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Abstract

Grover’s quantum search algorithm is one of the earliest discoveries in quantum computing.
It is a fundamental algorithm that uses quantum superposition to provide a quadratic speedup
for unstructured search tasks over the best possible classical method (linear search). However,
this advantage is substantially affected due to the presence of quantum noise. Quantum noise
arises due to the interaction between quantum systems and their environments. The resultant
errors manifest between the execution of two quantum gates can be effectively modeled using
quantum channels. In this study, we look at the effect of total partial depolarizing channel
error, affecting the entire quantum register coherently with a certain probability. This modeling
approach simulates continuous noise exposure in quantum computers and the stochastic nature
of error introduction. In this scenario, implementing an error correction method is non-trivial
and costly.

Quantum theory allows for a scenario in which quantum channels, representing the flow of
quantum information, are organized in a coherent superposition of alternative orders. This
phenomenon, known as indefinite causal order, has sparked significant interest in recent years
as researchers seek to understand its implications. A quantum switch is a device that opera-
tionalizes the concept of indefinite causal order. In a quantum switch, the advantages appear
significantly due to the coherent superposition of alternative configurations of the quantum
components, which are controlled by an additional control system.

In this work, we propose a new approach to mitigate the impact of quantum noise on
Grover’s search algorithm using quantum switches. For this, we assume the resultant noise
at every iteration to be originating in discrete steps within the iteration such that it can be
modeled as a composition of two depolarising channels. In particular, we propose two theoretical
frameworks for incorporating these quantum switches in a noisy Grover’s algorithm and take
the success probability of finding g, the desired element at any given iteration, as the sole
quantifier of the switch’s action in diminishing the effect of noise in search space. In the first
framework, we apply the superposition of channels’ orders using a quantum switch and make
a measurement followed by post-selection at every iteration or application of Grover operator
G. In the second framework, we delay the measurement until the very end. In other words,
if we want to look at the quantum switch’s action at the kth step, we already have k − 1th

measurements followed by post-selections for the first framework. In contrast, we will only

vii
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have a single measurement at the end of kth iteration in the second case. The measurements we
make on the quantum switch intermittently between the iterations followed by post-selection
destroy the quantum correlations between the target input system and the control qubit. Since
these correlations are believed to capture the additional information in the combined system,
the second framework is expected to retain more information than the first framework during
the run of Grover’s Algorithm under the influence of noise.
We observe in plots that the second framework gives a significant advantage in the success
probability of Grover’s algorithm running on a search space of 24 elements or 4 qubits. Thus,
we explore the quantum switch’s potential role as a tool for maintaining quantum computing’s
promise against the challenges posed by quantum noise, marking a significant step forward in
the field of quantum computing and information theory.
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Chapter 1

Introduction

“God still has a few tricks up his sleeve”

Stephen Hawking, Does God Play Dice

“If I have seen further, it is by standing on the shoulders of Giants.”

– Isaac Newton, in a letter to Robert Hooke

1.1 Motivation

In the early inception of quantum computing, pivotal contributions were made by Paul Be-
nioff and Richard Feynman, whose work laid the foundational stones for this revolutionary field.
In the 1980s, Benioff was the first to propose a quantum mechanical model of a Turing machine
[1], conceptualizing the idea of quantum computation in a formal, mathematical framework.
This idea opened avenues for considering computation in the quantum realm, fundamentally
differing from the conventional classical computational paradigms. Concurrently, Feynman ar-
ticulated the intrinsic limitations of classical computers in simulating quantum phenomena in
his 1981 talk [2]. He proposed the idea of a quantum computer, a machine that could simulate
quantum systems efficiently and tackle problems beyond the reach of the classical model of com-
putation. Since then, quantum computing has evolved dramatically from theoretical musings to
a tangible research domain. Moreover, it was anticipated that around the early 2020s, Moore’s
Law would start to intersect with quantum principles. This is primarily due to the onset of
quantum effects as the scale of integration in conventional semiconductor chips is pushed to its
limits. Quantum computing stands as a promising candidate for future technological advance-
ment, offering the potential for significant speedup in various tasks over classical computing.

1
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The present quantum era is dominantly characterized by noisy intermediate-scale quantum
(NISQ) devices [3], a term coined and popularised by John Preskill [4], a class of quantum com-
puters that operate on a modest number of qubits, ranging from a few tens to a few hundred
and are constrained by operational noise and errors. Unlike fault-tolerant quantum computing
paradigms, which demand many logical and ancillary qubits to implement error corrections,
these devices operate in a regime where error correction is either minimal or absent, which
makes them susceptible to various types of noise, such as phase-flip, bit-flip, and depolarizing
noise. Owing to technological limitations, they exhibit short coherence times, often on the
order of microseconds, further constraining the computational depth of quantum circuits that
can be implemented effectively. NISQ technology serves as an intermediate milestone in the
evolutionary roadmap of quantum computing as they have promising practical applications
even with their imperfections, as they offer enough computational power to harness quantum
phenomena, explore specific quantum algorithms, and provide insights into the challenges and
potentials of scaling quantum systems. Noise can diminish the quantum advantage of quantum
algorithms over classical computers. Especially for algorithms that rely on iterative processes,
like Grover’s algorithm, noise can be particularly detrimental.

In classical computing, searching through an unsorted database of N items requires queries
in the order of Ω(N)1. Ideally, Grover’s search algorithm can offer a quadratic speedup over its
classical counterpart for unstructured search problems. Grover’s search algorithm uses quan-
tum superposition to achieve this task in order of O(

√
N)2 queries, demonstrating a quadratic

speedup over the upper bound for linear search. It relies on iteratively refining states to arrive at
a solution. However, its repetitive nature also magnifies errors’ disadvantages, as every iteration
in Grover’s search algorithm presents opportunities for errors to be introduced or compounded,
leading to a higher chance of getting incorrect outputs.

Researchers in the field of quantum computing are always on the lookout for different approaches
to overcome these challenges posed by quantum noise. Recently, the potential of indefinite
causal order (ICO) has captured significant attention as a resource for enhancing computational
[5] and communication [6] capabilities under noisy scenarios. This novel concept leverages the
peculiarities of quantum theory by putting quantum processes in superposition. A quantum
switch is a quantum device that operationalizes the concept of ICO. Recent advancements have
highlighted the prospect of using quantum switches to provide quantum advantages across a
diverse array of tasks. Thus, our primary objective in this thesis is to investigate the application
of quantum switches as a means of noise mitigation in noisy Grover’s search algorithm.

1Describes a lower bound on the time complexity (best possible worst-case scenario), showing the minimum
amount of time an algorithm must take to complete as a function of the input size n.

2Describes an upper bound on the time complexity (worst-case scenario), showing the maximum amount of
time an algorithm can take to complete as a function of the input size n.
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1.2 Prior Work

A focus has been placed on the implications of noise on diverse quantum properties, ranging
from entanglement [7][8] to broader correlation aspects [9], both in closed and open quantum
systems [10]. Specifically, there have been significant insights into the influence of depolarizing
channels, representing noise, on Grover’s search algorithm [11, 12]. The algorithm’s perfor-
mance is greatly affected in cases involving imperfect oracles [13, 14] or when it encounters
environmental quantum noise [15]. This reduction in efficiency highlights the algorithm’s sen-
sitivity to external factors. While NISQ devices are inherently noisy, research is ongoing to
mitigate the effects of noise. In particular, studies were reported on the effects of the depolar-
izing channel noise as a manifestation of noise on the Grover Search algorithm [11, 12]. Despite
the challenges posed by noise in quantum search algorithms, several strategies have been pro-
posed to maintain their quantum superiority [16, 17, 18].

Current research in quantum information theory is increasingly focusing on the concept of
indefinite causal order (ICO) in quantum systems and its potential as a resource for various
information processing tasks. Initially proposed by Hardy [19, 20] and applied in information
theory by Chiribella, D’Ariano, Perinotti, and Valiron [21], this concept led to the development
of a quantum switch. This switch uses an auxiliary system to control the order of two opera-
tions, E1 and E2, on a quantum state ρ, rendering the order indefinite. Oreshkov [22] expanded
this idea using process matrix formalism, creating a more comprehensive framework for causal
indefiniteness. This approach has applications in areas such as quantum channel probing [23],
nonlocal games [22], quantum metrology [24], quantum communication [25, 26, 27, 28, 29],
reducing quantum communication complexity [6], and enhancing quantum computing [30, 31]
and thermodynamics [32]. A notable recent application has been in transforming absolutely
separable states into resourceful states [33]. Experimental validation of the practicality and
benefits of indefinite causal order has also been recently achieved [34, 35, 36]. Apart from po-
tential applications, it is also noteworthy that quantum switches have been studied in several
configurations. Sazim, Sedlak, Singh, and Pati [37] studied the effects on quantum communica-
tion capacity with n channels in ICO. The quantum switch has also been applied on channels
put in series and in [5], although the calculations were simplified by only considering the re-
verse and the forward order as in the case of Frey [38]. There has been recent work by Das and
Bandyopadhyay [39] using the quantum switches in a hierarchical configuration implementing
a switch of switches.
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1.3 Research Focus and Contributions

The thesis aims to investigate how the concept of indefinite causal order can be effectively
harnessed to mitigate the effects of noise that accumulates in Grover’s search algorithm across
iterations and reduces its success probability at any given iteration. A systematic and compre-
hensive methodology is implemented in this thesis to address the problem of noise in Grover’s
search algorithm and explore the potential effectiveness of applying quantum switches to mit-
igate that noise. We also briefly try to reason and uncover the fundamental mechanisms un-
derlying noise reduction through this novel approach. Theoretical frameworks and principles
related to quantum switches and the quantum search algorithm will be studied and analyzed.
A noise model using a depolarising channel will be developed to describe the evolution of the
noisy quantum search algorithm. Computational calculations will be run to calculate the suc-
cess probability numerically and assess the performance of Grover’s search algorithms under
different noise conditions, thus investigating the effectiveness of noise mitigation using quantum
switches.

The study on the use of quantum switches to reduce noise in the quantum search algorithm
has profound implications for the field of quantum computing. If successful, it could lead to
the development of more resilient and error-tolerant quantum algorithms, particularly those
that are affected by noise accumulation during iterations. This could unlock the potential for
complex computational tasks that were previously impeded by noise and errors. The results of
this research can also contribute to the development of strategies to enhance the performance
and reliability of quantum computing systems for practical applications.

In this study, we explore a novel approach involving the use of a quantum switch to potentially
lessen the adverse effects of noise, modeled by a depolarizing channel, on the success proba-
bility of the Grover search algorithm. We utilize success probability as a measure to gauge
the switch’s ability to tolerate errors before the algorithm loses its speedup over its classical
counterparts. We investigate two specific frameworks: one involves measuring at the end of
each iteration to trace out the switch, and the other employs a register of switches, allowing
the input state to pass through each iteration with different switches applied until the end
without intermediate measurements. Our findings indicate that the second approach more ef-
fectively preserves the algorithm’s advantage in noisy conditions. The results demonstrate that
the quantum switch can significantly counteract the noise accumulation in the algorithm, thus
maintaining its effectiveness for a longer duration.
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1.4 Outline

The rest of the thesis is structured as follows. Chapter 2, titled ”Foundations and Pre-
liminaries,” lays the foundations of closed and open quantum theory, quantum information
and computation, and mathematical prerequisites that are indispensable for comprehending
the studies conducted. Chapter 3, titled ”Noise in Quantum Search Algorithm,” dives deeper
into two themes: Noise and Grover’s Search Algorithm. It starts by extending the theory of
open quantum systems introduced in the previous chapter. It arrives at quantum channels and
how they can be used to model noise, explicitly focusing on depolarising channels. We talk
briefly about quantum algorithms before focusing our attention specifically on Grover’s search
algorithm and the effect of noise on it.

Chapter 4, aptly named ”Applying Quantum Switches to Noisy Grover’s Search Algorithm,”
contains the thesis’s core original results and analyses, where we develop and study two frame-
works that involving quantum switches applied to noise in Grover search iterations. We describe
these frameworks and their respective effect on minimizing the impact of noise on the prob-
ability of finding the desired element in an unstructured database successfully. Chapter 5,
titled ”Conclusion and Future Works,” concludes the thesis by summarising our findings and
mentioning the openings of different possibilities for further research endeavors based on our
findings.
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Chapter 2

Foundations and Preliminaries

“It is impossible to communicate honestly the beauty of the laws of nature so that people can really

feel it if people do not have a thorough knowledge of mathematics. I’m sorry, but it seems to be so”

“I am going to tell you what nature behaves like. If you will simply admit that maybe she does behave

like this, you will find her a delightful, entrancing thing.”
– Richard P. Feynman, The Character of Physical Law1

This chapter aims to provide an exhaustive but brief introduction to the foundational con-
cepts essential for understanding the rest of the thesis. It starts by talking about some historical
contexts that led to the development of the quantum mechanical framework. We specifically
talk about a pivotal experiment, the Stern-Gerlach experiment, to highlight the inadequacies
and some salient features of quantum mechanics. The following section delves into the core
mathematical structures and principles that are fundamental to the mechanics of quantum sys-
tems, presenting an organized and comprehensive overview of these critical concepts. Before
diving into quantum theory and its postulates, we revisit concepts in linear algebra. Continuing,
the chapter delves into the core hypotheses that form the foundation of quantum mechanics.

2.1 Historical Overview

The first quarter of the 20th century marked a revolutionary era in natural sciences, char-
acterized by a radical shift from classical to quantum physics. While classical physics had been
the established framework for understanding the macroscopic aspects of our world, experiments
like the Compton effect, the Franck-Hertz experiment, and the Davisson-Germer-Thomson ex-
periment began to reveal its limitations. Moreover, some key theoretical developments, such as
Planck’s radiation law, Einstein’s explanation of the photoelectric effect, and Bohr’s model of

1The lectures were delivered as part of the Messenger Lectures series. The quotes are from The Relation of
Mathematics and Physics and Probability and Uncertainty: the quantum mechanical view of nature respectively.

6

https://www.feynmanlectures.caltech.edu/messenger.html
https://www.youtube.com/watch?v=zesyeIvbjLQ
https://www.youtube.com/watch?v=zesyeIvbjLQ
https://youtu.be/Ja0HSFj8Imc?t=495


the atom, suggested that classical theories were insufficient at the atomic scale. This led to a
gradual but inevitable retreat from classical concepts. With its deterministic and continuous
nature, classical physics failed to explain phenomena at the atomic and subatomic levels. It
led to the emergence of quantum mechanics, a theory vastly more encompassing and applicable
than its predecessor, that fundamentally altered our understanding of the microscopic world.

The transition from classical to quantum mechanics was neither immediate nor straight-
forward. It was a journey marked by trial and error, with great physicists like Heisenberg,
Schrödinger, and Dirac contributing to the formulation of quantum mechanics. Unlike classical
physics, quantum mechanics introduced concepts such as quantization, probability amplitude,
and duality - initially met with skepticism but eventually became the cornerstone of modern
physics.
In our quest to grasp the ”quantum-mechanical way of thinking,” we begin with the Stern-
Gerlach experiment - an experiment that starkly illustrates the inadequacy of classical concepts.

2.1.1 Stern-Gerlach experiment

In 1921, Otto Stern envisioned a pioneering concept for an experiment that would later be
actualized in collaboration with Walther Gerlach in Frankfurt. The Stern-Gerlach experiment
[40] is a fundamental example of the deviation from classical physics and the necessity for an al-
ternative theoretical framework. The experiment and its implications, which were instrumental
in the advent of quantum theory, are elaborated below.

Figure 2.1: Experimental Setup for Stern-Gerlach Experiment
By Tatoute - Own work, CC BY-SA 4.0
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The experimental arrangement is depicted in fig.2.1. An oven (1) heats silver (Ag) atoms, which
escape through an aperture. These atoms traverse a collimator (2), followed by exposure to
a non-uniform magnetic field characterized by a gradient along the ẑ-axis (3) in the diagram.
The impact of this magnetic field on the atoms will be discussed subsequently. Upon traversing
the magnetic field, the atoms encounter a detection screen, recording their impact locations,
which indicate the deflection they experienced due to the magnetic field.
Utilizing classical physics as a framework, one might hypothesize the following. In Ag atoms,
out of 47 electrons, 46 form a symmetric cloud with no net angular momentum, but the 47th
electron’s unpaired spin results in a non-zero magnetic moment µ, related to the spin S of the
47th electron as µ ∝ −S. The magnetic moment’s interaction energy with the magnetic field is
given by −µ ·B, leading to a force in the ẑ-direction described by:

Fz = ∂

∂z
(µ ·B) ≈ µz

∂Bz

∂z

The magnetic moment’s ẑ-component, µz, determines the force magnitude experienced by the
atom in the field. With the magnetic field intensifying upwards and its direction being negative
ẑ, the atoms are subjected to forces based on the orientation and magnitude of µz.
Classical physics would predict a continuous distribution of atom impacts along the z-axis on the
detection screen (4). Contrary to this, the experimental results showed discrete impact points
(5), indicating the quantization of magnetic moments in the ẑ-direction. The observed deflection
pattern of the atomic beam, as shown in fig.2.1, remains consistent across different magnetic
field orientations. The beam bifurcates into two distinct spots aligned with the magnet’s poles,
demonstrating the atoms’ quantum properties. Specifically, atoms deflected upward, towards
the north pole, are labeled as Z+, and those deflected downward, towards the south pole,
as Z−. This labeling signifies the atoms’ alignment with the magnetic field’s orientation and
discrete landing positions.
In subsequent experiments, as shown in fig.2.2, various configurations of sequential Stern-
Gerlach apparatus were used to investigate this phenomenon further. These experiments led to
two critical insights:

1. Using two ẑ-oriented Stern-Gerlach devices in sequence, with only the Z+ beam from the
first directed into the second, confirmed the persistence of the Z+ state.

2. An arrangement of a ẑ-oriented followed by an ẑ-oriented Stern-Gerlach device revealed
that atoms initially in the Z+ state could exhibit both X+ and X− states.

3. The most intriguing setup involved three devices in ẑ-x̂-ẑ orientation. Atoms initially
filtered as Z+ and then as X+ showed both Z+ and Z− outcomes in the final stage,
suggesting the collapse of quantum states upon measurement.
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Figure 2.2: Sequential Stern-Gerlach experiments: measurements alter states
Own work drawn using asymptote by Francesco Versaci

Insights from the Stern-Gerlach Experiment

The Stern-Gerlach experiment offers several key insights into the nature of quantum me-
chanics.
Quantization of Spin Angular Momentum Firstly, it demonstrates that the spin angular
momentum of particles is quantized. Had the spin angular momentum been continuous, a var-
ied range of deflections would have resulted in a continuous distribution on the detector instead
of discrete spots. Instead, we observe that atoms, upon passing through the experiment’s ap-
paratus, impacted only two specific regions on the detector.
Quantum Superposition of Spin States Consider the modified Stern-Gerlach setup as de-
picted in fig.2.2(b). The splitting of the atom stream into +x̂ and −x̂ directions when subjected
to the second Stern-Gerlach apparatus oriented along the x̂ axis, substantiates the existence
of spin in a superposition state, revealing the probabilistic nature of quantum measurement
outcomes.
Impact of Measurement on Quantum State The third vital conclusion pertains to the
influence of measurement on quantum states. Considering the experiment with three sequen-
tial measurements as shown in fig.2.2(c), it becomes evident that each measurement along a
particular axis (first ẑ, then x̂, and finally ẑ again) alters the quantum state. Interestingly, the
final measurement results in a split along both +ẑ and −ẑ directions, indicating that the prior
measurement along the x̂ axis has perturbed the initially homogeneous quantum state. This
phenomenon also illustrates the uncertainty principle, highlighting the non-commutativity of
spin measurements along different axes.
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The Stern-Gerlach experiment is a paradigmatic example of how empirical evidence can com-
pel us to revise our fundamental postulates, leading to the development of physical laws that
embrace the peculiarities of the quantum realm.

Quantum mechanics has an element of unpredictability, where knowing a particle’s wave
function does not guarantee predicting its exact behavior. Consider the act of measuring a
particle’s position and finding it at a specific location, say point C. This scenario raises an
intriguing question: Was the particle actually at point C before we measured it?2 Historically,
this question has opened up three main lines of thought. The realist approach suggests that
the particle was indeed at point C all along, hinting that quantum mechanics might not tell the
whole story by failing to predict the particle’s exact location. Advocates of this view believe
in the concept of hidden variables that could fill in the gaps in our understanding. On the
other hand, the Copenhagen interpretation, a cornerstone of orthodox quantum mechanics,
argues that the particle did not have a definite position until it was measured. This perspective
has become the go-to explanation for many physicists, suggesting that the act of measurement
itself brings the particle’s position into reality, confined within the probabilistic bounds set by
its wave function. Then there is the agnostic viewpoint, which sidesteps making any concrete
claims about the particle’s state before measurement, considering such discussions to be more
philosophical than scientific.

However, Bell’s groundbreaking work in 1964 has strongly backed the Copenhagen interpre-
tation, leading to a consensus that particles do not possess definite attributes until they are
observed. This exploration of quantum uncertainty and the discussions surrounding the nature
of quantum states highlight why the Copenhagen interpretation has risen to prominence. It
elegantly bridges the gap between the quantum world’s inherent mysteries and the concrete
outcomes we observe in experiments, viewing the collapse of the wave function as an integral
part of measuring a particle. Pioneered by giants like Bohr and Heisenberg, this interpretation
has profoundly influenced how we understand and engage with quantum mechanics. In this
thesis, we are not looking to question the Copenhagen interpretation but rather to build on the
solid foundation it provides as we venture further into the quantum domain.

2.2 Mathematical Preliminaries

Quantum Computing and Quantum Information Theory are deeply rooted in the principles of
linear algebra and functional analysis. The mathematical formalism introduced in this section,

2When introducing quantum mechanics to an audience with basic knowledge of units and measurement, one
can start with this famous example from the textbook of Griffiths and Schroeter, which is also quoted in a lovely
article by Mermin titled ”Is the moon there when nobody looks?” in Physics Today. This example is a thought
experiment that encourages one to break from the classical approach of measurement and state. It also invites
us to ponder the philosophical and quantum-mechanical aspects of reality. This was also, incidentally, my first
introduction to the quantum mechanical way of thinking
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Figure 2.3: Wave collapse on observing the particle at point C

especially the concept of Hilbert spaces, is integral to the mathematical apparatus in quantum
theory, providing a rigorous foundation for describing quantum systems.[44, 45]

2.2.1 Vector Spaces

A field is a set F equipped with two operations, addition and multiplication, that satisfies
the properties of closure, associativity, commutativity, the existence of identity elements (0 for
addition, 1 for multiplication, where 0 ̸= 1), the existence of additive inverses, the existence of
multiplicative inverses for all non-zero elements, and the distributive property of multiplication
over addition. A vector space V is a set of objects v⃗ called vectors, defined over a field F of
scalars, and is equipped with two operations, satisfying the following rules:

• Vector Addition: For all u⃗, v⃗ ∈ V, u⃗ + v⃗ ∈ V.

1. Associativity: For all u⃗, v⃗, w⃗ ∈ V, (u⃗ + v⃗) + w⃗ = u⃗ + (v⃗ + w⃗).

2. Commutativity: For all u⃗, v⃗ ∈ V, u⃗ + v⃗ = v⃗ + u⃗.

3. Additive Identity: There exists a vector 0⃗ ∈ V such that v⃗ + 0⃗ = v⃗ for every
v⃗ ∈ V.

4. Additive Inverse: For every v⃗ ∈ V, there exists a vector −v⃗ ∈ V such that
v⃗ + (−v⃗) = 0⃗.

• Scalar Multiplication For every scalar c ∈ F and vector v⃗ ∈ V, cv⃗ ∈ V.

