
An Improved Framework for Mining Periodic Patterns

Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in

Computer Science and Engineering by Research

by

Vipul Chhabra

2019121001
vipul.chhabra@research.iiit.ac.in

International Institute of Information Technology

Hyderabad - 500 032, INDIA

December 2023

Copyright © Vipul Chhabra, 2023

All Rights Reserved

International Institute of Information Technology

Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “An Improved Framework for Mining Periodic

Patterns” by Vipul Chhabra, has been carried out under my supervision and is not submitted elsewhere

for a degree.

Date Adviser: Prof. P. Krishna Reddy

To my parents for their endless support and unconditional love.

Acknowledgments

I am immensely grateful for my decision to join the Data Science and Analytics Lab (DSAC) a few

years ago. I owe a heartfelt thanks to my esteemed supervisors, Prof. P. Krishna Reddy and Prof.

Rage Uday Kiran from the University of Aizu, for introducing me to research and providing invaluable

supervision and support throughout my journey. Their constant guidance has helped me evolve both

professionally and personally, and I cannot thank them enough.

I am also indebted to my co-authors, Prof. Minh-Son Dao, Prof. Koji Zettsu, and Saideep Chen-

nupati, for their unwavering support and for providing me with the resources and help to guide my

research. I am grateful for their contributions and the opportunity to work with them.

I want to express my gratitude to all the professors at IIIT-Hyderabad for broadening my knowledge

of the domain. In particular, I thank Prof. P. Krishna Reddy, Prof. Kamalakar Karlapalem, and Prof.

Deepak Gangadharan for providing me with the opportunity to work with them and teaching me things

that go beyond academics or research.

I also want to thank my lab mates, Abinash Maharana, A Srinivas Reddy, Haranadh Pokala, Narendra

Babu Unnam, and Sriharshita Bondogula, for helping me brainstorm new ideas and with their domain

expertise. Additionally, I am thankful to my friends, Aaryamaan Jain, Akshat Goyal, Arohi Shrivastava,

Avani Gupta, Bhavyajeet Singh, Dolton Fernandes, Gaurang Tandon, Jalees Jahanzaib, Mayank Goyal,

and Yash Bhansali, for making my college life more enjoyable and being supportive throughout.

Finally, I thank my family, especially my grandparents and parents. My grandfather and grandmother

are my role models, and I am grateful for all their sacrifices. My mom has always supported and

motivated me to achieve big in life, and my dad taught me the values of hard work, patience, and ethics.

They never failed to put their dreams and passions aside to uplift and fulfil my and my brother’s dreams,

and I owe them all my present and future achievements. Thanks to my younger brother for his constant

encouragement and for making me more confident. Lastly, I would like to thank all the people who have

played a crucial role in my journey but whom I could not name here due to space constraints.

v

Abstract

Data mining is a collection of algorithms for extracting valuable insights from large amounts of data.

Data mining based approaches are being employed to improve the performance of decision support

systems in the fields of customer relationship management, inventory management, fraud detection,

surveillance, and recommendation systems. Pattern mining is an important task of data mining, which

involves identifying significant associations in transactional databases. These associations reveal valu-

able trends and relationships that aid businesses in improving efficiency. The field of pattern mining has

started with the model to extract frequent patterns from large transactional data. The model of frequent

patterns has become popular and resulted in the development of algorithms to improve the performance

of several applications, like recommendation systems. In the literature, encouraged by the potential of

pattern mining, active research is going on to investigate new pattern mining models such as periodic,

utility, coverage, and correlated patterns. In this thesis, we propose an improved approach to mine

periodic patterns from temporal databases.

The model of periodic patterns facilitates the discovery of recurring behaviours and trends in the

temporal databases. The model of periodic pattern, which we call partial periodic pattern (3P), captures

periodic associations subject to periodic support (PS) and inter-arrival time (IAT) constraints. Here,

the IAT value is the time difference between the successive occurrence of a pattern. The percentage of

occurrences of a pattern in a database that satisfies the user-given maximum IAT constraint is called

PS. Overall, all patterns that satisfy user given maximum IAT (maxIAT) and minimum PS (minPS)

are called 3Ps.

In this thesis, we address the following issue of the 3Ps model. It was observed that if we set the

minPS value too low, the number of 3Ps explodes. On the other hand, if set minPS value high, several

interesting 3Ps will be missed. We call this problem as a rare item problem. To address this issue, in

this thesis, we have proposed an improved model and present an improved depth-first search algorithm

to extract 3Ps. In the proposed model, we introduce a new measure called periodic-confidence, which

satisfies both null-invariant and anti-monotonic properties. We also propose a better depth-first

search algorithm to mine 3Ps. The proposed algorithm uses irregularity pruning to reduce the search

space and computational cost while maintaining the same amount of information. Through experimental

vi

vii

results, we show that the proposed algorithm is efficient and scalable. We illustrate the usefulness of the

discovered patterns through case studies on air pollution and traffic congestion databases.

Extracting interesting trends from large temporal databases in different domains is an active research

area. We hope that the proposed approach could facilitate the development of improved approaches

to extract regular trends for fraud detection from sensor (surveillance) databases and loyalty mining in

e-commerce systems.

Contents

Chapter Page

1 Introduction . 1
1.1 Background . 2

1.1.1 Transactional Database (TDB) . 2
1.1.2 Temporal Database . 3
1.1.3 Frequent Patterns . 3
1.1.4 Periodic Patterns . 4
1.1.5 Partial Periodic Patterns (3P) . 5
1.1.6 Null Invariant Property . 7
1.1.7 Anti Monotonic Property . 7

1.2 Research gap and Motivation . 8
1.3 Overview of the proposed approach . 9
1.4 Contributions . 10
1.5 Thesis Organization . 10

2 Related Work . 11
2.1 Frequent Pattern Mining . 11
2.2 Periodic Pattern Mining . 12
2.3 Partial Periodic Pattern Mining . 14
2.4 The Rare item problem . 15
2.5 Differences with the existing approaches . 16
2.6 Summary . 17

3 Model of Periodic Patterns . 18
3.1 Introduction . 18
3.2 Model of Partial Periodic Patterns . 19
3.3 Partial Periodic Pattern-growth (3P-growth) Algorithm 21
3.4 Summary . 24

4 Proposed Approach . 25
4.1 Issues with the existing model of 3P . 25
4.2 Proposed Model . 27
4.3 Generalized Partial Periodic Pattern-growth (G3P-growth) 31

4.3.1 Irregularity pruning . 32
4.4 Summary . 37

viii

CONTENTS ix

5 Experimental Evaluation . 38
5.1 Dataset Description . 38
5.2 Experimental Results . 43

5.2.1 Effect of varying minPS and minPC keeping maxIAT constant 43
5.2.2 Effect of varying minPS and maxIAT keeping minPC constant 47
5.2.3 Effect of varying maxIAT and minPC keeping minPS constant 51

5.3 Scalability Experiment . 55
5.4 Case Studies . 56

5.4.1 Case study 1: Improving traffic safety during disastrous situations 56
5.4.2 Case study 2: Identifying highly polluted locations 58

5.5 Summary . 61

6 Conclusion and Future work . 62
6.1 Summary . 62
6.2 Conclusions . 63
6.3 Future Work . 64

Bibliography . 66

List of Figures

Figure Page

1.1 Difference between periodic and partial periodic patterns: (a) Periodic patterns show
itemsets that appear in every specified interval, such as every 5 minutes. (b) Partial
periodic patterns may only appear in some intervals due to noise or other factors 6

3.1 Construction of 3P-list. (a) After scanning the first transaction, (b) after scanning the
second transaction, (c) after scanning the entire database, and (d) the final 3P-list after
pruning all aperiodic items . 22

3.2 Construction of 3P-tree. (a) After scanning the first transaction, (b) After scanning the
second transaction, and (c) After scanning the entire database 23

3.3 Recursive mining of 3P-tree. (a) Prefix tree for item t (b) conditional tree for item t and
(c) 3P-tree after pruning item t . 24

4.1 Construction of G3P-list. (a) After scanning the first transaction, (b) after scanning the
second transaction, (c) after scanning the entire database, and (d) the final G3P-list after
pruning all aperiodic items . 33

4.2 Construction of G3P-tree. (a) After scanning the first transaction, (b) After scanning the
second transaction, and (c) After scanning the entire database 36

4.3 Recursive mining of G3P-tree. (a) Prefix tree for item t (b) conditional tree for item t
and (c) G3P-tree after pruning item t . 37

5.1 Frequency Distribution of Datasets . 40
5.2 Max IAT Distribution of Datasets . 41
5.3 Mean IAT Distribution of Datasets . 42
5.4 Number of patterns generated varying minPS and minPC values 44
5.5 Runtime requirements of G3P-growth on varying minPS and minPC 45
5.6 Memory used for the G3P-tree construction on varying minPS and minPC 46
5.7 Number of patterns generated varying minPS and maxIAT values 48
5.8 Runtime requirements of G3P-growth on varying maxIAT and minPS 49
5.9 Memory used for the G3P-tree construction on varying minPS and maxIAT 50
5.10 Number of patterns generated varying maxIAT and minPC values 52
5.11 Runtime requirements of G3P-growth on varying maxIAT and minPC 53
5.12 Memory used for the G3P-tree construction on varying minPC and maxIAT 54
5.13 Scalability Results for G3P-Growth algorithm . 56
5.13 Patterns generated by segmenting the congestion data into hourly intervals. Precipitation

data of Typhoon Nangka is overlaid at hourly intervals. 58

x

LIST OF FIGURES xi

5.14 Spatial location of sensors which measured highest levels of PM2.5 at regular intervals
across Japan . 60

5.14 A closer view of the identified pollution clusters in (A), displaying the specific locations
with high levels of PM2.5 in the highlighted areas across Japan. 60

List of Tables

Table Page

1.1 Transactional database . 3
1.2 Temporal database . 3

4.1 Example database of customer purchases from a grocery store 26
4.2 A 2× 2 (utility) contingency table for A and B . 29
4.3 Partial periodic patterns generated from Table 1.2 at different minPS and minPC

values. The terms ‘P,’ ‘PS,’ ‘I,’ ‘II,’ and ‘III’ respectively represent ‘Pattern,’ ‘period-
support,’ ‘partial periodic patterns found at high minPS value of 0.6,’ ‘partial periodic
patterns found at low minPS value of 0.3,’ and ‘partial periodic found using the pro-
posed model at minPS = 0.3 and minPC = 0.7 . 31

5.1 Dataset Description . 42
5.2 Parameters used in the evaluation of varying minPS and minPC keeping maxIAT

constant (SS denotes the step size between the values of minPC) 43
5.3 Parameters used in the evaluation of varying minPS and maxIAT keeping minPC

constant (SS denotes the step size between the values of maxIAT) 47
5.4 Parameters used in the evaluation of varying maxIAT and minPC keeping minPS

constant (SS denotes the step size between the values of maxIAT) 51
5.5 Some of the interesting patterns generated from pollution database 61

xii

Chapter 1

Introduction

In the internet era, several applications are generating big data. Crucial information that can provide

end-users with competitive knowledge to achieve socio-economic development lies hidden in this data.

The field of data mining [1] has emerged to discover the beneficial information hidden in big data.

The three important data mining tasks are clustering, classification, and pattern mining. Clustering

involves organizing a large dataset into groups or clusters of similar objects, where the similarity can be

based on distance or some other similarity metric. Classification, on the other hand, involves assigning

objects to pre-defined categories based on their features or attributes. Pattern mining aims to discover

user interest-based patterns hidden in big data. This thesis focuses on pattern mining, which has many

practical applications, ranging from market basket analysis [2] to bioinformatics [3] and social network

analysis [4].

Agrawal et al. [5] first introduced frequent pattern mining as a key step to discover interesting as-

sociations that exist between the items in a transactional database (TDB). Since then, the problem of

finding frequent patterns has received a great deal of attention. Moreover, frequent pattern mining was

extended to find a range of user interest-based patterns, such as closed frequent patterns [6], maximal

frequent patterns [7], frequent sequential patterns [8], uncertain frequent patterns [9], fuzzy frequent

patterns [10], and utility patterns [11]. However, the widespread adoption of frequent pattern mining

has been hindered by the following obstacle: “The frequent pattern mining technique implicitly assumes

that the temporal occurrence information of the items, if any, will not play any role in determining the

interestingness of the pattern in a database. However, this is seldom not the case as the user may con-

sider a pattern occurring periodically to be more interesting than a pattern that is occurring irregularly

in the data. Consequently, the frequent pattern mining technique fails to discover those periodically

occurring interesting patterns that may exist in a temporal database.” [12] When confronted with this

problem in real-world applications, researchers initially extended the frequent pattern mining technique

to discover those frequent patterns that have exhibited full (or perfect) periodic behaviour in a database

[13, 14, 15, 16]. A key limitation of this extended frequent pattern mining technique is that it fails to

discover those interesting patterns that have exhibited partial periodic behaviour in the data. In the liter-

1

ature, few studies [17, 18, 19] described various approaches to finding partial periodic frequent patterns

in a temporal database. Unfortunately, these approaches were impracticable due to their high computa-

tional cost as the generated patterns do not satisfy the downward closure property1 [5]. Recently, Uday

et al. [20] described a practicable model of partial periodic patterns (3Ps) that may exist in a temporal

database. The 3Ps generated from a database satisfy the downward closure property. Consequently, this

model was extended to find various types of interesting patterns, such as stable periodic-frequent pattern

mining [21], fuzzy periodic-frequent pattern mining [22], and Geo-referenced periodic-frequent pattern

mining [23, 24]. Notably, these knowledge discovery techniques are meant for real-world applications.

However, most of the existing works are based on the assumption of an ideal database where all the

items occur with a similar frequency, which is not valid for most real-world applications. Therefore,

research efforts are being made to develop scalable algorithms for mining partial periodic patterns from

large real-world temporal databases that can generate patterns containing both frequent and rare items.

(Please note that classifying items into frequent or rare is a subjective issue that depends on the user

and/or application requirements.)

In this thesis, we propose a novel framework for mining partial periodic patterns in non-uniform

temporal databases that is highly scalable and efficient.

The rest of the chapter is organized as follows. In the next section, as a part of the background, we

introduce transactional and temporal databases and briefly explain frequent patterns, periodic patterns,

partial periodic patterns, and the research gap. Then, we briefly summarize the proposed model for

mining 3Ps in non-uniform databases. Subsequently, we provide a list of contributions and explain the

organization of the thesis.

1.1 Background

In this section, we provide an introduction to transactional and temporal databases, followed by a

brief explanation of frequent patterns, periodic patterns, and partial periodic patterns.

1.1.1 Transactional Database (TDB)

A transactional database contains a collection of transactions, each comprising a set of items re-

lated to a specific event. For instance, a transaction in an online shopping platform might represent a

customer’s purchase of items in a single order. Similarly, in a healthcare system, a transaction could

correspond to a patient’s visit to the hospital.

Transactional databases are valuable for businesses and organizations as they contain information

that can be used to identify interesting patterns and relationships. However, the sheer volume of data
1The downward closure property says that all non-empty subsets of an interesting pattern must also be interesting patterns

2

makes it challenging to extract meaningful insights manually. Therefore, various data mining techniques

have been developed to automate the process of discovering useful information from these databases.

For the purpose of illustration, consider the following hypothetical transactional database shown in

Table 1.1. This database contains a collection of transactions, where each transaction represents a set

of items (represented by english letters) related to a specific event. Each transaction can be uniquely

identified by a transaction id (tid). For instance, the transaction with tid =1 contains the items p, r, and

s.

Table 1.1: Transactional database

tid items tid items tid items tid items
1 prs 5 stv 9 psu 13 pqrv

2 pqrt 6 psv 10 pt 14 pqrs

3 pqrs 7 psu 11 pqru

4 stu 8 qrs 12 pqrs

1.1.2 Temporal Database

Useful information that can facilitate domain experts in gaining a competitive advantage lies hidden

in this database as the time dimension becomes a critical factor in extracting valuable insights from this

data. The temporal information in the data can help identify important patterns that may have been

overlooked otherwise as it captures and analyzes what happened and when.

To illustrate the concept of temporal databases, consider the hypothetical dataset depicted in Table

1.2. This database consists of a set of transactions, each of which is associated with a timestamp (ts)

indicating when the transaction has occurred.

Table 1.2: Temporal database

tid ts items tid ts items tid ts items tid ts items
1 1 prs 5 6 stv 9 10 psu 13 15 pqrv

2 3 pqrt 6 7 psv 10 11 pt 14 16 pqrs

3 4 pqrs 7 8 psu 11 12 pqru

4 5 stu 8 9 qrs 12 13 pqrs

1.1.3 Frequent Patterns

Frequent patterns, also known as itemsets, represent an important category of regularities present

within a TDB [25]. In a TDB, a frequent pattern is a group of items that satisfies the support constraint.

3

The support of a pattern refers to the percentage of transactions within the TDB in which that pattern

occurs. If a pattern’s support is at least the user-defined minimum support threshold, it is categorized as a

frequent pattern. Frequent patterns are useful in revealing the associations between items that frequently

co-occur within the TDB. An example of a frequent pattern found in Table 1.1 is as follows:

{p, r} [support = 50%].

This pattern indicates that the items p and r have together appeared in 50% of the transactions.

In the literature, several methods have been proposed for extracting frequent patterns from a TDB

based on the user-given minimum support. These methods include Apriori [5], FP-Growth (Frequent

Pattern Growth) [26] and ECLAT (Equivalence Class Clustering and Bottom-Up Lattice Traversal) [27].

ECLAT is efficient in space and appropriate for medium-sized data sets, while FP-Growth is suitable for

large and dense data sets. It is worth noting that the frequent pattern model is one among the different

types of pattern extraction models proposed in the literature. Each model captures a distinct type of

association among the items in a pattern. For example, maximal frequent patterns [28], top-k patterns

[29], periodic patterns [30], coverage patterns [31], and utility patterns [32] are some other pattern

extraction models proposed in the literature.

