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Abstract

Pseudowords are a part of language that are not translatable to another, as they have no meaning
attached to them while also having the constraint of sounding like a phonologically valid sequence
under the desired language’s native phonotactics. This thesis thus explores automated language-agnostic
pseudoword generation, evaluation of them, and use of them outside psycholinguistics research and
clinical use.

As the thesis progresses, we highlight current research, draw inspiration from close topics of study,
build a pipeline to generate pseudowords and generate Hindi and English pseudoword candidates for
further experiemntation. We make this reusable pipeline available on a public repository, as one of the
deliverables of this work. Then we show how the current evaluation work in this field is very scarce
and sew an evaluation framework with reproducible details on how to design and analyse a human-in-
the-loop experiment for something as tricky as pseudoword judgement, conducted for a layman native
speaker. After showing various ways to prod a pseudoword set for quality, we compare notes against
past sets in English and present observations summarising how comparable they are. However as there
is no Hindi pseudoword dataset yet, we add in psycholinguistic features on top of results of evaluation
metrics per Hindi pseudoword and release “Soodkosh” another fully public and usable for research
resource.

Finally, we conduct two separate studies involving pseudowords to show the application, impact,
and importance of them across fields. The first study uses pseudowords to establish gradient between
high-frequency words, low-frequency words, and non-sensical sequences of alphanumerics used as pass-
words. The aim of this study is to find correlation and its strength between the perceived security and
memorability of a password/phrase. The other part of this chapter is an exploration into language mod-
els’ performance on Aphasia classification and if replacing pseudowords can help them. This is as
pseudowords like neologisms, mis-pronunciations, and other novel forms generated by Aphasic speak-
ers are largely out-of-vocabulary to a standard languge model that functions off of a pile of mostly
well-formed and coherent data. As these are not directly helpful to the field of Aphasia, this work re-
places one possible hurdle to see if it is a feasible solution. However the results show that pseudowords
are passively used as features and cannot be replaced directly.
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Chapter 1

Introduction

1.1 Scope of the Thesis

From all the phonologically possible wordforms in a language, the meaningful ones are termed as
words, the ones with no meaning attached to them as pseudowords, and the phonologically impossible
fraction as nonwords [2] in this thesis. This is a compilation of my work on and around Pseudowords
that aims to be a useful, informative, and reproducible work on that could be used as a first step to solve
Pseudoword data scarcity in Indian languages, and a variety of tasks like visual word recognition [3] in
lexical cognition studies, as a part of lexical-decision tasks in crucial places like Aphasia type distinction
[4], and in NLP as used by [5] and [6], to probe the semantic abilities of a language model.

Figure 1.1: A sample from Soodkosh, a dataset of 90 Hindi Pseudowords

Pseudoword generation or datasets of such stimuli is thus a necessity. There is work for the same in
major languages like Dutch, German, Spanish [7], Polish [8], French [9] & [10], and English ([11] and
others). There is also some scarce work in other languages like Vietnamese, Basque, [7], Arabic [12],
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and Korean [13]. However, for conducting tasks like Aphasia tests across languages, we need these
systems/datasets to cater to a wide range of languages which are different typologically (e.g. Indo-
Aryan) or otherwise (e.g. shallow orthography-phonology). Thus the first chapter proposes a solution
to this problem by setting up a generation pipeline that is not tied to a specific language (as it models
on just IPA-like phoneme sequences of any language’s lexicon it is run on). We show how a run of
the pipeline on English compares to other methods using some metrics established by [1] and then the
results on Hindi which are evaluated by humans and existing methods alike. These pseudowords are
then compiled with their evaluation statistics and other pseudo-lexical statistics as features to them, into
a publicly available dataset named Soodkosh1.

The second chapter then proposes an extensible and a human-in-the-loop evaluation framework for
pseudoword quality. There is work in evaluating phonological understanding of language models and
there is work in exploring generation of pseudowords. However, these works do not evaluate pseu-
dowords for quality. Additionally, neural models of phonology or neural pseudoword generation mod-
els (like the one proposed in the first chapter) could be language-agnostic and thus be very useful in
working with pseudowords in many languages. Although as they are neural models, they abstract away
explainability [14]. Thus in terms of what kind of pseudowords a model is able to generate or if the
model is sensitive to particular languages, quality evaluation strategies can help users understand these
neural modelling blackboxes in more linguistic detail.

On the topic of why researching on pseudowords is important, the third chapter showcases how pseu-
dowords can be useful in an entirely different research area i.e. understanding people’s metacognition in
terms of their perception of passphrases’ memorability versus security. Here they are crucial to show the
transition in perceived memorabilty as a factor of wordlikeness from non-sensical sequences to mean-
ingful lexical items being used as passwords. The chapter then also shows how identifying pseudowords
(which make text incoherent for popular NLP models) and replacing them in an informed manner could
change the results of NLP tasks, as demonstrated in the field of Aphasia, where a lot of the naturally
uttered sentences by an Aphasic person could contain neologisms, slips of tongue etc. all being inferred
as phonology abiding but out of vocabulary items by popular NLP pipelines.

1.2 Motivation

This thesis is a result of a series of exciting explorations that started from me being fortunately guided
into the Cognitive Sciences Lab as a cross-disciplinary opportunity by our Computational Linguistics
degree. Clinical Neurologists in India had been looking to collaborate with the above mentioned lab and
work on developing resources for Aphasia in Indian Languages. There is a huge list of such resources
that need to be created (and not translated) to make an authentic and usable Indian-language Aphasia
Battery of tests to understand the type and extent of Aphasia.

1sood (with a ã) sounds like pseud in English and is also a pseudoword in Hindi. While kosh means a collection in Hindi.
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This thesis concentrates on one of the requirements, which is to develop Pseudowords as a part of
the Lexical Decision Task that is helpful in judging an Aphasic person’s lexical understanding of the
language, vocabulary still retained etc. It was intriguing to me that pseudowords are unique items in the
Aphasia Batteries that cannot be translated as they do not have a meaning attached to them! Add the
fact that there were no existing methods for generating pseudowords in languages like Hindi and mix a
bit of my bias for Indian languages in general, and you would arrive at the motivation behind this thesis!

1.3 Thesis Layout

C1 This is the introductory chapter, which discusses the scope of the work carried out in this thesis in
the context of pseduowords, addresses the problems we are attempting to pose solutions to, and
adds some motivation for the methods that we will develop in the following chapters.

C2 This chapter details the proposed pseudowords generation pipeline, runs basic checks for validity,
and introduces the problems to be tackled with, when working with pseudowords.

C3 The thesis then explains the evaluation methodology proposed with new metrics, existing ones,
and how to expand on the same.

C4 This penultimate chapter shows how pseudowords are important outside of Lexical Decision
Tasks taking two separate studies with pseudowords as an integral part of them.

C5 Finally the thesis concludes with a summary of methods and results discussed in this thesis, the
practical use-cases of these methods, and the scope of extension of this work in the future.

1.4 Applications of our work to science

The work in this thesis which is made available for research freely, aims to help the fields of psy-
cholinguistics directly and majorly. It could also be another stepping stone in generating interest and
more work in this field which clinical use-cases can benefit from. The applications then branch out to
places where one needs a place-holder for experiments, a part of the stimuli or otherwise, or could be
used to prod language models just like humans to find out more about its lexical cognition. On the same
lines, it can also be used to understand a model’s learnings from the phonology of a language and if that
is also how humans understand phonology the same way.
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Chapter 2

Pseudowords & How to Generatuce some

a

2.1 Introduction

The introductory chapter showed how pseudowords are crucial for diverse psycholinguistic tasks,
clinical tests, and in NLP, e.g. language learning, predicting the kind & severity of aphasia, word sense
disambiguation, etc.

Pseudowords were discussed in a psycholingusitic light by Greenberg in 1964 [15] and this was cited
for a similar exploration in Hindi by Ohala in 1983 [16], however they have been majorly a part of a
study relating to phonology of modelling of phonology since then. Even in the studies focused around
pseudowords, there is very little research on the automated generation outside languages like English and
French. This chapter highlights the state of the field, introduces a novel way to generate phonologically
valid pseudowords, and the first attempt at creating a Hindi pseudoword dataset: Soodkosh.

As a summary the chapter highlights the current state of research around pseudowords and their
generation. Then proposes a language-modeling-inspired yet language-agnostic technique to produce
a dataset of 90 pseudowords in Hindi (as a sample language in need of this resource). We make the
generation pipeline, and the dataset publicly available for academic research and use in clinical settings
here1.

2.2 Overview of research around Pseudowords

The research in pseudowords have majorly been about ways to generate it, from rule-based man-
ners to using Markov chains (summarised in the next section). A lot of the generation research has
been on resource rich languages, where the generator could exploit and be controlled for various psy-
cholinguistic features recorded in public lexicons of these languages. Finally, some work is also around

1https://github.com/Abhinav271828/soodkosh-acl2023/
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cross-lingual generation using the same paradigm. Note that unlike other linguistic resources used in
the clinical settings, NLP, ASR systems etc. pseudowords cannot be borrowed directly/translated from
other languages. This makes it all the more important to study and find ways which are cross-lingual /
langauge-agnostic (here we mean that we propose a language agnostic pipeline to make language spe-
cific pseudowords. The pipeline should be usable by all languages to generate pseudowords according
to their respective phonotactics.).

Another but smaller line of research involves mimicking evaluation of phonology modelling studies
(researched extensively) to evaluate pseudoword quality as well. These evaluation strategies involve
pseudowords in a Lexical Decision Task like setting but the aim has not been geared towards quality
evaluation of how ‘good’ a pseudoword is. Greenberg et al. [15] carried out one of the earliest of
these studies, followed by Ohala [16] conducted for Hindi. In these studies, they would generate a few
pseudowords (deemed candidature by researcher heuristics) and place the outputs with words (and not
nonwords) to setup a Lexical Decision Task for a small set of humans. Note that these are binary/ternary
word-nonword decisions which give us only the information on the possibility of a token being a pseu-
doword and nothing else about its quality, of how wordlike it is etc. For the same a more gradient based
judgement could be helpful (which is what we explore in the proposed evaluation strategy).

More recently, work in evaluation of pseudowords from existing popular datasets of pseudowords
have also been analysed for the importance of shallow morphology in context of native speaker accept-
ability [2]. The next chapter on evaluation highlights such evaluation methods over the years and the
ideas borrowed from each to set up a language-agnostic behavioral experiment for us to record human
understanding of pseudoword quality.

2.3 Research in Pseudoword Generation

2.3.1 Generation methods

Pseudowords have been generated in multiple ways over the years (as detailed by [1]). Note that most
methods need a validation step where they remove the generated forms if they appear in a dictionary of
the language. This section thus provides a summary of the methods tried out so far and paves way for
the pipeline the thesis proposes. The methods summarised below have been exclusively used to generate
pseudowords (and not just a part of a study relating to phonotactic modelling):

• Manipulation: This is done by changing words to produce forms that don’t exist in the dictionary.
Done on a character level, manipulations involve adding, removing, editing, or transposing some
characters in a word. [3] has one of the largest databases of this kind, where they don’t describe the
process of generating pseudowords (in their paper “nonwords”, that are not clearly “nonwords”) in
not more than a line which is a paraphrase of the above. About 40K pseudowords were generated
by this method in their work and some examples of manipulating a word (bottle) to obtain
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pseudowords in English (bottleb, botle, obttle) are as follows: Insertion (b): bottleb,
Deletion (t): botle, and Transposition (b, o): obttle.

• Combination: Popular tools in English like WordGen [11] and Wuggy [7], datasets like ARC
[17] and The English Project [3], and similar resources in languages like French (The French
Lexicon Project [10] and Lexique [9]) work by combining high-frequency n-grams. Generated
by WordGen ([11]) and shown by [1], a pseudoword in English reroin can be generated by
chaining re, er, ro, oi, and in. Respective frequencies of these phoneme bigrams are 4760,
7279, 2840, 468, and 7156 as calculated from [11]. This kind of high frequency is only one of
the 7 ways to confirm a random string’s possibility of being a pseudoword by [11]. For a string
to be a possible pseudoword as per [11], it should not already be present in the lexicon and the
following 7 constraints must be met (only for the few European language family’s languages that
it can operate in): number of letters, neighbourhood size, frequency, bigram frequency (initial,
final, minimum and summated) and orthographic relatedness.

Some of the other combination based methods include constraints on generation like minimum or
aggregated frequency of the sub-syllabic units like existing onsets, nuclei, and codas. An example
for this is: scuf (a pseudoword in English) formed from = sc (onset in scar) + u (nucleus in
bun) + f (coda in reef ). Wuggy ([7]) is a method that uses this way of pseudoword generation,
where all syllables are broken down into valid parts and are all listed out into a tree of onsets,
nuclei, and codas, which is then traversed back to join different sub-syllabic elements in a valid
way to generate new sequences in the end.

• Prediction: There is one method [1] which generates pseudowords (CGCA) by chaining charac-
ter n-grams based on the probability of appearing within the language. This is done by a script first
going through a lexicon of the language and building a dictionary of n-grams and their three re-
spective scores (word-initial frequency, word-medial frequency, and word-final frequency). Then
a frequent word-initial n-gram is picked from this dictionary and another n-gram with an overlap-
ping n-1 gram is picked to continue forming the pseudoword until a word-final n-gram is reached.
An example figure for the latter is shown below (Figure 2.1 from [1]) König et al. conduct the
study majorly on English data and showed results for some other popular European languages as
well (German, Spanish, Italian). They conclude with the caveat that the system still needs further
testing to claim language-agnostic-ness of the system. This is as the orthography of all the tested
languages were majorly the same, as an example, we don’t know if the system works well for
abugidas like Hindi too.

2.3.2 Other work where Pseudowords are generated

Dautriche et al. [18] use n-gram phonological modelling in combination with Probabilistic Context
Free Grammar over broader units like syllables and words to generate phonotactically valid sequences
(note that these are not neural network based approaches). However this approach has been used by
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Figure 2.1: An example of a pseudoword being formed by the CGCA algorithm adapted from [1]

the same work, Trott et al. ([19] & [20]), and Caplan et al. [21] as a part of bigger experiments in
liguistic research like homophony, or cognitive science research like the concept of Miller’s monkey in
phonology. For example in this study of Miller’s monkey in phonology the researchers set out to prove
that a natural lexicon made of randomly generated sequence of phonemes considering some constraints
in phonology and semantics, is comparable in communicative efficiency of a lexicon that is made from
actual words in context of a language. Thus this study used a generation methodology to (a) generate
phonologically valid sequences (that could be anything) & (b) not for the aim of generating quality
pseudowords to be of use in psycholinguistics, but for a larger aim of talking about Miller’s monkey in
a lexicography, linguistics, and cognitive science aspect.

