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Abstract

Autonomous Driving is one of the hot areas of research in the current world. Deep Machine Learning
and Computer Vision together have shown promising results in this field. A relatively new domain is
Reinforcement Learning. RL is associated with behavior based learning. An RL agent learns from
experiences, by exploring it action and state space.

In this work, a Deep Reinforcement Learning algorithm, Deep Deterministic Policy Gradient(DDPG)
is used to learn various driving behaviors. DDPG is an off-policy, continuous control framework. It is the
off-policy nature of this algorithm which enables it to efficiently explore the environment. Curriculum
learning and Intrinsic Motivation are used to extract advantage of the off-policy nature.

Different behavior based agents are trained. The important ones being Overtaking in highways and
Opportunistic agent in dense unstructured traffic scenes.

For overtaking in highways, the agent learns in a Curriculum based approach. First, it learns to
drive on an empty road and next it learns overtaking strategies. The reward function is handcrafted in a
manner that the desired behavior is learned in least number of training episodes. Various experiments
were conducted to handcraft the reward, a detailed analysis of which have been provided. The learned
agent is able to overtake not only on straight but curved roads as well.

Another behavior that was learned was blocking. Blocking is an hostile behavior and should not
be practiced in real life. By slightly changing the reward function for Overtaking on highways and by
positioning the learning agent ahead of the opponent, blocking behavior was learned. The approach for
overtaking and blocking is compared with existing RL based approach for the same.

For dense traffic scenes, we learn two behaviors: Opportunistic and Defensive. Opportunistic agent
actively looks for free space ahead of it and navigates itself there, while defensive stays in its own lane
and changes its speed each time any vehicle approaches it, to avoid collisions. There is no prior work
which deals with end-to-end driving in dense unstructured traffic. Learning the behavior for defensive
agent was not easy to achieve by simply using noise. We used intrinsic motivation based approach by
explicitly showing it the rewarding actions.

For all of the behaviors the learning is scalable and robust in terms of the speeds of opponent vehicles
and the number of cars in the surroundings.
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Chapter 1

Introduction

Over the last few decades, the area of autonomous driving has made significant progress owing to
the rise of low cost sensors, availability of vast amounts of driving data, and the boom of Learning based
methods.

Nevertheless, motion planning and decision making for autonomous vehicles is still a very chal-
lenging task. The environmental conditions are highly constrained because of dynamically changing
situations and uncertainties in pose estimation of neighboring vehicles.

The behavior of neighboring vehicles cannot be predicted for real life on-road settings, restricting
the use of trajectory based optimizations. Moreover, estimating their motion primitives (velocity, accel-
eration etc) is also unrealistic. Hence we require planning algorithms which plan for every time step
and use only the state information of the ego vehicle.

Figure 1.1: A view of the environment and traffic settings for our experiments. The scene consists of
cars on three lanes moving with random velocities. The light blue car towards the end is our agent, rest
all cars are the traffic components. They can steer in any direction with any speed. Our car is navigating
from left most to rightmost lane.

1



1.1 Related Work

In this section we study the previous works which have approached the problem of planning for
autonomous vehicles. One can see, how over the years paradigm have shifted from traditional path
planning approaches to Deep learning based approaches. Recently, deep reinforcement learning based
approaches for autonomous vehicles have also showed promising results.

1.1.1 Mediated Perception

Mediated Perception approaches segment the scene, derive useful parameters from it and then use
those parameters to make the planning decisions.

Solutions started building up gradually, one of the initial works [17] targeted lane and car detection
in Highway Driving. They collected data by driving for 14 days, few hours daily, in San Francisco Bay
Area. The data was annotated with values of relative speed of all vehicles and the locations of lanes and
vehicles. The authors use a modified version of Overfeat [45] CNN detector. Their proposed detector
can operate at speeds greater than 10Hz, which is real time, hence they strongly conclude that Deep
Learning can be used for developing Autonomous Cars.

Although [17] was a conclusive work, but dataset collection was still an irreplaceable tedious task.
Authors in [38] formulate a system where the need of collecting huge training examples could be
avoided. The authors aimed at creating a terrain classifier. They used the ImageNet dataset to learn
the feature extraction layer. This layer appended to a fully connected neural network, that was trained
on navigation sensor input coupled with labeled terrain classes was used as the classifier.

Instance level segmentation was another success story for the development of autonomous vehicles.
Every pixel is labeled and the classification is done both class wise and instance wise i.e. for a road
consisting of multiple cars and pedestrians, classification would be car1, car2.. pedestrian1, pedes-
trian2.. pedestrian n. Authors in [60] have developed a method for pixel wise instance level labeling of
monocular images. Their results had a significant better performance than others at that time.

Another important research for Mediated Perception in autonomous driving was Deep Tracking,
[34]. Authors here use sensor input to create a complete representation of the environment around the
object in focus. It is an end to end method with final output being a full, unoccluded scene estimation.
[8] is an extension of the previous work, where the authors now track static and dynamic obstacles in
the environment. Both of the works use RNNs, which is able to encode the temporal relations between
the states and hence enables the interpretation of highly complex dynamic scenes. Clearly, one can see
the importance of these perception techniques for autonomous driving.

Tracking and Semantic Segmentation were the starting points for autonomous vehicle research. Au-
thors in [34] presented an end-to-end framework to tracking the environmental components in dynamic
surroundings. Authors use Deep Tracking to predict the space occupancy, on top of which they use the
principle of inductive transfer for semantic classification. The main contribution here was the end-to-

2



end mechanism which used only the sensor inputs and was able to track occluded objects as well in
dynamic complex environments.

Moving forward from object tracking to path planning, another important contribution in the field
was when deep semantic segmentation was able to segment a proposed path. The method [4] generalized
well for intersections and roundabouts. The segmented pathway could now be used with any path
planner for decision making of the autonomous vehicle.

1.1.2 Behavior Reflex

The first idea following this approach was published in 1989, ALVINN [37]. The medical definition
of the term Behavior Reflex is, ”a reflex that is gradually developed by training and association through
the frequent repetition of a definite stimulus”. Reflecting the same, behavior reflex in autonomous
driving refers to the end-to-end ML approaches where the input is the scene image and the output is one
or all of the driving actuators (steering, brake or acceleration).

ALVINN (Autonomous Land Vehicle In a Neural Network) [37] was a neural network, wherein the
vehicle learned how to follow the road. The input to the neural network are the frames of the scene and
the range finder values and the output is the direction which the vehicle should take. Surprisingly, the
neural network architecture of ALVINN was very simple, it consisted of a single hidden layer with 29
hidden units. For training the images used are snapshots from an artificial simulator. ALVINN was not
claimed to be a state of art algorithm for planning in autonomous vehicles, but it was a start for the huge
research area of autonomous vehicles with Neural Networks.

MANIAC [19] was developed using ALVINN units. It aimed at addressing the shortcomings of
ALVINN, which included generalization to the road types which were not seen using training, naviga-
tion between different type of roads. MANIAC consisted of multiple ALVINN networks, each of which
trained for one particular type of road. These ALVINN units act as road feature detectors. The final
layer took output from these ALVINN layers as its input and outputted the steering commands.

With the success of CNNs [21] in computer vision, using images as input to understand high level
scenes had become easier. Authors in [30] have used CNNs to understand the scenes and learned steering
angle values for real time robots in a manner that the robot detects and avoids obstacles.

Work done in [30] was limited because of less data and computational power. In 2016, NVIDIA
released an approach for End to End Learning for Self-Driving Cars, [6]. Their system, DAVE2, is able
to detect features of the road and takes optimized steps to drive on the road. The data collected includes
labels for road type, weather conditions and driver’s actions. Data contains the frames from the driving
process and the steering action chosen by the driver. This data contains only the positive examples, the
authors augment the data with negative samples in which image is transformed, the car is shifted from
the center of the lane and rotated from the direction of the road. The corresponding steering label is
the one that would steer the vehicle back to the desired location. Now the images are fed to CNN with
backpropagation error being difference between outputted steering angle and the true value of steering
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angle. The evaluation was done first on a simulator and then on real roads. Conclusively, the CNN was
able to learn steering commands for lanekeeping.

Previous works have learned the desired skills using dataset containing labels of image scenes and
driver actions. A major disadvantage in such methods arises when the neural network is not able to
generalize to new scenes and henceforth results in unexpected unsafe behaviors. When a policy function
is used to map the state to the action a similar problem arises. DAgger [39], an Imitation Learning
algorithm, is one solution to address the problem. It aggregates the dataset by including the trajectories
generated by the policies learned in last iteration. Authors in [58] have extended DAgger to SafeDAgger
which is used for end-to-end autonomous driving. SafeDAgger modifies DAgger by decreasing the
number of queries to the reference policy. This end-to-end approach learns a policy function from
sensory inputs to driving commands, by imitating an expert. The algorithm is tested on a well known
simulator for autonomous cars, TORCS [55].

1.1.3 Direct Perception

This is the third paradigm in autonomous vehicle research. This approach described in [7] falls in
between the two approaches mentioned above. Currently, the work done in [7] is the most successful
work under this heading. The main motivation here is to learn features which would estimate the af-
fordance for the task of autonomous driving. It is different from Behavior Reflex because it does not
map the image to driving actions directly. When we map an image to driving actions, complexities arise
when there are high correlations. Consecutive frames have similar looking images but in cases like lane
changing, there are minute changes in the steer angles, which can be so insignificant in values that the
algorithm is not able to learn. But the effect of those small changes in steer angles were huge. Behavior
Reflex methods can result in unexpected behaviors in such cases.

The approach in [7] uses a CNN based standard architecture AlexNet [21]. It takes the image of the
scene as input and outputs various affordance indicators(distances from lane markings, from cars in the
same lane, cars in the immediate right and left lanes). The indicators are then used with any planner to
determine the complete path profile.

The algorithm is trained with data collected by manually driving a car on each track in TORCS. The
screenshots and labels are stored and later the ConvNet is trained using this collected data. Testing is
done on various tracks on TORCS as well as on real-world data(KITTI dataset [11] and real driving
video from Smartphone camera). Although real world driving is a completely different scenario, the
system performed reasonably well.

