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Abstract

We address the problem of achieving fair and efficient allocation of resources in the era

of rapid technological advancements, including Artificial Intelligence (AI) and the Inter-

net of Things (IoT). The allocation of resources among autonomous agents is a crucial

problem, and achieving fairness while ensuring efficiency is challenging. The objective is

to determine the best way to divide resources among interested agents so that everyone is

happy with their allocation, while ensuring fairness. We explore various fairness notions

and relaxations that could apply to the problem of resource allocation. One of the main

issues addressed in the thesis is the challenge of achieving fairness in the allocation of in-

divisible resources. We address several critical questions related to fair division, such as

how to ensure fairness, how to generalize the notion of fairness, and what criteria to choose

for different contexts. On top of it, fair division for goods and chores requires different

approaches. We examine this issue in more detail and survey the existing approaches and

provide solutions to overcome the challenges. We provide a detail survey on fairness notion

and their approximate relaxations and evaluates their effectiveness in achieving fair and

efficient allocations.

In recent literature, researchers have delved into data-driven approaches in game theory

and mechanism design to tackle the challenges of traditional approaches. Given the success

of neural networks (NNs) in learning algorithms, and mechanisms, and solving mixed-

integer programs, they offer a promising tool for achieving fair and efficient allocations of

resources. Thus, we aim to use NNs to find an approximate fair allocation that maximizes

social welfare in our pursuit of equitable and efficient resource distribution. Another critical
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issue addressed in the thesis is the presence of externalities, where the utility of an agent

depends not only on their allocated resources but also on the resources allocated to other

agents. Such scenarios are prevalent, especially in allocating critical resources such as

hospital beds, ventilators, and vaccines during the COVID-19 pandemic. We evaluate the

challenges of achieving fair and efficient allocations in the presence of externalities and

propose potential solutions.

Overall, in this thesis, we provide a comprehensive analysis of the challenges of achieving

fair and efficient allocation of resources in the era of rapid technological advancements. The

research proposes efficient algorithms and solutions to overcome the challenges and achieve

approximately fair allocation in different contexts. Achieving fair and efficient resource

allocation is crucial for various domains, including economics, politics, and social welfare,

and the results of this could have significant implications in these domains.
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Chapter 1

Introduction

“Is not the whole land before thee? Separate thyself, I pray thee; if thou

wilt take the left hand, then I will go to the right; or if thou depart to the

right hand, I will go to the left.” — Bible Genesis 13

In the book of Genesis, specifically in Chapter 13, a significant event takes place where

Abraham and Lot decide to part ways. This decision was prompted by the need to divide

the land of Canaan between them. Abraham proposed a fair division of the land and let

Lot have the first choice in selecting his portion.

Let’s consider the context of distributing vaccinations. The recent COVID-19 pandemic

has created an urgent and substantial demand for critical life-saving resources such as hos-

pital beds, ventilators, and vaccines. Unfortunately, there has been a significant imbalance

in the global distribution of these resources. To illustrate this, suppose we have only three

vaccinations remaining and need to allocate them among seven individuals: a family of

four (parents and two children), an elderly person, a young healthy person, and a young

person with underlying health conditions. In this scenario, determining a fair distribution

of these vaccinations and establishing a method to calculate it becomes a crucial question.

Additionally, since these resources are limited, we also aim to ensure an efficient alloca-

tion of resources. Therefore, our priority is not only achieving fairness but also ensuring

efficiency when allocating items among a group of individuals.

1



Due to the rapid advancement in technology, such as Artificial Intelligence (AI) and

the Internet of Things (IoT), many autonomous agents encounter the challenge of task or

resource allocation. In this setting, we explore several questions. Firstly, we define what

constitutes a fair allocation and whether such allocations even exist. If they do, how can

we compute them? Alternatively, if fair allocations do not exist, can we relax our fairness

criteria? Once we have achieved a fair allocation, can we further obtain an allocation that

maximizes efficiency among the set of fair allocations? How can we achieve both fairness

and efficiency in our allocations? This thesis primarily focuses on addressing fundamental

questions concerning the attainment of fair and efficient allocations.

To illustrate, we’ll look at a simple example.

Example 1.1. Two intelligent friends, Agastya and Noorie, won a contest and

received an uncut veggie pizza as a reward. These friends need to divide this pizza

fairly.

Suppose both of them like veggie pizza equally; hence the fairest way to divide it is to

cut it equally. Let’s say that the pizza has various toppings, such as pineapple, mushroom,

olives, and corn. If both like all the toppings, they can cut the pizza equally for each

topping. However, what if they have their preferences? Imagine Agastya dislikes pineapple

toppings, and Noorie is allergic to mushrooms. Can they cut the pizza according to their

preferences?

What if they used Abraham and Lot’s method? Noorie suggests splitting the pizza in

two, and Agastya could choose first what he likes, while she will take the remaining piece.

Would this be fair? Let’s analyze this approach. Noorie cuts the pizza in such a way that

both the partitions are equal to her. As a result, she is happy with any piece she gets.

Agastya picks the pizza part he likes the most. This division is famously known as the

Cut-and-Choose algorithm, ‘I cut, you choose’.

2



Figure 1.1: Pizza Cutting Example [88, 89]

The above pizza was uncut, and the agents were free to cut the pizza in any way they

liked. These types of items are called divisible items.

Example 1.2. Let us, however, consider a modification where Agastya and Noorie

receive eight pieces of pizza and cannot cut the pieces any further. Either they take

the whole piece, or they don’t. They both like every piece equally. This setting is

called as indivisible items. Each person can take four pieces, so the allocations are

fair. Consider, however, if they only received seven pieces. Is it possible to distribute

the pieces fairly among them in such a case?

Before we can answer this, let’s look at the following situation.

3



Example 1.3. Agastya and Noorie need to clean their house. This includes tasks

such as cleaning the living room, clearing the kitchen mess, dusting the furniture,

etc. Having fewer chores is what everyone wants. What is the best way to divide the

tasks such that everyone gets their fair share?

Comparing Example 1.1 to Example 1.3, in the first one, everyone would like to obtain a

bigger share, while in the second, everyone is more interested in obtaining a smaller share.

It is commonly known (in the literature) that items (resources/tasks) with such positive

value are called goods, and those with negative value are called chores. The approach to

solving fair division for goods and chores is quite different, even though it may seem like

just a matter of negation. We will examine this in more detail later.

Suppose there are multiple friends – agents in the system. How should we generalize

this notion of fairness? The idea that agents should be happy with their allocations

(allocated bundles) is envy-freeness [72]. Envy-freeness means agents/players value their

bundle more than others, i.e., no agent envies others. We can always divide divisible items

without envy. Allocating indivisible items without inciting envy is, however, a challenging

task. For example, if there is only one good, and Noorie receives it, Agastya will envy her.

It is widely known that EF is not guaranteed to exist for indivisible items.

With the negative results concerning the existence of envy-freeness for indivisible items,

the question naturally arises, can we ensure envy-freeness approximately, i.e., to relax the

fairness notion? For Example 1.2, giving three of the seven pieces to one person and

the remaining four to another is arguably the fairest way to allocate them. Assuming

Agastya receives three pieces and Noorie receives four, he envies Noorie by at most one

piece. Budish introduced such a relaxation of envy-freeness, called Envy-freeness up to 1

item (EF1) [51]. We will formally define all the fairness notions in detail later on, but in

essence, EF1 implies that if envy exists in the system, an agent can only envy the other

agent by at most one item.

4



Finding a fair allocation in a simple example involving two friends was challenging.

Here, we present a highly complex example to illustrate the problem’s difficulty. Imagine

that the Government wishes to invest in improving national security, economy, agriculture,

and healthcare. It picks four renowned scientists in these individuals’ domains and asks

them to set up a research lab for the nation’s improvement. It provides them with a wide

variety of resources such as professors, laboratory assistants, engineers, vehicles, books,

subscriptions, journals, drones, microscopes, biometrics systems, computer servers, land,

water facility, electricity facility, supercomputers, etc. This intricate scenario involves

distributing many divisible and indivisible goods and responsibilities to the four scientists

forming Research Centers. The Government wants to ensure that all four centers feel

equal so that each one gives its best to develop this project. In addition, it wants to ensure

that the resources are allocated to the Lab, which will put them to best use; for example,

microscopes will benefit the pathology department in the Healthcare Center rather than the

Economic Center. There are divisible items such as land, electric facilities, water facilities,

etc., and indivisible items such as computer systems, servers, books, etc. An item may be

beneficial to one person but a chore to another. Microscopes, for example, may be valued

positively by the Healthcare Center but negatively by the Economic Center since they are

of no use to them. We should also strive to ensure efficiency among fair allocations; since,

otherwise, not distributing any item to an agent is fair. We are looking for a fair and

efficient allocation.

It’s hard to divide things fairly for a reason, however. The notion of fairness depends

heavily on the context; what may be fair in one setting may not be fair in another. Suppose

Agastya and Noorie are supposed to purchase a new refrigerator. Agastya likes Samsung,

and Noorie likes LG. Regardless of what kind of refrigerator they buy, the concept of envy

is no longer applicable. We choose fairness criteria depending on the context. Later, we

will discuss various kinds of fairness notions in detail. In essence, we will aim to formulate

broadly acceptable fairness criteria. In doing so, we seek to determine whether it always

5



exists. If it does, can we find it in a reasonable amount of time? In essence, we will aim to

formulate broadly acceptable fairness criteria. In doing so, we seek to determine whether

it always exists. If it does, can we find it in a reasonable amount of time? Is it possible to

relax the fairness criteria to apply to the setting if one does not exist?

It is an NP-complete problem to determine whether there is an envy-free allocation when

there are indivisible items, even when the valuation is binary [15, 86]. Even if it exists,

finding such an allocation is NP-hard [42]. It is natural to look for fairness relaxations that

exist along with polynomial-time algorithms. Researchers are interested in studying relaxed

fairness notions in light of the impossibility of fairness for indivisible items. Relaxations

can be categorized into two: additive relaxations and multiplicative relaxations. Ideally,

if we cannot find a fair distribution, we would prefer an allocation that approximates the

fairness guarantees in some multiplicative way. Suppose, for example, that we cannot find a

fair share allocation; we’re aiming to find an allocation that approximates the fair share in

some multiplicative way for each agent. However, we see that fairness is difficult to achieve

even with a multiplicative approximation. Therefore, we turn to additive approximation,

which exhibits both possibilities and impossibilities.

In addition to finding fair allocation, eliciting agent preferences is a difficult task. Con-

sider dividing 30 items among several agents. To provide a complete valuation of items,

each agent should provide their value for every bundle of the items, i.e., they would have to

evaluate the value of more than 1 billion bundles. In order to capture agents’ preferences

in a simple manner, we look for ways to model agents’ valuations. We will discuss these

shortly.

Now we define these notions informally and present an example demonstrating how

they can be applied. We state four popular fairness criteria below, Envy-freeness (EF),

Proportionality (PROP), Maximin Share (MMS), and Equitable (EQ).

Fairness Notions.

6



Envy-freeness (EF) [72] is the most common notion of fairness. According to this theory,

no agent should value the allocations of others more than what they value for their own.

An envy-free allocation is one in which no agent envies another. Therefore, every agent

feels their bundle is at least as good as anyone else’s.

Proportionality (PROP) [131] ensures that all agents receive allocations which they value

at least 1/n of their total value, i.e., their proportional value.

Next, we consider a relaxation of PROP, the max-min share (MMS) allocation.

Maximin share (MMS) [51] ensures that all agents receive an allocation worth at least its

MMS share value. Imagine we asked the agent to divide the items into n bundles and

take the bundle with the lowest value. The agent would split the bundles to maximize the

minimum utility, their MMS share.

Equitable (EQ) [63] ensures that agents value their allocation at the same level as other

agents. By EQ, we mean that all agents value their allocations equally.

It is common to ensure some efficiency notion, along with fairness. Or else, assigning

no item to anyone will always be fair. Efficiency is yet another crucial aspect of item allo-

cation. Informally, we mention popular efficiency notions such as Pareto Optimality (PO),

Maximum Utilitarian Welfare (MUW), Maximum Nash Welfare (MNW), and Maximum

Egalitarian Welfare (MEW).

Efficiency Notions.

Pareto Optimal(PO). An allocation is Pareto optimal if no other allocation is Pareto dom-

inated by it, i.e., no other allocation makes some agents strictly better without making

other agents worse.

Utilitarian Social Welfare (USW) A Utilitarian Welfare Function is the sum of the indi-

vidual agents’ valuation for their allocation. It assumes that agents are treated equally.

An allocation that maximizes USW is known as Maximum Utilitarian Welfare (MUW).

Nash Social Welfare (NSW) A Nash Welfare Function is the product of the individual

agents’ valuation for their allocation. An allocation that maximizes NSW is known as
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Maximum Nash Welfare (MNW). As we will discuss later, NSW has several interesting

characteristics that combine fairness and efficiency.

Egalitarian Social Welfare (ESW) An Egalitarian Welfare Function is the minimum indi-

vidual agents’ valuation for their allocation. An allocation that maximizes ESW is known as

Maximum Egalitarian Welfare (MEW). The philosophy is to maximize the most marginal-

ized agents in the system. This welfare is also known as the Santa Claus Problem.

Now, we will illustrate all these notions using another example.

Figure 1.2: Example to illustrate fairness and efficiency notions

The above example has three agents, agent1, agent2, and agent3, and six items, plants

(P ), a car (C), books (B), a laptop (L), markers (M), and fruits (F ). In total, all agents

value complete items at 12. Consider allocation A1 = {(C,F ), (T ), (B,M,L)}, i.e., (C,F )

is allocated to agent1, (T ) is allocated to agent2 and (B,M,L) is allocated to agent3.

This allocation is envy-free since no agent feels envious of others. Let us consider another

allocation A2 = {(L,M,F ), (T ), (C,B)}. This allocation is not an envy-free allocation as

agent1 envies agent2. However, it is a proportional allocation. The proportional value of

each agent in this example is 4, and each agent has a value of 4 in A2. Also, note that

A2 is an EQ allocation since all agents value their bundle equally, i.e., 4. The maximin

share of agent1, agent2, and agent3 is 3,4 and 4. Allocation A3 = {(L,M), (T ), (C,B, F )}

is not a proportional allocation; however it is an MMS allocation, since all agents receive

at least their MMS value. We will explore the relationship between all the notions in later

sections. Allocation A4 = {(C), (T, F ), (B,M,L)} is MUW as well as EF. Also, note that
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there are multiple allocations satisfying fairness criteria. For example, allocations A1, A2,

and A3 satisfy MMS guarantees.

These ideas represent a general conception of fairness (efficiency) and may or may not

correspond to fairness (efficiency) in every case. We will illustrate this by providing two

examples.

Example 1.4. Consider Agastya and Noorie have to mop their house (divisible

chore) and allocate a bike among them (indivisible good). What is a fair allocation

in this setting? How to fairly allocate a set of divisible and indivisible items among

interested agents?

We cannot consider EF fairness overall since it need not exist for indivisible items, so

we must consider the relaxation of EF. Shall we consider EF for divisible and EF1 for

indivisible items? So accordingly, both will clean the house, and any one of them will get

the bike. Is this a fair allocation? A fairer allocation would have been that the one who

cleans the house gets the bike. Hence we need to re-consider our fairness and efficiency

notions in such settings.

Next, we consider an example of an externality. Externality implies that the agent’s

utility depends not only on their bundle but also on the bundles allocated to other agents.

Such a scenario is relatively common, mainly in allocating necessary commodities. For

example, the COVID-19 pandemic resulted in a sudden and steep requirement for life-

supporting resources like hospital beds, ventilators, and vaccines. There has been a heavy

disparity in handling resources across the globe. Even though there was a decrease in GDP

worldwide, low-income countries suffered more than high-income countries [64].

Ensuring above fairness measures is non-trivial in the presence of externalities.
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Example 1.5. For example, let’s imagine that Coke and Pepsi are required to split

raw materials A and B between them. According to Coke, material A is worth 10,

and material B is worth 5. Pepsi values material B at 10 and material A at 5.

Pepsi suffers a loss of -100 if material A is assigned to Coke and -5 if material B

is assigned to Coke. In the same way, Coke loses 100 if material B is allocated to

Pepsi and 5 if material A is allocated to Pepsi. To illustrate, consider allocation

A∗, assigning material B to Coke and material A to Pepsi. This allocation value for

Coke is 5-5=0, and the value for Pepsi is also 0.

In Example 1.5, the proportional value for both agents, i.e., Coke and Pepsi, is 7.5.

It is easy to verify that no allocation satisfies proportional guarantees for both agents.

Proportionality does not consider externalities, i.e., it does not consider the dis-utility that

results from not receiving items. Hence we need to redefine certain notions accordingly to

the given setting. We will go over a wide range of settings in the later sections.

1.1 Problem Addressed

The thesis examines the fair and efficient allocation of indivisible goods, chores, or both.

Our research addresses two problems in particular.

• There is extensive literature available for fair allocations, but most of the existing

alogithms for fair division do not consider externalities. Under externalities, the util-

ity of an agent depends not only on its allocation but also on other agents’ allocation.

An agent has a positive (negative) value for the assigned goods (chores). In this work,

we study a special case of externality which we refer to as 2-D. In 2-D, an agent re-

ceives a positive or negative value for unassigned items independent of who receives

them. We primarily focus on leveraging existing algorithms to 2-D. However, not all
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notions apply when externalities are present; therefore, we redefine them and study

them in detail.

• Next, we bring our focus on finding fair and efficient allocation, an NP-Hard problem.

Given the theoretical limitations, We aim to compute approximately fair and efficient

allocation, i.e., EF1 and efficient allocation of goods/chores using a data-driven ap-

proach. Neural Networks (NNs) have proven to be superior to existing approaches

in finding an optimal mapping between input and output data. For instance, Neu-

ral Networks are capable of learning algorithms (Kim et al. [94] learned the Viterbi

algorithm for decoding), mechanisms (Duetting et al. [66] learned optimal auctions),

or solving mixed-integer programs (Nair et al. [111] uses graph Neural Networks to

solve MIPs). The success of Neural Networks has led us to aim for the formation of

Neural Networks that learn approximately fair and efficient allocations.

Our major contributions are as follows,

1.2 Contributions

• In Chapter 2, we provide a comprehensive examination of fair allocation, delving into

intricate details and presenting a thorough analysis. Furthermore, in Chapter 4, we

present a meticulous investigation into the realm of mechanism design, specifically

focusing on approaches based on Neural Networks.

• In Chapter 3, we present our study of fair allocation in present of externalities. We

propose a simple valuation transformation and show that we can adapt existing algo-

rithms using it to retain some of the fairness and efficiency notions in 2-D. However,

proportionality doesn’t extend in 2-D. We redefine PROP and its relaxation and

show that we can adapt existing algorithms. Further, we prove that maximin share

(MMS) may not have any multiplicative approximation in this setting. We propose
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Shifted α-MMS, a novel way of approximating MMS in 2-D. Studying this domain

is a stepping stone towards full externalities where ensuring fairness is much more

challenging.

• In Chapter 5, we propose a Neural Network- EEF1-NN inspired by U-Net [121]

to learn approximately fair and efficient allocation. By fair and efficient, we mean

EEF1, i.e., efficient (maximizing utilitarian social welfare) and EF1. We transform

our valuations and augment them with additional channels to enhance the network’s

performance. We have a series of convolutional and up-convolutional layers to learn

EEF1; hence EEF1-NN is generalized for any number of agents and items. We sample

valuations from various distributions and report the expected fairness and efficiency

achieved. Even for large instances, our network performs well with more than 10

agents and 100 items. Moreover, we show that, for our setting, bagging multiple

networks improves performance.

1.3 Organization of the Thesis

In Chapter 2, we survey the fair division of indivisible goods or/and chores in various

fairness notions in depth. Then in Chapter 3, we describe fair division in the presence

of special externalities. Recently, the EconCS community has been interested in learning

mechanisms/algorithms based on Neural Networks, especially in the context of theoretical

limitations. We survey the Neural Network-based approach in Chapter 4. Further, we

describe our Neural Network-based solution for finding approximately fair and efficient

allocations in Chapter 5. Finally, in Chapter 6, we conclude our thesis and outline directions

for the future.
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Chapter 2

Background for Fair Resource Allocation

Fair resource allocation is an important problem in many real-world scenar-

ios, where resources such as goods and chores must be allocated among

agents. However, ensuring fair allocation becomes more challenging when

the resources are indivisible. In this chapter, we focus on the problem

of fair allocation of indivisible goods and chores. We first introduce the

definitions of fairness and efficiency in the context of goods and chores.

We then present a survey of algorithms for each fairness criterion, includ-

ing envyfreeness, proportionality, MMS, and their relaxations. Further, we

discuss algorithms that, besides satisfying the above fairness notions, are

efficient, such as Pareto Optimal and maximize Utilitarian Welfare. In our

discussions, we provide details regarding the computational complexity of

the algorithms. For each notion of fairness, we study the likelihood of find-

ing fair allocations and the price of fairness. We extend our discussions to

mixed instances of indivisible and divisible items while examining different

valuation and allocation settings.
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2.1 Preliminaries

First, we define all essential concepts pertaining to fairness and introduce all needed

notation.

2.1.1 Fair Resource Allocation: Basic Model and Notations

We consider the problem ⟨N,M, V ⟩ of allocating M indivisible resources/items among

N interested agents with valuation profile v ∈ V , where M = [m], i.e., M = {1, 2, . . . ,m},

N = [n] and m,n ∈ N. We define allocation A ∈ Πn(M) as the partition of M indivisible

items into n bundles, i.e., A = (A1, A2, . . . , An), where Ai is the bundle allocated to agent

i. We only allow complete allocation, and no two agents can receive the same item. That

is, A = (A1, A2, . . . , An), s.t., ∀i, j ∈ N , i ̸= j;Ai ∩Aj = ∅ and
⋃

iAi = M . We denote the

allocation for all the agents except i as A−i. An allocation is called partial if
⋃

iAi ⊂M .

Goods vs Chores

Each agent i ∈ N has a valuation function vi : 2M → R, and vi(S) represents its

valuation for the subset S ⊆M . We represent the valuation profile as v = (v1, v2, . . . , vn).

For all agents, the valuations are normalized, i.e., vi(∅) = 0. We denote the valuation of

an item k ∈ M for any agent i ∈ N as vi({k}) or vik. For an agent i, an item k ∈ M is a

good if, vik ≥ 0, and a chore if, vik < 0. Goods are desirable/positively valued and chores

are undesirable/negatively valued items. There could be three settings - pure goods, pure

chores, and a combination of goods and chores. In combination, ∀k ∈M it is possible that,

for some agent i ∈ N , vik > 0 and for another agent j ∈ N , vjk < 0. That is, an item may

be good for one agent and a chore for another. Note that we use the terms – valuation and

utility interchangeably in this chapter.
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Different Types of Valuation Functions

In most of the literature, we assume that the valuation functions of agents aremonotonic

for goods and anti-monotonic for chores. If we increase goods in an agent’s bundle, the

utility increases, and if we increase chores, the utility decreases. Formally, we define it as

follows,

Definition 2.1 (Monotonicity). A valuation function vi is monotonic if, ∀S ⊆ T ⊆

M, vi(S) ≤ vi(T ).

Definition 2.2 (Anti-monotonicity). A valuation function vi is anti-monotonic if, ∀S ⊆

T ⊆M,vi(S) ≥ vi(T ).

We say that agents have additive valuations when, for each agent, the valuation of a

non-empty bundle equals the sum of the valuations of the individual items. However, it

is also possible that agents value an allocation more or less than the sum of the values of

the individual items, i.e., super-additive or sub-additive. Furthermore, agents may have

marginal decreases or increases in their valuation with every additional item, i.e., sub-

modular, super-modular valuations.

In the most general setting, the agents may have arbitrary valuations for every subset

i.e., the general valuation setting. General valuations are rich and complex functions.

Consider dividing 30 items among several agents. To provide a complete valuation of items,

each agent should provide their value for every bundle of the items, i.e., they would have

to report the value of more than 1 billion bundles. Hence in literature additive valuations

are widely studied.

Definition 2.3 (Additive Valuations). Agents have additive valuations if, an agent i, ∀i ∈

N values any non-empty bundle Ai as vi(Ai) =
∑

k∈Ai
vik.

A valuation instance is said to be identical when all agents have the same valuation for

all subsets of items, formally,
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Definition 2.4 (Identical Valuations). The valuations are identical if, ∀i, j ∈ N, ∀S ⊆

M,vi(S) = vj(S).

Often, agents do not have identical valuations, but they order the items likewise, i.e.,

agents have the same rank for the items. We call such valuations Identical Ordering (IDO).

Definition 2.5 (Identical Ordering (IDO)). Valuations are IDO when when all agents

agree on the same ranking of the items, i.e., for ∀i ∈ N , vi1 ≥ vi2 . . . ≥ vim.

The cardinal cost functions of agents in an IDO instance may still differ. In approval-

based settings, agents have binary valuations, where they either approve or disapprove an

item.

Definition 2.6 (Binary Valuations). The valuations are binary, if ∀i ∈ N , ∀k ⊆ M ,

vik ∈ {1, 0}.

We next define fairness and efficiency properties considered in this paper.

2.1.2 Important Definitions.

Fairness Related Definitions

The concept of envy-freeness (EF) introduced by Foley 1967 [72] is a well-established

notion of fairness. It ensures that no agent envies the bundle of any other agent. Unfor-

tunately, an EF allocation of indivisible items may not exist; for example, when there is a

single good and two agents, the agent who doesn’t get the good feels envious of the agent

that does. The researchers were interested in relaxing the concept of EF in order to limit

the envy of every agent. They introduced the idea of ϵ-EF, which ensures that if envy

exists, it is at most ϵ. However, ϵ-EF allocations also need not exist. The non-existence of

EF and ϵ-EF has prompted researchers to propose additive relaxed notions of EF, such as

EF1 and EFX.
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For goods, an allocation is EF1 when all agents value their bundle at least as much as

they value another agent’s bundle with their most valued item removed. EFX is stronger

than EF1 and requires that all agents value their bundle no less than the other agents’

bundle with their least valued item removed. For chores, a similar definition applies, but

unlike in goods, a chore is removed from the agent’s bundle and then compared with the

other agents’. In the case of a combination of goods and chores, EF1 implies that if an

agent envies another agent, we can eliminate the envy either by virtually removing the

most valued good from the other agent’s bundle or removing the least favorite chore from

the agent’s own bundle. A standard definition is as follows,

Definition 2.7 (Envy-free (EF) and relaxations [14, 51, 55, 72, 137]). For the items (goods

or chores), an allocation A that satisfies ∀i, j ∈ N ,

vi(Ai) ≥ vi(Aj) is EF

vik < 0, vi(Ai \ {k}) ≥ vi(Aj);∀k ∈ Ai

vik > 0, vi(Ai) ≥ vi(Aj \ {k});∀k ∈ Aj

 is EFX

vi(Ai \ {k}) ≥ vi(Aj \ {k});∃k ∈ {Ai ∪Aj} is EF1

vi(Ai) + ϵ ≥ vi(Aj) is ϵ-EF

vi(Ai) ≥ α · vi(Aj) is α-EF

In addition to EF and its relaxations, proportional allocations are also well studied in

the context of fairness. As introduced by Steihaus 1948 [131], Proportionality requires that

each agent gets at least 1/n of their share of the total value. Furthermore, even proportional

allocations may not always exist; for this reason, researchers have considered relaxations.

