0.1 10.0 26.97 41.83 50.9341.42
DecoyMNIST Spatial patches 52.84 97.2 99.0 97.8 87.49 98.58 98.98+0.20
TextureMNIST Digit textures 11.23 10.18 11.35 10.43 38.72 48.82 56.574+0.70

4.3.1 Concept Sensitive Debiasings

We show results on two standard biased datasets (ColorMNIST [105] and DecoyMNIST [49]) and
introduce a more challenging TextureMNIST dataset for quantitative evaluations. We also experimented
on a real-world gender classification dataset BFFHQ [81] that is biased based on age. We compare with
other state-of-the-art interpretable model improvement methods [9, 49, 98, 138, 139, 176]. Fig. 4.3
summarizes the datasets, their biases, and the concept sets used.

Poisoned MNIST Datasets: ColorMNIST [105] has MNIST digit classes mapped to a particular color

in the training set [ 138]. The colors are reversed in the test set. The baseline CNN model (Base) trained

on ColorMNIST gets 0% accuracy on the 100% poisoned test set, indicating that the model learned
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Input Image Vanilla Ours CDEP

Input Image Vanilla Ours CDEP

Figure 4.5: GradCAM [157] visualizations (more red, more important) results. Left: Our method
desensitizes the model to pixel color (less red on foreground digit). Right: For the extreme case when
the color bias is in the background instead of foreground (initial training), our model focuses on the

shape more than CDEP (which is more blue in the foreground).

color shortcuts instead of digit shapes. We debias the model using a concept loss for color using color
patches vs.random shapes (negative concept) to estimate CAV for color (Fig. 4.3). We show results
comparison on the usage of teacher and prototypes component of our method in Tab. 4.2. As can be
seen from Tab. 4.2, our method of using intermediate layer sensitivity via prototypes as described in
subsection 4.2.2 yields better results. Similarly, usage of teacher (described in subsection 4.2.3) facili-
tates better student concept learning (also shown in CAV comparisons in supplementary). Our concept
sensitive training not only improves student accuracy but observes evident reduction in TCAV scores
[80] of bias concept as seen from Tab. 4.3.

Tab. 4.4 compares our results with the best zero-shot interpretability based methods, i.e., CDEP
[138], RRR [139], and EG [49]. Our method improves the accuracy from 31% by CDEP to 41.83%,
and further to 50.93% additionally with the local explanation loss from [139].

Table 4.2: Main components of our method shown on ColorMNIST dataset: Ours usage of teacher and

proto-types yields the best performance.

Teacher? | Prototype? | Accuracy
X X 9.96
X v 26.97
v X 30.94
v v 50.93

GradCAM [157] visualizations in Fig. 4.5 show that our trained model focuses on highly relevant
regions. Fig. 4.5 left compares our class-wise accuracy on 20% biased ColorMNIST with CIArC [9], a
few-shot global method that uses CAVs for artifact removal. (CIArC results are directly reported from
their main work due to the unavailability of the public codebase.) CIArC learns separate CAVs for each

class by separating the biased color digit images (e.g.red zeros) from the unbiased images (e.g.zeros
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Table 4.3: TCAV scores of bias concept: Our concept sensitive training significantly decreases the

sensitivity of model towards bias.

Dataset Concept Base Model |Ours
ColorMNIST |Color 0.52 0.21
DecoyMNIST |Spatial patches 0.57 0.45
TextureMNIST | Textures 0.68 0.43
BFFHQ Age 0.78 0.13

Table 4.4: Comparison of the accuracy of our method with other zero-shot interpretable model-
improvement methods. All methods require user-level intervention: Our method requires concept sets,

while others (CDEP, RRR, EG) require user-provided rules.

Dataset Bias Base CDEP[138] RRR[139] EG[49] Ours w/o Teacher Ours Ours+L
ColorMNIST Digit color 0.1 31.0 0.1 10.0 26.97 41.83 50.93+1.42
DecoyMNIST Spatial patches 52.84 97.2 99.0 97.8 87.49 98.58 98.9810.20
TextureMNIST Digit textures 11.23 10.18 11.35 10.43 38.72 48.82 56.57+0.79

in all colors). A feature space linear transformation is then applied to move input sample activations
away/towards the learned CAV direction. Their class-specific CAVs definition can not be generalized to
test sets with multiple classes. This results in a higher test accuracy variance as seen in Fig. 4.5. Further,
as they learn CAVs in the biased model’s activation space, a common concept set cannot be used across

classes.