1. Distributivity over Vector Addition: For all c ∈ F and u⃗, v⃗ ∈ V, c(u⃗ + v⃗) =
cu⃗ + cv⃗.

2. Distributivity over Field Addition: For all c, d ∈ F and v⃗ ∈ V, (c+d)v⃗ = cv⃗+dv⃗.

3. Associativity: For all c, d ∈ F and v⃗ ∈ V, c(dv⃗) = (cd)v⃗.

4. Multiplicative Identity: For every v⃗ ∈ V, 1v⃗ = v⃗, where 1 is the multiplicative
identity in F .
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Vector spaces over C are called complex vector spaces, and those over R are real vector spaces.
A subset W of V (W ⊆ V) is referred to as a (linear) subspace if it, too, forms a vector space
under these operations.

Bases and linear independence

A collection of vectors {v⃗1, v⃗2, . . . , v⃗m} ∈ V is termed linearly independent, if ∑m
i=1 aiv⃗i = 0

implies that each scalar ai is zero.
The span of a set of vectors {v⃗1, v⃗2, . . . , v⃗m} ⊆ V in the field F is the collection of all vectors
that can be represented as a linear combination of these vectors, i.e., ∑m

i=1 aiv⃗i with ai ∈ F .
A basis of V is a linearly independent set B whose span is the entire space V. The dimension
d of V is defined as the number of elements in any basis of V. Given an ordered basis B =
{v⃗1, v⃗2, . . . , v⃗d}, any vector w⃗ ∈ V can be uniquely expressed as a linear combination ∑d

i=1wiv⃗i

and represented as (w1, w2, . . . , wd).

2.2.2 Inner Product Spaces

An inner product on a vector space V is a sesquilinear (linear in one argument, and the
linearity of the other argument is modified by complex conjugation) function ⟨·, ·⟩ from V × V
to field F of C or R, that maps every ordered pair of vectors v⃗, w⃗ ∈ V, to a scalar ⟨v⃗, w⃗⟩ ∈ F
satisfying:

1. Positive Definiteness: For all v⃗ ∈ V, ⟨v⃗, v⃗⟩ ≥ 0. And ⟨v⃗, v⃗⟩ = 0 if and only if v⃗ = 0⃗.

2. Linearity in second element: ∀u⃗, v⃗, w⃗ ∈ V, ⟨v⃗, u⃗ + w⃗⟩ = ⟨v⃗, u⃗⟩ + ⟨v⃗, w⃗⟩. And ∀c ∈ F ,
⟨u⃗, cv⃗⟩ = c⟨u⃗, v⃗⟩.

3. Conjugate Symmetry: For all u⃗, v⃗ ∈ V, ⟨u⃗, v⃗⟩ = (⟨v⃗, u⃗⟩)∗, where ∗ denotes complex
conjugate.

We denote positive square root of ⟨v⃗, v⃗⟩ by ||v⃗||, called the norm of v⃗ with respect to the
inner product. This norm corresponds to the Euclidean norm and is often referred to as the
”magnitude” of the vector. A unit vector is obtained by dividing a non-zero vector by its
norm. A collection of vectors {v⃗i} is termed orthogonal if ⟨v⃗i, v⃗j⟩ = 0 for i ̸= j. If these vectors
also have a norm of 1, the set is classified as orthonormal.
An inner product space is a vector space V equipped with an inner product.

Dirac Notation and Dual Spaces

Since quantum mechanics is the primary focus of this thesis, we will introduce Dirac notation,
also known as bra-ket notation, introduced by physicist Paul Dirac in his 1939 work [46]. It is a
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standard notation for linear algebraic objects in complex vector spaces. In quantum mechanics,
vectors v⃗ within a vector space are conventionally denoted as |v⟩, often referred to as a ket
vector. We can also denote the inner product as ⟨|v⟩ , |w⟩⟩, though the standard quantum
mechanical notation for the inner product is written as ⟨v|w⟩, which justifies the terminology
of the notation. 3. Here, |v⟩ and |w⟩ are vectors belonging to an inner product space, and ⟨v|
is what we call a dual vector, often referred to as a bra vector. This concept of dual vectors
is commonly referred to as linear functionals because, ⟨v| is a linear function ⟨v| : V → F ,
mapping a vector |w⟩ from inner product space V to a scalar ⟨v|w⟩ ∈ F , field of C or R.

⟨v|(|w⟩) ≡ ⟨|v⟩, |w⟩⟩ ≡ ⟨v|w⟩ (2.1)

Matrix Representation of Vectors

Given a vector |v⟩ ∈ V of dimension d, and an orthonormal basis, {|vi⟩} where i = 1 . . . d,
|v⟩ can be expressed in terms of the basis vectors as:

|v⟩ =
∑

i

ci|vi⟩, where ci = ⟨vi|v⟩. (2.2)

Once we establish such an orthonormal basis, we observe that every vector within this vector
space is a tuple of scalars ci ∈ F (often C or R) of size d. We conventionally write these as
d×1 column matrices. E.g., consider the vector space C2 over C. An orthonormal basis for this
space is given by the vectors |v1⟩ and |v2⟩ and any vector |v⟩ = (a1, a2) in C2 can be expressed
as a linear combination of |v1⟩ and |v2⟩ as:

|v⟩ = a1|v1⟩ + a2|v2⟩ =
(
a1

a2

)
where, |v1⟩ =

(
1
0

)
|v2⟩ =

(
0
1

)
(2.3)

We can think of dual vectors as row matrices.

2.2.3 Linear Operators and Matrix Transformations

Linear operators are functions A : V → W that map vectors from one space to another while
preserving linearity.

A
(∑

i

ci|vi⟩
)

=
∑

i

ciA|vi⟩ (2.4)

A(|v⟩) is often shortened as A|v⟩ and a mapping from V to itself is simply said to be a linear
operator A on V. For linear operators, A : V → W and B : W → X , their composition BA is
defined as: (BA)(|v⟩) ≡ B(A(|v⟩)). BA|v⟩ is used as shorthand for (BA)(|v⟩).

3The term ”bra-ket” is derived from the word ”bracket,” where a ”bra” ⟨ϕ| and a ”ket” |ψ⟩ form a complete
bracket ⟨ϕ|ψ⟩
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2.2.3.1 Matrix Representation of Linear Operators

Given a linear operator A : V = Fn → W = Fm both defined over F , with bases
|v1⟩, . . . , |vm⟩ and |w1⟩, . . . , |wn⟩ respectively, the operator can be represented as an m × n

matrix A with entries Aij and its action on on a vector follows matrix multiplication rules:

A|vj⟩ =
∑

i

Aij |wi⟩ (2.5)

Given the action of a linear operator X on C2, with basis vectors |0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
.

X|0⟩ = X11|0⟩ +X21|1⟩ = |1⟩ ⇒ X11 = 0, X21 = 1
X|1⟩ = X12|0⟩ +X22|1⟩ = |0⟩ ⇒ X12 = 1, X22 = 0

Therefore, the matrix representation of X is
(

0 1
1 0

)
, which is also called a Pauli-X matrix,

named after Wolfgang Pauli, and belongs to a family of matrices that represent linear operators
of significance, as discussed in later section 2.5.5.1. This matrix-operator equivalence allows for
a seamless interchange between concepts from matrix theory and operator theory, enriching the
understanding of linear transformations in vector spaces.

2.2.3.2 Eigenvalues and Eigenvectors

For a linear operator A on V, an eigenvector |v⟩ ∈ V of A is defined as a vector which, when
acted upon by A, results in a scalar multiple of itself. This relationship is expressed as:

A|v⟩ = λ|v⟩, (2.6)

where λ is the eigenvalue corresponding to the eigenvector |v⟩. Geometrically, eigenvectors
of A are vectors that undergo linear transformation exclusively in the form of elongation or
contraction, with the scaling factor being the corresponding eigenvalue. 4

2.2.3.3 Commutator of two operators

The commutator for a pair of linear operators A and B is defined as C = [A,B] = AB−BA.
Operators A and B are considered to commute if and only if their commutator [A,B] = 0.
Conversely, a non-zero commutator indicates non-commutativity and serves as a quantifier for
it. The properties of commutators include:

1. The distributive property over product operations holds, such that [A,BC] = [A,B]C +
B[A,C] and similarly, [AB,C] = A[B,C] + [A,C]B.

4explained beautifully with simulations in this playlist by 3b1b: Essence of Linear Algebra
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2. Self-commutation is always zero, [A,A] = 0, and this extends to powers of the operator,
implying [A,An] = 0 for any positive integer n.

2.2.3.4 Linear Transpose of a matrix and Adjoint of an operator

For a matrix A, its transpose AT is obtained by flipping A over its diagonal. Key properties
include: (AT )T = A, (A + B)T = AT + BT , (cA)T = cAT and, (AB)T = BT · AT for matrices
A,B and scalar c. We can extend this to the concept of an adjoint, which is crucial in operator
theory. The adjoint is obtained by taking the element-wise conjugate and transpose of
the operator matrix, also called Hermitian conjugate. For any operator A on an inner product
space V, its adjoint denoted by A† is defined as:

∀|u⟩, |v⟩ ∈ V, ⟨u|A|v⟩ = ⟨A†u|v⟩. (2.7)

Hermitian operators: An operator H is Hermitian if it equals its adjoint: H = H†.

(H |v⟩)† = (λ |v⟩)† =⇒ |v⟩† H† = λ† |v⟩† =⇒ |v⟩† H |v⟩ = λ† |v⟩† |v⟩ =⇒ λ |v⟩† |v⟩ = λ† |v⟩† |v⟩

Thus, λ = λ† implies that the eigenvalues of Hermitian operators are real.

Unitary operators: An operator U is unitary if UU† = U†U = I, where I is the identity
operator, signifying no change or transformation.

2.2.3.5 Tensor Products and Composition of vector spaces

For a matrix A = Aij of dimensions m×n and another matrix B of dimensions m′ ×n′. The
tensor product (also known as the Kronecker product) of A and B is the mm′ × nn′ matrix
given by:

A⊗B =


A11B · · · A1nB

A21B · · · A2nB
... . . . ...

Am1B · · · AmnB

 . (2.8)

The concept of tensor products in matrix notation is exemplified through block matrix mul-
tiplication. The following examples illustrate the utility of block matrix representation in the
computation of tensor products of two vectors and operators, which will be used extensively
for some parts of the thesis.

(
a1

a2

)
⊗
(
b1

b2

)
=


a1

(
b1

b2

)

a2

(
b1

b2

)
 =


a1b1

a1b2

a2b1

a2b2

 . (2.9)
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(
a11 a12

a21 a22

)
⊗
(
b11 b12

b21 b22

)
=


a11

(
b11 b12

b21 b22

)
a12

(
b11 b12

b21 b22

)

a21

(
b11 b12

b21 b22

)
a22

(
b11 b12

b21 b22

)
 =


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22


(2.10)

Tensor products can combine different vector spaces. Given two vector spaces V and V ′, with
dimensions d and d′, and bases {v0, . . . , vd−1} and {v′

0, . . . , v
′
d′−1} respectively, their formed

tensor product space T = V ⊗ V ′ is a d · d′-dimensional space spanned by {vi ⊗ v′
j |0 ≤ i ≤

d− 1, 0 ≤ j ≤ d′ − 1}. Applying a linear operation A to V and B to V ′ corresponds to applying
the tensor product A ⊗ B to T . It is important to note that the tensor product of two scalar
values (1 × 1 matrices) is simply a scalar, and the tensor product of two column vectors is a
column vector. Some properties of tensor products include:

• Scalar multiplication: c(A ⊗ B) = (cA) ⊗ B = A ⊗ (cB) for any scalar c.

• Distributive property: A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C).

• Associative property: A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

• Multiplicative property: (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

• Conjugate transpose: (A ⊗ B)† = A† ⊗ B†, with the order of tensor factors remaining
unchanged.

• The tensor product obeys bilinearity: (α|v1⟩ + β|v′
1⟩) ⊗ |v2⟩ = α|v1⟩ ⊗ |v2⟩ + β|v′

1⟩ ⊗ |v2⟩.

• The inner product in the composite space is ⟨v1|v′
1⟩⟨v2|v′

2⟩.

2.2.3.6 Trace of an Operator

For an operator A acting on V, its trace is defined as:

Tr[A] =
∑

i

⟨i|A|i⟩, where {|i⟩}, i = 1 . . . d represents an orthonormal basis of V. (2.11)

When A is represented as a matrix, the trace corresponds to the sum of its diagonal elements
which follows:

• Additive property: Tr[A + B] = Tr[A] + Tr[B].

• Cyclic property: Tr[ABC] = Tr[BCA] = Tr[CAB]. Tr[AB] = Tr[AB] follows from
here.

• Relation to eigenvalues: Tr[A] equals the sum of the eigenvalues of A

• Trace of Tensor product: Tr[A ⊗ B] = Tr[A]Tr[B].
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Outer Product representation of Linear operators

Given vectors from two inner product spaces, |v⟩, |v⟩′ ∈ V, and |w⟩ ∈ W, we define |w⟩⟨v| as
the linear operator that maps from |v′⟩ from V to W as:

(|w⟩⟨v|)(|v′⟩) ≡ |w⟩⟨v|v′⟩ = ⟨v|v′⟩|w⟩ (2.12)

It can be interpreted as: representing the action of |w⟩⟨v| on |v′⟩ and also as: |w⟩ times the scalar
⟨v|v′⟩. Linear combinations of such outer product operators will also be linear operators, and
hence the operator ∑i ai|wi⟩⟨vi| acts on |v′⟩ to produce

(∑
i ai|wi⟩⟨vi|

)
|v′⟩ = ∑

i ai|wi⟩⟨vi|v′⟩.
Thus eq.(2.2), can be written as:

|v⟩ =
(∑

i

|vi⟩⟨vi|
)

|v⟩ implying
∑

i

|vi⟩⟨vi| = I, (2.13)

where, {|vi⟩} is an orthonormal basis for V and I is the identity operator in V. This illustrates
the completeness relation, and we call the set {|vi⟩} is complete.
For a linear operator A : V → W, with orthonormal bases {|vi⟩} in V and {|wj⟩} in W, we can
use the completeness relation to express A as:

A = IWAIV =
∑
ij

|wj⟩⟨wj |A|vi⟩⟨vi| =
∑
ij

⟨wj |A|vi⟩|wj⟩⟨vi| where Aji = ⟨wj |A|vi⟩ (2.14)

2.2.3.7 Partial Trace

The partial trace, for an operator |a1⟩⟨a2| ⊗ |b1⟩⟨b2|, over system B is a map of operators
defined as:

TrB[|a1⟩⟨a2| ⊗ |b1⟩⟨b2|] ≡ |a1⟩⟨a2|TrB[|b1⟩⟨b2|], (2.15)

with |a1⟩ and |a2⟩ in A’s state space, and |b1⟩ and |b2⟩ in B’s. The trace on the right-hand side
is the usual trace for system B, so TrB[|b1⟩⟨b2|] = ⟨b2|b1⟩. This operation is linear in its input
by definition.

2.2.3.8 Spectral Decomposition

A self-adjoint operator A can be represented through its spectral decomposition. The eigen-
states of A form a complete orthonormal set in H, allowing A to be expressed as:

A =
∑

i

aiEi, (2.16)

where ai denotes the eigenvalues of A, and Ei is the orthogonal projection onto the eigenspace
associated with ai. These projections Ei satisfy the orthogonality and self-adjoint conditions:

EnEm = δn,mEn, E†
n = En, δn,m = 1, for m = n, otherwise, δn,m = 0
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δn,m is called the Kronecker delta. The orthogonal projection onto a one-dimensional space
spanned by a vector |ψ⟩ is denoted as |ψ⟩⟨ψ|, where ⟨ψ| is the corresponding bra vector. There-
fore, the spectral decomposition of A can alternatively be written as

A =
∑

n

|n⟩an⟨n|, (2.17)

with {|n⟩} being the orthonormal basis of eigenstates for A, and fulfilling A|n⟩ = an|n⟩.

2.2.4 Hilbert Spaces

A Hilbert space, denoted as H, is an inner product space over the field of complex numbers
C, complete with respect to the norm induced by the inner product. Here, completeness can
be intuitively thought of in terms of a space having no ”points missing” either from within it
or at its boundary. e.g., the set of rational numbers is not complete. Hilbert spaces are central
to the study of quantum mechanics, forming the mathematical backbone of the theory. In the
context of quantum computation and information, these spaces are finite-dimensional, where
completeness always holds, and thus, they become equivalent to complex inner product spaces.

2.2.5 Post Selection

In the realm of probability theory, the concept of post-selection involves conditioning the
probability distribution based on the occurrence of a specific event. When we apply post-
selection to an event E, the probability of another event F is modified from the initial probability
Pr[F ] to a conditional probability Pr[F |E]. For a discrete probability space, the conditional
probability is defined as Pr[F |E] = Pr[F ∩E]

Pr[E] . This definition necessitates that Pr[E] be greater
than zero to define the post-selection process properly.
In practical quantum experiments, post-selection is sometimes employed after an experiment
to substitute for communication during the experiment. This is achieved by post-selecting the
communicated value into a constant.

2.3 Postulates of Quantum mechanics

In this section, we will use the mathematical formalism developed in 2.2 to provide the
statement followed by a comprehensive elucidation of the fundamental axioms of quantum
mechanics. These postulates establish a vital bridge between the physical reality we observe
and the mathematical structure of quantum mechanics.
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2.3.1 Postulate 1: State Space, Describing the state of a system

Each isolated physical system corresponds to a Hilbert space H, the system’s state space.
The state of the system at any given time t, represented by a ray in H, captures the complete
description of the system.

A ’ray’ refers to an equivalence class of vectors differing only by a non-zero complex scalar,
global phase. By convention, we can choose a representative vector from this class denoted as
|ψ⟩, with a norm of one, ⟨ψ|ψ⟩ = 1, called a state vector, to represent quantum states where
the vector’s phase lacks physical relevance. Thus, |ψ⟩ and eiα|ψ⟩ describe the same state, as
|eiα| = 1. We call any linear combination ∑i ai |ψi⟩, a superposition of states |ψi⟩ where each
corresponding complex scalar ai is the probability amplitude that quantifies the contribution
of the state to the overall superposition. Considering two states |ϕ⟩ and |ψ⟩, their linear super-
position can form a new state, a|ψ⟩ + b|ϕ⟩ since every ray corresponds to a possible state. The
relative phase difference in this superposition is significant, as we can differentiate a|ψ⟩+ b|ϕ⟩
from a|ψ⟩ + eiαb|ϕ⟩, but not eiα(a|ψ⟩ + b|ϕ⟩)

Schrödinger picture: A quantum mechanical system’s state is conveyed through a com-
plex wavefunction φ(x, t), which more abstractly is represented as a state vector (ket) |ψ⟩,
described above.

We can either measure a quantum state or let it evolve in time, and we will explore these in
further postulates.

2.3.2 Measurement on the system

2.3.2.1 Postulate 2: Observables, Describing physical quantities

Each measurable physical quantity, A, is depicted by a Hermitian operator A on state space
H.

In the framework established by John von Neumann [47], the act of measuring a physical
system is conceptualized as the application of a self-adjoint (hermitian) operator within the
corresponding Hilbert space, which is called an observable. These correspond to physical
quantities of interest in quantum mechanics, such as position, momentum, energy, and spin.
Hermitian operators are unique because they always have real eigenvalues, as shown in (2.2.3.4).
These real eigenvalues are what we observe as possible results when we measure these observ-
ables. As an observable, A’s eigenvectors constitute an orthonormal basis for H, ensuring that
measurements of A correspond to eigenvalues of A. The correspondence between hermitian

19



operators and physically meaningful observables is not universal, as discussed in references [48].
Certain observables do not necessitate the existence of non-trivial hermitian operators. E.g.,
the concept of mass is not represented as a non-trivial operator.
Quantum observables often exhibit a characteristic known as complementarity, which means
certain observable pairs cannot be measured simultaneously if they are non-commutative (2.2.3.3),
i.e.[A,B] ̸= 0. Measuring A first impacts the quantum state in such a manner that it influences
the subsequent measurement of B, and the reverse is also true. When dealing with quantum
observables, those associated with commuting operators are termed compatible. An example
of compatible observables is the momentum measured along different axes, like the x-axis and
y-axis, as in the case of the Stern Gerlach experiment. In contrast, observables tied to non-
commuting operators are labeled as incompatible or complementary. A classic example of this
is the position and momentum measured along the same axis, demonstrating the uncertainty
principle.
If different states of a quantum mechanical system result in the same measured energy, these
states are described as being degenerate. According to the Born rule, the probability of
observing a particular eigenvalue λ (assuming it is non-degenerate) is given by |⟨λ|ψ⟩|2, where
|λ⟩ is the eigenvector associated with λ. In cases where the eigenvalue λ is degenerate, the
probability is determined by ⟨ψ|Pλ|ψ⟩, where Pλ denotes the projection onto the eigenspace
associated with λ.

2.3.2.2 Postulate 3: Projective Measurement

Quantum measurements are characterized by a set {Mn} of measurement operators, acting

on the state space of the measured system. The index n denotes the possible outcomes of the

measurement. For a system in state |ψ⟩ immediately before measurement, the probability of

observing outcome n is

p(n) = ⟨ψ|M †
nMn|ψ⟩ = ||Mn|ψ⟩||2 =, (2.18)

and the post-measurement state of the system becomes

Mm|ψ⟩√
⟨ψ|M †

mMm|ψ⟩
. (2.19)

The measurement operators satisfy the completeness relation∑
m

M †
mMm = I, (2.20)

which ensures the total probabilities sum to one:

1 =
∑
m

p(m) =
∑
m

⟨ψ|M †
mMm|ψ⟩. (2.21)
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This equation’s validity for all |ψ⟩ is equivalent to the completeness relation, which is more
straightforward to verify, hence its inclusion in the postulate.
Spectral decomposition facilitates the association of probability measures with the observable
values in a given quantum state, denoted as ψ. This approach implies that the possible mea-
surement outcomes of an observable A are determined by its spectrum. The expectation of A in
a state represented by a normalized vector ψ in a Hilbert space H is calculated using ⟨ψ|A|ψ⟩.
Representing ψ in the eigenbasis of A, the probability of detecting an eigenvalue is the squared
magnitude of the corresponding eigenvector component. Collectively, these principles, known
as the Born rule and the state update or collapse rule, offer a comprehensive depiction of
quantum measurement processes.

A projective measurement in a given space, characterized by m distinct outcomes, involves
a set of projectors P1, . . . , Pm. These projectors act on the same space and collectively add up
to the identity operator, ∑m

j=1 Pj = I. Each projector Pi is orthogonal to the others, signified
by PiPj = 0 for i ̸= j. The projector Pj focuses on a subspace Vj of the total Hilbert space V .
Any state |ϕ⟩ in V can uniquely be expressed as |ϕ⟩ = ∑m

j=1 |ϕj⟩ where |ϕj⟩ = Pj |ϕ⟩ is part of
Vj . Due to the orthogonality of the projectors, the subspaces Vj and the states |ϕj⟩ are also
orthogonal.