Another direct perception based method was introduced in [1]. They use GoogLeNet for their CNN
architecture and they learn 5 affordance parameters. They claim to outperform the previous existing
techniques and the reason for the same being the removal of overlapping redundant affordance parame-
ters.
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1.1.4 Trajectory Optimization and Path Planning based approaches

In [3] authors use Model Predictive Control for path velocity decomposition for planning the trajec-
tory of an autonomous car. Their method is based on the Time scaled Collision Cone [13].

[2] uses trajectory optimization for overtaking static obstacles. Authors here use a Receding Horizon
Planner on top of which is a state machine which determines whether to overtake or not.

A very detailed analysis of the traditional path planners(RRT, Lattice Planners, Tree Search, Geo-
metric Curve Optimization, Roll Out trajectories etc) and how can they be used for autonomous driving
is given by authors in [20].

Authors in [12] also propose a method for autonomous lane changing. They claim that their method
can be used as a fully autonomous system. Their method is based on the principles of Rendezvous
Guidance.

Authors in [27] use non linear optimization techniques for generating overtaking maneuvers. They
use principles calculus of variation and the Pontryagin’s Minimum Principle to obtain conditions of
optimality and then use the local along with dynamics of lateral motion as constraints.

Another approach that deals with overtaking motion is mentioned in [33]. To prevent any differences
in behavior from actual cars the authors here wanted to avoid simplification of the optimization problem.
Their planning algorithm optimizes over acceleration and steering change ratio.

There exist techniques which focus on complete on-road driving instead of one particular behavior.
The planner developed in [15], used Dynamic Programming based algorithm to explore the space and
generate multiple possible trajectories are generated. The most smooth one is then chosen for the path.
This approach works well in dynamically changing scenarios as well.

1.1.5 Reinforcement Learning based approaches

On-road driving and developing overtaking skills have been a statement of interest for all domains.
Researchers have used Reinforcement Learning to model learn driving for autonomous cars. Authors in
[47] use Inverse Reinforcement Learning with Deep Q-Networks to learn driving in simulations. The
action and state spaces are discrete here. Another work which uses Deep RL for controlling autonomous
vehicles is [56]. Authors use the dataset of experts in TORCS and filter their experience replay during
learning. The proposed method decreases the time taken and increases the stability of the trained net-
work.

Our proposed work is inspired from [41]. Authors use DQN and DDAC for end to end learning
for lanekeeping. They conclusively show that DDAC performs better than DQN. We build up on their
solution of using DDAC for our behavior learning tasks.

Apart from driving control, RL has been used for generating overtaking maneuvers also. [16], [24]
and [32] are dedicated approaches for overtaking. In the following chapters we compare our approach
for overtaking with theirs.
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1.2 Motivation

As we can see driving on-road has been approached by various methods. There are standalone meth-
ods for tasks like overtaking and there are end-to-end methods for complete driving task. Reinforcement
Learning provides a framework for behavior based learning and their effectiveness algorithms can be
verified in [56], [41] and [24]. A major limitation in all of these works is the discrete nature of action
and state space. No Reinforcement Learning based motion planner for automated cars existed which
used continuous spaces and did more than just driving on an empty lane. Our results show effective
end-to-end driving in varied traffic scenes. We evaluated our approach for Highways, dense urban traf-
fics and sparse slow moving traffic. Our approach is scalable and robust in terms of traffic density and
speed of the opponent vehicles.

1.3 Our Contribution

• We develop an end-to-end method for learning behavior based autonomous agents. They are
guided by their inherent behavior. We have shown results for Overtaking, Defensive, Blocking
and Opportunistic Behaviors. Importantly, our agent decides its actions on the basis of its own
state. It has no information of the opponent vehicles location or velocities.

• We show how training method can affect the learning process. For all the behaviors learned in
traffic first, we train our agent to drive on an empty lane and later, to drive in traffic situations.
Such curriculum based learning had significant effects on the results. We compare our Overtak-
ing and Blocking agents with existing RL based overtaking and blocking agents. We could not
compare the performance quantitatively due to lack of implementation details.

• We show how guided exploration can speed up the training process and affect the quality of
results. For defensive agent, standard OU function as noise was not able to learn the desired
behavior. We explicitly added constraints on brake and acceleration for first 50 training episodes,
which drastically changed improved the quality of Defensive behavior.

• We also show how environmental settings can affect the behavior of the learned agent. For block-
ing and overtaking behaviors, the reward structure is almost same, yet the behavior differs hugely.
The only change in learning process was the positioning of ego vehicle and the opponent vehicle.
When the ego vehicle was placed infront of the opponent, it learned blocking behavior and when
placed behind the opponent vehicle it learned overtaking behavior.

1.4 Background

Over the last years Reinforcement Learning has gained a lot of attention because of their impressive
results in varied domains. The core of RL lies in learning from exploring the action space in the state
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space. Positive reinforcements are given if the action taken at a given state leads to a new state which
favors the achievement of long-term goal. RL based techniques have performed human like in domains
like Atari Games [28], game of Go[49] and even in robotic manipulators. With the introduction of
Deep RL, continuous domain problems are also well addressed now, which was the motivation of the
presented work.

In Reinforcement Learning the agent learns from trial and error. A scalar term called reward marks
the goodness of each action, given the state space. The agent is continuously interacting with the envi-
ronment, for every action at it takes at time t, it receives a reward rt and state st, the combination of rt
and st when fed to policy π decide the next step action, at+1.

1.4.1 Environment

1. Fully Observable Environment
Agent observes the environment state.

Ot = Sat = Set (1.1)

Here, Ot refers to the observation at time step t, Sat refers to State of agent at time step t and Set
refers to state of environment at time step t.

2. Partially Observable Environment Agent does not observe the environment state directly. It has
its own representation for state.

Sat 6= Set (1.2)

1.4.2 Markov Decision Process

Markov Decision Processes are the environments for RL which are:

1. Completely Observable

2. Current state captures all the information of the history.

• Markov Property A state St is Markov iff:

P [St+1|St] = P [St+1|S1, S2, ....., St] (1.3)

• Markov Process A sequence of states S1, S2, ..., St with Markov property.A Markov process (or
Markov Chain) is a tuple < S,P >

1. S is a finite set of states

2. P is a state transition probability matrix,

Pss′ = P [st+1 = s
′ |st = s] (1.4)
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1.4.2.1 Markov Reward Process

A Markov Reward Process is a tuple < S,P,R, γ > :

• S is a finite set of states

• P is a state transition probability matrix

P [St+1|St] = P [St+1|S1, S2, ....., St] (1.5)

• R is the reward function,
Rs = E[Rt+1|St = s] (1.6)

• γ is the discount factor, γ ε [0,1]

1.4.2.2 Return

The return Gt is the total discounted reward from time-step t:

Gt = Rt+1 + γRt+2 + .... =
∑

γkRt+k+1 (1.7)

1.4.2.3 State Value Function

The state value function v(s) of an Markov Random Process is the expected return starting from
state s:

v(s) = E[Gt|St = s] (1.8)

1.4.2.4 Action Value Function a.k.a Q-value

The expected return starting from state s, performing an action a, and then following the policy π,

Qπ = Eπ[Gt|st = s, at = a] (1.9)

1.4.3 Q-learning

The inherent aim of any RL agent is to maximize its cumulative reward. Q(s, a) value gives an maps
action and state to their corresponding expected reward.

Q-Learning[53, 54] is the most simple algorithm. It stores a mapping of various < s, a > pairs and
their corresponding rewards. Whenever an agent reaches a particular < s, a >, it simply looks up the
table to know the corresponding expected return.

The update equation is given by:

Q(st, at)← Q(st−1, at−1) + β(∆t −Q(st−1, at−1)) (1.10)

here, β is the learning rate, ∆t equals rt+γmaxQ(st, a), rt is the reward at time t and γ is the discount.
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1.4.4 Deep Q-Networks

Q-Learning[53, 54] is one of the most widely used techniques in Reinforcement Learning. It works
very well for discrete action and state spaces but gets difficult to train if the action and state spaces
increase in size or become continuous in nature. Approximating the Q-function using a Neural Network
leads to unstable learning with little convergence.

It should be noted that training in reinforcement learning takes place by sampling states from tra-
jectories and states from one trajectory tend to be similar, training such samples were high correlations
lead to the instability. Another breakthrough in Reinforcement Learning algorithms were the Deep Q-
Networks[28, 29]. DQNs solve this issue of correlated samples by introducing the experience replay,
it is a cache which stores previously encountered states and transitions and the network samples data
points from it while learning. Another important proposal of their work was the target network. Since
the network from which we are sampling is same as the one getting updated, there arises instability,
hence we update the weights once in a while and call this as target network.

1.4.5 Deterministic Policy Gradient

The Policy Gradient Theorem[51] for stochastic policies is very popular in continuous spaces. The
deterministic version, Deterministic Policy Gradient Theorem[48], reduces the performance gradient
∇θJ(µθ) of a deterministic policy µθ to a simple expectation, as seen in Eq. 1.11.

∇θJ(µθ) =

∫
S
ρµ(s)∇θµθ(s)∇aQµ(s, a)|a=µθ(s) ds

= Es∼ρµ
[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

] (1.11)

where ρµ(s) denotes the discounted state distribution by following the policy and ∇aQµ(s, a) is the
gradient of theQ valuesQµ(s, a) w.r.t the action a taken in state s, obtained from the policy µ. Es∼ρµ [.]

denotes the expected value with respect to discounted state distribution.
DPGs are can either be On-Policy or Off-Policy, but deterministic policies have inherent incapability

of exploring the action space sufficiently. Off-Policy DPG use a stochastic policy to explore, hence they
converge faster. The algorithm we use in our approach is a type of Off-Policy DPG.

1.4.6 Deep Deterministic Policy Gradients

Deep Deterministic Policy Gradients[23] is a deep version of DPGs inspired from the success
of DQNs. They use the two concepts introduced in DQNs along with a third one called Batch
Normalization[18].