DecoyMNIST [49] has class indicative gray patches on image boundary that biased models learn
instead of the shape. We define concept sets as gray patches vs.random set (Fig. 4.3) and report them
in Tab. 4.4 second row. All methods perform comparably on this task as the introduced bias does not
directly corrupt the class intrinsic attributes (shape or color), making it easy to debias. TextureMNIST
is a more challenging dataset that we have created for further research in the area. Being an amalgam
of colors and patterns, textures are more challenging as a biasing attribute. Our method improves the
performance while others struggle on this task (Tab. 4.4 last row). Fig. 4.5 shows that our method can
focus on the right aspects for this task.

Generalization to multiple biasing situations is another important aspect. Tab. 4.5 shows the per-
formance on different types of biases by differently debiased models. Our method performs better than
CDERP in all situations. Interestingly, our texture-debiased model performs better on color biases than

CDEP debiased on the color bias! We believe this is because textures inherently contain color infor-
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Table 4.5: Our method improves the model using human-centered concepts and shows better general-

ization to different datasets, while CDEP, which uses pixel-wise color rules, cannot.

ColorMNIST Trained TextureMNIST Trained
Test Dataset Base CDEP[138] Ours+L Base CDEP[138] Ours+L
Invert color 0.00 23.38 50.93 11.35 10.18 45.36
Random color 16.63 37.40 46.62 11.35 10.18 64.96
Random texture 15.76 28.66 32.30 11.35 10.18 56.57
Pixel-hard 15.87 33.11 38.88 11.35 10.18 61.29

Figure 4.6: pixel hard MNIST test set

mation, which our method can leverage efficiently. Our method effectively addresses an extreme case
of color bias introduced in the background of ColorMNIST, a dataset originally biased in foreground
color. By introducing the same color bias to the background and evaluating our ColorMNIST debiased
models, we test the capability of our approach. In an ideal scenario where color debiasing is accurate,
the model should prioritize shape over color, a result achieved by our method but not by CDEP as shown
in Fig. 4.5.

BFFHQ [81] dataset is used for the gender classification problem. It consists of images of young
women and old men. The model learns entangled age attributes along with gender and gets wrong
predictions on the reversed test set i.e.old women and young men. We use the bias conflicting samples
by Lee et al. [98] specifically, old women vs.women and young men vs.men as class-specific concept
sets.We compare against recent debiasing methods EnD [176] and DFA [98]. Tab. 4.6 shows our method

getting a comparable accuracy of 63%. We also tried other concept set combinations: (i) old vs.young

Table 4.6: Comparisons in few-shot setting: Our method is not limited to user-provided concept sets
and can also work with bias-conflicting samples. We compare our accuracy over the BFFHQ dataset

[81] with other few-shot debiasing methods.

Dataset Bias Base EnD [176] DFA [98] Ours w/o Teacher Ours

BFFHQ Age 56.874269 56.87+1.42 61.2743.26 59.4 63.+0.79
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Table 4.7: Increasing the bias of the teacher on ColorMNIST reduces accuracy.

Teacher’s Training Data Bias%  No Distil 5 10 25 75 90 100

Student Accuracy % 26.97 4047 33.18 30.38 2874 2323 23.63

(where both young and old concepts should not affect) — 62.8% accuracy, (ii) old vs.mix (men and
women of all ages) and young vs.mix — 62.8% accuracy, (iii) old vs.random set (consisting of random
internet images from [80]) and young vs.random — 63% accuracy. These experiments indicate the
stability of our method to the concept set definitions. This proves our method can also work with bias-
conflicting samples [98] and does not necessarily require concept sets (Tab. 4.6). We also experimented
by training class-wise (for all women removing young bias followed by men removing old bias and vice
versa) vs training for all classes together (both men, women removing age bias as described above) and
observed similar results, suggesting that our concept sensitive training is robust to class-wise or all class
agnostic training. Local interpretable improvement methods like CDEP, RRR, and EG are not reported

here as they cannot capture complex concepts like age due to their pixel-wise loss or rule-based nature.

Discussion No Distillation Case: We additionally show our method without teacher (Our Concept
loss with CAVs learned directly in student) in all experiments as ”Ours w/o Teacher” and find inferior
performance when compared to Our method with Distillation.

