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Abstract

Autism Spectrum Disorder (ASD) is a lifelong heterogeneous developmental disorder that is char-
acterized by abnormal development of the brain. Deficits in social skills, incapability to articulate
language, abnormal sensory-motor movements, and stereotyped behaviors are mainly observed in chil-
dren with ASD. The underlying biological markers for the diagnosis and treatment of ASD are not
known yet. The current behavior-based diagnosis of ASD is arduous and requires expertise. It has been
demonstrated that the non-invasive method such as resting-state functional magnetic resonance imaging
(rs-fMRI) provides a means to examine functional connectivity patterns in the brain, which can help
diagnose various neurodegenerative and psychiatric disorders, including ASD. Most previous studies
associated ASD with atypical functional connectivity (FC) between different pairs of regions. However,
brain connectivity is dynamic and varies extensively among brain states. In this thesis, we explored
both static and dynamic functional connectivity based features to understand the fundamental group

differences between ASD patients and typically developing (TD) subjects.

Firstly, we proposed a Multilayer Perceptron (MLP) based classification model with autoencoder
pretraining for classifying ASD from TD based on static functional connectivity (SFNC) extracted from
rs-fMRI scans of the ABIDE-1 (a publicly available dataset from Autism Brain Imaging Data Exchange
consortium). Our model achieves new state-of-the-art performance on the ABIDE-1 dataset with a 10-
fold cross-validation accuracy of 74.82%. Further, we use the Integrated Gradients (IG) and DeepLIFT
techniques to identify the correlations between brain regions that contribute most to the classification
task. Our analysis identifies the following regions associated with ASD: Left Lingual Gyrus, Right
Insula, Right Cuneus, Right Middle Frontal Gyrus, and Left Superior Temporal Gyrus. Interestingly,
these regions in the brain are primarily responsible for social cognition, language, attention, decision-

making, and visual processing, which are known to be altered in ASD.

Secondly, we investigated the dynamic functional connectivity (dFNC) between 53 independent
components among 188 ASD and 195 TD subjects sampled from the ABIDE-I consortium. We esti-
mated dFNC using sliding window-based approaches and identified four distinct dynamic states through
hard-clustering analysis. Hyper-connectivity within the cognitive control domain, between cognitive
control and default mode network have been identified among ASD subjects. Hyper-connectivity within
the default mode network has been found among TD individuals. Further, we estimated the dynamic
temporal properties such as fractional time spent, mean dwell time per state and observed significant

differences between ASD and TD groups. ASD subjects are found to have significantly longer dwell
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time in one of the states (4) when compared to TD individuals. We also found a significantly increased
occurrence of the same state (4) in ASD subjects, whereas other states (1 and 3) are more frequent in
TD subjects.

Overall, both static and dynamic-based methods have been explored to find out the ASD biomarkers.
While there is broad consensus in the brain network profiles between sFNC and dFNC, the temporal pro-
file of brain state dynamics is additionally available with dFNC analysis and may potentially contribute
to disease biomarkers.

In addition, we have done extensive replication studies of both SFNC and dFNC based models for
ASD classification or characterization in the literature. We observe great discrepancy between what
is reported and what could be replicated or reproduced. Based on these analyses, we propose a set of
recommendations for future studies that encompass factors such as dataset selection criteria, prepro-
cessing pipepline, proper reporting of selected samples, atlas selection, and hyperparameter choices and

reporting for the proposed models.
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Chapter 1

Introduction

1.1 Autism Spectrum Disorder

Introduction Autism Spectrum Disorder, commonly known as ASD, is a developmental disorder that
affects an individuals social communication and interaction, as well as their behavior and interests. It
is a complex and multifaceted disorder that can manifest itself in different ways and can range from
mild to severe. ASD, as the very name suggests, is a spectrum disorder with a broad range of types,
severities, and symptoms [49].

Symptoms The symptoms of ASD typically appear in early childhood, although they may not be
noticeable until later in life. Some of the most common signs of ASD include difficulty with social
interactions, repetitive behaviors, difficulty with communication, and a narrow range of interests or
activities. Children with ASD may have trouble making eye contact, understanding social cues, or
engaging in back-and-forth communication. They may also have specific routines or rituals that they
follow, and may become very upset if these routines are disrupted.

Causes and Prevalence There are many different factors that can contribute to the development of
ASD, including genetic, environmental, and neurological factors. While the exact cause of ASD is not
yet fully understood, it is believed that a combination of genetic and environmental factors may play a
role. Centers for disease control and prevention reported that 1 out of 54 children in the United States
and 1 out of 160 children worldwide are diagnosed with ASD. All socioeconomic and ethnic groups
have been affected by ASD. The prevalence of ASD has been increasing worldwide, and the underlying

cause is unclear [50].

Diagnosis Diagnosing ASD can be challenging, as there is no specific medical test or imaging study
that can definitively diagnose the disorder. Instead, diagnosis is typically based on a combination of
behavioral assessments, developmental screening, and observation of the childs behavior and social

interactions. Early diagnosis is important, as it can lead to earlier intervention and support for the child



and their family. Early detection of ASD is crucial, and it can significantly improve the quality of life of

individuals with ASD, their careers, and families, as mentioned in the clinical study by Elder et al. [29].

Treatment There are a number of different treatments and interventions that can be helpful for chil-
dren with ASD, depending on their individual needs and symptoms. Some of the most common treat-
ments for ASD include behavioral therapy, speech and language therapy, and medication. These treat-
ments can help to improve communication and social skills, reduce anxiety and repetitive behaviors,
and promote independence and self-sufficiency. Despite the challenges of living with ASD, many in-
dividuals with the disorder are able to lead happy and fulfilling lives. With appropriate support and
intervention, individuals with ASD can learn to communicate effectively, develop meaningful relation-

ships, and pursue their interests and passions.

Summary In recent years, there has been an increased focus on raising awareness about ASD and
improving support for individuals and families affected by the disorder. This has led to greater under-
standing and acceptance of individuals with ASD, as well as improved access to services and support.
Overall, ASD is a complex and challenging disorder that can have a significant impact on individuals
and their families. However, with early diagnosis, appropriate support, and effective treatments, indi-
viduals with ASD can lead happy and fulfilling lives, and contribute to their communities in meaningful

ways.

1.2 Diagnosis of ASD

The DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) is a manual
published by the American Psychiatric Association (APA) that provides criteria for the diagnosis of
mental disorders [6]. ADOS and ADI-R are two standardized diagnostic tools widely used in the diag-
nosis of autism spectrum disorder (ASD). Both of these assessments involve a structured interview and
observation of the individual being assessed, as well as information gathered from caregivers or family

members.

ADOS Scores The ADOS (Autism Diagnostic Observation Schedule) is a standardized observational
assessment that is designed to measure social interaction, communication, play, and imaginative use
of materials. The assessment is designed to be used with individuals of all ages who are suspected of
having ASD. During the assessment, the clinician will engage the individual in various activities that
are designed to elicit social and communication behaviors. The clinician will then score the individual’s
responses on a scale that ranges from 0 to 3, with higher scores indicating more severe deficits in social

and communication behaviors [5]].



ADI-R scores The ADI-R (Autism Diagnostic Interview-Revised) is a structured interview that is de-
signed to gather information from caregivers or family members about the individual’s behavior, com-
munication, and social interactions. The interview covers a range of topics including early development,
language, social interaction, and repetitive behaviors. The clinician will then score the responses on a
scale that ranges from 0 to 3, with higher scores indicating more severe deficits in social and communi-

cation behaviors [61].

Summary Both the ADOS and ADI-R are considered to be gold standard assessments for the diag-
nosis of ASD. The scores obtained from these assessments can help clinicians to determine whether an
individual meets the diagnostic criteria for ASD. Specifically, a diagnosis of ASD requires persistent
deficits in social communication and interaction, and the presence of restricted, repetitive patterns of

behavior, interests, or activities.

1.3 Problems faced by Clinicians in diagnosing ASD

Diagnosing ASD can be challenging for clinicians as it is a complex disorder with a wide range of

symptoms and severity [41]]. Some of the common problems faced by clinicians in diagnosing ASD are:

e Overlap with other disorders: The symptoms of ASD often overlap with those of other disorders,
such as attention-deficit/hyperactivity disorder (ADHD), anxiety, and depression. This can make

it difficult for clinicians to differentiate between ASD and other conditions.

e Heterogeneity of symptoms: The symptoms of ASD vary widely from person to person and can
also change over time. This heterogeneity makes it challenging to identify a set of criteria that

can be used consistently to diagnose ASD.

e Limited access to specialized diagnostic tools: Diagnosing ASD often requires specialized diag-
nostic tools, such as standardized tests and questionnaires. However, not all clinicians have access

to these tools, which can make it difficult to accurately diagnose ASD.

e Difficulty in assessing social communication skills: ASD is characterized by deficits in social
communication skills, which can be difficult to assess accurately. Clinicians may have to rely on
parent and teacher reports, which may not always provide a complete picture of a child’s social

communication skills.

e Cultural and language barriers: ASD symptoms may be perceived differently in different cultures,
and language barriers can make it difficult for clinicians to accurately assess and diagnose ASD

in individuals from non-English-speaking backgrounds.

Overall, diagnosing ASD requires a comprehensive evaluation that takes into account a wide range

of clinical and behavioral factors. Clinicians need to be aware of the challenges and limitations of the



diagnostic process and work closely with families and other professionals to ensure accurate diagnosis

and appropriate interventions.

1.4 Motivation

Diagnosis using the above mentioned procedures suffers from subjectivity, and lack of accuracy and
also requires experts, which often results in a significant economic burden on the families of ASD pa-
tients [33]]. With these various layers of complexity, there has been significant interest in the discovery
of biological markers (or biomarkers) for ASD, with the hopes of identifying more homogeneous groups
for biological study, assisting in diagnosis (including early detection before the onset or worsening of
symptoms), and generating more reliable and sensitive markers for individualizing treatment and gaug-
ing treatment response. Therefore, developing a computer-aided tool for accurately diagnosing ASD

will make the diagnosis objective, swift, and economical.

Machine learning (ML) offers a potential solution to these challenges by analyzing large amounts
of data and identifying patterns that may be difficult for human clinicians to detect. The use of ML on
large datasets of clinical and neuroimaging data can identify patterns and relationships that are indicative
of ASD and improve the accuracy and consistency of diagnoses. By using standardized and validated
algorithms, clinicians can improve the reliability of ASD diagnoses, leading to earlier interventions
and better outcomes for individuals with ASD. The goal is to improve the efficiency, objectivity, and
accuracy of ASD diagnoses using ML.

1.5 Resting State Magnetic Resonance Imaging (rs-fMRI)

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive neuroimaging tech-
nique that measures brain activity at rest. During an rs-fMRI scan, subjects lie still in the scanner
while the machine takes images of their brain every few seconds. Blood Oxygenation Level Depen-
dent (BOLD) signals, which reflect changes in the deoxyhemoglobin and are a proxy measure of brain
activation, are captured during the functional magnetic resonance imaging (fMRI) scan. By measuring
BOLD signals in different areas of the brain, rs-fMRI can identify brain activity patterns associated with
different neurological disorders. The underlying principle behind this method is that neuronal activity
is directly proportional to the oxygen consumption of neurons induced by the alterations in blood flow.
A series of brain images are acquired during fMRI while the subject performs a set of tasks.

One way that rs-fMRI is used in the diagnosis of neurological disorders is by measuring functional
connectivity in the brain. Functional connectivity refers to the degree to which different regions of
the brain are synchronized in their activity [24)]. In individuals with neurological disorders, functional
connectivity patterns may be disrupted or abnormal, which can provide important diagnostic information

of various neurodegenerative and psychiatric disorders like ASD, Mild cognitive impairment, Bipolar



disorder, Attention deficit hyperactivity disorders, and Schizophrenia [[12]. Thus, rs-fMRI is a powerful

tool for studying and diagnosing neurological disorders.

1.6 ABIDE-I Dataset

Introduction The Autism Brain Imaging Data Exchange I (ABIDE-]) |'| dataset is a large, publicly
available dataset of neuroimaging data from individuals with Autism Spectrum Disorder (ASD) and
typically developing individuals (TD). It was released in 2012 and consists of data collected from 17
international sites, making it one of the largest datasets of its kind. The ABIDE-I dataset includes data
from 1, 112 individuals, including 539 individuals with ASD and 573 TD individuals. The individuals
range in age from 6 to 64 years old and include both males and females. The dataset includes structural
MRI and rs-fMRI data, behavioral and clinical measures, such as Full IQ, Performance 1Q, Verbal IQ
scores and diagnostic measures such as ADOS and ADI-R scores. These measures provide important
information about the severity and nature of ASD in the individuals included in the dataset and allow

researchers to investigate the relationship between brain function and behavior in ASD.

Quality Measures The ABIDE-I dataset provides various quality measures to ensure the reliability

and validity of the data. Some of these quality measures include:

e Motion measures: The dataset provides motion measures during the scanning process, such as the
mean frame-wise displacement (FD) and the percentage of volumes exceeding a certain threshold

of FD. These measures help assess the amount of motion artifacts in the data.

e Signal-to-noise ratio (SNR): The dataset provides measures of the SNR of the functional data,

which reflects the quality of the data and can affect the accuracy of the analyses.

e Temporal signal-to-noise ratio (tSNR): This measure quantifies the stability of the signal over
time and provides information on the quality of the functional data.

e Quality control (QC) ratings: The dataset includes QC ratings of the data by expert reviewers,

who assess the quality of the imaging data, the preprocessing, and the registration of the data.

e Structural measures: The dataset provides measures of the quality of the structural imaging data,

such as the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR).

These quality measures are important for assessing the reliability and validity of the data and can
help ensure that the results obtained from the data are accurate and reproducible. They can also be used
to identify data that may need to be excluded from the analyses or to adjust for potential confounding

factors.