1. Replay Buffer: Transition Tuples, (st, at, rt, st+1), are sampled from the environment as per
the exploration policy and stored into a replay buffer. Here st, rt and at denote state, reward
and action respectively, at timestep, t. We use this representation in the rest of the paper, with
the omission of the subscript t in some cases for brevity. The correlation between the states of

9



similar trajectories does not allow a stable and convergent learning. Sampling mini-batches of
experiences randomly from the buffer solves this issue for both the actor and the critic.

2. Target Networks: Instead of directly copying weights, target networks use ”soft” updates. A
copy of the networks for both the actor and critic are created, denoted by QT (s, a) and µT (s)

respectively, but their weights are updated by slowly tracking the learned network. This helps in
improving the stability of the learning by constraining the weights to change slowly.

θQT ← τθQ + (1− τ)θQT

θµT ← τθµ + (1− τ)θµT
(1.12)

where θµ & θQ are the network parameters for the actor and critic networks respectively, θµT &
θQT are their corresponding target network parameters and τ << 1, is the learning rate.

3. Batch Normalization: Different components of a input to a neural network, usually have differ-
ent units and scales. This results in slower and inefficient training. Batch Normalization was a
solution to resolve this. It normalizes each dimension across the samples in a minibatch to have
unit mean and variance. It also maintains a running average of the mean and variance to use for
normalization during exploration.

DDPG is an off-policy algorithm, hence the exploration technique is completely independent from the
learning policy. It allows us to use simple techniques like adding noise into our actor policy for explo-
ration.

Similar to Q-learning[53, 54], weights of Critic Network are learned using a loss obtained from the
Bellman-equation:

L =
1

N

∑
i

(yi −Q(si, ai))
2

yi = (ri + γQT (si+1, µT (si+1)))

(1.13)

where ri is the reward at the ith timestep, QT (si+1, µT (si+1)) is the target Q value for the state-
action pair (si+1, µT (si+1)) where µT (si+1) is obtained from the target actor network, Q(si, ai) is the
Q value from the learned network, N is the batch-size and γ is the discount factor.

The Actor network is updated as given below:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a)|s=si,a=µ(si)∇θµµ(s)|s=si (1.14)

whereN is the batch-size, θQ are the critic network parameters and θµ are the actor network parameters.
The rest of the terms have the same meaning as those in Eq. 1.13. DDPG has been effectively used to
solve problems in various domains, examples include [36], [41], [14].
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Algorithm 1 Behavior Learning using DDPG

Randomly initialize Actor and Critic Networks
TargetActor ← ActorNetwork
TargetCriticNetwork ← CriticNetwork
for i = 1 to NumEpisodes do

s← ResetTORCS()
for j = 1 to MaxStep do

action← Policy(s)
action← action+N
s′, r, done← Step(action)
Buffer ← Store(s, a, s′, r)
if size(Buffer) > BufferSize then

batch← Sample(Buffer,BufferSize)
QT ← Update(Critic, batch)
Policy ← Update(Actor, batch,QT )
Update Target networks using τ

end if
if done then

break
end if

end for
end for

1.4.7 Curriculum Learning

Just like humans, machine learning algorithms learn better when the training samples are provided
in a progressively increasing difficulty levels, instead of any random manner. Learning to perform in
simpler situations first and eventually building up more difficult ones is faster than learning all of the
situations at once. Performance of the system is increased in terms of the speed of convergence and
quality of the local minima or maxima. This manner of training in which simpler situations are trained
first and complex ones later is called Curriculum Learning [5]. Results of[31] prove the effectiveness of
Curriculum learning in Reinforcement Learning techniques as well.

1.4.8 Intrinsic Motivation

Intrinsic motivation in living animals refer to the driving force which comes from inside, to act in
a particular manner. It is not the reward of doing the act which is motivating, but the action itself is
pleasurable. In [50] the evolutionary aspect of Intrinsically motivated RL is shown. Reward function
for adaptive agents are evaluated according to their expected fitness, where explicit fitness function is
given along with the distribution for the state of interest.Here the authors search for a primary reward
function that maximizes the expected fitness of the RL agent learning through that reward function.
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1.5 Chapter Organization

The following chapters in the thesis are organized according the learned behavior of the agent. Chap-
ter 2 shows the simplest behavior, lanekeeping. Chapter 3 talks about the overtaking behavior, how we
modified the reward function and introduced Curriculum Learning in the training process. Chapter 4
is dedicated to the blocking agent. Chapter 5 then talks about behaviors in unstructured traffic scenes:
Opportunistic and Defensive. Opportunistic agent searches for free spaces in dense traffic and takes
them up as soon as possible. Defensive on the other hand tries to save itself from any possible collisions
by slowing down. Conclusions are present in Chapter 6.
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Chapter 2

Learning to follow lane : Lanekeeping

2.1 Introduction

Lanekeeping refers to the behavior where a car drives straight on the lane, without any collisions or
jerky behavior and preferably in the middle of the road. In this case we do not consider any opponent
vehicles, because our only aim is to make the agent learn driving on an empty lane. The agent has to
avoid collisions with walls and maintain a safe velocity during curves.

We learn two type of lanekeeping behavior:

1. Unrestricted Velocity: The car can increase its velocity till the point the mechanical constraints of
the vehicle allow, which usually goes up to 150-200km/hr in our simulator.

2. Restricted Velocity: When the maximum velocity is restricted, the agent navigates more safely,
especially on turns. Restricted velocities are more real world like, driving at 200km/hr in traffic
scenes(considered in following chapters) is not feasible.

Lanekeeping behavior on TORCS was one of the tested behavior for DDPG in its original paper
[23]. It has been replicated by multiple groups, two of them being, [42] and [22].

2.2 Simulator and Environment Setup

We have used TORCS [55] for all our experiments and development. A modified version called
Gym-TORCS [57] is available freely, which facilitated the use of RL algorithms easily with traditional
TORCS.
Our agent car is of type scr server [25], which was developed to be used with TORCS. Unlike the other
bots in TORCS, this bot does not have its own intelligence, it rather waits for a client to send it the
actions to pursue. In our case the actions are decided by the DDPG algorithm.

We use scr server1 car on Aalborg track in presence of no other opponents for training of the lane-
keeping behavior. We tested on all available TORCS tracks, the agent performed reasonably well on
each of them.
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We observed the agent learned a very robust behavior on Aalborg track, because the track offered
diverse road features, sharp curves, smooth curves and different degrees of slopes over the entire track.

2.3 State Vector and Action Vector

The state vector consists of 29 elements:

1. Angle between the car and the axis of the track.

2. Track Information: Readings from 19 sensors with a 200m range, present at every 10◦ on the
front half of the car. They return the distance to the track edge.

3. Track Position: Distance between the car and the axis of the track, normalized with respect to the
track width.

4. SpeedX: As the name suggests, speed of the car along the longitudinal axis of the car.

5. SpeedY: Lateral speed of the car.

6. SpeedZ: Vertical speed of car, indicates bumpiness.

7. Wheel Spin Velocity of each of the 4 wheels(4 readings).

8. Rotations per minute of the car engine

The actions expected by scr server client include: steer, acceleration, brake and gear. Gym-Torcs
has manually controlled the value of gear on the basis of velocity in X direction. Gear control is given
by equation 2.1.

Gear =



2, if SpeedX ≥ 50

3, if SpeedX ≥ 80

4, if SpeedX ≥ 110

5, if SpeedX ≥ 140

6, if SpeedX ≥ 170

1, otherwise

(2.1)

Since gear is manually decided, the Action Vector consists of continuous values, the ranges of which
are given below:

1. Steer: This represents the steering angle and ranges from -1 (complete right) to 1 (complete left).

2. Brake: This indicates the strength of braking and ranges from 0 (no brake) to 1 (complete braking).

3. Acceleration: This is like the opposite of brake in the sense that it ranges from 0 (no acceleration)
to 1 (full acceleration).
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2.4 Neural Network Architecture

The Actor and Critic Networks are shown in figure 2.1 and 2.2. These are same as in [22].

Figure 2.1: Architecture of Actor Network for lane-
keeping task

Figure 2.2: Architecture of Critic Network for lane-
keeping task

2.5 Exploration

For exploration purpose Ornstein-Uhlenbeck [52] noise is added to all three actions.

In the beginning, for better exploration, noise is kept high. As the agent starts learning the desired
behavior, noise is reduced, for which we have kept a multiplier ε = 1 and is reduced by 0.00001 every
time step. as:

ε = ε− 0.00001 (2.2)

We train the lane keeping behavior for 2000 episodes with learning rate for the actor network being
0.0001 and for the critic being 0.001, buffer size was 100000, batch size 32 and γ being 0.99. The value
of τ for learning the target network weights is 0.001 in both the actor and the critic.

2.6 Reward function

Reward function is the most important property of any RL algorithm. It is the driving motivation for
any algorithm to learn a particular behavior. The details of reward functions for the two cases are in the
following sections.
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Figure 2.3: Figure illustrating the car’s position w.r.t track axis, the cos component of SpeedX is in
forward direction and sin component is in lateral direction.