It’s important to note that the specific projector Pj applied during a measurement is not
predetermined but is governed by a probability distribution. However, if the measured state |ϕ⟩
is completely within one of the subspaces Vj , then the measurement outcome is assured j. For
example, consider a projective measurement in the computational basis on an N -dimensional
state. Here, m = N and each projector Pj corresponds to |j⟩⟨j|. Thus, Pj projects onto the
state |j⟩ in the subspace Vj ⊆ V , which is one-dimensional and spanned by |j⟩. If we have a
state |ϕ⟩ = ∑N−1

j=0 αj |j⟩, applying this measurement yields outcome j with probability |αj |2,
and the state collapses to αj

|αj | |j⟩. Here, the norm-1 factor αj

|αj | can be disregarded as it holds
no physical significance, leading us to the final state |j⟩.

Beyond the standard orthonormal basis, we might consider an alternative orthonormal basis
B consisting of states |ψ0⟩, . . . , |ψN−1⟩, and define a projective measurement using the projec-
tors Pj = |ψj⟩⟨ψj |. Applying this measurement to |ϕ⟩ results in outcome j with probability
|⟨ϕ|ψj⟩|2. If |ϕ⟩ is identical to one of the basis vectors |ψj⟩, then the measurement outcome is
j with certainty.
Schrödinger Picture, continuous, nondegenerate spectrum: The act of measuring a
physical quantity A in a state |ψ⟩ yields probabilities for specific eigenvalues an (in discrete
spectra) or α (in continuous spectra) of the corresponding observable A. This probability is
quantified as ∂P (α) = |⟨α|ψ⟩|2∂α.
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2.3.3 Postulate 4: Time Evolution of system

The time evolution of an isolated quantum system in state |ψ0⟩ at an initial time t0, to its

state |ψt⟩ at a later time t, can be described by a unitary transformation. This is represented

by a unitary operator Ut,t0 that is only dependent on the time instances t0 and t acting as:

|ψt⟩ = Ut,t0 |ψ0⟩ (2.22)

For a quantum state transformation to preserve the probabilistic interpretation of quantum
mechanics, the operation U must be unitary. A unitary matrix U satisfies U−1 = U∗, ensuring
that the norm of vectors is preserved:

N−1∑
j=0

|αj |2 = 1. (2.23)

This condition confirms that a unitary operation maps a norm-1 vector to another norm-1 vector
(both with dimension N). Note that the theory does not determine the exact state space or the
quantum state of a specific system. It does not specify which unitary operators encapsulate the
dynamics of real-world quantum systems. Non-measurement operations in quantum mechanics
are reversible. By applying the inverse unitary operation U−1, the original state |φ⟩ can be
retrieved from |ψ⟩, highlighting the reversible nature of quantum state transformations. In
contrast, measurements are inherently irreversible, as the original quantum state cannot be
reconstructed from the observed classical outcome.

These principles underscore the distinct nature of quantum state operations and their fun-
damental differences from classical transformations.

Schrödinger Picture, Continuous-time evolution The Schrödinger equation governs

the infinitesimal or continuous time evolution of the state of a closed quantum system

iℏ
∂|ψ(t)⟩
∂t

= H| |ψ(t)⟩ . (2.24)

Where, |ψ(t)⟩ =
∫
ψ(x, t)|x⟩ dx , |x⟩ are position eigenstates forming a complete basis. Any

state vector can be expressed as a superposition of these eigenstates. H is the Hamiltonian of
the closed system, which is a Hermitian operator.

2.3.4 Postulate 5: Composite Systems

The state space of a composite physical system is formed by the tensor product of the state
spaces of its component systems.
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For systems A and B with Hilbert spaces HA and HB respectively, the Hilbert space of the
composite system AB is HA ⊗ HB, assuming component system A is in state |ψ⟩A ∈ HA and
component system B in |ϕ⟩B ∈ HB. The composite state of the combined system AB is thus
|ψ⟩A ⊗ |ϕ⟩B.

The tensor product space H = HA ⊗ HB forms an NM -dimensional space when considering
an orthonormal basis |0⟩, . . . , |N − 1⟩ in HA and another basis |0⟩, . . . , |M − 1⟩ in HB, spanned
by the set {|i⟩ ⊗ |j⟩ | i ∈ {0, . . . , N − 1}, j ∈ {0, . . . ,M − 1}}. A general state in H can be
expressed as ∑N−1

i=0
∑M−1

j=0 αij |i⟩ ⊗ |j⟩, representing a bipartite state, and similarly, tripartite
states or more complex multipartite states can be formed in a Hilbert space that is the tensor
product of three or more, smaller Hilbert spaces.

In the context of bipartite states, observables assume a more complex role. The tensor
product operator MA ⊗ NB operates by applying MA to system A and NB to system B, with
its effect on the orthonormal basis |i, µ⟩AB given by MA ⊗ NB|i, µ⟩AB = MA|i⟩A ⊗ NB|µ⟩B =∑

j,ν |j, ν⟩AB(MA)ji(NB)νµ. An operator that does not affect system B is represented as MA ⊗
IB, and similarly, an operator acting trivially on system A is denoted as IA⊗NB. The distinction
between measuring observables A and B separately on the respective parts of a bipartite state
versus measuring the joint observable A⊗B lies in the outcomes: separate measurements yield
individual outcomes for each part, whereas a joint measurement produces a single outcome.

Entanglement in Composite Systems

Entanglement, a pivotal feature of composite quantum systems, represents quantum corre-
lations between subsystems, exemplified by the Bell state (|00⟩ + |11⟩)/

√
2. This state demon-

strates that if the first subsystem is measured and observed as |0⟩, the entire state collapses
to |00⟩, and similarly, observing |1⟩ collapses the state to |11⟩. Such instant correlation, even
when subsystems are spatially separated, underscores entanglement’s non-local properties. In
entangled systems, the state of the whole cannot be described as a product of the states of its
parts; it is instead represented through a combination of multiple tensor products of the states
belonging to its constituent subsystems, necessitating the use of density operator formalism for
a single subsystem within an entangled system. In contrast, in scenarios devoid of quantum
entanglement, the system’s quantum state is identifiable as separable.

The Bell state, or EPR pair, is essential in quantum computation, exhibiting entanglement
where parts of the system cannot be described independently. The measurement of one subsys-
tem of a Bell state yields an outcome (either 0 or 1) with an equal probability of 1/2, and the
measurement of the second subsystem will always yield the same result as the first, signifying
entangled states crucial for phenomena such as quantum teleportation and superdense coding.
The Bell state and its correlations, highlighted in the landmark paper by Einstein, Podolsky,
and Rosen (EPR) and further analyzed by John Bell, demonstrate that the correlations in such
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quantum states exceed any possible correlation between classical systems, hinting at quantum
mechanics’ extraordinary potential for information processing.

2.4 Density Operator Formalism

The density matrix, or density operator formalism, is an essential tool in the fields of quantum
mechanics and quantum information theory. It proves particularly useful when state vectors
are insufficient due to incomplete knowledge of quantum systems. Density operators allow for
the representation of mixed states, which are statistical mixtures of different pure states |ψk⟩
along with their corresponding probabilities pk, satisfying ∑k pk = 1. Pure states, on the
other hand, occur when the system’s state is entirely known and can be represented by a single
state vector.
It is crucial to distinguish between a statistical mixture and a superposition. A superposition
state |Ψ⟩ = ∑

k ck|ψk⟩ differs from a statistical mixture because an average state vector cannot
represent it due to interference terms.

The density operator was introduced to describe ensembles of quantum states and provides an
intrinsic characterization of quantum systems. This approach enables a description of quantum
mechanics independent of state vectors, which is especially beneficial when we have incomplete
information about a system’s state. Density operators offer a more nuanced way to describe
entangled states, especially in multipartite scenarios, providing a comprehensive view that state
vectors alone cannot provide. They are particularly relevant for quantum systems in statistical
ensembles, where each member might be in a distinct state.

2.4.1 General Properties of the Density Operator

An operator ρ is a density operator associated with some ensemble {pi, |ψi⟩} if and only if it
satisfies the following conditions:

1. Trace Condition: ρ has trace equal to one, tr(ρ) = 1.

2. Positivity Condition: ρ is a positive operator.

Consider ρ = ∑
i pi|ψi⟩⟨ψi| as a density operator. The trace condition is verified since tr(ρ) =∑

i pitr(|ψi⟩⟨ψi|) = ∑
i pi = 1. For any vector |ϕ⟩ in the state space, ⟨ϕ|ρ|ϕ⟩ = ∑

i pi|⟨ϕ|ψi⟩|2 ≥ 0,
thus satisfying the positivity condition. Conversely, if ρ is any operator satisfying these condi-
tions and is positive, it must have a spectral decomposition ρ = ∑

j λj |j⟩⟨j|, with orthogonal
vectors |j⟩ and non-negative eigenvalues λj . From the trace condition, ∑j λj = 1. Therefore,
an ensemble {λj , |j⟩} gives rise to ρ.
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2.4.2 Density Operator Representations

For Pure States: Consider a pure state |Ψ⟩ = ∑
k ck|uk⟩, where {|uk⟩} is an orthonormal ba-

sis. The density operator for this state is ρ = |Ψ⟩⟨Ψ|, with matrix elements ρmn = ⟨um|ρ|un⟩ =
c∗

ncm. The normalization condition ∑k |ck|2 = 1 leads to Tr(ρ) = 1. The expectation value
of an observable Ô is ⟨Ô⟩ = ⟨Ψ|Ô|Ψ⟩ = ∑

n,m c∗
ncm⟨un|Ô|um⟩, which can also be expressed as

⟨Ô⟩ = Tr(ρÔ).

For Mixed States: The density operator for a statistical mixture of states |ψk⟩ is ρ =∑
k pkρk = ∑

k pk|ψk⟩⟨ψk|. When measuring this mixed state, the probability of an outcome
is a weighted sum of probabilities for each state. The density operator for mixed states is
Hermitian, and its trace equals unity, Tr(ρ) = 1. The expectation value of any observable is
⟨Ô⟩ = Tr(ρÔ).

For General State in C2: For a 2-dimensional system (e.g., a spin-1/2 system), an arbitrary
density operator in C2 can be written as ρ = 1

2(I + n⃗ · σ⃗), where n⃗ is a real vector in R3 and σ⃗
are the Pauli matrices. The condition |n⃗| ≤ 1 ensures that ρ is a valid density operator, with
pure states satisfying |n⃗| = 1 and mixed states having |n⃗| < 1.

2.4.3 The Reduced Density Operator

The reduced density operator plays a crucial role in describing subsystems of a composite
quantum system, making it an indispensable tool in analyzing such systems. Consider physical
systems A and B, described by a density operator ρAB. The reduced density operator for system
A is defined as ρA ≡ trB(ρAB), where trB is the partial trace over system B.

Although it is not immediately obvious, the reduced density operator ρA effectively describes
the state of system A. The justification for this identification is that ρA yields correct measure-
ment statistics for measurements on system A. Consider a product state ρAB = ρ ⊗ σ, where
ρ and σ are density operators for systems A and B, respectively. Then, ρA = trB(ρ ⊗ σ) =
ρtr(σ) = ρ, intuitively matching our expectations. For the Bell state (|00⟩ + |11⟩)/

√
2, with

density operator ρ = 1
2(|00⟩⟨00| + |11⟩⟨00| + |00⟩⟨11| + |11⟩⟨11|), tracing out the second qubit

yields ρ1 = tr2(ρ) = 1
2(|0⟩⟨0| + |1⟩⟨1|) = I/2. This mixed-state outcome exemplifies the non-

trivial nature of quantum entanglement: even though the joint state is pure and completely
known, the subsystem can be in a mixed state.
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2.5 Introduction to Quantum Computation

The arrangement of a physical system can hold important information, and manipulating
this information on physical devices is essential for various computational tasks. As our uni-
verse fundamentally operates on a quantum mechanical level, the principles of computer science
and information theory must be grounded in quantum physics. Transitioning from classical to
quantum computing represents more than just an upgrade; it marks a paradigm shift. Quantum
information, which involves encoding information in the quantum states of physical systems,
possesses unique properties that are significantly different from traditional ”classical” infor-
mation. Furthermore, quantum computers, which utilize these quantum properties, have the
potential to perform certain computations much more efficiently than state-of-the-art classical
computers.
Our goal is to examine the distinct characteristics of quantum information in comparison to
classical information. We will investigate how these unique features can be utilized to develop
quantum algorithms that can solve specific problems faster than their classical counterparts.
Unlike classical bits that remain as either 0 or 1, quantum bits or qubits take advantage of
superposition, meaning they can occupy multiple states simultaneously. When entanglement is
added to the mix, whereby qubits become interdependent regardless of distance, an exponential
computational force is generated.

2.5.1 Quantum Bits (Qubits)

The quantum bit or qubit is the foundational unit of quantum computation and information.
Unlike classical bits, which exist in definite states of 0 or 1, qubits operate under the principles
of quantum mechanics, leading to unique properties and behaviors. A qubit can exist in a
state of superposition, represented as |ψ⟩ = α|0⟩ + β|1⟩, where α and β are complex numbers.
This superposition implies that a qubit can be in a combination of the states |0⟩ and |1⟩. The
states |0⟩ and |1⟩ themselves are analogous to the classical 0 and 1, but in the quantum realm,
they form an orthonormal basis in a two-dimensional complex vector space. Upon measuring
a qubit, it doesn’t reveal its superposition state. Instead, the measurement collapses the qubit
into one of the basis states, |0⟩ or |1⟩. The likelihood of each outcome is determined by the
squared magnitudes of α and β. Specifically, the probability of the qubit collapsing to |0⟩ is |α|2

and to |1⟩ is |β|2. It’s important to note that |α|2 + |β|2 = 1, ensuring the normalization of the
qubit’s state. In classical computing, bits are akin to a switch with distinct on and off states.
However, due to their ability to exist in superpositions, Qubits can represent a continuum of
states between |0⟩ and |1⟩. This characteristic of qubits, allowing them to be in multiple states
simultaneously until measured, is a departure from the binary nature of classical bits. The
state of a qubit can be represented on the Bloch sphere, a geometric model where the points
on the sphere’s surface correspond to possible qubit states. This representation is particularly
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helpful in visualizing the state of a single qubit and understanding quantum operations. While
a qubit can theoretically encode an infinite amount of information due to its continuous nature,
practical measurement limits this capacity. Measuring a qubit yields a single bit of classical
information corresponding to either state |0⟩ or |1⟩. The process of measurement alters the
qubit’s state, collapsing it to align with the measurement outcome. Consequently, despite the
vast potential information a qubit may hold, only a single bit of information is extractable
through measurement.

2.5.2 Multiple Qubits

Composite quantum systems extend the concepts of superposition and entanglement beyond
the realm of single quantum subsystems, residing in a tensor product space that leads to more
complex and powerful computational capabilities. Unlike classical computation, where two bits
can represent four distinct states (00, 01, 10, and 11), a composite system consisting of two
quantum subsystems can exist in a superposition of these four computational basis states: |00⟩,
|01⟩, |10⟩, and |11⟩. The state of a two-subsystem composite is thus can be represented as
|ψ⟩ = α00|00⟩ + α01|01⟩ + α10|10⟩ + α11|11⟩, where αxy are complex coefficients (amplitudes)
associated with each basis state, adhering to the normalization condition ∑x∈{0,1}2 |αx|2 = 1 to
ensure the total probability sums to one. This framework extends to larger composite systems,
where a register of n quantum subsystems encompasses 2n basis states, allowing for the existence
of superpositions within these states. Measuring a composite system in the computational basis
results in one of the basis states, with probabilities determined by the corresponding amplitudes.
For instance, measuring the entire two-subsystem state |ψ⟩ yields state |xy⟩ with probability
|αxy|2. A density operator can represent the state of a multi-qubit system by incorporating
correlations among qubits. For example, the density operator for a two-qubit system is given
by ρAB = 1

4(I ⊗ I + I ⊗ r⃗ · σ⃗ + s⃗ · σ⃗ ⊗ I +∑3
i,j=1[TAB]ijσi ⊗ σj), where r⃗, s⃗ ∈ R3 and [TAB]ij is

the correlation matrix.

2.5.3 Bloch Sphere Representation of Qubit States

The Bloch sphere is an invaluable tool in quantum mechanics for visualizing the states
of a single qubit, effectively demonstrating superposition and state transformations in a two-
dimensional complex space, C2. The Bloch sphere uses a three-dimensional unit sphere to
represent qubit states. On this sphere, Pure States are points on the surface, each corre-
sponding to a unique qubit state. Mixed States are found within the interior, representing
statistical mixtures of pure states. A state on the Bloch sphere is defined by angles θ ∈ [0, π]
and ϕ ∈ [0, 2π]. The general form of a state |ψ⟩ is:

|ψ⟩ = cos
(
θ

2

)
|0⟩ + eiϕ sin

(
θ

2

)
|1⟩, (2.25)
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Figure 2.4: Bloch Sphere Representation

where |0⟩ and |1⟩ are the computational basis states. The Bloch vector n⃗ ∈ R3 describes a qubit
state, with Pure States having |n̂| = 1 and Mixed States characterized by |n⃗| < 1. The density
operator ρ = 1

2(I + n⃗ · σ⃗) is used for state definition, with σ⃗ representing Pauli matrices. The
Maximally Mixed State is at the center of the sphere, where |n̂| = 0, and is represented as
ρ = I

2 . Unitary Operations are visualized as rotations of the Bloch vector on the sphere.
While effective for single-qubit states, the Bloch sphere does not easily generalize to higher-
dimensional spaces or multi-qubit systems, where complex quantum phenomena like entangle-
ment occur.

2.5.4 Quantum Gates

Quantum gates are fundamental components of quantum circuits, analogous to classical logic
gates in digital computers. The evolution of any isolated quantum system preserves the norm
and is reversible. Thus, it can be characterized through unitary operators. Below are some
quantum gates relevant to this thesis:

2.5.5 Single-Qubit Gates

2.5.5.1 Pauli Gates (X,Y,Z)

Pauli Matrices

The Pauli matrices X(bit-flip), Y (phase-shift), and Z(phase-flip) are fundamental in the
study and manipulation of qubit states in quantum computing. These matrices form a basis for
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the space of 2 × 2 Hermitian matrices, which are crucial for representing quantum operations
that can be applied to single qubits. The set of Pauli matrices consists of three distinct matrices:

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

The importance of the Pauli matrices in quantum computing can be summarized as follows:
The Pauli matrices serve as a basis for all possible single-qubit quantum gates, which are
unitary operators. Any 2 × 2 unitary matrix describing a quantum operation on a single qubit
can be expressed as a linear combination of the Pauli matrices and the identity matrix, with
complex coefficients. This is because the Pauli matrices, along with the identity matrix, span
the space of 2 × 2 complex matrices. The Pauli matrices can directly manipulate quantum
states. For example, the X matrix flips the amplitude between the |0⟩ and |1⟩ computational
basis states, effectively performing a quantum bit flip. Similarly, the Z matrix flips the phase
of the |1⟩ state while leaving the |0⟩ state unchanged, and the Y matrix applies a combination
of bit and phase flip. They define different measurement bases. For instance, measuring in
the Z basis corresponds to measuring the qubit in the standard computational basis (|0⟩, |1⟩),
whereas measuring in the X or Y basis involves first transforming the qubit state using the
respective Pauli matrix and then measuring in the computational basis. Each matrix, denoted
as P , is both unitary and Hermitian, leading to the property of being self-inverse (P−1 = P ).
Consequently, their eigenvalues are confined to the set {−1, 1}. An interesting property is the
anti-commutation of non-identity Pauli matrices: for any distinct P,Q ∈ {X,Y, Z}, it holds
that PQ = −QP . Notably, Y can be expressed as Y = iXZ, and the product of any two
distinct Pauli matrices has a zero trace.

2.5.6 Multi-Qubit Gates

2.5.6.1 Hadamard Gate (H)

The Hadamard gate acts on a single qubit and maps the basis states |0⟩ and |1⟩ to |+⟩ and
|−⟩, respectively. Its matrix representation is:

H = 1√
2

(
1 1
1 −1

)
. (2.26)
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2.5.6.2 Controlled NOT Gate (CNOT)

The CNOT gate is a two-qubit operation where the second qubit (target) is flipped if and
only if the first qubit (control) is in state |1⟩. The matrix representation of the CNOT gate is:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.27)

2.5.7 Universal Quantum Gates

Universal quantum gates are the quantum computing equivalent of universal gates in clas-
sical computing. In classical computing, a set of universal gates, such as NAND gates or NOR
gates, can be combined in various ways to perform any possible computation—that is, any
logical function can be implemented using just these gates. Similarly, A universal quantum
gate set allows for the construction of any unitary operation on a quantum computer. Unitary
operations are key in quantum mechanics, representing reversible transformations on the state
space of qubits. They preserve the inner product, meaning they keep the total probability of
outcomes as 1, which is essential for the physical realizability of quantum operations.
A popular example of a universal set is any set of single-qubit gates combined with the CNOT
gate. The single-qubit gates allow for operations within the Bloch sphere on individual qubits,
while the CNOT gate provides the ability to generate entanglement between qubits. Universal
quantum gates are foundational to quantum computing, enabling the construction of arbitrary
quantum algorithms and operations through the combination of a relatively small and man-
ageable set of gates. This concept is pivotal for the design and implementation of quantum
computers, as it ensures that, in principle, a quantum computer can perform any computation
that quantum mechanics can describe.

2.5.8 Quantum Algorithms

Quantum algorithms are computational processes designed to utilize quantum mechanical
phenomena—such as superposition, in which a quantum system exists in multiple states simul-
taneously; entanglement, a unique correlation between quantum particles regardless of distance;
and quantum interference, the constructive or destructive pattern formation due to the phase
properties of quantum states—to perform computations. These algorithms can operate on data
encoded in qubits, the fundamental units of quantum information, to solve problems more ef-
ficiently than classical algorithms. At the heart of quantum computation is the principle of
quantum interference, which allows a quantum algorithm to amplify the probabilities of correct
answers while canceling out the probabilities of wrong ones. This principle is essential for the
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operation of quantum algorithms, leveraging the coherent superposition of states in a quantum
system to perform computational tasks. The probabilistic nature of quantum measurements
means that outcomes are influenced by the interference pattern generated by the superposed
states, making certain outcomes more likely than others based on the algorithm’s design.

According to Shor, in his article [49], where he examines the question of why so few classes
of quantum algorithms have been discovered, There are three classes of algorithms:

Figure 2.5: main quantum algorithms and their relationships

• Quantum algorithms based upon the Fourier transform: The first class uses the
Fourier transform to find periodicity. The Deutsch–Jozsa algorithm [50] is an example of
this type of algorithm. The Deutsch-Jozsa algorithm is a quintessential example demon-
strating quantum computing’s superiority over classical approaches for specific problem
classes. It determines whether a given function is constant (the same output for all in-
puts) or balanced (equal numbers of inputs produce different outputs) with a single query
to the function, using quantum parallelism. Classical approaches, in contrast, require at
least N/2 + 1 queries for a function with N possible inputs. But mainly, This class also
contains the factoring and discrete logarithm algorithms [51], Simon’s algorithm [Simon
1997](the first member of this class to be discovered), and Hallgren’s algorithms for Pell’s
equation and specific other number theory problems [Hallgren 2002]

• Quantum search algorithms: The second class contains Grover’s search algorithm,
which can perform an exhaustive search of N items in

√
N time [52], and several extensions

of this algorithm (see Grover and Sengupta [2002]). These extensions all have the general
flavor of giving a square root improvement in the speed of optimization or search problems.