'Ihttp://preprocessed—connectomes—project,org/abide/download.htmll
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Site-wise distribution of ABIDE-I dataset ABIDE-I dataset includes rs-fMRI scans from 17 inter-

national sites. Distribution of participants, their average age, repetition time, duration of scan, average

mean frame wise displacement and number of volumes per scan is shown in[L.1]

Preprocessing Pipelines

There is no agreement on the most effective approach to preprocessing rs-

fMRI data. Instead of promoting a single processing method, the data has been preprocessed using four

different pipelines with the developer’s chosen parameters and settings. The preprocessing stepf] are

quite similar across the different pipelines, but what differs are the specific algorithms used for each

step, their software implementations, and the parameters utilized, as shown in[1.2]

Table 1.2 Basic Preprocessing parameters. Table from here 2

Step CCS C-PAC DPARSF NIAK
Drop first | 4 0 4 0
“N” volumes
Slice timing | Yes Yes Yes No
correction
Motion Yes Yes Yes Yes
realignment
Intensity 4D Global | 4D Global | No Non-uniformity cor-
normaliza- mean = 1000 | mean = 1000 rection using median
tion volume
Table 1.3 Nuisance Signal Removal parameters. Table from here 2
Regressor CCS C-PAC DPARSF NIAK
Motion 24-param 24-param 24-param scrubbing and 1st princi-
pal component of 6 mo-
tion parameters and their
squares
Tissue mean WM and CSF | CompCor (5 PCs) mean WM and CSF | mean WM and CSF sig-
signals signals signals nals
Motion Yes Yes Yes Yes
realignment
Low- linear and | linear and | linear and | discrete cosine basis with
frequency quadratic trends quadratic trends quadratic trends a 0.01 Hz high-pass cut-
drifts off

Zhttp://preprocessed-connectomes-project.org/abide/Pipelines.html
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To remove confounding variance from the fMRI data caused by physiological processes (heartbeat
and respiration), head motion, and low frequency scanner drifts, each pipeline incorporated some type
of nuisance variable regression as shown in table[I.3] Each pipeline was used to calculate four different

preprocessing strategies as shown in table [I.4]

Table 1.4 Preprocessing Strtegies. Table from here 2

Strategy Band-Pass Filtering | Global Signal Regression
filt_global Yes Yes
filt_noglobal Yes No
nofilt_global No Yes
nofilt_noglobal No No

Strengths & Limitations One of the key strengths of the ABIDE-I dataset is its large size and inter-
national scope. The dataset includes data from individuals with ASD and TD individuals from various
countries, making it a valuable resource for investigating the cross-cultural variability of ASD. Addi-
tionally, the large size of the dataset provides ample statistical power for identifying subtle differences
in brain function between individuals with ASD and TD individuals. However, the ABIDE-I dataset
also has some limitations. For example, the dataset includes data from individuals with a wide range
of ages and ASD severity, which can make it challenging to draw clear conclusions about the neural
mechanisms underlying ASD. Additionally, the dataset is limited to individuals who could undergo

MRI scanning, which may not represent the broader population of individuals with ASD.

Summary The ABIDE-I dataset is a valuable resource for investigating the neural mechanisms un-
derlying ASD and for developing and validating neuroimaging-based biomarkers for ASD diagnosis.
Its large size and international scope makes it a unique resource for investigating the cross-cultural vari-
ability of ASD and for identifying subtle differences in brain function between ASD subjects and TD

individuals.

1.7 Static and Dynamic Functional Connectivity

Static Functional Connectivity (sFNC) is estimated from the temporal correlation of spontaneous
BOLD signals among two or more anatomically distinct brain regions. If the signals from two or more
brain regions show synchronized fluctuations, then the regions are said to be functionally correlated
(connected). Previous studies modeled sFNC for classifying ASD from typically developing (TD) and
achieved promising results. However, these approaches based on sFNC lack model interpretability, i.e.,

identifying the brain regions that contribute most to the ASD classification task. Therefore, we proposed



a classification model that achieves new state-of-the-art performance on the ABIDE-1 dataset in 10x less
training time than the previous best method [[77]] followed by model interpretation.

Dynamic functional connectivity (dFNC) is a neuroimaging technique that examines how connec-
tivity between different brain regions changes over time, as opposed to sFNC, which assumes that
connectivity is stable over a fixed period. dFNC enables researchers to explore how the functional con-
nections between brain regions change in response to different stimuli or cognitive states. Therefore,
we explored clustering, statistical and meta-state analysis based on dynamic functional connectivity to
understand the fundamental characteristics of ASD. Contrasting with most extant studies, we compared
dynamic brain states to SFNC. Specifically, the dynamic characteristics of the brain states were esti-
mated while applying clustering analysis on the time series segments extracted from 7 brain networks
consisting of 53 regions of interest on a large subset of 188 ASD and 195 TD subjects from the ABIDE-I

consortium.

1.8 Contributions

In this thesis, we utilized the ABIDE-I dataset and examined multiple techniques to diagnose ASD
and gain insights into the core features of ASD. This thesis makes the following significant contribu-

tions:

Classification and Interpretation
The main contributions of this study are as follows:
1. Proposed a two-hidden layer feed-forward neural network with autoencoder pretraining.

2. Applied Integrated gradients and DeepLIFT, prominent feature attribution methods, to interpret

brain biomarkers in ASD subjects.

3. Revealed the impact of heterogeneity in the dataset and compared the effect of different prepro-

cessing pipelines, brain parcellation schemes on the classification performance.

Dynamic Functional Connectivity analysis

This study aimed to

1. Compare connectograms of ASD and TD subjects estimated with dFNC and sFNC (i.e., can dFNC
delineate any other meaningful information in terms of brain network differences and information
that can be evident from sFNC?)

2. Understand the dFNC based network group differences in each state and reveal the dFNC patterns
that showed increased or decreased connectivity in ASD subjects.



3. Explore the temporal properties such as fractional windows in each state, the mean dwell time
of each state, and the number of transitions between each pair of dynamic states using statistical

two-sample T-test.

1.9 Thesis overview

In this thesis, we investigated both sSFNC and dFNC differences between the groups ASD subjects
and TD individuals and identified the bio-markers for ASD. Chapter 2 provides an overview of the extant
literature on ASD classification and interpretation based on rs-fMRI scans and dFNC analysis. Chapter
3 discusses the reproducibility challenges encountered in replicating the results of papers published in
this domain, along with potential causes, instances of papers we tried to implement, and potential best
practices to overcome the challenges. Chapter 4 presents the classification and interpretation model
proposed based on sFNC in detail. Chapter 5 discusses the clustering, statistical and meta-state analysis
based on dFNC and the bio-markers identified. Finally, chapter 6 discusses conclusions, limitations,

and future scope.
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Chapter 2

Background and Literature

In the previous chapter, we discussed ASD, the challenges faced by clinicians in diagnosing it, and
how computer-aided tools can help with the diagnosis and identification of ASD biomarkers. The current
chapter focuses on the existing literature on this topic. Previously many studies have focused on using
ML and deep learning (DL) based methods to classify children with ASD from the TD. Different rs-
fMRI representations (as shown in [2.T)) can be passed as an input to the ML/DL models for the ASD

classification from TD individuals.

Different rs-fMRI data

representations
= ) . 1. ReHO
2. ALFF
- | 3. FALFF
[3 W, .I."-'.“- .""-i)J.Il L) 4. VMHE
Metwork nodes
Timeseries data Summary
Measures

4D Preprocessed rs-iMAI Data sFNC Matrix dFNC Matrix

Figure 2.1 Different rs-fMRI representations. This figure has been generated from the papers 1591
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2.1 4D scan

The pre-processed rs-fMRI scan is a four dimensional data (3-spatial and 1 temporal). Each scan
would consist of approximately 1 million voxels and take up to 200 — 300 MB space. There exist spatial
measures (as discussed in section which summarize the temporal information and various brain
parcellation schemes (as discussed in section which summarize the spatial information to reduce
the dimensions of 4D data and remove noise. Such methods would lead to the loss of either spatial or
temporal information. Hence, modelling the 4D data using the deep learning models is one solution
proposed for classifying ASD from TD. Typically, we can model the flattened 4D data using traditional
machine learning models or use the 3D convolutional network (CNN) to extract pertinent features from

the 4D data and then pass it to fully connected layers to classify ASD from TD.

Machine learning-based methods for the classification of ASD

El-Gazzar et al. [28] proposed an end-to-end pipeline that uses 3D CNNs and 3D Convolutional
LSTMs to extract spatiotemporal features from the complete 4D data. To extract lower-level coherent
spatial feature maps required for the subsequent stage of learning spatio-temporal features, they used a
3D CNN with coupled weights at all input time steps. Each CNN layer has a kernel size of 3 X 3 x 3
and a stride of 2 x 2 x 2 to down-sample the input feature vector. To reduce the overfitting, they
added dropout with a rate of 0.2 to each convolution’s output. The spatial feature maps extracted by 3D
CNNs were flattened and passed to the fully connected layers for classification. However, flattening the
spatial feature maps would lead to losing spatial patterns. Using LSTM, without flattening the spatial
dimensions, allows modeling the temporal information in a memory-efficient manner. The 3D CNN
model yielded 54% classification accuracy, F1 score of 50%, whereas 3D CNN with LSTM model
yielded 58% classification accuracy, F1 score of 53% on the whole ABIDE-I consortium dataset. They
also tried modeling the flattened 4D data using a support vector machine (SVM) model, yielding 58%

classification accuracy.

2.2 Summary measures

The summary measures are used in functional connectivity analysis of neuroimaging data. Numerous
instances of lowering the dimensionality of brain volumes while preserving the data’s three-dimensional
spatial dimensions may be found in the literature on neuroimaging. These various techniques extract

various elements of the time series. The following are some examples of commonly used measures:

1. Regional homogeneity (ReHo): ReHo [85] is a measure of functional homogeneity or similarity
of the time series within a region of interest (ROI) in fMRI data. It quantifies the consistency of
the temporal behavior of the voxels within an ROI by computing the local coherence of the time

series of each voxel with its neighboring voxels. The measure is calculated by comparing the
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time series of a central voxel with its surrounding neighboring voxels within a certain radius. The
homogeneity score is higher if the time series of the central voxel is more similar to its neighbors,
indicating a higher degree of functional homogeneity within the ROI. ReHo is one of the summary

measures commonly used in functional connectivity studies.

. Amplitude of low-frequency fluctuations (ALFF): ALFF [87] is a neuroimaging metric used to
measure the magnitude of low-frequency spontaneous fluctuations in BOLD signal in fMRI data.
The ALFF metric is computed by first bandpass filtering the fMRI data to retain low-frequency
oscillations (typically 0.01 — 0.08 Hz) and then calculating the root mean square of the amplitude
within this frequency band for each voxel in the brain.

. Fractional amplitude of low-frequency fluctuations (FALFF): fALFF [88]] is a neuroimaging mea-
sure that characterizes the relative power of low-frequency (0.01 — 0.1 Hz) fluctuations within the
brain. It is calculated as the ratio of the amplitude of low-frequency oscillations (ALFF) to the
total power within the frequency range of interest. Unlike ALFF, fALFF is a relative measure that
provides information about the fraction of total power within the low-frequency range.

. Degree centrality (DC): DC [88]] is a graph theoretical measure that quantifies the importance of
a node (ROI) in a network based on the number of connections (or edges) it has with other nodes
in the network. In other words, DC measures how well connected a node is to other nodes in the
network. A node with a high DC indicates that it is highly connected and plays an important role

in information transfer within the network.

. Eigenvector centrality (EC): EC [89]] is a measure of node importance in a network based on its
connections with other important nodes. It calculates the centrality of a node by considering not
only the number of connections it has but also the centrality of its neighboring nodes. It is often
used to identify nodes critical for the spread of information or influence in a network, as these

nodes can have a strong impact on the rest of the network due to their high centrality score.

. Local functional connectivity density (LFCD): LFCD [/78] used to assess the local connectivity
properties of a brain region or a voxel in functional brain networks. It is defined as the number
of functional connections a given voxel has with its neighboring voxels, as measured by rs-fMRI.
The neighboring voxels are defined based on a pre-specified distance threshold, typically in the
range of 10-20 mm. The LFCD metric is calculated by first constructing a functional brain net-
work, where each voxel is represented as a node, and the edges between nodes represent the
functional connectivity strength between the corresponding voxels. Then, the LFCD value of a
given voxel is calculated as the number of functional connections it has with its neighbors. A
connection is defined as a significant correlation between the BOLD time series of two voxels.
The LFCD metric thus provides a measure of the local connectivity strength of a voxel, taking

into account both the number of connections and the strength of those connections.

13



7. Entropy: Entropy [85] is a measure of the randomness or disorderliness of a system. In fMRI,
it refers to the variability of the BOLD signal over time within a given brain region or voxel.
Entropy can be used to assess the complexity and variability of brain activity, which may reflect
the brain’s functional organization or changes in brain states or conditions. High entropy indicates
high variability and complexity, while low entropy indicates low variability and regularity in the
BOLD signal.

8. Voxel-mirrored homotopic connectivity (VMHC): VMHC [88,, [89] is a measure of functional
connectivity that quantifies the temporal synchronization of neural activity between homotopic
brain regions in each hemisphere. Homotopic brain regions are anatomically and functionally
equivalent and located in opposite brain hemispheres. VMHC is calculated by computing the
functional connectivity between each voxel in one hemisphere and its mirrored counterpart in the
other hemisphere. VMHC can be used to investigate the alterations in interhemispheric connec-
tivity in various neurological and psychiatric disorders and to identify potential biomarkers for

diagnosis and treatment.