2.3.3 Some problems with the current approaches and the way ahead

Manipulations and combinations generally require expert knowledge of the language to filter out the
results which are not allowed by the sequential phonological constraints in a language [16] (apart from
the automated constraints). Additionally, [14] find that n-gram models are dependent on fixed/specified
context windows, which can cause the modelling to lose out on numerous long-distance dependencies.
Finally (as discussed in the introduction), we also need generation methods which are multi-lingual or
language-agnostic in nature. Following these requirements, we reviewed literature on neural models of
a language’s phonotactics (and how they compare to n-gram based modelling), as such a model could
approximate the expert knowledge and if abstract enough, it could be used to generate phonotactically
valid forms across languages. The review resulted in two parallel lines of relevant work in recent times.

One line of work led us to Trott et al. ([19]), who in their more recent work, noted that RNN based
modelling could lead to comparable results, citing Pimentel et al.’s research on Homophony and Rényi
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Entropy [22]. Here they use a similar architecture as ours (all works derived from the Pimentel work,
including Trott’s, use an LSTM based modelling of a IPA like lexicon to study different aspects of pho-
netics and phonology), to yet again model phonotactics of a language and not to generate pseudowords
exclsuively. In the latter study, Pimentel et al. directly compare their results to n-gram based models
and show how n-gram based modelling outputs misleading results. Finally, Futrell et al. [23] explore
how the latent space of phonotactics is better represented by a model which can uncover phonological
features and the hierarchy of them. Their modelling approach shows that n-gram based approaches
definitely loses out on these underlying feature representations.

Another line of work built on the recent research by [24], [14], [25] and others who have used
neural language models (LMs) like LSTMs and RNNs to probe such models’ capability of understand-
ing phonology in various ways like if distinctive features are obligatory for phonotactic learning, if
character-level embeddings encode sound patterns etc. [14] also report that for Finnish, a language with
vowel backness harmony in roots and in affixing, n-gram models may not be able to detect disharmo-
nious but spread out vowel subsequences as well as neural models can. They find that RNN-based LMs
correlate with human judgements on scores of attested (and marginal) forms.

To summarize, on one end, non-LSTM-based methods are preferred for their better interpretability.
Additionally, their variables can be better controlled for generating pseudowords. On the other hand,
LSTM-based methods have been shown to be better capable at generating substantially more pseu-
dowords due to the underlying continuous sequence representations. They can also generate a variety
of pseudowords creatively (as seen in the following sections).

Following these trends and findings in computational phonology studies, we see that statistical meth-
ods lose out on long range dependencies ([14]), while RNN-based ones correlate better with human
judgement ([14] & [19]) while also understanding phonological features ([25]) which are important
([23] and are missed out on by a statistical n-gram based approach). Apart from this, we also believe
that it would be easier to expand a pseudoword generation pipeline cross-lingually if the way to generate
is more RNN-like than n-gram-like, as shown by other domains and tasks in NLP. Thus we design an
LSTM-based pipeline to generate pseudowords in a language (like PhonRNN [24]) as described in the
next section.

2.4 The PseudRNN Generation Pipeline

We essentially treat this task as language modelling (or more generally, next-token prediction) on
a character level. The pipeline (PseudRNN) for the same, details the training data, the model, and the
post-processing required. The pipeline requires an IPA-like lexicon as an input, with each lexicon item
transcribed using a uniform phonetic transcription system with space separated phonemic tokens. This
ensures that the model can learn a language’s phonology from a phonologically valid set of words. The
output of this model is intended to be a randonmly initialised, generated set of phoneme sequences. We
finally subtract words from this set to obtain candidate pseudowords (as the model has only trained on
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phonologically valid sequences, the output is expected to contain only phonologically valid sequences
as well i.e. words & pseudowords.).

2.4.1 Data

Earlier works utilize the orthographic representation of a language’s lexicon for generating pseu-
dowords. For Hindi specifically, [26] enlists various issues with the orthographical representation like
schwa-deletion not being fully reflected. Moreover, a cross-lingual analysis of character-level language
models by [25] shows that textual character representations correlate strongly with sound representations
for alphabetic orthographies. In this case therefore, it could be more inclusive to use sound representa-
tions rather than adapting to different orthographies, more so as the pipeline is intended for use across
multiple languages. Finally, we ran this pipeline for unconverted orthographical, space-separated ver-
sion of the Hindi input lexicon (Section 2.5.2.1) as well. The results showed us systematic errors that
this modelling resulted in, which phonologically converted input did not show.

Thus like [27], [24], and [25], we intend to map orthography to a phonologically universal but
distinctive feature space. A good approximation of which is WikiPron’s (licensed under Apache 2.0)
[28] grapheme-to-phoneme aligned, pronunciation datasets. Note that our work aligns with the wishes
of WikiPron’s authors i.e. the software be used for building and evaluating speech technologies for less-
resourced languages. We scrape 12,608 words from Hindi Wiktionary using WikiPron and split it in an
80-10-10 fashion for the train, test, and validation sets. The data (in line with the above requirement) is
composed of Wiktionary (licensed under CC-BY-SA) [29] transcriptions of Hindi words with syllable
boundaries marked by a period symbol. While for English we used about 70K entries in the same
format.

2.4.2 Model

We adapt our model pipeline using the PyTorch WordRNN implementation [30]. We begin by encod-
ing all tokens in the vocabulary (phonemes, syllable bounds, etc) as unique one-hot-vectors. Addition-
ally, during training, input sequences are appended with a special end-of-sequence token (<eos>). The
model architecture starts with a fully-connected encoder layer that is used to learn corresponding em-
beddings for each input token. A subsequent decoder consisting of two layers of unidirectional LSTMs
[31] follows. Finally, a Log-Softmax operation is applied to the output embeddings from the decoder to
obtain the probabilities for the next most-likely token, which is compared against the expected output
using a negative log-likelihood (NLL) loss. Hence, the loss function is used to evaluate and update the
model upon its prediction of the next phoneme in the phone sequence given the past context fetched
from the transcripts of valid words. A dropout of 0.2 was applied to all learnable layers in the model.

To generate pseudowords, we initiate an input sequence with the learned representation of a randomly
selected token from the vocabulary. The model is then allowed to iteratively extend the sequence with
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the most probable next token up to a maximum sequence length. The next-token generation pipeline is
summarized in Figure 2.2.

All experiments were trained using an SGD optimizer with an initial learning rate of 20 for 40 epochs.

Figure 2.2: PseudRNN: Internal LSTM Architecture. At each timestep, the input embedding of the input

token and the hidden state from the previous timestep is used by the LSTM cell to generate the output

state of the current timestep. This is then used to predict the most likely next-token in the sequence.

2.4.3 Hyperparameter Search

Since there is no current automatic evaluation to find a neural model’s ability to generate high-quality
pseudowords, we observed the number of valid words generated by each model for hyperparameter
tuning.

The most crucial hyperparameters we found to affect the model outputs are as follows. Note that
all other model hyperparameters were not changed from their origin WordRNN source (as they did not
hamper the results and were mostly consistent with PhonRNN too [24]) and were set to default values
and have been listed in Table A.1 at Appendix A:

• Input Embedding Size: The input embedding size of the LSTM refers to the size of the input
tensor representations assigned to each token in the input vocabulary. A larger embedding size is
attributed to a greater bandwidth of input features encoded for each token, however, this size must
be limited according to an appropriate quantity of training data. Too large an embedding size can
lead to sparsity, with poorly trained dimensions leading to lower performance.

• Layer Count: Stacking layers of LSTMs (i.e. passing the cell & hidden outputs of an LSTM
to another LSTM as inputs) helps encode higher-order features of the input sequences. How-
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ever, similaar to input embedding size, too many layers with insufficient training data can lead to
sparsity and lower performance.

• Input Sequence Length: The input sequence length defines the number of past tokens visible to
the model for next-word prediction as context. A larger input sequence length allows for a better
access (not utilization) to the past context, which can help encode long-term dependencies better.
However, the optimal utilization of this context depends on the other corresponding properties of
the LSTM model (i.e. input and hidden dimensionality, layer count, activation function etc).

Our findings are as follows:

• The number of real words generated increased when the embedding dimension was increased
from 17 to 34. Thereafter, it plateaued, finally dropping again at 68.

• Increasing the number of layers beyond 2 resulted in poor syllabification (e.g. empty syllables
were generated), except in the case where there were 68 input features. However, since this
decreased the total words generated, this combination was not chosen.

• Chunking the input data into sequences of 10 also led to the highest number of words being
generated. Decreasing this to 5 or increasing it (up to 40) resulted in relatively poor performance
by this metric.

We finally opted for an encoder with an input embedding size of 34 and a decoder with two layers of
LSTMs, with an input sequence length of 10.

2.4.4 Post-Processing

Using the above model, we obtained about 200 candidates for pseudowords. We then converted it
back to orthographical form in Devanagari as this form is easier to look up in lexicons/search engines
to find out if it is already a word or not and it is also easier to show as a stimuli to gather Wordlikeness
ratings for (next chapter), and it is finally the form that would be required by an Aphasia battery or an
NLP task etc.

We did this by asking two separate Hindi native speakers who were comfortable with IPA as well,
to convert IPA to Devanagari. We then calculated inter-annotater agreement by using sequence overlap
(intersection over union) style metrics, where similarity/agreement of the two annotators are a function
of their Edit Distance, Jaro-Wrinkler Distance etc. Table 2.1 shows the agreement derived from various
such metrics as defined in these footnotes2, 3.

2the similarity for each of these metrics was calculated by inverting the distance metric and factoring in the length if the
metric already did not take that into account.

3Manual: we used 0.5 as the distance in case of each ”matraa” change and 1 otherwise; Levenshtein: distance between
two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word
into the other; Jaro-Wrinkler: designed and best suited for short strings such as person names, and to detect typos; nGram:
as defined by [32]; SD: similar to Jaccard index, the similarity is computed as 2 · |V1 ∩ V2| / |V1 + V2|; OC: computed as
2 · |V1 ∩ V2| /min (V1, V2), and TER: adapted directly from the implementation of this work: [33]
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Agreement Type Mean SD

Manual 0.97 0.04

Levenshtein 0.94 0.07

Jaro-Wrinkler 0.97 0.04

BiGram 0.99 0.02

TriGram 0.99 0.02

Sorensen-Dice (SD) 0.73 0.32

Overlap Coefficient (OC) 0.75 0.30

Translation Error Rate (TER) 0.99 0.02

Table 2.1: Summary of inter-annotator agreement across various metrics to highlight that there was

reliable agreement on phonology to orthography conversion.

We see that all of these metrics show more than 73% agreement between the annotators, showing
high agreement between them. This is because for Hindi phoneme-letter mapping is highly one-to-one.
The places of difference were majorly the same across the annotations, where one annotator did not
strictly follow the syllable boundaries as indicated by the PseudRNN outputs and another did (e.g. for
the IPA transcription "@z.z@m" , we had two annotations, one which considered the first z as a consonant
on its own, while the second annotation attached it to the second z).

We then removed any duplicates and then filtered away any sequence that was found in the Wik-
tionary lexicon, reported as an exact word match, or returned more than 5 results on an internet search.
This resulted in a final set of 90 candidate pseudowords to be evaluated for quality.

2.5 Results & Additional Experiments

2.5.1 Main Experiment

Below is a preview of the main experiment pipeline (Figure 2.3) and the list of 90 pseudoword
candidates that were finally generated (Figure 2.4):

2.5.2 Other Experiments

We also ran the pipeline separately on Hindi unconverted orthography lexicon to check if conver-
sion to a phonologically oriented space was a required step, and an English IPA transcribed lexicon to
compare our model against the ones in the past using existing metrics.
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Figure 2.3: PseudRNN Pipeline

Figure 2.4: The results of the generation pipeline

2.5.2.1 List of Pseudoword candidates generated from unconverted orthographical modelling

Since orthographical embedding space etc. could be different from the phonologically converted
ones, we tried tuning the hyperparameters (Section 2.4.3) and found that the common pattern based
mistakes were similar across the runs, thus we report the results from the model with the same settings
as the main experiment above in Figure 2.5.

2.5.2.2 List of Pseudoword candidates generated in English

We also ran English data through the same hyperparameter settings as the main experiment done on
the Hindi data. This was done to make the methods and outputs comparable. (Figure 2.6)
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(a) Nonwords generated by unconverted Orthographic Generation

(b) Pseudowords generated by unconverted Orthographic Generation

(c) Words generated by unconverted Orthographic Generation

Figure 2.5: Manually divided outputs from a run of PseudRNN on a lexicon of Hindi words written in

Devanagari

Figure 2.6: The results of the generation pipeline on English lexicon

2.6 Discussion & Making way for Evaluation

We see that PseudRNN generates about 45-50% candidate Hindi pseudowords out of all the gener-
ated strings in one run (Fig. 2.4). This is as the total strings output were around 200, out of which about
90 were not found in a dictionary or on Google. For Hindi, there were about 10 sequences generated
were nonwords, as these had multiple syllabifiers placed adjacently, or were breaking a very clear Hindi
phonological rule. For a comparison, the English data generated about 80% pseudowords. Out of the
rest, 15% were found to be in the input lexicon and 5% were found as rare English words on Google.
This shows us that differing data source sizes across languages can affect the pseudoword production
efficiency in the pipeline.

Detailed statistics on phonological length, orthographical length, closest words etc. can be found at
the end of the next chapter on evaluation, where we establish these metrics and report them. Although,
we can already note here that the outputs from the phoneme sequence modelling contained only phono-
logically possible forms, out of which about 50% were actual words. This is consistent with English,
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where the outputs are all phonologically legal, but the pseudoword-word ratio is higher as we got about
80% pseudowords and the rest as actual words in a dictionary. Thus, pre-evaluation, we can gauge that
the modelling on phoneme sequences by PseudRNN (with these hyperparameters) is at least generating
legal sequences as well.