• Quantum simulation: Quantum simulation algorithms leverage quantum computers to
model and simulate quantum systems themselves, an inherently complex task for classical
computers due to the exponential growth of the system’s Hilbert space with the addition
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of each particle. This class contains Feynman’s original idea [Feynman 1982] of using
quantum computers to speed up simulations of quantum physics. Hamiltonian needed to
describe a particular physical system is a challenging problem

The implementation of quantum algorithms involves intricate control over quantum states
and operations, demanding substantial computational resources and sophisticated error correc-
tion techniques. The complexity of developing practical quantum algorithms that outperform
classical counterparts remains a formidable challenge, necessitating ongoing advancements in
quantum computing technologies. Current quantum computing technologies face significant
hurdles, such as high error rates in quantum operations and decoherence—a loss of quantum
information to the environment. These challenges limit the size and complexity of quantum
algorithms that can be reliably executed on today’s quantum hardware.
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Chapter 3

Noise in Quantum Systems and Search Algorithm

“An unproblematic state is a state without creative thought. Its other name is death.”

– David Deutsch, The Beginning of Infinity

“Quantum fluctuations are the monkeys that program the universe.”

– Seth Lloyd, Programming the Universe

In the previous chapter, our main focus has been on the behavior of quantum systems in
isolation, without any harmful interactions with their external environment. Although that
provided theoretical insights into the potential of these ideal systems for computational tasks,
their practical applicability is limited by the fact that perfectly isolated systems do not exist
in reality except for the universe itself. In reality, quantum systems are subject to external
perturbations, which can manifest as noise within. Therefore, understanding and mitigating
these noise effects are crucial for the development of practical quantum technologies. We begin
this chapter by introducing quantum operations formalism, a comprehensive toolkit designed
to model quantum noise effectively, and the dynamics of open quantum systems. Then, we
will discuss and reformulate the axioms introduced in the previous chapter in terms of this
mathematical formalism. Together with it, we cover an extensive range of topics, including
quantum channels and generalized measurements. We talk about the role and effect of quantum
noise in general before honing in on a specific model of noise: quantum depolarising channel
noise. We then describe Grover’s search algorithm in an ideal setting before eventually ending
with putting these pieces together to talk about depolarizing channel noise in Grover’s search
algorithm.

33

https://www.goodreads.com/work/quotes/15388653-the-beginning-of-infinity-explanations-that-transform-the-world
https://www.goodreads.com/work/quotes/322239-programming-the-universe-a-quantum-computer-scientist-takes-on-the-cosm


3.1 Quantum Operations

Quantum operations’ formalism provides a comprehensive methodology to understand quan-
tum states” evolution in diverse situations, including stochastic changes similar to those dis-
played by classical states’ Markov processes. Density matrices denoted by ρ represent quantum
states, similar to probability vectors that represent classical states. Quantum states evolve
according to the transformation ρ′ = E(ρ), where E denotes a quantum operation that rep-
resents the dynamics of a state due to a physical process. The initial states, denoted by ρ,
transition to final states, denoted by E(ρ), due to this process, often requiring a normalization
factor. Unitary transformations and measurements are examples of quantum operations where
E(ρ) = UρU † and Em(ρ) = MmρM

†
m, respectively.

The development of a general theory of quantum operations involves unitary evolution, mea-
surement, and more general processes. Three distinct yet equivalent perspectives are employed
to study this theory. The first perspective examines dynamics through the lens of system-
environment interactions. Although this viewpoint has real-world applicability, it is mathe-
matically cumbersome. The second perspective, known as the operator-sum representation,
offers a robust mathematical framework for quantum operations, facilitating theoretical and
computational analysis despite its abstract nature. The third perspective introduces a set of
axioms, grounded in the physical rationale, that are expected to govern the dynamical maps in
quantum mechanics. This axiomatic approach gives generality, such that quantum operations
govern quantum dynamics under a vast array of scenarios. However, it lacks the computational
ease of the second method and the tangible aspects of the first. These methodologies, taken
together, offer a versatile toolkit for comprehending quantum noise and its ramifications.

3.1.1 System coupled to environment

In quantum mechanics, the concept of a system and its environment is fundamental. A
system is typically a smaller part of the universe being studied, while the environment comprises
everything else that interacts with the system. A Hilbert space can mathematically describe
such a quantum system, and its state is represented by a density matrix living in this space.

To study the dynamics of an open quantum system, we can expect it to be a result of
interactions between two entities: the principal system under examination and an environment.
These two entities, when combined, form a closed quantum system. Imagine a scenario where
our system, represented by the state ρ, is introduced into a mechanism that interacts with an
environment. However, unlike the initial state ρ, the system’s final state, denoted as E(ρ),
may not be derivable through a unitary transformation from ρ. Initially, we assume that
the combined state of the system and environment is separable and is represented as ρ ⊗
ρenv. Following the application of a transformation U , the system stops interacting with the
environment. To isolate the system’s state post-interaction, we perform a partial trace over the
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environment, yielding the system’s reduced state as

E(ρ) = Trenv[U(ρ⊗ ρenv)U †], (3.1)

where Trenv denotes the operation of tracing out the environmental degrees of freedom. Our
analysis assumes that the system and its surroundings start as separate entities. Although
quantum systems may interact with their environments, in practical settings, it’s reasonable to
assume that both start uncorrelated. Even when the initial state is not a pure product state
between the system and its environment, the quantum operations framework can still manage
the dynamics of quantum systems.

3.1.2 Operator-Sum representation

The operator-sum representation is an elegant way to capture the formalism of quantum
operations. It is a direct re-articulation of eq.(3.1) but uses only operators acting within the
principal system’s Hilbert space. We start by assuming |ek⟩ is an orthonormal basis for the
environment’s finite-dimensional state space, with the environment’s initial state being |e0⟩⟨e0|.
With this assumption, eq.(3.1) can be reformulated as:

E(ρ) =
∑

k

⟨ek|U [ρ⊗ |e0⟩⟨e0|]U †|ek⟩ =
∑

k

EkρE
†
k, (3.2)

where Ek ≡ ⟨ek|U |e0⟩ acts as an operator on the principal system’s state space. If the en-
vironment initiates in a mixed state, we can introduce an additional hypothetical system to
purify the environment as discussed in (3.1.4.2). The hypothetical system does not affect the
principal system’s dynamics but serves as a useful calculative step. This representation, known
as the operator-sum representation of E, with the set {Ek} being the operation elements or
Kraus’ operators for the quantum operation E, plays a crucial role and will frequently be used
throughout the text.
The completeness relation is a critical constraint that these operation elements adhere to as it
emerges from the requirement that E(ρ) has unit trace, Tr[E(ρ)] = 1

Tr
[∑

k

EkρE
†
k

]
= Tr

[∑
k

E†
kEkρ

]
= 1. (3.3)

Given that this relation holds for any ρ, it implies ∑k E
†
kEk = I which indicates that the

quantum operations are trace-preserving. However, there exist non-trace-preserving quantum
operations where ∑k E

†
kEk ≤ I characterizing processes that yield additional information about

the operation through measurement. The operators {Maµ} adhere to the inequality constraint∑
µM

†
aµMaµ ≤ I. Generalized measurements and quantum channels are special cases of this

framework [53].
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3.1.3 Axiomatic Formulas

We are now approaching quantum operations from a new perspective by establishing a set
of axioms rooted in physical principles. This conceptual approach provides valuable insights
through higher levels of abstraction. We assume that the quantum operation E transforms
density operators from an initial space H1 to density operators in a final space H2, following
three foundational axioms.

1. As discussed previously, given the initial state ρ, the probability of process E occurring
can be represented by the trace of E(ρ), denoted as Tr[E(ρ)]. It is important to note that
this probability is always between 0 and 1 for any state ρ.

Quantum operations, symbolized as E, transition quantum states with outcomes quan-
tified by Tr(E(ρ)), the trace of the output state. In quantum channels, Tr(E(ρ)) = 1
maintains the total probability, aligning with the probabilistic nature of quantum mechan-
ics. However, Tr(E(ρ)) < 1 implies selective measurement processes (or post-selection
mechanisms) or non-trace-preserving operations, indicating lossy processes or conditional
selections in quantum algorithms. This scenario necessitates normalization of E(ρ) by
1/Tr(E(ρ)) for further use, ensuring a valid quantum state. In summary, Tr(E(ρ)) < 1
reflects selective or lossy quantum processes, requiring adjustment for continued applica-
tion within quantum mechanics or computation.

2. Linearity: Quantum operations must be linear maps, implying that the evolution of
a superposition of states is the superposition of the evolution of individual states. E

is a convex-linear operator on density matrices. This means that if we have a set of
probabilities {pi} and a weighted sum of states ∑i piρi, applying the operation E will
result in the weighted sum of the transformed states ∑i piE(ρi). For a state ρi prepared
with probability pi, its evolution is given by:

ρ′ =
∑

i

piE(ρi) = E

(∑
i

piρi

)
. (3.4)

3. Completeness and Positivity: Quantum operations must map valid quantum states
to valid quantum states, which means that the operation must be completely positive
(preserving the positivity of the density matrix) and trace-preserving (ensuring that the
total probability is conserved).

Quantum operations are completely positive, remaining positive even when part of a
larger system. if we have a positive operator A on system H1 and E transforms density
operators from H1 to H2, then E(A) must also remain positive. Additionally, when we
introduce a new system R of any size and perform the combined operation (I ⊗ E)(A)
on the extended system RH1, the outcome must be positive for any positive operator A
on RH1. Here, I represents the identity operation on system R. Complete positivity is a
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more stringent condition than positivity, illustrated by the non-complete positivity of the
transpose map T .

A mapping E conforms to these axioms if it can be expressed through an operator-sum
representation and thus bridges the gap between the axiomatic framework and our earlier
discussions.

3.1.4 Revisiting the Postulates

The principles of quantum mechanics were initially formulated for closed systems. However,
with our current understanding of open quantum systems, we reformulate the postulates of
quantum mechanics in terms of the density operator to include both open and closed systems.
:

Postulate 1: States

Quantum states are represented by density operators, ρ which are non-negative and Hermi-
tian operators within Hilbert space. They are normalized to have a trace of one.

Postulate 2: Measurement

These are described through positive operator-valued measures (POVMs), which are essen-

tially collections of non-negative operators that sum to the identity operator. Quantum measure-

ments are described by measurement operators {Mm}. For a system in state ρ, the probability

of outcome m is:

p(m) = Tr[M †
mMmρ], (3.5)

and the post-measurement state is:
MmρM

†
m

Tr[M †
mMmρ]

. (3.6)

The operators satisfy
∑

mM †
mMm = I.

Generalized measurements

Generalized measurements extend the concept of measurement in quantum mechanics be-
yond the traditional framework of orthogonal projections. Instead of measuring in a specific
basis that corresponds directly to the eigenstates of an observable, generalized measurements
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allow for a broader class of measurement outcomes, which may not be associated with orthog-
onal states of the quantum system. This flexibility is crucial for capturing a wider variety of
physical processes and interactions within quantum systems.
Consider a quantum system A described by a state vector |ψ⟩A in a Hilbert space. The interac-
tion between the system A and a measurement apparatus (or another quantum system) B can
be represented by a unitary transformation U on the composite system. Without restricting
ourselves to the orthogonal basis of B or invoking specific physical models of measurement, we
can analyze the outcome of the measurement process through the mathematical formalism of
operators. Upon the application of U , the combined state of A and B evolves as:

U : |ψ⟩A ⊗ |0⟩B →
∑

a

Ma|ψ⟩A ⊗ |a⟩B, (3.7)

where |0⟩B is the initial state of B, |a⟩B are the basis states of B post-interaction, and Ma

are operators acting on the state of A. These operators are derived from the interaction and
effectively describe the transformation of A’s state dependent on the measurement outcome
indexed by a. The measurement process projects the state of B onto one of its basis states |a⟩B,
correlating the outcome with a corresponding transformation Ma of A. The post-measurement
state of A is then given by Ma|ψ⟩A, up to normalization. Unitarity of U implies certain
constraints on the operators Ma, most notably that they must satisfy the completeness relation:∑

a

M †
aMa = I, (3.8)

where I is the identity operator on the state space of A. This relation ensures that the total
probability of all possible outcomes of the measurement is 1, maintaining the probabilistic
interpretation of quantum mechanics. In this context, the probability of obtaining a particular
outcome a when measuring B is determined by the norm squared of the projected state of A,
∥Ma|ψ⟩A∥2.

Postulate 3: Evolution

The evolution of a closed quantum system is described by a unitary transformation. If the
system is in state ρ at time t1, it transforms to state ρ′ = UρU † at time t2 via a unitary operator
U .

The evolution over time is depicted by trace-preserving completely positive maps (TPCP
maps). The temporal evolution of quantum states is governed by trace-preserving completely
positive maps (TPCP maps).

Quantum Channels

Quantum channels are fundamentally conceptualized as completely positive trace-preserving
(CPTP) maps, serving as convex linear transformations that facilitate the transition of quantum
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states in a system [54]. The initial state of a system, represented by the density operator
ρ = |ψ⟩⟨ψ|, undergoes a transformation through a linear mapping E, defined as:

E(ρ) =
∑

a

MaρM
†
a . (3.9)

These operations follow specific criteria ensuring the physical feasibility of such transformations.
The completeness relation constrains the Kraus operators:

∑
a

M †
aMa = I, (3.10)

which guarantees the preservation of the total probability (trace preservation) through the chan-
nel. This mapping, characterized by the equation above, is referred to as a quantum channel.
The term ”channel” originates from the field of communication theory, suggesting the concep-
tual model of a sender transmitting the state ρ through a communication link, resulting in the
recipient receiving an altered state E(ρ). An alternative term, ”superoperator,” is also used to
describe quantum channels, highlighting the transformation of operators by operators, as op-
posed to vector transformations. Additionally, these channels are known as trace-preserving
completely positive maps, or TPCP maps, a designation that reflects specific properties of
the transformation that will be clarified. The defining properties of a quantum channel include
Linearity, Hermiticity Preservation (If an input state is Hermitian, i.e. ρ = ρ†, the output
state will also be Hermitian), Positivity Preservation (For an input state that is positive
i.e. ρ ≥ 0), the output state will also be positive, ensuring that the resulting probabilities are
non-negative.), and Trace Preservation. The ”completely positive” aspect of the term TPCP
indicates that the channel not only maintains positivity for the states it directly acts upon but
also when it is part of a larger system. This condition ensures that the physical validity of
states is preserved even when the system is entangled with another and the channel is applied
to only one part of the entangled system.
The representation described here is known as the operator-sum representation, and the {Ma}
are identified as Kraus operators or operational elements of the channel. The operations are
executed by a collection of operators known as Kraus operators {Ma}, with the quantum chan-
nel’s action on a quantum state ρ given by the operator-sum representation. Moreover, the
operator-sum representation of a quantum channel is not unique; varying sets of Kraus opera-
tors can equivalently describe the same quantum channel linked by a unitary transformation.
This non-uniqueness permits diverse mathematical characterizations of the same physical phe-
nomena.
Quantum channels extend beyond mere unitary evolution as delineated by the Schrödinger equa-
tion; they offer a generalized model for describing non-unitary evolution processes, including
those involving decoherence and various forms of quantum noise.
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Closed Quantum Systems Open Quantum Systems
State Representation State vector Density Matrix

Evolution Unitary Transformation Operator Sum Representation of Channels
Measurement Projective Measurement Positive Operator Valued Measurement (POVM)

Table 3.1: Summarising Closed Quantum Systems v/s Open Quantum Systems

Postulate 4: Composite Systems

The state space of a composite system is the tensor product of component state spaces. If
system i is in state ρi, the joint state is ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn.

The concepts of density operators and partial trace are important in understanding the
dynamics of composite quantum systems. In addition to these foundational tools, advanced
techniques such as the Schmidt decomposition and purifications are significant and useful in
enhancing our understanding of quantum systems.

3.1.4.1 Schmidt Decomposition

In the case of a bipartite AB system with a pure state |ψ⟩, there exist sets of orthonormal
states, |iA⟩ for subsystem A and |iB⟩ for subsystem B, that enable the expression of |ψ⟩ as
a sum ∑

i λi|iA⟩|iB⟩. The coefficients λi are non-negative real numbers (Schmidt coefficients)
that satisfy the condition ∑i λ

2
i = 1. This is known as the Schmidt decomposition.

3.1.4.2 Purification

Purification involves the conceptualization of an auxiliary system R when analyzing a quan-
tum state ρA of a given quantum system A. A joint pure state |AR⟩ can then be constructed
for the composite AR system, ensuring that the mixed state ρA emerges as the reduced state of
system A upon performing a partial trace over system R. The process of introducing the notion
of a reference system R to associate mixed states with corresponding pure states is crucial in the
mathematical framework for analyzing quantum states, although R is considered a hypothetical
system with no direct physical manifestation.

This framework allows for either the open-system or closed-system perspective to be viewed
as the foundational approach to quantum theory, depending on preference. We have demon-
strated how to derive the open-system principles from those of closed systems. Conversely,
beginning with open-system concepts, we find that pure states emerge as special cases (ex-
tremal points) within the set of density operators, highlighting that any density operator can
be ’purified’ within a larger system. Furthermore, the framework naturally incorporates orthog-
onal measurements and unitary evolution. Every POVM measurement can be realized through
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orthogonal measurements in a larger space, and all TPCP maps can be extended to isometric
transformations in a higher-dimensional Hilbert space. This interplay supports the concept
often referred to as the ”church of the larger Hilbert space,” which posits that any open system
can be part of a greater, encompassing closed system.

3.2 Quantum Noise

Quantum computers face greater susceptibility to noise and imperfections than traditional
digital computers. The inevitable interaction between the device and its environment leads
to decoherence, adversely affecting the encoded quantum information. Density matrices are
pivotal in studying the effects of decoherence, a common phenomenon in practical quantum
computing where systems interact with their environment. Strategies must be devised to miti-
gate these challenges in order to realize the practical application of quantum computers. Noise
is an unwanted disturbance that affects a quantum system, and it is closely related to decoher-
ence. Decoherence occurs when a quantum system interacts with its environment, causing it
to become entangled with its surroundings and leading to a loss of fragile quantum properties
such as superposition and phase coherence. Noise can come from various sources, including
environmental factors, imperfect hardware, and interactions with external fields.

When the quantum system is not isolated from its surroundings, the background noise
causes the quantum states to lose coherence rapidly over time. This degradation limits the
ability to perform complex calculations and maintain desired quantum states. Thus, quantum
computing research is focused on minimizing noise and decoherence through error correction
techniques, quantum error correction codes, and fault-tolerant quantum computing methods.
These methods aim to improve the stability of quantum states, suppress the negative effects of
noise, and enable reliable quantum computation in the presence of environmental disturbances.

Understanding the impact of noise on quantum systems is crucial for comprehending the
role of the environment in their evolution. To model these environmental interactions, we can
use quantum channels, as defined in 3.2.1. These channels are Trace-preserving Completely
Positive (TPCP) linear maps such that Λ gives: ρ →

∑
iKiρK

†
i , where the Ki’s are the Kraus

operators associated with the state’s evolution. Researchers have explored the effect of noise on
various quantum properties, including entanglement [7][8] and correlation [9], from both closed
and open system perspectives [10].
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3.2.1 Modeling Noise as a Quantum Depolarizing Channel

3.2.1.1 Generalised Depolarizing Channel

The quantum depolarizing channel is a prevalent model for representing quantum noise,
characterized as a CPTP map, Λq, with a single parameter, q [55]. It transforms a quantum
state ρ in a d-dimensional space into a mixture of itself and the maximally mixed state, Id

d , as
expressed by:

Λq(ρ) = qρ+ (1 − q)
d

Id. (3.11)

The parameter q in Λq must conform to a certain range to ensure complete positivity [56]:
−1

d2 − 1 ≤ q ≤ 1. (3.12)

3.2.1.2 Depolarizing Channel Noise Model

The Dt channel, a specific instance of the generalized qudit depolarizing channel from (3.11),
affects a d-dimensional quantum state ρ with a parameter 0 < t < 1 to yield the output,

Dt(ρ) = (1 − t)Id

d
+ tρ. (3.13)

Here, 1 − t symbolizes the depolarizing probability of the channel, while t indicates the
likelihood of the state ρ being preserved. This depolarizing channel model is widely used to
simulate quantum noise [25], represented by,

Dt(ρ) = tρ+ 1 − t

d2

d2∑
i=1

UiρU
†
i . (3.14)

In this representation, {Ui}d2

i=1 signifies a set of unitary operators forming an orthonormal basis
in the space of d× d matrices, utilized consistently in this paper.

The depolarizing channel can be depicted using operator-sum representation with Kraus
operators [54]. In a d-dimensional space, it is formulated as:

Dt(ρ) =
d2∑

i=0
DiρD

†
i , (3.15)

where Di are defined with D0 =
√
tId and Di = 1√

d(1−t)
Ui for i = 1, . . . , d2, and Ui are

orthogonal unitary operators.
A notable attribute of this channel is its commutative property when sequentially applied.

Using two channels, Dt1 and Dt2 , with preservation probabilities t1 and t2, the result is a
single depolarizing channel, irrespective of the application sequence, with a combined state
preservation probability of t1t2:

Dt2(Dt1(ρ)) = Dt1(Dt2(ρ)) = (1 − t1t2)Id

d
+ t1t2ρ. (3.16)
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In some contexts, this model might be considered overly pessimistic. Often, further information
about the channel’s physical properties can be obtained through various estimation techniques.
The use of the depolarizing channel as a noise model is mainly advisable when there is limited
knowledge about the actual physical channel. It can be presented as follows:

Dt(ρ) := (1 − t)ρd + t
Id

d
Tr[ρd], (3.17)

where it acts on states ρ in a d-dimensional Hilbert space.
For certain calculations, it is useful to consider quantum channels within the broader context

of all linear operators on a given Hilbert space, not just density matrices, as will be seen in A.3.
The inclusion of Tr[ρ] in the channel’s definition ensures linearity. If the input is guaranteed to
have a unit trace, then the Tr[ρ] term becomes superfluous.

The depolarizing channel has been pivotal in channel identification studies [57], in exploring
channel capacity enhancements through indefinite causal order [27], and in analytical compar-
isons of various channel probing methods [58].