9. Auto-correlation lag (ACL): ACL [43] refers to the time delay between a given fMRI signal and
its copy that has been shifted in time.

These measures can be flattened, feature engineered, and then fed to a neural network or passed
directly to a CNN for the classification of ASD.

Machine learning-based methods for the classification of ASD

Thomas et al. [73] investigated different transformations that preserve the full spatial resolution,
making it possible to train a full three-dimensional convolutional neural network (3D-CNN). They de-
termined ReHo, ALFF, fALFF, DC, EC, LFCD, entropy, VMHC, and ACL for each brain volume. The
3D CNN models has been trained on all these summary measures independently as well as all nine
measures combined for the ASD classification. All the CNN models were trained for 50 epochs with
a batch size of 32. They used binary cross entropy as a loss function and stochastic gradient descent
(SGD) as an optimizer with a learning rate of 0.01. This model yielded 66% accuracy on both ABIDE-I
and ABIDE-II datasets. The performance of CNN and SVM models trained separately on these and all
measures combined can be seen in table 2.1l

Even after combining all nine summary metrics, the outcome was still inferior to that of the best
single indicator, ReHo. The model’s performance was very bad when all the measurements were con-
catenated and provided as input. The integration of uninformative summary measures with informative
ones may have introduced additional noise to the input data, potentially posing challenges for the model
in accurately classifying the data. The ensemble model yielded much better results when compared to
the model trained on all measures combined input. Furthermore, they also used the support vector ma-

chine (SVM) technique on the same dataset and obtained equivalent findings, indicating that 3D-CNNs
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Table 2.1 Performance of CNN and SVM models on summary measures. Table from here [73]

CNN SVM
Input Accuracy | Fl-score | Accuracy | Fl-score
ReHo 0.64 0.65 0.66 0.66
ALFF 0.59 0.60 0.57 0.58
fALFF 0.62 0.63 0.57 0.58
DC 0.61 0.62 0.63 0.64
EC 0.60 0.61 0.61 0.63
VMHC 0.61 0.62 0.62 0.62
LFCD 0.59 0.60 0.63 0.65
Entropy 0.54 0.49 0.56 0.57
ACL 0.59 0.61 0.57 0.59
All measures ensemble 0.64 0.66 0.66 0.67
All measures combined 0.59 0.60 0.61 0.62

could not learn any new information from these temporal transformations that would be more useful to
distinguish ASD from TD.

2.3 Timeseries data

Brain parcellation schemes summarize the spatial information and extract the time-series data. Par-
cellation refers to the process of dividing the brain into discrete regions, or parcels, to analyze the
functional connectivity between these regions [26]. rs-fMRI data can be parcellated using a variety of

strategies.

1. Anatomical parcellation: This approach involves dividing the brain into regions based on its
anatomy. Anatomical parcellation is commonly used as a reference space for defining functional

parcellation.

2. Functional parcellation: This approach involves using the rs-fMRI signal itself to define functional
parcels of the brain. This can be done using clustering techniques, such as k-means or hierarchical
clustering, or by using independent component analysis (ICA) to separate the brain into different

networks.
3. Hybrid parcellation: This approach combines both anatomical and functional information to de-

fine the parcels. For example, one could use anatomical information to guide the selection of

voxels for functional parcellation or vice versa.
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4. Data-driven parcellation: This approach involves using machine learning techniques to identify
patterns in the data that can be used to define the parcels. These techniques include SVM, deep

learning, and random forests (RF).

Each parcellation strategy has its advantages and disadvantages, and the choice of strategy often de-
pends on the research question being addressed and the specific rs-fMRI dataset being analyzed. The
extracted time-series data would be a 2 matrix representing the time-series signal for every ROI. Dif-
ferent brain atlas/parcellations would yield different numbers of ROIs and details can be found in table
[2.2] Timeseries matrix is directly passed to 1.0 CNNs or the upper triangular part (as it is symmetric) is
extracted and passed to feature engineering pipelines followed by ML/DL models.

Table 2.2 Different brain atlas with the corresponding number of ROIs

Parcellation Type Atlas Number of ROIs
Anatomical Harvard-Oxford (HO) 111
Dosenbach 160
Automated Anatomical Labelling (AAL) 116
Functional Cameroon Craddock 200 (CC200) 200
Cameroon Craddock 400 (CC400) 392
Brainnettome 246
ICA NeuroMark (ICANM) 53

Machine learning-based methods for the classification of ASD

Supekar et al. [[72] proposed a spatiotemporal DNN (stDNN) model trained on the timeseries data
extracted using the Brainnettome atlas. The stDNN model consists of two blocks of 1D convolutional
layers and max-pooling layers, a temporal average layer, a dropout layer, and a fully connected layer
with a sigmoid activation function. The number of inputs to the fully connected layer equals the output
channels of the second convolution block layer because a temporal averaging operation averages the
temporal information for each filter. They also took sex and site into account by creating a one-hot
feature encoding scheme combined with age. They trained the model using binary cross entropy cost
function and Adam optimizer with a learning rate of 0.00005 for 300 epochs. They trained the model
on ABIDE-I and II datasets in a 5-fold cross-validation strategy. They achieved an F1 score of 0.79,
average precision of 0.76, recall of 0.82, and classification accuracy of 78.2% across the 5 folds. They
evaluated this trained model on the GENDAAR and independent Stanford cohorts, and they achieved
promising results suggesting that the model can generalize well. They used Integrated gradients (a
state-of-the-art attribution algorithm) to interpret the features contributing to the classification results.
The posterior cingulate cortex (PCC) and precuneus, dorsolateral and ventrolateral prefrontal cortex,

and superior temporal sulcus, which anchor the default mode network (DMN), cognitive control, and

16



human voice processing systems, respectively, were found to be the brain features that most clearly
distinguished ASD from TD in the three cohorts.

2.4 Static Functional Connectivity

Static Functional Connectivity (sSFNC)can be considered a measure of the ”strength” of the functional
connections between different brain regions. sFNC has been used in various neuroimaging studies to
investigate brain function and dysfunction. For example, studies using sSFNC have identified disruptions
in connectivity patterns associated with different tasks or cognitive states, such as memory encoding,
attention, and emotion regulation in individuals with neurological and psychiatric disorders. Functional
Connectivity in the resting human brain was first identified by Biswal et al. [10]. Methods based on
sFNC involve passing the upper triangular part of the sSFNC matrix as input to the linear ML models or
non-linear deep neural networks (DNN) for the classification of ASD. Feature engineering on the sSFNC
vector is also performed before training the ML/DL models.

Machine learning-based methods for the classification of ASD

Sherkatghanad et al. [65] proposed a novel 1D CNN architecture to classify ASD from TD based
on sFNC matrix. Data is preprocessed using CPAC preprocessing pipeline and parcellated using the
CC400 atlas. Each subject sSFNC matrix would be of size 392 x 392 and fed directly to the CNN model.
The CNN model was evaluated on the ABIDE-I dataset using 10-fold cross validation (CV) strategy
and leave one site out cross validation strategy (LOOCYV) in which the model is tested on data from one
site and trained on subjects from other sites. The model achieved a classification accuracy of 70.22%,
sensitivity of 77.46%, and specificity of 61.82% using a 10-fold CV strategy. The model yielded the
highest classification accuracy of 77% when tested on USM site and trained on other sites. They also
trained SVM, K-Nearrest Neighbors (KNN), and RF algorithms, achieving accuracies of 69%, 62%,
and 59%, respectively. They used the saliency technique to visualize the brain regions that contributed
the most to the classification task. They identified that the right supramarginal gyrus, fusiform gyrus,
cerebellar vermis and anterior-posterior are associated with ASD.

Heinsfeld et al. [38] used two stacked denoising autoencoders (SDA) at the pretraining stage followed
by multilayer perceptron (MLP) to classify ASD from TD. The upper triangular part of the SFNC matrix
was extracted from the data preprocessed using CPAC pipeline and parcellated using CC400 parcellation
scheme. The input feature vector would be of size 200Cy = 19900 and used stacked autoencoders to
reduce dimensions. They reported an overall 10-fold cross-validation accuracy of 70%, a sensitivity of
74%, and a specificity of 63% on the ABIDE-1 dataset. They also trained SVM and RF on the same data
and achieved a 10-fold CV accuracy of 65% and 63%, respectively. This suggests that DNN models
yield better performance when compared to traditional ML models.
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Eslami et al. [30] proposed a joint learning procedure using an autoencoder and a single layer per-
ceptron for the ASD classification task, called ASD-Diagnet. Preprocessed the data using CPAC pre-
processing pipeline and extracted the timeseries data using CC200 parcellation scheme. sSFNC matrix
was estimated using Pearson correlation coefficients and considered only the upper triangular part of
the matrix. They calculated the average correlation across all subjects in the training set. They consid-
ered only the first and last i of them for training the model (i.e.) choosing the indices with the highest
negative and positive values from the averaged correlation array. To augment the data, they employed
the Synthetic Minority Over-sampling Technique (SMOTE) [16]. The model yielded classification ac-
curacy of 70.3%, sensitivity of 68.3%, and specificity of 72.2% on the ABIDE-I dataset. With feature

selection and data augmentation techniques, the model’s performance was boosted by 3%.

Wang et al. [77] proposed a multi-atlas deep feature representation and ensemble learning method
based on SDA and MLP for the ASD identification task. They trained three SDA to reduce the dimen-
sions of input followed by MLP classifier. This model was trained independently on sFNC matrices
extracted from the CC200, Dosenbach, and AAL atlases, and the final prediction was based on a ma-
jority vote. Models trained independently on the sSFNC matrices extracted from CC200, Dosenbach and
AAL parcellation schemes yielded 73.39%, 69.74%, and 71.42%, respectively. The ensemble model
achieved a classification accuracy of 74.52%, a sensitivity of 80.69%, and a specificity of 66.71% on the
ABIDE-1 dataset. Though the proposed model yielded cutting-edge accuracy, training the three SDA
prior to MLP classifier training requires a significant amount of computation and time.

2.5 Dynamic functional connectivity

Dynamic functional connectivity (AFNC) is a type of functional connectivity analysis in neuroimag-
ing that examines how the strength and pattern of connectivity between different brain regions change
over time. Unlike sSFNC, which assumes that the strength of connectivity between regions is stable over
a fixed period of time, dFNC allows researchers to investigate how the functional connections between
different regions of the brain change in response to different stimuli or cognitive states [[62]. dFNC
analyses can be conducted using a variety of different approaches, such as sliding-window correlation,
time-varying graphical modeling, and independent component analysis (ICA). These approaches allow
researchers to identify patterns of connectivity that are specific to certain time periods or tasks, and to
examine how these patterns are related to cognitive or behavioral outcomes [8}, 64]. Presently dFNC
analysis has shown to be a successful procedure for examining the complex and dynamic nature of
functional connections in the brain, and for understanding how these connections are altered in vari-
ous neurological disorders, including ASD. A sliding window-based dFNC matrix is determined and
different measures that capture the brain dynamics are extracted. Previous studies conducted hard clus-
tering and statistical analysis to identify the fundamental characteristics of ASD. Sliding windows-based

dFNC matrix can be passed as input to ML/DL models for diagnosing ASD.
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Machine learning-based solutions based on dFNC for diagnosing ASD

Zou et al. [39], proposed a dynamic weighted functional connectivity matrix to capture the brain
dynamics and passed as an input to the SVM classifier. Preprocessed the ABIDE-I dataset using the
DPARSEF pipeline and parcellated using AAL atlas. In this dynamic weighted sliding-based approach,
different time instances within a window are assigned different weights followed by computing Pearson
correlation coefficients. The authors state that information from the recent time instances would con-
tain more information than the later ones, thus they multiplied weights to time instances in a linearly
decreasing fashion. They experimented with various window sizes in range of 15 to 100 and found the
optimal window length to be 30 and 35. Computed the variance of all the dynamic windows to capture
the temporal variability followed by feature selection using the LASSO operator [74]. The final selected
features are passed to the SVM classifier for training. The classifier yielded accuracy of 85.25% on the
NYU and 80.61% on UCLA datasets sampled from ABIDE-I consortium.

These traditional sliding window based dFNC suffer from temporal mismatch issues i.e., subnet-
works do not exhibit temporal connection between various subjects within the same temporal window.
To study the higher level and more intricate interaction linkages among many ROIs, Zhao et al. [86]
built a novel high-order dFNC based on the “correlation’s correlation” principle. High-order dFNC is
estimated by computing PCC for each window of the dFNC matrix (computing the correlation of the
correlation). To reduce the heterogeneity in the dataset, they considered only 47 TD and 45 ASD NYU
subjects from the ABIDE-I dataset. They first computed sFNC, dFNC, and high-order dFNC, followed
by applying the central moment technique to extract the temporal invariance characteristics present in
either dFNC or high-order dFNC. Feature selection techniques such as two-sample t-test and LASSO
regression have been applied to reduce the dimensions and select the relevant features. These dynamic
features extracted from dFNC, high-order dFNC and static features from sFNC are passed independently
to SVM classifiers for training. SVM classifiers trained independently on sFNC, dFNC and high-order
dFNC yielded classification accuracy of 74%, 79% and 78%, respectively.

Clustering and Statistical analysis based on dFNC

Fu et al. [35] investigated the dFNC between 51 intrinsic connectivity networks in 170 ASD subjects
and 195 age-matched typically developing (TD) individuals. Hard clustering analysis on the dFNC
windows has yielded five dynamic brain states. They found hyper-connectivity between sub-cortical
network (hypothalamus/subthalamus) and some sensory-motor networks (lingual gyrus, bi-paracentral
lobule, and right postcentral gyrus) in certain functional states.