2.6.1 Unrestricted Velocity

Our inherent aim is to make the agent move along the track axis, with maximum possible safe
speed and least possible lateral translation. For each time step, the distance traveled along the track axis
equals the component of velocity along track axis(vx cos θ), the lateral drift is the component of velocity
perpendicular to the direction of track axis(vx sin θ). We introduce a term, progress in equation 2.3,
indicating the distance traveled along the track direction at each time step.

progress = Vx cos(θ)− Vx sin(θ) (2.3)

TORCS provides a sensor value, trackPos which is the distance between the track axis and car’s
position on track, normalized w.r.t track width. To penalize the agent for deviating from the center of
the lane we use the value trackPos. Higher the deviation from central axis, lower the reward, hence we
negate the value of trackPos. Instead of using the exact value of trackPos, we use its absolute value
so as to punish both right and left shift from the central axis. Not using the absolute value would mean,
the deviations towards left side of the lane are favored and towards right are penalized.
The first part of our reward would have values almost equal to velocity, which is in range 10-200km/hr,
but trackPos is a normalized value in the range [-1,1]. For trackPos to impact the reward equivalently,
we multiply it with SpeedX . Hence our final reward function becomes:

RLanekeeping = Vx cos(θ)− Vx sin(θ) + Vxabs(trackPos) (2.4)

2.6.2 Restricted Velocity

We achieved the velocity restrictions using two methods:

1. Manually limiting the applied acceleration: The reward function, state vector and action vector
are described in section 2.6.1 and 2.3 respectively. On top of the standard conditions we added one
extra constraint. Whenever velocity exceeds the maximum allowed velocity, acceleration value is
manually set to zero.
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2. Modifying the reward function: Here as well, the state vector and action vector remained same
as in previous case, but reward was modified as in eq. 2.5:

Reward =

RLanekeeping, if speedX < maxSpeed

−900, otherwise
(2.5)

Here, RLanekeeping is same as in eq. 3.1, maxSpeed refers to the maximum allowed speed in
X direction, this can be set to any reasonable positive value of choice. We have used speedX
and not speed, simply out of ease of implementation. speedX is provided as one of the state
information for in both cases.
One can use the absolute value of velocity by calculating square root of squared sums of the x
and y components of velocity.

We have chosen -900 as the otherwise reward, -900 can be replaced by any large(compared to the
values of RLanekeeping) negative value. We took maxSpeed as 30km/hr, hence -900 was a huge
negative value compared to RLanekeeping, whose value would be less than or equal to 30 at any
given time-step.

Figure 2.4 shows screenshots from the simulator, when lanekeeping with restricted velocity was
learned. Our maxSpeedX value was 30km/hr, as consequence of which agent’s speedometer shows
24-25km/hr values.

2.7 Extra reward conditions

For both of the above cases, we had extra discrete rewards, to handle special cases.

Condition Reward
Collision −100
Off track drifting −50
No Progress −10

Table 2.1: Extra Rewarding Conditions

The extra reward conditions make sure that the agent is penalized for wrong actions. We terminate
the episode every time any of these conditions is met. When we did not terminate the episode, agent
learned that even after collision if it gets positive reward in future episodes, it would go ahead and take
those such actions. Although after more number of episodes of training it would eventually learn the
expected behavior. Terminating ensures faster learning of the desired behavior.

Also note, not giving the extra reward functions would not affect the quality of the results if the agent
is trained for sufficient number of episodes. In absence of these discrete rewards, the agent has another
task of learning that when it collides or drifts from track or shows zero progress, it’s long term reward
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is decreased. Learning these would require more number of training episodes. To sum up we can say,
by adding the extra rewards, we are just speeding up the learning process.

Figure 2.4: An agent trained for lanekeeping with restricted velocity. It’s value of velocity is almost
constant equal to 24-25km/hr. We provide the view of our agent car from different camera points.

2.8 Results

We observed, 300 episodes onwards, the agent learned to move forward on the track, the motion is
not very smooth at this point and sometimes it collides into the wall. 500 episodes onwards the motion
is comparatively more stable and the car can easily turn around on simpler curves, but sharp curves are
difficult to maneuver. By the end of 1k episode the car is performing very well, learns to drive on lane
and navigate smoothly on curves, but it faces some collisions, approximately once in 5 times. We then
train it for another 1k episode, after which the motion model is very stable and the agent traverses all
type of track maneuvers without any collisions.

In the beginning of the training, the agent has not learned the desired behavior which can be ex-
ploited. At this time, exploration is important for the agent, so that it builds up experiences and learns
the good and the bad actions.

It is also to be noted that the OU noise added to the actions is highest in the beginning of the training.
This is the exploration part of the learning process, eventually when the agent started to learn the desired
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behavior, the OU noise is decreased and exploitation of the learned behavior part begins. Maintaining a
balance between exploration and exploitation is another important aspect of Reinforcement Learning.

2.9 Conclusion

Lanekeeping in TORCS was shown previously in [23], [22] and [40]. We show two methods by
which we restrict the maximum speed of the car. Both of the methods give equivalently good results.

One can see, how the reward function can control the behavior of the learned agent. We gave high
negative reward to restrict the highest velocity attained, and now with the restricted velocity the car
behaves in a comparatively safer manner.

In the following chapters we will learn more complex behaviors. We initialize our networks with the
weights for lanekeeping. We observed that this initialization impacted the results hugely. Without this
initialization, we were not able to get the desired behavior from our agent.
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Chapter 3

Learning Overtaking Maneuvers for Simulated Highway Environments

3.1 Introduction

Overtaking is a very prominent driving behavior on highways. Learning this behavior is important
for any autonomous vehicle. We present a novel approach using Deep Deterministic Policy Gradients
(DDPGs) to learn this behavior. Our approach achieves this in a curriculum[5] like setting. We make
the agent learn a simpler task first and later we move to learning a complex task.

Our methodology of training the agent is similar to how humans learn to drive. We are first taught to
drive a car straight on an empty road, and keep it from straying away from its path. Once this is done, the
driver is made to drive in traffic among other cars to learn to navigate in complex scenarios. In a similar
fashion, we first train the agent for performing lane keeping. The learned behavior is then augmented to
learn overtaking maneuvers. To the best of our knowledge this is one of the first works to approach the
problem of overtaking in a continuous manner, and one of the first to show the effectiveness of adopting
a curriculum learning approach for tackling such problems. Our learned behavior is scalable and robust
in terms of the density and speed of the opponent vehicles.

Figure 3.1: Results of our approach. The yellow cars are the opponent cars while the purple car is our
agent, its trajectory shown in red. Observe that our agent successfully learns to overtake cars in front of
with without any collisions, or going off the road.
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3.2 Simulator and Environment Setup

We have used TORCS [55] for all our experiments and development. A modified version called
Gym-TORCS [57] is available freely, which enabled us to use RL algorithms at ease with traditional
TORCS.
Our agent car is of type scr server [25], which was developed later to be used with TORCS. Unlike other
bots in the simulator, this bot does not have its own intelligence, it rather waits for a client to send it the
actions to take. In our case the actions are decided by the DDPG algorithm.

The opponent cars start ahead the agent, their velocities are set to be random values between 20 km/hr
to 60 km/hr. During training, there are 4 opponent cars in the scene. Their motion primitives(steer, brake
and acceleration) are guided by the controller provided in [10].

3.3 State Vector and Action Vector

The State Vector is a 65 sized array consisting of the following sensor data:

1. Angle between the car and the axis of the track.

2. Track Information: Readings from 19 sensors with a 200m range, present at every 10◦ on the
front half of the car. They return the distance to the track edge.

3. Track Position: Distance between the car and the axis of the track, normalized with respect to the
track width.

4. SpeedX: As the name suggests, speed of the car along the longitudinal axis of the car.

5. SpeedY: Lateral speed of the car.

6. SpeedZ: Vertical speed of car, indicates bumpiness.

7. Wheel Spin Velocity of each of the 4 wheels.

8. Rotations per minute of the car engine

9. Opponent information: Array of 36 sensor values, each corresponding to the distance of the
nearest opponent in the range of 200 meters, located at a difference of 10◦, spanning the complete
car.

The first 29 values are same as in section 2.3. It is the opponent information(36 values) which is added
for this case.

The Action Vector is exactly same as in section 2.3.
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3.4 Neural Network Architecture

We use the DDPG framework to train the actor and critic networks with architectures as shown in
Fig. 3.2 and 3.3.

Figure 3.2: Neural architecture of the Actor Net-
work for Overtaking behavior

Figure 3.3: Neural architecture of the Critic Net-
work for Overtaking behavior

3.5 Approach

3.5.1 Lane Keeping Behavior

In order to better learn the required behavior, we have two phases of learning. In the first phase, the
agent is made to learn to drive smoothly on the road in a single lane. The reward function for achieving
this task, is given below,

RLanekeeping = vx(cosθ − sinθ)− vxabs(trackPos) (3.1)

this reward is same as described in section 2.6.1. The difference in the trained network is the size of
the state vector. In section 2.6.1, state vector was of 29 length and now it has length as 65.

3.5.2 Overtaking Behavior

Once the agent achieved suitable performance for lane keeping, we added more cars in the simulation
and augment the reward function to teach the agent to overtake neighboring cars and navigate in a traffic
like scenario. The reward for the second phase of training included the above reward along with a reward
for being ahead of other cars so as to favor overtaking behavior. This reward function is given below.

Rovertaking = RLanekeeping + 100 ∗ (n− racePos) (3.2)
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Here n denotes total number of cars in a given episode and racePos denotes the position of car in
the race, which is obtained from the simulator. If the car is behind other cars, the value of racePos
will be higher, thereby decreasing the value of n− racePos giving a lower reward. Once it overtakes a
car, the value of racePos decreases, increasing the value of n− racePos, giving a higher reward. For
implementing this approach on a real system, vision based approaches can be used to calculate when
does the agent overtakes another car.

We multiply the second term by 100, because the first RLanekeeping is in the range of velocity, i.e
10-200 units. So as to make the second term of equivalent value we multiply it by 100.

Apart from equation 3.2, explicit rewards were given to handle some special cases:

Condition Reward
Collision −1000
Off track drifting −1000
No Progress −500
Overtaking Rovertaking + 2000
Overhauling Rovertaking − 2000

Table 3.1: Extra Rewarding Conditions

The explicit conditions of colliding with another car, drifting off the track and not making any
progress are necessary, as our reward contains no penalty for them. The extra conditions for Over-
taking and Overhauling helped in improving the training rate i.e with these conditions in place the agent
learns in less number of episodes.

3.6 Exploration

For exploration purpose Ornstein-Uhlenbeck [52] noise is added to all three actions.
In the beginning, for better exploration, noise is kept high. As the agent starts learning the desired

behavior, noise is reduced, for which we have kept a multiplier ε = 1 and is reduced by 0.00001 every
time step. as:

ε = ε− 0.00001 (3.3)

We train the lane keeping behavior for 2000 episodes and overtaking behavior for 1000, with the
learning rate for the actor being 0.0001 and for the critic being 0.001, buffer size was 100000, batch size
32 and γ being 0.99. The value of τ for learning the target network weights is 0.001 in both the cases.