Researchers then looked into α-prop, which requires that every agent receives an α fraction
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of its proportional share. But unfortunately, that solution does not exist as well. Similar

to EF, we adapted additive relaxation for proportionality as well. Proportionality up to

one item, PROP1 requires that every agent is guaranteed to receive their proportionality

guarantee if they lose their least valued chore or receive their most valuable good from any

other agent’s bundle. Proportionality up to any item, PROPX requires that every agent is

guaranteed to receive their proportionality guarantee if they lose their most valued chore

or receive their least valued good allocated to another agent.

Definition 2.8 (Proportionality (PROP) [20, 24, 61, 131]). For the items (chores or goods),

an allocation A that satisfies ∀i ∈ N ,

vi(Ai) ≥ 1/n · vi(M) is PROP

vik > 0, vi(Ai ∪ {k}) ≥ 1/n · vi(M);∀ k ∈ {M \Ai}

vik < 0, vi(Ai \ {k}) ≥ 1/n · vi(M);∀ k ∈ Ai

 is PROPX

vi(Ai ∪ {k}) ≥ 1/n · vi(M);∃ k ∈ {M \Ai} or,

vi(Ai \ {k}) ≥ 1/n · vi(M);∃ k ∈ Ai

 is PROP1

vi(Ai ∪ {k}) ≥ 1/n · vi(M); k ∈ max
j ̸=i

min
k∈Aj

vi(Ajk) is PROPm (only for goods)

vi(Ai) ≥ α · 1/n · vi(M) is α-PROP

The content of this Chapter is available as Survey in [127]

Relationship between EF and PROP.

When agents have sub-additive valuations, Envy-freeness is stronger than proportion-

ality, i.e., EF implies PROP. Similarly, when agents have additive valuations, EF1 implies

PROP1. It may seem counter-intuitive at first glance that EFX implies PROPX when

agents have additive valuations.
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Following, we explore Maximin share (MMS) introduced by Budish 2011 [51], extending

the concept of Cut and Choose to indivisible goods. Imagine telling an agent to divide the

items into n bundles and pick the one they value the least. The agent would divide the

items into n partitions so that they maximize the value of the least valued bundle. We

call this value their Maximin Share. An allocation satisfies MMS guarantees if every agent

receives at least their MMS value.

Definition 2.9 (Maximin Share MMS [51]). An allocation A is said to be MMS if ∀i ∈

N, vi(Ai) ≥ µi, where

µi = max
(A1,A2,...,An)∈

∏
n(M)

min
j∈N

vi(Aj)

Introduced by Procaccia and Wang [118], an allocation A is said to be α-MMS if it

guarantees vi(Ai) ≥ α · µi when µi ≥ 0 and vi(Ai) ≥ 1
α · µi when µi < 0, where α ∈ (0, 1].

Efficiency Related Definitions

In the previous subsection, we discussed some popular fairness notions. Note that

refusing to assign any item to any agent is also Envy-free. However, we also desire efficiency,

so fairness is considered in connection with efficiency criteria as well. One of the most

frequently studied efficiency criteria in fairness literature is Pareto-Optimality. A Pareto

optimal (PO) allocation ensures that there is no other allocation which Pareto dominates,

i.e., better for all agents and strictly better for at least one. It is interesting to consider

PO and fair allocations.

Definition 2.10 (Pareto-Optimal (PO)). An allocation A′ is said to Pareto dominate

allocation A, if ∀i ∈ N , vi(A
′
i) ≥ vi(Ai) and ∃i ∈ N , vi(A

′
i) > vi(Ai). When there is no

allocation that Pareto dominates allocation A, it is said to be Pareto-optimal.

We then consider utilitarian welfare, the sum of agents’ utilities. On the other hand,

Nash welfare corresponds to the product of agents’ utilities, and egalitarian welfare, to the

minimum of individual agents’ utility.
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Definition 2.11. Given an instance (N,M,V), an allocation A∗ satisfies,

Maximum Utilitarian Welfare, MUW(v), if

A∗ ∈ argmax
A

n∑
i=1

vi(Ai) (2.1)

Maximum Nash Welfare, MNW(v) if

A∗ ∈ argmax
A

n∏
i=1

vi(Ai) (2.2)

Maximum Egalitarian Welfare, MEW(v) if

A∗ = argmax
A

min
i

vi(Ai) (2.3)

We proceed to the next section, summarizing the existential and computational results

pertaining to various fairness notions. We discuss various results for goods in Section 2.2

and further categorize them in subsections 2.2.1 and 2.2.2, which deal with the results

of determining the fair allocation and fair and efficient allocations, respectively. Our dis-

cussion of chores is similarly addressed in Section 2.3, and the combination of goods and

chores is described in Section 2.4.

2.2 Indivisible Goods

2.2.1 Fair Allocation

Envy-Freeness (EF):

As defined in Definition 5.1, EF is a popular and strong notion of fairness. However, EF

allocation may not exist for n ≥ 2, for instance, imagine that we have to distribute a single

good among n agents. Even when agents have binary additive valuations for goods, the

problem of checking whether EF allocation exists or not is NP-complete [15, 86]. Hence,

next, we study a prominent relaxation of EF, i.e., EF1 - Envy-free up to one item. The
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notion of EF1 was introduced by Budish 2011 [51] formally and implicitly it appeared

in Lipton et al. 2004 [101].

Envy-Freeness up to one item (EF1):

As given in Definition 5.1, in the case of goods, Envy-free up to one item (EF1) implies

that for any pair of agents i and j, if agent i envies agent j, the envy can be eliminated

by virtually taking out agent i’s most valuable item from j’s bundle, i.e., vi(Ai) ≥ vi(Aj \

{g}), ∃g ∈ Aj . EF1 allocation always exists and can be obtained in polynomial time.

Theorem 2.1 ([51, 55, 101]). EF1 allocation always exist and can be found in polynomial

time.

When agents have additive valuations, round-robin algorithm gives EF1 for goods in

polynomial time, i.e., O(mn logm) [55]. We formally describe the steps in Algorithm 5.

To allocate items in a round-robin fashion, we select an arbitrary sequence of agents. Each

agent selects their favorite items when their turn comes. For any i, j ∈ N , if agent i

picks before agent j, he/she will never envy agent j. If agent i picks after agent j, he/she

may envy agent j’s first selected item. Let’s assume that we remove agent j’s first pick,

which was the item it most preferred. Because we removed agent j’s first selected item,

hypothetical agent i picks first. We know that the agent who comes earlier in the sequence

has no envy for the agent who comes after them. Thus, agent i does not envy agent j if

we remove agent j’s first selected item, i.e., the envy is bounded up to one item.
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Algorithm 1 Round Robin

1: Set ∀i, Ai = ∅

2: Every agent sort the items in decreasing order

3: Arrange agents in an arbitrary sequence w.l.o.g {1, . . . , n}

4: while M ̸= ∅ do

5: for i← 1 to n do

6: Ai ← Ai ∪ argmaxk∈M vik

7: M ←M \ {k}

8: end for

9: end whilereturn Allocation A

When agents have general monotone valuations, Lipton et al. 2004 [101] proposed an

envy-cycle elimination algorithm that gives EF1 allocation for goods in polynomial time

O(mn3). This algorithm bounds the envy of any agent by the maximum marginal value of

any good; it corresponds to the notion of EF1 for goods. We define the envy graph first.

An envy graph of allocation A consists of nodes for each agent and directed edges from

agent i to agent j if i envies j, i.e., vi(Ai) < vi(Aj). The algorithm selects an unenvied

agent in each iteration, i.e., an agent with no edges directed towards them, and assigns an

arbitrary good. If there are no such agents, there must be cycles of envy, and the agents can

exchange bundles until no more cycles remain. Upon receiving the good, other agents may

envy this agent; we can eliminate this envy by removing the good he/she just received since

he/she were previously unenvied. Thus, if agent i envy agent j, the envy is bounded up to

one good, i.e., by the recently added good in agent j’s bundle. After each round of partial

allocation, this algorithm ensures that EF1 is satisfied. In contrast, Bérczi et al. 2020 [38]

showed that the envy-cycle elimination algorithm fails to find an EF1 allocation when

agents have general non-monotone valuations.
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Algorithm 2 Envy-Cycle Elimination

1: Set ∀i, Ai = ∅

2: for k ← 1 to m do

3: Find an unenvied agent i

4: Ai ← Ai ∪ k

5: if Envy-Cycle exists then

6: Swap bundles to resolve

7: end if

8: end forreturn Allocation A

Apart from EF1, weighted EF1 allocation always exists for goods [56], i.e., in presence

of asymmetric agents. Now in order to eliminate envy, EF1 removes the most valuable

item. However, the exciting results of EF1 may probably not apply to the real world; i.e.,

EF1 can be relatively unfair, but the instance may still admit a fairer allocation.

Example 2.1. Assume Agastya and Noorie have one Toberlone and 99 Eclairs

to divide among themselves. Both prefer Toberlone over Eclairs. The round-robin

allocation gives 49 Eclairs, one Toberlone to Noorie, and 50 Eclairs to Agastya.

Even though the allocation is EF1, it is unfair to Agastya.

Therefore, it is desirable to strengthen fairness in many cases. Caragiannis et al. 2019 [55]

proposed the concept of EFX, i.e., Envy-free up to any item as defined in Definition 5.1.

Since then, a lot of work has been focused on EFX allocation’s existence, but the question

is yet to be resolved beyond the case of two agents. The existence of EFX is an open

question for n > 3 for additive valuations and n > 2 for general valuations. Researchers

consider EFX to be the best fairness notion for indivisible items. In contrast to the weaker

notion of EF1, the study of EFX existence remains limited and elusive.
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Envy-Freeness up to any item (EFX):

As defined in Definition 5.1, in the case of goods, EFX implies that for any pair of

agents i and j, if i envies j, the envy can be eliminated by hypothetically removing any

good from j’s bundle, i.e., by removing the least valued item for i from j’s bundle, i.e.,

vi(Ai) ≥ vi(Aj \ {g}), ∀g ∈ Aj . Note that EFX implies EF1.

Theorem 2.2 (Plaut et al. 2020 [117]). When agents have general but identical valuations,

a modified Leximin algorithm, i.e., Leximin++, ensures EFX.

Plaut et al. 2020 [117] showed that when agents have general but identical valua-

tions, a modification of the Leximin, i.e, leximin++ solution is EFX. As mentioned in

Preliminaries 5.3, in the case of identical valuations, for any pair of agents i and j,

∀S ⊆ M, vi(S) = vj(S). Leximin selects the allocation that maximizes the minimum

individual utility; further, if multiple allocations achieve it, it chooses the allocation that

maximizes the second minimum individual utility, and so forth. It is well-known that find-

ing the Leximin solution can take exponential time. Plaut modified the Leximin algorithm

as follows; Leximin++ selects the allocation that maximizes the minimum individual util-

ity; further, if multiple allocations achieve it, it chooses the allocation that maximizes the

size of the minimum utility agent’s bundle. Further, if multiple allocations achieve it, it

chooses the allocation that maximizes the second minimum individual utility, followed by

the cardinality maximum of the second minimum agent’s bundle, and so forth.
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Algorithm 3 Leximin++ Algorithm

1: Set ∀i, Ai = ∅

2: A← maxA′∈
∏

n(M)mini∈N vi(A
′
i)

3: while |A| > 1 do

4: i← minj∈N vj(Aj)

5: A← maxA |Ai|

6: A← maxA′∈Amini∈N vi(A
′
i)

7: end whilereturn Allocation A

Remark 2.1. However, Leximin++ may not ensure EFX allocation when agents have

distinct valuations

Theorem 2.3 (Plaut et al. 2020 [117]). An EFX allocation exists for two agents with

general monotone valuations.

Using Leximin++ combined with Cut-and-Choose, Plaut et al. 2020 [117] demonstrated

that there exists EFX allocation for two agents. As described in algorithm 4, the first agent

applies Leximin++ to partition the goods into two bundles (i.e., they compute Leximin++

with two copies of themselves). The second agent picks their favorite bundle. As can be

seen, the second agent never envies the first agent. Indeed, according to agent 1, the

allocation is EFX regardless of what they receive because the partition was created using

Leximin++.

Algorithm 4 Leximin++ Combined with Cut-and-Choose

1: Run Algorithm 3 with two copies of first agent

2: A2 ← max v2(A1), v2(A2)

3: A1 ←M \A2 return Allocation A
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Even when two agents have identical submodular valuations, Plaut et al. 2020 [117]

showed that finding EFX takes exponential time. On the other hand, the algorithm of Lip-

ton et al. 2004 [101] finds an EF1 allocation in polynomial time for any number of agents

with monotone valuations. Thus, EFX is indeed significantly stronger than EF1. In addi-

tion, Plaut et al. 2020 [117] proposed an algorithm for EFX allocation in polynomial time,

i.e., O(mn3) when agents have additive valuations with identical ranking, which relies on

envy-cycle elimination [101]. Plaut et al. 2020 [117] showed that this algorithm combined

with Cut-and-Choose results in a polynomial-time EFX allocation for two agents with ad-

ditive valuations. The first agent runs the algorithm with two copies of themselves, and

the second agent picks first, just like algorithm 4. Gourvès et al. 2014 [84] also presented

a polynomial time algorithm for EFX (called as Near Envy-freeness) when for two agents

with additive valuations.

A recent study by Chaudhury et al. 2020 [57] showed that EFX allocation always exists

for instances with three agents with additive valuations. Their rigorous, constructive proof

required an extensive and cumbersome case analysis to prove the existence of EFX that

involves pseudo-polynomial time complexity. Despite the ongoing efforts, the question of

EFX’s existence remains unanswered for any valuation system that involves more than

three agents.

Theorem 2.4 (Chaudhury et al. 2020 [57]). EFX always exists in the case of three agents

with additive valuations.

EFX is arguably the most compelling fairness notion for indivisible items. However,

its existence has not been settled and remains one of the major open questions in the

fair division. In an attempt to resolve this problem, a range of impressive solutions has

been explored, such as considering approximately EFX or EFX with charity, i.e., we leave

some low-value items unallocated or solve the cases when agents have special valuation

functions. The authors in [1, 5, 23] studied EFX allocations when agents have restricted

valuation functions. Babaioff et al. 2021 [23] presented a polynomial-time algorithm for
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finding EFX allocations for submodular dichotomous valuations. Amanatidis et al. 2021 [5]

proposed a polynomial-time algorithm called ”MATCH & FREEZE” for allocating EFX

allocations (they refer to it as EFX0) for 2-value instances, i.e., ∀i ∈ N, k ∈ M,vik ∈ I

and |I| = 2. In addition, they presented a modified round-robin, in which they reverse the

order of agents in the last round, giving EFX when agents have a valuation in an interval,

i.e., ∀i ∈ N, k ∈M,vik ∈ [xi, 2xi], where xi > 0.

EFX with charity We search for partial EFX allocations, which do not require all

items to be allocated and satisfy EFX. A trivial allocation involves no items assigned

to any agent. Therefore, the goal is to determine allocations with some bound on the

set of unallocated items. Authors in [53, 39, 59] showed that an EFX allocation always

exists if we do not allocate at most n − 1 goods. This result was improved by [39] to

n − 2 goods. They also proved that for four agents, EFX could be ensured by leaving at

most one good. For general valuations, Chaudhury et al. 2020 [57] showed that an EFX

allocation always exists with a pool of unallocated items C such that no one envies the

pool and C has less than n goods. Caragiannis et al. 2019 [53] demonstrated that for

goods with additive valuations, there exists a partial EFX allocation where all agents get

at least half of their MNW allocation value, thus indicating that unallocated goods are

low-valued. In [53], the authors conjectured that, ”In particular, we suspect that adding

an item to an allocation problem (that provably has an EFX allocation) yields another

problem that also has an EFX allocation with at least as high Nash welfare as the initial

one.” Nevertheless, Chaudhury et al. 2020 [57] disproved the conjecture by displaying an

example of a partial EFX allocation with a higher Nash welfare than a complete EFX

allocation. In parallel to this line of research, many impressive results show the existence

of approximate EFX allocations.

Approximately EFX Plaut et al. 2020 [117] proposed approximate EFX, which implies

that for any pair of agents i and j, vi(Ai) ≥ α · vi(Aj \ {g}), ∀g ∈ Aj , where α > 0.
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Note that α-EFX and EF1 are not comparable, meaning none of the properties implies the

other. Plaut et al. 2020 [117] showed that 1/2-EFX allocations always exist when players

have sub-additive valuations using a modified envy-cycle elimination method. Amanatidis

et al. 2020 [8] proved the existence of 0.618-EFX allocations for additive valuations. For

ϵ ∈ (0, 1/2], Chaudhury et al. 2021 [58] showed that there is always an (1−ϵ)-EFX allocation

with a sub-linear number of unallocated goods and a high Nash welfare. Amanatidis et

al. 2021 [5] also proposed α-EFX-value notion.

The envy-freeness concept doesn’t always make sense, for instance, in the context of

Public Decision Making. As explained in the Introduction 1, Agastya and Noorie are

supposed to purchase a new refrigerator; Agastya likes Samsung, and Noorie likes LG.

Regardless of what kind of refrigerator they buy, the concept of envy is no longer appli-

cable. In the next section, we discuss the results related to proportionality for indivisible

goods. We now move to another intuitive fairness notion introduced by Steihaus 1948 [131],

Proportionality.
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Figure 2.1: Summary of Envy-freeness fairness notion for indivisible goods. The Violet box

(number 1) represents the polynomial-time algorithm. The blue box (number 2) represents

exponential time. The red box (number 3) represents Pseudo-polynomial time. The green

box (number 4) represents an open question. The grey box (number 5) represents such an

allocation does not exist.

Proportionality (PROP):

To attain proportionality, each agent would have to receive at least 1/n of their value

for all items, as stated in Definition 3.2. However, it is known that it is not always possible
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to assign indivisible items proportionality. The allocation of a single good among agents

cannot ever be proportional. Note that EF allocation is always PROP with sub-additive

valuation. For α > 0, α-proportional allocation may not always exist; for example, in the

distribution of single good among two agents, one receives a utility of zero. Naturally,

researchers explored the additive approximations of PROP, i.e., PROP1, PROPm, and

PROPX. In any situation, we look for the fairest allocation possible, and if it is not possible,

we relax our criteria in a way that maintains fairness.

Proportionality up to one item (PROP1):

Conitzer et al. 2017 [61] introduced the notion of PROP1 in the setting of Public Decision

Making, which is more generic than indivisible item allocations. Along the lines of EF1,

PROP1 requires each agent to receive a utility at least their proportional share if we add

the largest good allocated to another agent to their bundle, as stated in Definition 3.2.

Each agent receives its proportional share after hypothetically including one extra good

from another agent’s allocation into its bundle.

Under additive valuation, an EF1 allocation is also a PROP1 allocation; therefore,

every algorithm that gives EF1 also gives PROP1. In the setting of Public Decision Mak-

ing, Conitzer et al. 2017 [61] shows that a PROP1 allocation always exists in polynomial

time. In addition to fairness, Aziz et al. 2022 [14] demonstrated that one could achieve

another requirement besides fairness: connectivity. They modeled the situation in which

items are placed on a path, and each agent wants a connected bundle of the path. In many

scenarios, finding a connected set of items is essential. For example, the items could be

a set of rooms along a corridor, and the agents could be research groups seeking adjacent

rooms. The authors showed that contiguous proportional allocations of goods exist for

additive utilities and that they can be computed in polynomial time. In the later sections,

we will discuss how the combination of efficiency and fairness becomes more intriguing in

these contexts.
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Theorem 2.5 (Aziz et al. 2022 [14]). Connected PROP1 exists in polynomial time for

indivisible goods.

Proportionality up to any item (PROPX):

PROPX requires each agent to receive a utility at least their proportional share if we add

the small good allocated among the remaining agents to their bundle, as stated in Defini-

tion 3.2. Each agent receives its proportional share after hypothetically including one extra

smallest good from the remaining agents’ allocations into its bundle. The PROPX notion

is stronger than PROP1. It is also important to note that EFX is weaker than PROPX.

While EFX exists for three agents with additive valuations [57], Aziz et al. 2020 [20] pre-

sented the following counter-example where PROPX doesn’t exist with three agents having

identical valuations over five goods, i.e., they all value each good 3,3,3,3, and 1 respectively.

In contrast to PROP1, which is easy to satisfy and much weaker, PROPX is much

more demanding and is not known to exist even for small instances. Therefore this led

researchers to explore alternate ways to relax proportionality.

Proportionality up to the maximin item (PROPm):

The problem is that PROP1 is too weak, and PROPX may not exist; there has to

be a fairness concept that is stricter than PROP1 but weaker than PROPX; Baklanov

et al. 2021 [24] introduced the notion of PROPm. PROPX requires each agent to receive

a utility worth at least their proportional share if we add the largest good among the set

of smallest goods allotted to the remaining agents to their bundle, as stated in Definition

1. In other words, PROPm considers the least valued item (from i’s perspective) in each

of the other agent’s bundles and then takes the highest value among them. Note that

PROPX implies PROPm implies PROP1.

Baklanov et al. 2021 [24] presented that PROPm exists at least for up to five agents with

additive valuations, though the algorithm is exponential in terms of the number of items.
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There is a limit of five agents, not because of the rigid limitations of the constructive proof

of their algorithm, but because as agents increases, the complexity of analyzing all cases

increases. As a result, they conjectured that PROPm will always exist for any number

of agents or items. Additionally, Baklanov et al. 2021 [24] explored various relaxations of

PROP, such as allowing the value to be added to be equal to a median, mode, or minimax

value of the agent. However, their results showed that this fails to exist for as little as

three agents. They presented a counter-example with three agents having identical additive

valuation over seven items, i.e., all value the items 1− 6ϵ, ϵ, ϵ, ϵ, ϵ, ϵ and ϵ, respectively. It

is easy to verify that there always exists an agent with utility at most 3. Hence, it violates

approximate proportionality with the mean (< 0.25), the median (ϵ), the mode (ϵ), and the

minimax item value (ϵ). Later on, Baklanov et al. 2021 [25] demonstrated that PROPm

allocations exist in polynomial time.

Theorem 2.6 (Baklanov et al. 2021 [25]). PROPm exists, and we can find it in polynomial

time in terms of the number of agents and goods.

The heart of the algorithm lies in breaking the allocation problem into subparts and

finding PROPm in each of them, i.e., it recursively solves PROPm by splitting into agent-

and item-disjoint sub-problems. This allocation is also PROPm for the original instance.

The algorithm starts by selecting an arbitrary divider agent i, and this agent sorts the

items in non-decreasing order and partitions m items into n bundles, (S1, S2, . . . , Sn), such

that ∀j ∈ [n], vi(Sj) = 1/(n− j + 1) · vi(M \ (∪j−1
i=1Si)). The algorithm then evaluates how

other agents value these bundles, splits the problem into two, and assigns a bundle to this

divider agent. Initially, this is one problem; hence, the proportional Decomposition set D

is empty. We set Nd as an empty set representing the agents interested in D, i.e., their

valuation of the items in D is proportional. We set Nr as N−i representing the remaining

agents. The algorithm iterates for n rounds; in any round t, it computes c as the number of

agents in Nr who value the first t bundles > t/n. If c is 0 and |Nd| is less than t, it assigns

St to the divider agent. It further decomposes the agents-items into two sub-problems
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involving Nd agents composed of t − 1 agents with D items consisting of the first t − 1

bundles and Nr agents composed of n − t agents with the last n − t bundles. If c > 0,

there is an over-demand of the initial set of bundles, so the algorithm calls a subroutine

UpdateDecomposition. The subroutine uses graph analysis (novel graph representation)

to update D by either reducing c by one or increasing the agents in Nd by one.
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Figure 2.2: Summary of Proportionality fairness notion for indivisible goods. The Violet

box (number 1) represents the polynomial-time algorithm. The grey box (number 2) rep-

resents such an allocation does not exist.

Additionally, an alternate relaxation that has received considerable attention is Bud-

ish 2011 [51]’s maximin share (MMS). We study MMS allocation in detail in the following

section.

33



Maximin Share (MMS):

In essence, MMS is an extension of the well-known “Cut-and-Choose” algorithm used

in solving the cake-cutting problem. Let’s say we ask an agent to divide m items into

n bundles and take the bundle that they’re least interested in. This risk-averse agent

would divide the bundles to maximize the minimum utility, which is the MMS share of the

agent. An MMS allocation guarantees every agent their MMS share. Note that MMS is

a weaker fairness property than proportionality; a proportional allocation is always MMS.

Even though MMS is weaker, MMS is still too demanding in the case of indivisible items.

Despite its appealing formulation, MMS does have a computational disadvantage. For

one, even the computation of the maximin share for an agent with additive valuations is an

NP-Complete problem [45]. And computing an MMS allocation is strongly NP-Hard. The

problem is weakly NP-hard even for two agents [21, 45]. However, a PTAS for computing

MMS exists [141]. Originally, Woeginger 1997 [141] gave PTAS to compute a maximum

partition for a particular agent within the context of job scheduling. However, the problem

is identical to computing a maximin partition for the given agent.

Bouveret et al. 2016 [45] addressed the question of whether MMS allocation exists for

indivisible items. While they answered the question for special cases, they left the question

of MMS allocation for additive valuations open. Their results show that when agents have

additive valuations, MMS allocations exist in the following cases: (i) Binary valuations,

(ii) For two agents, and (iii) m ≤ n + 3. When agents have binary valuations, Bouveret

et al. 2016 [45] showed that an MMS allocation exists in polynomial time and can be found

by employing a round-robin algorithm with an alternating sequence, whereby each agent

iteratively selects their most favorite item from the remaining ones. By using polynomial-

time case analysis, Bouveret et al. 2016 [45] demonstrated that there exists MMS allocation

for instances having n agents and n+3 goods. An MMS allocation exists in instances with

two agents with additive valuations using the “Cut-and-Choose” protocol. Bouveret et

al. 2016 [45] showed that it is challenging to find an MMS allocation when agents have
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similar preferences, i.e., the more conflict, the more difficult it is to find an MMS allocation.

The authors proved that if one can find an MMS allocation for an identical preference

instance, every permutation derived from that preference instance can also be allocated as

an MMS allocation.

Bouveret et al. 2016 [45] showed that an MMS allocation need not exist when agents

have general valuations, even in the case of two agents, and left the existence of MMS

allocation for additive valuations as an open question. In the case of additive valuations,

despite the experimental results of [45], which had MMS allocations consistently, Procaccia

et al. 2014 [118] presented an intricate example in which every allocation fails to achieve

MMS guarantees. Thus, MMS is not guaranteed to exist in instances with more than two

agents with additive valuations. The authors of [70, 97, 118] provided counter-examples to

demonstrate that the MMS allocation for goods may not always exist, even with additive

valuations. Kurokawa et al. 2016 [97] provided an example involving m that is linear in n,

while Procaccia et al. 2014 [118] provided an example involving m that is exponential in

n.Theorem 2.7. Given a resource allocation problem (N,M,V), there exists M and (addi-

tive) valuations such that no allocation is MMS for any n ≥ 3,

Because MMS need not exist, naturally, we seek relaxation in the allocation. The goal is

to construct an efficient algorithm to provide approximate MMS guarantees. Fortunately,

a multiplicative approximation of MMS always exists. We discuss α-MMS in the following

section.

α-Maximin Share (MMS):

Procaccia et al. 2014 [118] introduced a new concept of approximate maximin share

(α-MMS) to solve this problem. An α-MMS allocation guarantees every agent at least the

α fraction of the MMS share. Note that all the results mentioned below are in the presence

of additive valuations for MMS allocation.
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The papers [7, 30, 118] showed that 2/3-MMS for goods always exists. Paper [77, 79]

showed that 3/4-MMS for goods always exists. Authors in [77] provide an algorithm that

guarantees 3/4 + 1/12n-MMS for goods.