1.1.4 Periodic Patterns

Periodic pattern mining is a data mining technique that extracts patterns from a temporal database that

occur periodically. Unlike traditional frequent pattern mining, which ignores the time dimension of the

database, periodic pattern mining takes into account the time or order in which transactions occur. The

periodic pattern mining algorithm extracts patterns that occur regularly and repeatedly throughout the

temporal database. A pattern is considered periodic if it occurs with a periodicity that does not exceed

a specified maximum period and if the frequency of its occurrence exceeds a given support threshold.

The maximum period is a user-given threshold value that limits the duration between two occurrences

of the pattern in the database. By identifying frequent and periodic patterns in the data, we can better

understand the behaviour of the underlying processes and use that information to improve decision-

making and forecasting. One potential application is analyzing the customers’ shopping behaviour in

a supermarket. The dataset records the items each customer purchased and the time of the transaction.

An example of a periodic pattern is as follows:

Example 1. Considering the hypothetical temporal database (D) in Table 1.2 where each transaction

has its transaction ID and timestamp (in days) at which it took place. If the user-specified period is 3

days, The following pattern is extracted:

{p, s} [support = 7, period = 3days].

4

This pattern indicates that items p and s co-occur every 3 days, and they are present in a total of

7 transactions in the temporal database. Unlike the frequent item model, which only considers the

frequency of items in a dataset, the generated patterns consider temporal information. This enables a

deeper understanding of the relationships between items and their occurrences over time.

To discover periodic patterns, we can use algorithms such as those proposed in [33, 34, 15, 14, 35].

These algorithms incrementally build patterns by adding one itemset at a time and pruning the search

space to reduce computational complexity.

Periodic pattern mining has many applications, such as identifying seasonality in sales data. This

allows businesses to optimize their inventory management and marketing strategies. It is also helpful in

detecting periodic trends in social media activity, which provides valuable insights into user behaviour

and preferences and predicts usage patterns of online services. It is a powerful tool for analyzing time-

series data and can provide valuable insights for decision-making in various fields.

1.1.5 Partial Periodic Patterns (3P)

In the existing model of periodic patterns, patterns that exhibit minor deviations from periodic be-

haviour are often disregarded as uninteresting. This tendency is commonly observed across diverse

real-world datasets, leading to the loss of valuable insights in real-world applications. To capture com-

plete knowledge, the concept of partial periodic patterns was introduced. Partial periodic patterns are an

important type of pattern in temporal databases that reflect the regular occurrence of specific events or

behaviours during certain times or days. In many real-world scenarios, partial periodic behaviour exists,

and it is important to identify such patterns for various applications, such as air pollution analysis and

traffic congestion management. The public bus system is a great example of a partial periodic pattern.

Buses usually follow a set timetable, but sometimes they experience delays due to traffic or other issues,

causing deviations from their expected schedule. This behaviour showcases a partial periodic pattern,

where there is a repeating pattern with occasional interruptions.

5

Figure 1.1: Difference between periodic and partial periodic patterns: (a) Periodic patterns show item-

sets that appear in every specified interval, such as every 5 minutes. (b) Partial periodic patterns may

only appear in some intervals due to noise or other factors

Fig 1.1 depicts the difference between periodic and partial periodic patterns. For periodic patterns

(a.k.a full periodic patterns), an itemset must appear at defined intervals, while in partial periodic pat-

terns, the itemset might appear in some or all intervals due to noise or other factors. The model for

mining partial periodic patterns determines the interestingness of a pattern by counting the number of

periodic occurrences of an item. An item’s occurrence is considered periodic if the time gap between

two consecutive transactions is less than the user-defined maximum interarrival time (maxIAT). For

a pattern to be recognized as a partial periodic pattern, the itemset must appear periodically in at least

minPS (minimum periodic-support) number of transactions.

To better understand this, an example of a partial periodic pattern is as follows:

Example 2. Considering the same hypothetical temporal database (D) in Table 1.2 where each transac-

tion has its transaction id and timestamp (in days) at which it took place. If the user-specified maximum

inter-arrival time (maxIAT) is 3 days and minimum periodic-support (minPS) is 4 or 30%. The

following pattern is extracted

{p, r} [periodic-support = 5 or 38.46%].

This pattern indicates that items p and r co-occur together at the maximum interval of 3 days in certain

segments of the database, and 5 of its occurrences in the temporal database are periodic. Since this

pattern is not periodic over the entire database, this knowledge is missed by the periodic pattern model.

The discovery of partial periodic patterns in a temporal database involves two key tasks: assessing

the periodic interestingness of a pattern and discovering all partial periodic patterns in the database.

6

The assessment of periodic interestingness is non-trivial because existing periodic pattern models only

consider the support of a pattern when determining its interestingness.

Partial periodic pattern mining is a challenging problem that requires the development of novel algo-

rithms and techniques to effectively capture the temporal behaviour of items in discovering interesting

regularities. Despite the challenges, the discovery of the 3Ps has numerous real-world applications and

can provide valuable insights and recommendations for various domains. The 3P model was initially in-

troduced by Uday et al. [20] with the aim of identifying meaningful regularities in temporal databases.

They have proposed a new measure, called periodic-support (PS) to identify the number of periodic

occurrences of a pattern and proposed a unique tree structure, known as the partial periodic frequent

pattern tree (3P-tree), as well as an algorithm called 3P-growth, which was developed specifically for

mining partial periodic patterns in temporal databases.

1.1.6 Null Invariant Property

The null-invariant property is a desirable characteristic of a measure as it allows it to determine the

interestingness of a pattern without being influenced by the absence of items or itemsets in a dataset.

In other words, the measure should be able to identify both frequent and rare itemsets that exhibit

meaningful associations without being biased towards frequent items or generating a large number of

uninteresting patterns. To understand it better, consider a non-null-invariant measure like support. If we

mine patterns using support from the example database in Table 1.2, the interesting patterns generated

would be biased towards “p” and “s” because the database contains “p” and “s” more frequently however

patterns like “p and v” may holds importance if “v” has higher utility over “s” but would be missed

because of less occurrence in the database.

1.1.7 Anti Monotonic Property

The anti-monotonic property is another desirable characteristic of measures used in pattern mining.

It states that if a pattern is considered interesting, then all of its subsets should also be considered

interesting. This property is important because it helps to reduce the search space and computational cost

of mining patterns by eliminating uninteresting or redundant itemsets from consideration. By enabling

the efficient discovery of correlated patterns, the anti-monotonic property is a key feature that makes

pattern mining practical in real-world applications. For example, consider the example database in Table

1.2, if pattern “p, q and r” is considered an interesting pattern, then all its subsets like “p and q” and “p

and r” should also be considered interesting. Similarly if item “v” is uninteresting then all the patterns

containing “v” would be uninteresting. This property helps to reduce the search space and computational

cost of mining patterns by eliminating uninteresting or redundant itemsets from consideration.

7

1.2 Research gap and Motivation

The rare item problem is a common issue encountered in frequent itemset mining, which refers to

the difficulty of identifying frequent patterns in a dataset where some items occur rarely. The problem

arises from the use of a single minimum support threshold (minSup) for the entire database, which

assumes that all items have similar frequencies or occurrence behaviour. However, for most real-world

applications, the frequency of items varies widely, and finding frequent patterns using a single minSup

leads to the following problem.

1. At high minSup, we miss the frequent patterns containing rare items because many rare items

fail to satisfy the high minSup values.

2. To find the patterns containing both frequent and rare items, we have to set a low minSup value.

However, this may cause a combinatorial explosion, producing too many patterns, most of which

may be uninteresting to the user.

This dilemma is known as the rare item problem. The rare item problem is not only limited to the

traditional setting of frequent itemset mining but also affects other areas such as graph mining, time

series analysis, and text mining. This problem also exists in partial periodic pattern mining. Existing

models for mining 3Ps are based on the same assumption that items in the database occur uniformly,

which is often not the case in real-world applications. Since only a single minPS is used for finding

3Ps it leads to the following problem

1. At high minPS, we miss the patterns containing rare items because many rare items fail to satisfy

the high minPS values.

2. If we set minPS to a low value to find patterns containing both frequent and rare items. It causes

a combinatorial explosion producing too many uninteresting patterns.

These limitations highlight a gap in the research field of Partial periodic pattern mining that needs to

be addressed.

The rare item problem poses a significant challenge for many real-world applications, such as market

basket analysis, anomaly detection, and recommendation systems, where the discovery of infrequent

but meaningful patterns can have a significant impact on business insights and user experiences. To

overcome this dilemma, researchers have explored alternative measures such as χ2 [36], all-confidence

[37], kulk [38], relative support [39], and Kulczynski [38] each with its own selection bias. However,

no universally accepted best measure exists to find frequent itemsets in any database. Researchers are

attempting to suggest appropriate measures based on user or application requirements. Recently, null-

invariant measures such as all-confidence [37] and kulk [38] have been advocated because they disclose

genuine correlations without being influenced by the object co-absence in a database.

8

1.3 Overview of the proposed approach

The objective of partial periodic pattern mining is to identify all patterns in a temporal database

(D) that meet the user-specified minimum periodic-support (minPS) requirement and maximum inter-

arrival time (maxIAT). However, the existing model for mining 3Ps suffers from the rare item problem.

This problem arises when certain items appear infrequently in the database, making it challenging to

capture their periodic behaviour. If we set the minPS to a low value, we generate too many unin-

teresting patterns. On the other hand, if the minPS is high, we miss the patterns containing the rare

items.

To address this issue, we propose an improved model and present an improved depth-first search al-

gorithm to extract 3Ps. In the proposed model, we introduce a new measure called periodic confidence.

The minimum periodic confidence (minPC) measure is specifically designed to assess the interesting-

ness of a pattern by considering how frequently the rare item appears in the database. It considers both

the periodicity of the pattern and its association with the rare item in the pattern. It filters out the un-

interesting patterns when the minimum periodic-support (minPS) is low, which is the case during the

mining of patterns with rare items. The intuition behind proposing the measure is that if the periodic fre-

quency of a pattern containing a rare item is close to the overall frequency of a rare item in the database,

then the pattern is likely to be an interesting pattern. On the other hand, if a pattern containing a rare

item occurs infrequently with respect to the frequency of the rare item in the database, then it is likely to

be a random occurrence and not a meaningful pattern. The periodic-confidence measure satisfies both

null-invariant and anti-monotonic properties.

We also proposed an improved depth-first search algorithm named G3P-Growth algorithm. This

algorithm compresses the temporal database into a Generalized Partial Periodic Pattern-tree (G3P-tree)

and recursively mines the tree to identify all partial periodic patterns. In existing periodic pattern mining

algorithms, a tree structure records an item’s periodic and irregular occurrence information to calculate

periodic-support. However, this method requires storing timestamps for all irregular occurrences of

an item or pattern, leading to a large tree structure that increases memory and runtime requirements.

To address this issue, the G3P-growth algorithm uses a novel lossless data pruning technique called

irregularity pruning to eliminate irregular occurrences of an item in the temporal database and reduce

memory and runtime requirements. Experimental results demonstrate that the proposed algorithm is

highly scalable and efficient. We also present two case studies to demonstrate the potential real-world

applications of the proposed model. Overall, this research aims to provide a practical and effective

model for mining partial periodic patterns that can be applied to real-world datasets.

9

1.4 Contributions

1. We introduce the problem of mining partial periodic patterns in the context of the rare item prob-

lem. We propose a novel measure, periodic-confidence (PC), to determine the periodic interest-

ingness of a pattern.

2. We introduce an efficient depth-first search algorithm based on pattern-growth technique [40] to

find partial periodic patterns in a database.

3. We performed experiments on several real datasets, demonstrating that our algorithm is not only

memory and runtime-efficient but also scalable. We also present two case studies to demonstrate

the real-world applications of the proposed model.

1.5 Thesis Organization

The rest of the thesis is organized as follows.

1. In Chapter 2, we discuss the related work on frequent pattern mining, periodic pattern mining,

partial periodic pattern mining and the rare item problem.

2. In Chapter 3, we explain the background of partial periodic patterns.

3. In Chapter 4, we present the model for discovering partial periodic patterns in the non-uniform

database

4. In Chapter 5, we evaluate our proposed algorithm using different datasets. It first explains the

relevant details of the dataset and then presents the details of different experiments performed,

followed by a discussion of the results. Two case studies are also presented to showcase the

potential applications.

5. In Chapter 6, we provide the summary and conclusion of the thesis and discuss future research

directions

10

Chapter 2

Related Work

This chapter provides a comprehensive review of the literature on frequent pattern mining, periodic

pattern mining, partial periodic pattern mining, and the rare item problem.

2.1 Frequent Pattern Mining

In data mining, frequent pattern mining has proven to be a valuable tool for detecting interesting

itemsets in large transactional databases. Motivated by the application of mining association rules in

market basket database, Agarwal et al. [5] first introduced this concept and Apriori algorithm, defining

frequent patterns as sets of items that appear frequently in a database, with the frequency of occurrence

being measured by a support threshold. If the support of a pattern is equal to or greater than the user-

specified minimum support threshold, it is considered a frequent pattern. By utilizing the concept of

support, the Apriori algorithm can extract frequent patterns from a transactional database. The down-

ward closure property of support reduces the search space and enables the algorithm to extract these

patterns efficiently. Another important measure used in association rule mining is called confidence.

Confidence helps determine the strength of the relationship between items in a rule. The confidence

measure tells us how likely the consequent itemset will appear when the antecedent itemset is present.

By comparing different confidence values, we can identify strong and meaningful associations between

items in a dataset. Han et al. [40] introduced an alternative approach called FP-growth, which involves

mining frequent patterns without the need for candidate generation. The FP-growth builds a compact

data structure called FP-tree. Then, it recursively mines frequent patterns by exploring conditional pat-

tern bases derived from the FP-tree. The compact representation of the dataset in the form of the FP-tree

enables FP-Growth to perform pattern mining with reduced memory consumption and faster processing

time. This method gained much recognition because it only necessitates a single database scan which

enables it to efficiently mine patterns from large-scale transactional databases.

By identifying frequent patterns, it is possible to gain valuable insights into the associations among

items that frequently co-occur in the database. As a result, the task of finding frequent patterns has

11

received considerable attention in the research community, leading to the development of various al-

gorithms to find these itemsets in static databases [5], incremental databases [41], uncertain databases

[42], fuzzy databases [43], and data streams [44].

All-confidence measure has emerged as a practical approach for discovering correlated patterns

[45, 46]. It is computed as the ratio of the support of an itemset to the maximum support among its

individual items. It differs from the confidence measure because it evaluates an itemset, while the

confidence measure evaluates the association rule. The all-confidence measure ensures that associa-

tion rules derived from the itemset have a minimum confidence equal to the all-confidence value. The

all-confidence measure satisfies two important properties: anti-monotonicity and null-invariance. The

anti-monotonic property states that all non-empty subsets of a correlated pattern must also be correlated,

which reduces the search space and the computational cost of pattern mining. This makes it practical

for real-world applications. On the other hand, the null-invariance property reveals genuine correlation

relationships without being influenced by the absence of objects in a database. All-confidence facilitates

the discovery of meaningful patterns involving both frequent and rare items while reducing irrelevant

patterns.

A recent survey conducted by Luna et al. [25] provides comprehensive insights into the advance-

ments and techniques employed in frequent itemset mining over the past 25 years.

2.2 Periodic Pattern Mining

Frequent pattern mining has numerous real-world applications in web and data mining, and over the

years, many techniques have been proposed for discovering valuable and interesting patterns in large

databases [47, 48, 49, 50]. The support or frequency of occurrence measures has typically been used

to identify patterns in transactional databases. One area where earlier approaches have largely ignored

crucial information is the temporal occurrence of patterns in the database. For example, in a traffic

congestion database of an area, it is crucial to identify frequent patterns of traffic congestion and the

time of their occurrence to manage traffic flow better. To address this shortcoming, researchers proposed

incorporating periodicity, or the time of occurrence of a pattern, as a primary measure for discovering

periodic patterns in temporal databases.

Ozden et al. [13] proposed two novel algorithms, named sequential and interleaved algorithms, to

discover the temporal behaviour of patterns in transactional databases. To achieve this, the authors

employed cycle pruning, cycle elimination, and cycle skipping techniques, which allow for the effective

discovery of the full cyclic behaviour of patterns, leading to the design of cyclic association rules. They

partitioned the complete dataset into disjoint subsets based on transaction time stamps to facilitate the

mining process. Next, they applied pruning techniques to eliminate non-cyclic patterns from these

subsets. The authors claimed that their proposed pruning techniques were highly effective and efficient,

12

enabling them to complete the mining process quickly. However, one of the shortcomings observed with

this approach is that it cannot discover the patterns that span multiple windows.

Tanbeer et al. [14] extended the frequent pattern model to discover a class of full periodically oc-

curring frequent patterns in a temporal database called periodic-frequent patterns. To achieve this, the

authors proposed a pattern growth algorithm called PFP-Growth and introduced the periodic frequent

pattern tree (PF-tree), a new tree-based data structure that includes a tail node to store transaction iden-

tifiers. During the pruning of these nodes, the PF-tree preserves the occurrence information by transfer-

ring the list of identifiers to the parent node. The authors claimed that their complete mining process is

highly efficient. They utilized a unique maximum periodicity measure and a support-based measure to

generate full cyclic periodic frequent patterns. This approach has potential applications in various do-

mains, such as market basket analysis and web usage mining. A key limitation of this extended model

is that it suffers from an open problem of specifying the minSup value.

Amphawan et al. [33] tackled this problem by proposing a non-support metric-based algorithm to

find top-k periodic frequent patterns in a database. The authors proposed a single-scan algorithm that

uses an efficient list-based data structure called Top-k List Structure to find all top-k periodic-frequent

patterns.