3.7 Results

3.7.1 Results of our Approach

The important findings of our work are mentioned below:
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Figure 3.4: Results of our approach on curved track, as viewed from top. The yellow cars are opponent
cars and blue is our trained car. Unlike previously existing approaches, [24] our method does not require
special assistance for curved roads.

• The highlight of our work is the robustness and scalability we achieve because of using Deep
RL. We had trained our agent with only 4 neighboring cars, while testing, our agent was able to
successfully drive and overtake on various tracks with as high as 9 neighboring cars.

• Robustness is achieved not only in terms of the number of opponents, but also in terms of the
speeds of the opponent cars. During training, speeds of the opponent cars were in the range
10km/hr to 60km/hr. When tested with the opponents with speeds in the range of 10km/hr to
160km/hr, the trained agent was able to overtake seamlessly.

• Our agent was trained on Alpine1 track of TORCS, and we tested it on all available road tracks, it
performed significantly well on other tracks. The statistics of performance are provided in table
3.2.

• Conclusively, all of this is possible, because our RL agent has mapped the state vector to action
vector, and our state vector does not contain information related to speed of other vehicles or
their count. It only contains the distance of obstacles(in all directions) from the agent. Our agent
henceforth has learned how to react when anything is present in its vicinity. This is pretty much the
same how humans drive, they make decisions at every instant depending on what the environment
condition is at that instant.

We analyze our results by two methods:

1. Table 3.2 analyses :
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• On all the available Road tracks we evaluate the performance, by calculating the time steps
when our agent collides with either the walls or other cars. We calculate the percentage of
time steps when any collision takes place. It has to be noted that on average, no collision
was a high risk collision, most of the colliding time steps involved the agent car gliding very
close to other opponent cars.

• We calculate the number of opponent cars our agent overtakes on an average basis.

• We also calculate the percentage of episodes where our agent overtakes all other opponent
cars in the scene.

According to table 3.2, out of 9 cars, our agent was able to overtake 7-8 on average. The values
are calculated over 20 episodes, where each episode marks the beginning of all cars starting at
0km/hr from their initial positions. The episode is terminated either when our agent is either out
of track or collides disastrously with the walls or other cars, or when it overtakes all other cars.
The second column in the table refers to the percentage of timesteps when there was a collision
between the agent and another car. In most cases, this value is very low, indicating the collision
avoidance nature of our learned agents.

2. TORCS provides multiple cars with inbuilt AI implementations. We race our agent against those
cars to evaluate the performance. The parameters we consider for this evaluation as shown in
tables 3.3 and 3.4 are:

• Percentage of time steps when our agent stayed ahead of the AI car.

• Number of times our agent overtakes the AI car. Since the two cars do not start in line with
each other, there are two separate tables, table 3.3 where the agent car starts the first and
table 3.4 where the AI car starts the first.

• Number of times AI car overtakes our agent.

• Maximum Speed attained by our agent. As mentioned previously, our agent car was trained
with opponent cars with speeds in the range 0 to 60km/hr, but for the AI cars, speed is not
restricted and while our agent was competing them, it attained very high speeds. In some
cases speed was as high as 198km/hr.

• Average value of damage points of our agent. TORCS provides a information variable for
scr server cars indicating the number of points on car surface, which have experienced any
damage.

It is to be noted that we did not train our agent for racing conditions, our agent was trained for real
world like highway scenes, where safety was a priority. Hence we did not expect our agent to overtake
the AI car always. But the results we got were impressive.

With AI agents: Berniw, BT, Damned, Olethros our car was able to stay ahead almost 50% of the
times. If the AI cars overtook our agent, our agent was able to overtake them again, this can be inferred
from column 2 and 3 of 3.3.
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But when our car started from second place, it was not able to overtake Berniw, Damned, Illiaw and
Olethros. For rest all cars our agent overtook them and stayed ahead them for rest of the episodes. The
major reason for the inability to overtake was the lead the AI agents took in the beginning.

Track Name
Avg no.
of cars
over-
taken

% of
col-
liding
timesteps

% of
episodes
where
agent
overtook
all cars

4 cars 9 cars 4 cars 9 cars 4 cars 9 cars

wheel2 3.95 7.55 0.23 0.23 100 50

Forza 4 7.8 25.835 9.64 100 40

CG2 4 8.45 7.01 8.135 95 65

CG3 3.05 6.15 25.64 39.7 30 35

Etrack1 4 8.35 7.08 1.05 100 80

Etrack2 3.55 7.8 26.41 0 65 60

Etrack3 4 6.35 7.99 2.36 100 40

Etrack4 4 8.5 0 7.23 100 70

Etrack6 3.65 7.55 26.13 10.5 90 60

ERoad 4 8.05 3.25 6.9 100 75

Alpine1 4 8.55 17.45 0.67 100 80

Alpine2 3.9 7.95 7.57 0.71 85 50

Olethros 4 7.1 7.3 18.84 100 30

Spring 3.8 7.8 3.87 8.05 95 45

Ruudskogen 3.95 7.65 2.21 12.29 100 40

Street1 3.95 8.55 4.07 6.19 100 80

wheel1 4 8.5 0 10.38 100 50

CG-
Speedway1

3.85 7.95 5.62 7.53 95 50

Table 3.2: Analysis on Various Tracks with 4 opponent cars and 9 opponent cars in scene
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Name of
the AI Car

% timesteps
our agent
was ahead
the AI car

No. of time
our agent
overtook
the AI
car

No. of time
AI car
overtook
our agent

Maximum
Speed
attained
by our
agent

Average
value of
Damage

Berniw 46.0508 0.35 1.35 177.6893 1119

BT 44.9948 1.45 1.65 186.3228 1267.5

BerniwHist 100 0 0 177.0957 751.4444

Damned 56.1375 0.25 0.8 188.5394 1071.8

Inferno 100 0 0 198.771 400

InfHist 100 0 0 197.6991 1012

Illiaw 100 0 0 198.771 671.1

Olethros 46.5649 1 1.1 157.7065 2557.9

Tita 94.5806 1 1 171.5821 1165.2

Table 3.3: AI versus our agent, our agent starts from ahead

Name of
the AI Car

% timesteps
our agent
was ahead
the AI car

No. of time
our agent
overtook
the AI
car

No. of time
AI car
overtook
our agent

Maximum
Speed
attained
by our
agent

Average
value of
Damage

Berniw 0 0 0 171.2543 541

BT 18.4225 0.2 0.2 190.9156 987.6

BerniwHist 93.2503 1 0 184.4135 1050.4

Damned 0 0 0 185.0657 759.8

Inferno 26.4706 1 0 167.6175 3615

InfHist 96.6403 1 0 171.1092 926

Illiaw 0 0 0 174.3621 2077

Olethros 0 0 0 183.5015 813.8

Tita 34.6154 1 0 170.3025 1577

Table 3.4: AI versus our agent, our agent starts from behind

3.7.1.1 Observations and Other Experiments

We gradually build up the solution for our approach. Before we found the approach mentioned
in section 3.5, we experimented using the different elements of the final reward function in various
combinations. Table 3.5 shows the experiments we conducted and our observations.
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Description Reward
Preloaded
lanekeeping
rewards

Observations
after 3k-4k
episodes

Without curriculum learning

RLanekeeping + 100(n− racePos)

and extra reward conditions
as per table 3.1

no

Even after 4k episodes of
training the agent is
not able to learn
smooth overtaking
trajectories.
It changes steer
angle to prevent
high damage collisions

Wthout RLanekeeping

100(n− racePos)

and extra reward conditions
as per table 3.1

yes
It doesnt learn to properly
overtake, it just saves itself
from high damage sometimes

Without +-2000

RLanekeeping + 100(n− racePos)

extra reward conditions 3.1
do not contain overtaking
and overhauling conditions

yes

By the end of 4k episodes,
the agent is able to
learn overtaking,
but the number of
collisions is
extremely high

No extra term,
only RLanekeeping as reward

RLanekeeping

and extra reward conditions
as per table 3.1

yes

The agent has began to learn
to alter its steer
angle to avoid collisions,
although it cannot
avoid all collisions completely.
By the end of 4k episodes,
agent has learned to
overtake other cars
with few collisions, results
comparable to
Highway overtaking
simulation,
intuitively results will
improve with higher
number of episodes

Table 3.5: Observations of various experiments conducted in process of handcrafting the reward for
overtaking on highways. For all of the above cases, by the end of 1k episodes, the agent has learned
lanekeeping behavior, but it hasn’t learned how to react in presence of other cars, it drives straight on
the road colliding with whatever comes in between. By the end of 2k episodes it learns how to change
steer, it prevents itself from very high damage but nothing more.

• Without the high reward for overtaking(+2000) and the high penalty for overhauling(-2000), the
car was able to learn the overtaking maneuvers after number of episodes as high as 4k. These
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can be regarded as the differential of (n − racePos) term. When the high positive and negative
rewards mentioned above, were included in the reward function, the car was able to learn by 1000
episodes. This indicates, that high positive reward for a behavior at one time step helped in faster
learning.

• Without pre-training for lane keeping, the car was not able to learn the overtaking maneuvers, up
to 4000 episodes. This can be reasoned on the fact that, in the first 1000-1500 episodes the car
learned lane keeping behavior, next when it was expected to learn overtaking behavior, the OU
noise was reduced greatly and the car was not able to explore sufficiently enough to learn.

3.7.1.2 Effectiveness of Curriculum Learning

Our approach uses Curriculum Learning styled training i.e we train our network for simple case like
lanekeeping. Next we train it for overtaking.

Our agent learned the overtaking behavior in 1k episodes of second phase of training.

To show the effectiveness of Curriculum Learning we compare the results obtained by training 2k
episodes without Curriculum styled Learning and 1k with Curriculum styled learning.

Table 3.6 shows the percentage time learned agents overtake all the cars in the scene. We have shown
the result for 4 tracks only. It is clear from the bar graph that without curriculum learning the percentage
of overtakes is very low. The reason of some percentage of overtakes in the case without curriculum
learning is because the agent drives straight onto the road, it overtakes but with collisions. The high
number of collisions are apparent from 3.5.