On the other hand modelling without phonological conversion (Fig. 2.5) have about 20% (about 18-
25% across different hyperparameter tests) strings consistently breaking Hindi word formation rules,
like:

1. Matraa Positioning: Hindi vowel markers (matraas) cannot occur at the very beginning of a word-
form. However the model does output multiple strings that have a standalone matraa in the be-
ginning. We hypothesis that the cause of this is how some matraas are stylised such that when
breaking down a word, they would appear at the start. Similarly, vowels themselves cannot occur
in the middle of a word without converting into a marker unless on a syllable boundary. However
the figure shows multiple places where it is not possible to pronounce a string because of a vowel
unattached to a consonant, occurring in the middle.

2. Standalone Matraa: Sometimes the model has also output strings where the vowel marker was
unattached to a consonant and has a placeholder instead. These are also not pronounceable.

3. Other Phonotactics: In Hindi, some consonants only occur in vowel environments, i.e. a vowel(-
like) sound before and after are needed for these consonants to occur. However the sample non-
word outputs show that this is a recurring mistake the model makes. Another observation is that
the “nuqta” sign (generally indicates sounds not present in the script originally, but has come
through via borrowing etc.) that is used with consonants for which we don’t have such a variation
for. However PseudRNN modelling orthography directly, showed that it liked to use nuqta with a
lot of other consonants too. This made novel sound sequences that were not pseudowords strictly,
as we did not know how to pronounce them.

For English sequences, it was trickier to convert IPA sequences to orthography (although it was
straight-forward in the cases where we could find existing roots on comparison with the lexicon). This
is because (at least in American English) as a study shows, English is not phonologically transparent
[34] where as a part of one of the experiments, they try ”back-translating” English spelling from IPA
and could not do so as unambiguously as in a language like Finnish. As an example, this can also be
seen in the case of schwa, where it can be translated to multiple vowels in the same environment in
English. For the scope of this thesis, we find the closest IPA sequence in the lexicon to ensure maximal
usage of existing mappings and then use bilingual speakers’ intuition to find rest of the orthographical
representation of pseudowords that we generated to be able to compare with existing metrics that only
take such forms into account. The resulting Limitations are discussed below.
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2.7 Limitations & Future Work

A major limitation of the pipeline is the availability of a native speaker well-versed with IPA (or IPA-
like transcription system) and the target language’s degree of orthography-phonology correspondence.
For the latter, there is no absolutely unambiguous language, but as seen above, Hindi, Finnish, and other
languages come close. Thus we could use the existing lexicon’s closest matches in IPA sequences as a
helping hand for languages like English, until a better alternative can be found.

Secondly, the generation pipeline could be improved by experimenting with hyperparameters to
make a more language-agnostic model that needs little tuning to adapt to another language or testing
out models like Bi-LSTM ([25] show right-to-left information improves phonotactic understanding).
We could tinker with affixes, roots, or suprasegmental features like tones, allophones ([35] & [36]) etc.
along with the word input to these models for better linguistic cohesiveness. Finally, the dataset can be
made more usable by adding more psycholinguistic features like concreteness, imageability etc. Or by
adding new linguistic information like possible part-of-speech judgements.

Finally, upon discussing with reviewers, we realised that pseudowords which visually look like the
form of an existing word are also used by Lexical Decision Tasks and could be an interesting area to
explore and model for, however that is presently out of scope of this pipeline.
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Chapter 3

Evaluadating Pseudowords

3.1 Introduction

In this chapter, as a next step, we propose an inspired behavioural experiment design to evaluate
pseudowords for their “wordlikeness” against native speakers’ linguistic intuitions. The results from this
showed that native speakers confirm the generation model’s ability to capture the language’s phonology
and the pipeline’s ability to generate and evaluate a variety of wordlike pseudowords. This design helps
us record, analyse, and propose Wordlikeness Rating as a metric to evaluate pseudowords apart from 3
other materics based on Familiarity and response times that this chapter will detail. We talk about these
4 related metrics as Pseudoword Acceptability Metrics in this chapter.

Figure 3.1: Preview of the experiment developed to evaluate a generated pseudoword in Hindi
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Secondly, we present Soodkosh, a dataset of 90 Hindi pseudowords complete with various metrics of
pseudoword quality and psycholinguistic features applicable to such strings. We explain these features
and how they could be useful in various use cases as well.

We thus make the evaluation experiment and the dataset publicly available for academic research and
use in clinical settings here1.

3.1.1 Related work

There is scarce work in pseudoword evaluation, as it is to be checked for quality against a language’s
phonology, which is not cut and dry. Although pseudowords have been evaluated for their phonological
validity in a few language-specific cases, carried out by comparing them to existing word-forms in
various ways. Research by König et al. [1] extends this by proposing two metrics to check for the
generated pseudowords’ orthographic legality and task suitability in English. This is the most that
has been done, outside of studies aiming to understanding other phonological aspects which involve
pseudowords as a part of the study, as described below.

Like phonology modelling studies for generation, evaluation of phonology models have been re-
searched extensively (these do not evaluate pseudowords). These evaluation strategies involve pseu-
dowords in a Lexical Decision Task like setting but the aim is not geared towards quality evaluation of
them. In terms of evaluating pseudoword quality, [15] carried out one of the earliest of these studies,
[16] conducted this for Hindi, and more recently, [2] where they analysed the importance of shallow
morphology for native speaker’s acceptability of a wordform.

To specifically establish an evaluation strategy for pseudowords, we follow the idea of Gradient Ac-
ceptability laid out by [37]. We use a similar paradigm to the evaluation strategies by [37], [15], and
[16] and design a behavioral experiment to gather native speaker intuition of pseudowords’ wordlike-
ness measured primarily by their wordlikeness rating, but accompanied by their familiarity with the
pseudoword and their response time. We aslo incorporate [1]’s metrics among others to propose more
ways to evaluate artificially generated pseudowords in a language.

Similarly, there has been no work on evaluation, or dataset creation of Hindi Pseudowords. Thus we
use our pipeline to generate English Pseudowords and compare them against existing metrics to position
our pipeline among current methods by using the existing evaluation for English, apart from showing
how the metrics we propose can be used in evaluating Hindi pseudowords and establish a dataset.

Finally, the evaluation pipeline we propose is a concoction of parts of monolingual pseudoword
evaluation methods in the past, thus we mention the rest of the related work in the Design Choices
subsection (3.3.4).
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metrics by [1] -> Legality Suitability

pseudowords’ source C+ V+ CV+C C+V+C+ 1-C comp poly npoly half-real

CGCA [1] 0.01 0 0.01 N/A 0.24 0.04 0.45 0.27 N/A

ARC [17] 0.03 0.01 0.14 N/A 0.34 0.01 0.01 0.58 N/A

ELP [3] 0.04 0.02 0.06 N/A 0.43 0.06 0.03 0.58 N/A

WordGen [11] 0.08 0.05 0.18 N/A 0.48 0.01 0.08 0.36 N/A

Wuggy [7] 0.03 0.01 0.19 N/A 0.47 0.03 0.07 0.37 N/A

Meara [38] 0 0 0.06 N/A 0.14 0.09 0.1 0.26 N/A

PseudRNN (Hindi) 0.04 0.01 0.14 0.68 0.27 0.02 0.06 0.32 0.12

PseudRNN (English) 0.77 0.33 0.99 0.99 0.31 0.12 0.17 0.46 0.21

Table 3.1: Comparing legality & suitability across different methods of generation (legality: error

percents, suitability: count percents. Rounded off to 2 decimal places). Note that CGCA values are

the mean of 8 reported models. The N/A marks the fact that the features C+V+C+ and half-real

are introduced by this work and have not been tested out by the authors of any previous research in the

table.

3.2 Existing Metrics

In this section, we compare the generated pseudowords against metrics proposed by [1] for their
legality and suitability. As this is the only existing work on evaluating generated pseudowords (not on
quality, but on specific features i.e. legality & suitability), we explore these and understand what else
can be done.

Starting off with legality, according to the paper a pseudoword can be considered “suspect” if it has
one of the following error types (first 3):

1. C+: sequences of consecutive consonants from a pseudoword that don’t exist in the lexicon.

2. V+: sequences of consecutive vowels from a pseudoword that don’t exist in the lexicon.

3. CV+C: sequences of consecutive vowels including one leading and one trailing consonant from a
pseudoword that don’t exist in the lexicon.

4. C+V+C+: sequences of consecutive vowels including consecutive (one/more) leading consonants
and consecutive (one/more) trailing consonants from a pseudoword that don’t exist in the lexicon.

1https://github.com/Abhinav271828/soodkosh-acl2023/
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Note that these are binary metrics i.e. if a sequence has more than 1 C+ errors, it would be counted
as 1. For more details on the first three legality metrics, please refer to [1]. We have added the check for
C+V+C+ sequences as well to encourage more research into legality as the first three are not exhaustive
and one needs to account for more valid sequential productions that are legal across languages. As an
example, the C+V+C+ sequence occurs in string (English) and stree (Hindi). On calculating the
errors for Soodkosh, we get a 0.68 error ratio. While for English the errors were higher (0.99) where
almost all the words broke this new proposed rule.

Table 3.1 (adapted from reported scores by [1]) compares Soodkosh (the 90 Hindi pseudowords
we generate) and PseudRNN generated English pseudowords (section 2.5.2.2) against various English
pseudoword sources. Note that PseudRNN generated (Soodkosh/English) pseudowords’ legality was
rated by an automated script (available on the repository) by us, following the definitions in [1].

To assess the suitability, [1] defines (first 4):

1. 1-C: “One-character dissimilarity”, count of pseudowords that are one character away from a
word in the lexicon.

2. npoly: “n-polymorphic”, number of pseudowords formed from a non-existent root but a real
affix.

3. poly: “polymorphic”, number of pseudowords formed from a real root & a real affix.

4. comp: “compound”, number of pseudowords formed by two words in the lexicon.

5. half-real: “half-real”, number of pseudowords formed from a real and a non-existent root/af-
fix.

For more details on the first four suitability metrics, please refer to [1]. Similar to legality, the
comparison for suitability can be found at Table 3.1)2

Similar to our C+V+C+ proposal, we propose half-real as we found that Soodkosh has 12% of
these while PseudRNN generated English pseudowords had about 21%. We encourage future work to
come up with more lexical metrics similar to these (section 3.4 follows for more motivation from the
observations from generated pseudowords).

In conclusion, we observe that these metrics can be expanded upon and are not a judge of a pseu-
doword’s quality but some features. WE see that one can employ experts to determine on the basis
of morphology and semantics, how suitable a pseudoword is and how PseudRNN generated English
pseudowords are more suitable in certain tasks and the Hindi productions were comparable to other
English methods. We also find that the English productions don’t seem legal, while they are generated
from the same pipeline as the one that generated the comparabale Hindi pseudowords. These English

22 independent Hindi native speakers rated, following [1]. Inter-rater agreement was above 90% (Cohen’s kappa >0.8) in
most cases, except for comp. In case of dispute, a third expert was asked to choose. For English PseudRNN results, most
agreements like between Cohen’s kappa 60% and 75% except for 1-Character dissimilarity which is 29%
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pseudowords were also found suitable in various cases by annotators which is only possible if they were
legal (A more detailed discussion can be found at Section 3.4.1.2). Thus we propose a set of metrics
to directly evaluate a pseudoword’s quality in terms of how wordlike it is and describe how to gather &
interpret them (Section 3.3).

3.3 Pseudoword Acceptability Metrics

3.3.1 Introduction

Acceptability judgments have been a way to evaluate novel word forms (pseudowords here) based
on well-formedness constraints or the implicit phonotactic grammar (unlike school-taught syntactic
grammar) of a native speaker, in formal linguistic research [39]. Additionally, [35] reports that in the
past fifty years, numerous studies suggest that phonotactic knowledge is gradient and that the effects
of the factors from this grammar cannot be reduced to lexical statistics. We thus propose to find out
Pseudoword Acceptability (on the basis of gradient acceptability) as a metric to check how wordlike a
pseudoword presented to a native speaker is and as a result a way to evaluate pseudoword generation
methods as well.

However, as [37] mentions, an important check of phonotactic modelling is human judgement, al-
though not the only one as we still need finer ways [40] . Thus, after proposing the design and evaluation
strategies on this metric, we expand it to other proposed metrics like suitability, legality (as seen above),
and against basic psycholinguistic features. Detailed below is the experiment design to collect gradient
acceptability judgements for pseudowords (in Hindi).

In a nutshell, we present a behavioral experiment design that gathers the Wordlikeness ratings and
related dependent variables (Familiarity ratings, and response times for both ratings) forming a set of
4 metrics composing the Pseudoword Acceptability Metrics that we propose, in a language agnostic
fashion (with Hindi as a low-resource example to begin with). A major change from the work before
(like [37] or [16]) is the fact that we include non-words as a part of the experiment to establish a
baseline, and re-purpose the aim of the experiment to judge how close a generated candidate is to a
word, simultaneously how far it is from a non-word rating, and how to compare & gauge these in a
standard manner so that other evaluation studies can replicate this and poke into the generation quality
better.

3.3.2 Experiment Setup

The experiment was designed in Neuropsydia [41] and requires participants to rate stimuli for their
familiarity and wordlikeness on a 7-point scale. After obtaining detailed consent (Section B.1 at Ap-
pendix B) and demographic details like age, gender, and language proficiency in Hindi, the participants
were instructed on how to navigate the experiment and rate stimuli, by trying out a warm-up exper-
iment. The main experiment followed next. These experiments were conducted on a CRT monitor
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(1024x768 resolution), at a refresh rate of 100Hz, and the participants sat 60cm from the monitor in a
dimly lit experiment room. Note that we had conducted a pilot experiment with lesser pseudowords,
participants, smaller time constraints per stimuli, familiarity scale placed after wordlikeness scale, and
different wordings for scales and instructions like “Is a Word? and Is not a Word”. This informed us on
a lot of decisions that follow in the below section.

3.3.3 Participant Demographics

The experiment was attempted by 44 native Hindi-speaking undergraduate students. (We required
a minimum of 30 participants to obtain at least 4 ratings per pseudoword, but recorded more as they
turned out to be accessible.) The participants included 14 female and 30 male participants, in the age
range of 18 - 24 years (M = 20.205, SD = 1.440). Participants’ self-rated proficiency in various tasks
with Hindi was obtained on a 5-point Likert scale and was found to be as follows: for reading (M =
4.091, SD = 0.984), for writing (M = 3.727, SD = 1.065), for speaking (M = 4.386, SD = 0.689), and
for understanding (M = 4.500, SD = 0.699).