Bias in Teacher: We check the effect of bias in teacher by training it with varying fractions of
OOD samples to bias them. Specifically, we use the same student architecture for the teacher. The
teacher is trained on the ColorMNIST dataset with 5, 10, 25, 50, 75, and 90% biased color samples in
the trainset (e.g.k% bias indicates k% red zeros). The resulting concept-distilled system is then tested
on the standard 100% reverse color setting of ColorMNIST. Tab. 4.7 shows that concept distillation
improves performance even with high teacher bias, though accuracy decreases with the increasing bias
in teacher. Apparently, 100% bias in teacher in this setting of teacher with same architecture as the
student is essentially CAV learning in same model case (No Distil). Here, the improvements are due to
prototypes, and as can be seen, there is a slight degradation in performance of 100% bias vs No Distil
(23.63 vs 26.97). This can be attributed to an error due to the mapping module.

Mapping Module: Case of Ideal Mapping In theory, if the mapping module has a zero-loss, it could
make the distillation case the same as the case without distillation, but this is not observed in our exper-
iments due to two main reasons: (i) We use the mapping module to map only the conceptual knowledge
in CAV and train it only for concept sets and not the training samples. (ii) Due to major differences in the
perceived notion of concepts in teacher and student networks and due to a simple mapping autoencoder
(one upconv and downconv layer) the MSE loss never goes to zero (e.g, in ColorMNIST, it starts from
11 and converges at 5 for DINO teacher to biased student alignment). In our initial experiments, we

tried bigger architectures (ResNet18+) and found improved mapping losses but decreased student per-
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formances. Mapping Encoder encodes an expert’s knowledge into the system via the provided concept
sets, quantifies this knowledge as CAV via a generalized teacher model trained on large amount of data,
and thus helps in inducing it via distillation into the student model. This brings threefold advantages in

our system: expert’s intuition, large model’s generality, and efficiency of distillation.

An experiment: CAV Learning comparison In ColorMNIST, zeros are always associated with the
color red. We learn a CAV for the concept of red (C AV,..q separating red patches with other colored
patches) in each teacher, mapped teacher and base model (biased initial Student) and measure its cosine
similarity (cs) with the respective model representations for concept images of red, red-zeros.

As seen from Tab. 4.8, the Teacher and Mapped Teacher have cs(red) ;, cs(red_zeros) j cs(red_non_zeros)
which indicate correct concept learning while the Student (Base Model) has cs(red) ; cs(red_zeros) j
cs(red_non-zeros) that indicates confusion of bias with concept (concept red-zeros confused with con-
cept red). Thus, teacher’s CAV and its mapped version capture the intended concept well, while the base
model (student) confuses the red-zeros concept with CAV. This small demonstration shows (a) why the
teacher is needed for good CAV learning and (b) how well CAV’s are transferred to the student via the

mapping module. Mapping module does not bias the CAV representation.

Table 4.8: Cosine Similarity Order of concepts with C'AV,..q

Model red’ red_zeros’ ’red_non_zeros’ ’non_red_zeros’
Teacher 0.084 -0.013 -0.009 0.005
Mapped Teacher 0.287 -0.044 0.014 0.024
Base Model -0.023 -0.019 -0.013 0.000

Fixing vs Varying CAVs in Experiments In our experimentation reported in main work, we fix CAVs
but we experimented with updating CAVs in the student after every few training iterations (50, 100, 200,
etc.). Specifically, we experimented in the following settings and report the concept loss L. curves with
iterations in Fig. 4.7.

 cav_update_iter200: CAV updates every 200 iterations.

* cav_update_iter100: CAV updates every 100 iterations.

* constant_cav: Fixed CAV throughout training.

As seen in Fig. 4.7, there is a recurring pattern with concept loss L increasing on CAV update (due
to an abrupt change in objectives), followed by a subsequent decrease due to optimization. However,
L remains lower than the initial value the model started with (from 105.98 at iteration 0, loss dropped
to 9.51 at iteration 199 (before the CAV update) but jumps to 20.61 following the CAV update), under-
scoring the efficacy of our approach. Similar patterns were consistently observed when updating CAVs

in varying numbers of iterations. This trend persisted across diverse datasets during training as well.
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concept loss
cav_update_iter200 = cav_update_iter100 - constant_cav
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Figure 4.7: Loss Curves in varying cav update iterations: frequent pattern observed, convergence

quickly

The given graph is shown for experimentation over ColorMNIST, but we find the same recurring
patterns across all other datasets. Additionally, the best validation accuracy (and also corresponding
test accuracy) values for all the settings mentioned above (whether fixed or varying CAVs) are the same
(within < 0.3% accuracy changes amongst the settings). The graph also shows that our design choice

of keeping CAVs fixed is good practically as the loss quickly converges to a lower value.