Ma et al. [51]] examined the dFNC between 29 regions among 88 ASD and 87 TD subjects. Signif-
icantly stronger dFNC between the left fusiform / lingual gyrus and right dorsolateral prefrontal cortex
(DLPFC), between the the superior temporal gyrus, and DLPFC, between the left middle frontal gyrus
and right frontal eye field (FEF), between the right angular gyrus and the FEF, and between the right
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middle temporal gyrus and left intra parietal sulcus has been observed among ASD subjects when com-
pared to TD.

Harlalka et al. [37] explored the dynamic variability in the connection strength to characterize the
differences between 100 ASD and 75 TD subjects. They observed significantly higher dFNC between
the attention network and default mode network (DM), in patients with ASDs when compared to TD in-
dividuals. Li et al. [48]] conducted dFNC and clustering analyses using the sliding-window and K-means
clustering methods on 62 ASD and 63 TD subjects. They identified that individuals with ASD have in-
creased dFNC variability between the middle temporal pole and the posterior cingulate gyrus. The
study [34]] incorporated the use of cosine similarity to evaluate alterations in dFNC and introduced step-
wise functional network reconfiguration (sFNR) as a unified dynamic measure to effectively capture
the temporal characteristics of diverse functional brain organizations in ASD individuals. The analysis
was conducted on an independent dataset comprising 314 TD and 255 ASD subjects. The findings of
the study revealed notable increases in whole-brain sSFNR among individuals with ASD. Additionally,
they found the sSFNR between sensorimotor and cerebellar domains correlated with Autism Diagnostic
Observation Schedule (ADOS) among ASD subjects.

Using the sliding window, hard clustering-based approaches, many studies investigated altered dFNC
patterns in other disorders such as Parkinson’s disease (PD), Subjective Cognitive Decline (SCD) and
healthy controls (HCs). Chen et al. [[17] investigated the dFNC and static parameters obtained from
graph theory among 33 HCs and 32 SCD subjects. They found 4 optimal dynamic brain states through
hard clustering analysis on dFNC windows and identified hyperconnectivity within and between audi-
tory domain, visual domain, and, somatomotor networks among SCD subjects.

Fiorenzato et al. [31] analyzed the dFNC between 118 patients suffering from PD and 35 HCs. The
sliding window approach and hard clustering analysis have found two dynamic brain states. They hy-
pothesized that the underlying cognitive deficits in PD subjects are characterized by strong connectivity

in default mode and cognitive executive networks.

2.6 Research Gaps and Opportunities

Direct classification using complex deep learning models on the raw 4D rs-fMRI data is resource-
intensive and yields poor results. To address this, downsampling techniques such as summary measures
and brain atlases have been employed. Summary measures involve downsampling the data temporally,
but they assume stationary brain activity and may be influenced by various factors, leading to unreliable
results. Brain parcellation schemes reduce the spatial dimensionality by assigning regions of interest
(ROISs), but choosing parcellation schemes and resolution impacts classification metrics. sSFNC has been
used as an input feature for ASD classification, but it fails to capture temporal changes in connectivity
and the complexity of brain networks. dFNC analysis examines how connectivity changes over time and
shows promise in discriminating ASD from TD individuals. However, dFNC analysis requires advanced

algorithms, may lack consistency across individuals or scans, and interpreting results can be complex.
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Data sharing, standardized preprocessing, feature extraction, and model selection are essential to im-
prove rs-fMRI-based classification. Cross-validation and replication studies can test robustness while
addressing limitations such as parcellation scheme and data quality is crucial. Further research is needed

to enhance classification accuracy and understand the neurobiological basis of rs-fMRI measures.

2.7 Summary

While different approaches have shown promise for classifying ASD from TD using rs-fMRI data,
further research is needed to determine their effectiveness and generalizability. According to the lit-
erature, modeling the temporal aspects for diagnosing ASD produced better outcomes than other ap-
proaches. Future research could focus on capturing this temporal information to increase the classifier’s
performance and discover the inherent traits of ASD. Numerous research papers are being published
on this topic every year, but many lack reliability and replicability. To address this issue, the upcoming
chapter outlines the challenges encountered when reproducing research papers on this topic and suggests

good practices to enhance replicability and reliability.
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Chapter 3

ASD Classification Literature: Reproducibility Challenges

This chapter focuses on the difficulties encountered when attempting to replicate the results obtained
in various research papers. We will discuss the discrepancies between the reported and replicated results,

as well as potential reasons for these differences and good practices to improve reproducibility.

3.1 Introduction

The reproducibility crisis in neuroimaging refers to the difficulty researchers face in reproducing
the results of studies in the field of neuroimaging. There are several reasons why reproducibility is a
challenge in neuroimaging research. One reason is that the field is highly interdisciplinary and involves
complex data analysis techniques that require specialized expertise. Additionally, neuroimaging studies
often involve small sample sizes either cherry picked or randomly sampled from a dataset, which can
make it difficult to draw general conclusions from the results [44,57]]. Another factor that contributes to
the reproducibility crisis in neuroimaging is the use of flexible analysis pipelines that allow researchers
to selectively report only the results that support their hypotheses. This can lead to a publication bias,
where studies that fail to find significant results are less likely to be published, skewing the scientific
literature towards positive results [13]. To address these issues, researchers have called for greater
transparency and openness in neuroimaging research. This includes sharing data, code, and analytical
methods to ensure that other researchers can reproduce the results of a study. Additionally, the use of
standardized analysis pipelines and larger sample sizes can help improve the reliability of neuroimaging
research [36].

3.1.1 Does reliability of a study improve with sample size?

Yes, the sample size in neuroimaging studies can have a significant impact on the reliability and
generalizability of the results. In general, larger sample sizes can increase the statistical power of a
study, which means that researchers are more likely to detect true effects and less likely to mistakenly

interpret random fluctuations as significant findings [11]. For example, if a neuroimaging study only
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includes a small number of participants, it may not be possible to reliably detect subtle differences in
brain activity between groups or conditions, or to generalize the findings to other populations. This is
because the variability in the data may be too high relative to the size of the effect being studied, which
can lead to low statistical power and a higher likelihood of false positives. On the other hand, studies
with larger sample sizes can provide a more accurate representation of the population being studied,
enhancing the generalizability of the findings. Larger samples can also help to reduce the impact of
outliers or other sources of noise in the data, which can improve the reliability of the results [57].
However, it’s worth noting that increasing the sample size alone is not a solution to all the challenges in
neuroimaging research. Other factors such as data quality, experimental design, and analytical methods

also play important roles in determining reliability and validity of the results.

3.1.2 Machine Learning Solutions in neuroimaging research

When a research paper proposes a novel neural network architecture, there are several parameters

that should be reported for reproducibility. These parameters include:

1. Network architecture: This includes the number and type of layers in the network, the number of

neurons in each layer, and the activation functions used in each layer.

2. Initialization: This refers to how the network weights and biases were initialized, as this can affect

the network’s performance.

3. Optimization algorithm: This refers to the algorithm used to update the weights and biases of the

network during training, such as stochastic gradient descent (SGD) or Adam.

4. Learning rate: This refers to the step size used to update the weights and biases during training,

and can significantly impact the network’s convergence.

5. Regularization: This refers to techniques used to prevent overfitting, such as L1 or L2 regulariza-

tion, dropout, or early stopping.

6. Batch size: This refers to the number of training examples used in each iteration of the optimiza-

tion algorithm, and can affect the speed of training and the convergence of the network.

7. Number of epochs: This refers to the number of times the entire training dataset is passed through

the network during training.

By reporting these parameters, researchers can enable others to reproduce and build upon their work,
as well as facilitate comparisons between different approaches and identify areas for improvement. Most
papers published in the domain of ASD classification involving neural networks failed to report the batch
size, regularization techniques, and weight initialization strategies employed, which could impact the

outcomes significantly.
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3.2 Experiments on ASD literature

All the papers presented below have not made their code publicly available. The reported results in
the paper and reproduced results when we implemented the paper are significantly different.

3.2.1 Classification of ASD using a Convolutional Neural Network [65]

Introduction & Methods Sherkatghanad et al [65] proposed a 1D CNN architecture to classify ASD
subjects based on rs-fMRI data. They passed the 2D symmetric SFNC matrix as input to the CNN
architecture for the classification of ASD from TD. The sFNC matrix was estimated on timeseries data
extracted from CC400 parcellation and CPAC preprocessing pipeline. The input was passed to seven
1D convolutional layers with filters of different dimensions from 1 x 392 to 7 x 392 simultaneously
followed by corresponding seven max-pooling layers (as shown in figure 3.I). The Max-Pooling layer’s
outputs were concatenated and passed to the fully connected dense layer for classification. Dropout

regularization after max pooling layers was used to reduce overfitting.
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Figure 3.1 Sherkatghanad et al [65] proposed 1D CNN architecture

Implementation & Results The model was trained in a batches of batch size 32 for 300 epochs, with
a learning rate of 0.005. The proposed model have achieved a 10-fold cross validation accuracy of
70.22%, sensitivity of 77% and specificity of 61%.

24



Reproduced results & Observations The weight initialization strategy and optimizer used are not
specified in this paper. We attempted to replicate the results using various combinations of weight ini-
tialization schemes and optimizers, but best accuracy we could achieve was 68% with Adam optimizer
and Xavier normal weight initialization strategy. However, during the training, we observed signifi-
cant fluctuation in the validation loss. A smooth decreasing trend is not observed in the validation loss
even after experimenting with other parameters such as learning rate, using batch normalization etc.

Therefore, our reproduced result doesn’t seem to be a reliable one.

3.2.2 Diagnosing ASD using Neural Networks [84]

Introduction & Methods Yin et al. [84], proposed a Auto-Encoder (AE) based Deep Neural Network
(DNN) for diagnosing ASD based on brain networks created using rs-fMRI data. The proposed method
is evaluated on 871 subjects downloaded from the ABIDE-1 dataset. CPAC pre-processing pipeline was
used to preprocess the data and power atlas to parcellate the brain into 264 ROIs. sFNC matrix of shape
264 x 264 is computed using Pearson correlation coefficient and thresholded to a value 7T'.
aij = 1, if cmij Z T
= —1, if CMj 5 S =T
(3.1)
=0, if i=3j
=0, otherwise

where cm; ; is the SFENC matrix before thresholding and a;; is after thresholding.

Eigenvalues of the Laplacian matrix, which is the difference between the adjacency matrix and de-
gree matrix are computed and normalized. These 264 eigenvalues were concatenated with graph the-
oretical measures [37] such as assortativity, clustering coefficient, and the average degree to create an
input vector of length 267 for every subject. This input vector is passed to the AE to extract the advanced
features. Then, decoder part is being removed and two more hidden layers were added to the encoder

for classification (as shown in figure[3.3])). The classifier was trained on these advanced features.

Implementation & Results To prevent data split bias from affecting the results, the 10-fold cross
validation was carried out using random shuffling. The proposed method DNN model without a pre-
trained AE achieved a receiving operating characteristic curve (AUC) of 79.7% and a classification
accuracy of 76.2% using 10-fold cross-validation strategy for threshold 7' = 0.2. The classification
accuracy boosted to 79.2% and the AUC to 82.4% when the DNN and the pre-trained AE are combined
and trained on the raw features. They also compared the classification results of DNN architecture
with those of traditional machine learning algorithms such as SVM and KNN using the same advanced

features.

Reproduced results & Observations We implemented the above AE architecture and classifier using
Pytorch. Although the method is fairly easy to implement, the paper skips crucial information like the
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Figure 3.2 Yin et al. autoencoder-based classifier for classification of ASD

weight initialization strategy, activation functions, optimizer, batch size, number of epochs, and learning
rate in the case of autoencoder and classifier. We attempted a variety of combinations of these hyper
parameters, but the best we could achieve was 56.48% classification accuracy, a sensitivity of 27.34%
and a specificity of 81.63% with the default neural network parameters. The classification accuracy
reproduced was almost close to the random chance (50%). Neural network hyperparameters play a vital

role in training the model and have to report in the paper.

3.2.3 Classifying ASD using Machine Learning based on temporal properties [21]

Introduction & Methods Dammu et al. [21]], proposed approach captures brain dynamics by extract-
ing graph-theoretical methods such as occupancy rates based on dynamic functional connectivity. Data
is pre-processed using CPAC pipeline and parcellated using AAL atlas. Participants with repetition time
(TR) of 2 seconds were included in this study and dFNC matrix was estimated based on sliding window
approach with window size 22 and step size 1. Clustered all the windows extracted from all the subjects
using K-Means algorithm to identify the dFNC patterns or brain states. The number of brain states could
be different in different age groups. To create temporal attributes and enable the classifier to learn the
best features, they implemented group clustering for K values ranging from 6 to 31 on all participant
data. An input vector of size 481 has been created for each subject i.e. the subject-wise mean lifetimes

for each state are computed for all K values and stacked horizontally. This input vector describing
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the mean-lifetimes of several brain states is passed as input to DNN and ML algorithms such as SVM,
Random Forest (RF) and XG Boost algorithm.
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Figure 3.3 Dammu et al. [21]] proposed pipeline

Implementation & Results The implementation details and hyper parameters are not mentioned in

the paper. Table[3.1] summarizes the results reported in the paper.