Procaccia et al. 2014 [118] proved that the 2/3-MMS allocation for goods always exists

and devised an exponential-time algorithm. The algorithm enables one of the agents to

divide the items as its maximum partition and creates a bipartite graph (between agents

and bundles so that edges exist if a bundle is acceptable to the agent). Using Hall’s

Theorem, they showed that such a graph has a perfect matching, and the algorithm runs

recursively on the remaining agents and items. If n is constant, the (PTAS) algorithm runs

in polynomial time. They also showed that in the case of three and four agents, 3/4-MMS

allocation always exists using the same algorithm.

Amanatidis et al. 2017 [7] presented a PTAS algorithm that computes 2/3 − ϵ-MMS

allocation, polynomial for any number of agents and goods. They redesigned the algorithm

presented in [118] by manipulating matchings of the bipartite graph. Further, they proved

that in the case of three agents, there always exists 7/8-MMS allocation and 7/8 − ϵ in

polynomial time using the PTAS algorithm. Lastly, when the valuation of every agent

for each item, i.e., ∀i, k, vik ∈ {0, 1, 2}, there always exists MMS allocation and presented

a polynomial-time algorithm, a variant of a round-robin algorithm. They also provided a

much simpler and faster algorithm that computes at least 1/2-MMS, based on a round-robin

algorithm with a slight modification of allocating the most valuable goods first. Barman

et al. 2020 [30] developed an algorithm that achieves the same level of approximation guar-

antee as these results. Garg et al. 2019 [77] presented a simple polynomial-time algorithm

for 2/3-MMS allocation with straightforward analysis.

Later, Ghodsi et al. 2018 [79] proved that 3/4-MMS always exists and gave a PTAS al-

gorithm for allocating 3/4−ϵ-MMS in polynomial time. This result is exciting because Pro-

caccia et al. 2014 [118] proved that a 2/3-MMS allocation was tight, which means using their

algorithm would not guarantee better performance. Furthermore, Ghodsi et al. 2018 [79]
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demonstrated that the 4/5-MMS allocation always exists if there are four agents as well as

4/5−ϵ in polynomial time using the PTAS algorithm. Then Garg et al. 2021 [78] presented

a polynomial-time algorithm for finding the 3/4-MMS allocation of goods. The most recent

results of Garg et al. 2021 [78]’s work indicates that 3/4 + 1/12n MMS always exists.
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Figure 2.3: Summary of MMS fairness notion for indivisible goods. The Violet box (num-

ber 1) represents the polynomial-time algorithm. The blue box (number 2) represents

exponential time. The grey box (number 3) represents such an allocation does not exist.

We describe the latest algorithm in detail, i.e., the polynomial-time algorithm for 3/4-

MMS allocation. Except for that, we simply skim over other algorithms briefly. We now

talk about two sub-routines.
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Normalized Valuations α-MMS is scale invariant, i.e., if A is α-MMS allocation for the

valuation profile V, and if we consider a scaled valuation profile V ′, i.e., ∀i ∈ N, k ∈

M,v′ik = c · vik, A is α-MMS for V ′. For simplicity, we scale the valuations such that

∀i, µi ≤ 1, i.e., vi(M) = |N |.

Bag Filling. Ghodsi et al. 2018 [79] introduced bag filling to allocate low-value goods as an

extension of the Moving Knife Procedure (allocates divisible goods proportionally). The

algorithm begins by filling an empty bag with arbitrary goods until it satisfies some agent,

that is until the agent calls for the bag; after that, the algorithm assigns the bundle to the

agent and starts refilling an empty bag again, and repeats the process with the remaining

agents. When agents value each item less than δµi, i.e., vik ≤ δµi, the bag filling algorithm

gives (1 − δ)µi-MMS allocation. The intention is that after an agent receives a bundle,

enough goods are left for the rest of the agents to meet their (1 − δ)µi-MMS allocations.

When assigning a bundle to an agent, the other agents value it less than (1 − δ)µi (since

they didn’t call for the bundle), so the valuation of the rest of the agents for remaining

goods is at least n−1
n ·vi(M), which is proportionally more than before assigning the bundle.

We can say that the agents who pick bundles early leave more goods than they take. For

normalized valuations (i.e. ∀i ∈ N , vi(M) = n), if ∀i and ∀k, vik ≤ δ, the bag filling

guarantees (1− δ)-MMS allocation, where 0 ≤ δ ≤ 1/2.
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Algorithm 5 Bag Filling Algorithm

1: Normalize valuations

2: Set ∀i, Ai = ∅, B = ∅

3: for k ← 1 to m do

4: if ∃i ∈ N, vi(B ∪ k) > (1− δ) then

5: Ai ← B

6: B ← ∅

7: end if

8: B ← B ∪ k

9: end forreturn Allocation A

Valid Reduction. If we remove an agent i and an item k from an instance I = ⟨M,N,V⟩,

it doesn’t reduce MMS guarantees for the remaining agents. We mean to say that in

I ′ = ⟨M \ {i}, N \ {k},V⟩, µ′
i ≥ µi, i.e., the MMS value in the new reduced instance is at

least the MMS value in the original instance. For high valued items, i.e., ∃i, k, vik ≤ αµi,

we assign item k to agent i. After assigning this high-valued item, we still have enough

goods, i.e., the MMS value of each agent in the reduced instance is at least the MMS value

in the original instance. Our goal is to assign alpha-MMS, i.e., the idea is to assign the

high-value items firstly, i.e., giving an agent an item if they value more than alpha mu. We

reach the stage where the instance is irreducible, i.e., none of the remaining agents have

any remaining high-value items. We say an instance is α-irreducible, if there ̸ ∃i ∈ N ,

k ̸ ∃M , such that vik ≥ αµi.

The core concept lies in using these two algorithms to ensure α-MMS, i.e., firstly assign

high-valued items using valid reduction and further assign low-valued and medium-valued

items using a modified bag filling.
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A polynomial-time 1/2-MMS We start by normalizing the valuations for all the agents. We

assign an item to an agent if they value it more than 1/2. We break ties arbitrarily. Note

that when we assign an item to an agent, in the reduced instance, the new MMS value of

all the remaining agents is at least as much as in the original instance. Once the instance

becomes 1/2-irreducible, i.e., if there are remaining agents, they all value the remaining

items less than 1/2, we assign the rest of the goods using the bag filling algorithm.

Ordered Instances Further, there’s another core concept used by these algorithms, which

was first noticed by Bouveret et al. 2016 [45]. They showed that it is challenging to find

an MMS allocation when agents have similar preferences, i.e., the more conflict, the more

difficult it is to find an MMS allocation. The authors proved that if one can find an MMS

allocation for an identical preference instance, i.e., an ordered instance, every permutation

derived from that preference instance can also be allocated as an MMS allocation. Formally,

we say an instance is an ordered instance iff there exists a total ordering over the set of

goods, i.e., ∀i ∈ N, vi1 ≥ vi2 ≥ . . . ≥ vim. Further, Bouveret et al., Barman et al. 2016,

2020 [45, 30] provided a reduction from any arbitrary instance I = (N,M,V) to an ordered

instance I ′, and showed that if A′ satisfies α-MMS guarantees for I ′, we can find allocation

A for I in polynomial time derived from A′ in polynomial-time.

Given an instance I = (N,M,V), we construct an ordered instance I ′ = (N,M,V ′) as

follows,
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Algorithm 6 Converting into Ordered Instance

1: for k ← 1 to m do

2: for i← 1 to n do

3: k∗ ← agent i’s kth most valuable good

4: v′ik ← vik∗

5: end for

6: end forreturn Valuation V ′

Now given an allocation A′ which satisfies α-MMS for I ′, we construct A which satisfies

the same for I as follows,

Algorithm 7 α-MMS for Original Instance I

1: A = (∅, ∅, . . . , ∅), and R←M

2: for k ← 1 to m do

3: Pick the agent i who has item k in A′

4: g ← argmaxk∈Rvik

5: Ai ← Ai ∪ {g} and R← R \ {g}

6: end forreturn Valuation V ′

It is easy to verify that this whole procedure is a polynomial-time algorithm. From

now, we only need to address the setting of ordered instances, i.e., identical preferences,

and using a polynomial time algorithm, we can compute α-MMS for any arbitrary additive

instances. Observe that the MMS values of an agent in I and I ′ are the same because it

neither depends on the order of the items nor on other agents’ valuations.

3/4 MMS when we know the µ values
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We now discuss the algorithm for computing 3/4-MMS allocation. We pre-process our

instances such that they are normalized and ordered. We assume that we know the MMS

value of each agent, and we scale the valuation such that the MMS value becomes 1 for all.

Note that this is a crucial assumption; later, for the strongly polynomial time algorithm

for exact 3/4, we will change the way we normalize the valuations.

For ease of exposition, we abuse notation and use M and N to denote the set of un-

allocated items and the set of agents who have not yet received any bundle. The basic

structure of the algorithm closely resembles that of valid reduction and bag filling.

The algorithm first assigns high-valued items. In the algorithms, they make it a simple

process of greedy assignment by leveraging the pigeonhole principle to make valid reduc-

tions. They define bundles S1 := {1}, S2 := {n, n+1}(∅, ifm ≤ n), S3 := {2n− 1, 2n, 2n+

1}(∅, ifm ≤ 2n), and S4 := {1, 2n+1}. S1 has the highest valued item in M , S2 has the n
th

and (n+1)th highest valued items in M , and so on. If any of these bundles value 3/4 to an

agent, then it is a valid reduction. We assign the lowest index bundle in {S1, S2, S3, S4} to

agent i such that it is valued at least 3/4. Note that after each valid reduction, we update

M and N , and these bundles will change accordingly.

Once the instance becomes α-irreducible, i.e., for the remaining agents i ∈ N , S ∈

{S1, S2, S3, S4}, and ∀i, S, vi(S) < 3/4, we proceed to the modified bag filling algorithm

for the rest of the agents. Let J1 := {1, 2, . . . , n} and J2 := {n + 1, . . . , 2n}. Next, we

initialize n bags as follows: B = {B1, B2, . . . , Bn}; where Bk = {k, 2n − k + 1}, ∀k. Each

bag contains one item from J1 and one item from J2 such that from B1 to Bn value of

items from J1 decreases and the value of items from J2 increases. Now in each round k, it

starts a new bundle T with T ← Bk. If there is an agent who values T to be at least 3/4,

then assign T to such an agent. Otherwise, keep adding goods from M \{J1∪J2} to T one

by one until an agent with no bundle assigned to her values T at least 3/4. The algorithm

allocates T to that agent, and if there are multiple such agents, it chooses one arbitrarily.

The complete details are given in the Algorithm 8.
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However, note that this algorithm requires a detail of the exact MMS value of all the

agents, which is NP-Hard to compute. The authors further modified the algorithm in such

a that it is strongly polynomial in time and computes exact 3/4-MMS allocation with

the same underlying concepts. The key modification is the way we normalize valuation,

allocation of S4 bundle, and use the average as an upper bound for the MMS value.
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Algorithm 8 Exact 3/4-MMS Algorithm

1: Assume MMS values are known, alpha,

2: Normalize the Valuations such that ∀i, µi = 1

3: Using Modified Valid Reduction now

4: S1 ← {1}, S2 ← {n, n+ 1}, S3 ← {2n− 1, 2n, 2n+ 1}, S4 ← {1, 2n+ 1}

5: ∀S ⊆M , we define τ(S) := {i ∈ N : vi(S) ≥ α}

6: while (τ(S1) ∪ τ(S2) ∪ τ(S3) ∪ τ(S4))) ̸= ∅ do

7: S ← lowest index in {S1, S2, S3, S4} which satisfies α

8: agent i in τ(S)

9: Ai ← S

10: M ←M \ S; N ← N \ {i}

11: end while

12: Initialize bags B, where Bk = {k, 2n− k + 1}, ∀k

13: R←M \ J

14: for k ← 1 to n do

15: T ← Bk

16: while vi(T ) < α do

17: g ∈ R

18: T ← T ∪ {j};R← R \ {j}

19: end while

20: ∃i, vi(T ) ≥ α, Ai ← T , N ← N \ i

21: end forreturn Valuation V ′

Garg et al. 2021 [78] proved that existence of 3
4 +

1
12n using Algorithm 8. They showed

that this bound is tight. They showed that extending this approach for improved α would

be challenging.
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Apart from additive valuations for indivisible goods, MMS allocations have been studied

extensively in various other settings. Farhadi et al. 2019 [69] studied MMS allocation for

asymmetric agents. Seddighin et al. 2019 [124] explored MMS allocation in the presence of

externalities. Amanatidis et al., Amanatidis et al., Aziz et al., Barman et al. 2017, 2016,

2019, 2019 [4, 6, 18, 29] studied MMS allocation for strategic agents. Barman et al., Ghodsi

et al., Li et al., Gourvès et al., Biswas et al. 2020, 2018, 2021, 2019, 2018 [30, 79, 100, 83,

41] studied MMS allocation beyond additive valuations.

Next, we discuss fair and efficient algorithms for indivisible goods.

2.2.2 Fair and Efficient Allocation

For various reasons, we strive to seek fair, effective allocations. We want to ensure

fairness, but we also want to ensure the items go to the most deserving; however, we

encounter various difficulties when doing so. Within the PROP1 allocation set, finding

an allocation that is utilitarian-maximum is NP-hard [17]. The problem of making Pareto

improvements to PROP1 allocation is computationally challenging [12, 93]. It is possible

that a Pareto improvement over a PROP1 allocation will not even satisfy PROP1. In this

section, we summarize the literature on efficient fair allocation for indivisible goods.

Efficient EF1 allocations

Our aim in this section is to discuss the results regarding efficient allocation of EF1.

EF1 + PO Recall that an allocation is said to be Pareto optimal (PO) if it is not Pareto

dominated by any other allocation, i.e., there is no other allocation in which every agent

is better off and at least one agent is strictly better off. Under additive valuations, Cara-

giannis et al. [55] has shown that EF1 and PO allocations always exist. As shown in their

study, the MNW allocation (i.e., an allocation that maximizes Nash social welfare) satisfies

both EF1 and PO. This is challenging because the complexity of computing an allocation
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like this is high, i.e., even though finding EF1 is polynomial time, even for additive valua-

tions, polynomial-time algorithms are not available to find EF1 and PO. Computing MNW

allocation is APX-hard [98]. In addition,Barman, Krishnamurthy, and Vaish [32] proposed

a pseudo-polynomial time algorithm for determining PO and EF1 allocations.

EF1 + USW Among a set of utilitarian maximal allocations, Aziz et al. [16] proved that

it is strongly NP-hard to find an allocation that is PROP1. Furthermore, they showed that

maximizing the utilitarian welfare among a set of fair allocations when the number of agents

is variable is strongly NP-Hard, while it is NP-Hard when the number of agents is fixed

and greater than two. There is a polynomial-time algorithm that determines whether an

EF1 allocation exists or not among the utilitarian maximal allocations when there are two

agents. Further, they designed pseudo-polynomial time algorithms for both problems with

a fixed number of agents.

In light of these open questions in finding efficient EF1 allocations, researchers have

explored efficient PROP1 allocations and obtained positive results.

Efficient PROP1 allocations

PROP1 + PO EF1 and PO are satisfied by MNW allocation, which implies that when

agents have additive valuations, an allocation that meets PROP1 and PO exists. [61].

In public decision settings (a setting that is more general than indivisible goods alloca-

tion), Conitzer, Freeman, and Shah[61] proved that there is always a PROP1 and PO

allocation. They left the complexity of computing such an allocation as an open question.

For goods with additive valuations, Barman and Krishnamurthy[31] proposed a strongly

polynomial-time algorithm for calculating PROP1 and fPO (stronger than PO) by lever-

aging pure market equilibrium. In contrast to PO, fPO requires that an allocation is not

dominated by fractional (or integral) allocations; fPO is, therefore, a stronger solution con-

cept. Because finding Pareto improvements while maintaining PROP1 is challenging, they
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deal with fractional allocations that are improving and convert them into integral alloca-

tions. They do so by leveraging fisher markets, i.e., such markets consist of a set of divisible

goods, a set of agents with budgets and valuations over these goods. Fisher markets clear

when goods are assigned prices; each agent spends its entire budget on only those most

valuable goods per unit spent, and the market is in equilibrium. From the resource allo-

cation perspective, market equilibrium is applicable since the first welfare theorem states

that these equilibria are always Pareto efficient [107]. In Fisher markets with additive

valuations, Eisenberg and Gale’s convex program provides an efficient way to determine

equilibrium allocations and prices: the primal and dual solutions of the convex program

correspond to the equilibrium allocations and prices [67, 122]. Strongly polynomial-time

algorithms exist for the same [113, 136]. The equilibrium allocation is fractionally Pareto

efficient (fPO). However, equilibrium allocations are not necessarily integral, i.e., the al-

location we get may not be applicable in the context of indivisible goods. Note that (in

contrast to computing an arbitrary equilibrium) finding an integral equilibrium is com-

putationally hard, i.e., determining whether a given Fisher market is pure is an NP-hard

problem [31]. In general, agents are assigned fractional shares of goods in a market equi-

librium. In other words, we cannot directly incorporate indivisible goods into the market

framework.

The authors developed an efficient algorithm that first computes an equilibrium (A, p)

of the market B and, then, round (fractional) allocation A to an integral allocation A′

such that it is an integral equilibrium of the market B′. The algorithm doesn’t change

the price of the goods. It defines the new budgets (a bounded change in agents’ budgets)

to explicitly satisfy budget exhaustion with respect to the computed allocations and the

unchanged prices at the end. Since A′ is an equilibrium of the Fisher market B′, via

the first welfare theorem, A′ is fPO and PROP1. This conversion to A′ is in strongly

polynomial time. Briefly speaking, given a market and its equilibrium (A, p), the spending

graph G(A, p) is a forest. The algorithm starts by identifying the root of each tree at some
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agent in this forest. Then assign child goods to root agent i (with no parents) until adding

more child goods to i violates the budget constraint. The remaining child goods are then

appropriately assigned to grandchildren agents. After each distribution, delete this parent

agent i and all its allocated child goods. Iteratively assign remaining goods to agents until

all the goods are allocated. Note that if a good is completely assigned to an agent, i.e., it is

integrally assigned, then it will continue to be assigned to the same agent after conversion.

This algorithm gives weighted-PROP1, which was later mentioned in [48]. This algorithm

satisfies EF11, weighted-PROP1, and fPO.

PROP1 + USW Among a set of utilitarian maximal allocations, Aziz et al. [16] proved

that it is strongly NP-hard to find an allocation that is PROP1. Furthermore, they showed

that maximizing the utilitarian welfare among a set of fair allocations when the number of

agents is variable is strongly NP-Hard, while it is NP-Hard when the number of agents is

fixed and greater than two. There is a polynomial-time algorithm that determines whether

a PROP1 allocation exists or not among the utilitarian maximal allocations when there are

two agents. Further, they designed pseudo-polynomial time algorithms for both problems

with a fixed number of agents.

PROPm + PO/USW Towards finding efficient PROPm allocations, this area of study

remains unexplored, leaving the scope for future research.

Efficient EFX allocations

EFX + PO In the presence of zero marginal valuations, Plaut and Roughgarden [117]

showed that there are additive valuations in which no EFX allocation is also PO. In the

presence of zero marginal valuations, Plaut and Roughgarden [117] showed that there are

general and identical valuations in which no EFX allocation is also PO. In the presence of

nonzero marginal valuations, for any number of agents with general but identical valuations,

and for two agents with (possibly distinct) additive valuations, the leximin++ solution is
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EFX and PO. They also argued that the assumption of nonzero marginal utility is quite

reasonable with two agents having additive valuations as one agent is indifferent to some

good; we can assign the good to the other agent and exclude it from the division process

completely.

Towards finding efficient, fair allocations, especially for general valuations, this area of

study remains unexplored, leaving the scope for future research. Moreover, it would be

interesting to explore efficient allocation when a fair allocation, i.e., if MMS allocation

exists, what are the efficiency guarantees we can achieve? We summarize our results about

the efficient, fair allocation of goods in Figure 2.4. Next, we move on to the discussion of

chores.
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Figure 2.4: Summary of efficient fairness allocation for indivisible goods. The Violet box

(number 1) represents the polynomial-time algorithm. The blue box (number 2) represents

exponential time. The grey box (number 5) represents such an allocation does not exist.

The red box (number 3) represents pseudo-polynomial time. The green box (number 4)

represents open questions.

49



2.3 Indivisible Chores

2.3.1 Fair Allocation

Envy-Freeness:

Similar to indivisible goods, determining the existence of an envy-free allocation is

NP-complete, even in the simple case when agents have binary additive valuations for

chores [40].

Envy-Freeness up to one item (EF1):

Similarly to goods, a simple round robin gives an EF1 for chores in polynomial time –

O(mn logm). The chore division problem might appear to be the ‘opposite’ of the goods

problem, and therefore intuitively, one might expect the natural adaptation of algorithms

designed to compute an EF1 allocation for goods, to also work for chores. This, however,

is not the case. The envy-cycle elimination algorithm [101] doesn’t give EF1 allocation

in the case of chores. Bhaskar, Sricharan, and Vaish [40] presented Top-trading envy-

cycle elimination algorithm, a modified Envy-cycle algorithm for chores that gives EF1 for

indivisible chores with anti-monotonic valuations. For indivisible goods, resolving arbitrary

envy cycles (until the envy graph becomes acyclic) is known to preserve EF1. However,

for indivisible chores, the choice of which envy cycle is resolved matters. EF1 for chores

entails that any pairwise envy can be addressed by removing some chores from the envious

agent’s bundle. The algorithm works by assigning, at each step, an unassigned item with

the largest cost to an agent who does not envy anyone else (i.e., a non-envious agent who is

a “sink” node in the top-trading envy graph). If the top-trading envy graph does not have

a sink, then it must have a cycle. Then resolving the top-trading envy cycles guarantees

the existence of a sink agent in the top-trading envy graph.

Now we briefly describe the algorithm for EF1 for chores as follows. In the above

algorithm, given a partial allocation A, we consider a subgraph of the envy-graph GA that
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we call the top-trading envy graph TA whose vertices denote the agents, and an edge (i, k)

denotes that agent i’s (weakly) most preferred bundle is Ak. If the envy graph does not

have a sink, then the top-trading envy graph TA has a cycle. Therefore, resolving top-

trading envy cycles guarantees the existence of a sink agent in the envy graph, and it also

preserves EF1. This is because every agent involved in the top-trading exchange receives

their most preferred bundle after the swap, which means they do not envy anyone else in

the next round.

Envy-Freeness up to any item (EFX):

An EFX allocation also exists for IDO instances for chores [99]. As described in [40],

the Top Trading Envy Cycle algorithm allocates items in any order, and it meets the EF1

requirement. Modifying this algorithm to allocate the largest chores (minimum valued

items) to sink agents guarantees EFX allocation for IDO instances. We can ensure that

EFX allocation is made for IDO instances if we select the item with the highest cost at each

step. This returns an EFX allocation in polynomial time for additive valuations for any

IDO instance. For two agents or any agents with IDO valuation functions, EFX allocations

always exist.

Approximate EFX allocations While good results have been obtained for the (ap-

proximation of) EFX allocations for goods, little is known about how EFX is allocated

(approximately). It is not known even if constant approximations of EFX allocations exist

for three agents with general additive valuations, let alone whether EFX allocations ex-

ist at all. For indivisible chores, the authors propose algorithms to compute approximate

EFX allocations in polynomial time in [142]. When there are three agents, the algorithm

produces 5-EFX, and when there are four or more agents, it produces 3n2, i.e.,O(n2) as

the approximation ratio. The authors observed that in doing so, i.e., the algorithm in

order to allocate approximate EFX often would increase the cost of other agents instead
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of decreasing the cost of an envied agent, which can lead to inefficient allocation. Another

interesting open question in approximate-EFX is, can we get a constant approximate ratio

for any number of agents? Apart from approximate-EFX, in the case of goods, EFX with

charity is well explored as described in Section, However, it is unknown whether similar

results hold for the allocation of chores.

Algorithm 9 EF1 for Chores with General Valuations

1: Initialize A← (∅, ∅, . . . , ∅)

2: for k ← 1 to m do

3: if there is no sink agent in envy graph GA then

4: C ← any cycle in TA

5: A← AC

6: end if

7: Chose a sink j in the envy graph GA

8: Aj ← Aj ∪ k

9: end forreturn Allocation A

Proportionality (PROP):

Similar to indivisible goods, there may not be a proportional allocation for indivisible

chores. Determining if a proportional allocation is possible, even for just two agents, is a

problem that is NP-Complete [45].

Proportionality up to one item (PROP1):

When valuations are additive, EF1 and PROP1 are equivalent. This means that any

algorithm that results in EF1 allocations also satisfies PROP1. According to a study by

Aziz et al. ([14]), using the PROP1 concept allows for not only fairness but also connectivity
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Figure 2.5: Summary of EF fairness notion for indivisible chores. The Violet box (number

1) represents the polynomial-time algorithm. The blue box (number 2) represents expo-

nential time. The grey box (number 4) represents such an allocation does not exist. The

green box (number 3) represents an open question.

in the allocation of mixed goods (including chores) in a contiguous and proportional manner

and can be computed efficiently.

Proportionality up to any item (PROPX):

It is widely acknowledged that EFX (Envyfreeness up to any item) is stronger to PROPX

(Proportionality up to any item) when it comes to the allocation of chores. This stands

in contrast to the allocation of goods, where PROPX has been found to be more stronger.

In their study, [99] examined the concept of weighted proportionality up to any item and

established that a weighted PROPX allocation exists and can be calculated in a compu-

tationally efficient manner. Therefore, while PROPX may not be applicable to indivisible

goods, it can be calculated efficiently for indivisible chores. The “Bid-and-Take” algorithm,

53



a variation of the ”Top trading envy cycle algorithm” [40], is presented by [99]. In this

algorithm, they choose the largest tasks (items with the lowest value) and assign them to

the active agent who has the lowest current social cost for the item. Initially, all agents

are active. When an agent’s cumulative cost exceeds their proportional share, they are

deactivated. It is important to note that in [40], items were allocated in any order and

were EF1. However, this modification guarantees that the allocation is EFX (and therefore

PROPX) for IDO instances.

The authors proposed using a similar approach to algorithms for approximate MMS,

where they reduce the instance to IDO to find the α-MMS and then reconvert it back to the

original instance, while still maintaining its α-MMS status. They state that if a polynomial

time algorithm exists that can compute an α-WPROPX allocation for any IDO instance,

then there also exists a polynomial time algorithm that can compute an α-WPROPX al-

location for any additive instance. This modified envy-cycle elimination algorithm ensures

both weighted PROPX and 4/3 approximate MMS simultaneously. Additionally, the au-

thors have also found that an EFX and a weighted EF1 allocation for indivisible chores exist

if all agents have the same ordinal preference. It should be noted that while all PROPX

allocations are PROP1, the reverse is not necessarily true. As demonstrated for indivisible

chores, wPROPX allocations can be computed in a polynomial time, the emphasis is placed

on wPROPX allocations, and any findings apply to PROP1.

Maximin Share Allocation (MMS):

The problem of allocating MMS allocation to chores is closely related to bin packing

problem/job scheduling problem.