Uday et al. [15, 16, 17, 51, 34, 52] discussed several techniques to discover full periodic frequent

patterns in transactional databases effectively. Uday et al. [17] proposed a novel measure, the minimum

periodic ratio, to identify complete frequent periodic patterns in transactional databases. They have also

proposed a novel tree structure, known as the extended periodic frequent pattern tree (ExPF-tree), and

an algorithm called the extended periodic frequent pattern-growth (ExPF-growth) to mine the databases.

They also introduced the concept of potential patterns consisting of only one item. The ExPF-tree com-

prises an ExPF-list and a prefix tree to preserve transactional identifiers, and the authors have applied

two additional pruning techniques to eliminate uninteresting patterns.

Uday et al. [34] developed an efficient algorithm called periodic frequent pattern-growth++ (PFP-

growth++), which is an improved variant of Tanbeer’s model for mining periodic frequent patterns

in transactional databases. To store the patterns and complete the mining process, the authors have

proposed a tree-based data structure called periodic frequent pattern tree++ (PF-tree++), which includes

a PF-list++ and a prefix tree for maintaining the transactional identifiers of the patterns. Furthermore,

the authors have introduced a new concept called local periodicity, which is utilized in two different

phases, namely expanding and shrinking phases, to complete the mining process quickly. They also

introduced two novel pruning techniques to improve the efficiency of the mining process.

13

2.3 Partial Periodic Pattern Mining

Periodic frequent patterns offer numerous real-world applications. However, there is a major lim-

itation to this model that affects its usefulness. It can only detect fully periodic patterns within the

data, which means all inter-arrival times must fall within the user-specified maximum threshold. In

practice, this can lead to the loss of potential knowledge, as the random and noisy nature of real-world

datasets can cause slight variations in patterns that deviate from their ideal behaviour, resulting in the

model’s failure to identify them. To address this issue, researchers introduced partial periodic patterns.

Researchers also tried to address this issue by utilizing different alternative measures for identifying

partial periodicity. For instance, Uday et al. [17] proposed periodic-ratio as a measure, while Rashid

et al. [18] used the standard deviation of inter-arrival times as a measure, and Nofong [19] introduced

a model that calculates the mean of inter-arrival times. However, a major drawback of these models is

that they do not satisfy the downward closure property, which makes them computationally expensive

and impractical for analyzing large, real-world databases.

To address the shortcomings of previous studies, Uday et al. [20] proposed a new model called

Partial Periodic Pattern (3P) model to identify interesting partial periodic patterns in temporal databases.

They introduced a novel tree structure called the partial periodic frequent pattern tree (3P-tree), as well

as a mining algorithm known as 3P-growth. They also introduced a new measure called periodic-

frequency to assess the importance of a pattern. Periodic-frequency is calculated as the number of

periodic occurrences in the temporal database. A pattern is considered periodic if the time between

two consecutive occurrences is less than or equal to a maximum inter-arrival time specified by the user.

Since partial periodic itemsets satisfy the anti-monotonic property, the 3P-growth algorithm utilizes this

property to discover partial periodic itemsets in large real-world datasets.

Multiple attempts to extend the basic model for mining partial periodic patterns have been made in

the literature to explore other applications or to improve the efficiency of the existing model. Yash-

want et al. [53] extended the basic model to discover partial periodic patterns with high value in a

quantitative temporal database. They addressed two limitations of the existing High Utility Itemset

Mining (HUIM) model: it allows for the external utility of items to vary over time and is designed

to find recurring customer purchase behaviour. They proposed an efficient depth-first search algorithm,

PPHUI-Miner, to enumerate all partial periodic high-utility itemsets in temporal databases.

Uday et al. [54] enhanced the basic partial periodic pattern model and made it flexible to discover

spatially interesting patterns in a spatiotemporal database. The model used three constraints (maximum

inter-arrival time, minimum period support, and maximum distance) to determine the interestingness of

a pattern. They proposed an efficient Spatiotemporal-Equivalence Class Transformation (ST-ECLAT)

algorithm to discover all partial periodic spatial patterns in a spatiotemporal database. The algorithm

uses a smart depth-first search technique to find the desired patterns effectively.

14

Saideep et al. [55] proposed a parallel algorithm for mining partial periodic itemsets in large temporal

databases. Most previous algorithms focused on centralized databases, making them non-scalable for

big data environments. Their proposed approach increased the performance by distributing transactional

identifiers among multiple machines and mining identical itemsets independently.

Likhita et al. [56] extended the basic model for discovering Maximal Partial periodic patterns for

huge databases. They proposed a novel approach to tackle the combinatorial explosion problem in

partial periodic pattern mining. They proposed a new model of maximal partial periodic patterns in

a database and a pattern-growth algorithm called max3P-growth. They claimed that the proposed ap-

proach effectively prunes redundant patterns and is efficient and scalable.

2.4 The Rare item problem

The key element that makes frequent itemset mining practicable in real-world applications is minSup.

It prunes the search space and limits the number of itemsets generated. Since the basic model of frequent

itemset implicitly assumes that all items in a database have similar frequency (or occurrence behaviour),

and only minSup is used for the entire database. This assumption can lead to the rare item problem

since the frequencies of items in most real-world datasets vary significantly. Consequently, if we set

a high minSup threshold, we may miss patterns that include rare items. Conversely, if we set the

minSup threshold to a low value, it can result in a combinatorial explosion of itemsets, and many of

the patterns generated would be uninteresting. To address this issue in real-world applications, scholars

have proposed a solution using the notion of multiple minSups [57, 58, 59]. This concept involves

using a minimum item support (minIS) constraint on each item within the database, with the minSup

of a pattern being represented by the lowest minIS value of its constituent items. Consequently, each

pattern can satisfy a distinct minSup threshold depending on its underlying items. However, a major

drawback of this approach is that determining the minIS values for the items remains an unresolved

problem.

Correlated pattern mining was introduced by Brin et al. [36] to tackle the issue of identifying rare

items. To uncover correlated patterns, they employed the χ2 statistical measure. Since then, various

measures of interestingness have been proposed based on probability theory, statistics, or information

theory. Examples include the all-confidence [37], kulk [38], relative support [39], and Kulczynski [38]

measures. Each measure has its own selection bias, which explains why one pattern is preferred over

another. Thus, there is no one universally accepted measure to discover correlated patterns in a given

database. Researchers are currently making efforts to suggest a suitable measure based on user and/or

application requirements [60, 37, 61].

Since the model for mining periodic frequent patterns and partial periodic patterns also uses one

minSup and minPS, respectively, for the entire database due to which, it also suffers from the is-

15

sue of the rare item problem. Several attempts have been made by Uday et al. [15, 16] in the past to

tackle this issue. Uday et al. [15] extended Liu’s model of multiple minimum support [57] that aims

to discover rare, full periodic frequent patterns in non-uniform transactional databases. To improve the

efficiency of the mining process, the authors utilized a list-based tree data structure, the multi-constraint

periodic frequent pattern tree (MCPF-tree), which comprises an MCPF-list and a prefix tree that stores

the transactional identifiers of the patterns. Additionally, two novel constraint measures, the minimum

item support (minIS) and maximum item periodicity (maxIP) were introduced to address the com-

binatorial explosion issues that arise during mining. Every item in the database were specified with

minIS and maxIP values. The authors also proposed a dynamic method for assigning the maximum

item periodicity value of any pattern. However, the proposed model was slower than the model in [14]

because the generated periodic-frequent patterns do not satisfy anti-monotonic property.

Surana et al. [16] proposed an extension to the MCPF-tree-based approach [15] for mining rare

full periodic frequent patterns in transactional databases. Since the MCPF-tree-based approach did not

satisfy the downward closure properties required for this task. To address this limitation and improve

the efficiency of the mining process, the authors introduced another list-based tree data structure, the

maximum constraints periodic frequent pattern tree (MaxCPF-tree), which includes a MaxCPF-list and

a prefix tree for storing the transactional identifiers of the patterns. Like the MCPF-tree-based approach,

the authors employed the minimum item support and maximum item periodicity constraint measures to

manage combinatorial explosion issues during mining. Additionally, they used two pruning techniques

to discard uninteresting patterns and showed that the MaxCPF-tree-based approach could identify rare

full periodic frequent patterns more quickly than the MCPF-tree-based approach.

In the two studies mentioned above [15, 16], a shared challenge is the methodology used to define

the minIS and maxIP values for items. Despite allowing for each item to have distinct minIS and

maxIP values, the model encounters certain restrictions: (i) It requires multiple user input parameters,

which becomes practically impossible to determine the appropriate values for large datasets, and (ii)

We observed that when using this methodology to specify items’ maxIP values in temporal databases

where items may have comparable support value but distinct periodicities, the rare item problem can

still arise.

2.5 Differences with the existing approaches

The current techniques for mining partial periodic patterns face challenges in identifying patterns

with both frequent and rare items, as they use a single minimum periodic support (minPS) threshold

to assess the interestingness of a pattern throughout the database.

None of the preceding approaches addresses the rare item problem in mining 3Ps from temporal

transactional databases.

16

2.6 Summary

In this chapter, we have discussed the existing works related to frequent pattern mining, periodic

pattern mining, and partial periodic pattern mining. In the next chapter, we will provide a brief overview

of partial periodic pattern mining.

17

Chapter 3

Model of Periodic Patterns

As a part of the background, in this chapter, we explain the model of the 3Ps.

3.1 Introduction

In earlier chapters, we introduced the fundamental models of frequent patterns and periodic patterns.

However, the periodic pattern model has some limitations that can be addressed by using partial periodic

patterns. First, we will discuss these limitations, and then in the following subsection, we will delve into

the model of partial periodic patterns and explain the associated terminologies.

Partial periodic patterns are an extension of Periodic patterns which tries to relax the existing con-

straints. Following are the set of limitations of the periodic patterns that are resolved by partial periodic

patterns

1. Inability to mine complex patterns: Periodic patterns requires a fixed regular interval between

their repetitions, which may not always be present in the data, especially for most real-world

applications.

2. Inability to handle missing data and noise: The model of partial periodic patterns assumes that

all items are present and equally spaced, but for real-world applications, there can be instances

when the item is not recorded in the transaction or gets recorded in some other transaction. This

phenomenon can lead to important patterns getting missed.

3. Inability to model real-life phenomenon: Periodic patterns assume ideal behaviour, while for

most real-world applications, there are always deviations from the ideal behaviour. There can be

instances when the pattern stops appearing for a short duration and later starts appearing regularly

in the data. These patterns cannot be extracted using the model of periodic patterns.

18

3.2 Model of Partial Periodic Patterns

To overcome the above-listed limitations and mine the complex patterns from the database, the model

of partial periodic patterns was introduced.

Let I = {i1, i2, · · · , im}, m ≥ 1, be a set of m distinct items appearing in transactional temporal

database. Let A ⊆ I be a pattern (or an itemset). A pattern containing n number of items is called a

n-pattern. A transaction ttid = (tid, ts, B), where tid ≥ 1 represents the transaction identifier, ts ∈ R+

represents the timestamp and B ⊆ I is a pattern. A temporal database D is a collection of transactions.

That is, D = {t1, t2, · · · , ty}, 1 ≤ y ≤ |D|, where | D | represents the size of database. If a pattern

A ⊆ B, it is said that A occurs in transaction ttid. The timestamp of this transaction is denoted as

tsAtid. Let TSA = {tsAx , tsAy , · · · , tsAz }, x, y, z ∈ (1, | D |), denote the set of all timestamps in which

the pattern A has appeared in the database. The support of A in D, denoted as sup(A), represents the

number of transactions containing A in D. That is, sup(A) =| TSA |.

Example 3. Let I = {p, q, r, s, t, u, v} be the set of items. The temporal database of the items in

I is shown in Table 1.2. The set of items p, q and r, i.e., {p, q, r} (or pqr, in short) is a pattern.

It is a 3-pattern because it contains three items. The pattern pqr appears in the transactions with

timestamps of 3, 4, 12, 13, 15 and 16. Therefore, tspqr2 = 3, tspqr3 = 4, tspqr11 = 12, tspqr12 = 13,

tspqr13 = 15 and tspqr14 = 16. The complete set of timestamps at which pqr has occurred in Table 1.2, i.e.,

TSpqr = {3, 4, 12, 13, 15, 16}. The support of pqr, i.e., sup(pqr) =| TSpqr |= 6.

To identify if an itemset appears regularly in the database, we need to identify the time gap between

the two consecutive occurrences of an item. To capture this information, we use the notion of inter-

arrival time. Basically, it tells us the time gap between the two consecutive appearances of an itemset in

the complete database. By using the set of inter-arrival times of an itemset, we can get a better idea of

how regularly and consistently the itemset appears in the database. It can be formally defined as

Definition 1. (Inter-arrival time of itemset A) Let tsAj , tsAk ∈ TSA, 1 ≤ j < k ≤ m, denote any

two consecutive timestamps in TSA. The time difference between tsAk and tsAj is referred to as an

inter-arrival time of A, and denoted as iatA. That is, iatA = tsAk − tsAj .

Example 4. The pattern pqr has consecutively appeared in the transactions with timestamps of 3 and

4. The difference between these two timestamps gives an inter-arrival time of pqr. That is, iatpqr1 =

4− 3 = 1. Similarly, other inter-arrival times of pqr are: iatpqr2 = 12− 4 = 8, iatpqr3 = 13− 12 = 1,

iatpqr4 = 15− 13 = 2 and iatpqr5 = 16− 15 = 1.

To extract partial periodic patterns from the temporal database, it is necessary to establish criteria

for identifying consecutive occurrences of an item that can be considered periodic occurrences. The

two consecutive occurrences of an itemset are considered periodic if their inter-arrival time is less than

19

the user-defined maximum interarrival time (maxIAT). The notion of the periodic appearance of an

itemset is formally defined as

Definition 2. (Periodic appearance of itemset A.) Let IATA = {iatA1 , iatA2 , · · · , iatAk }, k = sup(A)−
1, be the set of all inter-arrival times of A in D. An inter-arrival time of A is said to be periodic if it

is no more than the user-specified maximum inter-arrival time (maxIAT). That is, a iatAi ∈ IATA is

said to be periodic if iatAi ≤ maxIAT .

Example 5. The set of all inter-arrival times of pqr in Table 1.2, i.e., IAT pqr = {1, 8, 1, 2, 1}. If

the user-specified maxIAT = 2, then iatpqr1 , iatpqr3 , iatpqr4 and iatpqr5 are considered as the periodic

occurrences of pqr in the data. On the contrary, iatpqr2 is considered as an irregular occurrence of pqr

because iatpqr2 ̸≤ maxIAT .

To extract meaningful patterns from the temporal database, a constraint is required to filter out unin-

teresting patterns. This constraint allows us to focus on those patterns that occur frequently enough to be

considered meaningful. To achieve this, the measure of periodic support was introduced. It is a way to

define a minimum percentage threshold of transactions in which the itemset should appear periodically

to be considered a partial periodic pattern. The measure can be formally defined as

Definition 3. (Periodic-support of pattern A [62].) Let ÎATA ⊆ IATA be the set of all inter-

arrival times that have value no more than maxIAT . That is, ÎATA ⊆ IATA such that if ∃iatAk ∈
IATA : iatAk ≤ maxIAT , then iatAk ∈ ÎATA. The periodic-support of A, denoted as PS(A) =
|ÎATA|
|D|−1 , where |D| − 1 denote the maximum number of inter-arrival times a pattern may have in D.

Example 6. Continuing with the previous example, ̂IAT pqr = {1, 1, 2, 1}. Therefore, the periodic-

support of ‘pqr,’ i.e., PS(pqr) = | ̂IAT pqr|
|D|−1 = |{1,1,2,1}|

13 = 0.307. To find this pattern as a partial

periodic pattern in the basic model, we must set a low minPS value, say 0.15.

In simple terms, The periodic-support refers to the relative frequency of periodic occurrences of

an itemset in a dataset. It helps in determining the interestingness of a pattern by considering both its

frequency and inter-arrival times of items in the data.

Using the terms defined above, the concept of partial periodic patterns is introduced.

Definition 4. (Partial periodic pattern A.) The pattern A is said to be a partial periodic pattern if

PS(A) ≥ minPS and ∀i ∈ N, ÎATA
i ≤ maxIAT , where minPS and maxIAT represents the

user-specified minimum periodic-support and maximum inter-arrival time.

Example 7. If the user-specified minPS = 0.15 or 15% and maxIAT is 2 then pqr is a partial

periodic pattern because PS(pqr) ≥ minPS and ∀i ∈ N, ̂IAT pqr
i ≤ maxIAT

We now define a clear problem statement of mining partial periodic patterns using the terminologies

described and explained above.

20

Problem Statement

Given a temporal database (D), a set of items (I) and the user-specified maximum inter-arrival time

(maxIAT), and minimum periodic-support (minPS), the problem of partial periodic pattern mining is

to find all patterns in D that satisfy the minPS constraint. The partial periodic itemsets discovered by

the proposed model satisfy the downward closure property. The following property 1 can easily prove

that the model follows the downward closure property.

Property 1. If X ⊆ Y , then TSX ⊇ TSY , therefore, PS(X) ≥ PS(Y).

Example 8. Consider two patterns, p and pq. Since p ⊆ pq and the TSp = {1, 3, 4, 7, 8, 10, 11, 12,

13, 15, 16} and TSpq = {3, 4, 12, 13, 15, 16}, so TSp ⊇ TSpq. Therefore PS(p) ≥ PS(pq), i.e
11

14−1 ≥ 6
14−1 and 0.846 ≥ 0.462.