Participants’ self-rated language use in formal and informal settings was also obtained. The questions
for this were adapted from the Language Use Questionnaire by [42]. The results for some of these were
found to be as follows: for retelling a sequence of events or reciting a story (M = 4.705, SD = 0.594),
while talking to friends and neighbours (M = 4.727, SD = 0.499), and while watching reels, series, or
movies (M = 4.659, SD = 0.645). The questionnaire (Section B.3) and the detailed statistics for all the
questions (Section B.2) can be viewed at Appendix B.

3.3.4 Design Choices

Before we detail the warm-up and the main experiment, we explain why and how we use certain
elements of the experiment for easy replicability and change if required:

3.3.4.1 Rating Scales

We use a 7-point scale to record the metric as used by ([37], [16], [15] and many others) as they
found that native speakers’ judgements are not binary for pseudowords.

3.3.4.2 Response Times (RT)

We record RTs as we found that [43] recorded a strong effect of it in a phonotactic understanding
experiment, while recently [44] studied Italian (a shallow orthography language) which (in contrast to
English & French) showed that Pseudoword Superiority Effect was significant for RTs.
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3.3.4.3 Familiarity measure

While [45] argues for the importance of recording this, a pilot also showed that its clearer to par-
ticipants that the Wordlikeness scale does not require them to report their Familiarity with a stimulus
exclusively when presented as a separate scale first.

3.3.4.4 Wording & Instructions

From our pilot, participants remarked that wording the Wordlikeness scale from “Is not a word”
to “Is a word” is harsh. Thus for this experiment, we used “Cannot be a word” and “Could be a
word”, for the extremes (1 & 7, respectively). While instructing, we followed [37] and [46] by telling
participants that they need to think ‘How good would . . . be as a Hindi word?’ and rating 1 would mean
that the stimulus is ‘so strange that it is unlikely for . . . to be used as a new Hindi word’ while 7 would
be ‘so Hindi-like that it would be easy to imagine . . . as a neologism.’. Additionally, our pilot revealed
that since Hindi (like English) has a collection of modern loanwords, it was advised to the participants
to not judge the stimuli’s Hindi wordlikeness negatively based on their presence in another language.

3.3.4.5 Stimuli Presentation

We present the stimuli (including pseudowords) to the participants in their orthographical form (and
not audio samples) following [16]. They explain that this is because pseudowords could be misheard
(consistent with [15]) and because alphabetic scripts like Devanagari can be used phonetically as well.

3.3.5 Warmup Experiment

A pre-cursor to the main experiment was a warm-up test consisting of 5 randomised word stimuli.
Our pilot showed us that participant ratings for the first few stimuli would take more time and sometimes
the experiment had to be restarted in case the participant was confused. Thus this warmup experiment
is meant as a single solution to help participants be acquainted with the experiment setting and for the
experimenter to explain some aspects of the experiment too.

The 5 stimuli consisted of random code-mixed, and/or low frequency words of the language. This
was done to make sure that before rating the actual stimuli, participants could better understand that un-
familiar words (low-frequency stimuli) can be marked as low on the Familiarity scale and not necessarily
on the Wordlikeness scale as it was revealed to them that the warm-up stimuli were all real Hindi words,
setting the ideal wordlikeness score to 7. Similarly, possible loanwords/codemixed (or loanword-like)
stimuli could be judged for their target-language-likeness independent of the source language.
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3.3.6 Main Experiment

To evaluate the gradient acceptability of the pseudowords generated & the quality of a pseudoword
generator, we can test the Alternative hypothesis that from a given set of words, generated pseudowords,
and nonwords, a generation model produces good pseudowords if the native speakers judge the pseu-
dowords as a category which is distinct from nonwords and closer to the words in terms of acceptability
of their wordlikeness. (The Null Hypothesis to reject would be that from a given set of words, generated
pseudowords, and nonwords, a generation model produces bad pseudowords if the native speakers judge
the pseudowords as a category which is not distinct from nonwords and is either closer to the nonwords
in terms of acceptability of their wordlikeness or the rated the same as them.)

Thus in a pseudo-randomised manner and balanced for length for all 3 categories, it presents the
participant with a set of 12 words from the Shabd corpus [47] in the case of Hindi (additionally balanced
for frequency), 12 handmade nonwords (by ensuring that they break a Hindi phonotactic constraint), and
12 pseudowords generated from the PseudRNN model above.

It took an average of 5 mins for the 44 participants to complete the main experiment, 10 mins overall:

1. consent & demographics section - 3 mins

2. warmup section + instructions - 2 mins

3. main experiment - 5 mins

Each stimulus was presented with the Familiarity scale and the Wordlikeness scale (previewed at
Figure 3.1) closely following it for 5 secs each. In the case that a participant couldn’t rate the stimuli in
the given time period, we stored a default -1. Any two stimuli presented were distanced by a 1-sec gap.

We thus collected 44 ratings for all word and nonword stimuli for both the scales and at least 4
(in some cases 5) ratings for the 90 pseudoword candidates (as only 12 pseudowords were rated by
each participant.)3 We record and study 4 variables per stimuli, the Wordlikeness (or Wordlikeness
Rating - WR) to gauge the gradient acceptability, Familiriaty Rating (FR) to make Wordlikeness Rating
distant to the idea of Familiarity and to additionally understand how much a participant could confuse a
given pseudoword with another familiar word, Time taken to gauge wordlikeness (WT) which is used as
support to show that Pseudowords should be distinct from Non-words (as they are probably more easily
identified as a non wordlike form because they break rules) and not necessarily follow Words (as they
are known word forms)4, and Time taken to gauge Familiarity (FT) as another support to the hypothesis
& if clinicians need that information to conduct quick/difficult tests.

3Note: For each run a handmade script (available at the repository) picks the 12 pseudowords which have been rated the
least times so far in the experiment.

4Results show interesting observations on how Pseudowords were more readily recognised as wordlike than low-frequency
words in Hindi
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3.3.7 Results required to evaluate model quality

To evaluate the hypothesis mentioned in section 3.3.6, we conduct ANOVAs on the Pseudoword
Acceptability Metrics (4 ANOVAs, one for each metric) and pair-wise post-hoc tests to check the effect
of the Broad Stimuli Type (Words, Pseudowords, and Nonwords) and Length (Short or Long, about
6 on transcribed length was the cutoff) on these metrics (Section 3.3.7.1). We then follow up on this
analysis by doing separate ANOVAs on high-frequency, low-frequency, and pseudoword categories
(Narrow Stimuli Type, here frequency is obtained from [47] and the extremes are used as high and low
frequency stimuli) to see if there is a consistent trend outside of the more obvious non-words and if the
quality of generated pseudowords is on an acceptable gradient (Section 3.3.7.2). Note that N=44 (no.
of participants) for all the category-wise means used in the analyses, there is a tight significance level
requirement of 0.001, and all the visualisations and tables are generated by JASP [48].5

len str type WRMean (SD) WTMean (SD) FRMean (SD) FTMean (SD)

short

word 6.288 (0.485) 1342.15 (506.241) 5.664 (0.573) 2853.16 (771.437)

pseudoword 5.095 (0.965) 1803.51 (757.25) 3.019 (0.991) 4090.2 (1010.76)

nonword 2.848 (1.09) 1784.2 (756.911) 1.949 (0.83) 3828.93 (1038.05)

long

word 6.424 (0.548) 1208.03 (486.716) 5.872 (0.721) 3079.74 (811.506)

pseudoword 5.227 (0.933) 1857.16 (700.49) 3.113 (1.186) 4699.75 (912.43)

nonword 3.433 (1.333) 2390.98 (911.8) 2.18 (1.006) 5267.6 (1323.15)

Table 3.2: Descriptive analysis/overview of results Means and Standard Deviations (SD) for Wordlike-

ness Rating (WR), Wordlikeness Response Time (WT), Familiarity Rating (FR), Familiarity Response

Time (FT) across Length (len) (short or long) and Broad Stimuli Types (str type: Words, Pseu-

dowords, and Nonwords)

3.3.7.1 Effects of Stimuli type and Length on Pseudoword Acceptability Metrics

With a quick glance at the descriptive analysis (Table 3.2 & Figure 3.2) we can see that the Wordlike-
ness ratings (WR) for Pseudowords (pseudo) closely follow Words’ (word), and are distanced from
Nonwords’ (non). Familiarity ratings (FR) follow the same trend. Finally, note that Wordlikeness Re-
sponse Time (WT) & Familliarity Response Time (FT) maxes out on long types, especially nonwords
(non), followed by pseudowords (pseudo), and then words (word).

A two-way ANOVA (Table 3.3) was performed to analyze the effect of Length (len: short or long)
and Broad Stimuli Types (str type: Word, Pseudoword, Nonword) on Wordlikeness Rating. Simple

5In this section, we present the results and they are also to be read as instructions on how to evaluate a pseudoword set
generated and passed through the behvioral experiment as described above.
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(a) WR (b) WT (c) FR (d) FT

Figure 3.2: Wordlikeness Rating WR, Wordlikeness Response time WT, Familiarity Rating FR, and Fa-

miliarity Response Time FT descriptive analysis, presented visually. (Note: nodes = Means, error bars

= Standard Errors.

Cases Sum of Squares df Mean Square F p η2

len 5.346 1 5.346 6.019 0.015 0.008

str type 464.819 2 232.41 261.672 .001 0.663

len*str type 2.975 2 1.488 1.684 0.188 0.004

Residuals 230.924 260 0.888

Table 3.3: Two-way ANOVA results for Wordlikeness Rating WR as the Dependent Variable and Broad

Stimuli Types (str type: Words, Pseudowords, and Nonwords) & Length (len: short or long) as

Independent Variables.

main effects analysis shows that length (len: short or long) did not have a statistically significant effect
(p = 0.015), while Broad Stimuli Types (str type: Words, Pseudowords, and Nonwords) did have a
statistically significant effect on Wordlikeness Rating (p <0.001).

Similarly, the two-way ANOVAs for Wordlikeness Response Time (plen = 0.048, pstr type <0.001) and
Familiarity Rating (plen = 0.112, pstr type <0.001) follow Wordlikeness Rating, where only Broad Stim-
uli Types (str type: Word, Pseudoword, Nonword) had a statistically significant effect. However,
Familiarity Response Time (FT) (plen <0.001 and pstr type <0.001) shows that both Length (len: short
or long) and Broad Stimuli Types (str type: Words, Pseudowords, and Nonwords) had a statistically
significant effect.

Table 3.4 shows Post hoc comparison results of Broad Stimuli Types (str type: Words, Pseu-
dowords, and Nonwords) (averaged over levels of length (len: short or long) and the p-value ad-
justed to compare a family of 3) using Tukey HSD (and cross-checked with Bonferroni) test indicated
that the Broad Stimuli Types (str type: Words, Pseudowords, and Nonwords) are pair-wise signifi-
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Avg Diff t p Cohen’s d

pseudo-word -1.2 -8.4 <0.001 -1.27***

non-pseudo -2.0 -14.2 <0.001 -2.14***

non-word -3.2 -22.6 <0.001 -3.41***

Table 3.4: Post Hoc of Broad Stimuli Types’ (str type: Words (word), Pseudowords (pseudo),

and Nonwords (non)) effects on Wordlikeness Rating WR

Avg Diff t p Cohen’s d

non-pseudo -1.0 -7.3 <0.001 -1.11***

pseudo-word -2.7 -19.8 <0.001 -2.99***

non-word -3.7 -27.18 <0.001 -4.09***

Table 3.5: Post Hoc of Broad Stimuli Types’ (str type: Words (word), Pseudowords (pseudo),

and Nonwords (non)) effects on Familiarity Rating FR

cantly different from each other (in addition to the ANOVA across the 3 categories). The pseudowords
(pseudo) - words (word) pair has a lower effect size (Cohen’s d) than the nonwords (non) - pseu-
dowords (pseudo) pair, indicating that the pseudowords (pseudo) is closer to words (word) than
nonwords (non). The same is observed across Post hoc comparisons for Wordlikeness Response Time
and Familiarity Rating (Table 3.5).

Post hoc comparisons of Length (len: short or long) (averaged over Broad Stimuli Types (str type:
Words, Pseudowords, and Nonwords)) indicated that the mean time taken for long strings for Familiarity
Response Time was significantly different from the short ones (p<0.001). For Wordlikeness Rating and
Wordlikeness Response Time, they were not very significantly different (p=0.015 and p=0.048 respec-
tively) and it wasn’t significant for Familiarity Rating at all (p=0.196).

Pearson Shapiro-Wilk

WR-WT -0.243*** 0.921***

WR-FR 0.787*** 0.949***

WT-FT 0.634*** 0.98***

Table 3.6: Pearson’s correlations (for Broad Stimuli Types (str type: Words, Pseudowords, and

Nonwords)) for various pairs among Wordlikeness Rating (WR), Familiarity Rating (FR), Wordlikeness

Response Time (WT), and Familiarity Response Time (FT).
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(a) WR-FR (b) WT-FT

Figure 3.3: Correlation Plots between Ratings (Wordlikeness (WR) & Familiarity (FR)) and Response

Times (Wordlikeness (WT) & Familiarity (FT))

Correlations: As shown in the Table 3.6 & Figure 3.3, a Pearson correlation coefficient was com-
puted to assess the linear relationship between the ratings of Wordlikeness and Familiarity. There was a
significantly positive correlation between the two variables. We can see this between the response times
as well, and between Wordlikeness Rating & Reaction Times (although a negative correlation).

Cases Sum of Squares df Mean Square F p η2

str type 2 194.755 2 97.378 195.819 .001 0.752

Residuals 64.15 129 0.497

Table 3.7: One-way ANOVA results for Wordlikeness Rating WR as the Dependent Variable and Narrow

Stimuli Types (str type 2: High Frequency Words, Pseudowords, and Low Frequency Words) as the

Independent Variable.