Aziz et al. [21] presented an example based on [118] with three agents with additive

valuations where every allocation results in some agents having a lower MMS value than

they should. There is no guarantee that an MMS allocation for chores exists, even with

additive valuations, as demonstrated in [21, 70]. While it has been shown that MMS
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allocations are not guaranteed to exist for indivisible chores [21], there are many works

that study its approximations [21, 30, 90]. The state-of-the-art approximation ratio for

MMS allocation for indivisible chores is 11/9 [90]

Theorem 2.8. [21] Given a chore allocation problem (N,M,V), for any n ≥ 3, there

exists M and (additive) valuations that do not admit an MMS allocation.

Approximately MMS Allocation (α-MMS):

Researchers have been working on finding efficient algorithms for approximating the

maximum minimum share (MMS) allocation, particularly for situations where MMS does

not always exist, such as in the case of chores. One such algorithm for 2-MMS has been

demonstrated to be polynomial time by Aziz et al.[21]. This result has been improved upon
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by Barman and Krishnamurthy, who presented a polynomial time algorithm for 4/3-MMS.

In the latest development, Huang and Lu showed that an 11/9-MMS allocation could be

achieved by converting the instances to identical ordinal instances (IDO) and then solving

for approximate maximin allocation. The authors proposed a mechanism similar to the

First Fit Decreasing (FFD) algorithm for bin packing problems to allocate chores. This

involves starting with high-valued chores and adding them to the bundle in decreasing

order until an agent’s threshold is met, and then allocating that bundle to that agent. The

algorithm repeats this process for all agents until all chores are allocated. The authors

also provided a polynomial time approximation scheme (PTAS) and a polynomial time

algorithm for 5/4-MMS allocation.

To compute the 11/9-MMS allocation, the algorithm first converts the instance to an

IDO instance and orders the chores in decreasing order. Then, starting with high-valued

chores, the algorithm adds chores to the bundle until an agent’s threshold is met and

allocates the bundle to that agent. This process is repeated for all agents until all chores are

allocated. The authors proved that if the threshold value is set to 11/9, then the algorithm

terminates with an 11/9-MMS allocation, with all chores being allocated. However, the

best approximation achievable using this method is an open question.

In summary, researchers have been exploring ways to approximate the MMS alloca-

tion for situations where it does not always exist, such as in the case of chores. The

latest development is an algorithm that can achieve an 11/9-MMS allocation by convert-

ing instances to IDO instances and using a mechanism similar to the FFD algorithm for

allocating chores. This algorithm has been shown to be polynomial time, and the authors

also provided a PTAS and a polynomial time algorithm for 5/4-MMS allocation. However,

the best approximation achievable using this method is still unknown.
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Algorithm 10 Algorithm for 11/9-MMS

1: Assume IDO instance and threshold values of each agent (α1, α2, . . . , α3)

2: Assume ∀i, µi = 1

3: for i← 1 to n do

4: K ← ∅

5: for k ← 1 to m do

6: if j∃N, vj(Aj ∪Mk) ≤ αj then

7: K ← K ∪Mk

8: end if

9: end for

10: M ←M \K

11: Let j be the agent who is allocated K, i.e., vj(K) ≤ αj

12: Aj ← K and N ← N \ j

13: end forreturn Allocation A
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2.3.2 Fair and Efficient Allocation

Efficient EF1 allocations

When valuations are negative, the existence and complexity of an allocation that satisfies

EF1 (envy-freeness up to one item) and PO (proportional) properties is still an open

problem. However, alternative fairness criteria, such as EF1
1 (envy-freeness up to one item

and one penny) introduced in [48], do exist and can be efficiently computed along with fPO

(fractional proportional) allocation. Additionally, the problem of maximizing utilitarian

welfare while ensuring EF1 allocation is not fully explored in chore allocation.
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In summary, despite the challenge posed by negative valuations, there exist fair alloca-

tion criteria that can be efficiently computed, and there is still room for further research in

maximizing welfare while satisfying fairness constraints in the context of chore allocation.

Efficient PROP1 allocations

In a recent study, Branzei et al. [48] demonstrated the existence of a strongly polynomial-

time algorithm for solving the chores problem. This algorithm guarantees a weighted

PROP1 and PO allocation, provided the number of agents or items is fixed. The underlying

algorithm used in their study is similar to the pure market equilibria approach proposed

by Barman et al. [31].

The researchers also established that for any chore division problem, there exists an in-

divisible allocation A that is Pareto optimal in the divisible problem and satisfies weighted-

EF11 and weighted-Prop1. Furthermore, they computed a competitive allocation A′ and

demonstrated that an integral competitive allocation A with a budget satisfying could be

constructed from A′. This allocation is Pareto optimal by the first welfare theorem.

In summary, Branzei et al. proposed an efficient algorithm for solving the chores prob-

lem and provided theoretical guarantees for the Pareto optimality and efficiency of their

proposed allocation. Their findings provide valuable insights into the design of allocation

algorithms for resource allocation problems. It is important to note that the existence of

PROPX and PO allocation for chore allocation problems remains an open question.

We summarize the results discussed in this section in the following table 2.1. The red

line represents impossibilities. And brown line represents open questions in the literature.

Even though this is a rich literature, there are still a lot of open areas that need to be

resolved.
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Figure 2.8: Summary of efficient fairness notion for indivisible chores. The Violet box

(number 1) represents the polynomial-time algorithm. The blue box (number 2) represents

exponential time. The green box (number 3) represents an open question.
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Table 2.1: Summary of Fair Division for Indivisible Goods or/and Chores

Fairness Efficiency Agents Items Valuations Existence Computation Algorithm Paper

EF any any any any no NP-Hard - -

EF1 - any

goods

additive yes polynomial
round robin

Caragiannis et al. [55]

chores
Aziz et al. [14]

comb
doubly round

robin elimination

EF1 - any

goods

general yes polynomial

envy cycle

elimination
Lipton et al. [101]

chores modified envy

cycle elimination
Bhaskar, Sricharan, and Vaish [40]

comb

EF1 - any any arbitrary ? ? ? ?

EF1 PO any any general ? ? ? ?

goods yes
pseudo

polynomial
market equilibria

Barman, Krishnamurthy, and Vaish

[32]

choresEF1 PO any

comb

additive
? ? ? ?

EF1 USW any any any yes NP-Hard ? ?

EF1 USW any good additive yes exponential dynamic programming Aziz et al. [16]

EFX any any
goods/

chores
general ? ? ? ?

EFX any any
goods/

chores
additive ? ? ? ?

EFX - any comb
lexicographic sub

domain of additive
no Hosseini et al. [87]

goods yes exponential leximin++ Plaut and Roughgarden [117]

choresEFX - any

comb

IDO general
? ? ? ?

goods envy cycle Plaut and Roughgarden [117]

chores
yes polynomial

envy cycle Li, Li, and Wu [99]EFX - any

comb

IDO additive

? ? ? ?

EFX - any goods 2-value instances yes polynomial match&freeze Amanatidis et al. [5]

EFX goods
interval valuation

[vi − 2vi]
yes polynomial modified RR Amanatidis et al. [5]

EFX - n = 3 goods additive yes
pseudo

polynomial
Chaudhury, Garg, and Mehlhorn [57]

- goods
cut-choose,

leximin++
Plaut and Roughgarden [117]

- chores cut-choose Implied Zhou and Wu [142]EFX - n = 2

comb

general yes exponential

cut-choose Implied

EFX - n = 2 goods additive polynomial envy cycle Plaut and Roughgarden [117]

1/2 EFX - any goods subadditive yes polynomial envy cycle Plaut and Roughgarden [117]

0.618 EFX - any goods additive yes polynomial Amanatidis, Markakis, and Ntokos [8]

EFX with

charity
- any goods additive yes polynomial Caragiannis, Gravin, and Huang [53]

approx EFX

with charity
- any goods additive yes polynomial Chaudhury et al. [58]

approx EFX any any
chores/

comb
any ? ? ? ?

EFX with

charity
any any

chores/

comb
any ? ? ? ?

Continued on next page
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Fairness Efficiency Agents Items Valuations Existence Computation Algorithm Paper

EFX PO n = 2 goods
general nonzero

marginal utility
exponential

cut-choose,

leximin++
Plaut and Roughgarden [117]

EFX PO any goods
identical general

non zero marginal
exponential leximin++ Plaut and Roughgarden [117]

EFX PO any goods 2-value instances exponential MNW Amanatidis et al. [5]

EFX, PROPX,

4/3 MMS
chores IDO additive polynomial envy cycle Li, Li, and Wu [99]

PROP any any any any no NP-Hard ? ?

PROP1 - any

goods

additive yes polynomial
EF1 implies PROP1

for additive

Caragiannis et al. [55]

Aziz et al. [14]

chores

comb

connected

PROP1
- any any additive yes polynomial Aziz et al. [14]

wPROP1 fPO any any additive yes polynomial market equilibria Aziz, Moulin, and Sandomirskiy [20]

PROP1 USW any
goods

additive yes
exponential

dynamic

programming
Aziz et al. [16]

any ? ? ?

PROPX

wPROPX
- any goods additive no - - Aziz et al. [14]

comb Implied

chores polynomial envy cycle, bid and take Li, Li, and Wu [99]

PROPX PO any chores additive ? ? ? ?

PROPX USW any chores additive yes NP-Hard ? ?

PROPm - any goods additive yes polynomial
divide and conquer

plus graph reassigning
Baklanov et al. [25]

PROPm comb additive ? ? ? ?

PROPm PO any any additive ? ? ? ?

PROP USW any any additive yes NP-Hard ? ?

MMS - any any additive no NP-Hard - Procaccia and Wang [118]

Aziz et al. [21]

MMS - any any IDO yes NP-Hard Bouveret and Lematre [45]

MMS - any goods 0,1 yes polynomial RR with modification Bouveret and Lematre [45]

MMS - any goods 0,1,2 yes polynomial RR with modification Amanatidis et al. [7]

MMS - m ≤ n+ 3 goods additive yes Bouveret and Lematre [45]

MMS - n = 2 goods additive yes exponential cut and choose Bouveret and Lematre [45]

3/4 MMS - any goods additive yes polynomial valid reduction,

clustering, bag filling

Garg and Taki [78]

3/4+1/12n - any goods additive yes exponential Garg and Taki [78]

11/9 MMS - any chores additive yes exponential modified bag filling

with threshold

Huang and Lu [90]

5/4 MMS - any chores additive yes polynomial Huang and Lu [90]

α-MMS any any comb additive no - - Kulkarni, Mehta, and Taki [96]

α-MMS PO any any additive ? ? ? ?

α-MMS USW any any any yes ? ? ?
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2.4 Combination of Indivisible Goods and Chores

2.4.1 Fair Allocation

Envy-freeness up to one item (EF1):

Aziz et al. proposed a double round-robin algorithm for the combination of goods and

chores when agents have additive valuations for computing EF1 allocation in polynomial

time. The algorithm involves two phases and applies the round-robin method twice, once

in a clockwise direction and once in an anticlockwise direction. During the first phase, the

algorithm allocates chores to agents based on their non-positive utility using the round-

robin algorithm. In the second phase, the algorithm allocates the remaining goods to

agents using the reversed round-robin algorithm, starting with the agent who chose the

last in the first phase.

For more general valuations, Bhaskar, Sricharan, and Vaish presented a modified version

of the envy cycle elimination, which allocates goods and chores to agents in a doubly

monotone instance where the items are indivisible. The algorithm runs in two phases. In

the first phase, the algorithm allocates items that are goods for at least one agent using

the envy-cycle elimination algorithm [101]. However, this is done only for the subgraph

of agents who consider the item a good. In the second phase, the algorithm allocates

items that are chores to the remaining agents using the top-trading envy cycle elimination

algorithm. The paper’s authors have proven that the modified algorithm returns an EF1

(envy-free up to one item) allocation. Additionally, they maintain the invariant that the

partial allocation remains EF1 at every algorithm step. Moreover, the algorithm terminates

in polynomial time.

Envy-freeness up to any item (EFX):

Hosseini et al. investigated the problem of finding EFX allocation in the presence of

lexicographic valuations, a subclass of additive valuations, where items can be goods or
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chores. The authors demonstrated that an envy-free allocation existence is computationally

hard for instances where only chores are considered under lexicographic preferences, in

contrast to the polynomial-time solvability of the goods-only case. They also showed that

even in the case of combinations of goods and chores, an EFX allocation may not exist.

Despite these challenges, the authors identified a domain restriction where EFX allocations

are guaranteed to exist and can be computed efficiently. Furthermore, they showed that

a different notion of fairness, maximin share (MMS), always exists and can be computed

efficiently for any mixed instance with lexicographic preferences.
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Algorithm 11 EF1 for Combination of Goods and Chores with General Valuations

1: Initialize A← (∅, ∅, . . . , ∅)

2: // For each good

3: for k ← 1 to m do

4: V g ← i ∈ [n]; g ∈ [m]; |vig ≥ 0 // Agents who value the good positively

5: Choose a source agent j from the envy graph Gg
A

6: Aj ← Aj ∪ k

7: while GA has a directed cycle C do

8: A← AC // Remove the cycle from the allocation

9: end while

10: end for

11: // For each chore

12: for k ← 1 to m do

13: if there is no sink agent in envy graph GA then

14: C ← any cycle in TA

15: A← AC // Remove the cycle from the allocation

16: end if

17: Choose a sink agent j from the envy graph GA

18: Aj ← Aj ∪ k

19: end forreturn Allocation A

Proportionality up to one item (PROP1):

In the case of additive valuations, the EF1 allocation implies the PROP1 allocation.

Consequently, any algorithm that gives EF1 allocations also guarantees PROP1. Aziz et

al. [14] proved that a contiguous PROP1 allocation of a combination of goods and chores

could be computed in polynomial time for additive utilities. This exciting result paves
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the way for practical algorithms that can achieve fairness and connectivity in allocating

indivisible goods and chores.

Proportionality up to any item (PROPX):

PROPX requires that each agent receives a utility that is at least proportional to their

share, even after we add a small good allocated among the remaining agents to their

bundle or remove the smallest chore (least negative) from the agent’s bundle as mentioned

in Definition 3.2. However, PROPX may not exist even for three agents when items are

only goods [20]. Therefore, it can be concluded that PROPX may not exist in the case

of a combination of goods and chores. However, this is a much less explored domain.

Although we know that PROPm exists in polynomial time for goods and PROPX exists

in polynomial time for chores, we have yet to explore a stronger notion than PROP1 but

weaker for proportionality in the case of goods and chores.

Maximin Share (MMS):

When allocating indivisible goods or chores among a group of agents, MMS allocation

is often used to ensure fairness. However, the MMS allocation may not exist when goods

or chores are indivisible. Hence, in the case of the combination of goods and chores, MMS

allocation may not exist.

To address this issue, researchers have explored the concept of approximate MMS (α-

MMS) allocation, which aims to allocate goods or chores to approximate the ideal MMS

allocation. The best-known approximate solution for α-MMS in goods is 3/4 + 1/12n,

where n is the number of agents.

In a recent study, Kulkarni, Mehta, and Taki introduced the problem of finding the

(near) best α ∈ (0, 1] for which an α-MMS allocation exists. They showed that an α-MMS

allocation may not always exist for any given α > 0, making it challenging to solve the

problem for a fixed α. To tackle this challenge, the authors developed an efficient algorithm

66



to find an α-MMS and Pareto Optimal (PO) allocation for the maximum α ∈ (0, 1] for

which it exists. This approach can provide a fair allocation of indivisible goods or chores,

even when an exact MMS solution is not possible.

2.4.2 Fair and Efficient Allocation

Efficient EF1 allocations

The concept of allocating goods and chores fairly and efficiently has been studied re-

cently. In Section 2.3, it was noted that when valuations are negative, it is still an unsolved

issue to find an allocation that meets both EF1 (envy-freeness up to one item) and PO

(proportional) properties. While there is a pseudo-polynomial time algorithm for deter-

mining PO and EF1 allocation in the case of goods, the existence and complexity of such

an allocation for a combination of goods and chores remain unclear. However, Aleksandrov

and Walsh has explored a weaker form of EF1 and PO for mixed sets of goods and chores.

Another area of interest is maximizing utilitarian welfare while ensuring EF1 allocation

in mixed good and chore allocation. Unfortunately, this problem has not been fully explored

yet.

Efficient PROP1 allocations

The paper by Aziz, Moulin, and Sandomirskiy [20] presents a strongly polynomial time

algorithm for computing allocations that are Pareto optimal and PROP1 for both goods

and chores. They demonstrate that an fPO and PROP1 allocation always exists, even for

mixed utilities and any number of agents. To achieve this, they first compute a proportional

fPO allocation with divisible items and then round it to preserve the fPO property and

ensure PROP1. The paper by Brânzei and Sandomirskiy and Barman and Krishnamurthy

use the same methodology but rely heavily on the concept of competitive equilibrium with

equal incomes (CEEI), which does not apply to economies with a mixture of goods and

chores. Therefore, the authors of [20] construct a rounding procedure that does not rely
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on equilibrium prices and applies to any fPO proportional allocation of divisible items

with an acyclic consumption graph. This is achieved by starting with an equal division

and then finding a Pareto-dominating allocation through sequential cyclic trades, ensuring

the consumption graph remains acyclic. The algorithm picks an agent who shares some

items with other agents and rounds all their fractions to their advantage, breaking all other

partial shares in the corresponding sub-tree. The acyclicity of the tree ensures that the

algorithm terminates and returns a PROP1 allocation.

In conclusion, despite the challenges posed by the combination of goods and chores,

there are fair allocation criteria that can be computed efficiently. However, there is still

much room for further research, particularly in maximizing welfare while ensuring fairness

constraints. We summarize the results of goods and chores in the following image.
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Figure 2.9: Summary of fairness and efficient notion for indivisible goods and chores. The

Violet box (number 1) represents the polynomial-time algorithm. The blue box (number

2) represents exponential time. The red box (number 3) represents Pseudo-polynomial

time. The green box (number 4) represents an open question. The grey box (number 5)

represents such an allocation does not exist.
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2.5 Mixed Indivisible and Divisible Goods and Chores

The world of fair division literature has long been fixated on the concept of items being

either divisible or indivisible. But what happens when reality throws us a curveball, and

we’re suddenly faced with the challenge of allocating a mixed bag of divisible and indivisible

items? As it turns out, this is a very real predicament many of us encounter daily, as evi-

denced by the classic example of room sharing and rent division. This scenario poses the in-

triguing possibility of some items being allocated fractionally while others must be claimed

in their entirety. To break it down even further, let D = k ∈M | k is divisible item and

I = k ∈M | k is indivisible item , with D ∩ I = ∅ and D ∪ I = M . So the question be-

comes: how do we navigate this complex terrain of mixed divisible and indivisible items to

achieve a fair and equitable division for all involved?

The study of fair division with mixed types of resources was initiated by Bei et al.

in their research, in which they explored envy-freeness for mixed goods, including both

indivisible and divisible items. Further, Bhaskar, Sricharan, and Vaish delved into envy-

freeness for mixed goods/chores, encompassing both indivisible goods/chores and divisible

chores. While they also attempted to investigate envy-freeness for indivisible chores and

divisible goods, their research yielded limited positive results, leaving room for further

exploration.

Since envy-freeness cannot be achieved for indivisible items, relaxation techniques must

be considered. However, EF1 (envy-freeness up to one item) can be too weak when only

divisible resources are present. This raises the question of whether we can combine a

relaxation notion that captures EF and EF1. For instance, imagine Agastya and Noorie

are tasked with cleaning their house (a divisible chore) and dividing a bicycle between them

(an indivisible good). What would be a fair allocation in this situation? If we use EF1

for indivisible items and EF for divisible items, both would clean the house equally, and

Agastya would get the bicycle. However, is this allocation truly fair? A fairer allocation
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would be for Agastya to clean the house and receive the bicycle. This highlights the need

to reconsider our notions of fairness and efficiency in such settings.

Bei et al. proposed a new concept called EFM (envy-freeness for mixed goods), which

applies to both indivisible and divisible goods. This notion was then extended by Bhaskar,

Sricharan, and Vaish to include indivisible goods/chores and divisible goods/chores. In

essence, EFM means that any agent who owns divisible goods should not be envied, any

agent who owns divisible chores should not envy anyone else, and, subject to these condi-

tions, any pairwise envy should be EF1. In summary, EFM provides a more comprehensive

and nuanced approach to achieving fairness in allocating mixed types of resources. Next,

we define EFM for various scenarios.

Divisible Good, Indivisible Good (D, I both consists of goods)[35] In the case

of divisible and indivisible goods, an allocation is considered EFM if an agent’s allocation

contains a divisible good, then other agents compare their allocation to that agent using

the EF criterion. However, if the allocation contains only indivisible goods, then the other

agents compare their allocation to that agent’s bundle using EF1. More formally, ∀i, j ∈ N ,

vi(Ai) ≥ vi(Aj) ; ∃k ∈ Aj s.t. k is divisible good

vi(Ai) ≥ vi(Aj \ k) ; ∃k ∈ Aj ;Aj ⊆ I

 is EFM

Divisible Good, Indivisible Chore(D consists of goods, I consists of chores)[40]

In the case of divisible goods and indivisible chores, an allocation is EFM if an agent’s

allocation contains a divisible good, then other agents compare their allocation to that

agent using the EF criterion. However, if the allocation contains any indivisible chore,

the agent compares their allocation to other agents’ allocation using EF1. More formally,

∀i, j ∈ N ,

vi(Ai) ≥ vi(Aj) ; ∃k ∈ Aj s.t. k is divisible good

vi(Ai \ k) ≥ vi(Aj) ; ∃k ∈ Ai; vik < 0

 is EFM

71



Divisible Chore, Indivisible Good(D consists of goods, I consists of chores)[40]

In the case of divisible chores and indivisible goods, an allocation is EFM if an agent’s

allocation contains a divisible chore, then the agent compares their allocation to other

agents’ allocation using the EF criterion. However, if the allocation contains an indivisible

good, the other agents compare their allocation to that agent using EF1 More formally,

∀i, j ∈ N ,

vi(Ai) ≥ vi(Aj) ; ∃k ∈ Ai s.t. k is divisible chore or

vi(Ai) ≥ vi(Aj \ k) ; ∃k ∈ Aj ; vik > 0

 is EFM

Divisible Chore, Indivisible Chore (D consists of chores, I consists of chores)

[40] Lastly, in the case of divisible and indivisible chores, an allocation is EFM if an

agent’s allocation contains a divisible chore, then other agents compare their allocation to

that agent using the EF criterion. However, if the allocation contains an indivisible chore,

the agent compares their allocation to other agents’ allocation using EF1. More formally,

∀i, j ∈ N ,

vi(Ai) ≥ vi(Aj) ; ∃k ∈ Ai s.t. k is divisible chore or

vi(Ai \ k) ≥ vi(Aj) ; ∃k ∈ Ai;Ai ⊆ I

 is EFM

The paper by Bei et al.[35] examines the problem of fairly dividing a set of hetero-

geneous divisible goods and a collection of indivisible goods. The authors prove that an

allocation that satisfies envy-freeness for mixed resources (EFM) for mixed goods with ad-

ditive valuations for divisible goods and general monotone indivisible goods always exists.

The algorithm used to achieve this requires an oracle for computing a perfect allocation in

cake cutting but can compute an EFM allocation in a polynomial number of steps. The

algorithm starts by obtaining an arbitrary EF1 allocation (using the Envy-cycle elimina-

tion algorithm) of the indivisible goods, and then allocates the divisible goods to obtain

an EFM allocation. While the paper’s algorithm is only proven for additive valuation for

indivisible goods, [40] shows that it also works for general monotone valuation.
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Additionally, the authors present two algorithms for computing an EFM allocation for

special cases without using the perfect allocation oracle. The first algorithm is for two

agents with general additive valuations in the Robertson-Webb model, and the second is

for any number of agents with piece-wise linear valuation functions.

In the Robertson-Webb model, the authors present an algorithm that computes an

ϵ-EFM allocation with a polynomial running time complexity that is dependent on the

number of agents, the number of indivisible goods, and 1/ϵ. The authors note that it is

unclear whether an EFM allocation can be computed in a finite number of steps in the

Robertson-Webb model in general. The algorithm does not require a perfect allocation

oracle, which is an appealing result due to its polynomial running time complexity. In

contrast, a bounded exact EFM protocol, if it exists, is likely to require a large number of

queries and cuts. For instance, in the special case when all resources are divisible, EFM

reduces to EF in cake cutting, and the best-known protocol [19] for this problem has a

very high query complexity (a tower of exponents of n).

Bhaskar, Sricharan, and Vaish[40] investigates a mixed model consisting of indivisible

items (goods/chores) and a divisible heterogeneous chore. The authors extend the defini-

tion of EFM to this model and prove that an EFM allocation always exists. They use a

similar algorithmic approach to that in [35], starting with an arbitrary EF1 allocation of

the indivisible item and then allocating the cake to obtain an EFM allocation.

Finally, the authors of [40] also study a mixed model with indivisible chores and divisible

goods, which proves to be more challenging. Unlike previous cases, it is not possible to start

with an arbitrary EF1 allocation of the indivisible items and allocate the cake to obtain an

EFM allocation. However, the authors show that an EFM allocation exists for two special

cases in this model: when each agent has the same ranking over the chores, and when the

number of chores is at most one more than the number of agents. In particular, for two

agents, an EFM allocation always exists in this setting, and with n agents, m additive

indivisible chores, and cake, where m ≤ n+ 1, an EFM allocation exists.
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We have summarized the results for a mixed setting of divisible and indivisible item

instances in Table 2.2. From the table, it can be observed that this domain has been

relatively less explored but is highly relevant and has the potential to yield exciting findings.

Table 2.2: Summary of Fair Division for Mixed Model

Fairness Agents
Divisible

Item

Divisible

Valuation

Indivisible

Item

Indivisible

Valuation
Paper Computation Details

EFM any good additive good general Bei et al. [35] polynomial With perfect allocation oracle

EFM any good additive chores general ? ?

EFM any chores additive

good

general Bhaskar, Sricharan, and Vaish [40] polynomial With perfect allocation orcalechores

combination

good good general Bei et al. [35] polynomial

goodEFM n = 2

chore

general
combination general ? ?

With perfect allocation orcale

good polynomial
good

? ?EFM any

chore

piece wise linear
combination

general

? ?

With perfect allocation orcale

n = 2 good additive

any good additive identical for n-1EFM

m ≤ n+ 1 good additive

chore general Bhaskar, Sricharan, and Vaish [40] polynomial With perfect allocation orcale

good Bei et al. [35] polynomial
good

ϵ-EFM any

chores

additive
combination

general
? ?

Without perfect allocation orcale

2.6 Summary of Complexity Results for Fair Division

The problems of computing allocations that maximize the egalitarian welfare (utility of

the worst-off agent) or Nash welfare (geometric mean of the utilities of agents) have been

shown to be NP-hard, as demonstrated in prior research by Nguyen and Rothe. Moreover,

even computing an exact maximin share for an agent with additive valuations has been

proven to be an NP-complete problem, as shown through a reduction from the NP-hard

problem of Partition. Additionally, in the case of agents with binary additive valuations

for goods, checking for the existence of an envy-free (EF) allocation has also been shown

to be NP-complete, as demonstrated in studies by Aziz et al., Hosseini et al. Furthermore,

the problem of making efficiency improvements in fair allocation has been identified as
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NP-hard in research by Aziz et al., further highlighting the computational complexity of

these allocation problems.

