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Abstract

Consider an autonomous agent capable of observing multiple humans making a pizza and making
one the next time! Motivated to contribute towards creating systems capable of understanding and rea-
soning instructions at the human level, in this thesis, we tackle procedure learning. Procedure learning
involves identifying the key-steps and determining their logical order to perform a task.

The first portion of this thesis focuses on the datasets curated for procedure learning. Existing
datasets commonly consist of third-person videos for learning the procedure, making the manipulated
object small in appearance and often occluded by the actor, leading to significant errors. In contrast, we
observe that videos obtained from first-person (egocentric) wearable cameras provide an unobstructed
and clear view of the action. To this end, for studying procedure learning from egocentric videos, we
propose the EgoProceL dataset. However, procedure learning from egocentric videos is challenging
because the camera view undergoes extreme changes due to the wearer’s head motion and introduces
unrelated frames. Due to this, current state-of-the-art methods’ assumptions that the actions occur at
approximately the same time and are of the same duration do not hold. Instead, we propose to use
the signal provided by the temporal correspondences between key-steps across videos. To this end, we
present a novel self-supervised Correspond and Cut (CnC) framework that identifies and utilizes the
temporal correspondences between the key-steps across multiple videos to learn the procedure. We per-
form experiments on the benchmark ProceL and CrossTask datasets and achieve state-of-the-art results.

In the second portion of the thesis, we look at various approaches to generate the signal for learn-
ing the embedding space. Existing approaches use only one or a couple of videos for this purpose.
However, we argue that it makes key-steps discovery challenging as the algorithms lack an inter-videos
perspective. To this end, we propose an unsupervised Graph-based Procedure Learning (GPL) frame-
work. GPL consists of the novel UnityGraph that represents all the videos of a task as a graph to obtain
both intra-video and inter-videos context. Further, to obtain similar embeddings for the same key-steps,
the embeddings of UnityGraph are updated in an unsupervised manner using the Node2Vec algorithm.
Finally, to identify the key-steps, we cluster the embeddings using KMeans. We test GPL on benchmark
ProceL, CrossTask, and EgoProceL datasets and achieve an average improvement of 2% on third-person
datasets and 3:6% on EgoProceL over the state-of-the-art.

We hope this work motivates future research on procedure learning from egocentric videos. Further-
more, the unsupervised approaches proposed in the thesis will help create scalable systems and drive
future research toward creative solutions.

viii
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3.1 Existence of Correspondences across the Videos.The left-hand side �gure shows
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Chapter 1

Procedure Learning: Motivation, Challenges, and Prior Attempts

From fabricating a laptop on an assembly line to preparing a pizza, we follow a series of steps to ac-

complish the task. Also, each task requires speci�c domain knowledge to carry it out. Creating a robotic

agent that augments humans in performing such tasks requires years of research and development. Fur-

thermore, tuning the same agent for a different task is challenging. To overcome these challenges and

create scalable systems, in this thesis, we aim to devise frameworks capable of “watching” human sub-

jects perform a task and learn from it.

Creating a framework capable of learning from a few human demonstrations has various advantages.

For example,

1. Such frameworks arescalableand capable of learning multiple tasks (e.g., the same framework

can learn to assemble a PC and make a brownie!).

2. They areef�cient . Instead of requiring years of research, such systems can be trained in hours.

3. Owing to the scalability and ef�ciency of such systems, they can be deployed on various devices,

opening up a world of exciting applications.

Furthermore, such frameworks would be helpful for various applications, like,

1. Automated Systems:Such systems can enable robotic systems to autonomously learn the steps

for performing the task by observing the task being performed. Once the automated system learns

the steps, the next time, it can do the task without human assistance.

2. Monitoring Procedures: Consider a system trained to know the key-steps for performing a task;

if a new person does the same task again, the system will identify if the person misses a step or

does a step differently.

3. Guidance Systems:A system trained to know the key-steps for performing a task can identify

the current step and show the next possible step for performing the task.

