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Abstract

In this thesis, we tackle unique and compelling challenges within Intelligent Transportation Systems
(ITS) by leveraging low power edge computing devices. alongside AI and machine learning innovations.
This work delves into two important problems in ITS pertaining to efficiency of traffic flow prediction
and safety in two wheeler driving.

For traffic management, we propose LSTM-based autoencoders, equipped with contextual attention
mechanisms, to precisely identify and respond to anomalous traffic patterns. This approach, in analyzing
vast datasets like the PeMS, not only enhances the accuracy of anomaly detection but also the efficiency
of traffic flow management in urban settings.

Turning our focus to two-wheeler safety, we employ simple sensor technologies to develop models
that excel in the real-time classification of driving events and fall detection. By meticulously testing
various machine learning models, we’ve proposed time-series-based LSTM and Bi-LSTM networks
for their superior accuracy in recognizing critical safety incidents. The practical deployment of these
models on edge devices, such as Raspberry Pi, underscores their viability for instant safety interventions,
a crucial step towards mitigating accidents before they occur.

Moreover, we developed a predictive model utilizing the Isolation Forest algorithm to anticipate fall
events based on rider behavior, an innovation aiming at preemptive safety measures rather than reactive
responses. This predictive capability represents a paradigm shift in how vehicular safety technologies
are conceptualized and deployed, focusing on accident prevention.

Our comprehensive study illustrates the transformative potential of integrating edge computing with
AI in ITS. By addressing the unique challenges of anomaly detection in both traffic management and
two-wheeler safety, we contribute significantly to the advancement of intelligent transportation systems.
This research not only paves the way for future innovations in vehicular safety and traffic optimization
but also promises to enhance the efficiency and safety of transportation globally.
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Chapter 1

Introduction

Our research embarks on a compelling journey to address the unique challenges faced by modern
transportation systems, particularly focusing on traffic congestion and two-wheeler safety. These issues
are not merely logistical hurdles but significant contributors to public health risks and safety concerns
worldwide [1]. Statistics from various global studies paint a concerning picture, revealing staggering
public health costs due to traffic-related pollution and a sharp increase in road accidents, especially
involving two-wheelers[2]. These alarming trends underscore the urgent need for innovative solutions
in edge-enabled artificial intelligence (AI) and machine learning. By harnessing the transformative
potential of technology, our research aims to not only mitigate traffic congestion but also reduce two-
wheeler accidents through real-time safety interventions. This thesis advocates the power of AI to
revolutionize transportation systems, envisioning a future where roads become safer and more efficient,
safeguarded by cutting-edge technology.

In our exploration, we delve into two primary domains: Anomaly Detection in traffic flow and two-
wheeler safety, each posing distinct yet interconnected challenges. Traffic congestion, aggravated by
urbanization and population growth, remains a pressing concern, leading to increased mortality rates
linked to pollution exposure. The imperative for accurate real-time traffic flow prediction models is
evident, necessitating innovative approaches to optimize traffic management and alleviate public health
burdens. Simultaneously, the rise in two-wheeler accidents, particularly in developing regions, calls for
tailored safety solutions to address the unique vulnerabilities of riders. Drawing insights from statistical
data and national road safety reports, we endeavour to develop advanced AI-driven systems capable of
real-time anomaly detection in traffic flow and fall detection/prediction, thereby enhancing road safety
for two-wheelers.

By integrating edge computing with AI methodologies, our research seeks to tackle these challenges
head-on, offering novel insights and solutions to enhance the intelligence of transportation systems.
Through a multifaceted approach encompassing predictive modelling, anomaly detection, and proactive
safety mechanisms, we aim to transform the landscape of urban mobility. Our endeavour aligns with
broader public health goals, aiming to reduce pollution-related health problems, minimize transporta-
tion costs, and foster safer, more sustainable transportation networks. Through this interdisciplinary
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research, we aspire to pave the way for a future where transportation systems prioritize safety, effi-
ciency, and environmental sustainability.

1.1 Motivation

1.1.1 Vulnerabilities and Risks Associated with Two-Wheelers

In a comprehensive examination of the critical issues plaguing modern transportation—traffic con-
gestion and two-wheeler safety—our research employs a dual-faceted approach grounded in edge-
enabled artificial intelligence (AI) and machine learning [3]. This study is motivated by the significant
public health and safety implications of these issues, underscored by statistical analyses from various
global studies. In countries like India, the narrative is equally grim, with over 461,312 road accidents
recorded in a single year, marking an alarming increase and underscoring a crisis in road safety, partic-
ularly for two-wheeler users who face a disproportionately high risk of accidents and fatalities [4, 5].

These statistics serve as a wake-up call, prompting innovative solutions employing ML/DL algo-
rithms on edge devices. The proposed development of a deep learning-based, time-series fall detection
system signifies a pioneering step towards mitigating these risks. By harnessing comprehensive datasets
to train the system in distinguishing between normal and fall scenarios, we aim not only to advance the
precision of fall detection but also to expedite emergency responses, thereby potentially reducing the
severity of outcomes following accidents.