Clearly, curriculum learning was an effective method to increase the quality of results within limited
episodes.

Figure 3.5: Percentage of timesteps in which
the agent was involved in a collision
(lower the better).

Figure 3.6: Percentage of episodes where
agent overtook all cars
(higher the better).
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Figure 3.7: Agent’s Trajectory when trained without curriculum learning. Neither does the agent prop-
erly overtake neighboring cars, nor does it avoid collisions. When the agent is trained without cur-
riculum learning, even after 4k episodes it cannot learn the overtaking behavior. For first 2k episodes
it learns the lanekeeping behavior and by the end of 2k episodes the OU noise multiplier decreases
hugely, limiting the noise added in the action space. This results in limited exploration, the lack of
which is reason of inability of the agent to learn overtaking behavior.

3.7.2 Experiment1: Using previous states of Opponents in the state vector

We modified the state vector from 65 space to 173(29 + 36x4, 29 is the state vector size without
opponent information and 36 is the size of opponent information vector) space. Instead of including the
opponent information for the current step only, we include the opponent information for current step as
well as for previous 3 steps. The state vector in our original approach does not incorporate the opponent
information in a temporal manner. To estimate the motion of opponent cars, temporal information is a
logical requirement. In an attempt to do so, we have added the previous three opponent information in
the state vector.
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Figure 3.8: Results for highway overtaking using approach mentioned in section 3.7.2. Our agent(blue)
starts from the last and overtakes all other cars(yellow), till the last frame.

While training we have kept 4 other cars in front of the agent.
Extra reward conditions are same as in table 3.1.

Table 3.6 shows a comparison between approach in section 3.7.2 and the method used in section 3.5.
As it can be inferred from the 3.6, collisions decrease hugely in current method. This can be reasoned on
the fact that, last four step opponent information is able to provide velocity estimate of other vehicles.
Another inference from 3.6 is the quality of overtaking trajectories. The average number of cars over-
taken is lesser in our case. This clearly shows that the agent did not learn sufficient enough. Although it
was trained for 1500 episodes which is 500 more than the training episodes of section 3.5. The reason
1500 training episodes is not sufficient is because of the increased state space. The state space increases
by more than double, from 65 to 173.

3.7.3 Experiment2: Using Curriculum Learning with RLanekeeping as reward function

Logically, the reward of lanekeeping indicates moving forward on the track, but if there are cars
ahead the agent will collide and its movement along the track will be hindered, hence slowing down the
vehicle. To avoid this situation, the agent should overtake the opponent. Based on this understanding,
we trained our agent without Rovertaking but with Curriculum Learning. After 4k episodes of training
the agent was able to learn overtaking maneuvers.

We analyze the trained agent in table 3.7.
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Track Name
Avg. no of
cars overtook

%of colliding
timesteps

% episodes where agent
overtook all other cars

4cars 9 cars 4cars 9 cars 4 cars 9 cars
Wheel2 3.3 7.7619 0 0 80 85.7143
Forza 3.6 2.75 0 0 95 0
CG2 2.8 6.85 0.2117 0.494 65 65
CG3 0.45 0 0 0 5 0

Etrack1 3.45 8.4 0 0 95 90
Etrack2 3.3 8.15 0 0 90 100
Etrack3 3.1 7.25 0 0 60 85
Etrack4 3.65 8.2 0 0 95 100
Etrack6 3.55 6.8 0 0.1537 90 55
ERoad 3.75 5.4 0 1.3537 95 40
Alpine1 3.4 8.1 1.0067 36.5944 75 95
Alpine2 1.9 5.4 0.9969 1.3537 20 40
Olethros 0.25 2 0 0 5 10
Spring 3.65 8.6 0.2283 0 90 100

Ruudskogen 3.5 8.25 0 0 85 90
Street1 2.7 6.9 0 0 65 75
wheel1 3.8 7.35 0 0 90 75

CG-Speedway1 3.25 1.7 0 0 75 5

Table 3.6: Results of overtaking behavior when learned by using 4 previous opponent information in
state vector. These results are comparable to the values in table 3.2. The only difference is this method
takes 4k episodes of training while the one in 3.5 took 1k episodes of training. In the absence of the
parameter racePos, we can use this method for training overtaking behavior.

3.8 Comparison with existing techniques

The presented work is not the first which uses Reinforcement Learning to generate overtaking behav-
iors. Authors in [16] and [24] have approached the problem using Q-Learning. Authors in [24] develop
the complete driver using a structured, layer based architecture, shown in fig. 3.9. As we can see in
the figure overtaking strategy is broken down into two tasks : Brake Delay and Trajectory. Trajectory
behavior deals with overtaking on a straight path while Brake Delay is for overtaking in tight bends,
where the agent would have to delay applying brakes to overtake the other car, which has slowed down
because of the curve. The agent uses RL only for overtaking behavior, in all other forms of driving
it uses the implementation provided by TORCS under the bot name Berniw. The authors have used
Tabular Q-learning, where the action and state space are discrete in nature. The sensors and effectors
used are :

Here, one episode is the duration from when the agent car behind the opponent car till the point when
either the agent car overtakes the opponent car or collides with it or goes off-track. The reward structure
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Track Name
Avg. no of
cars overtook

%of colliding
timesteps

% of episodes where agent
overtook all other cars

4cars 9 cars 4cars 9 cars 4 cars 9 cars
Wheel2 3.8 8.1 0.9569 33.1946 100 100
Forza 3.7 8.55 24.8996 15.8672 100 100
CG2 3.75 8.4 30.9051 6.2833 100 95
CG3 3.8 7.4 50.3257 24.6032 95 80

Etrack1 3.95 8.15 0 24.9246 100 100
Etrack2 3.75 8.7 24.6835 47.0948 100 100
Etrack3 3.95 8.35 0.4762 30.4991 100 100
Etrack4 4 8.25 0.1567 29.1467 100 95
Etrack6 3.75 10 23.427 7.6053 100 100
ERoad 3.85 8.55 34.9708 2.5611 100 100
Alpine1 3.55 7.7 18.6765 38.6148 100 100
Alpine2 3.85 8 10.7285 24.4591 100 80
Olethros 3.6 7.85 0.817 22.2113 95 95
Spring 3.8 8.1 0.4934 16.8502 100 100

Ruudskogen 3.3 7.95 7.1325 8.5495 85 100
Street1 3.9 8.15 2.7027 20 100 100
wheel1 4 9 3.0257 14.4873 100 100

CG-Speedway1 3.75 7.35 0 19.3217 100 80

Table 3.7: Results of overtaking behavior when trained with reward = RLanekeeping for 4k episodes

Name Range
Representation
(discretized)

disty [0,200] {[0,10), [10,20),[20,30), [30,50),[50,100),[100,200)}
distz [-25, 25] {[25, -15), [-15, -5), [-5, -3), [-3,-1), [-1,0), [0,1), [1,3), [3,5), [5,15), [15,25)}
pos [-10, 10] {[-10,-5), [-5,-2), [-2,-1), [-1,0), [0,1), [1,2), [2,5), [5,10]}
∆speed [-300, 300] {[-300,0), [0,30), [30,60), [60,90), [90,120), [120,150), [150,200), [200,250), [250,300]}

Table 3.8: Sensors used in [24]. Range is the range of sensor values and Representation indicates the
discretization applied to the values to represent them in a lookup table

Action Move 1mt to left Keep position Move 1mt to right
Value -1 0 1

Table 3.9: Actions used in [24]

is

reward =


1, if goal was reached

−1, if car crashed

0, otherwise

(3.4)

Authors have considered three cases:
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Figure 3.9: Structured behavior generated from the first behavior analysis, as described in [24].

1. Opponent on Fixed Trajectory and Standard Aerodynamics

2. Opponent on Fixed Trajectory and Challenging Aerodynamics

3. Opponent on Random Trajectory and Standard Aerodynamics

For all the three cases number of training episodes were 10000. The quality of the learned behavior
is judged by two properties: Overtaking time and Highest Speed attained. Using Wilcoxons rank-sum
test, they show the difference in the behavior of learned agent and Berniw is statistically significant with
99% confidence.

As we can see in 3.9, overtaking has two subtasks : trajectory and brake delay. Brake Delay is
used in special cases of overtaking in tightly bend curves. This is applied on top of the previous case.
Sensors information for this case has an extra variable, distturn which is the distance between the current
position of the car and the next turn along the track axis. disty and pos are no more required in sensor
information. distturn was discretized by mapping into {[0,1), [1,2), [2,5), [5,10), [10,20), [20,50),
[50,100), [100,250]}. The Action space for Brake Delay System comprises of two possible actions :
Inhibit the breaking action(mapped as 1) or leave the decision of braking to other components(mapped
as 0). Reward function is same as in previous case, eq. 3.4. Results indicate statistically significant
difference as 99%. Although there is a risk of collisions with probability 5.2%.
Unfortunately, due to lack of implementation details for the experiments conducted in [24], we could
not compare the results quantitatively. But following is the qualitative analysis.

3.8.1 Main points of difference

• Our approach is robust and scalable. We have trained our agent with four other cars and we have
tested it with number of cars ranging from 1 to 15. Our agent successfully overtakes the other
cars with few collisions. Our motivation was to develop overtaking trajectories in highway traffic
scenes.
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• Our approach is end-to-end, we not just give overtaking trajectories, but in absence of other cars
we do not use other algorithm to detect the actions. The various traffic scenes do not need to
be handled differently, curves, straight paths, no opponent cars all situations are handled in one
single approach.

• A very prominent difference is the use of Deep RL with continuous space in our approach and
their approach uses tabular Q-Learning with discrete actions and states.