3.2.1.3 Error probability e and its relation with the channel parameter t

The channel parameter t for a quantum channel Dt is different from the probability of
retaining the original state of the register (1 − e) (where e is the probability of getting an
erroneous state output, i.e., not equal to the input state)
We are denoting the preservation probability as e = 1 − e. The expression for the generalized
depolarizing channel in terms of probability e:

De(ρ) = eρ+ 1 − e

d2 − 1

d2−1∑
i=1

UiρU
†
i

= eρ−
( 1 − e

d2 − 1 · U0ρU†
0

)
+ 1 − e

d2 − 1

d2−1∑
i=1

UiρU
†
i +

( 1 − e

d2 − 1 · U0ρU†
0

)

=
(
e− 1 − e

d2 − 1

)
ρ+ 1 − e

d2 − 1

d2−1∑
i=0

UiρU
†
i (∵ U0 = I)

(3.18)

We know that 1
d2
∑d2

i=1 UiρU
†
i = Tr(ρ) I

d = 1
d2
∑d2−1

i=0 UiρU
†
i

De(ρ) =
(
e− 1 − e

d2 − 1

)
︸ ︷︷ ︸

t

ρ+
(( 1 − e

d2 − 1

)
d2
)

︸ ︷︷ ︸
1-t

Tr(ρ) I
d

(3.19)

We can verify this by checking if the total probability comes to be 1, as follows:(
e− 1 − e

d2 − 1

)
+
( 1 − e

d2 − 1

)
d2 = (��d2e− �e− 1 + �e) + (d2 −��d2e)

d2 − 1

= (d2 − 1)
d2 − 1 = 1
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Thus,
(
e− 1 − e

d2 − 1

)
= t(

(d2 − 1)e− (1 − e)
d2 − 1

)
= t(

d2e− 1)
d2 − 1

)
= t (3.20)

Applying Probability constraints gives us the range of the parameter as discussed earlier

e = (d2 − 1)t+ 1
d2

0 < e < 1 =⇒ 0 <
(

(d2 − 1)t+ 1
d2

)
< 1

0 < (d2 − 1)t+ 1 < d2 =⇒ −1 < (d2 − 1)t < (d2 − 1)
−1

(d2 − 1) < t < 1 (3.21)

It works the other way around as well, whereby the definition given above, a generic depolarizing
channel in terms of parameter t, is

Dt(ρ) = tρ+ (1 − t) Tr[ρ] I
d

= tρ+ 1 − t

d2

d2∑
i=1

UiρU
†
i

= tρ+ 1 − t

d2 Ud2ρU †
d2 + 1 − t

d2

d2−1∑
i=1

UiρU
†
i

=
(
t+ 1 − t

d2

)
ρ+ 1 − t

d2

d2−1∑
i=1

UiρU
†
i

=
(

(d2 − 1)t+ 1
d2

)
︸ ︷︷ ︸

e

ρ+ 1 − t

d2︸ ︷︷ ︸
1−e

d2−1

d2−1∑
i=1

UiρU
†
i

It can be verified that 1−t
d2 = 1−e

d2−1

1 − e

d2 − 1 =
1 −

(
(d2−1)t+1

d2

)
d2 − 1

= d2 − (d2 − 1)t− 1
d2(d2 − 1)

= ����(d2 − 1) +����(d2 − 1)t
d2����(d2 − 1)

= 1 − t

d2
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3.2.1.4 Total vs Local Depolarizing Channel

The Total Depolarizing Channel is a noise model that transforms an n-qubit state ρ into a
maximally mixed state I

d with a specified probability e. Conversely, with probability 1 − e, the
state ρ remains unaffected. This channel can be represented as:

DT (ρ) =


I
d , with probability e,

ρ, with probability 1 − e.
(3.22)

This introduces a stochastic element to the evolution of the quantum state, making the noise
model significant in scenarios where a state might completely lose its coherence with a certain
likelihood.
In contrast, the Local Depolarizing Channel acts on each qubit of an n-qubit state ρ indepen-
dently. It applies the depolarizing channel to each qubit, resulting in the transformation:

ε(ρ) = ε1(ρ, e) ◦ ε2(ρ, e) ◦ · · · ◦ εn(ρ, e), (3.23)

where εi(ρ, e) is the depolarizing channel acting on the i-th qubit, and α represents the error
probability. Thus, this noise model systematically alters each qubit’s state, leading to a more
uniformly modified quantum state compared to the TDCh.

3.2.1.5 Complete vs. Partial Depolarizing Channel

We will be omitting the need to specify that the channel is partially depolarizing because a
completely depolarizing channel is a special case of the partially depolarizing channel when the
error parameter e = 1 and always maps any input state to the maximally mixed state I

d and
thus doesn’t need to be specified unless necessary.

3.3 Ideal Grover’s Quantum Search Algorithm

Grover’s algorithm, a pioneering quantum search method, significantly enhanced the effi-
ciency of searching within an unstructured data set. Demonstrating optimal performance in
identifying a specific element from an unsorted database of N items, it requires only kGr =⌊

π
4
√
N
⌋

queries to the oracle [59, 60]. The search problem is formulated as follows: We are
given a search domain comprising N = 2n quantum states, where n is the number of qubits in
the Hilbert space

(
H = C2n). Within this set, an unknown target state is concealed. An oracle,

or black box, is available, which can confirm whether a given state is the target. The goal is to
pinpoint this target state with maximum accuracy while reducing the number of steps involved.
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Algorithm: Firstly, the elements in the unstructured database of N items are indexed from
[0, N − 1]. Here, N = 2n, and n ∈ Z+ signifies the qubit count in the register. The quantum
states in the register are used to represent each database entry, denoted as {|0⟩, |1⟩, . . . |N−1⟩}.
A selection function f , inputting a state |x⟩ where x ∈ [0, N − 1], outputs 1 if the state fulfills
the search criteria and 0 otherwise. This function can be likened to an unstructured database
query, with its domain representing the indices of the database.

f =
{

0 if x is not the desired state,
1 if x is the desired state.

(3.24)

The target state is represented as |τ⟩, and the algorithm aims to locate this specific index τ . To
interact with a function f , Grover’s algorithm utilizes a quantum oracle-black box, represented
by the unitary operator Oτ . This operator acts on a quantum state as:

Oτ |x⟩ = (−1)f(x)|x⟩.

Figure 3.1: The Grover search algorithm with k Grover iterations

The algorithm is depicted as a schematic diagram in fig (3.1). Initially, a superposition of N
quantum states is created through the application of a Hadamard transformation (H),

|s⟩ = 1√
N

N−1∑
x=0

|x⟩. (3.25)

Subsequently, the algorithm prescribes repetitive applications of a quantum subroutine termed
the Grover iteration or Grover operator G. A circuit diagram describing this Grover operator
G as a combination of Oracle function and diffusion operator is given in Fig.(3.3)

Each Grover iteration G includes:
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Figure 3.2: Quantum circuit representation of Grover’s algorithm (The Grover oracle Uω flips
the sign of |s⟩ if it is the marked element.) By Fawly - Own work, CC BY-SA 4.0

• Implementation of the oracle operator Oτ = 2|t⟩⟨t| − I.

• Activation of the diffusion operator δ, which conducts a rotation around the state |s⟩.
The expression for δ is:

δ = −H⊗n(2|0⟩⟨0| − I)H⊗n = 2|s⟩⟨s| − I

• Execution of measurements in the canonical basis on each qubit, where the target state
is likely to be observed.

State Evolution and Success Probability: The algorithm state after k iterations of
applying the oracle and diffusion operators is given by:

ρ(k) = Gkρ(0)
(
G†
)k
, (3.26)

where G = δOτ and ρ(0) = |s⟩ ⟨s|. The resulting density operator is ρ(k) = |sk⟩ ⟨sk|, with

|sk⟩ = sin
(

(2k + 1) sin−1 1√
N

)
|τ⟩

+ cos
(

(2k + 1) sin−1 1√
N

)
|1 − τ⟩,

where, |1 − τ⟩ = 1√
N − 1

N−1∑
i=0
i ̸=τ

|i⟩ (3.27)

Thus, the probability of successfully locating the target element after k steps is

P (k) = sin2
(

(2k + 1) sin−1 1√
N

)
. (3.28)
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Figure 3.3: Geometric Picture for the working of Grover’s Search algorithm:
Grover’s search algorithm employs a geometric approach to find a marked item within an
unsorted database efficiently. Initially, the quantum state |ψ⟩ is positioned at an angle θ/2
relative to the state |α⟩, which is orthogonal to |β⟩, the superposition of all potential
solutions. The process begins with an oracle operation O, which reflects |ψ⟩ about |α⟩,
producing a new state O|ψ⟩. Following this, the Grover diffusion operator, 2|ψ⟩⟨ψ| − I,
reflects O|ψ⟩ about |ψ⟩, yielding the state G|ψ⟩. Each Grover iteration G effectively rotates
the state vector |ψ⟩ by an angle θ towards |β⟩. Repeated iterations amplify the probability
amplitude of the correct solution states. After roughly O(

√
N/M) iterations, where N is the

total number of states and M is the number of solutions, the state vector approaches |β⟩. At
this point, measuring the quantum state on a computational basis yields a solution with high
probability. The algorithm’s efficiency is notable because the angle θ is proportional to√
M/N , resulting in significantly fewer iterations compared to classical search methods.
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3.4 Influence of Noise on Grover’s Quantum Search Algorithm

Grover’s quantum search algorithm, discussed briefly in the previous section, constitutes an
oracle-based method designed to search an unordered database efficiently. In its ideal form, this
algorithm showcases a remarkable quadratic acceleration compared to the classical brute-force
search Nonetheless, this advantage significantly diminishes when the oracle encounters faults
[13, 14] or when the algorithm operates in an environment of noise [15]. Local error models
hold significance as they reflect the impact of gate errors on any practical implementation of a
quantum circuit.
In this section, we can delve briefly into investigating the impact of a known noise rate on
Grover’s search algorithm, looking into prior research conducted in [11, 12] It is specifically
using the error model associated with a total partial depolarizing channel noise. Many
studies have been conducted to explore the effect of the depolarizing channel on Grover’s search
algorithm. These studies have shown that this noise can significantly reduce the algorithm’s
performance, indicating the need to maintain the integrity of the oracle mechanism and reduce
external disturbances to ensure optimal operational efficiency.
In quantum systems, interaction with the environment is inevitable, particularly during pro-
cesses like gate applications or state preparation, leading to the introduction of errors and noise.
The effect of such environmental factors on quantum algorithms has been extensively studied
[61, 62]. Grover’s quantum search algorithm, an oracle-based technique, is known for its efficient
searching capabilities in an unordered database, demonstrating a quadratic speedup over tradi-
tional brute-force search methods [52]. However, this advantage diminishes when the oracle is
faulty [14] or in noisy environments [63]. Investigations into partial depolarizing and dephasing
noise models have been conducted by Vrana et al.. Besides the total depolarizing error model,
which affects the entire quantum register, Cohn et al. also explored a local depolarizing error
model that affects each qubit in the register individually with a certain probability, reflecting
gate errors in quantum circuit implementations.

Figure 3.4: This figure illustrates the effect of noise on the Grover operator G, shown by the
shaded bar. Measurement at the end evaluates the impact of noise on the operator’s success
probability.
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This section provides an overview of the known noise rate’s impact on Grover’s algorithm.
Errors occurring between successive quantum gate operations can be effectively modeled by
depolarizing channels Dt. This model simulates continuous exposure to noise in quantum
computing and the random nature of error occurrence. The depolarizing noise replaces the
entire n-qubit quantum register with a maximally mixed state with a probability t between
each oracle invocation. This model, acting correlated across the entire quantum register, is
akin to a noisy oracle and can be quite pessimistic in some cases. Quantum error correction
techniques [54, 64] are notably ineffective against partial depolarizing or dephasing noises, which
affect the quantum computer as a whole. Such collective disturbances are comparable to the
quantum system experiencing a sudden ’flash’ of noise, such as laser fluctuations or external
magnetic field interference, common in moderately sized quantum computers.

3.4.1 State Evolution with Error

The process involves the sequential use of the Grover operator G and the subsequent ap-
plication of the depolarizing channel error Dt. The depolarizing channel error commutes with
any unitary operation when acting on the system [11]. Hence, in the noisy Grover’s algorithm,
the resultant state after noise application is expressed as (DtG)k(ρ), where G(ρ) is defined by
G(ρ) = ((Id − 2|ψ⟩⟨ψ|)Oτ )ρ((Id − 2|ψ⟩⟨ψ|)Oτ )†. Therefore, after ’k’ iterations, the state evolves
as:

ρ(k, t) = tkρ(k) +
(
1 − tk

) I
d
, (3.29)

where ρ(k) is as in eq.(3.26).

3.4.2 Success Probability

The probability of successfully identifying the target index τ in the oracle is determined by:

P (k, (1 − t), d) = 1
d

d∑
x=1

⟨τ |(DtG)k(|ψ⟩⟨ψ|)|τ⟩. (3.30)

This expression represents the success probability after k iterations for an input space ρ of
dimension d = 2n, with d as the total number of possible oracles. The parameter (1−t) indicates
the depolarizing noise strength during the algorithm, with t as the channel parameter for the
total, partial depolarizing channel at each step (refer to 3.17). This formulation averages the
success probability over all d oracles, assuming equal likelihood, contrasting with methodologies
that focus on the minimal success probability. This average success approach aligns with
perspectives in references like [59], differing from the minimal success probability method seen
in [54, 65].
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P (1, (1 − t), d) = 1
d

d∑
x=1

⟨x|(DtGx)(ρ)|x⟩

= t · P (1, 0, d) + (1 − t)1
d

[ ∵ P (k, 0, d) as in 3.28]

= t · sin
(

(2(1) + 1) arcsin
( 1√

d

))
+ (1 − t)1

d
. (3.31)

For the noise above model, the process (DpGx)k can be expanded into 2k distinct histo-
ries, with each term positively contributing. By retaining the noise-free component tρ in each
segment, a lower bound for success probability P (k, (1 − t), d) is given by:

P (k, (1 − t), d) ≥ tk sin2
(

(2k + 1) arcsin 1√
d

)
. (3.32)

With partial depolarizing noise, the exact success probability is computable [12]. Omitting
2k − 1 terms results in 1

d(1 − t)m(t)k−m, where m is the number of noise occurrences in k
iterations. Summing these terms, which total 1− tk, gives the precise probability for this model
as,

P (k, (1 − t), d) = (1 − tk)1
d

+ tk sin2
(

(2k + 1) arcsin 1√
d

)
. (3.33)
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Chapter 4

Investigating Noisy Grover’s Search using Quantum Switches

“All fiction that does not violate the laws of physics is fact”

– David Deutsch, The Beginning of Infinity

“Creativity is just connecting things.. . . A lot of people in our industry haven’t had very diverse

experiences. So, they don’t have enough dots to connect, and they end up with very linear solutions

without a broad perspective on the problem. The broader one’s understanding of the human

experience, the better design we will have.”
– Steve Jobs, In a 1995 Wired article

In this chapter, we build on the foundations laid in the previous chapters and explore the
use of quantum switches to mitigate noise in Grover’s search algorithm. We start with a
brief on indefinite causal order before introducing the quantum device central to our study,
called quantum switches, and talk about its functioning and mathematical formalism used for
calculations. Quantum channels put in a superposition of order using quantum switches leads
to what we will often refer to as switched channels with indefinite causal order [66, 67],
and we will be introducing two frameworks utilizing these switched channels. We set up some
background and assumptions underlying the two proposed switched channel frameworks for
noisy Grover’s search algorithm before getting into the state evolution and success probability
of the algorithm under each framework. For this study, we will be using the total, partial
depolarising channel discussed in (3.4) for modeling the quantum noise, contrasting the success
probabilities of Grover’s algorithm on a search space of 4 qubits or 24 elements with and without
the application of quantum switches for both the frameworks for upto k = 3 iterations.
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4.1 Quantum Switch

The quantum switch is a novel quantum primitive that has attracted attention due to the
various advantages it can provide in different subfields of quantum information over processes
with well-defined causal orders.

4.1.1 Introduction to Indefinite Causal Order

The concept of causal order is a fundamental aspect of daily experience, where events are
perceived as occurring in a fixed order. However, quantum physics proposes the existence of
nonclassical causal structures where the order of events is indefinite. In particular, the process
matrix formalism extends quantum mechanics laws to accommodate processes with indefinite
causal order. This allows for the generation of superpositions of causal orders by controlling
the causal order between two operations with a quantum degree of freedom in a superposition.
Quantum theory allows the combination of communication channels in novel ways, creating
a quantum superposition of different configurations. This theory allows the order of channel
application to be entangled with a control system known as a quantum superposition of
orders. Besides, quantum theory also permits the formation of unusual configurations that
are not compatible with any underlying model where the order is definite. The quantum
switch is a canonical example of a process with indefinite causal order. It is studied using
a framework that distinguishes whether a process is compatible with a fixed causal order or
not. The ability to combine communication channels in a superposition of orders can enhance
various tasks, such as testing properties of quantum channels, playing non-local games, and
reducing communication complexity.

4.1.2 Mathematical Formulation of Quantum Switch

In this subsection, we discuss the implementation of quantum switches in general. As
mentioned before in eq.(3.15), the action of a quantum channel N on an input state ρ can
be expressed using the Kraus representation, or operator-sum representation, formulated as
N (ρ) = ∑

iKiρK
†
i , where {Ki} denotes the set of Kraus operators for N . Consider two quan-

tum channels, N1 and N2; they can operate either concurrently or sequentially. The concurrent
operation is represented as N1 ⊗ N2. In contrast, sequential operations can be arranged in two
ways: N1 followed by N2 (notated as N2 ◦ N1) or N2 followed by N1 (notated as N1 ◦ N2). If
the sequence of these channels is fixed, only one of the sequences, either N2 ◦ N1 or N1 ◦ N2,
is permissible. However, the sequence in which two channels operate can be rendered indef-
inite using an ancillary system, namely the control qubit (ρc) [25, 27, 68], ρc = |c⟩ ⟨c| where√
θ |0⟩ +

√
θ |1⟩. With ρc set to the |0⟩⟨0| state, the N2 ◦ N1 arrangement affects the state ρ,

while N1 ◦ N2 comes into play when ρc is in the |1⟩⟨1| state. If {K(1)
i } represent the Kraus
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Figure 4.1: Fixed order vs superposition of orders. (a) A quantum particle, prepared in the
state ρ, goes first through channel N1 and then through channel N2. This configuration is
associated with the state ρc = |1⟩ ⟨1| of a control qubit, in which the choice of order is encoded.
(b) The quantum particle goes first through N2 and then through N1. This alternative
configuration is associated with the qubit state ρc = |0⟩ ⟨0|. (c) The quantum switch creates a
superposition of the two configurations (a) and (b). It takes a control qubit in a superposition
state, such as ρc = |+⟩ ⟨+|, and correlates the order of the two channels with the state of the
qubit.

operators for N1 and {K(2)
j } for N2, the generalized Kraus operator can be expressed as

Wij = K
(2)
j ◦K(1)

i ⊗ |0⟩⟨0| +K
(1)
i ◦K(2)

j ⊗ |1⟩⟨1|, (4.1)

where K(1)
i is the ith Kraus operator of channel N1 and K(2)

j is the jth Kraus operator of channel
N2; and |0⟩⟨0|c, 1⟩⟨1|c are the projectors associated with the native basis of |c⟩. Thus, we can
describe the cumulative evolution of the combined system as follows:

S(N1,N2)(ρ⊗ ρc) =
∑
i,j

Wij(ρ⊗ ρc)W†
ij . (4.2)

This arrangement, in which the order of application of the two channels is coherently controlled,
captures the operation of the quantum switch. It can be thought of as a higher order map that
takes two channels N1,N2 as inputs and gives the superposition of their orders as outputs
depending upon the choice of the control qubit |c⟩. Expanding upon this quantum operation,
it evolves into the following form:

S(ρ⊗ ρc) = S00(ρ) ⊗ ⟨0|ρc|0⟩|0⟩⟨0|c + S01(ρ) ⊗ ⟨0|ρc|1⟩|0⟩⟨1|c (4.3)
+ S†

01(ρ) ⊗ ⟨1|ρc|0⟩|1⟩⟨0|c + S11(ρ) ⊗ ⟨1|ρc|1⟩|1⟩⟨1|c,

54



Superoperators are defined as:

S00(ρ) =
∑
i,j

K
(2)
j K

(2)
i ρK

(1)†
i K

(2)†
j , (4.4)

S01(ρ) =
∑
i,j

K
(2)
j K

(1)
i ρK

(2)†
j K

(1)†
i , (4.5)

S11(ρ) =
∑
i,j

K
(1)
i K

(2)
j ρK

(2)†
j K

(1)†
i . (4.6)

In this schema, S00(ρ) characterizes the quantum operation effected by a sequential application
of two channels in a fixed causal order (1) to (2), whereas S11(ρ) aligns with the order (2) to
(1). On the contrary, S01(ρ) represents a unique coupling term intrinsic to the quantum switch,
representing an indefinite causal order between the two channels. Upon integrating the control
qubit in a superposed state |ψc⟩ = √

pc |0⟩ +
√

1 − pc |1⟩, with pc ranging between 0 and 1, into
this framework, the operation transforms into:

S(ρ⊗ ρc) = pcS00(ρ) ⊗ |0⟩⟨0|c + (1 − pc)S11(ρ) ⊗ |1⟩⟨1|c (4.7)
+

√
(1 − pc)pc

[
S01(ρ) ⊗ |0⟩⟨1|c + S†

01(ρ) ⊗ |1⟩⟨0|c
]
.

This results in entanglement between the input qubit in state ρ and the control qubit in state ρc,
culminating in the joint state S(ρ⊗ρc) , which can be used to extract information by measuring
either the input or the control qubit. The way the switched channel works, especially during
entangling and disentangling operations, is mathematically described using reduced density
operators obtained by performing partial trace operation over one of the qubits.
Focusing initially on the input qubit, the measurement process is governed by the reduced
density operator ρinput = TrcontrolS(ρ ⊗ ρc) = S00(ρ) or S11(ρ). This operation simulates the
outcome as if the input qubit went through a sequence of operations with a defined causal
order, making the superposition of causal orders irrelevant. This scenario, while simpler, does
not exploit the full potential of the quantum switch. The alternative, though, where we measure
the control qubit while leaving the input as is, reveals the unique capabilities afforded by the
quantum switch. The reduced density operator for the control qubit, ρcontrol = TrinputS(ρ⊗ρc),
manifests as

ρcontrol = pc|0c⟩⟨0c| + (1 − pc)|1c⟩⟨1c| + Tr[S01(ρ)]
√
pc(1 − pc) (|1c⟩⟨0c| + |0c⟩⟨1c|) , (4.8)

where Tr[S01(ρ)] captures the dependency on the channel parameters introduced by channels
N (·).
To analyze the information processed by the switched channel, one can measure the control qubit
in the Fourier basis {|+⟩ , |−⟩}, using the measurement operators {Id ⊗ |+⟩ ⟨+| , Id ⊗ |−⟩ ⟨−|}
within the combined Hilbert space. This measurement projects the control qubit into either
state |+⟩ or |−⟩, rendering the input qubit in an unnormalized conditional state defined as:

ρ(±) = c⟨±|S(ρ⊗ ρc)|±⟩c = 1
2S00(ρ) ±

√
(1 − pc)pcS01(ρ), (4.9)
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Where the operation outcomes’ probabilities are given by the traces P (±)
control = Tr[ρ(±)]. When

initializing the input qubit in a specific state ρ, the trace outcomes are represented as:

Tr[ρ(±)] = 1
2Tr

[1
2S00(Id) ±

√
(1 − pc)pcS01(I2)

]
. (4.10)

As observed by Ebler et al., The dependence of certain states on ρ allows the receiver to extract
valuable information from the target system. By applying the post-selection method on the
outcomes |+⟩ and |−⟩, the noisy channel generalization of the quantum superpositions of time
evolutions proposed by Aharonov et al. can be generated in terms of the Kraus operators given
in eq.(4.1).

Performing post-selection ensures that non-zero information can be extracted from the target
system of interest after measurement in the Fourier basis {|+⟩ , |−⟩}. This could be seen from the
conditional state evolved as in eq.(4.9), which will lose the off-diagonal terms when considered
as an ensemble after measurement. Post-selection is traditionally done by taking many samples
of the measurement (without post-selection) and discarding the ones that didn’t meet the
selection criteria. However, current state-of-the-art hardware is developing more fine-grained
controls for doing mid-circuit conditionals [70]. It is important to note that this sampling is a
resource-heavy operation depending on the conditional probability of the ensemble and needs
to be taken into account when comparing the success probabilities.