3.3 Partial Periodic Pattern-growth (3P-growth) Algorithm

Partial Periodic Pattern-growth (3P-growth) is a depth-first search algorithm [20] for extracting par-

tial periodic patterns from a given temporal database D. The 3P-growth algorithm involves the following

two steps:

1. Compress the database into a partial periodic pattern tree (3P-tree)

2. Recursively mine the 3P-tree to find all partial periodic itemsets.

The idea behind converting the database into a 3P-tree is to remove redundancies and represent the

information in a more compact format. This is accomplished by taking advantage of the fact that transac-

tions in the database tend to have a common subset of items. By storing the database in this compressed

form, the 3P-growth algorithm can perform partial periodic pattern searches more effectively without

having to repeatedly scan the entire database.

The two steps of the 3P-Growth algorithm are

Construction of 3P-tree

A 3P-tree consists of two components:

1. 3P-list - It contains information of each distinct item (i), with periodic-frequency (pf) and a

pointer pointing to the first node in the prefix tree for the same item.

2. Prefix-tree - It stores the database in compressed form to facilitate efficient mining. The prefix-

tree is similar to an FP-tree (Frequent Pattern-tree), but it differs in the way it stores occurrence

information for each transaction. It consists of two types of nodes: ordinary node and tail-node.

21

The ordinary node is similar to the FP-tree node, whereas tail-node represents the last item of

any sorted transaction and maintains a transaction-id list called “tid-list”. The structure of a tail-

node is represented as N : [t1, t2, ..., tn], where N is the node’s item name and ti, i ∈ [1, n]

represents the list of transactions where N is the last item in the set of transactions. Each node in

the tree maintains parent, children, and node traversal pointers, but unlike an FP-tree, no node in

a prefix-tree maintains a support count value.

Partial periodic patterns satisfy the anti-monotonic property, so partial periodic items (or 1-itemset)

play an important role in the mining process. Figure 3.1(a)-(c) show the construction of 3P-list after

scanning the first, second and every transaction in the database, respectively. Figure 3.1(d) shows the

3P-list containing partial periodic items in descending order of their pf value. The period and minPF

values used to find these items are 2 and 2, respectively. In Figure 3.1 I denotes the item name, frq

denotes the frequency of the item, pf denotes the periodic-frequency of the item and tsl denotes last

timestamp in which the item appeared. Let CI denote this sorted list of partial periodic items.

I frq pf

r 1 0

p 1 0

s 1 0

(a)

tsl

1

1

1

I frq pf

r 1

p 1

s 0

q 0

tsl

t

1

1

1

2

2

0

3

3

1

3

3

(b) (d)

I frq pf

r 8 5

p 11 9

s 10 6

q

v

u

7

3

4

4

1

2

t 4 2

tsl

16

16

16

16

15

12

11

I frq pf

r 8 5

p 11 9

s 10 6

q 7 4

u 4 2

tsl

16

16

16

16

12

(c)

t 4 2 11

Figure 3.1: Construction of 3P-list. (a) After scanning the first transaction, (b) after scanning the second

transaction, (c) after scanning the entire database, and (d) the final 3P-list after pruning all aperiodic

items

The 3P-list obtained contains the partial periodic items(or 1-itemset). We perform another scan on

the database to construct the prefix tree. Fig 3.2 (a), (b) and (c) show the 3P-tree constructed after

scanning the first, second and every transaction in the database, respectively. For simplicity, we do not

show the node traversal pointers in trees; however, they are maintained as an FP-tree does. The initial

node in the FP-Tree is represented by an null node.

22

{}null

p

(a)

s

(c)

{}null

p

 s

r:1

r

 q

s

u

q:4,13,16 t:3

{}null

p

(b)

r:1

s

r:1

r

q

t:3 u:12

u:8,10

t:11

t:5

r

q:9

Figure 3.2: Construction of 3P-tree. (a) After scanning the first transaction, (b) After scanning the

second transaction, and (c) After scanning the entire database

Recursive mining of 3P-tree

To mine the 3P-tree, take each partial periodic item as the initial suffix itemset. Next, create a

conditional pattern base. Using this information, create the conditional 3P-tree and recursively perform

mining on it. Concatenate the suffix itemset with partial periodic itemsets produced from a conditional

3P-tree to accomplish pattern growth.

Continuing with the same example, We start with the bottom-most item in the 3P-list. Since t is the

bottom-most item, each node with item = t in 3P-tree must be a tail-node. Fig 3.3(a) shows the prefix

tree for ⟨t⟩. As no item in the prefix tree of t has period-support more than the user-specified minPS,

the conditional tree of t will be empty as shown in Fig 3.3(b). Only t will be generated as a partial

periodic pattern. Next, the item t will be completely pruned from the original 3P-tree by pushing its

ts-lists to the respective parent nodes. Fig 3.3(c) shows the resultant 3P-tree after pruning item t. The

entire process is repeated until the 3P-list in the 3P-tree is empty.

23

(a)

 p:11

 r

q:3

s

{}null

(b)

{}null

(c)

u:5

{}null

p:11

 s

r:1

r

q:3

s

u:5

q:4,13,16 u:12

u:8,10

r

q:9

Figure 3.3: Recursive mining of 3P-tree. (a) Prefix tree for item t (b) conditional tree for item t and (c)

3P-tree after pruning item t

3.4 Summary

In this chapter, we explain the model of partial periodic pattern along with the 3P-Growth algorithm.

We also explained the issues causing rare item problem and their possible solutions. In the next chapter,

we explain the periodic-confidence measure for discovering partial periodic patterns in the non-uniform

database along with the Generalized Partial Periodic Pattern-growth (G3P-growth) algorithm for effi-

cient mining.

24

Chapter 4

Proposed Approach

In this chapter, we present the proposed model and the algorithm. We first introduce the modified

problem statement and then present the proposed model. Next, we present the algorithm.

4.1 Issues with the existing model of 3P

The model of 3P (Partial Periodic Pattern) is as follows (refer to Chapter 3 for details). Given

a temporal database, the problem of 3Ps is to extract all periodic regularities subject to user-given

minPS(minimum periodic support) and maxIAT (maximum inter-arrival time) constraints. The

minPS threshold is a key parameter in this task because it determines the minimum frequency of

occurrence of a pattern in the database. Therefore, setting an appropriate minPS threshold is crucial

in achieving meaningful results in 3P mining. However, the model of 3P suffers from rare item prob-

lem. Rare items refer to the infrequently occurring items in the database that are crucial for discovering

meaningful patterns. However, patterns containing rare items have low periodic support, which creates

a dilemma while setting the minimum periodic support threshold (minPS):

1. If we set the minPS threshold to a high value, then we might miss important patterns containing

rare items.

2. If we set the minPS threshold to a low value, then we generate too many patterns, and many of

them would be uninteresting.

Consequently, patterns containing rare items can often get lost in the noise, resulting in missed

opportunities for discovering valuable insights.

To illustrate this challenge, consider a database of customer purchases from a grocery store in Table

4.1, where each transaction contains the items purchased along with the timestamp.

Suppose we want to identify the items being bought together periodically for promotional and ad-

vertising activities. One observed pattern could be that “Chips and Soft Drinks” are bought together

25

Transaction ID Timestamp Items

1 2022-01-01 10:00:00 Chips, Soft drinks

2 2022-01-02 14:00:00 Chips, Beer

3 2022-01-03 12:00:00 Chips, Soft drinks

4 2022-01-06 11:00:00 Chips, Soft drinks

5 2022-01-07 16:00:00 Chips, Beer

6 2022-01-09 09:00:00 Chips, Soft drinks

7 2022-01-10 15:00:00 Chips, Soft drinks

8 2022-01-13 13:00:00 Chips, Beer

9 2022-01-14 10:00:00 Chips, Soft drinks

10 2022-01-15 12:00:00 Bread, Cheese, Soft drinks

11 2022-01-15 14:00:00 Bread, Chips, Beer

12 2022-01-16 11:00:00 Bread, Chips, Soft drinks

13 2022-01-16 16:00:00 Chips, Beer, Soft Drink

14 2022-01-17 09:00:00 Bread, Beer, Cheese, Soft drinks

15 2022-01-18 13:00:00 Bread, Chips, Beer

Table 4.1: Example database of customer purchases from a grocery store

every week. However, “Beer and Chips” are also bought together, but they are usually bought together

on weekends. Since Beer is a higher-priced item and appears less frequently in the database with re-

spect to chips, it creates the rare item problem. For instance, If we set a high minPS threshold like

0.6. In that case, we might miss this pattern as “Beer and Chips” has PS of 0.4, leading to a loss of

important insights. On the other hand, if we set a low minPS threshold like 0.1, we might generate too

many uninteresting patterns like “Beer and Bread” and “Beer and Soft Drinks”, making it challenging

to identify the meaningful ones that contain rare items. Pattern like “Beer and Bread” and “Beer and

Soft Drinks” are uninteresting because these items appear together only twice and can be considered as

random occurrence. In contrast “Beer and Chips” appear together for six times out of seven periodic

occurrences of Beer making it an interesting pattern.

This observation highlights the importance of considering how often rare items appear in a database

while evaluating the significance of a pattern. In simpler terms, If the periodic frequency of a pattern

containing a rare item is close to the overall frequency of a rare item in the database, then the pattern is

likely to be an interesting pattern.

On the other hand, if a pattern containing a rare item occurs infrequently with respect to the frequency

of the rare item in the database, then it is likely to be a random occurrence and not a meaningful pattern.

26

Therefore, we propose a novel measure that captures the periodicity of a pattern and its association with

rare items by using the frequency of the rare item in the database. This measure can be used to mine

partial periodic patterns with rare items in a temporal database and is discussed in detail further.

4.2 Proposed Model

For the proposed model, we use the same example database shown in Table 1.2 for presenting the

examples of terms in the proposed model. The proposed measure for addressing the rare item problem

in partial periodic pattern mining is named periodic confidence. The periodic confidence of a measure

can be formally defined as:

Definition 5. (Periodic-confidence of pattern A) The periodic-confidence of pattern A, denoted as

PC(A) = |ÎATA|
min(sup(ij)|∀ij∈A)−1 , where min(sup(ij) | ∀ij ∈ A)− 1 represents the minimum number of

inter-arrival times of a least frequent item in A.

Example 9. Continuing with the previous example, the periodic-confidence of pqr, i.e., PC(pqr) =
| ̂IAT pqr|

min(sup(p),sup(q),sup(r))−1 = |{1,1,2,1}|
min(11,7,8)−1 = 4

6 = 0.667 (= 66.7%). It can be observed that though

the pattern pqr has low period-support in the entire data, it has a high periodic-confidence. Thus, the

usage of periodic-confidence facilitates us in finding patterns containing both frequent and rare items.

The periodic-confidence measure is designed to capture the periodicity of the patterns and its asso-

ciation with the rare item in the pattern. It is the ratio of the number of periodic occurrences of a pattern

with respect to the frequency of rare items in the database. The intuition behind the measure is that if

a pattern occurs with high periodic-confidence, then that pattern is most likely to be a meaningful pat-

tern, as the frequent occurrence of a pattern with a rare item implies there exists some relation between

the pattern and the rare item and the occurrence of a rare item with the pattern is not a random event.

By leveraging the frequency of a rare item in the complete database, the periodic confidence measure

identifies the number of periodic occurrences of a pattern with a rare item. This enables the measure to

distinguish meaningful patterns containing both frequent and rare items from random occurrences.

Considering the case for patterns containing only frequent items, those with high periodic support

will also exhibit high periodic confidence. High periodic support indicates a significant number of

periodic occurrences of the pattern throughout the entire database. Additionally, high periodic support

also suggests a higher number of periodic occurrences with respect to the rarest item within the pattern.

Therefore, patterns with high periodic support indicate an important and recurring relationship between

the items in the pattern. Conversely, patterns with low periodic support among patterns containing

only frequent items will also have low periodic confidence. This means that these patterns do not

27

show a strong recurring association between their items. This enables the proposed model to filter out

uninteresting patterns that lack a strong periodic association between their items.

The periodic-confidence measure will enable the partial periodic model to be applied in various

fields, such as identifying rare events in medical data or detecting anomalies in financial transactions.

By using the measure, we can identify periodic patterns that contain rare items and have a high degree

of confidence that they are not just random occurrences. This can enable proactive measures to be taken

to mitigate the impact of the rare event.

The existing model for mining partial periodic patterns uses only minimum periodic support (minPS)

to identify interesting patterns. However, incorporating the proposed measure of periodic confidence

(minPC) is crucial for real-world applications. While it may appear as a better solution to remove the

minimum periodic support constraint and use only periodic confidence to determine interestingness, this

approach can lead to the identification of patterns with items that appear only once in the database. Ad-

ditionally, some items may be rare due to random noise or errors, and their appearance in a pattern may

not be significant or interesting. The definition of a rare item may also vary depending on the application

and database size. Consequently, using only minimum periodic confidence may generate uninteresting

patterns containing rare items that are of no interest. Therefore, the constraint of minimum periodic

support is necessary to filter out such noise, errors, and uninteresting patterns.

We now modify the definition of partial periodic patterns incorporating the proposed measure.

Definition 6. (Partial periodic pattern A.) The pattern A is said to be a partial periodic pattern if

PS(A) ≥ minPS and PC(A) ≥ minPC, where minPS and minPC represents the user-specified

minimum period-support and minimum periodic-confidence, respectively. Our model employs minPS

constraint to prune the patterns with very few periodic occurrences in the database.

Example 10. If the user-specified minPS = 15% and minPC = 50%, then pqr is a partial periodic

pattern because PS(pqr) ≥ minPS and PC(pqr) ≥ minPC.

To establish a clear problem statement for mining partial periodic patterns from temporal databases,

we utilize the terminology outlined earlier.

Definition 7. (The problem of mining Partial Periodic Patterns from a temporal database.) Given a

temporal database (D) and the user-specified maximum inter-arrival time (maxIAT) minimum period-

support (minPS), and minimum periodic-confidence (minPC), the problem of partial periodic pattern

mining is to find all patterns in D that satisfy the minPS and minPC constraints. The inter-arrival

times of a pattern can also be expressed in percentage of (tsmax − tsmin), where tsmin and tsmax

represents the minimum and maximum timestamps in D, respectively.

The patterns generated by the proposed model satisfy both the null invariance property [60, 61] and

the convertible anti-monotonic property [63].

28

The following two properties for the proposed measure can be proved as follows

Table 4.2: A 2× 2 (utility) contingency table for A and B

B B

A f11 f10 f1+

A f01 f00 f0+

f+1 f+0 F

Let A and B be two variables (or itemsets). The 2× 2 contingency table for these variables is shown

in Table 4.2. The term f11 represents the frequency of AB in the database. The term f10 represents

the frequency of A in the transactions that do not contain B in the database. The term f1+ represents

the total frequency of A in the entire database. The term f01 represents the frequency of B in the

transactions that do not contain A in the database. The term f00 represents the total frequency of other

items in the database. The term f0+ represents the total frequency of all items excluding A. The term

f+1 represents the frequency of B in the entire database. The term f+0 represents the total frequency

of all items excluding B in the database. The term F represents the total frequency of all items in the

database. If maxIAT ≥ tsmax − tsmin, then periodic-confidence of AB is computed as follows:

PC(AB) =
f11

min(f1+, f+1)
. (4.1)

Since PC is not influenced by f00, f0+, f+0, or F , it can be stated that O(M + C) = O(M). Thus,

periodic-confidence satisfies the null-invariant property.

Property 2. (Null-invariance property [60].) A binary measure of association is null-invariant if

O(M + C) = O(M), where M is a 2 × 2 contingency matrix, C = [0 0; 0 k] and k is a positive

constant.

Property 3. (The convertible anti-monotonic property.) Let B = {i1, i2,- · · · , ik}, k ≥ 1 be an

ordered pattern such that sup(i1) ≤ sup(i2) ≤ · · · ≤ sup(ik). If B is a partial periodic pattern, then

∀A ⊂ B, A ̸= ∅ and i1 ∈ A, A is also a partial periodic pattern. The proof is based on Property 4,

Lemma 5 and 6, and shown in Theorem 7.

Property 4. (Apriori property [64].) If A ⊂ B, then TSA ⊇ TSB . Thus, sup(A) ≥ sup(B).

Lemma 5. Let B = {i1, i2, · · · , ik}, k ≥ 1 be an ordered pattern such that sup(i1) ≤ sup(i2) ≤ · · · ≤
sup(ik). If A ⊂ B such that i1 ∈ A, then PS(A) ≥ PS(B).

29

Proof. Using the Property 4, If A ⊂ B, then TSA ⊇ TSB also

PF (A) ≥ PF (B) (4.2)

=
PF (A)

| D | −1
≥ PF (B)

| D | −1
(4.3)

= PS(A) ≥ PS(B). (4.4)

Hence proved.

Lemma 6. Let B = {i1, i2, · · · , ik}, k ≥ 1 be an ordered pattern such that sup(i1) ≤ sup(i2) ≤ · · · ≤
sup(ik). If A ⊂ B such that i1 ∈ A, then PC(A) ≥ PC(B).

Proof. According to Lemma 5, if A ⊂ B, then

PS(A) ≥ PS(B) (4.5)

=
PS(A)

sup(i1)− 1
≥ PS(B)

sup(i1)− 1
(4.6)

= PC(A) ≥ PC(B). (4.7)

Hence proved.

Theorem 7. Let B = {i1, i2, · · · , ik}, k ≥ 1 be an ordered pattern such that sup(i1) ≤ sup(i2) ≤
· · · ≤ sup(ik). If B is a partial periodic pattern, then ∀A ⊂ B, A ̸= ∅ and i1 ∈ A, A is also a partial

periodic pattern.

Proof. If B is a partial periodic pattern, then PS(B) ≥ minPS and PC(B) ≥ minPC. Based on

Lemmas 5 and 6, it turns out that ∀A ⊂ B, i1 ∈ A, PS(A) ≥ PS(B) ≥ minPS and PC(A) ≥
PC(B) ≥ minPC. Thus, A is also a partial periodic pattern. Hence proved.