Table 3.1 Different brain atlas with corresponding number of ROIs. This table adapted from [21]]

SVM | 0.735 | 0.764 | 0.704 | 0.748

RF | 0.717 | 0.759 | 0.673 | 0.733
XGB | 0.736 | 0.750 | 0.720 | 0.744
DNN | 0.710 | 0.713 | 0.706 | 0.714

Reproduced results & Observations Hyper-parameters are crucial for training the DNN. The hyper-
parameters which are essential to training SVM are regularization constant (\), kernel and, to train RF,
XG Boost are number of estimators, criterion, and max depth. The paper fails to mention these hyper-
parameters of the classifiers and other implementation details. Despite our best efforts and several

combinations of various hyper-parameters, we could only reach a classification accuracy of 65.93%.
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3.2.4 Dynamic functional connectivity analysis among ASD subjects [35]

Introduction & Methods Fu et al. [35]] investigated the dFNC between 51 intrinsic connectivity net-
works in 170 ASD subjects and 195 age-matched TD individuals. Using group-independent component
analysis (GICA), 51 intrinsic connectivity networks (ICNs) were extracted based on the spatial map-
pings of the components. dFNC was estimated using a sliding window approach with window size of
20 and a step size of 1 based on the time courses (TCs) of ICNs. To look into regional and global dy-
namic patterns of functional connectivity, time-varying correlation coefficients (IFNC estimations) were
subjected to hard clustering state analysis and fuzzy meta-state analysis. To examine the frequency of
different functional states, they computed the percentage of occurrence of windows per state per subject.

Implementation & Results All the above analysis was implemented using GIFT toolbox [60]. From
the hard-clustering analysis, they found 5 optimal brain states or dFNC patterns. The occurrence of
state 1 is significantly higher in TD individuals, and state 4 is significantly greater in ASD subjects
(p < 0.05). Hyper-connectivity between the subthalamus/hypothalamus and right postcentral gyrus,

bi-paracentral lobule in state 2, and lingual gyrus in state 4 has been observed among ASD subjects.

Reproduced results & Observations First, the paper lacks low-level details needed to pre-process
the data, extract ICNs using the GIFT toolbox, and parameters to perform KMeans clustering. Second,
we obtained only 189 TD subjects using the data selection criteria proposed in the paper while they
reported 195 TD subjects. We found four optimal states while performing the clustering analysis on the
dFNC windowed matrices, as opposed to the paper’s report of five. Therefore, as a result, the remaining
analysis and final conclusions are entirely different from what we reproduced and what was reported in
the publication.

Neccessary details which would have helped in reproducing the reported results :

1. The subject IDs of the final subjects selected for the analysis should have been provided in the

supplementary material.

2. The pre-processed data should have been made publicly available because it is a crucial and

intricate step.

3. They should have provided the parameter files generated by GIFT toolbox which contains all the
required details to extract the ICNs, estimate dFNC and cluster the dFNC windows.

3.3 Good Practices to improve reproducibility

Neuroimaging studies involving ML and neural networks can be particularly challenging to repro-
duce. However, there are several best practices that can be employed to improve reproducibility in these

studies [76l]. Here are some of them:
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e Data sharing: Sharing the data and code publicly is important in order to facilitate replication of
the study by other researchers. This can also promote transparency and trustworthiness of the

findings.

e Pre-processing: Document all pre-processing steps, including image normalization, smoothing,
and registration. Ensure that the pre-processing is done in a consistent manner across all partici-
pants. Making the pre-processed data available saves a lot of time and efforts of other researchers.

e Feature extraction: Clearly define the features that are being extracted from the neuroimaging

data. Use established feature extraction methods that are widely accepted in the field.

e Model selection: Clearly document the ML or neural network models and its parameters that are
being used. Use models that have been previously validated and showed consistent performance

across different datasets.

e Cross-validation: Use cross-validation to test the robustness of the model. This involves splitting
the data into training and testing sets and repeating the analysis multiple times with different
splits. Make sure to avoid data leakage i.e. training and testing the model on same or overlapping

datasets. This could lead to false and unreliable results.

e Replication: Conduct replication studies to confirm the robustness of the findings. Replicating

the study using different samples or datasets can help to establish the validity of the findings.

By following these best practices, researchers can improve the reproducibility of their neuroimaging
studies involving machine learning and neural networks, and help to ensure that the findings are reliable

and robust.

3.4 Summary

The reproducibility crisis in neuroimaging is caused by the interdisciplinary nature of the field, small
sample sizes, and flexible analysis pipelines that allow researchers to report only results that support their
hypotheses. There is urgent need for greater transparency, openness, and the use of standardized analysis
pipelines and larger sample sizes to improve the reliability of neuroimaging research. The use of ML
and neural networks in neuroimaging studies can be challenging to reproduce. However, employing best
practices as described in section can improve reproducibility. In the next chapter we will discuss
our study where we introduced a novel neural network with two hidden layers based on sFNC for
ASD classification, producing better results than the current state-of-the-art methods. Additionally, we
applied attribution methods to explain and interpret the model.
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Chapter 4

Diagnosis of ASD using Static Functional Connectivity

The current diagnosis of Autism Spectrum Disorder (ASD) is subjective, lacks accuracy, and requires
experts, resulting in an economic burden on families. sSFNC (as explained in subsection measures
the functional connections between different brain regions and can provide important diagnostic infor-
mation of various neurodegenerative and psychiatric disorders like ASD. ML algorithms can potentially
analyze and identify functional connectivity patterns that are difficult for human clinicians to detect,
improving the accuracy and consistency of diagnoses. In this chapter, we will present our method for
classifying ASD from TD using sFNC and interpreting the model to determine which brain regions cor-
relations are most relevant for the classification task. The material in this chapter has been taken from
[S8].

4.1 Dataset

We utilized the dataset from the preprocessed ABIDE-I [22]. 86 ASD scans have been discarded
due to their missing time series [[77]. There is significant noise due to patient-specific difficulties such
as repetitive head motion, body trembling, keeping eyes open/closed during the scan, and heterogeneity
due to high variation in demographics, scan parameters, and age groups of participants collected from
different sites. We experimented with four different pipelines such as CCS [80]], C-PAC [19], DPARSF
[82]], NIAK [7] and four brain parcellation schemes such as HO, AAL [75]], Dosenbach 160 [23]], CC200
[20].

'"Prasad, PK.C., Khare, Y., Dadi, K., Vinod, P.K. and Surampudi, B.R. (2022). Deep Learning Approach for Clas-
sification and Interpretation of Autism Spectrum Disorder. In International Joint Conference on Neural Networks
(LIJCNN-2022) (pp. 1-8). https://ieeexplore.ieee.org/document/9892350/
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4.2 Methods

4.2.1 Feature Extraction

sFNC is measured by calculating the pair-wise correlations between every pair of brain regions.
Mostly these correlations are linear, which are captured using the Pearson Correlation Coefficient (PCC).
The PCC, p,,, for two signals, x and y each of length 7" and mean # and § respectively, can be computed
using the following equation.

S (e — @) (g — §)

e S

4.1)

Given n brain regions, we obtain an n x n, SFNC symmetric matrix where each (7, j)th entry repre-

sents the PCC between 7t and ;" regions. We extract the upper triangular values of the SFENC matrix
and use them as an input to our model.
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Figure 4.1 Classification Pipeline. 1. Pre-processing the rs-fMRI scan. 2. Extracting the time-series
data using pre-defined anatomical or functional brain parcellations. 3. Extracting the static functional
connectivity matrix. 4. Flattening the upper triangular part of functional connectivity matrix and passing
as input to the auto-encoder. 5. Training the auto-encoder. 6. Fine-tuning the classifier with pre-trained
auto encoder weights.
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4.2.2 Autoencoder and Classification Method

Autoencoder (AE) [4] is a type of neural network used for unsupervised learning, particularly for
data compression, denoising, and feature extraction tasks. AE has been applied in various fields, includ-
ing image processing, natural language processing, and recommendation systems. AE consists of an
encoder network that maps input data to a lower-dimensional representation, called the “’latent space”,
and a decoder network that reconstructs the input data from the latent space. The encoder takes the input
vector (z) and maps it to a lower-dimensional representation in the latent vector (2), while the decoder
takes the latent representation and reconstructs the input vector (). The loss function measures the
difference between the original input data and the reconstructed output, and the AE aims to minimize
this loss during training. Usually, the reconstruction loss is computed using the Mean Squared Error
(MSE).

n

Loss(x,2) = Y (z; — &) (4.2)
i=1

One of the key features of autoencoders is that they learn to represent data in a compact and mean-
ingful way in the latent space. The encoder learns to extract relevant features or representations from
the input data, which are then used by the decoder to reconstruct the input data. By doing so, autoen-
coders can learn to capture important patterns, structures, and features in the data, even if the data is
high-dimensional or noisy.

In this study, we use the autoencoder in the pretraining stage. The encoder architecture consists of
two hidden layers of size 2048 and 512 respectively, as shown in Figld. | We use tanh as the nonlinear
activation function for both the layers. The decoder architecture mirrors the encoder’s, with two hidden
layers of size 512 and 2048, respectively. For each fold, we first train the autoencoder, remove the
decoder part, and add the classifier, which has a single output layer as shown in Figid.1| The model
comprising the encoder and classifier is then fine-tuned for the classification task by minimizing the
binary cross-entropy loss H between the original class label, y; and the model prediction, g; for all the

N subjects.
N

H=— ;(% «log gi + (1 — yi) x log(1 — 7)) (*3)

4.2.3 Model Interpretation

Motivation Many studies have developed classification pipelines to detect ASD from TD with high
accuracy. However, identifying the brain bio-markers in ASD subjects is less explored. Hence, it
is important to identify which features or connectivities are contributing to the prediction of Autism.
Therefore, in this study, we have attempted to find out the regions associated with ASD using Integrated
Gradients (IG) [[70] and DeepLIFT [66]]. To the best of our knowledge, this is the first study in our field
to use such cutting-edge attribution techniques.
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Introduction to Attribution Methods Attribution methods used to understand and interpret the con-
tributions of different input features or variables towards the prediction of a model. Attribution methods
are divided into two categories: Perturbation-based approaches and Backpropagation-based approaches.
The perturbation-based approaches compute the feature importance by making perturbations to individ-
ual inputs or neurons and observing how this affects the network. As each perturbation requires a
separate forward propagation through the network, such methods can be computationally expensive.
Backpropagation-based approaches compute the feature importance by propagating the signal from the
output back to the input in one pass, making them efficient. Attribution methods such as Deconvolu-
tional networks, Guided backpropagation, Layer-wise relevance propagation compute feature impor-
tance based on the gradient of input with respect to models prediction. These gradient-based methods
suffer from saturation and thresholding problems as explained in [70]. IG and DeepLIFT attempt to
tackle these limitations. Therefore, this study uses IG to determine which ROIs in the brain are associ-
ated with ASD and are further validated by DeepLIFT.

Integrated Gradients IG is a gradient-based method aggregates the gradients along the inputs that
fall on the straight line between the baseline and the input. The baseline is typically a reference point,
such as the mean or zero value of the input features, and the integral is computed along a linear path
connecting the baseline and the input data point. The integral of gradients measures the change in
the prediction caused by the change in the input features along the path, and it helps to quantify the
importance of each feature in the prediction. Computationally, the IG algorithm involves the following

steps:

e Define a baseline: A baseline is chosen as a reference point, typically the mean or zero value of

the input features. This baseline serves as a starting point for computing the integral of gradients.

e Compute gradients: Gradients of the output of the neural network with respect to the input features
are computed. These gradients represent the sensitivity of the prediction to changes in the input

features.

e Compute path: A linear path is defined from the baseline to the input data point of interest.
This path is typically parameterized by a scalar value, and intermediate points along the path are

computed.

e Compute integral: The integral of the gradients along the path is computed using numerical in-
tegration techniques, such as the trapezoidal rule or Simpson’s rule. This integral quantifies the
change in the prediction caused by the change in the input features along the path.

o Attribute prediction: The integrated gradients are used to attribute the prediction to the input fea-
tures. The integrated gradients represent the contributions of each input feature to the prediction,

and they can be visualized or analyzed to interpret the neural network’s behavior.
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The integrated gradient along the i*” dimension for an input x and baseline 2’ is defined as follows.
Here, OF (x)/0x; is the gradient of F(z) along the i** dimension.

1 / /
1Gi(z) = (z; — 7)) x / OF@ +ax(@=2)),, (4.4)
a=0 8561

DeepLIFT DeepLIFT method computes feature importance based on explicating the difference in
output from some reference output in terms of the difference of the input from some reference input.
Though the gradient is zero, information can be propagated using this approach based on differences
from the reference values [66]. The contribution of a feature is computed as the difference between the
activation of the feature at the input layer and the reference activation, multiplied by the gradient of the
prediction with respect to the feature. This attribution method helps to quantify the importance of each

feature in the prediction.

Summary IG and DeepLIFT are both methods for interpreting neural networks, but they differ in their
approaches, baseline selection, gradient computation methods, interpretation results, and computational
complexity. Feature importance for any input is computed against baseline input. A baseline represents
the beginning point to compute the feature’s significance and should be unbiased in terms of being in-
dependent of the final attribution method chosen. Defining a baseline is challenging and depends on the
dataset. Passing the input with null feature values reveals how the model performs when no information
is provided and is neutral to the models prediction as recommended in [69]. Therefore, initializing the
baseline as input of zeros would be appropriate in this study. IG and DeepLIFT has several advantages as
an interpretation method for neural networks. Firstly, it provides a way to quantify the contributions of
input features to the predictions, allowing for a better understanding of which features are important for
the neural network’s decision-making process. Secondly, these methods are model-agnostic, meaning
it can be applied to any neural network architecture, including convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and transformer models, among others. Thirdly, these methods can
be used for both binary and multi-class classification problems and regression problems, making them

versatile in interpreting different types of neural networks.

4.3 Experiments and Results

4.3.1 Experimental Setup

This study evaluates the proposed method using 10-fold cross-validation [56] on the ABIDE-1
dataset with 949 samples. In each fold, 20% of the training set is used as a validation set for hyper-
parameter tuning. The upper triangular part of the sSFNC matrix is flattened and passed as input to

train the autoencoder part (pretraining stage) for 50 epochs and the classifier part for 50 epochs using
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Adam optimizer with a learning rate of 10~* and weight decay of 0.1. The encoder part of the classifier
is initialized with pretrained auto-encoder weights and the whole classifier has been trained. All the
hyper-parameters were tuned using cross-validation The code is implemented in pytorch [54]] and made
available her Computations are performed on a computing system with 16GB RAM and NVidia K80
GPUs for the entire training stage.