4.2 Application of Quantum Switch to Grover Search Algo-

rithm

In this section, we develop two theoretical frameworks to explore and demonstrate the po-
tential of quantum switches to mitigate noise accumulating in iterations of the Grover search
algorithm. For this, we assume the resultant noise at every iteration to be originating in dis-
crete steps within the iteration such that it can be modeled as a composition of two depolarising
channels. The differences between the two frameworks become relevant only at the end of the
first Grover iteration, where we first get the following choice: either (1) making a measurement
and post-selection now to trace out the switch correlated with the input state so that input
to the next iteration is just the input state after first Grover iteration or (2) postponing the
measurement and post-selection till the end of the algorithm, such that the input to the next
iteration will be the joint state of the input state correlated with the control qubit. This distinc-
tion will become clear as we further this discussion, but before delving into the specifics of each
framework, we will establish and elaborate on certain assumptions common to both frameworks.
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First Iteration: (k=1): Let us look at the first iteration of Grover’s search algorithm running
on an unstructured database. The input system will be an n-qubit system, represented by a d
dimensional qudit system where d = 2n. This is because a one-to-one mapping exists between
the n-qubit system and d = 2n level qudit system. We model the noise in the iteration as a
composition of two total depolarizing channel errors (1 −

√
t).

Thus, if we consider t to be the channel parameter for the depolarizing channel, we can
model noise in the first iteration as a channel,

Dt(ρ) = tρ+ (1 − t)Tr[ρ]Id

d
= D√

t(D√
t(ρ)). (4.11)

This resultant noise could be assumed to be a combination of two identical depolarizing channel
noises, each with channel parameter

√
t, error probability 1−

√
t. These noises can be expressed

as the channel,

D√
t(ρ) =

√
tρ+ (1 −

√
t)Tr[ρ]Id

d
=

d2∑
i=0

KiρK
†
i . (4.12)

Here the set of Kraus operators, {Ki}, for the above channel will be, K0 = t
1
4 Id and Ki =√

(1 −
√
t)

d2 Ui where {i = 1, 2, . . . d2}. Thus, we can express the Kraus operators of the switch
S as,

Wij = KiKj ⊗ |0⟩ ⟨0| +KjKi ⊗ |1⟩ ⟨1|

= (1 −
√
t)

d2

(
UiUj ⊗ |0⟩ ⟨0| + UjUi ⊗ |1⟩ ⟨1|

)
, (4.13)

for i, j = 0, 1, 2 . . . d2. Here, {Ki} and {Kj} are Kraus operators for the two identical channels
given in (4.12). Suppose that the control system is fixed to the state, ρc = |c⟩ ⟨c|, where,
|c⟩ =

√
θ |0⟩ +

√
θ |1⟩. We prepare the n-qubit system, which is input to Grover’s search,

in the state ρ(0), which can be considered a d dimensional qudit system. Now, in an ideal
case scenario without noise, it is straightforward that after applying the oracle operator Oτ and
diffusion operator k times, the result is ρ(k) = Gkρ(0)(G†)k, where the Grover operator G = δOτ .
Thus, after the first Grover iteration, the system’s state is supposed to be Gρ(0)G† = ρ(1).
But, If we consider the noise as in eq.(4.11), the resultant state can be denoted by,

Dt(ρ(1)) = tρ(1) + (1 − t)Tr[ρ(1)]Id

d
= D√

t(D√
t(ρ(1))). (4.14)

Now, If we consider a quantum switch applied on these two decomposed channels, the resultant
state S(D√

t,D√
t)(ρ(1) ⊗ ρc) is given by,
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S(D√
t,D√

t)(ρ(1) ⊗ ρc) =
d2∑

i, j=0
Wij(ρ(1) ⊗ ρc)W†

ij (4.15)

=
d2∑

i,j=0

{(
KiKj ⊗ |0⟩ ⟨0| +KjKi ⊗ |1⟩ ⟨1|

)(
ρ(1) ⊗ ρc

)(
KiKj ⊗ |0⟩ ⟨0| +KjKi ⊗ |1⟩ ⟨1|

)†}

=
d2∑

i,j=0

{(
KiKjρ(1)K†

jK
†
i ⊗ θ |0⟩ ⟨0|

)
+
(
KiKjρ(1)K†

iK
†
j ⊗

√
θθ |0⟩ ⟨1|

)
+
(
KjKiρ(1)K†

jK
†
i ⊗

√
θθ |1⟩ ⟨0|

)
+
(
KiKjρ(1)K†

jK
†
i ⊗ θ |1⟩ ⟨1|

)}
(4.16)

S(D√
t,D√

t)(ρ(1) ⊗ ρc) = (1 −
√
t)2
(

Tr[ρ(1)]Id

d
⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)
+ρ(1)

d2 ⊗
(√

θθ |0⟩ ⟨1| +
√
θθ |1⟩ ⟨0|

))
+2

√
t(1 −

√
t)
(

Tr[ρ(1)]Id

d
⊗ ρc

)
+ t(ρ(1) ⊗ ρc). (4.17)

For more detailed calculations, refer to Appendix A.1. The quantum switch facilitates the
transfer of information not only within the input system ρ or the control system ρc but pri-
marily through the correlations established between the output system and the control. These
quantum correlations are crucial for the successful transfer of information. If the control qubit
experiences decoherence within the computational basis {|0⟩ , |1⟩}, the information becomes
entirely inaccessible. However, for our study, we assume the control system will be noiseless for
the duration of our investigation. Finally, we measure the control qubit in the basis {|+⟩ , |−⟩},
and these measurements yield conditional states.

4.2.1 Framework 1, Fξ: Measurement after every iteration

In the schematic diagram fig.(4.2), we show the action of the Grover operator, along with
switched noisy total depolarising channels in the first framework. Notice the measurement and
post-selection after each iteration.

4.2.1.1 State Evolution with Error

In this framework, we measure the basis {|+⟩ , |−⟩} at the end of every iteration. The state of
the system at the end of the first iteration is given by,

ρξ(1)± =
⟨±| S(D√

t, D
√

t)(ρ(1) ⊗ ρc) |±⟩

Tr
[
⟨±| S(D√

t, D
√

t)(ρ(1) ⊗ ρc) |±⟩
] . (4.18)
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Figure 4.2: Framework 1 (Fξ): The figure depicts the application of switch to Grover’s search
algorithm (modeled by the Grover operator G) to mitigate the noise that arises because of the
total depolarizing channel. The channel is the ash-colored bar, while the yellow region
represents the switch. The dotted line indicates that the post-selection happens at every step,
which is specific to this framework.
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Here, ξ in the subscript denotes the stepwise switched channel framework. If we substitute t as
0, in eq.(4.17), it yields the same results as [25], which uses completely depolarizing channels
for demonstrating enhancement in communication. However, in the case of Grover’s search
algorithm, we will consider t as the variable parameter for our analysis later. The density
matrix after measurement in the basis {|+⟩ , |−⟩} is given by eq.(4.18),

ρξ(1)(±) = N/M, (4.19)

where,

N = 1
2

{t± 2
√
θθ

(1 −
√
t

d

)2

+ t

 ρ(1)

+
(
(1 − t) ± 2

√
θθ2

√
t(1 −

√
t)
)

Tr[ρ(1)]Id

d

}

and

M = 1
2

{t± 2
√
θθ

(1 −
√
t

d

)2

+ t


+
(
(1 − t) ± 2

√
θθ2

√
t(1 −

√
t)
)}

Now we have,
ρξ(1)+ = fξ(t)ρ(1) + (1 − fξ(t))I

d
. (4.20)

where,

fξ(t) =

(
1−

√
t

d

)2
+ 2t(

1+(t−2
√

t)(1−d2)
d2 + 1

) . (4.21)

4.2.1.2 Success Probability

For this switched channel framework, we have the success probability Pξ for Grover’s search
algorithm assisted by this switched channel framework as,

Pξ(1, (1 − t), d) = fξ(t)P (1, 0, d) + (1 − fξ(t))
d

.

Generalisation to k iterations: Previously, we have shown how the framework behaves
when there is only 1 iteration. We extend this to k iterations. In other words, if we do post-
selection measurement at the kth step, then the final success probability is given by,

Pξ(k, (1 − t), d) = (fξ(t))k P (k, 0, d) + 1 − (fξ(t))k

d
.
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Here, in this framework, we take a measurement (without disturbing the output state after
every iteration) and then do a post-selection, which is a resource-heavy operation. This, in
turn, also destroys the correlation between the switch and the state at every step, and we can
keep resetting the same quantum state as a switch repeatedly until the end of the algorithm.
So, we will be proposing a better framework in the next subsection.

We plot the fig.(4.3) comparing the success probability of the switched model of framework
1 and the success probability of the noisy Grover iteration when there is no switch (we take
d = 24 as an example. The switch gives some advantages in restoring the probability for the
first iteration. However, the noise gradually reduces the advantage as the algorithm undergoes
further iterations.

4.2.2 Framework 2, Fω: Measurement at the end

In the schematic diagram fig.(4.4), we show the action of the Grover operator, along with
switched noisy total depolarising channels in the second framework. Notice the measurement
and post-selection at the end of the algorithm on the complete joint state combining the input
state with k quantum switches, where k is the number of Grover iterations the state has
traversed through. Our previous framework for analyzing the system after each Grover’s search
iteration involved performing measurements and post-selections at every step. So, the gain in
the probability of success may be attributed to the state’s post-selection. However, we have
now adopted a different approach for the second framework to circumvent this. In this new
framework that we propose in this section, we see the cumulative effect of k switches after k
iterations by measuring them on the Hadamard basis at the very end. Instead of measuring
and post-selecting the control qubit after each iteration, we use multiple quantum switches
and hold off on these actions until the end of all iterations. By doing so, the system can
undergo a sequence of Grover search iterations without intermediate collapse, which may result
in dynamics different from those of the first framework.

4.2.2.1 Analysing the output state obtained after the first iteration

Before we go into the details of this framework, we start with analyzing the output obtained after
the first iteration, which will be common in both. The result above demonstrates a dependence
on the parameter θ of the control qubit |c⟩, solely through the coherent indefiniteness [38]
denoted as

√
θθ in eq.(4.17). It is apparent that the optimal choice for the maximum switch

setting, i,e 2
√
θθ = 1, proves to be advantageous across all values of t and dimensions d.

Notably, any positive degree of indefiniteness (θ > 0) proves advantageous, signifying that
increased indefiniteness yields enhanced benefits. Moreover, it becomes evident that maximum
indefiniteness (θ = 1

2 , 2
√
θθ = 1) provides the most favorable conditions for this purpose. This
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Figure 4.3: These plots show the effect of noise strength (1 − t) on the success probability of
finding the target element in the search space in Noisy Grover’s search algorithm. We are
taking the search space to be d = 24, and thus the algorithm should stop at
kGr = π

4
√

16 = π ≈ 3 iterations. The Plots from left to right show these variations for
different iterations: k = 1 (top-left), k = 2 (top-right), and 3 (bottom-left). Here, the green
curve represents the Success probability without using any switches, and the magenta curve
represents the success probability on applying switches as described in fig.4.2
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output S(D√
t,D√

t)(ρ(1) ⊗ ρc) in eq.( 4.17 ) can be rearranged as:

S(D√
t,D√

t)(ρ(1) ⊗ ρc)

=
{
tρ(1) + (1 − t)Tr[ρ(1)]Id

d

}
⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)
+


(1 −

√
t

d

)2

+ t

 ρ(1) + 2
√
t(1 −

√
t)Tr[ρ(1)]Id

d


⊗
√
θθ (|0⟩ ⟨1| + |1⟩ ⟨0|) . (4.22)

The term
(
1−t

)
Tr[ρ]Id

d
+tρ(1) in eq.(4.17) represents the output after first iteration correspond-

ing to the parameter θ under the scenario where the channel order remains entirely definite (θ =
0 or 1). Meanwhile, the second term in eq.(4.17) signifies the additional information gained due
to any degree of ICO (θ > 0 or < 1). These observations emphasize that within the context of
Grover’s search algorithm, the quantum switch functions as a mitigator of noise by facilitating
more information transfer.

4.2.2.2 Block Matrix Notation

In the pursuit of a more concise representation of states within the framework of switched
quantum channels, we introduce a set of notations that capture the essence of recursive op-
erations on quantum states. This formalism is rooted in the structure of block matrices and
the operations defined on them, which are pivotal for understanding the dynamics of quantum
states under the influence of noise and control mechanisms.
Consider a block matrix A, composed of 2k × 2k blocks, with each block Aij being a d × d

matrix. This structure enables a fine-grained representation of quantum operations on multi-
partite states. To facilitate the analysis of such operations, we define the element-wise trace
operation, Trd×d(A), which transforms A into a new 2k ×2k matrix T . Each element Tij of T is
obtained by taking the trace of the corresponding d×d block Aij in A. Formally, this operation
is expressed as:

Trd×d(A) = T where Tij = Tr[Aij ] ∀ i in 1, 2, . . . ,M and j in 1, 2, . . . , N. (4.23)

To further this discourse, we introduce specific parameters that describe the effects of certain
quantum operations on states. The parameters rρ and rI are defined as:

rρ =
(

1 −
√
t

d

)2

+ t, rI = 2
√
t(1 −

√
t), (4.24)

where
√
t is the noise parameter related to the depolarising channel D√

t. Similarly, we define
fρ and fI to maintain symmetry in our notations:

fρ = t, fI = (1 − t). (4.25)
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Building upon these definitions, we define and examine the action of a fictitious operation F
on the joint quantum state ρω consisting of the original d-dimensional input state correlated
with the k switches, which is represented as:

F(ρω) =
((

1 − t

)
Trd×d[ρω]Id

d
+ tρω

)
, (4.26)

demonstrating how the operation mixes the state with its trace over the identity matrix. Like-
wise, another operation R is characterized by:

R(ρω) =
{((

1 −
√
t

d

)2

+ t

)
ρω + 2

√
t

(
1 −

√
t

)
Trd×d[ρω]Id

d

}
, (4.27)

Which highlights the recursive application of operations with a clear dependency on the param-
eter t. These operations are then utilized in the construction of a concise representation of the
more complex switch operation S, acting on a tensor product of input states and the control
qubit.

Thus, we can represent the expression for S(D√
t,D√

t)(ρ(1)⊗ρc) ρ(1)⊗ρc, given in eq.(4.22),
in a block matrix form to illustrate the resulting entangled state. The operation is written as:

S(D√
t,D√

t)(ρ(1) ⊗ ρc) =
[
θF(ρ(1))

√
θθR(ρ(1))√

θθR(ρ(1)) θF(ρ(1))

]
, (4.28)

where θ and θ = 1 − θ denote the coefficients that modulate the effect of operations F and
R on the state. In further text, we will be using shorthand to write this output as:

ρω,1(1) = S(D√
t,D√

t)(ρ(1) ⊗ ρc) (4.29)

Here, the ω in subscript highlights this second framework where we make measurements at the
end. The integer after that (1 in this case) denotes the number of switches correlated to the
input state. The integer in the bracket denotes the number of Grover iterations applied on the
search space, the input state.

ρω,1(1) = S(D√
t,D√

t)(ρ(1) ⊗ ρc) =
[
θF(ρ(1))

√
θθR(ρ(1))√

θθR(ρ(1)) θF(ρ(1))

]
. (4.30)

This representation not only captures the interaction between different components of the state
but also ensures that the output is a valid density matrix, adhering to the principles of quantum
mechanics. By adopting these notations and operations, we delve into the intricate behavior of
quantum systems under a variety of influences, laying a foundation for further exploration of
their properties and the development of strategies for noise mitigation in quantum algorithms.
This notation not only streamlines the representation of quantum states but also elucidates the
recursive nature of the operations applied to them.
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Figure 4.4: The figure depicts the application of the switch to Grover’s search algorithm
(modeled by the Grover operator G). The channel is the ash-colored bar, while the yellow
region represents the switch. The dotted line at the end indicates that the post-selection
happens at the very end, which is specific to this particular framework. Here, we take a
register of k switches, thus allowing us to preserve the system and switch correlation until the
end.
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4.2.2.3 State Evolution with Error

Here, we use a register containing k switches, and it should be noted that this framework is
identical to the previous framework for the first iteration because we’re measuring the control
state after the first iteration in the previous framework. The stark departure from the previous
framework can be noticed if we look at further iterations where we will consider the quantum
state consisting of the output after the first iteration (ρ1(1)) and the control state (ρc1) as the
input to the next noisy Grover iteration. This contrasts with the previous framework, where we
measure the control state and perform post-selection, thus destroying the correlation between
the input state and the quantum switch. We are only able to calculate the states obtained by
running Grover’s Search Algorithm in this framework till k = 3 as the matrix calculations blow
up exponentially with the number of iterations.

Second Iteration (k = 2): We know the action of the switched noisy channels from the first
iteration. This output, where the state representing the search space is now correlated with the
first switch ρc1 , will be the input to the next iteration. Thus, unlike the first framework where
in the next iteration, G is applied again on the search space ρxi(1), after the switch is traced
out, in this framework, the next Grover iteration will act as

(
G ⊗ Id

)
on ρω,1(1) to make sure

only the search space goes through the Grover iteration (G). Following the notation defined in
4.30, We denote this output as ρω,1(2). After this, the noise acting on this iteration will be a
combination of (D√

t ⊗ Id), as discussed earlier 4.14.
Here, We assume the quantum switches are noiseless for the time scale we’re considering. Now,
we use another switch ρc2 to put these noisy channels in superposition as We apply the noise,(
D√

t ⊗ Id

)
because the switch is noiseless. We can express the Kraus operators of the switch

with two identical noise
(
D√

t ⊗ Id

)
.

W(2)
ij =

(
Ki ⊗ Id

)(
Kj ⊗ Id

)
⊗ |0⟩ ⟨0| +

(
Ki ⊗ Id

)(
Kj ⊗ Id

)
⊗ |1⟩ ⟨1|

=
(
KiKj ⊗ Id

)
⊗ |0⟩ ⟨0| +

(
KjKi ⊗ Id

)
⊗ |1⟩ ⟨1| (4.31)

ρω,2(2) = S
(
D√

t ⊗ Id,D√
t ⊗ Id

)
(ρω,1(2) ⊗ ρc2) =

d2∑
i,j=0

W(2)
ij

(
ρω,1(2) ⊗ ρc

)
W†

ij (4.32)

We know the action of the switched noisy channels from the k = 1 iteration if we apply the
same action recursively; for k = 2, we get this.
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ρω,2(2) =


fρ

[
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

]
︸ ︷︷ ︸

fρ(.)+

+ fI
Id

d
⊗
[
θTr[F(ρ(2))]

√
θθTr[R(ρ(2))]√

θθTr[R(ρ(2))] θTr[F(ρ(2))]

]
︸ ︷︷ ︸

fI
Id
d

⊗Trd×d[.]


⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)

+


rρ

[
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

]
︸ ︷︷ ︸

rρ(.)+

+ rI
Id

d
⊗
[
θTr[F(ρ(2))]

√
θθTr[R(ρ(2))]√

θθTr[R(ρ(2))] θTr[F(ρ(2))]

]
︸ ︷︷ ︸

rI
Id
d

⊗Trd×d[.]


⊗
√
θθ (|0⟩ ⟨1| + |1⟩ ⟨0|) (4.33)

ρω,2(2) =
{
fρρω,1(2) + fI

Id

d
⊗ Trd×d[ρω,1(2)]

}
+ ⊗

(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)
+
{
rρρω,1(2) + rI

Id

d
⊗ Trd×d[ρω,1(2)]

}
⊗
√
θθ (|0⟩ ⟨1| + |1⟩ ⟨0|) (4.34)

See Appendix A.3, for detailed calculation. We can use eqn.(4.30) and eqn.(4.24) and expand
the previous notation of F and R to write the above result as:

ρω,2(2) =
[
θF(2)(ρω,1(2))

√
θθR(2)(ρω,1(2))√

θθR(2)(ρω,1(2)) θF(2)(ρω,1(2))

]
, (4.35)

where the matrix in eq.(4.35) is a 4d-dimensional block matrix which is again analogous to
matrix in eq.(4.26). Now, if we want to stop the algorithm at this stage and analyze the state
for success probability, we will need to make the measurement, assuming the quantity 2

√
θθ = 1

for maximum indefiniteness as discussed before

ρω(2) = (⟨+|⊗2)ρω,2(2)(|+⟩⊗2)
Tr
[
(⟨+|⊗2)ρω,2(2)(|+⟩⊗2)

]
= fω,2(t)ρ(2) + (1 − fω,2(t))Tr[ρ] I

d
, (4.36)

where,

fω,2(t) = (fρ + rρ)2
(
(fρ + rρ)2 + (fI + rI)

(1 + rρ + rI) + fρ + rρ)
)−1

(4.37)

Extending the output state to kth iteration: The quantum operation applied to the output
of (k − 1)th (input to the kth) iteration will be (Id ⊗GDt) ρω,k−1(k)

(
D†

tG
† ⊗ I†

d

)
. If we apply

that action recursively, (as the input of the kth iteration is the same as the output of the (k−1)th

iteration)
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At the kth iteration, the state/system will be a 2k ∗ 2n = 2k+n dimensional matrix. In terms
of the number of terms, there will be 2k ∗ 2k = 2k+k = 4k terms. To study the accumulated
error at the kth iteration, we will need to consider taking the state obtained after measurement
and post-selection of all the k control states correlated with the output state after k iterations.
Here we can start unpacking the block matrices F and R:

F(ρω,k−1(k)) = fρ (ρω,k−1(k))︸ ︷︷ ︸
2k−1d−dimensional

+fI
Id

d︸︷︷︸
d−dimensional

⊗ Trd×d[ρω,k−1(k)]︸ ︷︷ ︸
2k−1−dimensional

. (4.38)

R(ρω,k−1(k)) = rρ (ρω,k−1(k))︸ ︷︷ ︸
2k−1d−dimensional

+rI
Id

d︸︷︷︸
d−dimensional

⊗ Trd×d[ρω,k−1(k)]︸ ︷︷ ︸
2k−1−dimensional

. (4.39)

We get a recursive relation using the above substitutions in (4.38) and (4.39). Again, for
concise representation, we introduce a notation called block trace, which applies trace on all
the 2 × 2 block matrices in the matrix. It leads to a matrix that is half the size of the input
matrix, again keeping in line with the exponential nature of the calculations. We will reduce
the matrix’s dimension by half with each step.