3.9 Conclusions

We present a novel approach for learning overtaking maneuvers in a highway like scenario. Inspired
from how humans learn to drive, our approach resembles that of curriculum learning, where we first
make the agent learn the simple task of lane keeping followed by adding rewards for learning to overtake.
The proposed approach is different from most existing methods in the fact that we gradually build up
to the task rather than training it for the final task right away. This type of systematic training not
only yields more favorable results but does so in lesser time. The learned agent is able to navigate on
various tracks while efficiently overtaking neighboring cars at speeds as high as 160 km/h. We analyze
the various combinations of reward function elements and show their effect. This analysis develops an
understanding of how RL works and how our agent is reacting to the environment. In the following
chapters we directly use this knowledge to generate behaviors of our choice.
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Chapter 4

Learning Blocking Behavior for Automated Vehicles

4.1 Introduction

Blocking behavior is a type of aggressive behavior where the driver does not allow the car behind it
to overtake. Such behavior makes sense in Championship scenarios but in civilized traffic such behavior
is considered hostile.

This behavior may be unnecessary for real world situation, but in simulations it can facilitate gener-
ation of varied traffic scenes. Using a blocking car in the front of a dense traffic can further decrease the
overall flow of the traffic and make the situation more complex.

Apart from creating diverse traffic scenes, blocking behavior can be used to judge the efficiency of
overtaking behaviors of race cars.

4.2 Environment Settings

Similar to the previous cases, here also, we have used TORCS along with scr server as our agent. To
create difficult training conditions, we trained the agent with inbuilt TORCS AI car, Berniw. Berniw is
claimed to be one of the most intelligently implemented car of TORCS.

One single car blocking multiple cars is an over expectation, hence for the trainings as well as
testings, there is a single opponent car. The training starts with our agent positioned ahead of the AI car.

Similar to previously learned behaviors, we use DDPG to learn blocking behavior. The neural net-
work architecture of Actor and Critic is same as shown in fig. 3.2 and 3.3 respectively. Interestingly, the
action and state space are also same as in section 3.3. The state space is a size 65 vector and action is 3.

The most important difference between the training condition for Overtaking and Blocking behavior
is the start position of our agent. When our agent starts from behind the opponent car, it learns overtaking
behavior and when its starting position is ahead of the opponent car, it learns blocking behavior.
Secondly, we do not train this behavior in a two-fold manner, like overtaking. It is trained in a single
fold training, now we do not require the car to learn driving behavior for any type of faster exploration.

The reward function is:

R = RLanekeeping + 100(n− racePos) (4.1)
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Extra Reward condition are mentioned in table 4.1.

Condition Reward
racePos == 1 +2000
Collision -1000
No Progress -50
Off Track Drifting -200
Turns around
Backward

-100

Table 4.1: Extra Reward Conditions for Blocking Behavior

The reason of the above settings for reward lies in two factors: First, our car should always be moving
forward, it should drive on lane and follow all basic behaviors of lane driving. Second, we give our agent
huge positive reward(+2000), every time step it is ahead of the opponent car, this huge reward facilitates
learning the fact that staying ahead of the opponent car is beneficial behavior. As a result of which our
agent learns the blocking behavior.

4.3 Results

We observed that our agent learned how to change its position on the track, so as to come directly in
path of the other vehicle and never let it overtake. Our agent was not ruthless and did not collide with
the other car.

Figure 4.1: Results of blocking behavior, in first three images, the purple car moves towards right to
overtake our(blue) agent, our agent also moves towards the right to prevent the overtaking. In last two
frames, the purple car is translating towards left and back to center and our car, also translates in center
to block it from overtaking.

Table 4.2 shows that AI cars BT, Damned and Olethros could not be blocked by our Blocking Agent,
on the other hand Berniw, Inferno, and Tita could be blocked with 65% chances and Lliaw, InfHist,
BerniwHist are easily blocked most of the times.
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Name of
the AI Car

% of
colliding
timesteps

%of
overhauls

Berniw 1.6473 35
BT 2.1277 100
BerniwHist 0.6547 0
Damned 2.2901 100
Inferno 1.6473 35
InfHist 2.1672 0
Illiaw 0 0
Olethros 0.9202 100
Tita 2.0032 35

Table 4.2: Analysis of Blocking Behavior. % of colliding timesteps indicate the timesteps out of total
timesteps where the agent experienced a collision. %of overhauls indicate how many time did the AI
car overtook our agent.

Figure 4.2: Results of blocking behavior on curved roads. The previously existing approach [16], learns
blocking on curved tracks by Delayed Braking technique which is applied on top of the main learned
method. In our approach we do not have to learn separate behavior for separate type of tracks. Our
method offers the advantage of robustness and end-to-end nature.

4.4 Comparison with existing approaches

Blocking behavior has been targeted using Reinforcement Learning in [16]. Their approach is de-
rived from work shown in [24]. The authors have used Berniw as their Base AI car i.e. when the agent
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does not need to perform the Blocking characteristics, it will use Berniw’s driving implementations.
Their approach uses tabular Q-learning with discrete values of action and state space. The state infor-
mation comes from sensors which has been discretized similar to table 3.8, but with tighter bounds for
better modeling. The variables required for this approach are shown in table 4.3. Actions are same as
shown in table 3.9.

Variable Intervals

dy(m)
[0 5), [5 10), [10 15), [15 20),
[20 25), [25 30)

dx(m)
(- -10), [-10 -5), [-5 -3),
[-3 -1), [-1 0), [0 1), [1 3),
[3 5), [5 10), [10 )

dv(km/h)
[0 10), [10 20), [20 30),
[30 50), [50 70), [70 100),
[100 150), [150 200), [200 )

px(m)
(- -3), [-3 -2), [-2 -1), [-1 0),
[0 1), [1 2), [2 3), [3 )

Table 4.3: Intervals of Variables in Q-Learning as shown in [16]

Reward function is changed to:

reward =


−1, if AI car overtakes

+1, if AI car cannot overtake for 60 seconds

0, otherwise

(4.2)

The results shown in [16] qualitatively indicate the blocking capabilities of their learned agents. They
also show that if though training was done on one agent, the learned agent generalized well on other
agents as well.

Authors in [16] show their blocking behavior as a difference in laps covered by two agents, for us
most of the time the laps covered were similar, hence such quantitative analysis did not make sense.

Results in [16] compare blocking skills with Lliaw agent on CG-Speedway 1 and Ruudskogen tracks.
To compare our approach with theirs we did the same thing. Our agent was able to block Lliaw on both
of the tracks for all the time steps. Our agent did not collide with Lliaw even a single time over a
period of 50 episodes. For them the damage value ranged from 500-1000. In this comparison our agent
performs better than theirs.

The other analysis done by authors in [16] involve use of tracks created by them and QLearning
agents trained by them. The implementation details were not clearly mentioned, hence we could not
compare quantitatively.
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4.4.1 Differences between the two approachs

• Our approach is end-to-end, we not just give overtaking trajectories, but in absence of other cars
we do not use other algorithm to detect the actions. The various traffic scenes do not need to
be handled differently, curves, straight paths, no opponent cars all situations are handled in one
single approach.

• A very prominent difference is the use of Deep RL with continuous space in our approach and
their approach uses tabular Q-Learning with discrete actions and states.

4.5 Observations and Conclusions

The most important observation here is how the environment settings can change the behavior
learned. The reward function is almost same for both Overtaking and Blocking case, yet the behav-
iors are different. Our blocking car, once overtook cannot overtake the other car easily. Intuitively,
when trained for very high number of episodes, with an opponent who our agent, scr server can over-
take while exploration, then our agent can learn overtaking and blocking behavior simultaneously and
can act according to the environment conditions.

Our motivation is not the claim that blocking behavior is best learned by our approach, instead we
want to show the powerful nature of Deep RL, which made agents with similar reward learn different
behaviors because of environmental settings.

Blocking behavior can be used to help generate complex traffic scenarios, especially situations like
Indian road scenes, where vehicles do not drive in a fixed lane and tend to change their behavior ran-
domly.

In the next chapter we would move to trickier traffic scenes. The lanekeeping behavior with restricted
velocity, we had learned earlier will come to use in the next chapter.
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Chapter 5

Driving in Unstructured Traffic Conditions

5.1 Introduction

Driving in cluttered unstructured environments is not an easy task. By unstructured we imply that
the scene is continuously changing and we cannot model the behavior or motion model of the other cars.
Different cars are moving at different speeds and with a different motivation. Some are motivated by
the need to reach a destination at the earliest possible time and some aim at driving safely without any
possible risks. In real time traffic, vehicles are guided by the drivers behavior and very importantly the
behavior of nearby cars. The behavior or motion planning decisions of any of the car cannot be decided
in advance, any decision taken in past, can be changed at any instant.

Methods which plan in a centralized manner cannot work in real time scenarios, because all the
cars are completely independent without any major communication channel. Methods which plan in
advance for next few time steps cannot guarantee successful planning because of the dynamic nature of
the environment. We need a method which plans for each time step using only the information that is
available at the current time step.

We propose a solution to drive in such unstructured environments. We use Deep RL, the input to our
algorithm is the sensor readings and velocity details at current time step, of our agent. Actions(steer,
acceleration, brake) for each time step are returned. Unlike many popular algorithms for driving our
current method does not need the information states for the other cars, our agent learns takes only
the current step information vector and learns from experience(training/exploration), how to map the
state vector to action vector in a way that reward is maximized. It learns similar to humans, how we
approximate distances and take actions at current time step and dynamically decide the actions for next
time steps according to the new predicted distances.

Our work targets to learn to navigate in unstructured environments. We have learned different be-
haviors, with two(Opportunistic and Defensive) of them focused only on how to tackle the congested
unstructured dynamically changing environments.
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5.2 Environment Settings

During exploration or training, there were 4 opponent cars and our car started from the end. We also
explored with more than 4 opponents and with varied traffic scenes, but the best results were obtained
with 4 opponent cars. This can be reasoned on the fact that 4 opponents create some good experiences
for our agent to learn the expected behavior and introducing more opponents confuses the agent because
navigation now gets really difficult. The agent is not able to see good experiences and hence is not able
to learn the expected behavior.

While exploitation or testing, we tested on various road conditions, simpler ones included 3 other
opponent cars on a two lane structure and the complex ones being three lane structure with our agent
surrounded by cars on all 4 sides. The opponent cars had velocities in the range 10km/hr to 40km/hr
and the each one was assigned a random velocity in this range. The opponent cars were following the
lane for most of the time, to introduce random chaos in the environment, we randomly changed the
opponent cars’ directions for some random time steps. All of these combined factors resulted in dense
unstructured traffic scenes.