3.3.7.2 Impact of frequency on Pseudoword Acceptability Metrics

In addition to the results above, we also check if the quality of pseudowords (pseudo) compares
against high-frequency (high) and low-frequency (low) words. A one-way ANOVA was performed to
compare the effect of these categories (Narrow Stimuli Types (str type 2: High Frequency Words,
Pseudowords, and Low Frequency Words)) on Wordlikeness Rating (Table 3.7). It revealed that there
was a statistically significant difference in mean Wordlikeness Rating between the 3 categories (F(2) =
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Avg Diff t p Cohen’s d

high-low 2.95 19.6 <0.001 4.2***

high-pseudo 1.8 12.0 <0.001 2.6***

low-pseudo -1.15 -7.7 <0.001 -1.6***

Table 3.8: Post Hoc of Narrow Stimuli Types (str type 2: High Frequency Words (high), Pseu-

dowords (pseudo), and Low Frequency Words (low)) effects on Wordlikeness Rating WR

(a) FR (b) FT

Figure 3.4: Descriptive Plots for Narrow Stimuli Types (str type 2: High Frequency Words (high),

Pseudowords (pseudo), and Low Frequency Words (low)) against Familiarity Rating (FR) & Fa-

miliarity Response Time (FT). Note that the X-axis label on the graphs imply high freq. word -

low freq. word - pseudoword comparison.
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[195.8], p <0.001). Post hoc tests (which are significant pairwise) show that pseudowords (pseudo)
is closer to high than low as shown by Cohen’s d values (Table 3.8) which are bigger between high
and low as compared to high and pseudowords (pseudo). Familiarity Rating (Figure 3.4a) and
Wordlikeness Response Time follow the same. However, Familiarity Response Time (Figure 3.4b)
shows that high is marginally closer to low than to pseudowords (pseudo).

To summarise, we looked at the various components of Pseudoword Acceptability Metrics, under-
standing the differences between the Broad Stimuli Types (& checking for the impact of length, if any),
and then looking deeper into the same but for frequent words, rare words, and pseudowords.

3.4 Interpretation of results & Model quality evaluation

3.4.1 Interpreting quantitative metrics

3.4.1.1 Pseudoword Acceptability

ANOVA on Broad Stimuli Types (str type: Words, Pseudowords, and NonWords) (Table 3.3)
and the post hoc analyses (Table 3.4) show that Hindi pseudowords generated by PseudRNN have
been rated closer to words than nonwords (on Wordlikeness Rating scale) even though the partici-
pants find nonwords & pseudowords less familiar than words (Table 3.5). Interestingly, participants
also found pseudowords to be more acceptable as a word than low-frequency words (see analyses in
section 3.3.7.2). Thus we see that pseudowords are on a gradient between both nonword-word &
high frequency - low frequence extremes (Figure 3.2a & Figure 3.4a respectively). Thus the Pseu-
doword Accpetability Metrics tell us that the model generated pseudowords are thought to be wordlike
and familiar by the participants, readily (in terms of response times). The Null hypothesis is also dis-
proven by obsering that the pseudwords do not lie closer to non-words than the words.

To support the fact that the experiment design and the stimuli set were suitable for this task, the cor-
relation between the Wordlikeness and Familiarity ratings (WR-FR at Figure 3.6) is high at the extremes,
implying that participants were sure that words are extremely wordlike and familiar, which non-words
are neither. Through these matching results on expected and known stimuli (words and non-words) we
can rely on the experiment design while also expecting a similar distribution from any other runs of the
experiment, regardless of language.

Finally, like [49], we also find that the time taken to decide the acceptability of stimuli as word
(WT) was consistently the shortest for actual words and that the participants took more time deciding on
pseudowords, while long nonwords took the most time (Familiarity Response Time confirmed the same
trend). This is probably due to multiple phonotactic rules broken over the length. Interesting statistic
supporting this result is the distance of the closest word in the lexicon and Familiarity Reaction Time
which was a significant correlation (p <0.001).
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3.4.1.2 Existing metrics

Comparing Soodkosh to existing metrics shows that Hindi pseudowords are also found to be fairly
legal. Since there are very few polymorphic tokens (poly), the model might not be suitable for some
tasks. On the other hand, these comparisons are crosslingual and analyses might not be well-founded.
As an example: The average Wordlikeness Rating (WRmean) for pseudowords (pseudo) with C+ errors
in Soodkosh is 5.6, for V+ it is 5.7, and for CV+C it is 5.12. Showing that the participants accept the
wordlikeness of suspect pseudowords too.

Since the work on legality & suitability is proposed as language agnostic, we did initial analyses only
on Hindi. We then ran an English lexicon through the pipeline to generate comparable results. We found
that (ref Table 3.1) PseudRNN generated English pseudoword candidates were considered not legal in
comparison to other methods, they were much more suitable than most other methods in the categories
of 1-C, comp, poly, and npoly. This result is probably due to the fact that the algorithm to judge
legality works orthographically. We know that phonemes of a langauge are organised in hierarchies and
there are sisters which majorly work with the same sequence constraints (this fact also is exploited by
a generative phonology modelling work [23]). Thus a modified version of the algorithm could be to
find illegal sequences based on sister phonemes too e.g. if “rm” is legal and “lm” is not, then consider
“kalma” as a legal pseudoword, as “r” & “l” are both liquids.

Thus with a modified version (and with appending more metrics of the same family like half-real
and C+V+C+) of the existing metrics of the legality & suitability domains, one could gather more in-
formation on pseudowords & compare them against other methods possibly. These metrics are also
eventually useful as features, as an example: clinicians might want to use pseudowords with more ille-
gal sequences to make an easy set.

3.4.2 Interpreting qualitatively

After matching expectations from research & intuition of the Pseudoword Acceptability Metrics
gathered from the experiment, and comparing our generated pseudowords against other methods, we
now present some qualitative observations to understand how one could look at the results to find out
more.

Starting with Soodkosh (Hindi) we found that our ratings were distributed all the way from a per-
fect 7 (word) to 3 (just above nonword). To understand the perception of participants, we looked at
pseudowords rated highly, mediocre, and low separately. Some common observations (as displayed in
Figure 3.5) were that:

1. Highly rated Hindi Pseudowords: apart from some Pseudowords which were orthographically &
morphologically too complex to breakdown, we observed that a lot of the pseudowords looked
like a misspelling/possibly alternate spelling of actual words (as an example, the first two words
in the figure).
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Figure 3.5: Some examples from Soodkosh for qualitative analysis

2. Mediocre rated Hindi Pseudowords: a lot of the pseudowords around this range (3rd & 4th strings
in the figure) contained an existing & semantically meaningful (not only grammatical) suffixes.

3. Low rated Hindi Pseudowords: A lot of these were visibly an incorrect/implausible variation of a
popular word. Unlike high rated pseudowords, these cannot be a spelling mistake.

Thus the pseudowords generated were interpreted and rated possibly on a variety of ways, includ-
ing orthographical typos (high), morphological possibility because of meaningful suffixes (mid), and
implausible forms of popular words (low).

On the other hand, annotators for English pseudowords generated by PseudRNN were unsure on how
to adapt to the suitability metric in case of pseudoword candidates like: macelousness & reformentness
where there were multiple fake and real affixes with a fake root. This is as the suitability metric restricts
the analysis to only one of each (root or affix) possibly because of how the paper proposing it only went
upto 8 length n-grams. Secondly, as instructed by the paper, we included only a, e, i, o, and u as vowels
but there were situations were semivowel consonants functioned as vowels and were not counted to
calculate the errors/were the cause of more errors as they were treated as improbable Consonant clusters.

3.4.3 Conclusion

Through these analyses we find PseudRNN’s generation of Hindi pseudowords is acceptable and that
the pipeline & evaluation strategy of collecting gradient acceptability of wordlikeness, judging legality,
and suitability can be used to build models/datasets for high-quality pseudowords. We also compared
the model to other methods by processing an English lexicon through the same pipeline, presented
observations, and explained them.

Between the analysis of wordlikeness ratings & legality errors (section 3.4.1.2 and that of familiarity
response times against orthographical distance of the closest word in lexicon (section 3.4.1.1), we see
that the ratings by participants for Hindi pseudowords are not directly explained by the existing metrics
but a more by a combinaiton of multiple features, justifying the need for more metrics that can bring out
features that are included in the perception of a native speaker while judging these novel forms.

The study was done on Hindi but can be possibly expanded to other languages as it abstracts away
language-specific requirements in both generation (LSTM trained on phonemic transcriptions) & eval-
uation (wordlikeness gradient acceptability test requiring an experiment setup with words, nonwords,
and candidate pseudowords from the language).
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3.5 Soodkosh

Finally, we present Soodkosh, a dataset of 90 Hindi pseudowords generated by PseudRNN with its
features (Table 3.9). It incorporates:

1. the Means of each Pseudoword Acceptability Metric for use in lexical decision tasks like selecting
a relevant pseudoword according to its wordlikeness a.k.a. difficulty in distinguishing it from a
word.

2. features from [1] to gauge if a word is orthographically legal & morpho-lexically suitable for a
task e.g. on an L2 language learning test set on affixes.

3. distance from the closest word in Hindi Wiktionary (both IPA-wise & Orthographically), as used
by phonology modeling & probing studies.

4. count of Syllables & Phonemes.

5. features adapted from the Shabd corpus [47]: Matras (count of vowel ligatures), Aksharas (count
of consonant ligatures), and Orthographic Length (aggregate of Matras & Aksharas) are specific
to Hindi psycholinguistic studies

Table 3.10 also lists out the features for PseudRNN generated English pseudowords.

3.6 Future Work

As stated before, Pseudowords can be evaluated on more metrics like: their phonotactic probability,
closest word’s lexical frequency etc ([14] and [50]). Gorman [40] argues that wordlikeness judgements
are not necessarily representative of wellformedness, thus it would be interesting to innovate language-
agnostic measures that can also approximate a target language’s phonology in terms of wellformedness,
this is supported by the fact that the generated English pseudowords by PseudRNN were not legal
according to existing metrics but this is probably because of the fact that the meager 3-4 metrics of
legality are not enough to judge well-formedness.

The other improvement could be done on automating the entire process & removing the need of
annotators to convert IPA sequences to Orthographical ones. That could be done by algorithms which
look at the IPA sequences in a candidate pseudowords and find the highest probable orthographical
sequence that could replace it. If the sequence in novel, the algorithm could also search by replacing
some phonemes in the sequence with sister alternatives.

3.7 Limitations

Works like [49] use the phonotactic probability of constituents in a string to gauge wordlikeness.
This has been a key feature but can be only reliably calculated for large lexicons with a good balance
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Features Mean SD Range

WRmean 5.161 0.867 3.167 - 7.0

WTmean 1835 492.9 66.3 - 3603

FRmean 3.072 1.062 1.6 - 6.0

FTmean 4299 781.5 2732 - 6129

comp 0.022 0.148 binary

poly 0.056 0.230 binary

npoly 0.322 0.470 binary

1-C 0.267 0.445 binary

half 0.122 0.329 binary

C+ 0.044 0.207 binary

V+ 0.011 0.105 binary

CV+C 0.144 0.354 binary

C+V+C+ 0.678 0.470 binary

C+V+C+# 0.933 0.804 0 - 3

Dist-IPA 2.678 1.620 1 - 7

Dist-Dev 2.400 1.279 1 - 7

Orth-Len 6.667 2.380 2 - 13

Matras 1.922 1.114 0 - 5

Aksharas 3.822 1.255 2 - 7

Syllables 2.722 1.039 1 - 5

Phonemes 6.544 2.284 2 - 12

Table 3.9: Descriptive stats for Soodkosh – Hindi
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Features Mean SD Range

comp 0.115 0.322 binary

poly 0.167 0.375 binary

npoly 0.462 0.502 binary

1-C 0.308 0.465 binary

half 0.218 0.416 binary

C+ 0.769 0.424 binary

V+ 0.333 0.474 binary

CV+C 0.987 0.113 binary

C+V+C+ 0.987 0.113 binary

C+V+C+# 2.500 1.041 0 - 4

Dist-IPA 2.218 1.147 0 - 6

Dist-Orth 2.400 1.179 1 - 6

Orth-Len 9.115 2.444 4 - 15

Syllables 3.346 1.115 1 - 6

Table 3.10: Descriptive stats for English pseudowords generated by PseudRNN
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of quantities in varieties of such constituents. For low-resourced languages that fulfil their pseudoword
requirements in an ad-hoc fashion, such a feature could prove to be very helpful. However, there is no
research on utilizing low-resource lexicons in innovative ways to extrapolate such features, a limitation
of this work thus is that we could not build a pipeline which was more frugal than neural networks as it
was difficult to calculate these statistics reliably for languages like Hindi that we want to scale to.

The other limitation was the scale of experimentation and the quality of participants. We could only
collect about 4-5 annotations per pseudoword (total of 90) in a 15 min experiment. For a more concrete
rating that represents various dialects and styles of a language, we need a bigger scale of experimentation
with a more linguistically diverse native speaker base. It follows that this small-scaled experiment could
not gauge a person’s proficiency in the language outside of the self-report on various measures. Thus a
better way to vet a volunteer’s language expertise & nativeness would help.

Finally a related limitation to above was the access to English natives who are also IPA experts in
our study. Thus to gauge suitability, the pipeline would require such people to be accessible as a part of
the study in another language.
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Chapter 4

The Impactfluence of Pseudowords

4.1 Introduction

This chapter showcases the application and importance of pseudowords in fields outside of psy-
cholinguistics. There are two explorations detailed:

1. Use of pseudowords in studying Metacognition of Passwords: This work checks for the correla-
tion between the perceived memorability and the perceived security of a password. To be able to
establish a correlation, a gradience in stimuli was needed. As a result, this study uses the analy-
sis of Pseudowords based passwords as a crucial step after analysis of High frequency words &
Low frequency words and before implausible & unpronounceable passwords. It is also used in
important experiments in the work to support the main argument (as used at section 4.2.5).

2. Replacing pseudowords with ”Average” words for a standard NLP task in Aphasia: This study
explores Aphasic data classification by a standard language model. Since Aphasic data is incoher-
ent largely due to the presence of pseudowords like: neologisms, words with switched phonemes
etc., this study aims to understand the difference between classifying Aphasic data with and with-
out pseudowords. This is done by making a new ’pseudoword’ replaced dataset, where another
language model predicts the masked out-of-vocabulary item that is a pseudoword. Note that this
an ongoing study and the progress presented here is just a summary of preliminary research done
so far.