Table 4.9: Impact of different variants of CAV sensitivity calculation gradient VX in proposed loss

Eq. 4.1 on the final results

X logit L, Ly, fixed proto L, varying prototypes (Ours)

Accuracy % 25.55 3094 40.02 41.83

Ablations We evaluate the impact of different components of our framework apart from the ones
already mentioned in the work.

We experimented with different ways of calculating sensitivity used for L. in Eq. 4.1 by replacing
VL, with VX where X is taken as (i) last layer outputs or logits; (ii) last layer loss L, and (iii)
intermediate layer prototype based loss L,, in two settings: fixed prototypes where prototypes are kept
fixed as initial (o« = 0) vs prototypes are varied with «.. Settings (i) and (ii) are essentially final layer
sensitivity calculation according to the original implementation by Kim et al. [80] while Setting (iii) is
our proposed intermediate layer sensitivity using prototypes. We also show results when (a) KNN k in
the prototype calculation is varied and found k=7 to work best Fig. 4.8 (b) number of images (#imgs)
in the concept set are varied and we observe a peak in #imgs = 150 which is chosen as the KNN k and

#imgs in our experiments.
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Figure 4.8: Left: Comparison of our method and CIArC [9] on 20% biased ColorMNIST. Right: Impact

of varying the concept set size and number of means on 100% biased ColorMNIST.

Design Choices and Implementation Details Choosing the Student Layer for Concept Distilla-
tion: CAVs can be calculated for any model layer. Which student layers should be used? We show
results only for the last convolution layer of the student model in the work, but theoretically, our frame-
work can be extended to any number of layers at any depth. Our design choice is based on the fact that
the deeper layers of the model encode complex higher-order class-level features while the shallower lay-
ers encode low-level features. The last convolution layer represents more abstract features, which are
easily representable for humans in the form of concepts rather than low-level features in other layers.

For the same reasons, [4] too use the last convolution layers for conceptual explanation generation.

Teacher Selection: For a teacher, we experimented with various model architectures (including the
biased teacher ones shown in Sec. 4 Ablations) and chose a pre-trained DINO transformer [30] for the
main reason of scalability. DINO has been proven to work well for a variety of tasks [181, 188]. A
large model knows a variety of concepts and can be used as a teacher for various tasks, as shown in our
experiments. We use the same DINO teacher on very different classification datasets like biased MNIST
(ColorMNIST, DecoyMNIST, and TextureMNIST) and BFFHQ, as well as over a completely different
problem of IID.

Among the DINO variants, we found ViT-B/8 (85M parameters) to perform the best, aiding student
to get 50.93% accuracy on ColorMNIST while ViT-S/8 (21M parameters) aced 39% student accuracy.
We thus picked DINO ViT-B/8 for all our experiments. We used the code implementation of the DINO
feature extractor by Tschernezki et al. [182] and loaded the checkpoints for DINO variants from [30].
The DINO ViT-B/8 gives 768-dimensional feature images, further reduced to 64 using PCA.

Apart from biased small teacher experiments in Tab. 6 (as shown in the work) where we vary the
bias in teacher from 5% to 100%, we also experimented when the small teacher network is (pre)trained
on 0% bias (simply MNIST dataset [97]). We found the student to achieve an accuracy of 23.6% with
this teacher network. This accuracy is lesser than that in biased teacher due to the fact that the teacher
trained on the MNIST dataset having grayscale images has never seen the concept of color. Henceforth
as mentioned before, it is important for teacher to have the knowledge of concepts for our proposed

concept distillation to work well.
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Taking only Robust CAVs for Distillation [80] use t-testing with concept vs multiple random sam-
ples to filter robust CAVs for TCAV score estimation. Similar to them, we employed t-testing initially
by taking concept vs multiple random samples and selecting only the significant CAVs. This proved to
be too expensive computationally during training, especially during frequent CAV updates. Currently,
we have a simple filter on CAV classification accuracy > 0.7 to select only the good CAVs (i.e., CAVs
that can differentiate concept vs random). The concept loss corresponding to all such valid CAVs is
then averaged before backpropagating. This design simplification was empirically verified and found to

work equivalently to [80] t-testing).