To demonstrate the efficacy of our model, we provide an example set of patterns in Table 4.3. We

used high minPS, low minPS and low minPS with high minPC values to demonstrate the rare item

problem with the existing model. The proposed model could generate patterns containing frequent and

rare items without producing too many uninteresting patterns.

30

Table 4.3: Partial periodic patterns generated from Table 1.2 at different minPS and minPC values.

The terms ‘P,’ ‘PS,’ ‘I,’ ‘II,’ and ‘III’ respectively represent ‘Pattern,’ ‘period-support,’ ‘partial periodic

patterns found at high minPS value of 0.6,’ ‘partial periodic patterns found at low minPS value of

0.3,’ and ‘partial periodic found using the proposed model at minPS = 0.3 and minPC = 0.7

P PS I II III

p 0.77 T T T

q 0.38 F T T

r 0.46 F T T

s 0.69 T T T

pq 0.31 F T F

pr 0.38 F T T

ps 0.46 F T F

qr 0.38 F T T

pqr 0.31 F T F

4.3 Generalized Partial Periodic Pattern-growth (G3P-growth)

The G3P-growth algorithm involves the following two steps: (i) compress the database into Gener-

alized Partial Periodic Pattern-tree (G3P-tree) and (ii) recursively mine the tree to discover the complete

set of partial periodic patterns.

The ideation behind compressing the database into Generalized Partial Periodic Pattern-tree (G3P-

tree) is to reduce redundancy and represent the database in a more compact form. The G3P-tree is

a hierarchical data structure that captures partial periodic patterns in a compressed form. The tree

structure allows for efficient pattern matching by exploiting the shared information between transactions.

By storing the database in this compressed form, the G3P-growth algorithm can efficiently search for

partial periodic patterns without scanning the database multiple times.

To further improve the mining process, the G3P-growth algorithm uses a technique called irregularity

pruning. The ideation behind this technique is to eliminate the aperiodic occurrence of an item that does

not contribute to any partial periodic pattern and is reduntant in the pattern discovery process. This helps

in reducing the overall size of the tree and improves the runtime. This technique is explained in details

in the next subsection.

31

4.3.1 Irregularity pruning

Existing periodic pattern mining algorithms record the periodic and irregular occurrence information

of an item in a tree structure to calculate the period-support. We have observed that storing the times-

tamps of all irregular occurrences of an item (or pattern) increases the size of the tree structure, which

in-turn increases the memory and runtime requirements of an algorithm. With this motivation, we have

come up with a technique to prune irregular occurrences of an item (or pattern) in a database.

In simpler words, The basic idea of irregularity-pruning is to remove items from transactions while

constructing the G3P-tree. The aim is to eliminate items that do not contribute to the periodic occur-

rence of an item, where the periodic occurrence is defined as when an item appears in two consecutive

transactions with a time difference less than the user-defined maximum inter-arrival time (maxIAT).

During the construction of the G3P-tree, if an item in a transaction is not periodic with the timestamp

of the previous and the next occurrence, then item in that transaction does not contribute to any partial

periodic pattern and can be eliminated from the mining process. This technique helps in reducing

redundancy and improving the runtime of the algorithm.

Now we define the property of irregularity pruning with a formal definition and demonstrate it with

an example using the sample temporal database in Table 1.2.

Property 8. (Irregularity pruning.) Let TSA = {tsAa , tsAb , · · · , tsAc }, 1 ≤ a ≤ b ≤ c ≤ m, be the

timestamps at which A has occurred in D. Let tsAp , ts
A
q , ts

A
r , a ≤ p < q < r ≤ c, be three consecutive

timestamps in TSA. If tsAq − tsAp > maxIAT and tsAr − tsAq > maxIAT , then pruning tsAq from TSA

will not result in missing any information (or PS(A) remains the same).

Example 11. In Table 1.2, the item s appears in the timestamps of 1, 4, 5, 6, 7, 8, 9, 10, 13, and 16. Thus,

IAT s = {3, 1, 1, 1, 1, 1, 1, 3, 3}. If maxIAT = 2, then ÎAT s{1, 1, 1, 1, 1, 1} and PS(s) = 6
15 = 0.4.

Now, consider the last three occurrences of s in TSs, i.e., 10, 13 and 16. Since (13− 10) > maxIAT

and (16− 13) > maxIAT , it can be stated that timestamp 13 is not contributing to the period-support

of s in the database. Thus, pruning timestamp 13 from TSs will not result in losing the period-support

of s. Similarly, pruning the timestamp 16 will not result in losing the period-support of s. In other

words, the period-support of s and its supersets can be calculated by storing only the timestamps 1, 4,

5, 6, 7, 8, 9 and 10.

Before we describe the two steps G3P-Algorithm in detail, we describe the structure of the G3P-tree.

Structure of G3P-tree

The structure of G3P-tree is composed of a prefix-tree and a candidate event list, called G3P-list.

The G3P-list indicates for each distinct item (i), its support count (s), period-support count (ps) and

provides a pointer to the first node in the prefix-tree representing the event (nl). The prefix-tree in a

32

G3P-tree maintains two types of nodes: ordinary and tail. An ordinary node structure is similar to that

used in an FP-tree except that it doesn’t record the support count value. The structure of an ordinary

node is ⟨item⟩. The tail node represents the last item found in the sorted transaction. The structure of the

tail node is ⟨item : ts-list⟩, where ts-list represents the list of timestamps in which the corresponding

event has occurred in a series. In other words, the tail node in the G3P-Tree is simply an ordinary

node that includes a timestamp list (ts-list). Similar to an FP-Tree, each node in the G3P-Tree stores

parent, children, and traversal pointers. However, unlike the FP-Tree, no node in the G3P-Tree contains

a support count value, regardless of its node type. During the bottom-up mining phase of pattern-

growth, the ts-list is pushed to parent nodes to determine the period-support and periodic-confidence

of the patterns. Like in an FP-tree, each node in G3P-tree maintains parent, children, and node traversal

pointers. The key difference between an FP-tree and G3P-tree is that no node in G3P-tree maintains the

support count as in an FP-tree. To facilitate a high degree of compactness, events in the prefix-tree are

arranged in support-descending order.

Construction of G3P-tree

Since the proposed patterns satisfy the convertible anti-monotonic property, partial periodic items

(PPIs) will play an important role in the efficient discovery of partial periodic patterns. Algorithm 1 de-

scribes the procedure to find PPIs using G3P-list. Fig 4.1(a), 4.1(b) and 4.1(c) show the G3P-list gener-

ated after scanning the first transaction, second transaction and entire database. As the proposed patterns

satisfy the convertible anti-monotonic property, all items having period-support less than minPS are

pruned from the G3P-list. The final G3P-list generated after pruning the uninteresting items is shown in

Fig 4.1(d). Let L denote the sorted list of PPIs in G3P-list.

I s ps

r 1 0

p 1 0

s 1 0

{[1,1]}

{[1,1]}

{[1,1]}

(a)

idl

1

1

1

p-int I s ps

r 1

p 1

s 0

q 0

idl p-int

t

1

1

1

2

2

0

3

3

1

3

3

{[1,3]}

{[1,3]}

{[1,1]}

{[3,3]}

{[3,3]}

(b) (d)

I s ps

r 8 5

p 11 9

s 10 6

{[1,4],[7,16]}

{[1,4],[12,16]}

{[4,10]}

q

v

u

7

3

4

4

1

2

{[3,4],[12,16]}

{[6,7]}

{[8, 12]}

t 4 2 {[3,6]}

idl p-int

16

16

16

16

15

12

11

{[1,4],[7,16]}

{[3,4],[12,16]}

{[8,12]}

{[4, 10]}

I s ps

r 8 5

p 11 9

s 10 6

q 7 4

u 4 2

idl

16

16

16

16

12

p-int

(c)

{[1,4],[12,16]}

t 4 2 11 {[3,6]}

Figure 4.1: Construction of G3P-list. (a) After scanning the first transaction, (b) after scanning the

second transaction, (c) after scanning the entire database, and (d) the final G3P-list after pruning all

aperiodic items

33

Algorithm 1 G3P-List (D: temporal database, I: set of items, maxIAT : maximum inter-arrival time,
minPS: minimum period-support and minPC: minimum periodic-confidence)

1: Let idl be a temporary array that records the timestamp of the last appearance of each item in S.
Let tscur denote the current timestamp of a transaction. Let [tsa, tsb] denote the last time interval
recorded in p-list.

2: for each transaction t ∈ D do
3: for each item i ∈ t do
4: if i exists in G3P-list then
5: ++s(i).
6: if tscur − idl(i) ≤ maxIAT then
7: ++ps(i)
8: Set the last list of p-list(i) as [tsa, tscur].
9: else

10: if tsa == tsb then
11: Replace the previous tsa value in the last list of p-list(i) with [tscur, tscur].
12: else
13: Add another list entry into the p-list(i) with [tscur, tscur].
14: end if
15: end if
16: else
17: Add i to the G3P-list with S(i) = 1, ps(i) = 0 and idl(i) = tscur.
18: Add an entry, [tscur, tscur], into the p-list(i).
19: end if
20: end for
21: end for
22: Prune all uninteresting items from the list with period-support less than minPS.

34

Next, we construct the prefix-tree of the G3P-tree by performing another scan on the temporal

database. Algorithms 2 and 3 describe the procedure for constructing the prefix-tree. Fig 4.2(a) shows

the prefix-tree constructed after scanning the first transaction. It can be observed that though s is a PPI,

it is not considered in the creation of a branch. The reason is that the occurrence of s is aperiodic in the

first transaction. Based on the s’s p-list in Fig 4.1(d), it can be said that the occurrence of item s in Table

1.2 will only be considered in the transactions whose timestamps range from 4 to 9. Fig 4.2(b) shows

the prefix-tree generated after scanning the second transaction. A similar process is repeated for the

remaining transactions, and the prefix-tree is updated accordingly. The final G3P-tree generated after

scanning the entire database is shown in Fig 4.2(c).

Algorithm 2 G3P-Tree (D, G3P-list)
1: Create the root node in G3P-tree, Tree, and label it “null”.

2: for each transaction t ∈ D do
3: Select the PPIs in t and sort them in L order. Let the sorted list be [e | E], where e is the first

item, and E is the remaining list. Call insert tree([e | E], tscur, T ree).

4: end for
5: call G3P-growth (Tree, null);

Algorithm 3 insert tree([e | E], tscur, Tree)

1: while E is non-empty do
2: if Tree has a child N such that e.item ̸= N.item and e.timestamp ̸= N.timestamp then
3: Create a new node N . Let its parent-node be linked to Tree. Let its node-link be linked to

only those nodes that have the same item via the node-link structure. Remove e from E.

4: end if
5: end while
6: Add tscur to the leaf node.

35

{}null

p

(a) (c)

{}null

p:11

 r:1

q:13,16

s

r

s:9

t:3

(b)

r:1

q

t:3 q:4

u:8,10

t:5

{}null

p

r:1

u:12

Figure 4.2: Construction of G3P-tree. (a) After scanning the first transaction, (b) After scanning the

second transaction, and (c) After scanning the entire database

Recursive mining of G3P-tree

Due to the structural differences between nodes in an FP-tree and G3P-tree, we cannot directly

apply FP-growth to mine a G3P-tree. Therefore, we developed another pattern-growth technique that

can handle the additional features of G3P-tree. Algorithm 4 describes the procedure for finding partial

periodic patterns from the G3P-tree. In this thesis, we are not explaining the procedure for calculating

period-support and periodic-confidence of a pattern as they are simple procedures.

Algorithm 4 G3P-growth (Tree, α)

1: while items in the header of Tree do
2: Generate pattern β = i ∪ α. Traverse Tree using the node-links of β, and construct an array,

TSβ , which represents the list of timestamps in which β has appeared periodically in D. Construct

β’s conditional pattern base and β’s conditional G3P-tree Treeβ if period-support is greater than

or equal to minPS, periodic-confidence is greater than or equal to minPC.

3: if Treeβ ̸= ∅ then
4: call G3P-growth (Treeβ , β);

5: end if
6: Remove i from the Tree and push the i’s ts-list to its parent nodes.

7: end while

We start with the bottom-most item in the G3P-list. Since t is the bottom-most item, each node with

item = t in G3P-tree must be a tail-node. While constructing the conditional pattern base of ⟨t⟩, we

map the ts-list of every node ⟨t⟩ to all items in the respective path explicitly in a temporary array (one

for each item). This facilitates the calculation of periodic confidence for each item in the conditional

36

pattern base of ⟨t⟩. Fig 4.3(a) shows the prefix tree for ⟨t⟩. As no item in the prefix tree of t has periodic-

confidence more than the user-specified minPC, the conditional tree of t will be empty as shown in Fig

4.3(b). Only t will be generated as a partial periodic pattern. Next, the item t will be completely pruned

from the original G3P-tree by pushing its ts-lists to the respective parent nodes. Fig 4.3(c) shows the

resultant G3P-tree after pruning item t. The entire process is repeated until the G3P-list in the G3P-tree

is empty.

(a)

p

r

q:3

{}null

(b)

{}null

s:5

(c)

{}null

p:11

 r:1

q:3,13,16

s

r

s:5,9

q:4

u:8,10

u:12

Figure 4.3: Recursive mining of G3P-tree. (a) Prefix tree for item t (b) conditional tree for item t and

(c) G3P-tree after pruning item t

4.4 Summary

In this chapter, we have explained the proposed model for effectively mining 3Ps. We have in-

troduced a novel measure named periodic confidence, which satisfies both null-invariant and anti-

monotonic properties to determine the interestingness of the patterns. We have also proposed a pattern

growth algorithm named G3P-Growth (Generalized Partial Periodic Pattern Growth), which uses the

novel concept of irregularity pruning to reduce the runtime and memory requirements of the algorithm.

In the next chapter, we conduct experiments to demonstrate the scalability and efficiency of our model

and explain the case studies.

37

Chapter 5

Experimental Evaluation

In this chapter, we present the experimental study. we first present the description of the datasets.

Next, we present the experimental results. We also demonstrate the usefulness of our model with two

case studies. Lastly, we provide the summary of the chapter.

5.1 Dataset Description

The G3P-growth algorithm was written in Python 3 and executed on a machine with a 2.5 GHz

processor and 8 GB RAM. The experiments have been conducted on synthetic datasets (T10I4D100K,

T10I4D1000K and T20I6D100K) and real-world (Pollution, Congestion, BMS-WebView-1 and BMS-
WebView-2) databases. To verify the repeatability of the experiments, the source code and datasets are

provided at [65]

The T10I4D100K and T20I6D100K [64] are widely used synthetic databases for evaluating frequent

pattern mining algorithms. These databases are transactional in nature, and for evaluation purposes, they

are converted into a temporal database by considering tids as timestamps. The T10I4D100K database

contains 870 items and 100,000 transactions, while the T20I6D100K database contains 893 items and

99,845 transactions. The T10I4D1000K is another very large synthetic database containing 30387 items

and 983,155 transactions. We use this database to demonstrate the scalability of our algorithm.

The Pollution database was downloaded from AEROS [66] website. AEROS is the Atmospheric

Environmental Regional Observation System managed by the Ministry of the Environment Air Pollutant

Wide Area Monitoring System, Japan. The database comprises sensor identifiers whose PM2.51 value is

no less than 16 µg/m3. The time period for the collection of data is from 1-April-2018 to 30-April-2018

and is collected at hourly intervals. It contains 1029 items and 719 transactions. The minimum, average

and maximum transaction lengths are 11, 460 and 971, respectively.

The Congestion database was provided by JARTIC for Kobe, Japan. This database consists of road

segment identifiers (or sensor ids) where the observed congestion is more than 300 meters. The data is
1Atmospheric particulate matter with a diameter of less than 2.5 micrometres

38

collected at 5-minute intervals. This data was collected on 17-July-2015. On this day, Kobe was struck

by Typhoon Nangka. The database contains 938 items and 1439 transactions. The minimum, average

and maximum transaction lengths are 11, 66.25 and 267, respectively.

The BMS-WebView-1 and BMS-WebView2 are sparse real-world databases containing clickstream

data from e-commerce sites. Each transaction is a viewing session consisting of all the viewed product

detail pages where each product detail view is an item. These databases contain very long transactions,

and they were used in KDD CUP 2000 competition [67]. These databases contain 497 and 3340 items

and 59,602 and 77,512 transactions, respectively. The maximum length of the transaction in the database

is 267 and 161, respectively.

(a) T10I4D100K (b) T20I6D100K

(c) Pollution (d) Congestion

39

(e) BMS-WebView-1 (f) BMS-WebView-2

Figure 5.1: Frequency Distribution of Datasets

(a) T10I4D100K (b) T20I6D100K

(c) Pollution (d) Congestion

40

(e) BMS-WebView-1 (f) BMS-WebView-2

Figure 5.2: Max IAT Distribution of Datasets

(a) T10I4D100K (b) T20I6D100K

(c) Pollution (d) Congestion

41

(e) BMS-WebView-1 (f) BMS-WebView-2

Figure 5.3: Mean IAT Distribution of Datasets

As illustrated in Fig. 5.1, the support count values of the items within each database are arranged in

descending order of their respective values. It is evident that the distribution of items in the majority of

the databases does not conform to a uniform pattern, indicating that the data is reflective of real-world

scenarios where certain items occur more frequently than others. Notably, a significant proportion of

the datasets exhibit a long-tail distribution, with a small subset of items occurring frequently and the

majority of the items occurring rarely within the database.

Figures 5.2 and 5.3 displays the maximum and average inter-arrival times, respectively, of items

that have been arranged in descending order based on their support values within each database. The

figures highlight that the maximum and mean inter-arrival times increase as the support count of items

decreases, a phenomenon that is commonly observed in real-world data. Specifically, rare items tend to

appear more sporadically within the dataset.