From the first study we can see how pseudowords are crucial in an experiment in the field of cyberse-
curity and psychology. On the other hand the second work shows that naturally occurring pseudowords
(in Aphasic speech) are irreplaceable and might also be informing a language modelling system to some
extent. They thus need to be studied more carefully and exhaustively. We need to find more about their
linguistic properties and how to process these wordlike tokens that do not have a semantic representa-
tion, while utilising their benefits of being phonologically well-formed.
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4.2 Is convenient secure? Exploring the impact of metacognitive beliefs

in password selection

4.2.1 Overview

Recently, there has been research on what factors influence a user’s password setting practices, which
include various types of emotions such as anger, risk-taking tendencies, etc. However, research has
shown that factors such as memorability and perceived memorability have a greater influence on pass-
word choice. Some recent research has shown a negative correlation between the perceived memorabil-
ity and the perceived security of passwords, particularly passphrases (that are technically more secure).
However, it is unclear whether this effect can be extended to groups with good experiences with digital
spaces (IT professionals, entrepreneurs, etc.). Furthermore, it has not been determined whether random,
uncommonly-worded, or complex structure passphrases would also maintain the correlation, as opposed
to relatively less secure, common/simple passphrases. This study examines this problem using a diverse
demographic and different categories of passphrases.

4.2.2 Introduction

Password strength is critical for healthy digital interaction, especially in recent years, with growing
trends in the use of applications, digital devices, and other highly secure digital interfaces. It is becom-
ing increasingly important to understand user’s views on password setting practices. Nordpass (2020)
reported that last year 2,543,285 people set their passwords to 123456. This is a vulnerable password
to choose, even though previous studies have shown that users know about standard safe password set-
ting practices like using different types of characters, not using personal information, dictionary words,
common combinations, etc. (Woods & Siponen, 2019).

This is not just limited to passwords, there is also a particular interest in passphrases. Recent studies
have specifically found that the best way to create strong and memorable passwords is to use four or
more words [51], which implies that passphrases and their memorability is proving to be an increasingly
important area.

There are numerous situational, theoretical, judgement-based factors found behind the unsafe pass-
word setting behaviour over the years. An interesting method is to link metacognitive theories to explain
the same. Metacognition is thinking about thinking itself. The two major processes of “monitor” and
“control” [52], were interpreted in this context as “Users monitor passwords and decide on their secu-
rity”. This in turn “controls their decision” on whether to use the password in a particular environment.

This interpretation was tested by [53], which builds on research showing that memorability and
security have a negative correlation, and the study examines whether perceived memorability (PM) has
a similar correlation with perceived security (PS), i.e. do users believe “an easy to remember password
is not secure”?
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The study surveyed 40 Portuguese university students and found that the more heterogeneous a
password is, the more secure it is perceived (PS), and the less memorable (PM). For example passwords
with just lowercase characters (like jfhdnele) are less heterogeneous than passwords with a mix of
lower and uppercase characters, symbols, and numbers (like hR5@io88).

They also found that passphrases were not considered (like no longer freshman [53]) as the
most secure type of passwords. The authors concluded that the PS values for passphrases were ranked
lower than some other categories. This is because their PM values were higher than most categories
perceived as secure such as the category with a mix of lowercase, uppercase and numbers.

They concluded that PM & PS have a negative correlation and these results were reinforced by
analysing intention of use levels in a critical vs. a non-critical website scenario. However, upon closer
examination, we found that this study and other similar studies, did not focus on what could be these
other factors (that affect the PS of passphrases), the participants were not diverse in terms of experi-
ence, and the passphrases that were used were limited to meaningful/easy to remember sentences.

In this study, we address these issues and hypothesize that a diverse participant base will show
trends in the behaviour but also that it would generally be consistent. This is because even if a user
knows these factors, they would ultimately act on perceptions and not to facts. Second, since we study
passphrases; the order of the words, their commonality, etc. may also be responsible for how users
perceive their security. Therefore, we would not observe a strong negative correlation between PM
and PS across well-structured and simple passphrases and complex/uncommonly worded passphrases.
Finally, in order to understand the population that uses mobile devices frequently, we have also included
use cases such as non-critical mobile applications.

4.2.3 Method

This study was conducted in 2020 and therefore had to be conducted “completely online” (due to the
coronavirus pandemic). We selected Psytoolkit [54, 55] to script and float it to a diverse demographic of
participants for 20 days in November 2020. This section describes the demography, the resources used
for the survey, and the conduct of the survey.

4.2.3.1 Participants

We collected a total of 118 complete responses and after looking at our response times for the pilot
(N = 12), we found that the minimum time required to complete the survey was approximately 10
minutes. The 7 responses that took lesser time to finish and one response that indicated that the par-
ticipant was uncomfortable with English were not included in our analysis. Finally, we had a set of
110 responses to analyse (42 Females), from a broad age group (range: 14-72 years; M=29.74 years;
SD=13.3 years), a wide range of educational backgrounds, (12th grade or below: 6 (5.45%); college de-
gree (current/completed): 63 (57.27%) and Masters/PhD, etc: 41 (37.27%)) and a diverse professional
background (student: 55 (50.0%); unemployed: 4 (3.63%); retired: 6 (5.45%); employed: 45 (40.91%)).
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# Item Response

1 Approximately how many passwords do you use on a daily basis? M: 5.45 ; SD: 3.71

2 Frequently used passwords are easier to remember. 96.40% agree

3 An easy to remember password is a safe password. 36.94% agree

5 Using characters of different types in a password is safer than characters 81.98% agree

of the same category.

6 Have you been hacked before? 10.81% say yes

7 A shorter password is less secure than a longer one. 59.46% agree

8 A password based on personal information or dictionary entries is secure. 16.22% agree

10 A complicated/difficult to remember password is more secure. 83.78% agree

Table 4.1: Security Awareness section Responses

Since the survey material was exclusively in English, we asked the participants to report their knowl-
edge of English (basic: 6 (5.45%); Good: 14 (12.72%); Professional: 48 (43.63%); Fully-Professional:
25 (22.72%) and Native-Speaker: 17 (15.45%)).

4.2.3.2 Material

Materials used for the survey, how they were collected, etc. are described below.

• Passwords: For the experiment 45 passwords were used, which were divided into 9 categories,
with 5 passwords each. The 9 categories were: (LF): Low-Frequency Words (such as meteoric),
(HF): High-Frequency Words (such as children), (PD): Pseudowords (such as dwaughts),
(LC): Lowercase (such as mjzxxvyt), (+U): Lowercase + Uppercase (such as ShpzczSo),
(+N): Lowercase + Uppercase + Numbers (such as 47Qn3nUD), (+S): Lowercase + Upper-
case + Numbers + Special Characters (such as qy∼c)Aw4), (CP): Common Phrases (such as
the book is under the table), and (RP): Random/Complex Phrases (such as shake
medicine read floor).

– Categories 1 to 7 were all 8 characters long and the last two categories were 21-23 charac-
ters long with an average length of 22 characters. Methods of acquiring these passwords are
fully reproducible and randomized where they could be. All the following passwords and
passphrases were selected based on a normalised, averaged, and aggregated total of their
security ratings by multiple websites as referenced [56, 57].

– For Categories 1 and 2, we used the MRC Psycholinguistic Database (Wilson, 1988) with
filters on Brown Frequency, Kucera-Francis Frequency, and Thorndike-Lorge Frequency
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apart from length and then selected the results accordingly (for exact filtering methods, see
the linked shared folder: https://bit.ly/isconvenientsecure). Similarly, for
the 3rd category, we used the ARC Nonword Database [17].

– For categories 4 to 7, we used KeePassX 2.0.3 to generate passwords filtered by length,
entropy, etc. For Category 8, we used English learning websites such as EnglishSpeak
(EnglishSpeak, n.d.), to find introductory sentences in English and filtered them by length.

– Finally, for Category 9, we used passphrase generators (randomised) such as “Use a Passphrase”
[58], etc. and filtered some according to their length and whether they contained known but
rare words.

• IMS Section: Since the experiment was conducted online, the Immediate Mood Scaler (IMS)
[59] helped us determine the mental state of the participants and analyze whether they responded
in a stable mood. It was the standard 24-item inventory with a 1-7 scale for mood pairs such as
“depressed” or “happy”, etc. Some items were: distracted or focused, hopeless or hopeful, etc.

• Security Awareness Section: The main judgement tasks, were followed by a short questionnaire
consisting of 10 objective questions. 8 of which were a basic security health and awareness
assessment through questions such as “How often do you change your passwords?” and “Using
characters of different types in a password is more secure than characters in the same category.”
(Yes/No). These were selected on the basis of previous studies and from inventories used in
other password preference studies [60, 53, 61]. The other two were binary answer questions that
helped us understand whether particpants’ beliefs matched the judgements done in the previous
sections. The questions were “A complicated/difficult to remember password is more secure.”
(like Tr0ub4dor&3) and “An easy to remember password is a safe password.” (like correct
horse battery staple).

4.2.3.3 Procedure

We shared the link to the Psytoolkit form with willing participants who were informed that it took
about 30 minutes to complete. The form consisted of 6 parts, which were presented to them in the
following order:

• Consent & Demographics: In this part, the anonymity of the data and its use were clearly
explained. The participants were also informed that this should be done without interruption
except between some sections. We then asked for basic demographic details such as age, gender,
profession, fluency in English, etc.

• IMS: After filling in the demographic data, participants read a description of the IMS scale and
had to scale their emotions to the 24 items, according to their current behaviour.
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• Memorability Judgement: This section was the first of three sections which presented the 45
passwords for user judgement. We asked participants to rate each of these passwords on a scale
from 0 to 100% (less memorable to more memorable), by reflecting on the following prompt for
each password: “How likely are you to remember this password 2 days from now?”.

• Security Judgement: Security was the second judgement task. We asked the participants to rate
each of the 45 passwords on a scale from 1 to 6 (not secure to very secure) while thinking about
the prompt: “How secure is this password?”. The passwords were in the same order as in the last
section.

• Usability Judgement: The final judgement task was to select all possible use cases for the given
password. We listed 5 use cases for each of the 45 passwords and asked users to select all possible
cases in which the displayed password could be used. A sample prompt: For the password
“sample password”, select all scenarios you could use this for: (Please select all situations that
apply for the particular password. Do not select situations that do not apply for this password.)

– In an Important Online Service like banking online on SBI

– In a Casual Online Service like reading an article on Medium or some e-newsletter

– When registering is time-bound and you need to fill in a password quickly.

– Using Personal/Private Accounts on apps like Instagram or Facebook.

– Utility Apps/Gaming Apps like Calculator or Candy Crush, Temple Run, etc.

– None of the above.

• Security Awareness: As mentioned in the Materials section, participants were asked 10 objective
questions about their opinions and awareness of secure password setting practices. After complet-
ing this part of the survey, the participants were thanked for their participation and forwarded to
the Google homepage via Psytoolkit.

4.2.4 Results

For this section, Analyses of the variance (ANOVAs) were calculated across the seven measures
(PS, PM, and usability in 5 environments) for each of the 9 password types, Pairwise Student’s t-tests
between the values of the 7 metrics for each password type (total 63 comparisons) are mentioned,
indicating a trend. Pearson correlations are averages over the respective values retrieved from all 110
participants and the full record of the data as well as the statistics are available at: https://bit.
ly/isconvenientsecure.
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4.2.4.1 Perceived Memorability

An ANOVA (number of comparisons detailed above at section 4.2.4) showed significant differences,
F (8, 848) = 119.02, p < .001 (Figure 4.1). In decreasing order of PM ratings, HF and CP are ranked
first, followed by LF, RP, and PD. LC, +U, +N and +S ranked lowest. In our study, however, the
passphrases were additionally branched into CP and RP, revealing a significant difference between
them in terms of their PM (t = 12.17, p < .001).

4.2.4.2 Perceived Security

An ANOVA (number of comparisons detailed above at section 4.2.4) showed significant differences,
F (8, 848) = 96.89, p < .001 (Figure 4.1). The general order of PS within password types showed
the opposite trend compared to PM (except for CP and RP). In addition to previous studies, the highly
negative Pearson’s correlation r = −0.92 also supports this trend.

4.2.4.3 Usability in Specific Environments

• Critical Services (CritWeb): An ANOVA showed significant differences, F (8, 848) = 190.08,
p < .001 (Figure 4.2). Of the 10 top-rated passwords for critical services, 5 were “+S” and 4 were
“+N”. All of these passwords are character-level and not dictionary entries. In Figure 4.2 as we
move from top to bottom, we see a sharp rise in the “Intention of use” for Critical Services with
the addition of more character classes (+U, +N), peaking at +S. These ratings closely follow the
PS ratings, with a Pearson correlation of r = 0.93.

Figure 4.1: Mean ratings for PM and PS for each type of password. Key: (Blue: Perceived security,

Red: Perceived memorability)
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Table 4.2: question-4: “When do you normally change passwords?” Responses

Response % of participants

On forgetting 28.82%

As the service reminds 20.72%

Depends on the service 20.72%

Regularly (every month) 7.21%

Rarely (annually) 17.12%

Never 5.41%

• Non-Critical Services (NonCritWeb): Unlike in previous studies, the ANOVA showed signif-
icant differences in usability share even for non-critical services, F (8, 848) = 11.29, p < .001

(Figure 4.2). Of the 10 top-rated passwords, 4 were PD and 2 of HF.

• Time-Bound Services (Time): An ANOVA showed significant differences, F (8, 848) = 22.61,
p < .001 (Figure 4.2). Of the 10 top-rated passwords, 5 were LF and 4 HF. With a Pearson
correlation of r = 0.82, the usability ratings for time-bound services resemble non-critical services.

• Critical Apps (CritApp): An ANOVA showed significant differences, F (8, 848) = 15.35, p <

.001 (Figure 4.2).

• Non-Critical Apps (NonCritApp): An ANOVA showed significant differences, F (8, 848) =

16.32, p < .001 (Figure 4.2). With 4 PD and 3 HF among the 10 top-rated passwords, usability in
non-critical applications shows a very similar behaviour to non-critical and time-bound services
(Pearson’s correlation of r = 0.95 and r = 0.84 respectively).

Finally, The 10 top-rated passwords per usage environment did not consist of Common or Random
Passphrases.

4.2.4.4 Security Awareness

Tables 4.1, 4.2, and 4.3 (of the Security Awareness section) show that the majority of participants
were aware of common safe password setting practices and had not yet been hacked. Question 7 con-
firms that not everyone knows that length is important for a technically more secure password.