To create frameworks capable of learning from a few human demonstrations and high applicability,

in this thesis, we focus onprocedure learning.
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Figure 1.1 Procedure Learninginvolves identifying the key-step and their order from multiple videos

of the same task. Here, in the input, we haven videos (V1; V2; : : : ; Vn ) of subjects preparing a sandwich.

The output is(a) frames (from all the videos) assigned to their respective key-step and(b) order of the

key-steps.
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1.1 What is Procedure Learning?

As shown in Figure 1.1, given a set of instructional videos for the same task, procedure learning [19,

20,68] broadly consists of two steps,

1. assigning all the frames to theK key-steps (including the background), and

2. discovering the logical ordering of the key-steps required to perform the task.

Formally, we considern untrimmed videos of the same task, denoted byV = f Vi : i 2 N; 1 � i �

ng. Each of then videos can have a different number of frames. A videoVk with m frames is denoted

asVk = f f 1
k ; f 2

k ; : : : ; f m
k g. The goal is to de�ne a frameworkf (� ) (with learnable parameters� ) that

takes in then videos and classi�es all then � m (m can vary with video) intoK key-step clusters. Also,

we aim to determine the order ofK clusters.

Note that we aim to solve the task in an unsupervised/self-supervised manner. Due to this, we do not

utilise the labels in our frameworks. The labels are only used during evaluation (refer to Section 3.3.1).

1.1.1 Why is it Dif�cult to Learn Procedures?

In this thesis, we aim to create systems capable of understanding and reasoning instructions at the

human level. For example, as shown in Figure 1.1, the instructions to prepare a pizza are at human

level (referred to as key-steps in the thesis). In contrast, computer vision tasks, like action segmentation,

approach at a �ner level of actions [14, 35, 64, 73] (Section 1.1.2). However, as we show in qualitative

analysis in Chapter 3 and Chapter 4, segmenting at human level is challenging. This is mainly because,

along with the actions required to perform a task, there are actions that are not the key-steps but may

supplement the key-step (for example, taking out butter from the shelf).

Furthermore, due to the de�nition of the key-steps, a major portion of procedure learning datasets

consists of background actions [3, 20, 86]. This not only makes learning procedures challenging but

also makes evaluating the learned procedure problematic. For example, when evaluating using F1-

Score [19, 20, 44, 68, 77], a model that assigns all the frames to the background, will score high. To �x

the issue, in this thesis, we propose an updated evaluation protocol described in Section 3.3.1.

1.1.2 How is Procedure Learning Different from other Tasks?

As shown in Figure 1.1, procedure learning deals with multiple videos of a task. In contrast, action-

based tasks deal with a single video [14, 35, 64, 73], hence losing the capability to determine repetitive

key-steps across the videos. Secondly, these tasks do not consider the order of the individual events,

which is often crucial for identifying key-steps, and/or procedures/recipes. For example, action-based

tasks do not capture the difference in the order of key-steps.

Procedure Segmentation [37], on the other hand, deals with dividing a single video into procedure-

level segments. Instead, procedure learning deals with generating segments across multiple videos.
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Furthermore, similar to action-based tasks, procedure segmentation does not deal with the ordering of

the key-steps. Also, as procedure learning deals with localising the key-steps, it differs from the video

alignment task. Therefore, considering the utility of procedure learning and its distinctness from existing

tasks, we aim to solve it.

1.1.3 Contributions

As mentioned in the previous sections, this thesis deals with procedure learning and aims to solve its

challenges. To this end, the following are our core contributions:

1. To facilitate procedure learning from egocentric videos, we create the EgoProceL dataset. The

dataset consists of62hours of egocentric videos captured by130subjects performing16 tasks.

2. We propose two novel methods to solve procedure learning in an unsupervised manner. The

�rst method deals with utilizing video alignment approaches whereas, the second method exploit

graphs for procedure learning.