4.3.2 Classification

We report the accuracy, sensitivity, and specificity of our model. Our model achieves a new state-
of-the-art performance with an accuracy of 74.82%, sensitivity of 67.33%, specificity of 80.75% on
the ABIDE-1 dataset. Table {.T| reports the performance of the proposed method in comparison with

previous studies for the ASD classification task.

4.3.3 Impact of different Preprocessing Pipelines

In this section, we discuss the impact of using different preprocessing pipelines on the performance
of our proposed method. We train our model on data obtained using four preprocessing pipelines,
CPAC, NIAK, DPARSEF, and CCS. Table shows the classification results using these pipelines. We
get the best accuracy of 74.82% for the CPAC pipeline followed by 71.21% for DPARSF, 71.04% for
CCS, and 64.55% for NIAK. As we can see, there is a 13% difference in the accuracy when using the
CPAC pipeline compared to the NIAK pipeline, which suggests that choosing the correct preprocessing

pipeline for the classification task plays a significant role in the overall results.

Table 4.1 Our method outperforms all the previous methods in overall accuracy.

Method Accuracy(%) Sensitivity(%) Specificity(%)
Heinsfeld[38]] 70.0 74.0 63.0
Parisot[53] 70.4 - -
ASD-Diagnet[30] 70.3 68.3 72.20
CNNJ63] 70.22 77.46 61.82
AIMAFE|T77] 74.52 80.69 66.71
Proposed Method 74.82 67.33 80.75

4.3.4 Impact of different parcellation schemes

This section presents the results of a comparative study using four different brain parcellations —
CC200, Dosenbach, AAL, and HO — which parcellate the brain into 200, 160, 116, and 111 regions,

respectively. As the number of regions of interest (ROIs) is different for each atlas, the input vector size

Zhttps://github.com/pindi-krishna/Classification-and-Interpretation-of-ASD.git
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Table 4.2 Results using different preprocessing pipelines on ABIDE-1 dataset using CC200 brain par-
cellation. CPAC pipeline has yielded the best performance

Pipeline = Accuracy(%) Sensitivity(%) Specificity(%)

CPAC 74.82 67.33 80.75
NIAK 64.55 46.78 78.6

DPARSF 71.21 64.46 76.57
CCS 71.04 66.02 75.02

Table 4.3 Results using different atlases on ABIDE-1 dataset preprocessed using CPAC pipeline

Atlas Accuracy(%) Sensitivity(%) Specificity(%)
CC200 74.82 67.33 80.75
HO 72.29 66.06 77.21
Dosenbach 70.92 64.69 75.85
AAL 69.95 60.90 77.09

Table 4.4 Leave-one-site-out results on ABIDE-1 dataset preprocessed using CPAC pipeline and CC200
brain parcellation scheme

Site Accuracy(%) Sensitivity(%) Specificity(%)
CALTECH 71.25 64.29 76.67
CMU 71.54 58.46 84.62
KKI 73.91 65.56 79.28
LEUVEN 74.07 33.0 98.24
MAXMUN 57.34 48.24 62.86
NYU 78.75 72.33 82.60
OHSU 60 44.44 70
OLIN 74.9 66.67 82.22
PITT 73.73 63.33 82.96
SBL 54.82 18.34 84.0
SDSU 76.13 40.0 90.91
STANFORD 58.38 78.82 41.0
TRINITY 65.0 65.26 64.8
UCLA 76.0 71.31 80.91
UM 75.76 75.86 75.67
USM 85.08 84.29 86.4
YALE 84.31 89.56 80.0
Mean 71.23 61.16 77.83
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also changes accordingly, affecting the models overall performance. Table 4.3| shows the classification

results using the above mentioned atlases. We get the best accuracy of 74.82% using the CC200 atlas.

4.3.5 Leave-One-Site-Out Results

One major challenge in the ASD classification task using the ABIDE-1 dataset is the inter-site vari-
ability as it contains rs-fMRI scans from 17 different sites. To evaluate the performance of our proposed
method on new sites, we train our model using the leave-one-site-out approach. In this approach, we
keep the data from each site separately for testing, and we train our model on the data from the remain-
ing sites. This approach allows us to estimate the models generalizability to new, unseen sites. Table[#.4]
shows the leave-one-site-out results. Our model achieves the best accuracy of 85.08% on scans collected
from the University of Southern Mississippi (USM) site, followed by 84.31% for Yale and 78.75% for
NYU.

4.3.6 Interpretation

Attribution methods have been applied on the model trained using the data obtained from CPAC pre-
processing pipeline and CC200 brain parcellation scheme as this combination yielded the best result.
The steps for finding the associated regions using IG and DeepLIFT are as follows:

1. Group all the correctly predicted autism samples from the test set as we are interested in regions

that led to the prediction of autism

2. Apply attribution method on these autism samples to find the attributions for each feature passed

as input to the model with a zero embedded vector as the baseline.
3. Replace the attributions in the top one percentile with 1 and the remaining values with 0.

4. Construct a 2D matrix of size 200 x 200 with attribution vector contributing to the upper triangular

matrix.
5. Calculate the row-wise sum and pick those ROIs with the maximum value.
6. Repeat steps 1 — 5 on each fold and find out the most repeated, common ROIs in all the folds.

The results are qualitatively similar when the attributions in top & percentile (¢ = 0.5,2, and 3)
are replaced with 1. We also employed the same attribution methods on the TD subjects to ensure the
consistency of the identified regions. It was observed that the regions influencing the prediction of ASD
were also found to have an impact on the prediction of TD, considering the binary nature of the classi-
fication task. These attribution methods have been implemented using Captum, a model interpretability
library for PyTorch [45]. IG and DeepLIFT analysis identifies the following regions: Left Lingual
Gyrus (LLG), Right Insula Lobe (RIL), Right Cuneus (RC), Right Middle Frontal Gyrus (RMFG), Left
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Superior Temporal Gyrus (LSTG) to be associated with ASD classification (see Figi.2). The primary
function and coordinates of these regions based on CC200 parcellation are shown in Table We con-
clude that feature attribution methods such as IG and DeepLIFT enable accurate identification of brain

regions whose activation seems to be altered in ASD compared to TD.

Table 4.5 ROIs that contributed most to the ASD classification task based on CC200 brain parcellation

ROI name ROI number Center of mass Primary Function
LLG 177 (-14.3;-74.2;-10.1)  Face/Object Recognition
RIL 59 (36.7;17.2;3.6) Decision making
RC 142 (17.8;-89.5;22.7) Visual Processing
RMFG 106 (28.6;34.6;42.0) Attention
LSTG 200 (-41.9;-31.5;15.2)  Language Comprehension
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Figure 4.2 Visualization of regions associated with ASD in 3 different views using Brain Net Viewer
[79]. A. Sagittal view B. Axial View C. Coronal View. LLG : Left Lingual Gyrus, RIL : Right Insula
Lobe, RC : Right Cuneus, RMFG : Right Middle Frontal Gyrus, LSTG : Left Superior Temporal Gyrus

4.4 Discussion

This work shows that the proposed method demonstrates effective results on the ASD classification
task. Among all the studies reported in Table [4.1] our method achieved the best classification accuracy
of 74.82%. The entire training time of our model is less than an hour, approximately 10x faster than
the previous state-of-the-art method. This suggests that the autoencoder pretraining weights acted as
an excellent initialization point for training the classifier, which helped in the faster convergence of the

model.
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The data have significant heterogeneity as the scans are collected from various sites, and each site
uses a different set of scan parameters and protocols. The variations in the leave-one-site-out results as
shown in Table [4.4] highlight the impact of the heterogeneity on the classification task. Although there
is no consensus and conceptual clarity on how different preprocessing pipelines and brain parcellations
affect the ASD classification results, we observe a significant variation in the results as shown in Table
and [4.3] respectively. These variations may occur due to the implementation of different algorithms
and parameters used in preprocessing pipelines and different ROIs extracted from each parcellation
scheme. The empirical results obtained in this study reveal that the combination of CPAC preprocessing
pipeline and CC200 parcellation yield the best accuracy for the ASD classification task. Going forward,
these results might be useful in defining a common benchmark dataset and specifications to enable a fair

and viable comparison of methods being proposed for ASD classification.

This study identifies LLG, RIL, RC, RMFG, LSTG associated with ASD. A lingual gyrus plays a
crucial role in vision processing, primarily related to letters. Chandran et al. [15] found a significant
association between the left lingual gyrus cortical thickness and the right lateral occipital cortex surface
area among autism subjects. The greater volume and gyrification of the lingual gyrus and lateral occipi-
tal cortex may cause abnormal visual processing in individuals with higher autistic symptoms. Yamada
et al. study [81] on 36 ASD subjects and 38 TD subjects found a significant change in the anterior sector
of the left insula and the middle ventral sub-region of the right insula in the ASD brain. They noticed
a notable volumetric increase in the ASD brain compared with the TD brain in the middle ventral sub-
region, in the right insula. The right cuneus is responsible for visual processing. Stock et al. study [27]
on 66 adults with high-functioning autism and 66 TD investigated gray matter abnormalities in the two
groups. They found increased gray-matter volume in frontal brain regions, including the medial pre-
frontal cortex, superior and inferior frontal gyri, and middle temporal gyrus, and reduced gray-matter
volume in posterior brain regions, including the posterior hippocampus, cuneus, in individuals with
ASD in relative to TD. Middle Frontal Gyrus and Face processing seem quite relevant as ASD patients
have difficulty with face processing and facial emotion identification. In ASD subjects, significantly
reduced activity in the middle frontal gyrus when involving face processing tasks and middle temporal
gyrus during nonface social tasks is found when compared to TD subjects [S5]. The superior temporal
gyrus (STG) is responsible for language comprehension. Bigler et al. study [9] on 30 autistic children
and 39 controls of similar age, education, and head circumference, investigated the link between autism
and intellectual-language-based abilities. Clinical Evaluation of Language FundamentalsThird Edition
(CELF3) [63], divided into three index scores: expressive, receptive, and total, has been used to measure
language ability. This study observed a positive correlation between receptive language scores and STG

volume in control subjects and zero correlation in autistic subjects.
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4.5 Summary

We proposed a model with two hidden layers and an autoencoder (AE) pertaining that achieves
state-of-the-art performance. In addition, for model interpretation we used integrated gradients (IG) and
DeepLIFT to identify ROIs associated with ASD. We demonstrated the effects of different preprocessing
pipelines and brain parcellation schemes on classification performance. Although the BOLD time series
signal is a time-varying signal throughout the rs-fMRI scan, in the proposed approach, we calculated
the grand mean FC value over the entire time series, thus yielding sFNC. Features from the sFNC
matrix were used in the proposed approach to obtain the best results. Thus, there is still scope for
improvement using various measures to capture the brain dynamics using the dFNC. In the next chapter,
we will discuss clustering, statistical and meta-state analysis conducted based on dFNC to understand

the fundamental characteristics of ASD.
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Chapter 5

Characterizing ASD using Dynamic Functional Connectivit

Dynamic functional connectivity (dFNC) is a neuroimaging technique that analyzes how connec-
tivity between different brain regions changes over time. Currently, the dFNC analysis has proven to
be effective in studying the neurological basis of various psychiatric disorders, including ASD. The
functional correlation matrix for each overlapping interval was created using the BOLD signals in the
rs-fMRI time series. The changes in functional connectivity between brain regions can be captured

continuously over time and analyzed to understand the ASD characterstics.

5.1 Dataset & Preprocessing

We used the pre-processed dataset from the ABIDE-I initiative [22]. For the analysis, we chose 383
subjects (188 ASD and 195 TD). The criteria (figure[7.1)) to include subjects are as follows:

1. Subjects with DSM-IV diagnosis,
2. Male subjects to remove the gender bias.

3. Subjects with mean frame-wise displacement (mFD) corresponding to two standard deviations
above the sample mean, i.e., smaller than 0.4432

4. Subjects with atleast 175, volumes in fMRI acquisition
5. Subjects with repetition time (7'R) = 2 sec while scanning

6. Subjects with Full IQ score

]

. Subject mask with a spatial correlation greater than 0.8 with the group mask computed using the

subjects qualified for the above five conditions. Group mask computation is as follows:

'Prasad, P.K.C., Dadi, K., and Surampudi, B.R. (2023). Dynamic functional connectivity analysis in individuals
with Autism Spectrum Disorder. In International Joint Conference on Neural Networks (IJCNN-2023).
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(a) Firstly, we determined the individual mask for each subject by setting the value of voxels

larger than 70 percent of the entire brain mean value to 1.

(b) Next, we set the voxels present in more than 70% of the individual masks to 1 to compute a

group mask.

We used publicly available preprocessed four-dimensional rs-fMRI scans using Connectome Computa-
tion System (CCS) [80]. Dataset can be downloaded from here EI by setting the pipeline as ‘ccs’ and
strategy as ‘nofilt_noglobal’.

5.2 Methods

5.2.1 Extraction of Independent Component Networks

We used the ICA NeuroMark template [25]] to extract 53 Independent Components (ICs) belonging
to 7 resting state networks. The ICA NeuroMark Template is a functional parcellation atlas developed
using independent component analysis (ICA) applied to rs-fMRI data. The atlas is based on data from a
large sample of healthy individuals, and its regions of interest (ROIs) are defined by functional networks
rather than anatomical boundaries. This approach allows for a more precise mapping of functional con-
nectivity networks in the brain and has the potential to reveal new insights into brain organization and
function. The atlas is based on a standardized template space, which allows for easy comparison and
integration with other neuroimaging datasets. The ICA NeuroMark Template has shown promise in
diagnosing neurological disorders, such as Alzheimer’s disease, Parkinson’s disease, and multiple scle-

rosis. Therefore, we used it for the dFNC analysis of ASD to identify the reliable bio-markers.