Student Architecture details: For the student network in classification debiasing applications, we
use two convolution layers followed by two fully connected layers as done by [138] [98] for all the
three biased MNIST experiments . We use Resnetl8 (no pre-training) for BFFHQ student architecture
as done by [98] and apply our method over the "layer4.1.convl” layer. We use Adam [82] optimizer
with a learning rate of 10e-4, 0.9 < 8 < 0.999, and ep = 1e — 08 with a weight decay of 0 (all default
pytorch values except learning late). We use a batch size of 32 for MNIST experiments and 64 for
BFFHQ experiments. For the mapping module, we use one up-convolution and one down-convolution
layer for encoders and decoders. We train the autoencoders with an L2 loss. For training the MNIST
and BFFHQ models, we use the cross-entropy loss as the Ground Truth loss (L,). Our concept loss L¢
is weighted by a parameter A varied from 0.01 to 10e5 in our experiments. We found it to work best
for values close to 20 in our experimentation. Other parameter values which we found to work best are
number of clusters in K-Means £ = 7 and proto-types updation weight & = 0.3. Our student model
converges within 2-3 epochs of training with a training time of less than 1.5-2 hours for MNIST datasets
and within 4 hours for BFFHQ dataset (on one Nvidia 1080 Ti GPU).

For MNIST datasets (ColorMNIST and DecoyMNIST), we use the splits by Rieger et al. [138]. For
the creation of TextureMNIST, we use the above-obtained splits of digits and replace the colors with
textures from DTD [39] (all colored removed and rather texture bias added). We use random flat-colored
patches as the concept “color,” random textures as the “textures” concept, and gray-colored patches as
the ”gray” concept set. For the negative concept set, we create randomly shaped white blobs in black
backgrounds. ColorMNIST and TextureMNIST datasets have test sets comprising flipped colors and
random textures digits. To check the generalization of our model, we tested the ColorMNIST and
TextureMNIST trained models on other test sets having random colors and textures (Tab. 2) . Also, we
created our Pixel Hard MNIST test set (Fig. 4.6), which has color in each pixel in digits randomized in
contrast to one color in the entire digit in others(ColorMNIST and TextureMNIST). .

For BFFHQ, we take the 48 images each for young men and old women (bias conflicting samples
as given by Lee et al. [98]) as our concept sets for class-specific training (separate concepts for each
class). While for the negative concept set of class-specific training, we take mixed images of both
young and old women for women concept and young and old men for men concept. We use the same

train-test-validation split as done by [98].
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4.3.2 Prior Knowledge Induction

As we discussed earlier, good ground truth for Intrinsic Image Decomposition is hard to create and
IID algorithms are evaluated on synthetic data or using some sparse manual annotations [19, 86]. In
chapter 2 we proposed Concept Sensitivity Metric to measure the disentanglement of i and S. Using our
concept distillation framework, we extended the proposed post-hoc quality evaluation method to ante-
hoc training of the IID network to increase disentanglement between R and S. We observed improved
CSM scores along with MSE, SSIM metrics and qualitative results. For details please refer to Second
Author Thesis.

Concept Distillation vs. Knowledge Distillation Concept Distillation and Knowledge Distillation are
two distinct approaches in the realm of machine learning, particularly in the context of transferring
information from a complex model (teacher) to a simpler one (student). Here’s a clearer comparison
between the two:

¢ Concept Distillation:

— Concept Activation Vectors (CAVs): Concept Distillation leverages CAVs from the teacher
model. These vectors represent high-level concepts learned by the teacher.

— Loss Function: It employs a specialized loss function that aligns the student’s concept acti-
vations with the desired direction, as indicated by the teacher’s CAVs.

— Cosine Similarity Tuning: This method controls the influence of specific concepts on the
student model by adjusting the cosine similarity between the teacher’s and student’s concept
activations.

— Weighted Loss with Ground Truth (GT): Concept Distillation also incorporates a weighted
loss function that combines the concept alignment loss with the traditional loss against
ground truth. This helps balance the influence of the teacher’s concepts with the actual
task performance.