(⟨+|⊗k)ρω,k(k)(|+⟩⊗k) = (⟨+|⊗k)
[
θF(ρω,k−1(k))

√
θθR(ρω,k−1(k))√

θθR(ρω,k−1(k)) θF(ρω,k−1(k))

]
(|+⟩⊗k)

= (⟨+|⊗k−1)(F(ρω,k−1(k)))(|+⟩⊗k−1) + 2
√
θθ(⟨+|⊗k−1)(R(ρω,k−1(k)))(|+⟩⊗k−1).(4.40)

We can write this as Mk(ρω,k(k)) where Mk denotes the measurement operation (|+⟩⊗k). This
trivial notation will again help us appreciate the recursive nature of the evolution:

Mk(ρω,k(k)) = (⟨+|⊗k)ρk(k)(|+⟩⊗k),= 1
2

{
(fρ + 2

√
θθrρ)Mk−1(ρω,(k−1)(k)) + (fI + 2

√
θθrI)

(Id ⊗ ⟨+|⊗k−1 ⊗ Trd×d(ρω,k−1(k)) ⊗ |+⟩⊗k−1
}
. (4.41)

Using this generalization, we can recursively obtain the third iterations as follows:

M3(ρω,3(3)) = 1
2(fρ + 2

√
θθ)M2(ρ2(3))

+1
2(fI + 2

√
θθ)Id

d
(⟨+|⊗2 Trd×d(ρω,2(3)) |+⟩⊗2),

M2(ρ2(3)) = 1
2(fρ + 2

√
θθ)M1(ρ1(3))

+1
2(fI + 2

√
θθ)Id

d
(⟨+| Trd×d(ρ2(3)) |+⟩),

M1(ρ1(3)) = 1
2(fρ + 2

√
θθ)M0(ρ0(3))

+1
2(fI + 2

√
θθ)Id

d
Trd×d(ρ0(3)). (4.42)

Here, M0(ρ0(2)) = ρ3 and Trd×d(ρ3) = Tr(ρ3)) = 1.
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4.2.2.4 Success Probability

If we simplify and abstract out the expression for the unnormalized output state after mea-
surement and post-selection obtained by eqn. (4.41) as:

(coefficient of ρ)ρ+
(coefficient of Id

d )
d

Id, (4.43)

We can calculate the success probability in a similar way to the first framework, where success
probability can be written as:

(coefficient of ρ)
(coefficient of ρ) + (coefficient of Id

d )
P (k, 0, d) +

(coefficient of Id
d )

(coefficient of ρ) + (coefficient of Id
d )

1
d
,

(4.44)
Thus, we can write the success probability for the first three iterations in terms of the parameter
t as,

Pω(1, (1 − t), d) = Pξ(1, (1 − t), d) = (fξ(t))P (1, 0, d) + 1 − fξ(t)
d

, (4.45)

Pω(2, (1 − t), d)

=

((
1−

√
t

d

)2
+ 2t

)2

(((
1−

√
t

d

)2
+ 2t

)2
+
(
1 + 2(1 −

√
t)

√
t− t

) (
1 + 1

d2 (1 −
√
t)2 + 2(1 −

√
t)

√
t+ 3t

))P (2, 0, d)

+

(
1 + 2(1 −

√
t)

√
t− t

) (
1 + 1

d2 (1 −
√
t)2 + 2(1 −

√
t)

√
t+ 3t

)
(((

1−
√

t
d

)2
+ 2t

)2
+
(
1 + 2(1 −

√
t)

√
t− t

) (
1 + 1

d2 (1 −
√
t)2 + 2(1 −

√
t)

√
t+ 3t

)) 1
d
.

(4.46)

Pω(3, (1 − t), d)

=

((
1−

√
t

d

)2
+ 2t

)3

(((
1−

√
t

d

)2
+ 2t

)3

+
(
1 + 2(1 −

√
t)

√
t− t

)(
1 + 1

2d2 (1 −
√
t)2 + 2(1 −

√
t)

√
t+ 3t+

(
1

d2 (1 −
√
t)2 + 2t

)2
))P (3, 0, d)

+

(
1 + 2(1 −

√
t)

√
t− t

)(
1 + 1

2d2 (1 −
√
t)2 + 2(1 −

√
t)

√
t+ 3t+

(
1

d2 (1 −
√
t)2 + 2t

)2
)

(((
1−

√
t

d

)2
+ 2t

)3

+
(
1 + 2(1 −

√
t)

√
t− t

)(
1 + 1

2d2 (1 −
√
t)2 + 2(1 −

√
t)

√
t+ 3t+

(
1

d2 (1 −
√
t)2 + 2t

)2
)) 1

d
.

(4.47)

Here, we plot the fig.(4.5) comparing the success probability of the switched channel framework
2 and the success probability of the noisy Grover iteration when there is no switch as the
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noise (1 − t) varies across x-axis. Just like fig.(4.3), it is again clear that the switch is giving
an advantage in terms of restoring the success probability for the first and subsequent k = 2
and k = 3 (we take d = 24 as an example). Ideally, the algorithm is supposed to stop after
kGr = π

4
√

24 = π ≈ 3 iterations, and we can see how an increase in noise can drastically
bring down the success probability from 1. This can be prevented using the switched channel
framework 2 proposed in this section, which allows the system to tolerate more noise while
keeping the success probability within an acceptable range.
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Figure 4.5: These plots show the effect of noise strength (1 − t) on the success probability of
finding the target element in the search space in Noisy Grover’s search algorithm. We are
taking the search space to be d = 24, and thus the algorithm should stop at
kGr = π

4
√

16 = π ≈ 3 iterations. The Plots from left to right show these variations for
different iterations: k = 1 (top-left), k = 2 (top-right), and 3 (bottom-left). Here, the green
curve represents the Success probability without using any switches, and the magenta curve
represents the success probability on applying switches as described in fig.4.4
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Chapter 5

Summary and Future Prospects

“The whole [scientific] process resembles biological evolution. A problem is like an ecological niche, and

a theory is like a gene or a species which is being tested for viability in that niche”
– David Deutsch, The Fabric of Reality

“..In other words, if you can’t win the game, change the rules.”

– Eric Schmidt, The New Digital Age

In the current landscape of quantum computing, where researchers are proposing new al-
gorithms more frequently, there is a shift in focus from the anticipation of a fault-tolerant
quantum computer towards the reality of noisy intermediate-scale quantum (NISQ) devices.
Thus, going back to the fundamental algorithms like Shor’s algorithm, Deutsch’s algorithm,
and Grover’s search algorithm introduced in the late part of the previous century and trying to
tackle the problem of noise and decoherence in these, as we scale them, is becoming more and
more relevant.

Quantum searching was first discovered in the context of searching an unsorted database of
size N in sqrt(N) steps. In contrast to other quantum algorithms, which are stand-alone algo-
rithms for specific problems, quantum searching has found application in designing numerous
other important algorithms. Grover’s search algorithm is widely applicable in various domains,
including statistics. It can quickly extract the minimum element [71] and compute averages
like mean [72] and median [73] from unordered data sets, which would otherwise take longer on
classical computers. It is also useful for solving NP-complete problems [74], such as exhaustive
searches [75] and constraint satisfaction problems [76]. In quantum computing, Grover’s algo-
rithm is used to solve black-box problems like element distinctness [75] and collision problems
[77]. It is a valuable tool in cryptography, particularly in breaking encryption through brute-
force attacks [78]. The Grover oracle is even used for key search in AES [79]. The concept of
Grover coin/Grover walk has also been introduced and used in random walks to demonstrate
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Iteration Noisy F1 F2
1 t fξ(t) fξ(t)

2 t2 fξ(t)2
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√
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d

)2
+2t

)2
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√
t

d

)2
+2t

)2
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√

t)
√

t−t)
(

1+ 1
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√
t)2+2(1−

√
t)

√
t+3t
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3 t3 fξ(t)3
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√
t

d

)2
+2t

)3
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√
t

d

)2
+2t
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√

t−t)
(

1+ 1
2d2 (1−

√
t)2+2(1−

√
t)

√
t+3t+

(
1

d2 (1−
√

t)2+2t
)2
))

Table 5.1: Coefficient of ρ of Grover’s search algorithm across up to 3 iterations for. Success
probability can be calculated using

its advantages [80].
Despite all these potential usages and applications, we have been unable to implement Grover’s
search algorithm at a practical scale as its efficacy is notably compromised when faced with
scenarios involving a non-ideal oracle [13, 14] or in the presence of environmental quantum noise
[15].

Our research aimed to investigate whether quantum switches can reduce the negative im-
pact of noise in Grover’s search algorithm, specifically when used with depolarizing channel
noise. We explored this by separating the total noise in a particular iteration into two or more
parts and placing them in superposition. This technique can be particularly useful when error-
correction methods are costly and complex, as it provides an alternative method to mitigate the
effects of noise. In our work, we presented two switched-channel frameworks for achieving this
goal. The first framework involved tracing out the quantum switch by measuring at every step
in the {|+⟩ , |−⟩} basis and post-selecting |+⟩. The second framework delayed the measurement
and post-selection until the end of the algorithm run. Our study showed that both frameworks
produced a positive difference in success probability compared to a noisy Grover’s search algo-
rithm. However, the second framework provided a marked improvement in success probability
compared to the noisy scenario. A summary of our results is shown in table 5.1. Therefore, our
research suggests that quantum switches can be a useful tool for reducing the effects of noise in
Grover’s search algorithm, and the second framework can be particularly effective in achieving
this goal.

It was found that creating a superposition of a channel with another copy of itself can
result in gaining the Shannon theoretic advantage. This result may seem paradoxical because
exchanging two uses of the same channel would not have any observable effect in any ordinary
quantum circuit. The reason for this paradox is that noisy quantum channels can be seen
as a random mixture of different processes corresponding to different Kraus operators. The
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advantage of self-switching arises because some of these processes do not commute with each
other. Therefore, a quantum control on the order offers a non-trivial resource. It is important to
note that no self-switching effect arises for quantum channels that admit a Kraus decomposition
consisting of mutually commuting operators.

However, it’s important to note that the practical implementation of these error mitigation
techniques using quantum switches is still a significant challenge and an active area of research.
Some of the key challenges include:

• Precise control over quantum operations: Implementing quantum switches requires precise
control over the coherence and timing of quantum operations, which can be difficult to
achieve with current quantum hardware.

• Scalability: As the size of the search space (N) increases, the complexity of implementing
indefinite causal order and quantum switches may grow rapidly, potentially limiting the
scalability of these techniques.

• Error models: The effectiveness of these techniques in mitigating errors may depend on
the specific error models and noise processes present in the quantum hardware used to
implement Grover’s algorithm. In this study, we have analyzed depolarising noise as a
worst-case scenario noise. There have been similar studies on other models of noise in
Grover’s search algorithm that can also be analyzed in the context of switched channel
frameworks.

As given in Vrana et al., quantum search is only one such problem fitting the framework and
definition of a fault-ignorant quantum algorithm. Since we have not used any specific property
of Grover’s search algorithm, We can make a case for other iterative quantum algorithms with
unitary operators, in general, that are susceptible to noise accumulation like Variational Quan-
tum Algorithms (VQAs), quantum phase estimation algorithms [81].

While significant progress has been made in studying indefinite causal order and its applica-
tions using quantum switches, several challenges and opportunities for further research remain.
The physical realization of quantum switches with low error rates and high controllability is
crucial for their successful integration into larger quantum systems like ours. Additionally, ex-
ploring the fundamental limits [82] associated with indefinite causal order and quantum switches
is an important direction for future investigation. Understanding the constraints and poten-
tial advantages of manipulating causal order will contribute to developing optimal strategies
for noise mitigation, algorithm design, and the utilization of indefinite causal order in various
quantum computing tasks.
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Appendix A

Detailed Calculations

A.1 Calculations for the first iteration (k = 1) in noisy Grover’s

Search with Algorithm with quantum switch

For k = 1, we have S(D√
t,D√

t)(ρ ⊗ ρc). Now, by expanding the inputs in the expression, we
have
1. The depolarising channel noise represented as D√

t

D√
t(ρ) =

√
tρ+ (1 −

√
t)Tr[ρ]Id

d

=
√
tρ+ (1 −

√
t) 1
d2

d2∑
i=1

UiρU
†
i using, 1

d2

d2∑
i=1

UiρU
†
i = Tr[ρ]Id

d

= (1 −
√
t)

d2

( √
td2

1 −
√
t
IdρI†

d +
d2∑
i=1

UiρU
†
i

)

= (1 −
√
t)

d2

(
U0ρU

†
0 +

d2∑
i=1

UiρU
†
i

)
taking, U0 =

√ √
td2

1 −
√
t
Id

= (1 −
√
t)

d2

d2∑
i=0

UiρU
†
i (A.1)

Using, K0 =

√
(1 −

√
t)

d2 U0 = 4√tId and Ki =

√
(1 −

√
t)

d2 Ui where {i = 1, 2, . . . d2}. We have
the set of Kraus operators {Ki} for D√

t

D√
t(ρ) =

d2∑
i=0

KiρK
†
i (A.2)
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2. The control qubit represented as denoted by ρc

ρc = |c⟩ ⟨c| where, |c⟩ =
√
θ |0⟩ +

√
θ |1⟩

= θ |0⟩ ⟨0| +
√
θθ |0⟩ ⟨1| +

√
θθ |1⟩ ⟨0| + θ |1⟩ ⟨1| (A.3)

3. The input search space after the application of the first Grover iteration, consisting of n-
qubits ≡ 2n dimensional qudit system denoted by ρ(1).

We also note the following for later use

1
d

d2∑
i=1

Tr[U †
i V ]Ui = V, (A.4)

1
d2

d2∑
i=1

UiV U
†
i = Tr[V ]Id

d
, (A.5)

Since the d2 unitary operators Ui are orthogonal to each other, they establish an orthonormal
basis with respect to the Hilbert-Schmidt inner product. This basis is applicable to any d-
dimensional linear operator V .
We can express the Kraus operators of the switch S 4.1:

Wij = KiKj ⊗ |0⟩ ⟨0| +KjKi ⊗ |1⟩ ⟨1|

= (1 −
√
t)

d2

(
UiUj ⊗ |0⟩ ⟨0| + UjUi ⊗ |1⟩ ⟨1|

)
for i, j = 0, 1, 2 . . . d2 (A.6)
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S(D√
t,D√

t)(ρ(1) ⊗ ρc) =
d2∑

i, j=0
Wij(ρ(1) ⊗ ρc)W†
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=
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A.2 gives the Kraus operators. We will break this equation into four parts:
1. After fixing both i = j = 0 , we have
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(UiUjρ(1)U †
jU

†
i ⊗ θ |0⟩ ⟨0|)

+
d2∑
i=1

d2∑
j=1

(UiUjρ(1)U †
i U

†
j ⊗

√
θθ |0⟩ ⟨1|) +

d2∑
i=1

d2∑
j=1

(UjUiρ(1)U †
jU

†
i ⊗

√
θθ |1⟩ ⟨0|)

+
d2∑
i=1

d2∑
j=1

(UjUiρ(1)U †
i U

†
j ⊗ θ |1⟩ ⟨1|)

)
(A.12)

= (1 −
√
t)2
{

1
d2

d2∑
i=1

Ui

(
1
d2

d2∑
j=1

Ujρ(1)U †
j

)
U †

i ⊗ θ |0⟩ ⟨0|

+ 1
d2

d2∑
j=1

(
1
d2

d2∑
i=1

Ui

(
Ujρ(1)

)
U †

i

)
U †

j ⊗
√
θθ |0⟩ ⟨1|

+ 1
d2

d2∑
i=1

(
1
d2

d2∑
j=1

Uj

(
Uiρ(1)

)
U †

j

)
U †

i ⊗
√
θθ |1⟩ ⟨0|

+ 1
d2

d2∑
j=1

Uj

(
1
d2

d2∑
i=1

Uiρ(1)U †
i

)
U †

j ⊗ θ |1⟩ ⟨1|
}

(A.13)

= (1 −
√
t)2
{

1
d2

d2∑
i=1

Ui

(
Tr
(
ρ(1)

)Id

d

)
U †

i ⊗ θ |0⟩ ⟨0| + 1
d2

d2∑
j=1

(
Tr
(
Ujρ(1)

)Id

d
U †

j

)
⊗
√
θθ |0⟩ ⟨1|

+ 1
d2

d2∑
i=1

(
Tr
(
Uiρ(1)

)Id

d
U †

i

)
⊗
√
θθ |1⟩ ⟨0| + 1

d2

d2∑
j=1

Uj

(
Tr
(
ρ(1)

)Id

d

)
U †

j ⊗ θ |1⟩ ⟨1|
}

(A.14)

= (1 −
√
t)2
{

Tr[ρ]Id

d
⊗ θ |0⟩ ⟨0| + 1

d2 ρ(1) ⊗
√
θθ |0⟩ ⟨1|

+ 1
d2 ρ(1) ⊗

√
θθ |1⟩ ⟨0| + Tr[ρ]Id

d
⊗ θ |1⟩ ⟨1|

}
(A.15)
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2. fix i = 0, j ̸= 0.

=
d2∑
j=1

{
4√
tId

√
1 −

√
t

d2 Ujρ(1)

√
1 −

√
t

d2 U †
j

4√
tId ⊗ θ |0⟩ ⟨0|

+ 4√
tId

√
1 −

√
t

d2 Ujρ(1) 4√
tId

√
1 −

√
t

d2 U †
j ⊗

√
θθ |0⟩ ⟨1|

+

√
1 −

√
t

d2 Uj
4√
tIdρ(1)

√
1 −

√
t

d2 U †
j

4√
t⊗

√
θθ |1⟩ ⟨0|

+

√
1 −

√
t

d2 Uj
4√
tIdρ(1) 4√

tId

√
1 −

√
t

d2 ⊗ θ |1⟩ ⟨0|
}

(A.16)

=
d2∑
j=1

(√√
t(1 −

√
t)

d2

)2(
Ujρ(1)U †

j ⊗ θ |0⟩ ⟨0| + Ujρ(1)U †
j ⊗ θ |1⟩ ⟨1|

+Ujρ(1)U †
j ⊗

√
θθ |0⟩ ⟨1| + Ujρ(1)U †

j ⊗
√
θθ |1⟩ ⟨0|

)
(A.17)

=
(√

t(1 −
√
t)

d2

) d2∑
j=1

(
Ujρ(1)U †

j

⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1| +

√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

)))
(A.18)

=
√
t
(
1 −

√
t
) 1
d2

d2∑
j=1

(
UJρ(1)U †

J ⊗ ρc

)
=

√
t
(
1 −

√
t
)
Tr[ρ]Id

d
⊗ ρc (A.19)

3. This is symmetric to A.16 and will evaluate to the same value

=
√
t
(
1 −

√
t
)
Tr[ρ]Id

d
⊗ ρc (A.20)

4. Finally, fix i ̸= 0, j ̸= 0

= 4√
tId

4√
tId

(
ρ⊗ ρc

) 4√
tId

4√
tId

= t
(
ρ⊗ ρC

)
(A.21)

Hence, A.10+A.16+A.21+A.21

S(D√
t,D√

t)(ρ(1) ⊗ ρc1) =

(1 −
√
t)2
(

Tr[ρ]Id

d
⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)
+ ρ

d2 ⊗
(√

θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

)))

+ 2
√
t
(
1 −

√
t
)
Tr[ρ]

(Id

d
⊗ ρc

)
+t
(
ρ⊗ ρC

)
(A.22)
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Collecting Terms, this output can also be written as:

=
[[(

1 −
√
t

)2(
Tr[ρ]Id

d
⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)
+ ρ

d2 ⊗
√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

))]

+
[
2
√
t

(
1 −

√
t

)
Tr[ρ]Id

d
⊗
(
θ |0⟩ ⟨0| +

√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

)
+θ |1⟩ ⟨1|

]

+
[
tρ⊗

(
θ |0⟩ ⟨0| +

√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

)
+θ |1⟩ ⟨1|

]]

=
(

1 −
√
t

)2(
Tr[ρ]Id

d
⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

))
+2

√
t

(
1 −

√
t

)(
Tr[ρ]Id

d
⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

))

+ t

(
ρ⊗

(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

))
+(1 −

√
t)2

d2

(
ρ⊗

√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

))

+ t

(
ρ⊗

√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

))
+2

√
t

(
1 −

√
t

)(
Tr[ρ]Id

d
⊗
√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

))

=
(

(1 −
√
t)2 + 2

√
t(1 −

√
t)
)

Tr[ρ]Id

d
⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)
+(t)ρ⊗

(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)

+
((1 −

√
t

d

)2
+t
)(

ρ⊗
√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

))

+ 2
√
t

(
1 −

√
t

)(
Tr[ρ]Id

d
⊗
√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

))

=
(

(1 + t− 2t
)

Tr[ρ]Id

d
⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)
+tρ⊗

(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)

+
((1 −

√
t

d

)2
+t
)(

ρ⊗
√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

))

+ 2
√
t

(
1 −

√
t

)(
Tr[ρ]Id

d
⊗
√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

))

S(D√
t,D√

t)(ρ(1) ⊗ ρc1)

=
((

1 − t
)
Tr[ρ]Id

d
+ tρ

)
⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)

+
{(((1 −

√
t)

d

)2
+t
)
ρ+ 2

√
t
(
1 −

√
t
)(

Tr[ρ]Id

d

)}
⊗
√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

) (A.23)

Using notations introduced from eqn.(4.24) to (4.27)
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S(D√
t,D√

t)(ρ(1) ⊗ ρc1)

=
(
fITr[ρ]Id

d
+ tρ

)
⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)

+
{
rρρ+ rITr[ρ]Id

d

}
⊗
√
θθ

(
|0⟩ ⟨1| + |1⟩ ⟨0|

)

=


θ

(
fρρ+ fITr[ρ]Id

d

) √
θθ

(
rρρ+ rITr[ρ]Id

d

)
√
θθ

(
rρρ+ rITr[ρ]Id

d

)
θ

(
fρρ+ fITr[ρ]Id

d

)
 (A.24)

=
[
θF(ρ(1))

√
θθR(ρ(1))√

θθR(ρ(1)) θF(ρ(1))

]
(A.25)

Thus we have 3 ways A.22, A.23, A.25 to write the output for S(D√
t,D√

t)(ρ(1) ⊗ ρc1)

A.2 Measurement of the system

ρξ(1) =
⟨±| S(D√

t,D√
t)(ρ(1) ⊗ ρc) |±⟩

Tr
[
⟨±| S(D√

t,D√
t)(ρ(1) ⊗ ρc) |±⟩

] (A.26)

Calculating the numerator, N:

⟨±|
[{
tρ(1) + (1 − t)Tr[ρ(1)]Id

d

}
⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)

+


(1 −

√
t

d

)2

+ t

 ρ(1) + 2
√
t(1 −

√
t)Tr[ρ(1)]Id

d

⊗
√
θθ (|0⟩ ⟨1| + |1⟩ ⟨0|)

]
|±⟩ (A.27)

= 1
2

(
tρ(1) + (1 − t)Tr[ρ(1)]Id

d

)
+ 1

2

±2
√
θθ


(1 −

√
t

d

)2

+ t

 ρ(1) + 2
√
t(1 −

√
t)Tr[ρ(1)]Id

d




= 1
2

tρ(1) + (1 − t)Tr[ρ(1)]Id

d
± 2

√
θθ

(1 −
√
t

d

)2

+ t

 ρ(1) ± 2
√
θθ

(
2
√
t(1 −

√
t)Tr[ρ(1)]Id

d

)
= 1

2


t± 2

√
θθ

(1 −
√
t

d

)2

+ t

 ρ(1) +
(
(1 − t) ± 2

√
θθ2

√
t(1 −

√
t)
)

Tr[ρ(1)]Id

d

 (A.28)
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Calculating the denominator, M:

Tr
[

1
2

((
±2
√
θθ((1 −

√
t)2

d2 + t) + t

)
ρ(1) +

(
(1 − t) ± 2

√
θθ(2

√
t(1 −

√
t))
) Id

d

)]
(A.29)

= 1
2

{
Tr
[(

±2
√
θθ((1 −

√
t)2

d2 + t) + t

)
ρ(1)

]
+ Tr

[(
(1 − t) ± 2

√
θθ(2

√
t(1 −

√
t))
) Id

d

]}

= 1
2

{(
±2
√
θθ((1 −

√
t)2

d2 + t) + t

)
+
(
(1 − t) ± 2

√
θθ(2

√
t(1 −

√
t))
)}

(A.30)

Because Tr[ρ(1)] = Tr[ Id
d ] = 1. Thus, the density matrix after measurement in Fourier basis is:

1
2

{(
t± 2

√
θθ

((
1−

√
t

d

)2
+ t

))
ρ(1) +

(
(1 − t) ± 2

√
θθ2

√
t(1 −

√
t)
)