The description for each dataset is summarized in Table 5.1

S.No Dataset name N. of transactions N. of Distinct items Max Trans. Len. Avg. Trans. Len.

1 T10I4D100K 100000 870 29 10.1

2 T20I6D100K 99845 893 47 20

3 Pollution 719 1029 971 459.3

4 Congestion 1439 938 267 66.2

5 BMS-WebView-1 59602 497 267 2.5

6 BMS-WebView-2 77512 3340 161 4.6

7 T10I4D1000K 983155 30387 31 10.2

Table 5.1: Dataset Description

42

5.2 Experimental Results

Since there exists no algorithm to find partial periodic patterns that may exist in a temporal database

and mine patterns containing both rare and frequent items, we only evaluate the proposed G3P-growth

algorithm to show that it is not only memory and runtime efficient but also highly scalable as well. Addi-

tionally, we attempted to compare it with the 3P algorithm, but due to the immense space requirements,

the 3P algorithm took infinite time to process most of the datasets. This demonstrates that the existing

algorithm is unfit for most real-world applications.

This section assesses how well the proposed model performs on various databases. The model relies

on three user-defined parameters: the minimum periodic support (minPS), minimum periodic confi-

dence threshold (minPC), and maximum interarrival time (maxIAT).

To gauge the model’s effectiveness under different conditions, we measure its runtime requirements,

memory usage, and the number of generated patterns across four real-world and two synthetic datasets

with different characteristics. We conduct three experiments by varying two parameters while keeping

the third one constant, as follows:

1. To analyze the effect of varying minPS and minPC, while keeping maxIAT constant.

2. To study the effect of varying minPS and maxIAT , while keeping minPC constant.

3. To examine the effect of varying maxIAT and minPC, while keeping minPS constant.

Please note the minPS used in further subsections is specified in absolute terms and not in relative

terms (or in %) due to the large sizes of databases.

5.2.1 Effect of varying minPS and minPC keeping maxIAT constant

The parameters used for the experiment are summarised in the following table 5.2

S.No Dataset name minPS minPC maxIAT

1 T10I4D100K {50, 75} [0.1,0.5], SS = 0.1 5000

2 T20I6D100K {50, 100} [0.1,0.5], SS = 0.1 5000

3 Pollution {350, 360} [0.7, 0.9], SS = 0.05 5000

4 Congestion {200, 220} [0.4, 0.6], SS = 0.05 5

5 BMS-WebView-1 {29, 30} [0.27, 0.31], SS = 0.01 5000

6 BMS-WebView-2 {8, 10} [0.09, 0.13], SS = 0.01 5000

Table 5.2: Parameters used in the evaluation of varying minPS and minPC keeping maxIAT con-

stant (SS denotes the step size between the values of minPC)

43

0.1 0.2 0.3 0.4 0.5

1

2

3

·104

minPC

nu
m

be
ro

f3
Ps

minPS = 50
minPS = 75

(a) T10I4D100K

0.1 0.2 0.3 0.4 0.5

1

2

3

·105

minPC

nu
m

be
ro

f3
Ps

minPS = 50
minPS = 100

(b) T20I6D100K

0.7 0.75 0.8 0.85 0.9

0

0.5

1

·105

minPC

nu
m

be
ro

f3
Ps

minPS = 350
minPS = 360

(c) Pollution

0.4 0.45 0.5 0.55 0.6

0.4

0.6

0.8

1

·106

minPC

nu
m

be
ro

f3
Ps

minPS = 200
minPS = 220

(d) Congestion

0.27 0.28 0.29 0.3 0.31

0

0.5

1

1.5

·106

minPC

nu
m

be
ro

f3
Ps

minPS = 29
minPS = 30

(e) BMS-WebView-1

9 · 10−2 0.1 0.11 0.12 0.13
0.2

0.4

0.6

0.8

1

1.2

·106

minPC

nu
m

be
ro

f3
Ps

minPS = 8
minPS = 10

(f) BMS-WebView-2

Figure 5.4: Number of patterns generated varying minPS and minPC values

44

0.1 0.2 0.3 0.4 0.5

22

24

26

28

minPC

R
un

tim
e(

se
cs

)
minPS = 50
minPS = 75

(a) T10I4D100K

0.1 0.2 0.3 0.4 0.5
200

250

300

minPC

R
un

tim
e(

se
cs

)

minPS = 50
minPS = 100

(b) T20I6D100K

0.7 0.75 0.8 0.85 0.9

50

100

150

200

minPC

R
un

tim
e(

se
cs

)

minPS = 350
minPS = 360

(c) Pollution

0.4 0.45 0.5 0.55 0.6

40

60

80

100

minPC

R
un

tim
e(

se
cs

)

minPS = 200
minPS = 220

(d) Congestion

0.27 0.28 0.29 0.3 0.31

10

20

30

40

50

minPC

R
un

tim
e(

se
cs

)

minPS = 29
minPS = 30

(e) BMS-WebView-1

9 · 10−2 0.1 0.11 0.12 0.13

30

40

50

minPC

R
un

tim
e(

se
cs

)

minPS = 8
minPS = 10

(f) BMS-WebView-2

Figure 5.5: Runtime requirements of G3P-growth on varying minPS and minPC

45

0.1 0.2 0.3 0.4 0.5

1.55

1.6

1.65

1.7

·104

minPC

M
em

or
y(

K
B

)

minPS = 50
minPS = 75

(a) T10I4D100K

0.1 0.2 0.3 0.4 0.5

4.25

4.3

4.35

4.4

4.45

·104

minPC

M
em

or
y(

K
B

)

minPS = 50
minPS = 100

(b) T20I6D100K

0.7 0.75 0.8 0.85 0.9

0.98

1

1.02

1.04

1.06

·104

minPC

M
em

or
y(

K
B

)

minPS = 350
minPS = 360

(c) Pollution

0.4 0.45 0.5 0.55 0.6

8,400

8,500

8,600

minPC

M
em

or
y(

K
B

)

minPS = 200
minPS = 220

(d) Congestion

0.27 0.28 0.29 0.3 0.31

1.15

1.2

1.25

·104

minPC

M
em

or
y(

K
B

)

minPS = 29
minPS = 30

(e) BMS-WebView-1

9 · 10−2 0.1 0.11 0.12 0.13

2.25

2.3

2.35

·104

minPC

M
em

or
y(

K
B

)

minPS = 8
minPS = 10

(f) BMS-WebView-2

Figure 5.6: Memory used for the G3P-tree construction on varying minPS and minPC

46

Fig. 5.4 depicts the variations in the number of partial periodic patterns (3Ps) generated on varying

minPS and minPC for different datasets. Based on the results for all the datasets, it can be observed

that increase in minPC and/or minPS have a negative effect on the generation of patterns. It is because

many patterns fail to satisfy the increased minPS and/or minPC values.

Fig. 5.5 depicts the effect of varying minPS and minPC on runtime requirements of the G3P-

growth algorithm. Based on the results for all the datasets, it can be observed that increase in minPC

and/or minPS have a negative effect on the generation of patterns. It is because many patterns fail to

satisfy the increased minPS and/or minPC values. The following observations can be drawn from

these figures: (i) increase in minPS and/or minPC values may decrease the runtime requirements

of G3P-growth. It is because G3P-growth has to find fewer patterns due to the reduced number of

periodic items. (ii) As per as the database size and reasonably low minPS and low minPC values

are concerned, it can be observed that mining patterns from the corresponding G3P-tree is rather time

efficient (or practicable) for both synthetic and real-world databases.

Fig. 5.6 depicts the changes in memory used for constructing G3P-tree and mining conditional pat-

terns on varying minPS and minPC for different datasets. Based on the results for all the datasets, the

following two observations can be drawn from these sub-figures: (i) increase in minPS may decrease

the memory requirements of G3P-tree construction. It is because many items fail to satisfy the minPS

and require mining of a lesser number of patterns. (ii) increase in minPC has minimal effect on the

memory requirements of the G3P-tree. It is because G3P-tree is constructed by periodic items.

5.2.2 Effect of varying minPS and maxIAT keeping minPC constant

The parameters used for the experiment are summarised in the following table 5.3

S.No Dataset name minPS minPC maxIAT

1 T10I4D100K {75, 100} 0.3 [1000, 5000], SS = 1000

2 T20I6D100K {50, 100} 0.3 [500, 2500], SS = 500

3 Pollution {350, 360} 0.7 [20, 100], SS = 20

4 Congestion {200, 220} 0.3 [20, 100], SS = 20

5 BMS-WebView-1 {28, 29} 0.3 [500, 2500], SS = 500

6 BMS-WebView-2 {8, 10} 0.1 [500, 2500], SS = 500

Table 5.3: Parameters used in the evaluation of varying minPS and maxIAT keeping minPC con-

stant (SS denotes the step size between the values of maxIAT)

47

1,000 2,000 3,000 4,000 5,000

0.8

0.9

1

1.1

·104

maxIAT

nu
m

be
ro

f3
Ps

minPS = 75
minPS = 100

(a) T10I4D100K

500 1,000 1,500 2,000 2,500

0.8

1

1.2

1.4

·105

maxIAT

nu
m

be
ro

f3
Ps

minPS = 50
minPS = 100

(b) T20I6D100K

20 40 60 80 100

0.4

0.6

0.8

1

1.2

·105

maxIAT

nu
m

be
ro

f3
Ps

minPS = 350
minPS = 360

(c) Pollution

20 40 60 80 100

0.8

1

1.2

·106

maxIAT

nu
m

be
ro

f3
Ps

minPS = 200
minPS = 220

(d) Congestion

500 1,000 1,500 2,000 2,500

0

2

4

6

·104

maxIAT

nu
m

be
ro

f3
Ps

minPS = 28
minPS = 29

(e) BMS-WebView-1

500 1,000 1,500 2,000 2,500

2

4

6

·105

maxIAT

nu
m

be
ro

f3
Ps

minPS = 8
minPS = 10

(f) BMS-WebView-2

Figure 5.7: Number of patterns generated varying minPS and maxIAT values

48

1,000 2,000 3,000 4,000 5,000

21

22

23

24

maxIAT

R
un

tim
e(

se
cs

)

minPS = 75
minPS = 100

(a) T10I4D100K

500 1,000 1,500 2,000 2,500
160

180

200

220

240

260

maxIAT

R
un

tim
e(

se
cs

)

minPS = 50
minPS = 100

(b) T20I6D100K

20 40 60 80 100

100

150

200

maxIAT

R
un

tim
e(

se
c)

minPS = 350
minPS = 360

(c) Pollution

20 40 60 80 100
60

70

80

90

100

110

maxIAT

R
un

tim
e(

se
c)

minPS = 200
minPS = 220

(d) Congestion

500 1,000 1,500 2,000 2,500
2

3

4

5

maxIAT

R
un

tim
e(

se
cs

)

minPS = 28
minPS = 29

(e) BMS-WebView-1

500 1,000 1,500 2,000 2,500

10

15

20

25

30

35

maxIAT

R
un

tim
e(

se
cs

)

minPS = 8
minPS = 10

(f) BMS-WebView-2

Figure 5.8: Runtime requirements of G3P-growth on varying maxIAT and minPS

49

1,000 2,000 3,000 4,000 5,000

1.4

1.5

1.6

1.7

·104

maxIAT

M
em

or
y(

K
B

)

minPS = 75
minPS = 100

(a) T10I4D100K

500 1,000 1,500 2,000 2,500
4.3

4.35

4.4

4.45

·104

maxIAT

M
em

or
y(

K
B

)

minPS = 50
minPS = 100

(b) T20I6D100K

20 40 60 80 100

0.96

0.98

1

1.02

1.04
·104

maxIAT

M
em

or
y(

K
B

)

minPS = 350
minPS = 360

(c) Pollution

20 40 60 80 100

8,100

8,200

8,300

8,400

8,500

maxIAT

M
em

or
y(

K
B

)
minPS = 200
minPS = 220

(d) Congestion

500 1,000 1,500 2,000 2,500

1.1

1.15

1.2

1.25

·104

maxIAT

M
em

or
y(

K
B

)

minPS = 28
minPS = 29

(e) BMS-WebView-1

500 1,000 1,500 2,000 2,500

2.25

2.3

2.35

·104

maxIAT

M
em

or
y(

K
B

)

minPS = 8
minPS = 10

(f) BMS-WebView-2

Figure 5.9: Memory used for the G3P-tree construction on varying minPS and maxIAT

50

Fig. 5.7 represents the variations in the number of partial periodic patterns (3Ps) generated at dif-

ferent minPS and maxIAT values for different datasets. The following observations can be drawn

from the sub-figures: (i) With the increase in maxIAT , there is an increase in the number of partial

periodic patterns generated. It is because many itemsets which appear sporadically satisfy the criteria of

becoming periodic due to larger values of maxIAT . (ii) The increase in minPS has a negative effect

on the generation of patterns as many patterns fail to satisfy the increased minPS values.

Fig. 5.8 represents the effect of varying minPS and maxIAT values on the runtime requirements

of the G3P-growth algorithm for different datasets. The following observations can be drawn from the

sub-figures: (i) With the increase in maxIAT , many itemsets which appear sporadically satisfy the

criteria of becoming periodic due to larger values of maxIAT which increases the number of partial

periodic patterns generated and leads to increase in the runtime requirements. It is primarily because the

G3P-growth has to discover more patterns (ii) Increase in the minPS value may decrease the runtime

requirements of G3P-growth. It is because G3P-growth has to find fewer patterns as the number of items

satisfying the criteria for periodic would decrease.

Fig. 5.9 represents the changes in memory used for constructing G3P-tree and mining conditional

patterns on varying minPS and maxIAT for different datasets. The following two observations can

be drawn from these sub-figures: (i) increase in minPS may decrease the memory requirements of

G3P-tree construction. It is because many items fail to be periodic items. (ii) An increase in maxIAT

may increase the memory requirements of G3P-Tree construction because many itemsets which appear

sporadically satisfy the criteria of becoming periodic due to larger values of maxIAT , and in the mining

of patterns, more conditional G3P-Trees would have to be created.

5.2.3 Effect of varying maxIAT and minPC keeping minPS constant

The parameters used for the experiment are summarised in the following table 5.4

S.No Dataset name minPS minPC maxIAT

1 T10I4D100K 75 {0.1, 0.2} [1000, 5000], SS = 1000

2 T20I6D100K 100 {0.2, 0.4} [500, 2500], SS = 500

3 Pollution 200 {0.5, 0.8} [20, 100], SS = 20

4 Congestion 340 {0.5, 0.7} [20, 100], SS = 20

5 BMS-WebView-1 30 {0.27, 0.28} [1000, 3000], SS = 500

6 BMS-WebView-2 8 {0.1, 0.12} [500, 2500], SS = 500

Table 5.4: Parameters used in the evaluation of varying maxIAT and minPC keeping minPS con-

stant (SS denotes the step size between the values of maxIAT)

51

1,000 2,000 3,000 4,000 5,000

1.5

2

2.5

·104

maxIAT

nu
m

be
ro

f3
Ps

minPC = 0.1
minPC = 0.2

(a) T10I4D100K

500 1,000 1,500 2,000 2,500
0.4

0.6

0.8

1

1.2

1.4

1.6

·105

maxIAT

nu
m

be
ro

f3
Ps

minPC = 0.2
minPC = 0.4

(b) T20I6D100K

20 40 60 80 100

1

2

3

·105

maxIAT

nu
m

be
ro

f3
Ps

minPC = 0.5
minPC = 0.8

(c) Pollution

20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2
·106

maxIAT

nu
m

be
ro

f3
Ps

minPC = 0.5
minPC = 0.7

(d) Congestion

1,000 1,500 2,000 2,500 3,000

0

1

2

3

4
·105

maxIAT

nu
m

be
ro

f3
Ps

minPC = 0.27
minPC = 0.28

(e) BMS-WebView-1

500 1,000 1,500 2,000 2,500
0

2

4

6

·105

maxIAT

nu
m

be
ro

f3
Ps

minPC = 0.1
minPC = 0.12

(f) BMS-WebView-2

Figure 5.10: Number of patterns generated varying maxIAT and minPC values

52

1,000 2,000 3,000 4,000 5,000

21

22

23

24

25

maxIAT

R
un

tim
e(

se
c)

minPC = 0.1
minPC = 0.2

(a) T10I4D100K

500 1,000 1,500 2,000 2,500

160

180

200

220

maxIAT

R
un

tim
e(

se
cs

)

minPC = 0.2
minPC = 0.4

(b) T20I6D100K

20 40 60 80 100

200

250

300

350

400

maxIAT

R
un

tim
e(

se
cs

)

minPC = 0.5
minPC = 0.8

(c) Pollution

20 40 60 80 100
20

40

60

80

100

maxIAT

R
un

tim
e(

se
c)

minPC = 0.5
minPC = 0.7

(d) Congestion

1,000 1,500 2,000 2,500 3,000

2

4

6

8

10

12

14

maxIAT

R
un

tim
e(

se
cs

)

minPC = 0.27
minPC = 0.28

(e) BMS-WebView-1

500 1,000 1,500 2,000 2,500

10

15

20

25

30

35

maxIAT

R
un

tim
e(

se
cs

)

minPC = 0.1
minPC = 0.12

(f) BMS-WebView-2

Figure 5.11: Runtime requirements of G3P-growth on varying maxIAT and minPC

53

1,000 2,000 3,000 4,000 5,000

1.5

1.55

1.6

1.65

1.7

·104

maxIAT

M
em

or
y(

K
B

)

minPC = 0.1
minPC = 0.2

(a) T10I4D100K

500 1,000 1,500 2,000 2,500

4.3

4.35

4.4

4.45

·104

maxIAT

M
em

or
y(

K
B

)

minPC = 0.2
minPC = 0.4

(b) T20I6D100K

20 40 60 80 100
0.98

1

1.02

1.04

1.06

·104

maxIAT

M
em

or
y(

K
B

)

minPC = 0.5
minPC = 0.8

(c) Pollution

20 40 60 80 100

8,300

8,400

8,500

8,600

maxIAT

M
em

or
y(

K
B

)
minPC = 0.5
minPC = 0.7

(d) Congestion

1,000 1,500 2,000 2,500 3,000

1.12

1.14

1.16

1.18

1.2

1.22

1.24

·104

maxIAT

M
em

or
y(

K
B

)

minPC = 0.27
minPC = 0.28

(e) BMS-WebView-1

500 1,000 1,500 2,000 2,500

2.25

2.3

2.35

·104

maxIAT

M
em

or
y(

K
B

)

minPC = 0.1
minPC = 0.12

(f) BMS-WebView-2

Figure 5.12: Memory used for the G3P-tree construction on varying minPC and maxIAT

54

Fig. 5.10 represents the variations in the number of partial periodic patterns (3Ps) generated at

different minPC and maxIAT values for different datasets. The following observations can be drawn

from the sub-figures: (i) With the increase in maxIAT , there is an increase in the number of partial

periodic patterns generated. It is because many itemsets which appear sporadically satisfy the criteria of

becoming periodic due to larger values of maxIAT . (ii) The increase in minPC has a negative effect

on the generation of patterns as many patterns fail to satisfy the increased minPC values.