5.3 Opportunistic Behavior

Opportunistic behavior refers to the attitude where driver wants to grab every opportunity to move
forward in the traffic. The agent would search for free spaces ahead of itself in any of the lanes and
whenever possible it will traverse there. In scenes like Indian traffic conditions, many drivers behave in
this way. It is a common driving behavior in dense situations.

5.3.1 Reward function

While driving on highways, velocity allowed for the agent is not restricted, which makes the agent
ruthless and nasty. Once we restrict the highest attainable velocity, agent is able to learn safe maneuvers
in dense traffic conditions. Hence for traffic situations we restrict the velocities as done in section 2.6.2
We train the agent in a manner similar to highway overtaking case i.e using Curriculum Learning based
training and preloading the weights of Lanekeeping agent, as mentioned in section 3.5.

Reward =

RLanekeeping +Rovertaking, if velocity < maxV elocity

−900, otherwise
(5.1)

We do not modify the Rovertaking because our inherent aim which is to move in a way to occupy any
available free space, is equivalent to overtake or to attempt an overtake by lane change. Again, the extra
reward conditions are same as in table 3.1. During training, there exist 4 other opponent cars which
move with velocities ranging from 5km/hr to maxV elocity.
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5.3.2 Exploration

To facilitate faster learning we attempt to explore the good actions first, for the same we do not add
any noise for first 30 episodes of training, this way the agent tries to drive straight on road and learns
how his interactions with other cars affects his rewards. It would collide in many cases but would also
occupy free spaces in some cases, seeing such experiences at a early stage itself, would facilitate faster
learning. This method of exploration comes under surprise based intrinsic motivation. After the first 30
episodes exploration was done by adding OU noise, as done in all previously learned behaviors.

5.3.3 Results and Observations

Figure 5.1: Results of opportunistic driving in relatively sparse traffic conditions. One can notice that
the blue agent occupied the spaces infront of it. The agent behaves in the desired manner both on curved
and straight tracks.

Our results indicated smooth trajectories, where the agent remains under the speed limit and when-
ever possible, changes its lane to occupy the nearest free space available.
This behavior is representative of how humans behave in very dense traffic situations like traffic jams.
Wherever any free space is available, our agent navigates to go there. Such scenes are typical in Indian
Roads.
The opportunistic behavior is our first step towards solving decision problems in very dense, unstruc-
tured environments. We got the best(collision free and readily occupying free spaces) results when we
trained a single agent in presence of 4 other agents.
The number of training episodes after which we got convincing results were 2500.
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We experimented increasing the state vector by including the information of previous three steps of op-
ponents. Unfortunately, even after 4500 episodes of training we did not see any significant results. The
logical explanation behind the difficulty in learning is the increased size of state space.

Figure 5.2: Opportunistic behavior shown by our agent(blue) in presence of dynamically changing
traffic. Our agent detects the free spaces and navigates in between the other cars and takes up the free
spaces. This behavior is typical in scenes like on Indian roads.

No. of
Agents

Total number
of steps

in episode

Total no.of
colliding

steps

% of
colliding

steps

Structure
of the
environment

30 310 70 22.5
Highly unstructured,
cars surround agent
from all four sides.

20 282 44 15.6
Highly unstructured,
cars surround agent
from all four sides.

15 251 44 17.5
Unstructured,
less dense

10 517 22 4.25
Structured,
cars follow lanes
for majority time

5 300 29 9.6 Less dense
3 200 8 4 Not dense

Table 5.1: Table analyzing Opportunistic behavior in different levels of traffic conditions. Top to down,
structured nature of traffic increases.

5.4 Defensive Behavior

Driving in dense traffic does not always mean to try and overtake others, some drivers let others take
up the front space and focus on safer driving. Defensive behavior implies such driving where the agent
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will focus primarily on avoiding collisions. It will slow down whenever required to avoid collisions
from the vehcile ahead.

5.4.1 Action and State Space

The state space is 65 length vector as described in all previous approaches. This is relatively different
from the previous approaches. Here, we learn only the brake and acceleration actuators. Steering angle
is fed manually and is calculated using SnakeOil [10] agent’s steer calculation:

steer = (10/PI)× trackAngle− (0.10)× trackPos (5.2)

here trackAngle is angle between car’s heading angle and track axis, trackPos is the relative position
of car on the track. It cannot overtake because it cannot manipulate its steering angle. Steering angle
values align with the track angle values. We did not preload any weights, this was a faster training
because of decreased size of action space.

5.4.2 Reward function

The agent is for motivated moving forward on the lane and for avoiding collisions. We use the
RLanekeeping for moving forward motivation and damage at current time step for avoiding collision.
Damage is another sensor information provided by TORCS for scr server type car.It indicates the num-
ber of points on the car, damaged due to collisions. Reward considering the above two factors was

reward = RLanekeeping − damagecurrentT imeStep (5.3)

The extra reward conditions are same as in table 3.1.

5.4.3 Exploration

When this agent was trained with standard OU function as exploration noise, it could not learn the
desired behavior. This observation can be reasoned to the fact that applying complete brake and applying
zero acceleration would not be generated very frequently by OU noise. Hence, the agent was lacking
the experiences where it receives higher reward(in the longer run) by slowing down.
To help the agent see situations where it is rewarded on slowing down, we manually set the acceleration
as 0 and brake as 1, whenever the agent collided with any other agent.
This was one most important contribution of intrinsic motivation, in our work, we intrinsically showed
it examples of good behavior and eventually it was able to learn from them. After 500-700 episodes of
training the agent learned to slow down whenever opponents were detected ahead of it.

5.4.4 Results

The agent follows smooth trajectories, stays in the middle lane and slows down whenever any oppo-
nent is approaching in any of the lane, from where it can collide into the agent.
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Figure 5.3: This is an example of defensive behavior, whenever our agent(blue) is at a risk of colliding
with any other car(green), it slows down. It takes care to not collide with cars in same lane as well as in
adjacent lanes. The defensive agent behaves well both on straight and curved tracks.
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5.5 Conclusion

Driving in traffic and particularly when the other cars are not following a particular behavior is
a challenging task. We attempt to approach the problem using Deep RL, the results we get have a
significant performance in varied traffic scenes. The agent is driven by its behavior and hence navigates
in complex dynamically changing environments. We propose two behaviors for such complex situations:
Defensive and Opportunistic. Opportunistic agent behaves rogue at times as it is driven by the motive
to occupy any free space available ahead of it, in real world this can cause tension between the various
drivers, hence we propose another behavior. Defensive agent defends itself from any collisions by
slowing down. It cannot overtake, it has to stay in its own lane and prevent collisions. We believe
defensive agent is safer than opportunistic.

47



Chapter 6

Conclusions

In this work a relatively unexplored domain, deep reinforcement learning, is explored for au-
tonomous driving. This is one of the first work which targets behavior based driving maneuvers instead
of targeting tasks like reaching a goal or overtaking an obstacle. Additionally, this is an end-to-end
framework in continuous spaces.

Using an end-to-end DRL based solution for driving in real time is neither safe nor easily achievable.
In simulators we have the leverage of colliding into walls and other agents, in real life this is a lot to ask
for. One way forward is to learn in simulators and transfer the learning into the real world. Other way
forward is to use traditional planners for complete path planning and to use RL for complex decision
making. For example, the traditional planner plans the route and suppose there are two equally good
paths, the planner outputs both of them and now RL layer will select one of the two path.

In current times, autonomous driving is a popular area of research, unfortunately, there exists no
simulator which models behavior based dense traffic conditions. Either the traffic is sparse or it fol-
lows a pattern in order to avoid collisions, or the agents have the complete information state of all other
agents (which is not realistic). Our work can be extended to generate traffic simulations, for purpose of
autonomous driving research. Our approach is easily transferable in other simulators like CARLA [9],
AirSim [46], SUMO [35].
A simple extension using the current agents would involve placing different behavioral agents in differ-
ent relative orientations and get varied traffic scenes.

Another approach to create traffic scenes would involve changing the behavior of the agents depend-
ing on their position with respect to other agents. For example, the agent leading the traffic can simply
follow lanekeeping behavior, agents in surrounded by many other agents can follow the opportunis-
tic and defensive behaviors and agents which are in sparse density traffics can follow the overtaking
behaviors.

Currently, all the agents have learned their behaviors separately. Approaches like Distributed De-
terministic Policy Gradients [59] would increase the learned network stability and decrease the training
time hugely. For creating varied traffic situations Multi Agent DDPG [26] also looks promising. It aims
learning a policy where the individual agents also receive high rewards and the cumulative reward of
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the complete system is also attempted to maximized. MADDPG and D3PG are promising directions for
behavior based traffic for multi agents.

All of the behaviors learned are standalone in the present state. Learning a meta decision policy to
choose which behavior to follow in what conditions can help to create an end-to-end driving framework.
Since RL does not use any data or any expert driver, this framework is expected to perform better than the
ones based on data driven approaches. Importantly the exploration policy would decide the performance
of the training.

Another important contribution can develop out of Inverse Reinforcement Learning. The tricky part
in methods involving Inverse RL is the collection of data. One can use the AI agents coded in TORCS
to generate the expert trajectories. In IRL based methods we use expert trajectories to learn a reward
function, now we use the learned reward function with RL algorithm.

RL has a lot of potential in varied domains, when trained with intelligently chosen reward function
and exploration policy, RL can outperform traditional methods.

We explored Deep RL with one method DDPG, recently few other Deep RL algorithms have also
shown promising results in varied domains. Proximal Policy Optimization [44], Trust Region Policy
Optimization [43] are also continuous control deep RL methods.

Conclusively, this work is an attempt to show the effectiveness of Deep RL in the field of autonomous
agents and behavioral learning. Many interesting contributions are possible using Deep RL in the field of
autonomous vehicle research as well as in other domains. Optimistically, problems which could not be
solved by traditional methods can give significant results with RL with the correct choice of algorithm,
reward function and exploration policy.
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