Tr[ρ(1)] Id
d

}
1
2

{(
±2

√
θθ (1−

√
t)2

d2 + t) + t
)

+
(
(1 − t) ± 2

√
θθ(2

√
t(1 −

√
t))
)} (A.31)

For θ = 0 or (1 − θ) = θ = 0

= 1
2

(
t2ρ(1) + (1 − t2) Id

d )
)

For maximum superposition in the switch, θ = (1 − θ) = θ = 1
2 . Taking the |+⟩ component of

the measurement. Post Selection and Correcting based on the + or - part of the measurement(
2t+

(
1−

√
t

d

)2
)
ρ(1) +

(
(1 − t) + 2

√
t(1 −

√
t)
)

Tr[ρ(1)] Id
d(

(1−
√

t)2

d2 + 2t
)

+
(
(1 − t) + (2

√
t(1 −

√
t))
) (A.32)

=

(
2t+

(
1−

√
t

d

)2
)
ρ(1) +

(
(1 − t) + 2

√
t(1 −

√
t)
)

Tr[ρ(1)] Id
d

(1−
√

t)2

d2 +
(
1 − t+ 2

√
t
)

=

(
2t+

(
1−

√
t

d

)2
)
ρ(1) +

(
(1 − t) + 2

√
t(1 −

√
t)
)

Tr[ρ(1)] Id
d

1−2
√

t+t+(1−t+2
√

t)d2

d2

=

(
2t+

(
1−

√
t

d

)2
)

1+(−2
√

t+t)+(t−2
√

t)(−d2)+d2

d2

ρ(1) +

(
(1 − t) + 2

√
t(1 −

√
t)
)

Tr[ρ(1)]
1+(−2

√
t+t)+(t−2

√
t)(−d2)+d2

d2

Id

d
(A.33)

fξ(t)ρ(1) + (1 − fξ(t))Tr[ρ(1)]Id

d
(A.34)

fξ(t) =

(
1−

√
t

d

)2
+ 2t(

1+(t−2
√

t)(1−d2)
d2 + 1

) (A.35)
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A.3 Calculations for next iterations (k > 1) in Grover’s Search

Algorithm with the second framework

After the first iteration, the switched depolarizing channel’s output in block form,

ρω,1(1) = S(D√
t,D√

t)(ρ(1) ⊗ ρc) =
[
θF(ρ(1))

√
θθR(ρ(1))√

θθR(ρ(1)) θF(ρ(1))

]
. (A.36)

Now, this is input for the next iteration, k = 2

(
G ⊗ Id

)
ρω,1(1)

(
G ⊗ Id

)†
=

(
G ⊗

[
1 0
0 1

])
ρω,1(1)

(
G† ⊗

[
1 0
0 1

])

=
[
G 0
0 G

]
ρ(1)

[
G† 0
0 G†

]

=
[
G 0
0 G

] [
θF(ρ(1))

√
θθR(ρ(1))√

θθR(ρ(1)) θF(ρ(1))

] [
G† 0
0 G†

]

=
[
θGF(ρ(1))G†

√
θθGR(ρ(1))G†

√
θθGR(ρ(1))G† θGF(ρ(1))G†

]

GF(ρ(1))G† = GF
(
fρρ(1) + fITr[ρ(1)]Id

d

)
G†

= fρGρ(1)G† + fIGTr[ρ(1)]Id

d
G† = fρρ(2) + fI

Id

d
= F

(
ρ(2)

)
(A.37)

GR(ρ(1))G† = GR
(
rρρ(1) + rITr[ρ(1)]Id

d

)
G†

= rρGρ(1)G† + rIGTr[ρ(1)]Id

d
G† = rρρ(2) + rI

Id

d
= R

(
ρ(2)

)
(A.38)

GF(ρ(1))G† =
[
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

]
= ρω,1(2) (A.39)

Now we apply the noise as
(
D√

t ⊗ Id

)
because the switch is noiseless. We can express the

Kraus operators of the switch with two identical channels,
(
D√

t ⊗ Id

)
, and the second control

qubit ρc2 as:

W(2)
ij =

(
Ki ⊗ Id

)(
Kj ⊗ Id

)
⊗ |0⟩ ⟨0| +

(
Ki ⊗ Id

)(
Kj ⊗ Id

)
⊗ |1⟩ ⟨1|

=
(
KiKj ⊗ Id

)
⊗ |0⟩ ⟨0| +

(
KjKi ⊗ Id

)
⊗ |1⟩ ⟨1| (A.40)
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∵
(
A⊗B

)(
C ⊗D

)
=
(
aijB

)
ij

(
CijD

)
ij

=
(∑

K

(
aiKB

)(
cKjD

))
ij

=
(∑

K

(
aiKcKj

)(
BD

))
ij

= AB ⊗ CD = AC ⊗BD

ρω,2(2) = S(D√
t, D

√
t)(ρω,1(2) ⊗ ρc2) =

d2∑
i,j=0

W(2)
ij

(
ρω,1(2) ⊗ ρc2

)
W(2)†

ij (A.41)

=
d2∑

i,j=0

{(
KiKj ⊗ Id

)
⊗ |0⟩ ⟨0| +

(
KjKi ⊗ Id

)
⊗ |1⟩ ⟨1|

}(
ρω,1(2) ⊗ ρc2

)
{(
KiKj ⊗ Id

)†
⊗ |0⟩ ⟨0| +

(
KjKi ⊗ Id

)†
⊗ |1⟩ ⟨1|

}
=

d2∑
i,j=0

{(
KiKj ⊗ Id

)
ρω,1(2)

(
KiKj ⊗ Id

)†
⊗ |0⟩ ⟨0| ρc2 |0⟩ ⟨0|

+
(
KiKj ⊗ Id

)
ρω,1(2)

(
KjKi ⊗ Id

)†
⊗ |0⟩ ⟨0| ρc2 |1⟩ ⟨1|

+
(
KjKi ⊗ Id

)
ρω,1(2)

(
KiKj ⊗ Id

)†
⊗ |1⟩ ⟨1| ρc2 |0⟩ ⟨0|

+
(
KjKi ⊗ Id

)
ρω,1(2)

(
KjKi ⊗ Id

)†
⊗ |1⟩ ⟨1| ρc2 |1⟩ ⟨1|

}
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=
d2∑

i,j=0

{[
KiKj 0

0 KiKj

] [
θF(ρ(2))

√
θθF(ρ(∈))√

θθR(ρ(2)) θF(ρ(2))

] [
K†

jK
†
i 0

0 K†
jK

†
i

]
⊗ θ |0⟩ ⟨0|

+
[
KiKj 0

0 KiKj

] [
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

] [
K†

iK
†
j 0

0 K†
iK

†
j

]
⊗
√
θθ |0⟩ ⟨1|

+
[
KjKi 0

0 KjKi

] [
θF(ρ(2))

√
θθF(ρ(∈))√

θθR(ρ(2)) θF(ρ(2))

] [
K†

jK
†
i 0

0 K†
jK

†
i

]
⊗
√
θθ |1⟩ ⟨0|

+
[
KjKi 0

0 KjKi

] [
θF(ρ(2))

√
θθF(ρ(∈))√

θθR(ρ(2)) θF(ρ(2))

] [
K†

iK
†
j 0

0 K†
iK

†
j

]
⊗ θ |1⟩ ⟨1|

}

=
d2∑

i,j=0

{[
θKiKjF(ρ(2))K†

jK
†
i

√
θθKiKjR(ρ(2))K†

jK
†
i√

θθKiKjR(ρ(2))K†
jK

†
i θKiKjF(ρ(2))K†

jK
†
i

]
⊗ θ |0⟩ ⟨0|

+
[
θKiKjF(ρ(2))K†

iK
†
j

√
θθKiKjR(ρ(2))K†

iK
†
j√

θθKiKjR(ρ(2))K†
iK

†
j θKiKjF(ρ(2))K†

iK
†
j

]
⊗
√
θθ |0⟩ ⟨1|

+
[
θKjKiF(ρ(2))K†

jK
†
i

√
θθKjKiR(ρ(2))K†

jK
†
i√

θθKjKiR(ρ(2))K†
jK

†
i θKjKiF(ρ(2))K†

jK
†
i

]
⊗
√
θθ |1⟩ ⟨0|

+
[
θKjKiF(ρ(2))K†

iK
†
j

√
θθKjKiR(ρ(2))K†

iK
†
j√

θθKjKiR(ρ(2))K†
iK

†
j θKjKiF(ρ(2))K†

iK
†
j

]
⊗ θ |1⟩ ⟨1|

}
(A.42)

Eqn.A.42 can be written in block matrix form as:

ρω,2(2) =
[
A00 A01

A10 A11

]
(A.43)

And for calculating each of the matrix elements in this block matrix, we can divide this sum-
mation into four parts as before: I. j = 0, i = 0, II. i ̸= 0, j = 0, III. i = 0, j ̸= 0 and IV.
i ̸= 0, j ̸= 0.
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A00 =
{

θ
d2∑

i,j=1
KiKjF(ρ(2))K†

jK
†
i

√
θθ

d2∑
i,j=1

KiKjR(ρ(2))K†
jK

†
i

√
θθ

d2∑
i,j=1

KiKjR(ρ(2))K†
jK

†
i θ

d2∑
i,j=1

KiKjF(ρ(2))K†
jK

†
i



+


θ

d2∑
j=1

K0KjF(ρ(2))K†
jK

†
0

√
θθ

d2∑
j=1

K0KjR(ρ(2))K†
jK

†
0

√
θθ

d2∑
j=1

K0KjR(ρ(2))K†
jK

†
0 θ

d2∑
j=1

K0KjF(ρ(2))K†
jK

†
0



+


θ

d2∑
i=1

KiK0F(ρ(2))K†
0K

†
i

√
θθ

d2∑
i=1

KiK0R(ρ(2))K†
0K

†
i

√
θθ

d2∑
i=1

KiK0R(ρ(2))K†
0K

†
i θ

d2∑
i=1

KiK0F(ρ(2))K†
0K

†
i


+
[
θK0K0F(ρ(2))K†

0K
†
0

√
θθK0K0R(ρ(2))K†

0K
†
0√

θθK0K0R(ρ(2))K†
0K

†
0 θK0K0F(ρ(2))K†

0K
†
0

]}
⊗ θ |0⟩ ⟨0|

A00 =
{

(1 −
√
t
)2

 θTr[F(ρ(2)]Id

d

√
θθTr[R(ρ(2)]Id

d√
θθTr[R(ρ(2)]Id

d
θTr[F(ρ(2)]Id

d

+ t

 θF(ρ(2))
Id

d

√
θθRρ(2))

Id

d√
θθR(ρ(2))Id

d
θF(ρ(2))

Id

d



+2
√
t
(
1 −

√
t
) θTr[F(ρ(2))]Id

d

√
θθTr[R(ρ(2))]Id

d√
θθTr[R(ρ(2))]Id

d
θTr[F(ρ(2))]Id

d

} ⊗ θ |0⟩ ⟨0| (A.44)

A01 =
{

θ
d2∑

i,j=1
KiKjF(ρ(2))K†

iK
†
j

√
θθ

d2∑
i,j=1

KiKjR(ρ(2))K†
iK

†
j

√
θθ

d2∑
i,j=1

KiKjR(ρ(2))K†
iK

†
j θ

d2∑
i,j=1

KiKjF(ρ(2))K†
iK

†
j



+


θ

d2∑
j=1

K0KjF(ρ(2))K†
0K

†
j

√
θθ

d2∑
j=1

K0KjR(ρ(2))K†
0K

†
j

√
θθ

d2∑
j=1

K0KjR(ρ(2))K†
0K

†
j θ

d2∑
j=1

K0KjF(ρ(2))K†
0K

†
j



+


θ

d2∑
i=1

KiK0F(ρ(2))K†
iK

†
0

√
θθ

d2∑
i=1

KiK0R(ρ(2))K†
iK

†
0

√
θθ

d2∑
i=1

KiK0R(ρ(2))K†
iK

†
0 θ

d2∑
i=1

KiK0F(ρ(2))K†
iK

†
0


+
[
θK0K0F(ρ(2))K†

0K
†
0

√
θθK0K0R(ρ(2))K†

0K
†
0√

θθK0K0R(ρ(2))K†
0K

†
0 θK0K0F(ρ(2))K†

0K
†
0

]}
⊗
√
θθ |0⟩ ⟨1|}
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A01 =
{(

1 −
√
t
)2

 θ
F(ρ(2))
d2

√
θθ

R(ρ(2))
d2

√
θθ

R(ρ(2))
d2

Id

d
θ

F(ρ(2))
d2

+ t

[
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

]

+2
√
t
(
1 −

√
t
) θTr[F(ρ(2))]Id

d

√
θθTr[R(ρ(2))]Id

d√
θθTr[R(ρ(2))]Id

d
θTr[F(ρ(2))]Id

d

}⊗
√
θθ |0⟩ ⟨1| (A.45)

Other matrix elements A10 and A11 will also be similarly expanded as A01 in A.45 and A00 in
A.44, respectively, (eqn. except for the coefficients of the switch. Hence, A.42 can be expanded
as:

(1 −
√
t)2

{[
θTr[F(ρ(2))] Id

d

√
θθTr[R(ρ(2))] Id

d√
θθTr[R(ρ(2))] Id

d θTr[F(ρ(2))] Id
d

]
⊗ θ |0⟩ ⟨0|

[
θF(ρ(2))

d2

√
θθR(ρ(2))

d2√
θθR(ρ(2))

d2 θF(ρ(2))
d2

]
⊗
√
θθ |0⟩ ⟨1| θF(ρ(2))

d2

√
θθ

R(ρ(2))
d2√

θθR(ρ(2))
d2 θF(ρ(2))

d2

⊗
√
θθ |1⟩ ⟨0|

[
θTr[F(ρ(2))] Id

d

√
θθTr[R(ρ(2))] Id

d√
θθTr[R(ρ(2))] Id

d θTr[F(ρ(2))] Id
d

]
⊗ θ |1⟩ ⟨1|

}

+2
√
t(1 −

√
t)

[
θTr[F(ρ(2)))] Id

d

√
θθTr[R(ρ(2)))] Id

d√
θθTr[R(ρ(2)))] Id

d θTr[F(ρ(2)))] Id
d

]
⊗
(
θ |0⟩ ⟨0| +

√
θθ(|0⟩ ⟨1| + |1⟩ ⟨0|) + θ |1⟩ ⟨1|

)

+t
[
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

]
⊗
(
θ |0⟩ ⟨0| +

√
θθ(|0⟩ ⟨1| + |1⟩ ⟨0|) + θ |1⟩ ⟨1|

)
(A.46)

= (1 −
√
t)2
{[

θTr[F(ρ(2))] Id
d

√
θθTr[R(ρ(2))] Id

d√
θθTr[R(ρ(2))] Id

d θTr[F(ρ(2))] Id
d

]
⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)

+
[
θF(ρ(2))

d2

√
θθR(ρ(2))

d2√
θθR(ρ(2))

d2 θF(ρ(2))
d2

]
⊗
√
θθ (|0⟩ ⟨1| + |1⟩ ⟨0|)

}

+
{

2
√
t(1 −

√
t)
[
θTr[F(ρ(2))] Id

d

√
θθTr[R(ρ(2))] Id

d√
θθTr[R(ρ(2))] Id

d θTr[F(ρ(2))] Id
d

]
+ t

[
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

]}
⊗ρc2
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Similar to k = 1, collecting terms in the above result, we have{
t

[
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

]
+ (1 − t)

[
θTr[F(ρ(2))] Id

d

√
θθTr[R(ρ(2))] Id

d√
θθTr[R(ρ(2))] Id

d θTr[F(ρ(2))] Id
d

]}

⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)
+
{((1 − t

d

)2
+ t

)[
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

]

+2
√
t(1 −

√
t)
[
θTr[F(ρ(2))] Id

d

√
θθTr[R(ρ(2))] Id

d√
θθTr[R(ρ(2))] Id

d θTr[F(ρ(2))] Id
d

]}
⊗
√
θθ (|0⟩ ⟨1| + |1⟩ ⟨0|)

Now, following a similar substitution/notation eqn.(4.24) as k = 1,

=
{
fρ

[
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

]
+ fI

[
θTr[F(ρ(2))] Id

d

√
θθTr[R(ρ(2))] Id

d√
θθTr[R(ρ(2))] Id

d θTr[F(ρ(2))] Id
d

]}

⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)
+
{
rρ

[
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

]
+ rI

[
θTr[F(ρ(2))] Id

d

√
θθTr[R(ρ(2))] Id

d√
θθTr[R(ρ(2))] Id

d θTr[F(ρ(2))] Id
d

]}

⊗
√
θθ (|0⟩ ⟨1| + |1⟩ ⟨0|) (A.47)

Comparing this equation with the notations in eqn.(4.26) and eqn.(4.27)

=
{
fρ

[
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

]
︸ ︷︷ ︸

fρ(.)+

+ fI

[
θTr[F(ρ(2))]

√
θθTr[R(ρ(2))]√

θθTr[R(ρ(2))] θTr[F(ρ(2))]

]
Id

d︸ ︷︷ ︸
fITrd×d(.) Id

d

}

⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)
+
{
rρ

[
θF(ρ(2))

√
θθR(ρ(2))√

θθR(ρ(2)) θF(ρ(2))

]
︸ ︷︷ ︸

rρ(.)+

+ rI
Id

d
⊗
[
θTr[F(ρ(2))]

√
θθTr[R(ρ(2))]√

θθTr[R(ρ(2))] θTr[F(ρ(2))]

]
︸ ︷︷ ︸

rITrd×d(.) Id
d

}

⊗
√
θθ (|0⟩ ⟨1| + |1⟩ ⟨0|)

Thus, eqn.(4.35) is a 4d dimensional block matrix which is again structurally similar to eqn.(4.26)
and we can expand the previous notation of F and R to write the above result as:

= {fρ(ρω,1(2)) + fITrd×d[ρω,1(2)]Id

d
} ⊗

(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)
+{rρ(ρω,1(2)) + rITrd×d[ρω,1(2)]Id

d
} ⊗

√
θθ (|0⟩ ⟨1| + |1⟩ ⟨0|)

= F(ρω,1(2)) ⊗
(
θ |0⟩ ⟨0| + θ |1⟩ ⟨1|

)
+ R(ρω,1(2)) ⊗

√
θθ (|0⟩ ⟨1| + |1⟩ ⟨0|)

ρω,2(2) =
[
θF(ρω,1(2))

√
θθR(ρω,1(2))√

θθR(ρω,1(2)) θF(ρω,1(2))

]
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Here, we use the shorthand notation introduced in eqn.(4.30). The superscript denotes the
number of switches correlated to the input state, and ω in the subscript signifies the second
framework. The subscript also contains the number of iterations of Grover’s Algorithm the
input state has traversed through,

A.4 Find the state after k Grover iterations where the system

is correlated with k switches = ρω,k(k)

We denote the state of the system after measurement after k iterations as Mk:

Mk[ρω,k(k)] = (Id ⊗ ⟨+|⊗k)ρω,k(k)(Id ⊗ |+⟩⊗k) (A.48)

We have Id as part of the measurement operation because we want to keep the input state
intact and only trace out the quantum switches correlated with the input state.

=
(
(Id ⊗ ⟨+|⊗k−1) ⊗ ⟨+|

)
ρω,k(k)

(
(Id ⊗ |+⟩⊗k−1) ⊗ |+⟩

)
=
(
(Id ⊗ ⟨+|⊗k−1) ⊗

[
1√
2

1√
2

])
ρω,k(k)

(Id ⊗ |+⟩⊗k−1) ⊗

 1√
2

1√
2


=
[
Id⊗⟨+|⊗k−1

√
2

Id⊗⟨+|⊗k−1
√

2

] [ θF(ρω,k−1(k))
√
θθR(ρω,k−1(k))√

θθR(ρω,k−1(k)) θF(ρω,k−1(k))

] Id⊗⟨+|⊗k−1
√

2
Id⊗⟨+|⊗k−1

√
2


= ( 1√

2
)2
[
Id ⊗ ⟨+|⊗k−1 Id ⊗ ⟨+|⊗k−1

] [ θF(ρω,k−1(k))
√
θθR(ρω,k−1(k))√

θθR(ρω,k−1(k)) θF(ρω,k−1(k))

] [
Id ⊗ |+⟩⊗k−1

Id ⊗ |+⟩⊗k−1

]

=
[
(Id ⊗ ⟨+|⊗k−1)(θF(ρω,k−1(k))) + (Id ⊗ ⟨+|⊗k−1)(

√
θθR(ρω,k−1(k)))

(Id ⊗ ⟨+|⊗k−1)(
√
θθR(ρω,k−1(k))) + (Id ⊗ ⟨+|⊗k−1)(θF(ρω,k−1(k)))

]T [
Id ⊗ |+⟩⊗k−1

Id ⊗ |+⟩⊗k−1

]

= (Id ⊗ ⟨+|⊗k−1)(θF(ρω,k−1(k)))(Id ⊗ |+⟩⊗k−1) + (Id ⊗ ⟨+|⊗k−1)(
√
θθR(ρω,k−1(k)))(Id ⊗ |+⟩⊗k−1)

+(Id ⊗ ⟨+|⊗k−1)(
√
θθR(ρω,k−1(k)))(Id ⊗ |+⟩⊗k−1) + (Id ⊗ ⟨+|⊗k−1)(θF(ρω,k−1(k)))(Id ⊗ |+⟩⊗k−1)

= (Id ⊗ ⟨+|⊗k−1)(F(ρω,k−1(k)))(Id ⊗ |+⟩⊗k−1) + 2
√
θθ(Id ⊗ ⟨+|⊗k−1)(R(ρω,k−1(k)))(Id ⊗ |+⟩⊗k−1)

Using eqn.(4.38) and eqn.(4.39) in the result above:

1
2(Id ⊗ ⟨+|⊗k−1)

(
fρ(ρω,k−1(k)) + fI

Id

d
⊗ Trd×d[ρω,k−1(k)]

)
(Id ⊗ |+⟩⊗k−1)

+2
√
θθ(Id ⊗ ⟨+|⊗k−1)

(
rρ(ρω,k−1(k)) + rI

Id

d
⊗ Trd×d[ρω,k−1(k)]

)
(Id ⊗ |+⟩⊗k−1). (A.49)

Rearranging the terms, we get:

1
2

{
(fρ + 2

√
θθrρ)(Id ⊗ ⟨+|⊗k−1)(ρω,k−1(k))(Id ⊗ |+⟩⊗k−1)

+(fI + 2
√
θθrI)(Id ⊗ ⟨+|⊗k−1)( Id

d ⊗ Trd×d[ρω,k−1(k)](Id ⊗ |+⟩⊗k−1)
}

(A.50)
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Substituting eqn. A.48

= 1
2
{

(fρ + 2
√
θθrρ)Mk−1(ρω,k−1(k))

+(fI + 2
√
θθrI)(Id ⊗ ⟨+|⊗k−1)(Id

d
⊗ Trd×d[ρω,k−1(k)](Id ⊗ |+⟩⊗k−1)

}
(A.51)

Thus, we get a recursive recipe to get the density operator after k iterations:

Mk(ρω,k(k)) = 1
2
{

(fρ + 2
√
θθrρ)Mk−1(ρω,k−1(k)) + (fI + 2

√
θθrI)(Id ⊗ ⟨+|⊗k−1 Trd×d[ρω,k−1(k)] |+⟩⊗k−1

}
(A.52)

After that, we can analyze the density operator obtained for success probability after k Grover
iterations.
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