The number of components is denoted by C'. These networks were categorized into the following
seven domains: Subcortical Domain (SC; ICs: 1 — 5), Auditory Domain (AUD; ICs: 6,7), Visual
Domain (VIS; ICs: 8 — 16), Somatomotor Domain (SM; ICs: 17 — 25), Cognitive Control domain (CC;
ICs: 26 — 42), Default-Mode Domain (DM; ICs: 43 — 49), and Cerebellar Domain (CB; ICs: 50 — 53).
Each of these networks has specific functional roles and is involved in different cognitive and motor

processes described as follows [[1]:

1. Sub-cortical Network (SC): SC is a functional network that includes the thalamus, caudate nu-
cleus, and putamen. This network is involved in several functions, such as motor control, sensory
processing, and attention. The thalamus is responsible for relaying sensory information to the

cerebral cortex, while the caudate nucleus and putamen are involved in motor control.

2. Visual Network (VIS): VIS is a functional network that includes the primary visual cortex, sec-
ondary visual cortex, and higher-order visual areas. This network is involved in processing visual

information and is responsible for visual perception, object recognition, and spatial attention.

Zhttp://preprocessed-connectomes-project.org/abide/download.html
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Sub-cortical Domain (SC: 5) Auditory Domain (AU: 2)

X =13 mm Y=-199mm Z=11mm X =43 mm Y =-7mm Z=11mm

X =49 mm Y=-26mm Z=44 mm

Network templates

X=-31 mm Y=-61mm Z=-43mm

Figure 5.1 Visual representation of the discovered network templates, separated into seven functional
areas based on anatomical and functional characteristics. One of the composite maps’ colours in each
subfigure corresponds to an ICN.
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. Auditory Domain (AUD): AUD is a functional network that includes the primary auditory cor-
tex, secondary auditory cortex, and higher-order auditory areas. This network is responsible for
processing auditory information and is involved in auditory perception, speech processing, and

sound localization.

. Default Mode Network (DMN): DMN is a functional network that includes the medial prefrontal
cortex, posterior cingulate cortex, and inferior parietal lobule. This network is active during rest
and is deactivated during task performance. The DMN is involved in several functions, such as

self-referential processing, episodic memory, and social cognition.

. Cerebellum (CB): The cerebellum is a functional network that includes the cerebellar hemispheres
and the vermis. This network is involved in motor control, motor learning, and sensory processing.
The cerebellum plays an important role in fine-tuning motor movements and maintaining postural

stability.

. Cognitive Execution Network (CEN): CEN is a functional network that includes the dorsolateral
prefrontal cortex, anterior cingulate cortex, and posterior parietal cortex. This network is involved

in several cognitive functions, such as working memory, attention, and decision-making.

. Somatomotor Domain (SM): SM is a functional network that includes the primary motor cor-
tex, supplementary motor area, and somatosensory cortex. This network is involved in motor
control and somatosensory processing. The somato-motor domain plays an important role in the

execution of voluntary movements and the perception of touch and pain.

ICA Neuromark template can be downloaded here EI and its corresponding labels can be found in

appendix Visual representation of these ICNs can be seen in figure[5.1] Time courses (TCs) are ex-

tracted from these ICNs followed by temporal pre-processing strategies that includes: detrending linear,

quadratic, and cubic trends, de-spiking detected outliers, and low-pass filtering with cut-off frequency
of 0.15 Hz.

Table 5.1 Dynamic functional connectivity parameters

Parameters Values
Number of components (C) 53
Timepoints per subject (1) 175
Window size (w) 20
Stride (s) 1
Windows extraction per subjects (V) 155
Windows extracted from all subjects (W) | 59365

3https://trendscenter.org/trends/data/neuromark/Neuromark_fMRI_1.0.nii
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5.2.2 Dynamic Functional Connectivity estimation

A sliding window-based method was used to estimate dFNC for each individual. We only chose the
first 7" time points of each subject’s component TCs for the dFNC estimation because the subject’s data
from different sites could have varying scan lengths. This was done to minimize the effects of different
scan lengths. To localize the dataset at each time point, we created a tapered window by convolving
a rectangle with a Gaussian (¢ = 3). We chose a window size w TRs corresponding to ¢ seconds.
We slid the window in s TR increments, producing a total of N windows per subject. We estimated
the regularised precision matrix using the graphical LASSO approach (with the L1 norm to encourage
sparsity) and then deduced the covariance matrix from the precision matrix [32]. Let the total number
of windows extracted from all the subjects be W. All the dFNC parameters can be seen in table

5.2.3 Hard Clustering Analysis

The fundamental presumption behind the hard clustering state analysis is that functional brain net-
works will enter different states with unique dFNC patterns. All the windows extracted from all the
subjects (W) are divided into distinct states (discrete FC patterns) utilizing the K-Means clustering
technique and the L1 norm as the distance function. To reduce the redundancy between windows and
computational demands, we utilized the subset of windows (consisting of local maxima in functional
connectivity variance) as subject exemplars. As K-means algorithm is sensitive to initialization, it was
repeated for 100 times (with random initialization of centroid position) with a maximum of 250 iter-
ations to obtain the group cluster centroids. To find the optimal number of states, we used the elbow
criterion which is defined as the ratio of within clustering distance to between clusters distance. The

optimal number of dynamic states was determined as &' = 4. The optimal dynamic states can be seen

in figure[5.2]

State 1 State 2 State 3 State 4

EE’E%

Figure 5.2 Discrete Functional Connectivity (FC) Patterns (optimal number of brain states 4). These
are the cluster centroids obtained through hard clustering analysis on the FC patterns from all subjects,
both ASD and TD. The Connectograms depict the connectivity among the regions that comprise seven
resting state networks indicated in different colors. The strengths of the inter-regional connectivity is
depicted using a color map varying from —0.6 to 0.6.
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5.2.4 Group differences in static and dynamic-connectivity strength

Two-sample 7-test analysis has been done to compare static and dynamic connectivity strength be-
tween ASD and TD groups. For dFNC, we repeated the below steps (A, B, C) for all four dynamic
brain states. A) Consider those subjects in which at least a window belonging to that particular state
exists. B) In all those subjects, compute the median of windows per state. C) There exist 1378 distinct
connectivities for every pair of ICNs. For every distinct connectivity, performed the two-sample T-fest
between groups ASD and TD per state to find significantly different connectivities (p < 0.05, false
discovery rate (FDR) correction). In case of sFNC, we can conduct the two-sample 7-test directly on

connectivity between pairs of ICNs to compare the groups.

5.2.5 Temporal properties

We also investigated the temporal properties of four dynamic brain states by computing the fractional
windows (the number of total windows belonging to a given state), mean dwell time (the number of
consecutive windows belonging to a given state) per state and the number of transitions between each
pair of states. Statistical two-sample 7-fest are used to identify the differences between groups ASD and
TD per state (p < 0.05, FDR correction).

5.2.6 Meta-state Analysis

Meta state analysis [52]], has been conducted to investigate abnormal dFNC patterns. While dFNC
clustering and statistical analysis have yielded some noteworthy findings, reducing the connectivity
space to a single dimension inevitably hides and alters important aspects of dynamic network-coupling
behavior that may be distinctive features of clinically or demographically defined groups. This method
represents the time-varying functional network connectivity as a combination of independent dFNC
patterns with varying weights. The discretized vector of dFNC patterns weights is called a meta-state.
This approach better comprehends the underlying dynamics of network connectivity in terms of distinct
patterns of correlated network pairs that appear and disappear independently in the observed functional
network connectivity.

A four-dimensional weight vector was obtained for each time window by fitting the windowed dFNC
estimates to the group cluster centroids. This weight vector represents how much each basic dFNC
pattern contributes to the windowed dFNC. To make these real-value weight vectors discrete, the vector
weights were replaced with values of +(1,2,3,4), depending on the quartile of weights the vector
falls into. These different combinations of &(1,2, 3,4) are then defined as meta-states. There exist 8*
meta-states (all permutations of + {1,2,3,4}).

Four dynamic measures were derived based on the meta-states vector to assess the overall dynamic

features of the functional brain network.

1. Meta-states number: The count of unique meta-states traversed by an individual.
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Meta-states switching times: The measure of how often individuals transition or switch between

different meta-states.

. State span: Measures the degree of dissimilarity among the meta-states that have been occupied.

Overall traveled distance: Quantifies the total distance traveled by an individual when switching

between different meta-states.

Table 5.2 Distribution of number of subjects and windows per state for each group: ASD and TD. The
’Subjects’ represents the number of subjects occurred in each state, and the *Windows’ represents the
number of windows assigned to each state within ASD and TD.

State ASD TD
Subjects | Windows | Subjects | Windows
Statel 59 2241 79 3653
State2 145 5333 165 6575
State3 131 4849 158 6583
State4 185 16717 187 13414

Table 5.3 Distribution of strength in connections characterized from pairs of IC networks for both dy-
namic and static functional connectivity. For each state, the number indicates the dominant connections
that are estimated from statistical differences while comparing both ASD and TD groups. For compari-
son, we also show strength in connections that emerged from static functional connectivity.

State Total CC-CC CC-DM DM-DM SM-CC VIS-DM VIS-CC SC-CC
ASD | TD | ASD | TD | ASD | TD | ASD | TD | ASD | TD | ASD | TD | ASD | TD | ASD | TD
Statel 56 40 8 2 8 5 0 4 10 2 1 0 8 7 4 7
State2 | 100 87 17 9 20 10 0 10 4 7 6 3 6 7 9 4
State3 | 103 94 21 13 21 14 0 13 1 5 17 2 6 18 2 6
State4 70 68 14 7 12 6 0 8 3 6 10 4 6 14 3 5
sFNC 111 | 114 19 16 24 18 0 12 4 6 9 5 7 9 2 11

5.3 Implementation

ICNs extraction using ICA neuromark template, dFNC clustering analysis followed by hard cluster-
ing analysis and two sample 7-fest analysis has been done using Group ICA of fMRI Toolbox (GIFT)
[[60]]. The toolbox scripts were implemented in matlab and can be downloaded from here ﬂ All the sub-

4[https:// github.com/trendscenter/ giftl
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ject IDs of the ABIDE-I samples used in this paper, and parameters required to extract ICNs, estimate

dFNC, and perform the clustering analysis is made publicly available hereE] for reproducibility.

5.4 Results

5.4.1 Characteristics of Different Brain States

Four optimal dynamic states have been found using K-Means clustering on all windows (W) ex-
tracted from all subjects in both ASD and TD. As shown in Table we can observe that 10% of the
total windows were assigned to state 1 and characterized by strong positive intra-connectivity within
VIS and SM networks and sparse connectivity within DM and CC networks. 20% of the windows were
assigned to state 2 and characterized by strong positive intra-connectivity within VIS, DM networks and
inter-connectivity between CC-DM networks. 19% of the windows were assigned to state 3 and char-
acterized by strong positive intra-connectivity within VIS, SM, and inter-connectivity between CC-DM
networks and negative inter-connectivity between AUD, SM, and CC networks. 51% of the windows
were assigned to state 4 and characterized by positive intra-connectivity within SM, VIS, DM, and
inter-connectivity between CC and DM. All the state characteristics mentioned above can be observed
in figure[5.2] The group and state-specific distribution of windows and subjects can be seen in Table[5.2]
It is to be noted that not all the states occurred in all the subjects. From Table[5.2] states 1 and 3 occurred
less frequently among ASD subjects than in TD (state 1: ASD - 3.77%, TD - 6.15%; state 3: ASD -
8.16%, TD - 11.08%). State 4 occurred more frequently among ASD subjects (ASD - 28.15%, TD -
22.59%).

5.4.2 Dynamic Functional Connectivity Differences with two-sample T-test

For each state, Table shows the number of stronger connections in ASD and TD groups among
pairs of within or between IC networks that are statistically significant (p < 0.05, FDR correction).
Overall, for state 1, we observed 56 stronger within- and between-network connections in ASD com-
pared to TD subjects. Similarly, for other states, 2,3 and &4, the number of connections emerged to
be higher in ASD compared to TD. Looking at the number of stronger connections among pairs of IC
networks, we observed that within the CC network and between CC-DM networks, most of them were
stronger in ASD subjects, whereas, within DM network, connections were stronger among TD individ-
uals in all four states. Figure highlights the qualitative visualization of regional differences in the
CC-DM network. Interestingly, the patterns were quite similarly observed for static functional connec-
tivity in ASD and TD groups, as evident from figure[5.3|focusing on the CC-DM network. However, the
statistical comparisons on the temporal characterization of dynamic states (clusters) between ASD and

TD brought additional regional differences between IC networks that may be evident in static functional

51https:// github.com/B CCL—IIITH/DynamiC—Functional—Connectivity—Analysis—of—ASDI
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connectivity or vice-versa. Overall, we observe 329 stronger intra- and inter-connectivity differences

in ASD while using dynamic functional connectivity compared to 111 significant connections in ASD

while using static functional connectivity.

Figure 5.3 Connectograms of ASD vs TD and dFNC states vs SFNC. Activations within and be-
tween CC and DM networks that are statistically significant in both groups ASD and TD. The first
row represents the significantly stronger activations among ASD subjects and the second row represents
significantly stronger activations among TD subjects in all four dynamic brain states. The last column
represents the significantly stronger activations found in both groups found using sSENC analysis. The
names of each IC and its corresponding brain networks are part of Neuromark template release.