79.28% of the participants stated that they use between 0 and 10 passwords daily (question 1), 47.7%
rely exclusively on their memory to store the passwords (question 9), and 18.18% prefer to use the
‘forgot password’ option over memory. 50% of the participants who use 0-10 passwords daily change
passwords only when reminded of it by the service, and a further 23.86% rarely change their passwords.
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Table 4.3: question-9: “Check all options where you have passwords stored now:” Responses

Option % of participants

Sticky notes on digital devices 13.51%

Noting offline 23.42%

Password Manager 15.31%

Nowhere (rely on memory) 48.65%

Rely on OTP/Forgot Password 18.02%

Some other place 21.62%

4.2.4.5 Demographics

We decided to do a correlational analysis between Demographics & passwords’ Usability Environ-
ments, between Demographics & PM, and between Demographics & PS. We observed violation of
normality assumptions by using Shapiro-Wilk test for each of the (above mentioned) series (p-values
for all series were found to be less than 0.05). Thus we selected Spearman’s correlation coefficient to
study these correlations.

The participants were aged between 14 - 72, (M: 29.745 ; SD: 13.3). There were 42 women
(38.18%), 66 men (60%), and 2 preferred not to say. 6 participants were currently enrolled in a school
(5.45%), 63 in a college/university (57.27%), and 41 have graduated or are pursuing a higher degree
(37.27%). There were a total of 55 students (50%), 4 were unemployed currently (3.64%), 45 were
employed (40.91%), and 6 were retired (5.45%). Finally 6 participants reported Basic understanding
of English (5.45%), 14 reported Good (12.73%), 48 reported Professional (43.64%), 25 reported Fully
Professional (22.73%), and 17 reported themselves as Native Speakers (15.45%).

We also used some groupings of password categories for the results in this section (see Tables 4.4 &
4.4), they are as follows: ”words” includes High & Low Frequency words, ”heterogeneous” includes
Lowercase, Lower+ Uppercase, Lower+ Upper+ Numerals, and Lower+ Upper+ Numerals+ Special
Characters, ”common” includes High frequency words and Common Phrases, ”rare” includes Low
frequency words and Rare Phrases, and finally ”passwords” includes all categories except Common
and Random Phrases.

Similarly, some usability environments were also grouped: ”crit” includes Critical Apps and Ser-
vices, ”webapp” includes all (critical or not) Apps and Services, and ”app” includes Critical and Non-
Critical Apps.

The demographics (apart from age) were numericalised using the following mapping:

• English Proficiency (eng)- 1: No knowledge, 2: Basic, 3: Good, 4: Professional, 5: Fully Profes-
sional, and 6: Native Speaker.
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• Profession (occ)- 1: Student, 2: Unemployed, 3: Employed, and 4: Retired.

• Education (edu)- 1: No Schooling, 2: 12th Grade or below, 3: College Degree, and 4: Masters/-
Doctorate etc.

Figure 4.2: Mean ratings for Usability for each category. Key: (Red: Critical apps, Blue: Non-critical

app, Orange: Critical services, Green: Time-bound services & Purple: Non-critical services)
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Table 4.4: Spearman correlation between user-demographics and usability-(password-type) pairs

Demo-

graphic
Use Case(s)

Password

Type(s)

Spearman

Rho; p-value

webapp heterogeneous 0.2449 ; **

critapp common -0.3109 ; ***

eng critapp rare -0.2412 ; *

crit HF -0.3755 ; ***

crit LF -0.369 ; ***

app HF -0.2851 ; **

crit +S 0.2675 ; **

edu time passwords -0.2663 ; **

noncritapp common -0.2493 ; **

occ critapp heterogeneous -0.2693 ; **

webapp +U -0.2464 ; **

age critapp heterogeneous -0.2747 ; **

webapp +U -0.2807 ; **

Table 4.5: Spearman correlation between user-demographics and (PM-PS)-(password-type) pairs

Demo-

graphic
Rating Type

Password

Type(s)

Spearman

Rho; p-value

PM all 0.2774 ; **

eng PS words -0.2715 ; **

PS LF -0.2601 ; **

occ PM LF -0.2616 ; **

PM PD -0.3173 ; **

PM all -0.2635 ; **

age PM LF -0.2771 ; **

PM PD -0.3537 ; **
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Table 4.6: t-test value experiment

Password-Type Pair t-value (PM) t-value (PS)

PD and +S 10.1 ≈ 10.0 17.099

LC and +S 9.955 ≈ 10.0 20.74

CP and RP 12.17 4.638

HF and RP 14.45 40.034

4.2.5 Discussion

In this section we explain the results obtained and present our inferences.

4.2.5.1 Perceived Memorability & Security

The basic results for PM and PS are consistent with the previous studies. However, we saw that the
results from additional branching in the PM section underscored the need to consider different types of
passphrases based on their structure and vocabulary.

• Passphrase Experiment: In order to determine an expected variation in PS ratings, we found
pairs whose t-values (for PM) are close to the CP-RP pair (Table 4.6). These pairs were ordered
by PM. We observe that the PS are also in ascending order, except for the CP-RP pair. It shows
a much lower t-value for PS (t = 4.39, p < .001) compared to the t-values of the closest pairs
(t = 20.74, p < .001 and t = 40.03, p < .001 in order).

This suggests that PS is not influenced by PM only. Other factors also play a role, otherwise, we
would have seen a much larger variation between the PS ratings for CP and RP.

4.2.5.2 Usability in Specific Environments

We see that the Critical Services results show that PS is the major control variable for the usability
of a password in a ”critical service” and that the type of distribution in Non-Critical Services suggests
a shift towards the use of word-like passwords, suggesting that PM becomes the deciding factor as the
relative severity of the usage environment declines.

However as compared to Critical Services (not mobile applications), the usability distribution of
Critical Apps is much more distributed across the categories. Since the criticality of the environments
is equivalent, the preferred password-types are the same (means of distribution of the two distribu-
tions show negligible differences), but the difference in the environment (web services vs. mobile
applications) influences the general agreement on the preferred password-types (variance for critical-
applications is much higher).
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We can also see that results from Time-Bound Services and Non-Critical Apps suggest that partici-
pants in these use cases give a higher preference to retrievability than PS i.e. password types that have
significantly higher PM than those preferred for critical use.

Finally, Passphrases not being considered usable across different use cases can be explained by
observing that Common and Random passphrases fail due to their low PS ratings in use cases dominated
by high PS passwords.

4.2.5.3 Demographics

We discuss a few significant correlations (as obtained from Tables 4.4 & 4.5) between some demo-
graphics and use cases, PM or PS, below:

We can see that the participants who are more proficient in “English” (as self reported), also have
lower preference for meaningful words and phrases in critical scenarios. This is reinforced by the sim-
ilarly low preference of high frequency passwords in even non-critical applications and the preference
to use highly heterogeneous passwords (that don’t have a meaning), in critical environments. Education
levels give slightly ambiguous results where the participants show a low preference for generic password
types in a time constrained scenario, this might be because of how difficult it is to retrieve such a string
on a short notice. Finally, from Table 4.4 we can also see that “profession” and “age” show similar
results, an older participant shows higher correlation with “simpler” passwords in most scenarios.

Moving onto the correlations with PM and PS (Table 4.5), we see that reported-proficiency in “En-
glish” seems to correlate with higher memorability ratings, while security ratings follow the opposite
trend. This result seems to be aligned with the gradient of password types, ranging from heterogeneous
strings to meaningful words and phrases, which allows participants of different language proficiency
level to gauge the passwords accordingly. The “profession” and “age” demographics indicate an oppo-
site trend compared to English-proficiency. This may be supported by the fact that a younger and/or
working (not retired) participant will be both exposed to many password types, and would use more
passwords on a daily basis.

4.2.6 Conclusion

In short, our results show that the negative correlation between PS and PM in passwords is strong for
a large and varied demographic. Combined with previous studies, this also shows its true for different
languages, experiences, etc. This also correlates with password choice in a few different use cases,
e.g. Passphrases are not a popular choice for any use case, but the password @?kUGS8o was almost
unanimously the best choice for a critical website because of its heterogeneity, and that Pseudowords,
Low-frequency words, and High-frequency words were the most popular choices for use in Non-critical
websites, mobile applications, and in a time-bound scenario.

A majority of participants disagreed with question 3 “An easy to remember password is a safe pass-
word.” and agreed with question 10 “A difficult to remember password is a more secure password.”.
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This is consistent for the shorter passwords but not for the passphrase categories, as participants also
acknowledged that CP are more memorable than RP but ultimately rated CP and RP similarly in terms
of Security. From this, we conclude that we need to go beyond PM as the only influencing factor and
pay more attention to the factors that could make passphrases appear safer to users. As shown, it could
be due to “randomness” in the way the phrase was formed. This randomness in turn can be due to the
syntax (if the words strung together make grammatical sense) and semantics (if the words make sense
when they are put together in any order) of the passphrase.

Finally, the our results regarding passphrases show the need for such metacognition based studies on
th and informed that people regularly use passwords, forget them, and store them in places that are not
secure, etc. even after being aware of safe password setting practices.

4.2.7 Future Work and Limitations

Continuing the above section, we plan to expand this study in a more (psycho-)linguistic direction.
We see that passphrases are influenced by randomness in some domain, which is not heterogeneity of
characters but is more related to how the units of the phrase function with each other. There have been a
handful of studies linking passphrases to semantics like the one on semantic noise [62] or “guided word
choices” [63] and syntax like the one on entropy vs. syntax [64]. Even fewer study about the cognitive
aspects like the one done on augmented cognition and cognitive load [65]. However, there is no current
study on the association between these linguistic aspects of passphrases with metacognition/perceived
memorability/perceived security. We plan to improve the work in this study and find out if such associ-
ations exist and influence password choice. Furthermore, studies have been conducted to discover other
factors for passphrase utility, such as pronounceability [66] and whether multilingual passphrases can
be strong as well [67]. We intend to keep these options open to including in our next metacognition
experiments as mentioned above.

We also aim to find solutions to possible limitations. One of them was that the survey was conducted
with a majority of users who have learned English as a second language, however comfortable they
might have been. As the majority of the population did not consider passphrases to be useful, this study
was possible. However, a study that focuses exclusively on passphrases should be careful with this
problem. There is also the concern that the phrases used in the experiment could have a bias for some
participants as they might have heard it before/used frequently in some scenario, thus perceiving it as
more memorable vs. some user perceiving a common phrase as less memorable because the variant of
English they use in their regions and societies might use a synonym for the same. Thus future work
can include more randomness and a pilot to be sure that the phrases themselves are not biased to a
subset of participants and a check could be done to see if the participants have similar linguistic and
sociolinguistic backgrounds.

Finally, this experiment was based on Judgement as a major task to determine the correlation. A
Generation task can lead to different results. Taking into account strong concerns about privacy and
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limiting the user through nudges [68] there is the possibility of creating a completely different experi-
mental framework.

4.3 Can pseudoword replacement help an LM classify Aphasia?

4.3.1 Introduction

Aphasia is a neurological linguistic disorder, characterized by language impairments that affect gen-
erating & understanding, the structure or/and meaning of language [69]. Contemporary works in Apha-
sia related classification, specifically on the AphasiaBank [70] dataset (detailed in subsection 4.3.2.1),
predominantly apply statistical methods on raw as well as extracted features from text/ transcriptions.
The underlying task is often detecting aphasic text or its severity, using features like closed-class func-
tion words, revisions, and repetitions passed to statistical pipelines such as K-Means clustering followed
by classification or regression using Random Forest [71], or derivative features from ASR or clinical
models [72] employing multiple ML techniques. Research like [73, 74, 75] also aim to determine the
fluency of the text (binary or on a gradient) using features such as the WAB-R fluency scale, utterance
length, speech rate (words per minute), etc. Alternatively, some methods predict the severity of the text
using features extracted from key NLP discourse tasks [76], sentence predictability & flow. [69] encodes
sudden change in topics using BERT in addition to Bi-gram perplexity to better represent instances of
lapse in comprehension. While research like [77] offers a Python library to extract key CL inputs such as
phonological, lexicosemantic, morphosyntactic, discourse, and pragmatic features for further analyses
and research.

Since Aphasia type classification is a tricky task for language models and even BERT employing
work like [69] shy away from the direct unfiltered application of the dataset to extract features, we
wanted to find out what we could do, with out-of-vocabulary tokens (a lot of them phonologically well-
formed, as they are transcriptions of actual spoken forms) like pseudowords, to help this data be more
processable by LMs. We thus check if replacing pseudowords with “average word” predictions using
context by another LM could impact the results of classification.

4.3.2 Experimental setup

Following, we setup experiments where we perform classification on AphasiaBank data (prepro-
cessed as described in the next section) and also on a new, masked version of the dataset, where out-
of-vocabulary items/pseudowords (except interjections) were replaced by word predictions of another
language model (detailed in subsection 4.3.2.2).
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4.3.2.1 Dataset

The Aphasiabank data is a rich, manually encoded dataset of interactions with Aphasic patients,
where their utterances are transcribed in a uniform manner and are encoded with various psycholin-
guistic features [70]. Since it is an every growing, well-maintained, and the most widely-used English
Aphasia data for research, we use the same. The distribution of Aphasia types by speakers are as follows:

Figure 4.3: Distribution across classes by number of speakers

Since we want to run a simple classification, we make a simplifying assumption that each utterance
by a speaker is classifiable into their respective aphasia types. However, this is not a necessity, and
we also observe a huge amount of short well-formed replies like yeah, ok in the dataset, present across
classes. We treat it as noise and reserve carefully removing well-formed and non-aphasic utterances for
future work. Thus a sentence-wise distribution of the Aphasia types are as follows:

Figure 4.4: Distribution across classes by number of sentences

Finally, following [71], we only go with the 3 major and possibly easily differentiable classes
of Anomic, Broca and Wernicke. Following are the key distinguishing features, speaker-wise, and
sentence-wise distributions of the same:
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Class Features (consistent with AphasiaBank Transcripts)
Distribution

by Speakers by Sentences

Anomic Full of expressions of frustration like pauses, interjections etc. 195 20146

Broca Speakers try to lexicalise thoughts shown by mispronouncing or partially pronouncing the full word. 100 10580

Wernicke Majorly well-formed but is overall pretty difficult to follow in terms of meaning. 51 6988

Table 4.7: Final dataset distributions & features per class

4.3.2.2 Language Models used

The classification task on AphasiaBank is formulated as a multi-class classification with each class
representing a type of aphasia evident from the input text. For this task, we fine-tune a DistilBERT
model (distilbert-base-uncased-finetuned-sst-2-english) with a linear classifier
head (with a 80-20 split of train & test data). This involves passing individual transcripts from Aphasia-
Bank into the DistilBERT model, which generates a tensor representation (embedding) of the transcript.
This embedding is then passed through a linear classification layer which produces an output tensor of
size 3 i.e. the number of possible aphasia types for the scope of this classification task. This tensor is
compared against the ground-truth binary label tensor with a cross entropy loss to tune the model. The
prediction pipeline is summarized in Figure 4.5.