3. In the �rst work, we propose the Correspond and Cut (CnC) framework, which utilizes the pro-

posed TC3I loss and PCM to identify the key-steps and their ordering required to perform a

task. Furthermore, we investigate the usefulness of egocentric videos over third-person videos for

procedure learning. We observe an average improvement of2:7% in the F1-Score when using

egocentric videos instead of third-person videos.

4. In the second work, we propose the Graph-based Procedure Learning (GPL) framework. Contrary

to existing graph-based frameworks, GPL does not require node or edge annotations, enabling

unsupervised procedure learning. Furthermore, we create a novel graph representation for arbi-

trary number of videos: UnityGraph. UnityGraph captures(a) temporal relationships in the same

video and(b) semantic relationships across the videos. Also, to identify the background frames,

we propose to detect hand-object interactions in egocentric videos. This leads to an improvement

of 1:1% in the F1-Score on EgoProceL.

5. To evaluate both the proposed approaches, we perform experiments and ablation on two third-

person datasets (ProceL [20] and CrossTask [86]) and the proposed EgoProceL dataset.

1.2 Previous Attempts to Learn Procedures

In this section, we have a look at various prior attempts at procedure learning, representation learning,

and key-step ordering.
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1.2.1 Representation Learning for Procedure Learning

Previous works on procedure learning have developed methods to learn frame-level features [19,20,

44,77]. Kuklevaet al. [44] learn the representation space by using relative timestamps of the frames. On

the other hand, Vidalet al. [77] predict the future frame and its timestamps. Elhamifaret al. [19] learn

and employ attention features for individual frames. Bansalet al. [3] exploit temporal correspondences

across the videos to generate the signal and learn frame-level embeddings. However, these methods fall

short in modelling either temporal or spatial relationships.

1.2.2 Multimodal Procedure Learning

Another class of methods works with multi-modal data, like narrated text and videos [2,11,16,24,54,

66, 68, 84, 87]. These works use Automatic Speech Recognition (ASR) to obtain the text, which is not

perfect. Due to this, the output needs to be manually cleaned, which is not scalable. Additionally, such

methods assume an alignment between the text and videos [2, 54, 84], which might not be accurate for

most cases [19,20]. Instead, we use only the visual modality as an input to the framework. Due to this,

we eliminate the need to obtain narrations that might be inaccurate and make our framework scalable.

1.2.3 Self-Supervised Representation Learning

Learning a representation space without annotations saves substantial time and energy when creating

deep learning solutions. Motivated by this, recent works explore various pretext tasks to generate super-

vision signals for training deep learning architectures [7,31,74,75,80]. A few pretext tasks for learning

image representations include image colourization [45,46], object counting [52,59], solving jigsaw puz-

zles [6, 39], predicting image rotations [22, 41], and reconstructing input images [32] from noise [78].

Pretext tasks for learning video representations include predicting future frames [1, 13, 29, 38, 72, 79],

using temporal order and coherence as labels [23,47,56,82,83] and predicting the arrow of time [81].

Video representation learning methods mentioned above employ a single video. However, we want

to identify similar key-steps in multiple videos for procedure learning.

1.2.4 Learning Key-step Ordering

A majority of the previous works do not capture different key-step ordering to perform the same

task. They either assume a strict ordering [20,44,77] or do not predict the order [19,68]. However, we

observe that subjects perform the same task in multiple ways, motivating us to capture different ways to

accomplish the task.
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1.3 Organization of the Thesis

The rest of the thesis is organised as follows:

1. In Chapter 2, we summarise existing procedure learning datasets and discuss their shortcomings.

Furthermore, we propose the EgoProceL dataset consisting of egocentric videos for procedure

learning.

2. In Chapter 3, we demonstrate the existence of correspondences across the videos and outline the

proposed Correspond and Cut (CnC) framework to exploit them for procedure learning. Further-

more, we evaluate CnC on existing third-person and proposed EgoProceL dataset.

3. In Chapter 4, we explore the utility of graphs for procedure learning. We propose the Graph-

based Procedure Learning (GPL) framework for procedure learning and evaluate it on third- and

�rst-person datasets.
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