Fig. 5.11 represents the effect of varying minPC and maxIAT values on the runtime requirements

of the G3P-growth algorithm for different datasets. The following observations can be drawn from the

sub-figures: (i) With the increase in maxIAT , many itemsets which appear sporadically satisfy the

criteria of becoming periodic due to larger values of maxIAT which increases the number of partial

periodic patterns generated and leads to increase in the runtime requirements. It is primarily because the

G3P-growth has to discover more patterns (ii) Increase in the minPC value may decrease the runtime

requirements of G3P-growth. It is because G3P-growth has to find fewer patterns.

Fig. 5.12 represents the changes in memory used for constructing G3P-tree and mining conditional

patterns on varying minPC and maxIAT for different datasets. The following two observations can be

drawn from these sub-figures: (i) increase in minPC has minimal effect on the memory requirements

of the G3P-tree. It is because G3P-tree is constructed by periodic items. (ii) An increase in maxIAT

may increase the memory requirements of G3P-Tree construction because many itemsets which appear

sporadically satisfy the criteria of becoming periodic due to larger values of maxIAT , and in the mining

of patterns, more conditional G3P-Trees would have to be created.

5.3 Scalability Experiment

To test the scalability of the G3P-Growth algorithm, its performance and efficiency must be evaluated

as the dataset size and complexity of the patterns increase. The primary goal of this test is to determine

the algorithm’s ability to handle larger and more complex datasets without significantly increasing the

required resources while maintaining its speed.

The scalability test would involve generating or obtaining datasets of varying sizes and complexities

and running the G3P-Growth algorithm on each dataset. The test would record execution time and

memory usage, which would help to evaluate the algorithm’s efficiency and suitability for handling

larger and more complex datasets.

For this purpose, we chose the T10I4D1000K database. The database was divided into five portions,

with 0.2 million transactions in each part. Then we investigated the performance of G3P-tree after

accumulating each portion with previous parts. Fig. 5.13a, 5.13b respectively show the execution time

of the algorithm and memory used for the construction of G3P-tree at minPC = 0.1, minPS = 0.05%

and maxIAT = 8000. We deliberately set minPC and minPS to low values and maxIAT to a

55

high value to assess the algorithm’s maximum potential. It is evident from the almost linear increase

in execution time and memory usage of the G3P-tree with the database size that the proposed G3P-

algorithm is highly scalable, demonstrating its potential for managing large datasets.

Overall, the scalability test indicates that the G3P-Growth algorithm is suitable for handling larger

and more complex datasets, making it a useful tool for mining partial periodic patterns in non-uniform

temporal databases.

0.2 0.4 0.6 0.8 1

·106

50

100

150

200

250

Number of transactions

E
xe

cu
tio

n
tim

e
(s

ec
)

(a) Execution Time

0.2 0.4 0.6 0.8 1

·106

1

1.5

2

·105

Number of transactions

M
em

or
y

(i
n

K
B

)

(b) Memory

Figure 5.13: Scalability Results for G3P-Growth algorithm

5.4 Case Studies

We showcase the potential applications of partial periodic mining in non-uniform temporal databases

through two case studies.

The first case study focuses on using the G3P-Growth algorithm to improve traffic safety during dis-

astrous situations, while the second case study demonstrates the identification of highly polluted loca-

tions using the same algorithm. The results of these studies highlight the usefulness of the G3P-Growth

algorithm in discovering partial periodic patterns and its potential for use in data-driven decision-making

in various industries, including transportation and environmental management. The case studies are ex-

plained in detail in the following subsections.

5.4.1 Case study 1: Improving traffic safety during disastrous situations

This case study focuses on investigating the use of the G3P-Growth algorithm in improving traf-

fic safety during disastrous situations. To demonstrate this application, the study examines a real-life

event, Typhoon Nangka, that occurred in Kobe, Japan, in July 2015. The typhoon resulted in heavy

56

rainfall, flooding, and severe traffic congestion, highlighting the need for effective disaster management

strategies to minimize the impact of such incidents.

Description of the case study

The dataset used for this case study consisted of traffic congestion data in Kobe, Japan, during

the typhoon season of 2015. The congestion database was provided by JARTIC for Kobe, Japan and

consisted of road segment identifiers (or sensor ids) with more than 300 meters of observed congestion.

The data was collected at 5-minute intervals. To facilitate the identification of patterns in the data

and improve its interpretability, we divided the congestion data into hourly intervals. The dataset also

included hourly precipitation data obtained from the Japan Meteorological Agency. The combination of

these two datasets allowed us to analyze the impact of the typhoon on traffic congestion in the city and

develop strategies for managing it effectively.

We used the G3P-Growth algorithm to identify partial periodic patterns in each interval. The intuition

behind this approach is that there might be certain patterns in the data that can be used to identify road

segments with heavy traffic during the typhoon. By identifying these patterns, we can pinpoint the areas

that require traffic monitoring and diversion.

The G3P-Growth algorithm suits better for the use case over the 3P-algorithm because there might

be certain road segments that face congestion rarely and could be missed by the 3P-algorithm. Missing

such patterns could result in unsafe circumstances for some of the areas. To identify the patterns, we

used the following parameters minPS = 15%, minPC = 0.8 (= 80%), and maxIAT = 5 hours.

These parameters were chosen based on our understanding of the traffic congestion problem and the

available data. Using low minPS and high minPC values enables us to find patterns containing both

frequent and rare items. Once the patterns were identified, we interpolated them onto hourly X-Rain

data to pinpoint the road segments that require traffic monitoring and diversion.

Results

Fig. 5.13 illustrates the interpolation of patterns on precipitation data at six different hourly intervals.

The interpolated data suggests that areas with heavy traffic congestion, as identified by the G3P-

Growth algorithm, could be considered high-risk during typhoon events, particularly if the typhoon is

approaching near the spatial locations where the patterns were observed. This information can be used

by local authorities, transportation agencies, and emergency services to identify areas that require traffic

monitoring and diversion, as well as alerting pedestrians and suggesting police patrol routes.

Furthermore, as the precipitation shifts over different locations, the areas that could be declared

unsafe in the beginning become safe once the precipitation goes away, while previously safe areas may

57

Figure 5.13: Patterns generated by segmenting the congestion data into hourly intervals. Precipitation

data of Typhoon Nangka is overlaid at hourly intervals.

become unsafe. This highlights the dynamic nature of the situation and the need for real-time monitoring

and decision-making

The case study showcases the potential application of the G3P-Growth algorithm in disaster manage-

ment and transportation planning, emphasizing the usefulness of partial periodic mining in non-uniform

temporal databases.

5.4.2 Case study 2: Identifying highly polluted locations

Air pollution is a major global concern that poses a serious threat to public health. In this case study,

we employed the G3P-Growth algorithm to analyze the Pollution database of Japan, with the aim of

identifying highly polluted locations with unsafe levels of PM2.5. The results of this study are of critical

importance as they can provide policymakers with valuable insights into the spatial distribution of air

pollution. By using the proposed algorithm, we aimed to gain a deeper understanding of air pollution

58

in Japan and to provide actionable information that can help to promote a healthier environment for

everyone, particularly in areas such as harbours or bay regions that are particularly vulnerable to high

levels of pollution.

Description of the case study

The dataset used in this case study was the Pollution database of Japan, downloaded from the Atmo-

spheric Environmental Regional Observation System (AEROS) website. The AEROS is a monitoring

system for air pollutants managed by the Ministry of the Environment, Japan. The database consists of

sensor identifiers whose PM2.5 values are equal to or greater than 16 µg/m3. The data collection period

for this study is from 1-April-2018 to 30-April-2018, and the data was collected at hourly intervals.

The primary objective of applying the G3P-Growth algorithm to the Pollution database was to iden-

tify the locations in Japan where there are frequent occurrences of unsafe levels of PM2.5. It is possible

that some locations report high pollution levels together due to the same underlying reasons. By an-

alyzing the patterns obtained from the G3P algorithm, we can identify such locations and explore the

possible reasons for pollution triggers. The patterns obtained contain sensor IDs that appear frequently

and rarely in the database, providing a comprehensive evaluation of the country’s air pollution.

To apply the G3P-Growth algorithm, we used the following parameter values: minPS = 40%,

minPC = 0.5 (= 50%), and maxIAT = 24 hours. These values were chosen based on previous

studies and the specific characteristics of the Pollution database. The G3P-Growth algorithm is preferred

over the 3P-Growth algorithm for this particular use case because the Pollution database is non-uniform,

and the 3P algorithm would not be able to discover all the patterns from the database. On the other hand,

the G3P algorithm is capable of handling non-uniform databases and can identify patterns containing

both rare and frequent items. Therefore, the G3P-Growth algorithm is more suitable for identifying

partial periodic patterns that could be missed by other algorithms.

59

Results

Figure 5.14: Spatial location of sensors which measured highest levels of PM2.5 at regular intervals

across Japan

Figure 5.14: A closer view of the identified pollution clusters in (A), displaying the specific locations

with high levels of PM2.5 in the highlighted areas across Japan.

60

Table 5.5: Some of the interesting patterns generated from pollution database

Pattern PS1 PS2 PC

181, 598, 242, 433 354 0.49 0.89

1391, 1378, 1377, 1266 354 0.49 0.89

1092, 1356, 1337, 1266 353 0.49 0.88

2340, 2289, 2041, 1988 352 0.49 0.90

1568, 1563, 1645, 1591 352 0.49 0.88

Table 5.5 presents several patterns extracted from the air pollution database. The periodic-support

of each pattern in count and percentage is represented by ‘PS1’ and ‘PS2’ in the table, respectively.

Fig 5.14 shows the spatial distribution of the sensors that were identified from the extracted patterns,

revealing that individuals residing in Okayama, Kobe, Osaka, and Fukuoka were frequently exposed to

hazardous levels of PM2.5.

The case study highlights the potential application of the G3P-Growth algorithm in urban planning.

The algorithm’s ability to analyze non-uniform data and identify frequent and rare patterns provides

policymakers with valuable insights into the distribution of air pollution. By utilizing the spatial dis-

tribution of sensors, policymakers can develop effective pollution control regulations in areas such as

harbors or bay regions to protect public health.

5.5 Summary

In this chapter, we performed multiple experiments to demonstrate that the proposed algorithm is

highly scalable and efficient, making it a practicable algorithm for real-world datasets. We also showcase

two case studies that illustrate the potential practical applications of our proposed solution in real-world

scenarios. In the next chapter, we provide summary and conclusions.

61

Chapter 6

Conclusion and Future work

In this chapter, we provide the summary, conclusion and discuss future work.

6.1 Summary

Temporal databases are specialized databases designed to store and manage time-varying data, cap-

turing the evolution of data over time. They provide a rich foundation for understanding how data

changes over time and enable the discovery of patterns, trends, and dependencies. To discover patterns

from temporal databases, pattern mining emerges as the key data mining technique. Pattern mining

involves the extraction of valuable insights from large volumes of temporal data, aiding in identifying

recurring behaviours, correlations, and associations. However, effectively mining patterns from these

databases presents significant challenges. Existing models for mining 3Ps (partial periodic patterns)

from temporal databases encounter the rare item problem, which involves either missing the patterns

containing rare items or producing too many patterns, most of which may be uninteresting to the user.

This problem hampers the extraction of meaningful patterns and associations in non-uniform databases.

To address this challenge, we proposed a novel null-invariant temporal measure, the periodic confi-

dence, to discover partial periodic patterns in non-uniform temporal databases. The proposed measure

considers the frequency of the items in the database and the occurrence of each item in the periods. The

proposed model could effectively identify patterns containing frequent and rare items by using periodic

confidence, thereby overcoming the rare item problem. Moreover, the proposed measure satisfies both

null-invariant and convertible anti-monotonic properties. The null-invariant property allows our model

to disclose genuine correlations without influencing the object co-absence in the database. The con-

vertible anti-monotonic property facilitates our model to effectively reduce the enormous search space,

allowing it to handle big data and make the proposed model practicable on large real-world databases.

We also proposed an efficient depth-first search algorithm, called Generalized Partial Periodic Pattern-

growth (G3P-Growth), to discover partial periodic patterns in non-uniform temporal databases. The

62

algorithm exploits the concept of “irregularity pruning” to eliminate the irregular occurrence informa-

tion of items, thereby reducing the search space and improving the algorithm’s efficiency.

In our experimental evaluation, we thoroughly assessed the efficiency and scalability of the proposed

algorithm using a combination of synthetic and real-world datasets. The experiments included two

synthetic databases, namely T10I4D100K and T20I6D100K, and four real-world datasets: Pollution,

Congestion, BMS-WebView-1, and BMS-WebView-2.

We examined the effects of changing certain parameters to evaluate the performance of the proposed

model. We focused on three parameters: minPC, minPS, and maxIAT. By adjusting these parameters

individually, while keeping others constant, we could see how the algorithm responded. When we

increased minPC and minPS while keeping maxIAT constant, we noticed a decrease in the number of

identified patterns, as well as the algorithm’s runtime and memory requirements. This was because the

search space became smaller with higher minPC and minPS values. One varying maxIAT and minPIS,

the increase in maxIAT led to more patterns, longer runtime, and higher memory requirements due to

the exploration of patterns with longer inter-arrival times and larger search space, while the increase in

minPS resulted in fewer patterns, shorter runtime, and lower memory requirements. On Varying minPC

and maxIAT while keeping minPS constant showed that increasing maxIAT resulted in more patterns,

longer runtime, and higher memory requirements while increasing minPC led to fewer patterns, shorter

runtime, and lower memory requirements.

To evaluate the scalability of the experiments synthetic database (T10I4D1000K) containing 1 Mil-

lion transactions is used. To study, we varied the number of transactions to consider different database

sizes. We observe a linear increase in runtime and memory requirements of the algorithm with the

increase in the size of the database. This observation highlights the efficiency and scalability of our

proposed model, demonstrating its ability to handle larger datasets without compromising performance.

We presented two case studies to showcase the practical applications of our proposed model in real-

world scenarios. The first case study aimed to enhance traffic safety during disastrous situations. We

applied the G3P-Growth algorithm to data from Typhoon Nangka in Kobe, Japan. This enabled us to

pinpoint specific road segments that required immediate traffic monitoring and diversion for improved

safety measures. The second case study focused on identifying highly polluted locations using the G3P-

Growth algorithm. We utilized the Pollution database of Japan to identify areas with consistently high

levels of PM2.5, which is a harmful air pollutant. By analyzing the generated patterns, we obtained

valuable insights into areas that are frequently exposed to significant levels of PM2.5. This information

is crucial for implementing effective pollution control regulations and strategies.

6.2 Conclusions

The conclusions are as follows

63

• We have proposed a new pruning measure called periodic-confidence. Through experimental

results, we conclude that the proposed model facilitates the extraction of 3Ps from large datasets.

• Through case studies, we have demonstrated the utility of the proposed model in deploying real

applications. We conclude that there is a scope for the proposed approach in deploying similar

kinds of applications.

6.3 Future Work

The proposed model could be extended to handle non-static databases, such as incremental databases

and data streams - Incremental databases involve continuous updates and additions to the existing data.

By extending the proposed model to handle incremental databases, it would be possible to mine 3Ps

in real-time or near real-time scenarios efficiently. This would enable the identification of recurring

patterns and associations as new data arrives, providing timely insights for decision-making processes.

While data streams, on the other hand, involve a continuous flow of data with limited storage capacity.

Extending the proposed model to handle data streams would allow for pattern mining in dynamic envi-

ronments where data is processed in real-time and discarded after a certain period. This would require

designing algorithms and data structures that can effectively handle the high velocity and potentially

infinite nature of data streams.

64

Related Publications

1. Kiran, R.U., Chhabra, V., Chennupati, S., Reddy, P.K., Dao, M.S., Zettsu, K.: “Relative Period-

Confidence: A Null-invariant Measure to Discover Partial Periodic Patterns in Non-Uniform Tem-

poral Databases”. In: International Journal of Data Science and Analytics (JDSA). (In Progress,

Accepted with revisions)

2. Kiran, R.U., Chhabra, V., Chennupati, S., Reddy, P.K., Dao, M.S., Zettsu, K.: “A novel null-

invariant temporal measure to discover partial periodic patterns in non-uniform temporal databases”.