Figure 4.5: Aphasia type classification using DistilBERT. Specifically, the [CLS] token embedding

from the encoder is used for classification by passing it though a linear layer to fetch class-specific

normalized probabilities.

On the other hand, the masked-word prediction task was performed by running inference on a
RoBERTa model (roberta-base). RoBERTa model was chosen for this task as it is pretrained
solely towards the task of Masked Language Modeling (MLM) i.e. identical to the word prediction
task we require. The output text is a modified variant of the original transcript, with a valid token pre-
dicted in place of each masked token. The MLM pipeline is summarized in Fugure 4.6. The extent
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of mask-based replacement of pseudowords is varied across different runs, and the modified transcripts
obtained are used as supervised datasets to fintune separate instances of DistilBERT for the aphasia-type
classification as mentioned above.

Figure 4.6: Masked Language Modeling using RoBERTa. The masked pseudowords are replaced by

the most-likely words.

Both models were imported from and trained using the utilities provided by the HuggingFace suite
[78] on a single NVIDIA T4 TensorCore GPU for 4–6 epochs.

4.3.3 Results

To understand the gradience in results, we ran classification on the unmasked dataset (max 0% mask-
ing per sentence), a dataset made of sentences with max 25% masking done, another with 50% max,
and another with a max of 100%. Figure 4.7 shows examples from the data that were masked and how
a gradation of masking was obtained. To make these different datasets, we picked a subset of the entire
data which was masked to a maximum of a threshold percentage.

Figure 4.7: Different ratios of masking done according to the number of pseudowords found.
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Figure 4.8: Table of all the metrics across the gradation of experiments. Here, the average precision

(P), recall (R), and F1 scores are calculated between the predicted and actual aphasia type of the input

transcripts. The input transcripts vary along an increasing proportion of pseudoword replacement (0.0,

0.25, 0.5, 1.0). The class-wise P, R, and F1 for the major aphasia classes are reported accordingly.

Note that since the input dataset made an assumption that most utterances by a participant showed
features of their respective Aphasia types, we decided to analyse our results in 3 different ways:

1. Sentence: sentence-wise comparison of actual and predicted labels.

2. Speaker: for each speaker, our ground truth was the label participant was assigned in the Aphasi-
aBank transcripts, and predicted labels were the majority labels from the sentences under each
speaker, for each speaker.

3. Override: for each speaker, we changed the predicted labels of the sentences under that speaker
to the majority label obtained for them, then did a sentence-wise comparison.

Table (captured by Figure 4.8) summarise the same.

The results (visualised in Figure 4.9) show us that there is consistent decrease in performance of
Broca sentence-wise classification (and an overall decrease across other metrics as well) while Anomic
remained stable across all metrics (possibly because of the bias in data proportions.), we also see that
Wernicke (the lowest proportion of data) was unaffected on sentence-wise classification.
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Figure 4.9: Visualisation of F1 scores from Fig. 4.8 as max proportion of masking allowed, is increased

(x-axis). Blue:Anomic, Red:Broca, and Yellow:Wernicke.

Figure 4.10 displays some examples that help us explain what possibly happened on replacing pseu-
dowords and how on the sentencewise-classification task and why Broca was probably the only category
that kept falling as the masking increased:

Figure 4.10: Some examples showing results of classification on the masked transcripts. The original

transcripts are obtained from the AphasiaBank dataset, from which a varying proportion (0.0, 0.25, 0.5,

1.0) of pseudowords are masked to produce the masked transcripts. The masked transcripts are passed

through a RoBERTa model using the MLM task to generate the replaced transcripts, which are used to

finetune respective DistilBERT models for the aphasia-type classification.

1. The Good (greens): Although both of these are not correct predictions, they are marked green as
masking turned out well. For the first sentence, replacing a th with a not made it the transcript
’look’ more Broca-like, as the word repetition is with meaningful part/whole of the word. Sim-
ilarly, for the second one, replacing made it very structured and thus Wernicke-like. Thus the
masking is being done well, across transcripts.

2. The Accidentally OK (yellow): There are some results of masking (like this one) where predic-
tions match up with the ground truth, even though replacement changed the structure a lot.

56



3. The Bad (reds): All of these are mis-classified examples, showing examples of various ways in
which the masking was bad:

(a) Participant MSU08b: here the participant possibly tried to form the word still but the mask-
ing model replaced that with very slowly. Although this still looks like a Broca-like example,
the classification model predicts Anomic.

(b) Participant BU03a: here we see a classic example of Broca where godbu is a part of the
word godmother (albeit the nasal ’m’ is de-nasalised to ’b’), and it would be an interesting
experiment to eventually see if tokenisers/sub-word-embeddings for the classification model
could learn this as a feature for Broca, but the masking replaced the pseudowords godbu &
bu with her fairy which is the perfect replacement and thus makes it a non-Broca-like (in
fact Wernicke-like) and a grammatically accurate utterance.

(c) Participant kurland02g: this example shows that we have to be very careful with what is
considered as a pseudoword. Since a basic English lexicon (for general NLP usecases) won’t
have a lot Propoer nouns like cinderella but Aphasia prompts might (as they are generally
easy to recognise situations, like children’s stories), it is important to not replace them.

(d) Participant UNH05a: Similar to BU03a above, a phonemic repetition of the first phoneme
of the word, while trying to find it, was masked as it now made fffirst a pseudoword. This
eventually changed back to first but now a more well-formed sentence.

In summary, while the models might not yet be learning how to extract information from pseu-
dowords by either searching for the closest word, or by trying to see if they are a modified and/or
incomplete version of a close word in the neighbourhood of the sentence, it is still important to preserve
them. This is as deleting them can either make an incoherent sentence more incoherent to the system or
replacing them (as seen above) with an expected token automatically, could make it more coherent than
it was meant to be. As an alternate approach understanding how pseudowords work and making NLP
models capable of handling them and gathering more information from them, could have helped solve
a lot of the issues listed above!
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Chapter 5

Conclusion

5.1 Summary

The first exploration concluded with a possibly language-agnostic pipeline, which generated Hindi
& English pseudowords. Built after the principles of language modelling and subsequent generation,
this pipeline (PseudRNN) uses an LSTM trained on sequences of phonemes in a lexicon to generate
more of them. Out of which a simple subtraction of word sequences (by cross-checking the lexicon) led
us to pseudowords in both languages. We also check if only orthographical sequences would be suf-
ficient in generating pseudowords language-agnostically and found out systematic issues with abugida
style scripts like Devanagari. This leads us to the next chapter of finding ways to evaluate & compare
pseudowords & their generation methods.

The second exploration describes how to design a behavioral experiment to collect human judge-
ments on a pseudoword’s wordlikeness and how to evaluate the results from such a task. It adds on to
the existing work and also shows ways to make that more langauge-agnostic. This is done by following
the existing work and expanding on them and recording the results on current works’ generated pseu-
dowords for future comparison by another work. While it encourages more work in the area, it also
shows results obtained on comparing both the PseudRNN outputs on existing metrics. It showed that
although there is a lot to be fixed in the existing metric framework, lingusitically, Hindi pseudowords
generated by PseudRNN are comparable, while English ones are ambiguous with respect to the older
metrics. This chapter then concludes by making public the first Hindi pseudoword dataset and also
enriches it with features used for psycholinguistic datasets of words & pseudowords.

Finally, the study around the perception of a passwords’ security negatively correlated with its per-
ceived memorabilty with crucial arguments drawn from correlations with pseudowords in the middle,
as a part of the stimuli of sample passwords. Thus apart from being useful as passwords in day-to-day
use cases, this study shows how pseudowords are important to specific kinds of research as well. This
is then followed up by a more direct analysis of their impact on Aphasia classification by a language
model, where replacing them opened up a Pandora’s box of issues apart from negatively affecting the
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classification of certain types of Aphasia which are passively modelled by an LM as types which either
use pseudowords (Broca) or don’t (Wernicke).

We thus find that pseudowords can be efficiently generated and evaluated better with ways that cut
across languages. We also see that pseudowords are a natural part of gradation between meaningful and
unpronounceable side of a language (its full set of strings, which can be generated using the phonemes in
that language) that is of import in studies not limited to psycholinguistics and are irreplaceable features
of some like those on Aphasic text.

5.2 Limitations & Future Work

This work is a first step towards consolidating current work in computational phonological mod-
elling, pseudoword generation, and pseudoword evaluation. It is thus limited in scope in terms of more
research untouched in the respective domain or recent research that might have come up. Although it
aims to contribute a way forward inspired from these works, it will be important to keep adding on more
research left out or new research to this exploration in terms of improving generation, finding more
features to learn or fallbacks to safegaurd against or to add more metrics for a better evaluation.

This work also aims to be cross-lingual, but is only run fully on Hindi and for comparison to previous
metrics, on English. For resource creation in the domain and for understanding if the model’s prowess
cross languages, the next step would be run the generation + evaluation pipeline for more Indian lan-
guages and others. A limitation that pops up right away is the need for experts in these languages needed
to bridge the phonology and orthography + and to rate on suitability metrics. A short term plan for this
could be to work on languages with these resources and a longer term plan would be to adapt tools in
the domain to grapheme to phoneme conversion to replace the need for humans at some parts of these
pipelines. In terms of resources, a systematic study to understand how minimal and what kind of data
can be optimal for PseudRNN to efficiently produce quality pseudowords, needs to be conducted as
well.

Finally, Chapters 2 & 3 are a unit and produce Soodkosh, whereas the applications & impact shown
in Chapter 4 is an independent explorations of general use of Psuedowords beyond psycholinguistic
tasks like Lexical Decision task, it is important to note that such studies into the why of pseudowords
is important to simulate more interest in the field as well as solve some roadblocks for NLP tasks like
processing incoherent text. Thus more research in pseudowords across languages on Aphasic text or
otherwise can be of help to NLP and could open more avenues for NLP to help areas-in-need like models
mimicking brains that have Aphasia affected regions, explaining a models’ semantic understanding of
natural text, or even testing an NLP model’s robustness etc.
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Appendix A

Pseudowords & How to Generatuce some

A.1 Hyperparameters

Hyperparameter Value (specified if different from default)

Input Embedding Size 34 (default: 200)

Hidden Embedding Size 200

Layer Count 2

Input Sequence Length 10 (default: 35)

Dropout 0.2

Learning Rate 20

Gradient Clipping 0.25

Max Epochs 40

Batch Size 20

Initialization Seed 1111

Table A.1: Model and training hyperparameters of the WordRNN model used.
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Appendix B

Evaluadating Pseudowords

Ethics Statement (for pseudoword generation & evaluation)

As the author of the work, I don’t anticipate any negative or harmful ethical impacts of this research.
We started out to facilitate neurologists with Indian Language psycholinguistic batteries to better under-
stand the linguistic disabilities of people and to help them in a more informed manner. Pseudowords
turned out to be an artefact that could not be borrowed from more resource-rich languages. This is what
motivated the work and is also why the generation, evaluation, and the resulting dataset are made public.
Collaborative research & innovation in this area which contribute more psycholinguistic tools which are
accessible to other low-resourced languages would be beneficial to society.

B.1 Appendix: Consent

Below is the text for Consent that the Participants read and accepted before continuing to the main
experiment:

Please carefully read the following information and click on ”Yes, I agree” below if you consent to
volunteer for the survey:

Risks: There are no anticipated risks to the participants.

Confidentiality: We will ask you to fill in your roll number to connect survey data to the experiment.
We will anonymize all data we collate finally. Thus your participation will remain confidential and a
fresh, explicit consent will be taken if any personal detail needs to be used for further analysis.

Participation and Withdrawal: Participation is voluntary and choose to leave the survey at any
point in time pre-experiment. You can also inform the researchers (no questions will be asked) to mark
your data as confidential at any point in time, even after the research concludes. Once marked confi-
dential/withdrawn, the information will not be used or disclosed.

P.S. This data will not be used for any commercial purposes.
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By clicking ”Yes, I agree”, you confirm that you have been satisfactorily explained the details of
the procedure, the type and safety of data being collected via this study. Thus, you hereby consent to
participate in the study.

B.2 Appendix: Participant Demographics

Participant Demographic or Language Proficiency Mean Standard Deviation

Age 20.205 1.44

Reading 4.091 0.984

Speaking 4.386 0.689

Understanding 4.5 0.699

Say the days of the week 3.932 1.246

Name the months in a year 3.182 1.589

Use basic numbers (for asking prices or quantities etc.) 4.045 0.939

Name common fruits/vegetables/dishes 4.114 0.784

Retell a sequence of events/ recite a story 4.705 0.594

While talking to family older than you 4.5 1

While talking to family younger than you 4.477 1.045

While talking to friends and neighbours 4.727 0.499

While watching reels/series/movies 4.659 0.645

While texting friends 4.409 0.658

While arguing when it gets intense/ when you are angry 4.591 0.693

For writing a formal email or filling up a form 2.614 1.166

Table B.1: Demographic details & Self reported language proficiency ratings of the participants.

Please refer to table B.1 for the exhaustive list.

B.3 Appendix: Questionnaire adapted from LUQ

We collect the language proficiency and demographics via a Google Form as a pre-survey to the
experiment for each participant. The below list details the same:
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Figure B.1: Screenshot of the Google Form question for self-rating language proficiency.

• After Age & Gender we ask participants to rate self-proficiency on Hindi & English (Fig. B.1).

• We then ask participants to self report language proficiency in specific contexts that ranged from
formal, informal, seniority difference etc. There was a block of instruction, followed by the
question, and a scale to select response on, for different languages (like Fig. B.2).

Figure B.2: Screenshot of the Google Form question displaying instructions and asking the participant

to self-rate language proficiency for different languages, in a specific context.
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