5.4.3 Temporal Properties Differences

From figure it can be observed that fractional time spent among ASD subjects is significantly
greater than TD subjects in state 4 (p = 0.0005) and significantly lower in state 1 (p = 0.04) and state 3
(p = 0.019). Significant differences were found in mean dwell time of state 4. ASD subjects exhibited
significantly longer mean dwell time in state 4 compared to TD subjects (p = 0.00023), while there
was a trend for longer mean dwell time in state 3 among the TD subjects (p = 0.071). No significant
differences between groups have been found based on the number of transitions between states (ASD:
6.27 + 3.68; T'D : 6.90 = 3.17; p = 0.071, FDR correction).

5.4.4 Meta-state Properties Differences

All the meta-state properties are found to be significantly different in the groups ASD and TD
(p < 0.05, FDR corrected). Table displays the mean values of both groups, p-values, and t-values.
From the results, we can clearly infer that dynamic fluidity among ASD subjects is less because the

occurrence of meta-states and transition between states is significantly less in ASD patients compared
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Figure 5.4 Fractional Time spent and Mean dwell time of ASD and TD groups per state. The left
plot represents the fractional time spent in each state and the right plot represents the mean dwell time
of each state specific to the group. * indicate that the distributions are significantly different (p < 0.05,
FDR correction)

to TD individuals. It can be observed that individuals with ASD tend to stay within a smaller region
of the state space compared to TD as determined by measuring the maximum L1 distance between
the occupied meta-states. Total L1 distance traveled by ASD subjects between consecutive meta-states
through state space is significantly less than TD individuals. Finally, we can conclude that there exists

significant differences between ASD and TD in terms of meta-state dynamic properties.

Table 5.4 Meta state properties differences between ASD and TD

Num States | Change Between States | State Span | Total distance
T-value -3.5761 -2.7889 -2.5348 -3.0081
P-value 0.0004 0.0056 0.0117 0.0028
ASD Group 16.8777 31.4043 6.7074 34.9628
Mean
TD Group 19.7590 34.0513 7.2667 38.6667
Mean

5.5 Discussion

We studied dFNC patterns for ASD and TD on a large number of subjects sampled from the ABIDE-
I consortium. We extracted dFNC patterns and applied hard clustering analysis on those patterns to
find the optimal brain states or discrete FC patterns, which helps us to understand the network-level
differences in the fundamental brain organization of ASD with respect to TD subjects. We performed

a two-sample T-test and found many activations between ICNs within and between networks that are
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significantly different among the groups ASD and TD per state (p < 0.05, FDR correction). The results
of the two-sample t-test conducted on the temporal and meta-state properties suggest that these features
can serve as reliable indicators for diagnosing Autism Spectrum Disorder (ASD). We observed hyper-
connectivity among ASD subjects within the CC network and between CC-DM networks in all four
states. Among TD subjects, hyper-connectivity has been found within DM network in all four states.

Regions that contribute to the hyper-connectivity in the CC network among ASD subjects in most
of the dynamic states are found to be the Hippocampus, Middle cingulate cortex, Left inferior pari-
etal lobule, Inferior frontal gyrus, and hypo-connectivity in the DM network are Precuneus, Posterior
cingulate cortex, and Anterior cingulate cortex. The region hippocampus controls memory encoding,
learning, and memory consolidation [2f], the inferior frontal gyrus controls language comprehension
and production [40], and the middle cingulate cortex is in charge of cognitive processing, particularly
decision-making [42]]. There are numerous neurological processes that the inferior parietal lobe (IPL)
is assumed to be engaged in, such as spatial attention, multimodal sensory integration, and oculomotor
control [18]. The precuneus is a part of the default mode network that performs a wide range of compli-
cated tasks, such as information integration related to the perception of the environment, cue response,
mental imagery techniques, and retrieval of episodic memory [14]. The anterior and posterior cingulate
cortex are responsible for social cognition [[68] 46]]. All of these functions are found to be identified in
patients with ASD [67, 147].

Earlier research [3| [83]] has investigated the role of altered FC of DM sub-networks among high-
functioning ASD subjects based on rs-fMRI scans. These studies hypothesized that the FC between the
precuneus and the medial prefrontal cortex/anterior cingulate cortex, and DM core areas were weaker
in ASD patients. The findings are consistent with the concept that the fundamental deficiencies in
ASD are a result of the under-connectivity of DM sub-networks [72]]. Harlalka et al. [37] observed
that patients with ASD demonstrated higher dFNC between the attentiveness network (AN) and default
mode network (DM) than TD individuals.

5.6 Summary

We investigated significant differences between ASD and TD groups in terms of the strength of
features estimated from sFNC and dFNC between distinct pairs of regions, dynamic temporal properties
such as fractional windows in each state, the mean dwell time of each state and the number of transitions
between each pair of dynamic states using statistical two-sample 7-test followed by meta-state analysis.
The upcoming chapter will summarize and conclude the two studies presented in this thesis and suggest
potential scope for future research.
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Chapter 6

Conclusions and Future Scope

6.1 Summary & Conclusions

In this thesis, we proposed a two-hidden layer neural network, receiving autoencoder pre-training
based features for the classification of ASD from TD individuals followed by applying attribution meth-
ods such as Integrated Gradients (IG) and DeepLIFT to find out the regions that contributed most to
the classification task. This study identifies Left Lingual Gyrus, Right Insula, Right Cuneus, Right
Middle Frontal Gyrus, Left Superior Temporal Gyrus associated with ASD. We experimented with var-
ious brain parcellation schemes and preprocessing pipelines to reveal the impact of model performance
on the classifiers. This study found that the combination of CPAC preprocessing pipeline and CC200
parcellation yielded the best outcomes. The results might be useful in defining a common benchmark
dataset and specifications for a fair and viable comparison of methods proposed for ASD classification
in the future. The classification of ASD using ABIDE-1 dataset faces a significant obstacle due to the
presence of rs-fMRI scans from 17 geographically distinct sites. A leave-one-site-out cross-validation
strategy is employed to assess the proposed method’s effectiveness on new sites. This strategy involves
reserving the data from each site exclusively for testing and training the model on data from the other
sites. By doing so, the strategy provides insight into the model’s ability to perform on new, unseen
sites. However, this proposed method relies on sSENC features for the classification of ASD, that are not
capable of capturing the dynamic properties of ASD.

Therefore, in the next part of the thesis, we studied the dFNC patterns from seven different brain
networks between ASD and TD for characterization of ASD. The hard clustering analysis revealed four
optimal brain states or dFNC patterns. Our systematic comparisons across four optimal brain states
using a statistical two-sample t-test revealed hyper-connectivity intra- and inter-level Cognitive control
and Default mode networks in ASD. Examining the temporal properties such as fractional time spent
and mean dwell time found that there were significant differences between ASD and TD subjects in
terms of the amount of time spent in different states. ASD subjects spent more time in state 4, but less
time in states 1 and 3, compared to TD subjects. The mean dwell time in state 4 was also significantly

longer in ASD subjects. All the meta-state properties were significantly different in the two groups,
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indicating that dynamic fluidity is less in ASD patients. Individuals with ASD tend to stay within
a smaller region of the state space. Although the derived dFNC networks are consistent with sFNC
networks, our study provides additional insights into the brain network-level differences. This can

provide a greater understanding of disease biomarkers.

6.2 Limitations & Future scope

In future, efforts can focus on integrating phenotypic and demographic information with dFNC to
attempt superior classification performance and possible biomarkers for the diagnosis of ASD. The
shortcoming of the dFNC study presented in this thesis includes considering only male participants.
This is to avoid potentially biased conclusions arising from our sample selection criteria. As part of
future work, it would be valuable to assess the robustness of the proposed methods using the ABIDE-II
dataset. Additionally, exploring different values of dFNC parameters could provide insights into their
impact on the analysis and further enhance our understanding of the findings. In future, we can extend
this selection criterion to both males and females as gender influences in ASD subjects are proven to be
different in terms of functional organization [71]]. From a machine learning perspective, the connectivity
strengths that are shown to be statistically significant (could act as a prior feature selection criteria)
to classify ASD and TD. This may reveal the usefulness of dFNC over sFNC — sFNC considers the
information from multiple brain states but the representation corresponds to time-averaged BOLD signal
recorded over the resting state scanning period. Within this space, another possible extension could
be correlating these hyper-connectivity findings in brain networks to clinical scores (such as 1Q) and
severity scores (such as ADOS and ADI-R) to better understand sub-types such as Autistic, Aspergers,
and Pervasive developmental disorder. The major challenge encountered in classifying ASD subtypes
using ML methods is the limited availability of labeled data for each subtype. This makes it difficult
to train accurate models for each subtype separately. Another challenge is the data heterogeneity as
individuals with ASD can present with a wide range of symptoms and severity levels. Additionally, the
symptoms may overlap between different subtypes, making it difficult to distinguish them based on the
available features. Future studies could focus on developing techniques to address problems such as
limited data and class imbalance, potentially leading to better classification outcomes and more useful
clinical biomarkers for distinguishing ASD from TD.
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Chapter 7

Appendix

Table 7.1: NeuroMark Template ICN labels

Network ICN Index X Y Z
Subcortical network (SC) Caudate IC1 6.5 10.5 5.5
Subthalamus/hypothalamus IC2 | -25 | -135 | -1.5
Putamen IC3 | -265| 1.5 -0.5
Caudate IC4 | 21.5 | 105 | -35
Thalamus IC5 | -125 | -185 | 11.5
Auditory network (AUD) Superior temporal gyrus ([STG]) IC6 | 625 | -225 | 7.5
Middle temporal gyrus ((MTG]) IC7 | -425 | -6.5 | 10.5
Sensorimotor network (SM) Postcentral gyrus [PoCG] IC8 | 565 | -4.5 | 28.5
Left postcentral gyrus [L PoCG] IC9 | -38.5 | -22.5| 56.5
Paracentral lobule [ParaCL] IC10| 05 | -22.5 ] 655
Right postcentral gyrus [R PoCG] IC11 | 385 | -195| 555
Superior parietal lobule [SPL] IC12 | -18.5 | -43.5 | 65.5
Paracentral lobule [ParaCL] IC13 | -185 | -9.5 | 56.5
Precentral gyrus [PreCG] IC14 | -425 | -7.5 | 465
Superior parietal lobule [SPL] IC15 | 20.5 | -63.5 | 58.5
Postcentral gyrus [PoCG] IC16 | -47.5 | -27.5 | 435
Visual network (VIS) Calcarine gyrus [CalcarineG] IC17 | -125 | -66.5 | 8.5
Middle occipital gyrus [MOG] IC18 | -23.5 | -935 | -0.5
Middle temporal gyrus [MTG] IC19 | 485 | -60.5 | 10.5
Cuneus IC20 | 155 | -91.5| 225
Right middle occipital gyrus [R MOG] | IC21 | 38.5 | -73.5 | 6.5
Fusiform gyrus IC22 | 295 | 425 | -12.5
Inferior occipital gyrus [I0G] IC23 | -36.5 | -76.5 | -4.5
Lingual gyrus [LingualG] IC24 | -85 | -81.5| -45
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Middle temporal gyrus [MTG] IC25 | -445 | -575| -7.5
Cognitive-control network (CC) Inferior parietal lobule [IPL] IC26 | 455 | -61.5 | 43.5
Insula IC27 | -30.5 | 225 | -3.5
Superior medial frontal gyrus [SMFG] | IC28 | -0.5 | 50.5 | 29.5
Inferior frontal gyrus [IFG] IC29 | -485 | 345 | -0.5
Right inferior frontal gyrus [R IFG] | IC30 | 53.5 | 22.5 | 13.5
Middle frontal gyrus [MiFG] IC31 | -415| 195 | 265
Inferior parietal lobule [IPL] IC32 | -53.5 | -49.5 | 435
Left inferior parietal lobue [R IPL] IC33 | 445 | -345 | 46.5
Supplementary motor area [SMA] IC34 | -6.5 13.5 | 64.5
Superior frontal gyrus [SFG] IC35|-245| 265 | 495
Middle frontal gyrus [MiFG] IC36 | 30.5 | 41.5 | 285
Hippocampus [HiPP] IC37 | 235 | -95 | -165
Left inferior parietal lobule [L IPL] IC38 | -475| 55 | 225
Middle cingulate cortex [MCC] IC39 | -15.5 | 20.5 | 375
Inferior frontal gyrus [IFG] IC40 | 395 | 445 | -0.5
Middle frontal gyrus [MiFG] IC41 | -265 | 475 | 55
Hippocampus [HiPP] IC42 | -245 | -365 | 1.5
Default-mode network (DM) Precuneus IC43 | -8.5 | -66.5 | 35.5
Precuneus IC44 | -12.5 | -54.5 | 14.5
Anterior cingulate cortex [ACC] IC45 | -2.5 | 355 2.5
Posterior cingulate cortex [PCC] IC46 | -5.5 | -28.5 | 26.5
Anterior cingulate cortex [ACC] IC47 | 9.5 | 46.5 | -10.5
Precuneus IC48 | -0.5 | -48.5 | 49.5
Posterior cingulate cortex [PCC] IC49 | 2.5 | 545 | 315
Cerebellar network [CB] Cerebellum [CB] IC50 | -30.5 | -54.5 | -42.5
Cerebellum [CB] IC51 | -32.5 | -79.5 | -37.5
Cerebellum [CB] IC52 | 20.5 | -48.5 | -40.5
Cerebellum [CB] IC53 | 30.5 | -63.5 | -40.5
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DSM_IV TR diagnosis
available ?

Number of ASD: 464
Number of TD: 496

Mean FD < 0.4432
l,e 2 s.d above mean

Number of ASD: 434
Number of TD: 484

TR =2 and

Timeframes > 175

Number of ASD: 221
Number of TD: 258

Only Male with
FIQ score

Number of ASD: 192
Number of TD: 195

Figure 7.1 Participant Selection procedure for the dFNC analysis.
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