In: Database Systems for Advanced Applications: 27th International Conference, DASFAA 2022,

Virtual Event, April 11–14, 2022, Proceedings, Part I, pp. 569–577. Springer, Berlin, Heidelberg

(2022)

Other Publications (Not related to the thesis)

1. Chhabra, V., Kiran, R.U., Xiao, J., Reddy, P.K., Avtar, R.: “A Spatiotemporal Image Fusion

Method for Predicting High-Resolution Satellite Images”. In: Advances and Trends in Artificial

Intelligence. Theory and Practices in Artificial Intelligence: 35th International Conference on

Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2022,

Kitakyushu, Japan, July 19–22, 2022, Proceedings, pp. 470–481. Springer, Berlin, Heidelberg

(2022)

2. Chhabra, V., Kiran, R.U., Xiao, J., Reddy, P.K., Avtar, R.: “A Novel Parallel Spatiotemporal Im-

age Fusion Method for Predicting High-Resolution Satellite Images”. In: Advances and Trends in

Artificial Intelligence. Theory and Practices in Artificial Intelligence: 36th International Confer-

ence on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE

2023 (Accepted)

65

Bibliography

[1] KristofMoris. Data Mining: Concepts and Techniques. Morgan Kaufmann, June 2011.

[2] Manpreet Kaur and Shivani Kang. Market Basket Analysis: Identify the Changing Trends of

Market Data Using Association Rule Mining. Procedia Comput. Sci., 85:78–85, January 2016.

[3] Stefan Naulaerts, Pieter Meysman, Wout Bittremieux, Trung Nghia Vu, Wim Vanden Berghe, Bart

Goethals, and Kris Laukens. A primer to frequent itemset mining for bioinformatics. Briefings

Bioinf., 16(2):216–231, March 2015.

[4] Puteri N. E. Nohuddin, Rob Christley, Frans Coenen, Yogesh Patel, Christian Setzkorn, and Shane

Williams. Frequent Pattern Trend Analysis in Social Networks. In Advanced Data Mining and

Applications, pages 358–369. Springer, 2010.

[5] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules between sets of

items in large databases. SIGMOD Rec., 22(2):207–216, June 1993.

[6] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering Frequent Closed

Itemsets for Association Rules. In Database Theory — ICDT’99, pages 398–416. Springer, Jan-

uary 1999.

[7] K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In Proceedings 2001

IEEE International Conference on Data Mining, pages 2001–02. IEEE.

[8] Carl H. Mooney and John F. Roddick. Sequential pattern mining – approaches and algorithms.

ACM Comput. Surv., 45(2):1–39, March 2013.

[9] Carson Kai-Sang Leung. Uncertain Frequent Pattern Mining. In Frequent Pattern Mining, pages

339–367. Springer, August 2014.

[10] Jerry Chun-Wei Lin, Ting Li, Philippe Fournier-Viger, and Tzung-Pei Hong. A fast Algorithm for

mining fuzzy frequent itemsets. J. Intell. Fuzzy Syst., 29(6):2373–2379, January 2015.

66

[11] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong-Chi, and Roger Nkambou. A Survey

of High Utility Itemset Mining. In High-Utility Pattern Mining: Theory, Algorithms and Applica-

tions, pages 1–45. Springer, January 2019.

[12] Carson Kai-Sang Leung and Syed Khairuzzaman Tanbeer. PUF-Tree: A Compact Tree Structure

for Frequent Pattern Mining of Uncertain Data. In Advances in Knowledge Discovery and Data

Mining, pages 13–25. Springer, 2013.

[13] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In Proceedings 14th

International Conference on Data Engineering, pages 412–421. IEEE, February 1998.

[14] Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong-Soo Jeong, and Young-Koo

Lee. Discovering Periodic-Frequent Patterns in Transactional Databases. In Advances in Knowl-

edge Discovery and Data Mining, pages 242–253. Springer, 2009.

[15] R. Uday Kiran and P. Krishna Reddy. Towards Efficient Mining of Periodic-Frequent Patterns in

Transactional Databases. In Database and Expert Systems Applications, pages 194–208. Springer,

2010.

[16] Akshat Surana, R. Uday Kiran, and P. Krishna Reddy. An efficient approach to mine periodic-

frequent patterns in transactional databases. In PAKDD’11: Proceedings of the 15th international

conference on New Frontiers in Applied Data Mining, pages 254–266. Springer-Verlag, May 2011.

[17] R. Uday Kiran and P. Krishna Reddy. An Alternative Interestingness Measure for Mining Periodic-

Frequent Patterns. In Database Systems for Advanced Applications, pages 183–192. Springer,

2011.

[18] Md. Mamunur Rashid, Md. Rezaul Karim, Byeong-Soo Jeong, and Ho-Jin Choi. Efficient Min-

ing Regularly Frequent Patterns in Transactional Databases. In Database Systems for Advanced

Applications, pages 258–271. Springer, 2012.

[19] Vincent Mwintieru Nofong. Discovering Productive Periodic Frequent Patterns in Transactional

Databases. Ann. Data. Sci., 3(3):235–249, September 2016.

[20] R. Uday Kiran, Haichuan Shang, Masashi Toyoda, and Masaru Kitsuregawa. Discovering Partial

Periodic Itemsets in Temporal Databases. In SSDBM ’17: Proceedings of the 29th International

Conference on Scientific and Statistical Database Management, pages 1–6. Association for Com-

puting Machinery, June 2017.

67

[21] Philippe Fournier-Viger, Peng Yang, Jerry Chun-Wei Lin, and Rage Uday Kiran. Discovering

Stable Periodic-Frequent Patterns in Transactional Data. In Advances and Trends in Artificial

Intelligence. From Theory to Practice, pages 230–244. Springer, June 2019.

[22] R. Uday Kiran, C. Saideep, Penugonda Ravikumar, Koji Zettsu, Masashi Toyoda, Masaru Kit-

suregawa, and P. Krishna Reddy. Discovering Fuzzy Periodic-Frequent Patterns in Quantitative

Temporal Databases. In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),

pages 1–8. IEEE, July 2020.

[23] Penugonda Ravikumar, R. Uday Kiran, Palla Likhitha, T. Chandrasekhar, Yutaka Watanobe, and

Koji Zettsu. Discovering Geo-referenced Periodic-Frequent Patterns in Geo-referenced Time Se-

ries Databases. In 2022 IEEE 9th International Conference on Data Science and Advanced Ana-

lytics (DSAA), pages 1–10. IEEE, October 2022.

[24] Pamalla Veena, Penugonda Ravikumar, Kundai Kwangwari, R. Uday Kiran, Kazuo Goda, Yutaka

Watanobe, and Koji Zettsu. Discovering Fuzzy Geo-referenced Periodic-Frequent Patterns in Geo-

referenced Time Series Databases. In 2022 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), pages 1–8. IEEE, July 2022.

[25] J. M. Luna, Philippe Fournier-Viger, and S. Ventura. Frequent itemset mining: A 25 years review.

Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery, 2019.

[26] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge Discovery, 8(1):53–

87, January 2004.

[27] M. J. Zaki. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng., 12(3):372–

390, May 2000.

[28] K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In Proceedings 2001

IEEE International Conference on Data Mining, pages 163–170. IEEE, November 2001.

[29] Jiawei Han, Jianyong Wang, Ying Lu, and P. Tzvetkov. Mining top-k frequent closed patterns

without minimum support. In 2002 IEEE International Conference on Data Mining, 2002. Pro-

ceedings., pages 211–218. IEEE, December 2002.

[30] Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong-Soo Jeong, and Young-Koo

Lee. Discovering Periodic-Frequent Patterns in Transactional Databases. In Advances in Knowl-

edge Discovery and Data Mining, pages 242–253. Springer, 2009.

68

[31] P. Gowtham Srinivas, P. Krishna Reddy, A. V. Trinath, S. Bhargav, and R. Uday Kiran. Mining

coverage patterns from transactional databases. volume 45, pages 423–439. Springer, December

2015.

[32] Hong Yao, Howard J. Hamilton, and Cory J. Butz. A Foundational Approach to Mining Itemset

Utilities from Databases, pages 482–486.

[33] Komate Amphawan, Philippe Lenca, and Athasit Surarerks. Mining Top-K Periodic-Frequent

Pattern from Transactional Databases without Support Threshold. In Advances in Information

Technology, pages 18–29. Springer, 2009.

[34] R. Uday Kiran, Masaru Kitsuregawa, and P. Krishna Reddy. Efficient discovery of periodic-

frequent patterns in very large databases. Journal of Systems and Software, 112:110–121, February

2016.

[35] J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy, and Masaru Kitsuregawa. Discovering Periodic-

Correlated Patterns in Temporal Databases. In Transactions on Large-Scale Data- and Knowledge-

Centered Systems XXXVIII: Special Issue on Database- and Expert-Systems Applications, pages

146–172. Springer, November 2018.

[36] Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market baskets: generalizing associ-

ation rules to correlations. In ACM SIGMOD Record, volume 26, pages 265–276. Association for

Computing Machinery, June 1997.

[37] E. R. Omiecinski. Alternative interest measures for mining associations in databases. IEEE Trans.

Knowl. Data Eng., 15(1):57–69, January 2003.

[38] Sangkyum Kim, Marina Barsky, and Jiawei Han. Efficient Mining of Top Correlated Patterns

Based on Null-Invariant Measures. In Machine Learning and Knowledge Discovery in Databases,

pages 177–192. Springer, 2011.

[39] Hyunyoon Yun, Danshim Ha, Buhyun Hwang, and Keun Ho Ryu. Mining association rules on

significant rare data using relative support. Journal of Systems and Software, 67(3):181–191,

September 2003.

[40] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation.

SIGMOD Rec., 29(2):1–12, May 2000.

[41] D. W. Cheung, Jiawei Han, V. T. Ng, and C. Y. Wong. Maintenance of discovered association rules

in large databases: an incremental updating technique. In Proceedings of the 12th International

Conference on Data Engineering, pages 106–114. IEEE, February 1996.

69

[42] R. Uday Kiran, P. Likhitha, Minh-Son Dao, Koji Zettsu, and Ji Zhang. Discovering Periodic-

Frequent Patterns in Uncertain Temporal Databases. In Neural Information Processing, pages

710–718. Springer, December 2021.

[43] Keith C. C. Chan and Wai-Ho Au. Mining fuzzy association rules. In CIKM ’97: Proceedings

of the 6th International Conference on Information and Knowledge Management, pages 209–215.

Association for Computing Machinery, January 1997.

[44] Joong Hyuk Chang and Won Suk Lee. Finding recent frequent itemsets adaptively over online

data streams. In KDD ’03: Proceedings of the 9th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 487–492. Association for Computing Machinery,

August 2003.

[45] Zhongmei Zhou, Zhaohui Wu, Chunshan Wang, and Yi Feng. Mining Both Associated and Cor-

related Patterns. In Computational Science – ICCS 2006, pages 468–475. Springer, 2006.

[46] Sangkyum Kim, Marina Barsky, and Jiawei Han. Efficient mining of top correlated patterns based

on null-invariant measures. In ECML PKDD’11: Proceedings of the 2011 European conference

on Machine learning and knowledge discovery in databases - Volume Part II, pages 177–192.

Springer-Verlag, September 2011.

[47] Tom Brijs, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. Using association rules for product

assortment decisions: a case study. In KDD ’99: Proceedings of the 5th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pages 254–260. Association for

Computing Machinery, August 1999.

[48] R. Uday Kiran, Sourabh Shrivastava, Philippe Fournier-Viger, Koji Zettsu, Masashi Toyoda,

and Masaru Kitsuregawa. Discovering Frequent Spatial Patterns in Very Large Spatiotemporal

Databases. In SIGSPATIAL ’20: Proceedings of the 28th International Conference on Advances in

Geographic Information Systems, pages 445–448. Association for Computing Machinery, Novem-

ber 2020.

[49] Hung Tran-The and Koji Zettsu. Discovering co-occurrence patterns of heterogeneous events

from unevenly-distributed spatiotemporal data. In 2017 IEEE International Conference on Big

Data (Big Data), pages 1006–1011. IEEE, December 2017.

[50] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.

Theoret. Comput. Sci., 312(1):3–15, January 2004.

70

[51] R. Uday Kiran and Masaru Kitsuregawa. Novel Techniques to Reduce Search Space in Periodic-

Frequent Pattern Mining. In Database Systems for Advanced Applications, pages 377–391.

Springer, 2014.

[52] J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy, and Masaru Kitsuregawa. Discovering Periodic-

Frequent Patterns in Transactional Databases Using All-Confidence and Periodic-All-Confidence.

In DEXA 2016: Proceedings, Part I, 27th International Conference on Database and Expert Sys-

tems Applications - Volume 9827, pages 55–70. Springer-Verlag, September 2016.

[53] T. Yashwanth Reddy, R. Uday Kiran, Masashi Toyoda, P. Krishna Reddy, and Masaru Kitsuregawa.

Discovering Partial Periodic High Utility Itemsets in Temporal Databases. In Database and Expert

Systems Applications, pages 351–361. Springer, August 2019.

[54] R. Uday Kiran, C. Saideep, Koji Zettsu, Masashi Toyoda, Masaru Kitsuregawa, and P. Krishna

Reddy. Discovering Partial Periodic Spatial Patterns in Spatiotemporal Databases. In 2019 IEEE

International Conference on Big Data (Big Data), pages 233–238. IEEE, December 2019.

[55] C. Saideep, R. Uday Kiran, Koji Zettsu, Cheng-Wei Wu, P. Krishna Reddy, Masashi Toyoda,

and Masaru Kitsuregawa. Parallel Mining of Partial Periodic Itemsets in Big Data. In Trends in

Artificial Intelligence Theory and Applications. Artificial Intelligence Practices, pages 807–819.

Springer, September 2020.

[56] P. Likitha, P. Veena, R. Uday Kiran, Yukata Watanobe, and Koji Zettsu. Discovering Maximal Par-

tial Periodic Patterns in Very Large Temporal Databases. In 2021 IEEE International Conference

on Big Data (Big Data), pages 1460–1469. IEEE, December 2021.

[57] Bing Liu, Wynne Hsu, and Yiming Ma. Mining association rules with multiple minimum supports.

In KDD ’99: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 337–341. Association for Computing Machinery, August 1999.

[58] Ya-Han Hu and Yen-Liang Chen. Mining association rules with multiple minimum supports: a

new mining algorithm and a support tuning mechanism. Decision Support Systems, 42(1):1–24,

October 2006.

[59] R. Uday Kiran and P. Krishna Reddy. Novel techniques to reduce search space in multiple mini-

mum supports-based frequent pattern mining algorithms. pages 11–20, March 2011.

[60] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right interestingness mea-

sure for association patterns. In KDD ’02: Proceedings of the 8TH ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 32–41. Association for Computing

Machinery, July 2002.

71

[61] Akshat Surana, R. Uday Kiran, and P. Krishna Reddy. Selecting a right interestingness measure for

rare association rules. In P. Sreenivasa Kumar, Srinivasan Parthasarathy, and Shantanu Godbole,

editors, Proceedings of the 16th International Conference on Management of Data, 2010, Nagpur,

India, page 115. Allied Publishers, 2010.

[62] R. Uday Kiran, Haichuan Shang, Masashi Toyoda, and Masaru Kitsuregawa. Discovering Partial

Periodic Itemsets in Temporal Databases. In SSDBM ’17: Proceedings of the 29th International

Conference on Scientific and Statistical Database Management, pages 1–6. Association for Com-

puting Machinery, June 2017.

[63] Jian Pei and Jiawei Han. Can we push more constraints into frequent pattern mining? In KDD

’00: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge discovery and

Data Mining, pages 350–354. Association for Computing Machinery, August 2000.

[64] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules in

Large Databases. In VLDB ’94: Proceedings of the 20th International Conference on Very Large

Data Bases, pages 487–499. Morgan Kaufmann Publishers Inc., September 1994.

[65] Pami - gthreepgrowth. https://github.com/udayRage/PAMI/blob/main/PAMI/

partialPeriodicPattern/basic/GThreePGrowth.py, April 2023. [Online; ac-

cessed 18. Apr. 2023].

[66] Air pollution data of aeros. https://soramame.env.go.jp/download, February 2023.

[Online; accessed 18. Apr. 2023].

[67] SIGKDD : KDD Cup 2000 : Online retailer website clickstream analysis. https://kdd.org/

kdd-cup/view/kdd-cup-2000, April 2023. [Online; accessed 18. Apr. 2023].

72

https://github.com/udayRage/PAMI/blob/main/PAMI/partialPeriodicPattern/basic/GThreePGrowth.py
https://github.com/udayRage/PAMI/blob/main/PAMI/partialPeriodicPattern/basic/GThreePGrowth.py
https://soramame.env.go.jp/download
https://kdd.org/kdd-cup/view/kdd-cup-2000
https://kdd.org/kdd-cup/view/kdd-cup-2000

	Introduction
	Background
	Transactional Database (TDB)
	Temporal Database
	Frequent Patterns
	Periodic Patterns
	Partial Periodic Patterns (3P)
	Null Invariant Property
	Anti Monotonic Property

	Research gap and Motivation
	Overview of the proposed approach
	Contributions
	Thesis Organization

	Related Work
	Frequent Pattern Mining
	Periodic Pattern Mining
	Partial Periodic Pattern Mining
	The Rare item problem
	Differences with the existing approaches
	Summary

	Model of Periodic Patterns
	Introduction
	Model of Partial Periodic Patterns
	Partial Periodic Pattern-growth (3P-growth) Algorithm
	Summary

	Proposed Approach
	Issues with the existing model of 3P
	Proposed Model
	Generalized Partial Periodic Pattern-growth (G3P-growth)
	Irregularity pruning

	Summary

	Experimental Evaluation
	Dataset Description
	Experimental Results
	Effect of varying minPS and minPC keeping maxIAT constant
	Effect of varying minPS and maxIAT keeping minPC constant
	Effect of varying maxIAT and minPC keeping minPS constant

	Scalability Experiment
	Case Studies
	Case study 1: Improving traffic safety during disastrous situations
	Case study 2: Identifying highly polluted locations

	Summary

	Conclusion and Future work
	Summary
	Conclusions
	Future Work

	Bibliography