* Knowledge Distillation:

— Soft Labels from Teacher: In Knowledge Distillation, the student model learns from the soft
labels (or logits) generated by the teacher model. These soft labels contain richer infor-
mation compared to hard labels, as they reflect the teacher’s confidence across all possible
classes.

— Loss Function: The student model’s loss function aims to minimize the difference be-
tween its predicted logits and the teacher’s logits, effectively making the student mimic
the teacher’s output distribution.

— Temperature Parameter: Knowledge Distillation uses a temperature parameter in the soft-
max function to control the softness of the teacher’s output distribution. A higher tempera-
ture leads to softer probabilities, which can be more informative for the student model.

In summary, while both Concept Distillation and Knowledge Distillation aim to transfer knowledge

from a teacher to a student model, they differ in their approaches. Concept Distillation focuses on align-

66



ing high-level concept representations between the teacher and student, whereas Knowledge Distillation
is about making the student mimic the teacher’s output distribution, particularly the confidence levels

across different classes.

Discussion and Limitations: Our concept distillation framework can work on different classification
and reconstruction problems, as we demonstrated. Our method can work well in both zero-shot (with
concept sets) and few-shot (with bias-conflicting samples) scenarios. Bias-conflicting samples may
not be easy to obtain for many real-world applications. Our required user-provided concept samples
can incur annotation costs, though concept samples are usually easier to obtain than bias-conflicting
samples. When neither bias-conflicting samples nor user-provided concept sets are available, concept
discovery methods like ACE [61] could be used. ACE discovers concepts used by the model by image
super-pixel clustering. Automatic bias detection methods like Bahadori and Heckerman [12] can be
used to discover or synthesize bias-conflicting samples for our method. Our method can also be used to
induce prior knowledge into complex reconstruction/generation problems, as we demonstrated with IID.
The dependence on the teacher for conceptual knowledge could be another drawback of our method, as

with all distillation frameworks [71].

4.4 Conclusion

We presented a concept distillation framework that can leverage human-centered explanations and
the conceptual knowledge of a pre-trained teacher to distill explanations into a student model. Our
method can desensitize ML models to selected concepts by perturbing the activations away from the
CAV direction without modifying its underlying architecture. We presented results on multiple classifi-
cation problems. We also showed how prior knowledge can be induced into the real-world IID problem.
In future, we would like to extend our work to exploit automatic bias detection and concept-set defi-
nition. Our approach also has potential to be applied to domain generalization and multitask learning

problems.
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Chapter 5

Summary and Future Work

In this thesis, we study various X Al-based approaches, specifically human concept-based approaches
for model improvement and evaluation. We build a Concept Distillation method that leverages global
explanations and the power of pre-trained large networks to distill explanations to a model. We use
concept activation vectors, CAVs for concept representations. Our method can sensitize or desensitize
the model towards the user given concepts by perturbing the activation of class samples towards or away
from the direction of CAV. We learn our concepts in a large teacher model and distill this knowledge in
the classifier student via our novel concept distillation loss. We present results on multiple datasets for
classification problems and also show how our method can be used to induce prior knowledge in difficult
real-world reconstruction problems. In the future, we would like to extend our Concept Distillation work
aiming at automatic bias detection and automatic concept-set extraction via methods like ACE [61]. We
would also like to test our idea in the domain generalization, Distributionally Robust Optimization [142],
and multitask setting. Currently, we map teacher to student via a mapping module (keeping teacher
fixed), which needs a mapping module to be re-learned. We would like to work towards a universal
teacher module (no need for retraining of mapping module), which can be used for any student.

We also build a Concept Sensitivity Metric to evaluate the quality of IID based on its definition.
The C'S Mg and C'S Mg metrics evaluate the disentanglement of the recovered reflectance and shading.
These metrics overcome several shortcomings of the current IID evaluation strategies. They are consis-
tent over real-world and synthetic scenes and have lesser dependence on the evaluation set as we use
the model’s sensitivity towards concepts rather than direct pixel-to-pixel comparison with ground truth
annotations.

Since these metrics measure the quality of the output and can provide additional terms to the loss
being minimized to improve the IID calculations, like in a fine-tuning step, we intend to work on this
in the future. The use of metrics defined for interpretability in a loop to improve the performance of
the original problem has a wide scope of applicability. The approach underlying Concept Sensitivity
Metric has wider potential application beyond the IID problem. Choosing appropriate concepts and
their activations, CSM can be used to evaluate results of image harmonization, style transfer, image

enhancement, etc.
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