In addition to the computational complexity, it is important to consider the likelihood of

finding a fair allocation in real-world scenarios. Research has explored the conditions under

which a fair allocation is likely to exist or not, shedding light on the practical feasibility of

achieving fairness in allocation mechanisms.

2.7 Other Important Results

In this section, we will provide a brief overview of other important aspects in the field of

fair division, including the likelihood of finding a fair allocation, and the price of fairness.

2.7.1 Likelihood of Finding a Fair Allocation

Dickerson et al. was the first to address this question, under the assumption that utilities

are additive and each agent’s utilities for individual items are drawn from probability

distributions. They established that an envy-free allocation is likely to exist with high

probability when the number of items m is at least Ω(nlogn), but not when m = n+ o(n).

Suksompong investigated the asymptotic existence of proportional allocations - which are

weaker than envy-free allocations under the additivity assumption - and showed that such

allocations occur with high probability provided that either m is a multiple of n or m =

w(n).

Manurangsi and Suksompong showed that EFX allocations, which satisfy envy-freeness

up to any item, exist with high probability for any number of agents and items under

the assumption that the valuations of the agents are drawn at random from a probability

distribution. When agents’ valuations for individual items are randomly drawn from a

probability distribution, they show that the classical round-robin algorithm is likely to

result in an envy-free allocation, particularly when the number of items m, satisfies the

condition m = Ω(n log n/ log log n). Furthermore, they demonstrated that a proportional
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allocation is likely to exist with high probability as long as the number of items, m, is

greater than or equal to the number of agents, n. Additionally, an allocation that satisfies

envy-freeness up to any item (EFX) is likely to be present for any relationship between m

and n. They also demonstrated the challenge of showing the existence of EFX allocations,

as in instances with two agents there can be as few as two EFX allocations, while the

number of EF1 allocations is always exponential in the number of items.

Amanatidis et al. undertook a probabilistic analysis and proved that in randomly gen-

erated instances, maximin share allocations exist with high probability, motivated by the

apparent difficulty in establishing lower bounds in calculating α-MMS. Furthermore, Pro-

caccia and Wang showed that the non-existence of MMW (maximin share with weights)

allocation requires a number of items that is exponential in the number of players. In

contrast, if the number of items is only slightly larger than the number of players, an MMS

allocation is guaranteed to exist [45]. This raises the question of what is the largest number

of items for which an MMS allocation is guaranteed to exist.

In conclusion, the likelihood of finding a fair allocation depends on various factors

such as the specific fairness notion, the type of valuations, and the number of agents and

items involved. Probabilistic analyses have been conducted to understand the conditions

under which fair allocations are likely to exist, shedding light on the practical feasibility of

achieving fairness in real-world scenarios.

2.7.2 Price of fairness

The concept of the price of fairness quantitatively measures the tradeoff between fairness

and social welfare. It represents the ratio of the maximum welfare of any allocation to the

maximum welfare of any allocation that satisfies the desired fairness notion, and it provides

insights into the efficiency loss incurred in achieving fairness.

The authors, Caragiannis et al., investigated the effect of fairness on the efficiency of

resource allocations. They examined three fairness criteria, namely proportionality, envy-
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freeness, and equitability, for allocations of divisible and indivisible goods and chores. They

presented a set of findings on the price of fairness under each of these criteria that quantify

the loss in efficiency in fair allocations compared to optimal ones.

For indivisible goods, the authors derived an exact bound of n + 1/n on the price of

proportionality, while they demonstrated that the price of envy-freeness is θ(n). In contrast,

for indivisible chores, they established an exact bound of n on the price of proportionality,

but both the price of envy-freeness and equitability are infinite. These results indicate that,

in the case of indivisible chores, envy-freeness and equitability are typically incompatible

with efficiency.

Their work provides insights into the trade-off between efficiency and fairness in resource

allocation, considering both divisible and indivisible goods. However, a limitation of their

study is that fairness notions may not always be satisfied for indivisible goods, which they

addressed by ignoring such instances in their analysis of the price of fairness. This omission

may not capture certain scenarios that can arise in practice. Furthermore, the assumption

that envy-free allocations are always proportional may not necessarily hold true, as there

are instances where proportional allocations exist but envy-free allocations do not.

In the study by [37], the focus shifts from classical fairness notions, such as envy-freeness,

proportionality, and equitability, which may not always be achievable for indivisible goods,

to notions with guaranteed existence, including envy-freeness up to one good (EF1), bal-

ancedness, maximum Nash welfare (MNW), and leximin. They also introduce the concept

of the strong price of fairness, which captures the efficiency loss in the worst fair alloca-

tion. They provide tight or asymptotically tight bounds on the worst-case efficiency loss

for allocations satisfying these notions, for both the price of fairness and the strong price

of fairness.

Specifically, the study shows that for the price of EF1, a lower bound of Ω(
√
n) and an

upper bound of O(n) are provided. Additionally, it is shown that two common methods for

obtaining an EF1 allocation, namely the round-robin algorithm and MNW, have a price of
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fairness of linear order (with the exact price being n for round-robin), indicating that these

methods cannot improve the upper bound for EF1. For MNW, MEW, and leximin, an

asymptotically tight bound of θ(n) on the price of fairness is proven. The results suggest

that round-robin is a promising allocation method, as it produces an EF1 allocation with

high welfare, is simple and intuitive, and always produces a balanced allocation.

The authors of [27] address the impact of fairness guarantees on social welfare in the

allocation of indivisible goods by resolving the price of two well-known fairness notions:

envy-freeness up to one good (EF1) and approximate maximin share (MMS). They show

that the price of fairness is O(
√
n) for both EF1 and 1/2-MMS, using different techniques.

The Ω(
√
n) lower bound due to Bei et al. is matched by their upper bound, which holds for

the more general class of subadditive valuations, as opposed to additive valuations. Their

work therefore resolves this open question for all valuation classes between additive and

subadditive and also settles the price of proportionality up to one good (Prop1) as θ(
√
n)

for additive valuations.

For the 1/2-MMS fairness notion and additive valuations, the authors also show that the

price of fairness is θ(
√
n) using a different algorithm. They prove that for a fixed ϵ > 0, a

(1/2−ϵ)-MMS allocation with welfare within O(
√
n) factor of the optimal can be computed

in polynomial time. Overall, their main contribution is comprehensively settling the price

of EF1 and 1/2-MMS fairness notions, and providing efficient algorithms for obtaining their

upper bounds.

Li, Li, and Wu investigate the price of fairness (PoF), which measures the loss in social

welfare when enforcing allocations to be (weighted) proportional (PROPX). They prove

that the tight ratio for PoF is θ(n) for symmetric agents, indicating that the loss in social

welfare can be significant. However, they also show that the PoF can be unbounded for

asymmetric agents, suggesting that fairness constraints can have a drastic impact on social

welfare in such cases.
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2.7.3 Different Settings in Fair Division

After exploring different notions of fairness and their complexities, we will now provide a

brief overview of various settings to highlight the intricacies of fair division. It’s important

to note that fairness is subjective and can vary depending on the setting. What may

be considered fair in one context may not be viewed as fair in another. Therefore, it is

necessary to outline all the possible settings before delving into a detailed analysis of a

specific setting.

Different Types of Items The literature on fair division encompasses various items,

including divisible, indivisible, or a combination of both. Divisible items can be divided

into smaller portions, such as disk space in a CPU, cake for children, money for employees,

land among siblings, or rent among housemates. Divisible items can be either homogeneous,

where the value is uniform across the item or heterogeneous, where the values may differ.

There is rich literature on ensuring envy-free allocation for divisible items, with numerous

possibilities to explore.

On the other hand, indivisible items cannot be further divided and must be allocated

entirely to one person or not at all. Indivisible items include books, cars, antiques, laptops,

and trees. Ensuring fairness in allocating indivisible items is more challenging than divisible

items. For instance, allocating one car among two people can never be truly fair, as

giving it to one person would inherently be unfair to the other. Achieving fairness in

allocating indivisible items often requires considering both efficiency and fairness measures.

Indivisible items can also include goods or chores, such as distributing free books based on

people’s preferences, whereas allocating a book outside someone’s preference can result in

negative utility.

In practice, situations often arise where a mixed set of divisible and indivisible items

must be allocated, for example, dividing rent and room allocation among friends sharing

an apartment with different room preferences or dividing chores and a mobile phone among
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roommates. Allocating fairly in such mixed settings requires re-considering fairness and

efficiency to ensure a more equitable allocation.

Next, we list various possibilities for agents to state their valuation/preferences over a

bundle of items.

Different Types of Valuation functions

In this section, we consider different ways agents can express their preferences or valua-

tions for bundles of items. First, in the combinatorial setting, each agent is asked to value

2m possible bundles of m indivisible items that must be divided among n agents. Various

types of valuations can be used for such bundles, such as sub-additive, super-additive, and

xor. As an illustration, consider the items of a left shoe and a right shoe, which are exam-

ples of super-additive items due to their complementarity. This means that the combined

value of the left and right shoes is greater than the sum of their individual values. On

the other hand, items such as the Luxor Pen and the Pentonic Pen are sub-additive, as

they are substitutes for each other. Agents would typically only desire one pen, thus, the

value of each individual pen is either greater than or equal to the combined value of both

pens. However, it can be challenging for agents and social planners to evaluate such a

large number of valuations, even with learning-based preference elicitation techniques. In

the case where 30 items are to be distributed, the system is requesting agents to evaluate

over a billion item-bundle values, which can be an exceedingly complex task. There exists

a plethora of literature on the intricacies involved in eliciting preferences [123].

Second, the literature mainly assumes that agents have additive valuations over bundles

of items, which capture the essence of agents’ valuations in a simple yet accurate manner.

Additionally, many real-world scenarios involve agents who only express their preferences

over the items they like or dislike, known as binary valuations, and there are several modi-

fications to this class, such as dichotomous preferences, (0,1)-OXS, matroid rank valuation

functions, single-mindedness, etc.
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Third, agents may only report partial knowledge of their valuations, such as their top

k items out of a large list of items, due to the difficulty of evaluating additive valuations

for many items. This is known as the partial information setting. This scenario arises

when thousands of items are to be divided among a group of interested agents, making it

challenging to elicit additive valuation. Hence agents report only their top favorite items.

For example, in a research institute, a department such as Security may not report their

valuation of an item such as a microscope and instead focus on valuing items that are more

important to them. The paper [85] redefines fairness notions applicable to this setting and

provides results on EF1 and MMS fairness.

In another scenario, agents only report partial knowledge about their valuations, i.e.,

they report the top k valued item out of all the listed items. This scenario arises when

thousands of items are to be divided among a group of interested agents, making it chal-

lenging to elicit additive valuation. Hence agents report only their top favorite items. For

example, in a research institute, a department such as Security may not report their val-

uation of an item such as a microscope. Instead, they focus on value items that are more

important to them. The paper [85] redefines fairness notions applicable to this setting and

provides results on EF1 and MMS fairness.

Fourth, some agents may find it tedious to evaluate the exact value of a bundle of items,

in which case ordinal valuations can be used. In this setting, each agent is equipped with a

preference relation that expresses their preference for one set of items over another. Ordi-

nal preferences are often used in practical applications where the algorithm cannot collect

complete information on agent preferences. In this case, the algorithm can use partial

information to compute approximately fair allocations [15, 44]. The literature has studied

various notions of envy-freeness and proportionality in the ordinal setting. For example,

people ranking their preferences in voting, schools, or university applications can be mod-

eled using ordinal preferences. Finally, recent studies have shown that approximately fair

allocations can be computed using ordinal preferences, even with partial information.
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Lastly, Researches are also exploring the problem of allocating indivisible goods among

strategic agents and focus on settings where monetary transfers are not available. Truth-

fulness is a key desideratum in this context, meaning mechanisms should ensure that par-

ticipating agents cannot gain by misreporting their valuations. However, achieving the

central objectives of fairness, economic efficiency, and truthfulness together in settings

without monetary transfers is challenging, even under additive valuations [33].

Next, we list various possibilities in different settings arrive to model real-life settings

introducing complexity in allocating items fairly.

Different Types of Setting

Online setting: Most of the literature on fair division deals with a fixed number of

agents and items, which is not reflective of real-life settings where the number of agents or

items may change over time [3, 138]. Examples of such settings include allocating parking

slots to cars, donations to changing recipients, allocating resources to system processes,

and enrolling students in Ph.D. programs. Papers have been written on online fair division

in various settings, including fixed agents and changing items, changing agents and fixed

items, and changing agents and items. Traditional offline fairness approaches may not be

effective in these online settings.

Two-sided matching settings: Many real-life scenarios involve two-sided fairness,

where fairness needs to be ensured for both parties involved [10]. Examples include online

platforms like Amazon and Airbnb, matching students to schools or employees to employers,

and allocating advisors to students in Ph.D. programs. Papers have been written on recent

developments and guarantees for two-sided fairness, such as double envy-freeness up to one

match (DEF1) and double maximin share guarantees (DMMS), which may not exist in

certain cases.

General models with arbitrary shares: There is a growing literature on fair division

where agents may have arbitrary and possibly unequal shares of items [116]. Examples

include peer review in academia, where papers and reviewers have preferences for each
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other, and conference or course allocation settings, where conflicting items need to be

fairly allocated. Papers have been written on these settings and additional constraints

must be considered.

Fair division with unequal entitlements: In specific scenarios, agents may have

unequal entitlements to items based on their membership status or employment type,

and fairness needs to be ensured accordingly [91]. Examples include membership plans

in a resort, where different membership levels have different entitlements, and resource

allocation for full-time and part-time employees in a company. Papers have been written

on the fair allocation of items with unequal entitlements and how fairness notions can be

applied in such settings.

Public Goods: In fair resource allocation, most work focuses on private goods that can

only be assigned to a single agent. However, some goods are public and can be enjoyed

by multiple agents simultaneously. Public goods allocation problems can arise in various

contexts, such as voting for the allocation of public resources like schools, libraries, and

museums in a city. Naively tallying votes may not always result in a fair allocation of

public goods, as it may ignore the preferences of a large minority. Fairness axioms like pro-

portionality do not capture the idea of fairness in public goods allocation, as they focus on

individual agents’ perspectives. Public goods allocation problems require striking a balance

between agents with different preferences, as opposed to private goods allocation where ten-

sion arises between agents with similar preferences. The literature has moved beyond the

private goods model to study fair allocation for public goods in various applications such as

participatory budgeting, committee selection, and shared memory allocation. Proportional

fairness, which balances fairness and efficiency, is a commonly studied notion in allocating

public goods. One limitation of the current literature is that it mainly considers ”one-shot”

settings where all agents’ preferences are known beforehand. At the same time, real-world

scenarios often involve dynamic and online allocation decisions. Recent works have focused
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on designing online algorithms for fair resource allocation to capture the dynamic nature

of fair division problems in practice [68, 26] .

Randomized Allocation In the literature survey, the concept of randomized allocation

for indivisible goods is discussed. The idea of constructing a fractional assignment and

implementing it as a lottery over pure assignments was introduced Hylland and Zeckhauser.

The key question addressed is whether ex-ante envy-freeness can be achieved in combination

with ex-post envy-freeness up to one good. It is shown that if randomization is allowed,

a simple allocation where the entire set of goods is allocated to one agent at random can

achieve ex-ante envy-freeness, but induces a large amount of envy ex-post. This has led

to significant research on fairness in deterministic allocations of indivisible goods, such as

envy-freeness up to one good (EF1), which requires removing envy by eliminating at most

one good from the envied agent’s bundle. Lotteries and randomization are commonly used

to break ties in allocating indivisible objects, where agents may have equal priority rights

for some objects. Examples of such allocation problems include public housing associations

assigning apartments to residents, school districts assigning seats to students, and childcare

cooperatives assigning chores to members. Furthermore, the concept of achieving ex-ante

and ex-post envy-freeness through randomized allocations is discussed. It is shown that

achieving ex-ante envy-freeness does not guarantee fairness in ex-post envy, and different

allocations may have different levels of fairness [73, 11].

Repeated Allocation The literature explores various allocation mechanisms to achieve

fairness in the repeated allocation of indivisible goods without the use of monetary trans-

fers. This is relevant in scenarios such as allocating server time, rooms to students, or food

among food banks. Additionally, the problem of fair matching has been studied in tradi-

tional setups such as marriage matching or matching medical residents to hospitals. Still,

modern online matching platforms require investigating the two-sided fairness of providers

and customers in a platform performing repeated matchings of providers and customers

over time. The fair distribution of income for providers in on-demand and marketplace
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platforms is crucial for ensuring long-term stable platform operation, and its study has

received little attention so far despite the increasing dependence of people on the sharing

economy to earn a living [133, 82].

Group Fairness In the literature, group fairness is explored in the context of resource

allocation in settings such as corporate environments [62]. For example, a manager may

need to allocate resources such as interns, conference rooms, or time slots for shared ma-

chines to employees. The manager may aim to ensure that no business team envies another

team and that there is no envy between genders, locations, roles, and other groups. Envy-

freeness alone may not be sufficient in this setting, as an allocation that is envy-free up to

one good may still result in significant levels of inequality and envy between groups of play-

ers. Another example can be, consider a university that needs to allocate research funding

to its faculty members. The university may want to ensure that no department envies

another department, that junior faculty do not envy senior faculty, that female faculty do

not envy male faculty, that faculty members from one research area do not envy those from

another area, and so on. Simply ensuring envy-freeness may not be sufficient in this case,

as it may still result in significant levels of inequality and envy between different groups of

faculty members. Therefore, the university may need to explore alternative fairness criteria

and allocation mechanisms to ensure a fair and efficient allocation of research funding.

Externalities The concept of externalities in allocation refers to situations where an

agent’s utility not only depends on their own bundle but also on the bundles allocated to

other agents. This scenario arises frequently in the allocation of essential goods such as

hospital beds, ventilators, and vaccines during emergencies like the COVID-19 pandemic.

The allocation of critical assets to one group in the division of assets among conflicting

groups can also cause negative externalities for the other group’s functionality. On the other

hand, certain goods generate positive consumption externalities, such as the increased value

of a PlayStation to an agent if more of their friends also own one. Positive externalities
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are also observed in healthcare, where individuals who are vaccinated reduce the risk of

contraction for others around them.

2.8 Summary

In conclusion, fair resource allocation is a challenging problem that has been studied

extensively in the literature. In this chapter, we focused on the fair allocation of indivisible

goods and chores, as well as mixed instances that include both indivisible and divisible

items. We discussed various fairness definitions, including EF, EF1, EFX, PROP, PROP1,

PROPX, PROPm, MMS, and α-MMS, and their corresponding fair and efficient alloca-

tions, such as EF1+PO, EF1+USW, PROP1+PO, PROP1+USW, PROPm+PO/USW,

and EFX+PO. All the existing results are summarized in Table 2.1 and 2.2. We also

touched on computational complexity and the likelihood of finding a fair allocation in

different settings, such as different types of items, valuations, and settings. Finally, we

considered the price of fairness and its impact on the efficiency of the allocation. Over-

all, this survey provides a comprehensive overview of the state-of-the-art approaches to

fair resource allocation for indivisible goods and chores. It also highlights the need for

further research in this area, especially in developing efficient algorithms that can handle

more complex settings and achieving a better trade-off between fairness and efficiency.

Equitably dividing resources poses numerous challenges, prompting researchers in recent

literature to investigate data-driven approaches in game theory and mechanism design.

In the forthcoming chapter, we will conduct an in-depth analysis for fair division in the

presence of externalities.
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Chapter 3

Fair Allocation with Special Externalities

Most of the existing algorithms for fair division do not consider externalities.

Under externalities, the utility of an agent depends not only on its allocation

but also on other agents’ allocation. An agent has a positive (negative)

value for the assigned goods (chores). In this work, we study a special

case of externality which we refer to as 2-D. In 2-D, an agent receives a

positive or negative value for unassigned items independent of who receives

them. We propose a simple valuation transformation and show that we

can adapt existing algorithms using it to retain some of the fairness and

efficiency notions in 2-D. However, proportionality doesn’t extend in 2-D.

We redefine PROP and its relaxation and show that we can adapt existing

algorithms. Further, we prove that maximin share (MMS) may not have

any multiplicative approximation in this setting. Studying this domain is

a stepping stone towards full externalities where ensuring fairness is much

more challenging.

3.1 Introduction

We consider the problem of allocating m indivisible items fairly among n agents who re-

port their valuations for the items. These scenarios often arise in the division of inheritance
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among family members, divorce settlements and distribution of tasks among workers [46,

108, 126, 131, 132]. Economists have proposed many fairness and efficiency notions widely

applicable in such real-world settings. Researchers also explore the computational aspects

of some widely accepted fairness notions [55, 32, 93, 74, 118]. Such endeavours have led

to web-based applications like Spliddit, The Fair Proposals System, Coursematch, etc.

However, most approaches do not consider agents with externalities, which we believe is

restrictive.

In the absence of externality, the utility corresponding to an unallocated item is zero.

Externality implies that the agent’s utility depends not only on their bundle but also on

the bundles allocated to other agents. Such a scenario is relatively common, mainly in

allocating necessary commodities. For example, the COVID-19 pandemic resulted in a

sudden and steep requirement for life-supporting resources like hospital beds, ventilators,

and vaccines. There has been a heavy disparity in handling resources across the globe.

Even though there was a decrease in GDP worldwide, low-income countries suffered more

than high-income countries. We can categorize externality into positive and negative; i.e.,

if it affects the agent positively, we refer to it as a positive externality and vice versa.

Getting a vaccination affects an agent positively. The agent values it positively, possibly

less, even if others get vaccinated instead of it. However, not receiving a ventilator results

in negative utility for the patient and family. While there has been an increase in demand

for pharmaceuticals, we see a steep decrease in travel. Such a complex valuation structure

is modeled via externalities.

Generally with externalities, the utility of not receiving an item depends on which other

agent receives it. That is, each agent’s valuation for an item is an n-dimensional vector.

The jth component corresponds to the value an agent obtains if the item is allocated to

agent j. In this work, we consider a special case of externalities in which the agents incur a

cost/benefit for not receiving an item. Yet, the cost/benefit is independent of which other

agent receives the item. This setting is referred to as 2-D, i.e., value v for receiving an item
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and v′ otherwise. When there are only two agents, the 2-D domain is equivalent to the

domain with general externalities. We refer to the agent valuations without externalities as

1-D. For the 2-D domain, we consider both goods/chores with positive/negative externality

for the following fairness notions.

Fairness Notions. Envy-freeness (EF) is the most common fairness notion. It ensures

that no agent has higher utility for other agents’ allocation [72]. Consider 1-D setting with

two agents - {1, 2} and two goods - {g1, g2}; agent 1 values g1 at 6 and g2 at 5, while agent

2 values g1 at 5 and g2 at 6. Allocating g1 and g2 to agent 1 and 2, respectively, is EF.

However, if agent 1 receives a utility of −1 and −100 for not receiving g1 and g2. And

agent 2 receives a utility of −100 and −1 for not receiving g1 and g2; this allocation is no

longer EF.

Externalities introduce complexity so much that the definition of proportionality cannot

be adapted to the 2-D domain. Proportionality (PROP) ensures that every agent receives

at least 1/n of its complete bundle value [131]. In the above example, each agent should

receive goods worth at least 11/2. Guaranteeing this amount is impossible in 2-D, as it

does not consider the dis-utility of not receiving goods. Moreover, it is known that EF

implies PROP in the presence of additive valuations. However, in the case of 2-D, it need

not be true, i.e., assigning g2 to agent 1 and g1 to agent 2 is EF but not PROP.

We consider a relaxation of PROP, the maximin share (MMS) allocation. Imagine

asking an agent to divide the items into n bundles and take the minimum-valued bundle.

The agent would divide the bundles to maximize the minimum utility, i.e., the MMS

share of the agent. An MMS allocation guarantees every agent its MMS share. Even

for 1-D valuations, MMS allocation may not exist; hence researchers find multiplicative

approximation α-MMS. An α-MMS allocation guarantees at least α fraction of MMS to

every agent. [78] provides an algorithm that guarantees 3/4 + 1/12n-MMS for goods

and authors in [90] guarantees 11/9-MMS for chores. In contrast, we prove that for 2-D

valuation, it is impossible to guarantee multiplicative approximation to MMS. Thus, in
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order to guarantee existence results, we propose relaxed multiplicative approximation and

also explore additive approximations of MMS guarantees.

In general, it is challenging to ensure fairness in the settings with full externality, hence

the special case of 2-D proves promising. Moreover, in real-world applications, the 2-D

valuations helps model various situations (e.g., COVID-19 resource allocation mentioned

above). Studying 2-D domain is especially significant for α-MMS. We prove that there

cannot exist any multiplicative approximation for MMS in 2-D. Therefore, we define Shifted

α-MMS that always exists in 2-D. In summary our approach and contributions are as

follows,

Our Approach. There is extensive literature available for fair allocations, and we pri-

marily focus on leveraging existing algorithms to 2-D. We demonstrate in Section 3.3 that

existing algorithms cannot directly be applied to 2-D. Towards guaranteeing fairness notion

in 2-D, we propose a property preserving transformation T that converts 2-D valuations to

1-D; i.e., an allocation that satisfies a property in 2-D also satisfies it in transformed 1-D

and vice-versa.

Contributions.

1. We demonstrate in Section 3.3 that studying fair allocation with externalities is non-

trivial and propose T to retain fairness notions such as EF, MMS, and its additive

relaxations and efficiency notions such as MUW and PO (Theorem 3.1). Thus, we

can adapt the existing algorithms for the same.

2. We introduce PROP-E for general valuations for full externalities (Section 5.3) and

derive relation with existing PROP extensions (Section 3.4).

3. We prove that α-MMS may not exist in 2-D (Theorem 3.2). We propose Shifted

α-MMS, a novel way of approximating MMS in 2-D (Section 3.5.3).
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Related Work

While fair resource division has an extremely rich literature, externalities is less explored.

Velez [137] extended EF in externalities. [47] generalized PROP and EF for divisible goods

with positive externalities. Seddighin et al. [125] proposed average-share, an extension of

PROP, and studied MMS for goods with positive externalities. Authors in [22] explored

EF1/EFX for the specific setting of two and three agents and provided PROP extension.

For two agents, their setting is equivalent to 2-D, hence existing algorithms [55, 117, 20]

suffice. Beyond two agents, the setting is more general and they proved the non-existence

of EFX for three agents. In contrast, EFX always exists for three agents in our setting.

Envy-freeness up to one item (EF1) [51, 101] and Envy-freeness up to any item(EFX) [55]

are prominent relaxation of EF. EF may not exist for indivisible items. We consider two

prominent relaxations of EF, Envy-freeness up to one item (EF1) [51, 101] and Envy-

freeness up to any item(EFX) [55]. We have poly-time algorithms to find EF1 in general

monotone valuations for goods [101] and chores [40]. For additive valuations, EF1 can

be found using Round Robin [55] in goods or chores, and Double Round Robin [13] in

combination. When the valuations are general, non-monotone, and non-identical, a poly-

time algorithm is given by [38] for two agents. [117] present an algorithm to find EFX

allocation under identical general valuations for goods. [57] proved that an EFX allocation

exists for three agents. Researchers have also studied fair division in presence of strategic

agents, i.e., designing truthful mechanisms [29, 34, 115]. A great deal of research has been

done on mechanism design [76, 75]. PROP1 and PROPX are popular relaxation of PROP.

For additive valuations, EF1 implies PROP1, and EFX implies PROPX. Unfortunately, in

paper [20], the authors showed the PROPX for goods may not always exists. [99] explored

(weighted) PROPX and showed it exists in polynomial time. MMS do not always exist [97,

118]. The papers [118, 7, 28, 77] showed that 2/3-MMS for goods always exists. Paper [79,

78] showed that 3/4-MMS for goods always exists. Authors in [78] provides an algorithm

that guarantees 3/4+1/12n-MMS for goods. Authors in [21] presented a polynomial-time

91



algorithm for 2-MMS for chores. . The algorithm presented in [30] gives 4/3-MMS for

chores. Authors in [90] showed that 11/9-MMS for chores always exists. [96] explored

α−MMS for a combination of goods and chores. In [55] showed that MNW is EF1 and

PO for indivisible goods and [32] gave a pseudo-polynomial time algorithm. [13] presented

algorithm to find EF1 and PO for two agents. [20] presented an algorithm to find PROP1

and fPO for combination. [16] proposed a pseudo-polynomial time algorithm for finding

utilitarian maximizing among EF1 or PROP1 in goods.

3.2 Preliminaries

We consider a resource allocation problem (N,M,V) for determining an allocation A

of M = [m] indivisible items among N = [n] interested agents, m,n ∈ N. We only

allow complete allocation and no two agents can receive the same item. That is, A =

(A1, . . . , An), s.t., ∀i, j ∈ N , i ̸= j;Ai ∩ Aj = ∅ and
⋃

iAi = M . A−i denotes the set

M \Ai.

2-D Valuations. The valuation function is denoted by V = {V1, V2, . . . , Vn}; ∀i ∈ N ,

Vi : 2
M → R2, ∀S ⊆M , Vi(S) = (vi(S), v

′
i(S)), where vi(S) denotes the value for receiving

bundle S and v′i(S) for not receiving S. The value of an agent i for item k in 2-D is

(vik, v
′
ik). If k is a good (chore), then vik ≥ 0 (vik ≤ 0). For positive (negative) externality

v′ik ≥ 0 (v′ik ≤ 0).

The utility an agent i ∈ N obtains for a bundle S ⊆ M is, ui(S) = vi(S) + v′i(M \ S)

Also, ui(∅) = 0 + v′i(M) and utilities in 2-D are not normalized1. When agents have

additive valuations, ui(S) =
∑

k∈S vik+
∑

k/∈S v′ik. We assume monotonicity of utility for

goods, i.e., ∀S ⊆ T ⊆ M , ui(S) ≤ ui(T ) and anti-monotonicity of utility for chores, i.e,

ui(S) ≥ ui(T ). We use the term full externalities to represent complete externalities, i.e.,

each agent has n-dimensional vector for its valuation for an item. We next define fairness

and efficiency notions.

1Utility is normalized when ui(∅) = 0, ∀i
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Definition 3.1 (Envy-free (EF) and relaxations [17, 51, 55, 72, 137]). For the items (chores

or goods) an allocation A that satisfies ∀i, j ∈ N ,2

ui(Ai) ≥ ui(Aj) is EF

vik < 0, ui(Ai \ {k}) ≥ ui(Aj);∀k ∈ Ai

vik > 0, ui(Ai) ≥ ui(Aj \ {k});∀k ∈ Aj

 is EFX

ui(Ai \ {k}) ≥ ui(Aj \ {k});∃k ∈ {Ai ∪Aj}is EF1

Definition 3.2 (Proportionality (PROP) [131]). An allocation A is said to be proportional,

if ∀i ∈ N , ui(Ai) ≥ 1
n · ui(M).

For 2-D, achieving PROP is impossible as discussed in Section 5.1. To capture pro-

portional under externalities, we introduce Proportionality with externality (PROP-E).

Informally, while PROP guarantees a 1/n share of the entire bundle, PROP-E guarantees

a 1/n share of the sum of utilities for all bundles. Note that, PROP-E is not limited to

2-D and applies to full externalities. Formally,

Definition 3.3 (Proportionality with externality (PROP-E)). An allocation A satisfies

PROP-E if, ∀i ∈ N ,ui(Ai) ≥ 1
n ·

∑
j∈N ui(Aj)

Definition 3.4 (PROP-E relaxations). An allocation A ∀i,∀j ∈ N , satisfies PROPX-E if

it is PROP-E up to any item, i.e.,

vik > 0, ui(Ai ∪ {k}) ≥ 1
n

∑
j∈N ui(Aj);∀ k ∈ {M \Ai}

vik < 0, ui(Ai \ {k}) ≥ 1
n

∑
j∈N ui(Aj);∀ k ∈ Ai


Next, A satisfies PROP1-E if it is PROP-E up to an item, i.e.,

ui(Ai ∪ {k}) ≥ 1
n

∑
j∈N ui(Aj);∃ k ∈ {M \Ai} or,

ui(Ai \ {k}) ≥ 1
n

∑
j∈N ui(Aj);∃ k ∈ Ai


2Beyond 2-D, one must include the concept of swapping bundles in EF [22, 137].
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Finally, we state the definition of MMS and its multiplicative approximation.

Definition 3.5 (Maxmin Share MMS [51]). An allocation A is said to be MMS if ∀i ∈

N, ui(Ai) ≥ µi, where

µi = max
(A1,A2,...,An)∈

∏
n(M)

min
j∈N

ui(Aj)

An allocation A is said to be α-MMS if it guarantees ui(Ai) ≥ α · µi for µi ≥ 0 and

ui(Ai) ≥ 1
α · µi when µi ≤ 0, where α ∈ (0, 1].

Definition 3.6 (Pareto-Optimal (PO)). An allocation A is PO if ∄ A′ s.t., ∀i ∈ N ,

ui(A
′
i) ≥ ui(Ai) and ∃i ∈ N , ui(A

′
i) > ui(Ai).

We also consider efficiency notions like Maximum Utilitarian Welfare (MUW), that maxi-

mizes the sum of agent utilities. Maximum Nash Welfare (MNW) maximizes the product of

agent utilities, and Maximum Egalitarian Welfare (MEW) maximizes the minimum agent

utility.

In the next section, we define a transformation from 2-D to 1-D that plays a major role

in adaptation of existing algorithms for ensuring desirable properties.

3.3 Reduction from 2-D to 1-D

We define a transformation T : V → W, where V is the valuations in 2-D, i.e., V =

{V1, V2, . . . , Vn} and W is the valuations in 1-D, i.e., W = {w1, w2, . . . , wn}.

Definition 3.7 (Transformation T). Given a resource allocation problem (N,M,V) we

obtain the corresponding 1-D valuations denoted by W = T (V(·)) as follows,

∀i ∈ N,wi(Ai) = T(Vi(Ai)) = vi(Ai) + v′i(A−i)− v′i(M) (3.1)

When valuations are additive, we obtain wi(Ai) = vi(Ai)− v′i(Ai). An agent’s utility in

2-D is ui(Ai) and the corresponding utility in 1-D is wi(Ai).
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Lemma 3.1. For goods (chores), under monotonicity (anti-monotonicity) of V, W =

T (V(·)) is normalized, monotonic (anti-monotonic), and non-negative (negative).

Proof. We assume the monotonicity of utility for goods in 2-D. Therefore, ∀S ⊆M,wi(S)

is also monotone. And wi(∅) = vi(∅) + v′i(M) − v′i(M) = 0 is normalized. Since wi(·) is

monotone and normalized, it is non-negative for goods. Similarly, we can prove that wi(·)

is normalized, anti-monotonic, and non-negative for chores.

Theorem 3.1. An allocation A is F-Fair and E-Efficient in V iff A is F-Fair and E-

Efficient in the transformed 1-D, W, where F ∈ {EF, EF1, EFX, PROP-E,

PROP1-E, PROPX-E, MMS} and E ∈ {PO, MUW}.

Proof Sketch. We first consider F = EF. Let allocation A be EF in W then,

∀i, ∀j, wi(Ai) ≥ wi(Aj)

vi(Ai) + v′i(A−i)− v′i(M) ≥ vi(Aj) + v′i(A−j)− v′i(M)

ui(Ai) ≥ ui(Aj)

We can similarly prove the rest.

From Lemma 3.1 and Theorem 3.1, we obtain the following.

Corollary 3.1. To determine {EF, EF1, EFX, MMS} fairness and {PO, MUW} effi-

ciency, we can apply existing algorithms to the transformed W = T (V (·)) for general

valuations.

Existing algorithms cannot be directly applied.

We state a few examples below. Modified leximin algorithm gives PROP1 and PO for

chores for 3 or 4 agents in [60], but it is not PROP1-E (or PROP1) and PO in 2-D when

applied on utilities. The following example demonstrates the same,

Example 3.1. Consider 3 agents {1, 2, 3} and 4 chores {c1, c2, c3, c4} with positive ex-

ternality. The 2-D valuation profile is as follows, V1c1 = (−30, 1), V1c2 = (−20, 1),
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V1c3 = (−30, 1), V1c4 = (−30, 1), V3c1 = (−1, 40), V3c2 = (−1, 40), V3c3 = (−1, 40),

and V3c4 = (−1, 40). The valuation profile of agent 2 is identical to agent 1. Alloca-

tion {∅, ∅, (c1, c2, c3, c4)} is leximin allocation, which is not PROP1-E. However, allocation

{c3, (c2, c4), (c1)} is leximin on transformed valuations; it is PROP1 and PO in W and it

is PROP1-E and PO in V.

For chores, the authors in [99] showed that any PROPX allocation ensures 2-MMS for

symmetric agents. This result also doesn’t extend to 2-D. For e.g., consider two agents

{1, 2} having additive identical valuations for six chores {c1, c2, c3, c4, c5, c6}, given as

V1c1 = (−9, 1), V1c2 = (−11, 1), V1c3 = (−12, 1), V1c4 = (−13, 1), V1c5 = (−9, 1), and

V1c6 = (−1, 38). Allocation A = {(c1, c2, c3, c4, c5), (c6)} is PROPX-E, but is not 2-MMS

in V. Further, adapting certain fairness or efficiency criteria to 2-D is not straightforward.

E.g., MNW cannot be defined in 2-D because agents can have positive or negative utilities.

Hence MNW implies EF1, and PO doesn’t extend to 2-D. The authors proved that MNW

allocation gives at least 2
1+

√
4n−3

-MMS value to each agent in [55], which doesn’t imply

for 2-D. Similarly, we show that approximation to MMS, α-MMS, does not exist in the

presence of externalities (Section 3.5).

3.4 Proportionality in 2-D

We remark that PROP (Def. 3.2) is too strict in 2-D. As a result, we introduce PROP-E

and its additive relaxations in Defs. 3.3 and 3.4 for general valuations.

Proposition 3.1. For additive 2-D, we can adapt the existing algorithms of PROP and

its relaxations to 2-D using T.

Proof. In the absence of externalities, for additive valuations, PROP-E is equivalent to

PROP. From Theorem 3.1, we know that T retains PROP-E and its relaxations, and hence

all existing algorithms of 1-D is applicable using T.
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It is known that EF =⇒ PROP for sub-additive valuation in 1-D. In the case of PROP-E,

∀i, j ∈ N , ui(Ai) ≥ ui(Aj) =⇒ ui(Ai) ≥ 1
n ·

∑n
j=1 ui(Aj).

Corollary 3.2. EF =⇒ PROP-E for arbitrary valuations with full externalities.

We now compare PROP-E with existing PROP extensions for capturing externalities.

We consider two definitions stated in literature from [125] (Average Share) and [22] (General

Fair Share). Note that both these definitions are applicable when agents have additive

valuations, while PROP-E applies for any general arbitrary valuations. In [22], the authors

proved that Average Share =⇒ General Fair Share, i.e., if an allocation guarantees all

agents their average share value, it also guarantees general fair share value. With that, we

state the definition of Average Share (in 2-D) and compare it with PROP-E.

Definition 3.8 (Average Share [125]). In V, the average value of item k for agent i, denoted

by avg[vik] =
1
n · [vik + (n− 1)v′ik]. The average share of agent i, vi(M) =

∑
k∈M avg[vik].

An allocation A is said to ensure average share if ∀i, ui(Ai) ≥ vi(M).

Proposition 3.2. PROP-E is equivalent to Average Share in 2-D, for additive valuations.

Proof Sketch. ∀i ∈ N,

ui(Ai) ≥
1

n
·
∑
j∈N

ui(Aj) =
1

n
·
∑
j∈N

vi(Aj)− v′i(M \Aj)

=
1

n
·
∑
k∈M

vik −
1

n
·
∑
k∈M

(n− 1)v′ik

Next, we briefly state the relation of EF, PROP-E, and Average Share beyond 2-D and

omit the details due to space constraints.

Remark 3.1. In case of full externality, EF ≠⇒ Average Share [22].

Proposition 3.3. Beyond 2-D, PROP-E ≠⇒ Average Share and Average Share ≠⇒

PROP-E.
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To conclude this section, we state that for the special case of 2-D externalities with ad-

ditive valuations, we can adapt existing algorithms to 2-D, and further analysis is required

for the general setting.

We now provide analysis of MMS for 2-D valuations in the next section.

3.5 Approximate MMS in 2-D

From Theorem 3.1, we showed that transformation T retains MMS property, i.e., an

allocation A guarantees MMS in 1-D iff A guarantees MMS in 2-D. We draw attention to

the point that,

µi = µW
i + v′i(M) (3.2)

where µW
i and µi are the MMS value of agent i in 1-D and 2-D, respectively. [118] proved

that MMS allocation may not exist even for additive valuations, but α-MMS always exists

in 1-D. The current best approximation results on MMS allocation are 3/4+1/(12n)-MMS

for goods [78] and 11/9-MMS for chores [90] for additive valuations. We are interested in

finding multiplicative approximation to MMS in 2-D. Note that we only study α-MMS for

complete goods or chores in 2-D, as [96] proved the non-existence of α-MMS for combination

of goods and chores in 1-D. From Eq. 3.5 for α ∈ (0, 1], if µi is positive, we consider α-MMS,

and if it is negative, then 1/α-MMS.

We categorize externalities in two ways for better analysis 1) Correlated Externality 2)

Inverse Externality. In the correlated setting, we study goods with positive externality

and chores with negative externality. And in the inverse externality, we study goods with

negative externality and chores with positive externality. Next, we investigate α-MMS

guarantees for correlated externality.
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3.5.1 α-MMS for Correlated Externality

Proposition 3.4. For correlated externality, if an allocation A is α-MMS in W, A is

α-MMS in V, but need not vice versa.

Proof. Part-1. Let A be α-MMS in W,

∀i ∈ N,wi(Ai) ≥ αµW
i =⇒ ui(Ai)− v′i(M) ≥ −αv′i(M) + αµi for goods

∀i ∈ N,wi(Ai) ≥
1

α
µW
i =⇒ ui(Ai)− v′i(M) ≥ − 1

α
v′i(M) +

1

α
µi for chores

For goods with positive externalities, µi > 0, α ∈ (0, 1], and ∀S ⊆ M , v′i(S) ≥ 0. We

derive v′i(M) ≥ αv′i(M), and hence we can say ui(Ai) ≥ αµi. For chores with negative

externalities, µi < 0, 1/α ≥ 1, and ∀S ⊆M,v′(S) ≤ 0. Similarly to the previous point, we

derive v′(M) ≥ 1
αv

′(M) and thus ui(Ai) ≥ 1
αµi.

Part-2. We now prove A is α-MMS in V but not in W.

Example. ConsiderN = {1, 2} both have additive identical valuations for goods {g1, g2, g3, g4, g5, g6},

Vig1 = (0.5, 0.1), Vig2 = (0.5, 0.1), Vig3 = (0.3, 0.1), Vig4 = (0.5, 0.1), Vig5 = (0.5, 0.1), and

Vig6 = (0.5, 0.1). After transformation, we get µW
i = 1 and in 2-D µi = 1.6. Allocation,

A = {{g1}, {g2, g3, g4, g5, g6}} is 1/2-MMS in V, but not in W. Similarly, it is easy to

verify the same for chores.

Corollary 3.3. We can adapt the existing α-MMS algorithms using T for correlated ex-

ternality for general valuations.

Corollary 3.4. For correlated 2-D externality, we can always obtain 3/4 + 1/(12n)-MMS

for goods and 11/9-MMS for chores for additive.

3.5.2 α-MMS for Inverse Externality

Motivated by the example given in [118] for non-existence of MMS allocation for 1-D

valuations, we adapted it to construct the following instance in 2-D to prove the impossibil-

ity of α-MMS in 2-D. We show that for any α ∈ (0, 1], an α-MMS or 1/α-MMS allocation
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may not exist for inverse externality in this section. We construct an instance V g such

that α-MMS exists in V g only if MMS allocation exists in W = T(V g). Note that W is

exactly the instance of the example in [118]. Hence the contradiction.

Non-existence of α-MMS in Goods.

Consider the following example.

Example 3.2. We consider a problem of allocating 12 goods among three agents and

represent valuation profile as V g. The valuation profile V g is equivalent to 103 × V given

in Table 3.1. We set ϵ1 = 10−4 and ϵ2 = 10−3. We transform these valuations in 1-D

using T, and the valuation profile T(V g) is the same as the instance in [118] that proves

the non-existence of MMS for goods. Note that ∀i, v′i(M) = −4055000 + 103ϵ1 The MMS

value of every agent in T(V g) is 4055000 and from Eq. 3.2, the MMS value of every agent

in V g is 103ϵ1.

Recall that T retains MMS property (Theorem 3.1) and thus we can say that MMS

allocation doesn’t exist in V g.

Lemma 3.2. There is no α-MMS allocation for the valuation profile V g of Example 3.2

for any α ∈ [0, 1].

Proof. An allocation A is α-MMS for α ≥ 0 iff ∀i, ui(Ai) ≥ αµi ≥ 0 when µi > 0.

Note that the transformed valuations wi(Ai) = T(V g
i (Ai)). From Eq. 3.1, ui(Ai) ≥ 0, iff

wi(Ai) ≥ −v′i(M), which gives us wi(Ai) ≥ 4055000 − 0.1. For this to be true, we need

wi(Ai) ≥ 4055000 since T(V g) has all integral values. We know that such an allocation

doesn’t exist [118]. Hence for any α ∈ [0, 1], α-MMS does not exist for V g.

Non-existence of 1/α-MMS in Chores. Consider the following example.

Example 3.3. We consider a problem of allocating 12 chores among three agents. The

valuation profile V c is equivalent to −103V given in Table 3.1. We set ϵ2 = −10−3. We

transform these valuations in 1-D, and T(V c) is the same as the instance in [21] that proves
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Table 3.1: Additive 2-D Valuation Profile (V )

Item
Agent 1 Agent 2 Agent 3

(v1, v
′
1) (v2, v

′
2) (v3, v

′
3)

k1 (3ϵ2, -1017+3ϵ1-3ϵ2) (3ϵ2, -1017+3ϵ1-3ϵ2) (3ϵ2, -1017+3ϵ1-3ϵ2)

k2 (2ϵ1, -1025+2ϵ1+ϵ2) (2ϵ1, -1025+2ϵ1+ϵ2) (1025− ϵ1, -ϵ1)

k3 (2ϵ1, -1012+2ϵ1+ϵ2) (1012− ϵ1, -ϵ1) (2ϵ1, -1012+2ϵ1+ϵ2)

k4 (2ϵ1, -1001+2ϵ1+ϵ2) (1001− ϵ1, -ϵ1) (1001− ϵ1, -ϵ1)

k5 (1002− ϵ1, -ϵ1) (2ϵ1, -1002+2ϵ1+ϵ2) (1002− ϵ1, -ϵ1)

k6 (1022− ϵ1, -ϵ1) (1022− ϵ1, -ϵ1) (1022− ϵ1, -ϵ1)

k7 (1003− ϵ1, -ϵ1) (1003− ϵ1, -ϵ1) (2ϵ1, -1003+2ϵ1+ϵ2)

k8 (1028− ϵ1, -ϵ1) (1028− ϵ1, -ϵ1) (1028− ϵ1, -ϵ1)

k9 (1011− ϵ1, -ϵ1) (2ϵ1, -1011+2ϵ1+ϵ2) (1011− ϵ1, -ϵ1)

k10 (1000− ϵ1, -ϵ1) (1000− ϵ1, -ϵ1) (1000− ϵ1, -ϵ1)

k11 (1021− ϵ1, -ϵ1) (1021− ϵ1, -ϵ1) (1021− ϵ1, -ϵ1)

k12 (1023− ϵ1, -ϵ1) (1023− ϵ1, -ϵ1) (2ϵ1, -1023+2ϵ1+ϵ2)

the non-existence of MMS for chores. Note that v′i(M) = 4055000−103ϵ1. The MMS value

of every agent in T(V c) and V c is -4055000 and −103ϵ1, respectively.

Lemma 3.3. There is no 1/α-MMS allocation for the valuation profile V c of Example 3.3

with ϵ1 ∈ (0, 10−4] for any α > 0.

Proof. An allocation A is 1/α-MMS for α > 0 iff ∀i, ui(Ai) ≥ 1
αµi when µi < 0. We set

ϵ1 ≤ 10−4 in V c. When α ≥ 103ϵ1 ∀i then ui(Ai) ≥ −1. From Eq. 3.1, ui(Ai) ≥ −1 iff

wi(Ai) ≥ −4055001 + 103ϵ1. Note that 0 < 103ϵ1 ≤ 0.1 and since wi(Ai) has only integral

values, we need ∀i, wi(Ai) ≥ −4055000. Such A does not exist [21]. As ϵ1 decreases, 1/ϵ1

increases, and even though approximation guarantees weakens, it still does not exist for

V c.
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From Lemma 3.2 and 3.3 we conclude the following theorem,

Theorem 3.2. There may not exist α-MMS for any α ∈ [0, 1] for µi > 0 or 1/α-MMS

allocation for any α ∈ (0, 1] for µi < 0 in the presence of externalities.

Interestingly, in 1-D, α-MMS’s non-existence is known for α value close to 1 [118, 71],

while in 2-D, it need not exist even for α = 0. It follows because α-MMS could not lead

to any relaxation in the presence of inverse externalities. Consider the situation of goods

having negative externalities, where MMS share µi comprises of the positive value from the

assigned bundle Ai and negative value from the unassigned bundles A−i. We re-write µi

as follows, µi = µ+
i + µ−

i where µ+
i corresponds to utility from assigned goods/unassigned

chores and µ−
i corresponds to utility from unassigned goods/assigned chores. When µi ≥ 0,

applying αµi is not only relaxing positive value αµ+
i , but also requires αµ−

i which is stricter

than µ−
i since µ−

i < 0. Hence, the impossibility of α-MMS in 2-D. Similar argument holds

for chores. Next, we explore MMS relaxation such that it exists in 2-D.

3.5.3 Re-defining Approximate MMS

In this section, we define Shifted α-MMS that guarantees a fraction of MMS share

shifted by certain value, such that it always exist in 2-D. We also considered intuitive

ways of approximating MMS in 2-D. These ways are based on relaxing the positive value

obtained from MMS allocation µ+ and the negative value µ−, µ = µ++µ−. In other words,

we look for allocations that guarantee αµ+ and (1 + α) or 1/α of µ−. Unfortunately, such

approximations may not always exist. We skip the details due to space constraints.

Definition 3.9 (Shifted α-MMS). An allocation A guarantees shifted α-MMS if ∀i ∈

N,α ∈ (0, 1]

ui(Ai) ≥ αµi + (1− α)v′i(M)
}

for goods

ui(Ai) ≥ 1
αµi +

α−1
α v′i(M)

}
for chores
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Proposition 3.5. An allocation A is α-MMS in W iff A is shifted α-MMS in V.

Proof. For goods, if allocation A is shifted α-MMS, ∀i, ui(Ai) ≥ αµi + (1 − α)v′i(M).

Applying T, we get wi(Ai)+ v′i(M) ≥ αµW
i +αv′i(M)+ (1−α)v′i(M) which gives wi(Ai) ≥

αµW
i . For chores, if A is shifted 1/α-MMS, ∀i, ui(Ai) ≥ 1

αµi +
(α−1)

α v′i(M), which gives

wi(Ai) ≥ 1
αµ

W
i . Similarly we can prove vice versa.

Corollary 3.5. We can adapt all the existing algorithms for α-MMS in W to get shifted

α-MMS in V.

We use T and apply the existing algorithms and obtain the corresponding shifted mul-

tiplicative approximations.

In the next section, we examine the additive relaxation of MMS since a multiplicative

approximation need not exist in the presence of externalities.

3.5.3.1 Additive Relaxation of MMS

Definition 3.10 (MMS relaxations). An allocation A that satisfies, ∀i, j ∈ N ,

∀ k ∈ {M \Ai}, vik > 0, ui(Ai ∪ {k}) ≥ µi

∀ k ∈ Ai, vik < 0, ui(Ai \ {k}) ≥ µi

 MMSX, MMS upto any item

∃ k ∈ {M \Ai}, ui(Ai ∪ {k}) ≥ µi, or,

∃ k ∈ Ai, ui(Ai \ {k}) ≥ µi

 MMS1, MMS upto an item (3.3)

Proposition 3.6. From Lemma 3.1 and Theorem 3.1, we conclude that MMS1 and MMSX

are preserved after transformation.

EF1 is a stronger fairness notion than MMS1 and can be computed in polynomial time.

On the other hand, PROPX might not exist for goods [20]. Since PROPX implies MMSX,

it is interesting to settle the existence of MMSX for goods. Note that MMSX and Shifted

α-MMS are not related. It is interesting to study these relaxations further, even in full

externalities.
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3.6 Conclusion

In this chapter, we conducted a study on indivisible item allocation with special ex-

ternalities – 2-D externalities. We proposed a simple yet compelling transformation from

2-D to 1-D to employ existing algorithms to ensure many fairness and efficiency notions.

We can adapt existing fair division algorithms via the transformation in such settings. We

proposed proportionality extension in the presence of externalities and studied its relation

with other fairness notions. For MMS fairness, we proved the impossibility of multiplica-

tive approximation of MMS in 2-D, and we proposed Shifted α-MMS instead. There are

many exciting questions here which we leave for future works. (i) It might be impossible

to have a fairness-preserving valuation transformation for general externalities. However,

what are some interesting domains where such transformations exist? (ii) What are inter-

esting approximations to MMS in 2-D as well as in general externalities? In the next two

chapters, we will deep dive into leveraging computers in solving fair resource allocation

problems; first, we present a brief survey on using computers for mechanism design and

next, we present our approach to using neural networks for solving fair division problems.
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Chapter 4

Background for Neural Network-based Approach in

Mechanism Design

In this chapter, we focus on the role of computers, particularly machine

learning and AI, specifically Neural Networks, in the realms of game theory

and mechanism design. The four-color theorem, which states that any map

can be colored with at most four colors without neighboring regions shar-

ing the same color, serves as a motivation for the importance of computers

in solving complex problems. We discuss various examples of mechanism

design problems, including optimal auctions, multi-facility location mech-

anisms, redistribution mechanisms, and sponsored search auctions, high-

lighting their limitations and challenges. It introduces the concept of au-

tomated mechanism design (AMD), which leverages machine learning and

deep Neural Networks to overcome theoretical and computational limita-

tions in mechanism design. We provide an overview of how researchers

have used learning-based algorithms to go beyond these limitations and im-

prove the design of mechanisms. In the next chapter, we will present the

first study that integrates deep learning and fair resource allocation. In

particular, we propose a Neural Network-based approach on approximately

finding fair allocation that maximize social welfare, an NP-Hard problem.
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4.1 Introduction

4.1.1 Motivation

The very famous four-color theorem, conjectured by Guthrie in 1853, states that any

map in a plane can be colored using at-most four colors so that regions sharing a common

boundary (other than a single point) do not share the same color. And over the centuries,

there have been several attempts which later proved to be erroneous. In 1976, mathe-

maticians Appel and Haken found an extremely arduous proof using a complex computer

program to categorize the four-colorable maps [9]. Eventually, computers become an in-

tegral part of solving many complex problems. Over the past decade, with the success

of deep Neural Networks for training computers to learn as well as make decisions, it has

become an integral part of our lives. E.g., most computers (Macbooks 2020 or later) have

built-in AI/ML chips.

In this chapter, we focus on the role of computers, in particular, Neural Networks for

game theory and mechanism design. The problem of designing incentives for a game with

self-interested and rational agents such that it achieves an outcome with desired objections.

Even after advancement over decades in this field, there are still open fundamental ques-

tions. Recently, researchers have initiated a concurrent line of work in the AI community

– automated mechanism design (AMD). AMD focuses on analyzing the sample complexity,

formulating computational approaches, using machine learning/deep networks to optimize,

and using inference tools in mechanism design. The goal is to use the recent advancement

in learning theory and optimization to design mechanisms. Given theoretical and compu-

tational limitations, we move towards learning-based algorithms. We briefly describe the

settings with limitations in this Section and further provide details about how researchers

leveraged learning tools to go beyond limitations in this Chapter.
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4.1.2 Examples

4.1.2.1 Optimal Auctions

One of the prominent parts of economic theory is auction design. Each bidder has a

private valuation function over items. The goal is to maximize revenue and incentivize

the auction so that bidders report their valuation truthfully. This setting is referred to as;

Optimal Revenue-Maximizing Auction.

Limitations Myerson resolved the optimal auction design problem when a single item

was for sale [110]. After more than 40 years of intense research, the problem is not entirely

settled, even for a simple setting with two bidders and two items. The goal is to design

dominant-strategy incentive compatibility (DSIC), i.e., truthful auctions. Most related

work applies to the weaker Bayesian incentive compatibility (BIC) notion. In this chapter,

we draw attention to Neural Network-based approaches for the automated design of optimal

auctions.

4.1.2.2 Multi-Facility Location Mechanism Design

Given a space of locations, the goal of locating a single facility to reduce social costs

is a single facility location problem without any external money. For example, locating

a public school that is optimal for the town is a single-facility location problem. More

complicated settings involve locating multiple facilities with minimized social cost, and

such mechanisms are known as Multi-Facility Location Mechanism Design.

Limitations In the special case of a single facility location problem, where agents have

single-peaked preferences, the problem reduces to choosing medians of the agents’ peak

(Moulin’s generalized median rule), which is a strategyproof mechanism[109]. In contrast,

the current literature doesn’t fully characterize strategy-proof mechanisms, and recent work

has shown negative worst-case results for the social cost.
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4.1.2.3 Redistribution Mechanism Design

Consider the problem of allocating public resources among interested agents, where the

goal is not to make a profit but to assign the resources to the one who values them the

most. To find the agent with the highest valuation truthfully, one standard solution is

to hold the VCG mechanism. However, it cannot ensure budget balance in the system

while ensuring allocative efficiency (AE) and dominant strategy incentive compatibility

(DSIC). That is, the net transfer of money cannot be zero. We design a Redistribution

Mechanism to ensure a minimum surplus of money and AE and DSIC. The objective

could be to minimize surplus in expectation or, in the worst case, these resources could be

homogeneous or heterogeneous.

Limitations In the last decade, much research focused on designing an optimal redis-

tribution mechanism (RM) that ensures the maximum possible total rebate, especially

with homogeneous resources. However, designing an optimal redistribution mechanism,

especially in a heterogeneous setting, is challenging and elusive.

4.1.2.4 Sponsored Search Auctions

Internet Advertising is a proven profitable model. In search engines, when the user

hits a search query and the result page, we have a few ads related to search keywords.

For a keyword, advertisers place their bids for these ad slots, and search engines compute

the price for slots and allocate them accordingly. Bidders modify their bids based on the

bidder’s advertisement feedback, i.e., the number of impressions, click-through rates, price

of slots, etc. So throughout, bidders’ behavior and the number of bidders keep changing.

Limitations The sponsored search auction follows Generalized Second Price Auctions

with reserved prices for each bidder (based on Myerson). Here we assume that bids depend

on the type of bidders (private information), all bidders are rational, and there’s common
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knowledge. In reality, bids depend on many parameters and are quite complex; the bidding

setting is dynamic. So instead of static reserve prices for each bidder, we need to model the

setting with dynamic reserve prices. Designing sponsored search auctions with dynamic

reserve prices to maximize revenue is challenging.

4.1.2.5 Neural Networks for AMD

The literature consists of various approaches, such as analyzing sample complexity in

designing revenue optimal auctions, using computation approaches towards Automated

Mechanism Design, etc. In this thesis, we aim to survey the papers using a Neural Network-

based approach to solving mechanism design. It is widely known that Neural Networks

outperform existing approaches in finding an optimal mapping between the given input

and output data. Neural Networks can learn algorithms ([94] learns Viterbi algorithm for

decoding), mechanisms ([66] learns optimal auctions), or solve Mixed Integer Programs

([111]). This success has resulted even in the EconCS community using NNs to find allo-

cation rules in optimal auctions. For example, [66] proposes learning optimal auctions via

deep learning. [81] learns strategy-proof, multi-facility mechanisms that minimize expected

social cost via NN. [50] integrate machine learning in a combinatorial auction to improve

preference elicitation (which value queries to ask in every iteration). [140] instead use a

NN to improve preference elicitation and reformulate WDP into a mixed-integer program.

[129] learn to design a revenue-optimal, exact incentive-compatible mechanism while [103,

135, 102] learns optimal redistribution mechanisms and MAB through NN. In [139], the

authors use NN to maximize the expected number of consumers and social welfare for

public projects. Another line of work is Reinforcement Mechanism Design, such as learn-

ing dynamic price in sponsored search auctions [52, 128]. Additionally, [111] solves MIP

on large-scale real-world application datasets and MIPLIB using a Neural Network that

performs significantly better than the MIP solver. Given enough data, hyper-parameter
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tuning, and proper training, the networks are adept at learning effective transformations.

First, we formally define all the required standard notations.

4.2 Preliminaries

We assume F = F1×F2, . . . ,×Fn to be a known prior distribution for agents’ valuations,

where the distribution F1 is over Vi. We denote V = Πn
i=1Vi. Agent, i’s valuation, is

drawn independently from a distribution Fi, vi ∼ Fi. The social planner/auctioneer knows

the distributions F = F1 × F2, . . . ,×Fn, but does not know the agents/bidders’ realized

valuation vi. We represent Neural Network as Aw, where w corresponds to network weights.

The general idea is to model the mechanism design as a learning problem, where in the place

of a loss function that measures error against a target label, we adopt our optimization

loss function on valuations drawn from F . We are given a parametric class of mechanism,

w ∈ M, for parameters w ∈ Rd for some d ∈ N, and a sample of agents’ valuation profiles

S = {v(1), . . . , v(L)} drawn i.i.d. from F . The goal is to find a mechanism that minimizes

the optimization loss function among all parametric mechanisms in M that satisfy the

respective constraints.

4.3 RegretNet: Learning Optimal Auctions using deep learn-

ing

4.3.1 Contributions

[66] provided a Neural Network approach for solving the multi-item auction design

problem. They used multi-layer Neural Networks to encode auction mechanisms (allocation

and payment rules), with bidder valuations being the input and allocation and payment

being the output. They trained the networks using samples from the value distributions

to maximize expected revenue subject to constraints for DSIC (i.e., truthful mechanism).
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• Single-Bidder, Multi-items: They leveraged characterization results for IC mech-

anisms (Rochet’s characterization) [120] and constructed the network architecture

accordingly and further trained the network to minimize loss function (negated rev-

enue). It is exactly DSIC, given Rochet’s characterization.

• Multi-Bidder, Multi-items: There is no prior domain knowledge. They encode allo-

cation and payment as networks and train over the loss function of negated expected

revenue subject to minimizing expected ex-post regret (DSIC constraint) over the

training valuation profiles.

They showed that using extensive experiments that Neural Network could learn auctions

close to the optimal auctions in terms of revenue, allocation, and payment rule with quite

a low regret. They also provided generalization bounds on expected revenue and ex-post

regret based.

4.3.2 Neural Network Architecture

The bidders report their valuations (perhaps untruthfully), and an auction decides on

allocating items to the bidders and charges payment to them. We denote an auction (g; p)

as a pair of allocation rules gi : V → 2M and payment rules pi : V → R≥0 (these rules can

be randomized). Given bids b = (b1, . . . , bn) ∈ V , the auction computes an allocation g(b)

and payments p(b).

An auction is dominant strategy incentive compatible (DSIC) if each bidder’s utility

is maximized by reporting truthfully no matter what the other bidders report. A bidder

with valuation vi receives a utility ui(vi, b) = vi(gi(b))− pi(b) for a report of bid profile b,

ui(vi, (vi, b−i)) ≥ ui(vi, (bi, b−i)). An auction is ex-post individually rational (IR) if each

bidder receives a non-zero utility, i.e. ui(vi, (vi, b−i)) ≥ 0∀i ∈ N, vi ∈ Vi, andb−i ∈ V−i

They pose the optimal auction design problem as a learning problem, where they adopt

the negated, expected revenue on sample valuations. We are given a parametric class

of auctions, Aw = (gw, pw) ∈ M. The goal is to find an auction that minimizes the
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negated, expected revenue −E[
∑n

i=1 p
w
i (v)], among all auctions in M that satisfy incentive

compatibility.

Single Bidder, Multi-item. (Characterization-Based Approach)

• They construct a single-bidder, multi-item settings based on Rochet [120], i.e., they

encode this characterization in Neural Network architecture. It acquires exactly

DSIC, and they constrain the search space, i.e., to achieve IC. They refer to this

network as RochetNet. It works for additive as well as unit demand valuations.

• Based on Rochet Characterization, the induced utility function u should satisfy the

non-negative, monotone, convex Lipschitz utility function.

uα,β(v) = max{max
j∈J
{αj · v + βj}, 0}

, where ∀j ∈ J , αj ∈ [0, 1]m and βj ∈ R. The allocation rule for the valuation v is

the gradient of this induced utility = δu(v), i.e., αj and the corresponding payment

rule is δu(v) · v − u(v), i.e., −βj . We aim to find the mechanism that maximizes the

revenue among these classes of utilities J .

• They model a single layer Neural Network as a utility function, where each hj =

αj ·b+βj with network parameters w = (α, β), as shown in Figure 4.1. The network is

trained over the empirical loss function of negated expected utility given the training

valuation samples and mechanism (gw, pw) is obtained.

• The authors provide an interpretation of the RochetNet architecture that the network

consists of a menu of randomized allocations and prices and chooses the option from

the menu that maximizes the bidder’s utility based on the bid.

Multi Bidder, Multi-item.(Characterization-Free Approach)

• In this setting, the Neural Network encodes the mechanism, i.e., both the allocation

and payment rules. These two components are distinct and trained simultaneously,
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Figure 4.1: RochetNet Architecture [Image Credits: Duetting et al. [66]]

i.e., the allocation received from the allocation network uses the payment network

to compute the loss function further. The goal is to maximize the revenue while

ensuring IR and DSIC. The authors quantify DSIC in terms of ex-post regret, i.e.,

regret is the utility gain of an agent when bidding untruthfully. Exactly DSIC means

ex-post regret is zero. The network searches the mechanism in large parametric space

that maximizes revenue along with IR and DSIC; However, exact DSIC cannot be

ensured, i.e., the network can learn approximate DSIC. This network is referred to as

RegretNet and doesn’t rely on any known results. Using the augmented Lagrangian

method, the loss function consists of negated expected revenue and ex-post regret

(DSIC) constraints.

• Fixing the bids of others, the ex-post regret for a bidder is the maximum increase

in her utility, considering all possible non-truthful bids. The idea is to learn the

untruthful bid that can maximize the regret and further learn the mechanism to

minimize the regret and maximize revenue.

• Given this, they re-formulate the learning problem as minimizing expected negated

revenue subject to the expected ex-post regret being zero for each bidder:

min
w∈Rd

EṽF [−
∑
i∈N

pwi (v)] s.t. rgti(w) = 0,∀i ∈ N
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Figure 4.2: RegretNet Architecture [Image Credits: Duetting et al. [66]]

Given a sample of L valuation profiles from F , they estimated the empirical ex post

regret for bidder i as:

ˆrgti(w) = 1/L
L∑
l=1

[max
v′i∈Vi

uwi (v
(l);
i )]

and seek to minimize the empirical loss (negated revenue) subject to the empirical

regret being zero for all bidders. To ensure IR, they restrict the search space to a

class of parametrized auctions that charge no bidder more than her valuation for an

allocation.

• In the case of additive valuation, RegretNet architecture is shown in Figure 4.2. The

allocation network encodes a randomized allocation rule gw : Rnm → [0, 1]nm and

the payment network encodes a payment rule pw : Rnm → Rn
≥0, both of which are

modeled as feed-forward fully-connected networks with a tanh activation function in

each of the hidden nodes. The input layer of the networks consists of bids bij ≥ 0

representing the valuation of bidder i for item j. The allocation network outputs a

vector of allocation probabilities z1j = g1j(b), . . . , znj = gnj(b), for each item j ∈ [m].

To ensure feasibility, i.e., that the probability of an item being allocated is at most

one, the allocations are computed using a softmax activation function so that for all
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items j, they have
∑

i=1 nzij ≤ 1. To accommodate the possibility of an item not

being assigned, they include a dummy node in the softmax computation to hold the

residual allocation probability. The payment network outputs a payment for each

bidder that denotes the amount the bidder should pay in expectation for a particular

bid profile. To ensure that the auction satisfies IR, i.e., does not charge a bidder more

than her expected value for the allocation, the network first computes a normalized

payment p̃i ∈ [0, 1] for each bidder i using a sigmoidal unit, and then outputs a

payment pi = p̃i(
∑

j=1mzijbij), where the zij ’s are the outputs from the allocation

network.

• The authors also provide the details about network in case of Unit demand and

general valuations.

4.3.3 Results

The paper showed that the Neural Network learns mechanisms with quite a low regret

and achieves close to optimal auctions compared to theoretically known solutions by exten-

sive experiments. It learns mechanisms for new settings without any analytical solution.

The learned mechanisms are not only close to optimal auctions in terms of revenue but

also in terms of allocation and payment rules. The auctions learned by RochetNet are

exactly DSIC and match the optimal revenue precisely, with sharp decision boundaries in

the allocation and payment rule. The revenue achieved by RegretNet matches the optimal

revenue up to a < 1% error term, and the regret it incurs is < 0.001. For Rochet Net, they

showed experiments on the setting: (A) - Single Bidder with two items having i.i.d. valu-

ations ∼ U [0, 1], (B) - Single Bidder with two items having i.i.d. valuations ∼ U [2, 3], (C)

- Single Bidder with m items having i.i.d. valuations ∼ U [0, 1], where the only analytical

solution available beyond m ≥ 6 is a conjecture, and the paper showed result till m = 10 in

the same direction as conjecture, and (D) - Single Bidder with two items having correlated

valuation, where no analytical solution is available. For Regret-Net, they showed experi-
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ments on the setting: (E) - three additive bidders and ten items having i.i.d. valuations

∼ U [0, 1], and (F) - five additive bidders and ten items having i.i.d. valuations ∼ U [0, 1].

There is no known solution for these two settings. They also compare their learned auc-

tions with the LP solver solution for the setting of two bidders and three items having i.i.d.

valuations ∼ U [0, 1]; the LP solver took 69 hours, while their training took only 9 hours.

Thus, providing strong results that Neural Networks can learn close to optimal auctions.

4.4 Multi-facility location mechanism using Deep Learning

4.4.1 Contribution

Golowich, Narasimhan, and Parkes [81] provided a Neural Network approach for solving

the multi-facility location mechanism, i.e., strategic proof mechanisms that minimize the

social cost. They used Neural Networks to encode multi-facility location mechanisms with

a peak of agents as input and the facility’s location as output. It models existing charac-

terization results as MoulinNet and further where characterization results are unavailable

as RegretNet-nm. They also show the flexibility of learning mechanisms in the case of

weighted social cost and when agents having utility distribution is non-independent. They

showed that their network with quite low ex-post regret, i.e., essentially strategy-proof

with low or comparable social costs with the baselines.

4.4.2 Neural Network Architecture

There are two architectures proposed by [81], i.e., MoulinNet is based on the char-

acterization of single facility location, which is extended for multi-facility location, and

RegretNet-nm is characterization free with learns via constraint attached to its loss func-

tion. We first briefly explain the setting of the problem and then explain both the networks

in this Section.
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Let Ω be the set of locations, i.e., [0,1] and K facilities are to be located in Ω. Let

τ(ui) be the peak of the value function vi. They assume the value of an agent as v(x) = −

mod x − a, where a = τ(u) is the peak. A mechanism f : V → Ω takes input agents

valuations v = (v1, v2, . . . , vn), i.e., it takes agents’ peak as input and outputs the locations

for K facilities in Ω. They assume that the agent valuations are sampled from a joint

distribution D over V , with full support on V . The objective is to find a mechanism f

among the set of strategy-proof mechanisms for a multi-facility location that minimizes

expected social cost, i.e., −Eu∼D[1/n ·
∑n

i=1 ui(f(u))].

MoulinNet (Characterization-based Approach) As stated in the paper, A unanimous

mechanism f : U → Ω is strategy-proof if and only if it is a generalized median rule, i.e.,

for each S ⊆ {1, . . . , n}, there exists some aS ∈ Ω s.t. for all (v1, v2, . . . , vn) ∈ V ,

f(u) = min
S⊆{1,2,...,n}

max

{
max
i∈S
{τ(vi)}, aS

}

The authors encode these characteristics in MoulinNet. Each aS is parametrized using

a monotone feed-forward Neural Network h : {−1, 1}n → R as shown in Figure 4.3. The

Neural Network h maps a n-dimensional binary encoding of set S, i.e., e(S) ∈ {−1, 1}n

to a real value. Hence aS = h(e(S)). The Neural Network Aw, i.e., the strategy-proof

single-facility mechanism, is built upon the network h as shown in Figure 4.4 that takes

peaks τ(u1), . . . , τ(un) as inputs and outputs the location of the facility. In the case of

K ≥ 2 facilities, they use K replicas of the network, and each network outputs the location

of a facility. This network is strategyproof. Next, to find optimal network parameters, they

train it over the loss function of negated expected social cost given the sample valuation

profiles.

RegretNet-nm (Characterization-free Approach) Next, they present a general ap-

proach to learning mechanisms without characterization with low social cost and ex-post

regret (strategy-proof). They optimize a feed-forward Neural Network to minimize the

negated expected social cost with attached ex-post regret constraints. The idea is an ex-
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Figure 4.3: MoulinNet Architecture [Image Credits: Golowich, Narasimhan, and

Parkes [81]]

Figure 4.4: MoulinNet for single facility [Image Credits: Golowich, Narasimhan, and

Parkes [81]]
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tension of the paper [66], i.e., ex-post regret is defined as the maximum utility an agent

can gain from misreporting their preferences.

As shown in Figure 4.5 is fully connected, takes agent peaks τ(u1), . . . , τ(un) as input

and outputs the locations of the K facilities z1, . . . , zK with ReLU as non-linear activation

function in hidden layers. The augmented Lagrangian loss function is the expected social

cost or a weighted variant subject to the expected ex-post regret being zero for all agents.

Since the optimization problem is non-convex, and the solver works with estimates of

the loss and regret from training samples, the learned mechanism may have a low regret.

Through extensive experiments, the authors showed that the learned mechanisms have low

social costs along with negligible regret.

Figure 4.5: RegretNet-nm for facility location [Image Credits: Golowich, Narasimhan, and

Parkes [81]]

4.4.3 Results

They performed experiments on five agents withK = 1, 2, 3, 4, 5 with three sets of varied

settings (A) - peaks are distributed i.i.d. uniformly on [0; 1], (B) - weighted social cost and

(C) peaks are sampled as non-independent variables. They compared their results across

the baselines across the best percentile rule, the best dictatorial rule, and the best constant

rule. For K = 1 both MoulinNet and RegretNet-nm nearly always place the facility very
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close to the median of the agents’ peaks. The RegretNet-nm mechanisms have quite a low

regret, i.e., they are essentially strategy-proof. They showed that Neural Networks can

learn near-optimal, low ex-post regret mechanisms for the multi-facility location problem.

They also showed the flexibility of the networks by experimenting with various settings

to learn optimal mechanisms. RegretNet-nm and MoulinNet yield significantly smaller

social costs than the baseline mechanisms. The flexibility of RegretNet-nm allows it to

outperform all the benchmarks.

4.5 Summary

Neural Networks offer a promising alternative when traditional methods fail to solve

complex problems. An example of this is the four-color theorem, which was solved in 1976

using a computer program to categorize four-colorable maps. Since then, computers have

become essential tools for solving a wide range of complex problems. With the development

of deep Neural Networks, computers can now learn and make decisions, making them

an integral part of our lives. This chapter focuses on the role of Neural Networks in

game theory and mechanism design, a field that has faced fundamental questions despite

decades of research. To overcome these challenges, researchers have turned to automated

mechanism design, which utilizes machine learning and deep networks to optimize and

design mechanisms. By leveraging learning tools, researchers can go beyond theoretical

and computational limitations to design mechanisms that achieve desired objectives. One

challenging domain is resource allocation, and this computational approach can be used to

solve complex problems in this field. Given the success of Neural Networks and theoretical

limitations, we believe that combining deep learning and resource allocation is a promising

area for further exploration, particularly with more complex objective functions. In the

next chapter, we will discuss our approach to amalgamating deep learning and fair division.
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Chapter 5

EEF1-NN: Efficient and EF1 allocations through Neural

Networks

In this chapter, we will focus on allocating items to maximize efficiency while

ensuring fairness. Since Envy-freeness may not always exist, we consider the

relaxed notion, Envy-freeness up to one item (EF1) that is guaranteed to

exist. We add the further constraint of maximizing efficiency, utilitarian

social welfare (USW) among fair allocations. In general, finding USW al-

locations among EF1, i.e., EEF1, is an NP-Hard problem even for additive

valuations. Neural networks (NNs) have shown state-of-the-art performance

in designing optimal auctions as well as in learning algorithms. We design

a NN inspired by U-Net for learning EEE1 allocations which we refer to

as EEF1-NN. EEF1-NN is generic and scales to any number of agents and

items once trained. We empirically demonstrate that EEF1-NN finds alloca-

tion with higher USW and ensures EF1 with a high probability for different

distributions over input valuations.
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5.1 Introduction

Consider a situation where a social planner needs to allocate a set of indivisible items

(goods or/and chores) among interested agents. Agents have valuations for the items,

i.e., an item might be a good – positive valuation for one while it might be a chore –

negative valuation for the other. The agents reveal their valuations upfront to the social

planner. The social planner is responsible for the fair and efficient allocation of these items

among the agents. For example, a Government needs to distribute resources and delegate

tasks amongst its subdivisions. The subdivisions should not feel mistreated in the system.

While ensuring this, the Government would like to optimally allocate items for the system’s

growth.

Fair division is well-explored in literature [43, 106, 119]. Economists have proposed

various fairness and efficiency notions applicable in real-world settings, such as division of

investments and inheritance, vaccines, tasks, etc. There are web-based applications such

as Spliddit, The Fair Proposals System, Coursematch, Divide Your Rent Fairly, etc., used

for credit assignment, land allocation, division of property, course allocation, and even task

allotment. All these applications assure certain fairness and efficiency guarantees.

One of the most popular fairness criteria is envy-freeness (EF) [72]. An allocation is

envy-free if each agent values its share at least as much as they value any other agent’s

share. EF is also trivially satisfied by allocating empty bundles to every agent. Hence we

must also have efficiency guarantees. When we consider a complete allocation of indivisible

items, EF may not exist (two agents, one good). Finding whether EF exists or not is known

to be ∆p
2complete [42], let alone finding an efficient allocation among EF. To overcome

this limitation, we consider a prominent relaxation of EF - EF1 (Envy-freeness up to one

item) [51]. Unlike EF, EF1 always exists and can be computed in polynomial time [101].

In this work, we focus on utilitarian social welfare (USW), i.e., the sum of utilities

of individual agents. When valuations are additive, finding allocation that maximizes

USW (MUW) is polynomial-time solvable. While finding EF1 or MUW allocations are
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polynomial-time solvable, maximizing USW within EF1 allocations, i.e., EEF1; efficient

and envy-free up to one item, is an NP-hard problem, even when valuations are additive

for two agents [16, 29]. There is no known approximation algorithm for EEF1. With

these theoretical limitations, we propose a data-driven learning approach, i.e., given the

agents’ valuations, we aim to learn EEF1. It is widely known that Neural Networks (NNs)

outperform existing approaches in finding an optimal mapping between the given input

and output data. Neural Networks can learn algorithms [94], mechanisms [66] or solve

Mixed Integer Programs [111]. Motivated by the success of Neural Networks, we aim to

learn algorithms for EEF1 using Neural Networks. We list our major challenges as follows,

Challenges. (i) In the existing integration of Neural Networks and mechanism design,

payments are at their disposal. In our work, there are no payments, and we learn discrete

allocations, i.e., our solution space is binary. Whereas the output of Neural Networks is

real numbers, it can easily learn optimal fractional allocations. If we convert fractional

solutions to integral, fairness guarantees no longer hold. (ii) Further, we aim to design a

generalized network for any number of agents or items, even for configurations not seen

during training. Most of the existing Neural Network-based approaches in EconCS train

the models separately for each configuration [66, 103]. We overcome the above challenges

as described below.

Contributions. To the best of our knowledge, this is the first study that integrates deep

learning and fair resource allocation. In particular,

• We propose a Neural Network EEF1-NN inspired by U-Net to learn EEF1.

• We transform our valuations and augment them with additional channels to enhance the

network’s performance.

• We use a series of convolutional and up-convolutional layers to learn EEF1; EEF1-NN

is generalized for any number of agents and items.
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• We sample valuations from various distributions and report the expected fairness and

efficiency achieved. Even for large instances, our network performs well. Moreover, 1

the network quickly computes the output; hence we can improvise this approach to be

adept in practical real-time applications.

• We show that, for our setting, bagging of networks improves performance.

5.2 Related Work.

Fair resource allocation is well studied in the literature across various fairness and

efficient notions [43, 106, 119]. When a definition of fairness is too strong or may not

exist, we always look for its relaxation/approximation. There is existing work that provides

approximate efficiency and fairness guarantees in [7, 32, 49, 118]. In this paper, we majorly

focus on EEF1. Authors in [49] presents a framework to compute ϵ-Efficient and F-Fair

allocation, using parametric integer linear programming, which is double exponential in

terms of n and m. They explored group Pareto Efficiency, which is equivalent to USW.

Authors in [16] provides a pseudopolynomial-time algorithm to find MUW within EF1,

which is exponential in n and polynomial in m and V , where V bounds the valuation per

item.

EF1 allocations always exist and can be found in polynomial time even for general

valuations [13, 55, 101]. Finding MUW allocations is also polynomial-time solvable for

additive valuations, i.e., we iterate over items assign the item to the agent who values it

the most. However, finding MUW allocation amongst EF1 allocations is NP-hard even for

two agents with additive valuations. Also finding a truthful way for allocating EF1 is also

challenging [115].

There is always a trade-off between fairness and efficiency, corresponding to the study

of the price of fairness ([27, 36]). Researchers have also studied how likely a fairness notion

1We evaluated IP solver to solve maximizing USW w.r.t. EF1 constraints, and for 10x100, it was taking several
minutes.
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will not exist ([65, 104, 105]). When agents’ valuations are additive and drawn randomly

from a uniform distribution, EF exists with a high probability when m is at least Ω(n log n)

and can be obtained by MUW allocations proved by [65]. However, the hidden constants

might be high2, and it leaves scope to explore. [104] show that RR is envy-free when

m ≥ Ω(n log n/ log log n).

Recently the EconCS community has been interested in learning mechanisms/algorithms

using Neural Network, especially in a setting of theoretical limitations [66, 81, 103, 94, 130,

135, 139]. Researchers have studied mechanism design widely [76, 75]. [66] and [81] learns

optimal auctions and multi-facility mechanism using Neural Network. [140] uses Neural

Network in the combinatorial auction for preference elicitation. [103, 135, 102] learns op-

timal redistribution mechanisms and MAB through Neural Network. [139] uses Neural

Network to maximize the expected number of consumers and the expected social welfare

for public projects. Additionally, [111] solves MIP on large-scale real-world application

datasets and MIPLIB using a Neural Network that performs significantly better than the

MIP solver. [114] proposed a Neural Network-based solution to achieve fairness in classi-

fication. Given enough data, hyper-parameter tuning, and proper training, the networks

are adept at learning effective transformations. Another line of work is Reinforcement

Mechanism Design, such as learning dynamic price in sponsored search auctions [52, 128].

5.3 Preliminaries

We consider the problem of allocating M = [m] indivisible items among N = [n]

interested agents, where m,n ∈ N. We only allow complete allocation and no two agents

can receive the same item. That is, A = (A1, . . . , An), A ∈ Πn(M) s.t., ∀i, j ∈ N ,

i ̸= j;Ai ∩Aj = ∅ and
⋃

iAi = M . Each agent i ∈ N has a valuation function vi : 2
M → R

and vi(S) is its valuation for a S ⊆ M s.t. vi(∅) = 0. We represent valuation profile

2Our experiments show that in the case of uniform distribution, even for 10 agents, 150 items, the probability of
MUW allocation being EF1 is less than 0.5
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v = (v1, v2, . . . , vn). We only consider additive valuations. The valuation of an agent i ∈ N

for bundle Ai is vi(Ai) =
∑

j∈Ai
vi({j}). For an agent i, an item j ∈ M is a good if,

vi({j}) ≥ 0, and a chore if, vi({j}) < 0. We consider three settings - pure goods, pure

chores, and a combination of goods and chores. With this notation, we now define fairness

and efficiency properties as follows.

Definition 5.1 (Envy-free (EF) and relaxations). An allocation A that satisfies ∀i, j ∈ N ,

vi(Ai) ≥ vi(Aj) is EF

vi(Ai \ {k}) ≥ vi(Aj \ {k});∃k ∈ {Ai ∪Aj} is EF1

Definition 5.2 (Maximum Utilitarian Welfare (MUW)). An allocation A∗ is said to be

efficient or MUW if it maximizes the USW, sw(A, v) =
∑

i∈N vi(Ai)

A∗ ∈ argmax
A∈Πn(M)

sw(A, v)

Definition 5.3 (EEF1 Allocation). We say an allocation is EEF1 if it satisfies EF1 fair-

ness and maximizes USW amongst EF1 allocations.

Given agents’ valuation profile v = (v1, v2, . . . , vn), we learn EEF1 allocations using a

data-driven approach. We randomly draw vi ∼ Fi and assume F = F1×F2, . . . ,×Fn to be

a known prior distribution over agents’ valuations. We use the notation n⊗m to represent

a setting with n agents and m items.

5.4 Our Approach: EEF1-NN

We construct the optimization problem for EEF1 5.4.1; we then formulate the La-

grangian loss function 5.4.2 and provide the detail of EEF1-NN 5.4.3 and 5.4.4.

5.4.1 Optimization Problem.

We are given a set of valuation profile v = (v1, v2, . . . , vn), where vi is drawn randomly

from a distribution Fi. Among all possible allocations, we need to find an optimal A∗ that
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maximizes USW sw(A, v) and satisfies a fairness constraint. We formulate two (general-

ized) fairness constraints - EF and EF1 as follows.

efi(A, v) =
∑
k∈N

max

{
0, (vi(Ak)− vi(Ai))

}
(5.1)

ef1i(A, v) =
∑
k∈N

max

{
0, (vi(Ak)− vi(Ai))+ min

{
−max

j∈Ak

vi({j}),min
j∈Ai

vi({j})
}}

(5.2)

Our goal is to maximize the expected welfare w.r.t. to the expected fairness.

minimize − Ev [sw(A, v)] = Ev[
∑
i∈N

vi(Ai)]

subject to Ev

[∑
i∈N

efi(A, v)

]
= 0 or, Ev

[∑
i∈N

ef1i(A, v)

]
= 0

(5.3)

In the above optimization problem, we have ’OR’ among fairness constraints, which we

elaborate more on this in the Ablation Study in Section 5.5.1.

5.4.2 EEF1-NN: Lagrangian Loss Function.

EEF1-NN represents a mapping from valuation to allocation space, i.e., Aw : R{n×m} →

{0, 1}n×m, where w represents the network’s parameters. To learn w, we formulate our

problem to optimize welfare w.r.t. to fairness constraints in Eq. 5.3 and formulate La-

grangian loss function ( λ ∈ R≥0). Given L samples of valuation profiles (v1, . . . , vL)

drawn from F , the loss per sample (I lv) is,

Loss(I lv, w, λ) =

[
− sw(Aw(I lv), v

l) + λ

∑
i∈N envyi(Aw(I lv), v

l)

n

]
(5.4)

We minimize the following loss w.r.t w, LEEF1(I
l
v, w, λ) =

1
L
∑

l Loss(v
l, w).
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5.4.3 Network Details

We describe EEF1-NNś various components, including the input, architecture, and other

training details in this section. EEF1-NN is a fully convolutional network (FCN) and

processes input of varied sizes (i.e., height × width).

EEF1-NN: Input. We transform our valuations and augment with additional channels

to enhance performance. We construct an input tensor of size n×m×6, i.e., Iv ∈ Rn×m×6.

The first channel is an n×m matrix of given valuations, i.e., ∀i, j; Iv[i, j, 1] = vi({j}). We

take a matrix X of size n×m that contains valuation for items only corresponding to the

agent who values it the most, and the rest are zero. We break ties arbitrarily and expand

X into five channels.

∀j ∈M ; X[i.j, 1] =


vi({j}) if i ∈ argmaxivi({j})

0 otherwise

The next channel contains information about items indexed as 0, 5, . . . , ⌊m/5⌋,

I[i.j, 2] =


X[i, j, 1] if j ∈ {0, 5, 10, . . . , ⌊m/5⌋}

0 otherwise

The next channel contains data from the previous channel along with items indexed as

1, 6, . . . , 1 + ⌊m/5⌋. And so on. The last channel Iv[i, j, 6] is X. We observe that single-

channeled input performs sub-optimal. We study the effect of input complexity on the

performance in Section 5.5.1.

EEF1-NN: Architecture. Our architecture is inspired by U-Net architecture [121]. U-

Net is a fully convolutional network built to segment bio-medical images; it also requires

assigning labels to image patches and not just classifying the image as a whole. While

we are working on valuation profiles rather than images, one of the primary motivations

to use U-Net is to process arbitrary size images. If we use a feed-forward fully functional

Neural Network to learn fair and efficient allocations, we need a different network for each

128



n ⊗ m. Moreover, just using a feed-forward functional network (multi-layer perceptron)

learns EEF1 allocations for smaller values of n, but cannot learn as n increases.

EEF1-NN contains series of convolution and up-convolution layers, as given by Fig-

ure 5.1. EEF1-NN has three series of Conv-UpConv layers. The convolutional layers

consist of 4 repeated 3x3 convolution, each followed by a non-linear activation function,

tanh. The up-convolution layers consist of 4 repeated 3x3 up-convolution, each followed by

a tanh activation. Note that we are not using maxpool or skip connections as we found that

they degraded the performance. We apply softmax activation function across all agents for

every item to ensure each item is allocated exactly once, i.e., ∀j ∈M
∑

i∈N Aw
i ({j}) = 1.

The final output represents the probability with which agent i receives item j. Using an

FCN, we have a generalized network for n ⊗m; however, learning EEF1 is not easy. We

need to learn integral variables, while Neural Networks are known for learning continuous

output. We describe these challenges next.

Figure 5.1: EEF1-NN Architecture

5.4.4 Training Details

Integral Allocations. The global optima of the optimization problem in Eq. 5.3 might

lie in a continuous allocation setting, i.e., similar to allocating divisible items. If a network

learns to distribute an item equally among all agents, then the gradient vanishes. Assigning
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an equal partition of each item is indeed an optimum. Converting these non-integral

allocation to integral is non-trivial. Hence we set a temperature parameter T in the softmax

layer of the network to prevent getting stuck at such optima. Let oj = {oj1 , . . . , ojn} denote

the output of our network before the final layer. The final allocation for agent i is given

by, Aw
i ({j}) = softmax(oji) = e

oji
/T∑n

k=1 e
ojk

/T which represents the probability of assigning

item j to all the agents. It is common to start with a large T for initial exploration and

gradually reduce T to reach the global optima. While training, when we set T to 1, we get

fractional allocations. As we decrease the value of T , the network outputs allocation close

to discrete. The approach we want is while training, allocation output is almost discrete,

but not exactly discrete. When we keep the value too low, the output is exact discrete

allocations, and there is no learning because of the vanishing gradients. We appropriately

choose T based on our experiments. Once the network learns, we set the parameter low

enough to ensure discrete allocations.

Inefficient Local Optima. Due to the low T value, the training of EEF1-NN is highly

unstable and often gets stuck at inefficient local optima. To overcome this, we use the

technique of Bootstrap Aggregation or Bagging. It combines the predictions from multiple

classifiers to produce a single classifier. We train multiple weak networks with varied hyper-

parameters on the same data set, capturing different sets of local optima. While testing,

the final allocation is aggregated from these networks. We pass a test sample through

all networks and select the allocation that is EF1 with maximum USW. In total, we bag

seven networks with varied λ ∈ [0.1, 2] for increased performance. We further analyze how

Bagging affects our results in the ablation study.

We implement EEF1-NN using PyTorch. We initialize the network weights using Xavier

Initialization [80]. To train, we use Adam Optimizer [95] with learning rate 0.001 for 1000

epochs with T = 0.01. We use a batch size of 256 samples. We sample valuations from

U [0, 1] (goods), U [−1, 0] (chores) and U [−1, 1] (combination). We sample 150k training

data for both 10 ⊗ 20 and 13 ⊗ 26 for goods, chores, and combinations, so in total, we
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have 300k training samples, and we sample 10k testing samples for each setting. We train

seven networks with varied λ ∈ [0.1, 2] and bag them for enhanced performance. The

training process takes 5-6 hours to train a single network using GPU. We are training the

network for 10 ⊗ 20 and 13 ⊗ 26. however, we show our test results for various n ⊗ m.

We test for network performance for n ∈ [7, 15]. We also train an individual network

over different distributions such as Gaussian, Log-normal, and Exponential. We validate

EEF1-NN efficacy in the next section.

5.5 Experiments and Results

In this section, we conduct an ablation study to set appropriate hyper-parameters and

3 types of experiments showcasing performances across different item types, distributions,

and scalability. To report the network performance, we define the following two metrics:

the measure of fairness (probability of an allocation to be EF1) and the other of efficiency

(how close our social welfare is to optimal).

Evaluation Metrics.

1. αALG
EF1 - It measures the empirical probability with which an algorithm ALG outputs

EF1 allocation. That is,

αALG
EF1 =

#samples that ALG outputs as EF1

#samples outputs from ALG

αEF1 is the ratio of the number of samples that are EF1 to the total number of samples.

2. βALG
SW - It measures the ratio of expected USW of an algorithm ALG by expected USW

of MUW allocation.

βALG
SW =

Expected social welfare from ALG that outputs as EF1

Expect social welfare of MUW

Note that βALG
SW ∈ [0, 1] for goods, βALG

SW ≥ 1 for chores, and will depend on the overall

social welfare (positive/negative) for a combination of goods and chores. We will use that

notation (αEF1, βsw) to report performance.
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5.5.1 Ablation Study

Figure 5.2: Ablation Study over varied hyper-parameters

We illustrate the effect of specific hyper-parameters in the performance of EEF1-NN in

Figure 5.2. We set n = 10 goods for all the experiments. In the plots, the red line with the

label EEF1-NN denotes the αEF1 for optimal parameters. Corresponding to EEF1-NN, a

single network from this bagged network is labeled as Single Network. This Single Network

trained with six-channeled input, λ = 1, and T = 0.01 is the baseline to compare across

this ablation study. Only one parameter is changed w.r.t. the Single Network for the study.

(i) Effect of Temperature T . In Figure 5.2 (left), when T = 1, it converges to fractional

allocation represented by the blue line at the bottom of the plot. When T = 0.001 (violet

line), it is too low, and performs sub-optimally compared to single network. We also noticed

that the performance for T = 0.01 and T = 0.1 are close to each other. We set T = 0.01

for all the bagged networks in EEF1-NN.

(ii) Effect of Series of Conv-UpConv layers. We select three series of Conv-UpConv for

EEF1-NN as illustrated in Figure 5.2(left). As seen from Figure 5.2(left), a performance

increase between 1-series (green dashed line) and 2-series (red dotted line) is significant

compared to 2-series and 3-series (single network). The complexity of the network having

4-series is far more than the performance improvement.

(iii) Effect of Loss Function We empirically analyze how different envy definitions (Eq.

5.3) affect the training of EEF1-NN. As shown in Figure 5.2(left), when we train our
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network using EF, i.e., Eq. 5.1 (Single Network, the network performs significantly better

than when trained using EF1, i.e., Eq.5.2 (orange dashed line). For example, for 10⊗ 20,

the performance of Single Network is (0.3358,17.9611), whereas the performance of the

EF1 trained network is (0.1530,17.8708).

iv) Number of Input Channels. To enhance our network performance, we experimented

with different channel inputs. For 2-channeled input, we set the first channel of in-

put tensor as the valuation and the second to X. Like 6-channeled input, we expand

X to 11 channels. As shown in Figure 5.2(right), the performance of a 1-channeled

network is (0.2113, 17.8976), 2-channeled network is (0.2365, 17.8991), Single Network is

(0.3358, 17.9611), and 11-channeled network is (0.3925, 17.9395). The network cannot be

generalized for 11-channeled.

v) Effect of Bagging. We bag different combinations of networks, each trained for varied

λ in Figure 5.2(right). The more the λ, the more penalty is given to envy. When λ is too

small, the network learns a more efficient but less fair allocation. As we increase λ up to

a certain value, the network learns less efficient but more fair allocations. We observed

that varying λ results in converging to the different optimum. We bagged seven networks

trained with λ ∈ [0.1, 2]. Bagging (EEF1-NN) outperforms the performance of a single

network.

5.5.2 Experiment Details and Observations

We conduct three types of experiments, Exp1: Different kinds of resources, Exp2:

Input distributions, and Exp3: Scalability. Since approaches in [16, 49] are exponential,

we cannot report results on our experimentation configuration. We compare EEF1-NN

with the following existing methods,

• MUW- We compare our results with MUW since we don’t have EEF1. Note that

EEF1-NN welfare is close to MUW; we can say it is also close to EEF1.
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Figure 5.3: Exp1 (n = 10, Uniform Distribution)

• Round Robin (RR)- [55] finds EF1 for goods or chores. Double Round Robin (D-RR)

[13] finds EF1 for the combination of goods and chores.

• Constrained Round Robin (CRR)- We implement CRR [17] to find RB sequences

to increase efficiency. An RB sequence for goods.

EXP1: Performance across differed resources for Uniform Distribution. For

n = 10, we compare αEF1 in Figure 5.3 (a1, b1, c1) and βSW in Figure 5.3 (a2, b2, c2).

As m increases, all the approaches move closer to EEF1. We observe that MUW (blue

dotted line) converges towards EEF1 much faster for chores or combinations than goods.

While RR converges to EEF1 much faster in goods compared to chores or combinations.

We discuss this convergence in detail in Table 5.1. We observe that EEF1-NN consistently

has better αEF1 than MUW and βsw than RR/CRR. We observe that αEEF1−NN
EF1 is close

to 1 after a certain m. At the same time, EEF1-NN is far more efficient than RR. (Fig 5.3

(a2,b2,c2)). Note that the CRR is only for goods. We observe that compared to CRR,

EEF1-NN obtains marginally better βSW , in Figure 5.3(a2).

EXP2: Performance across different distributions. We provide the performance of

EEF1-NN when the valuations are sampled from different distributions such as Gaussian
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(µ=0.5,σ=1) in Fig 5.4(a1, a2), Log-normal (µ = 0.5,σ=1) in Fig 5.4(b1, b2), and Expo-

nential (λ = 1) in Fig 5.4(c1, c2). We observe that in all three αEEF1−NN
EF1 > 0.99 and

βEEF1−NN
SW > 0.99 for m ≥ 40 in Figure 5.4.

EXP3: Scalability to larger number of agents. EEF1-NN is trained only for 10⊗20

and 13 ⊗ 26. As we have seen in the previous results and in Figure 5.5, the performance

scales across varying m and n seamlessly. We provide the performance of EEF1-NN when

n = 7, 12, 14 in Figure 5.53. We observe that αEEF1−NN
EF1 also scales appropriately, is close

to optimal, and is way better than αMUW
EF1 . We observe that there is a drop in αEEF1−NN

EF1

values, especially for smaller values of m as compared to the performance with n = 10

(Figure 5.3). It is still close to optimal and is way better than αMUW
EF1 . We observe that

the βEEF1−NN
SW in Figure 5.5(a2, b2 c2) for goods is comparable to the performance for

n = 10. But the efficiency drops for chores Fig 5.5(b2) although it performs better than

βRR
SW .

However, for smaller n, we can similarly train a network with fewer layers. Similarly,

we observe the results for n = 13 for Uniform distribution. MUW allocations are likely

to be EF1 when m > 650 for goods, i.e., αMUW
EF1 = 0.945 for m = 650, when m ≥ 190 for

chores, i.e. αMUW
EF1 is more than 0.99. For goods, in Figure 5.5(a1), we observe that we get

αEEF1−NN
EF1 almost 0.99 for m ≥ 100. In Figure 5.5(a2), we observe that βRR

EF1 is almost

0.99 for m ≥ 200, and βRR
EF1 is almost 0.99 for m ≥ 120 while βEEF1−NN

EF1 is almost 0.99 for

m ≥ 30. For chores, in Figure 5.5(b1) we observe that we get αEEF1−NN
EF1 almost 0.99 for

m ≥ 60. In Figure 5.5(b2), we observe βRR
EF1 is almost 1.01 for m > 200 while βEEF1−NN

EF1 is

almost 1.01 for m > 100. Similarly, we plot results for n = 14 goods in Figure 5.5(c1) and

5.5(c2), αEEF1−NN
EF1 is almost 0.99 for m ≥ 120 and βEEF1−NN

sw is almost 0.99 for m ≥ 30.

For combination, in Figure 5.5(31) we observe that we get αEEF1−NN
EF1 almost 0.99 for

m ≥ 60.In Figure 5.5(32), we observe that βD−RR
EF1 is 0.96 for m = 100 while βEEF1−NN

EF1 is

almost 0.99 for m ≥ 25.

3To report performance for n ∈ [7, 9], we reduce a Conv-UpConv layer and train accordingly with 7 ⊗ 14 and
10⊗ 20 valuation profiles.
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Analysis of Convergence to EEF1 Allocations (Uniform Distribution)

Definition 5.4 (m⋆(n)). For a given n, we say an algorithm converges to EEF1 allocation

at m⋆(n) if ∀m > m⋆(n),

(i) For goods: αALG
EF1 ≥ 0.99 and βALG

sw ≥ 0.99.

(ii) For chores: αALG
EF1 ≥ 0.99, and βALG

sw ≤ 1.02.

We empirically study m⋆(n) value after which EEF1-NN, RR, and MUW start converg-

ing towards EEF1 for uniform distribution in Table 5.1. We don’t report CRR in this;

as we see fluctuations in βsw, it doesn’t increase smoothly in Figure [5.35.5]; For goods,

EEF1-NN reaches close to EEF1 faster than MUW and RR, and RR reaches close to EEF1

faster than MUW. EEF1-NN converges first, then MUW, and finally RR for chores in Table

5.1. For chores, we report the value of m⋆ for RR when βsw ≤ 1.064 since m is significantly

higher than MUW and RR, concluding that RR converges after a considerably largerm. As

m increases, αEF1, αEFX , and αEF of MUW gets closer. Note that we do not experiment

with all possible m; the actual value of m⋆(n) may be slightly different from Table 5.1. We

aim to observe a pattern among approaches to achieve EEF1. For example, for 9 × 530

goods uniform distribution, αEF1 = 0.989,αEFX = 0.9834, and αEF = 0.9834; while for

9 × 200 goods uniform distribution, αEF1 = 0.6436, αEFX = 0.5086, and αEF = 0.5032.

Note that as we do not perform experiment for all possible m, the actual value of m⋆(n)

may be slightly different from the exact point of convergence mentioned in the Table 5.1.

Our goal is to observe a pattern among approaches to compare the different approaches to

achieve EEF1.

Discussion αEEF1−NN
EF1 reaches 1 much faster than αMUW

EF1 , and βEEF1−NN
sw reaches close

to βMUW
sw much faster than RR, D-RR, CRR. EEF1-NN shows a better trade-off between

EF1 and efficiency than the existing approaches for different input distributions. We also

observe that even with training only on specific n and m along with goods or/and chores,

the performance scales for any m and a large n. We trained our network with fixed n⊗m

for goods or/and chores, it is interesting that the performance scales for any m and a
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Figure 5.4: Exp2 (n = 10, different distributions)

Figure 5.5: Exp3 (n = 7, 12, 14 goods, Uniform Distribution)

large n. For smaller n and m, one can use integer programming or any pseudo-polynomial

approach. When m >> n, we observed that MUW converges towards EEF1 faster than

RR in goods, while in chores, it’s the other way around. MUW is EF1 with very high

probability, which EEF1-NN also mimics it. We conclude that EEF1-NN effectively learns

and provides a better trade-off when m is not too large or small compared to n but is in a

specific range.
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Table 5.1: Value of m⋆(n) as different approaches converge to EEF1 allocations

n
(m) Goods (m) Chores

EEF1-NN RR MUW EEF1-NN RR MUW

7 38 159 380 44 195 112

8 46 172 450 44 240 120

9 57 186 530 53 295 130

10 70 196 610 60 340 148

11 82 206 660 68 400 160

12 94 214 740 75 455 167

13 110 220 840 83 505 180

14 134 228 940 87 565 190

5.6 Conclusion

In this chapter, we proposed a Neural Network EEF1-NN to find EEF1, an NP-hard

problem. We designed architecture and input representation combined with other training

heuristics to learn approximate EEF1 on average. We studied the effect of each proposed

constituent on performance. Our experiments demonstrated the efficacy of EEF1-NN for

different input distributions across various n and m over existing approaches. With theo-

retical limitations and the success of Neural Networks, we believe that the path of amalga-

mating deep learning and resource allocation is worth exploring further with more complex

objective functions.
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Chapter 6

Conclusion and Future Work

The distribution of goods and chores among multiple agents is a complicated issue

that has become more challenging due to technological advancements and the emergence

of autonomous agents. The primary objective of this thesis was to explore the difficulties

involved in the fair and efficient allocation of goods and chores, particularly with indivisible

items.

We began by examining the concept of fairness and its contextual nature. We explored

various fairness criteria and studied their computational complexity. We observed that

finding an exact fair allocation is NP-hard, but relaxing the fairness notion leads to the

possibility of polynomial-time algorithms. We conducted a detailed survey of the cur-

rent literature on fair division for goods or chores and the existence and computational

complexity results. We summarized the essential results in Tables 2.1 and 2.2. These

clearly indicate that there are still gaps that need to be addressed. Given the theoretical

limitations, we presented a data-driven approach that utilizes neural networks to find an

approximate fair and efficient allocation, which is an NP-hard problem. Though, in re-

cent times, there have been few attempts to learn algorithms through neural networks, the

problem we addressed is a mixed integer program, and very little work had done towards

learning algorithms for the same through a neural network. We presented a neural network
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architecture and training ideas to determine EF1 and efficient allocation approximately.

Our analysis showed the efficacy of the approach.

We also explored the problem of externalities, which occur when an agent’s utility

depends not only on the bundle they obtain but also on the bundles allocated to other

agents. We highlighted the significance of externalities in allocating necessary commodities,

particularly during the COVID-19 pandemic, when there was a strong demand for life-

supporting resources. We noted that ensuring fairness in the presence of externalities

is particularly challenging. We studied fair and efficient algorithms in the presence of

externalities and provided solutions for the same.

Future Work There are many exciting directions that one could extend the thesis. We

suggest exploring new fairness criteria and efficient algorithms suitable for different contexts

and scenarios. Another direction is designing efficient algorithms for computing approx-

imately fair allocations for a combination of indivisible goods and chores. Additionally,

we suggest studying the fairness of allocation in multi-agent systems and the interaction

between agents in decision-making. We propose investigating the impact of different types

of externalities on allocation and developing mechanisms that take them into account.

We also suggest exploring other machine learning techniques, such as reinforcement learn-

ing and deep learning, for resource allocation problems. Lastly, we propose studying the

allocation of resources in multi-agent systems with heterogeneous preferences and goals.

Overall, the fair allocation of resources is a critical issue that affects many areas of

our lives. Addressing this problem requires interdisciplinary efforts from computer science,

economics, mathematics, and other related fields. The results of this thesis provide a

stepping stone for future research to build upon and make progress toward achieving fair

and efficient allocation in practice.
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reallocation under additive and ordinal preferences”. In: (2016).

[13] Haris Aziz, Ioannis Caragiannis, and Ayumi Igarashi. “Fair allocation of combina-

tions of indivisible goods and chores”. In: (2018). url: http://arxiv.org/abs/

1807.10684.

[14] Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh. “Fair allocation

of indivisible goods and chores”. In: Autonomous Agents and Multi-Agent Systems

36.1 (2022), pp. 1–21.

[15] Haris Aziz, Serge Gaspers, Simon Mackenzie, and Toby Walsh. “Fair assignment of

indivisible objects under ordinal preferences”. In: Artificial Intelligence 227 (2015),

pp. 71–92.

[16] Haris Aziz, Xin Huang, Nicholas Mattei, and Erel Segal-Halevi. Computing Fair

Utilitarian Allocations of Indivisible Goods. Dec. 2020.

142

http://arxiv.org/abs/1807.10684
http://arxiv.org/abs/1807.10684


[17] Haris Aziz, Xin Huang, Nicholas Mattei, and Erel Segal-Halevi. “The constrained

round robin algorithm for fair and efficient allocation”. In: arXiv preprint arXiv:1908.00161

(2019).

[18] Haris Aziz, Bo Li, and Xiaowei Wu. “Strategyproof and approximately maxmin fair

share allocation of chores”. In: arXiv preprint arXiv:1905.08925 (2019).

[19] Haris Aziz and Simon Mackenzie. “A discrete and bounded envy-free cake cutting

protocol for any number of agents”. In: 2016 IEEE 57th Annual Symposium on

Foundations of Computer Science (FOCS). IEEE. 2016, pp. 416–427.
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