The two-wheeler users are directly exposed and come in direct contact with the impacting vehicle or
obstacle during a collision resulting in severe injuries and fatality [6]. In India, two-wheeler accidents
have also been shown to have maximum case fatality in accidents [7]. Three factors impacting the
cause of road traffic accidents are human, vehicle and road conditions. The human factor is the most
difficult to understand, model and predict out of all these three factors. The other factors are more
predictable comparatively. Also, human behavior is something that can be altered and acted upon in
terms of accident prevention and mitigation. Therefore, understanding human behavior while driving
becomes very crucial.

Firstly, understanding driving behavior becomes vital for safety of other commuters as it can cause
high risk to them on the road. Secondly, the safety point of view of the rider, feedback and driving assis-
tance systems are essential for improving individual driving behavior and creating awareness regarding
the impacts of the way they drive. Drivers differ in the way they choose to accelerate and deceler-
ate, the distance they keep from the leading vehicle, adherence to speed limits, and use body weight
or vehicle handle movement while taking turns. Unlike four-wheelers, identifying driving patterns of
two-wheelers is even more difficult due to their highly transient dynamics during operation, which is
heavily dependent on the riding conditions and rider behaviors. This can help in detecting events that
can potentially result in accidents. However, in order to detect an accident scenario, the first step is to
recognize driving events, a combination of which could lead to accident scenarios.
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1.1.2 Traffic Congestion as an ITS Challenge

The domain of intelligent traffic management and the identification of anomalies in traffic flow data
stands as a pivotal concern. Such anomalies, defined as notable deviations from standard traffic pat-
terns, often manifest as univariate time series fluctuations [8]. The criticality of accurate and prompt
anomaly detection cannot be overstated; it forms the backbone of proactive incident response mecha-
nisms that significantly enhance the efficacy of traffic management systems. This introductory discourse
aims to elucidate the indispensable role of anomaly detection within the broader context of intelligent
traffic management, underpinning its necessity through statistical insights and the manifold advantages
it presents [9, 10]. The critical role of anomaly detection in traffic management is fundamentally linked
to its capacity to enhance road safety and improve traffic flow. Anomalies, such as sudden stops or
unexpected congestion, act as early indicators of possible road incidents or dangerous conditions. Em-
ploying anomaly detection proactively enables faster response to emergencies, potentially reducing the
severity of accidents and saving lives [11]. Additionally, anomaly detection plays a vital role in making
traffic flow smoother. It helps in identifying the unusual patterns of traffic, like unnecessary congestion
or interruptions, allowing traffic control systems to make timely adjustments [9]. These adjustments
might include changing traffic signals or suggesting different routes to prevent bottlenecks. Such mea-
sures are essential when considering the U.S. Department of Transportation’s report, which states that
traffic congestion leads to over $100 billion annually in lost time and wasted fuel for Americans [12].
This information highlights the importance of using anomaly detection not just for safety but also for
efficiency on the roads.

The environmental impact of implementing advanced anomaly detection in traffic management ex-
tends far beyond improving safety and efficiency. By enabling more efficient traffic control, anomaly
detection leads to smoother traffic flows and fewer instances of vehicles idling. This reduction in idle
times significantly decreases vehicular emissions [9]. The Environmental Protection Agency (EPA)
has highlighted that the transportation sector is the primary source of greenhouse gas emissions in the
United States, responsible for almost 29% of the nation’s total emissions [9]. Therefore, improvements
in anomaly detection technology not only aim to decrease the delays caused by congestion but also
contribute to creating a more environmentally friendly and sustainable urban ecosystem [9].

The economic advantages of utilizing efficient traffic anomaly detection systems are significant,
highlighting the importance of such technologies in modern traffic management. By reducing con-
gestion, these systems not only save time for commuters but also lead to substantial cost savings for
businesses that depend on road transportation for their logistics and delivery operations. The Federal
Highway Administration (FHWA) has noted that enhancements in traffic management can result in sav-
ings of billions of dollars by minimizing delays and reducing fuel consumption, thus supporting the
broader economy [10]. Additionally, anomaly detection is pivotal for the development of smart cities,
which aim to improve the quality of urban life and sustainability. By incorporating real-time traffic data
analysis, cities can improve road safety and traffic flow while also working towards wider goals like
lowering greenhouse gas emissions, improving public transit systems, and promoting economic growth.
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The complexity of traffic flow patterns, influenced by several factors like road conditions, daily
commuting patterns, and unforeseen incidents, necessitates robust and adaptive models for anomaly
detection [13]. Traditionally, a range of methodologies have been employed to tackle this challenge,
as outlined in a comprehensive survey by Braei and Wagner (2020) [14]. These methodologies span
statistical models, such as ARIMA, classical machine learning techniques like K-Means Clustering, and
One-Class SVM, to cutting-edge deep learning methods [15]. The latter, notably, attempts to unravel
the intricate, nonlinear correlations in data to predict future traffic patterns and identify anomalies based
on deviations from these predictions [11]. In the process of drafting this thesis, the author utilized
ChatGPT, a large language model developed by OpenAI, for rephrasing and refining the language of the
initial drafts. This tool proved invaluable in enhancing the clarity and readability of the text. [OpenAI.
(2024). ChatGPT. Large language model. /g/g-B3hgivKK9-write-for-me].

1.2 Summary of Contributions

The main contributions from this thesis are presented in the chapters mentioned as follows -

• Driving Event Recognition: Development of machine learning models, including LSTM and Bi-
LSTM networks, for the precise classification of various two-wheeler driving events. This con-
tribution is pivotal for understanding rider behavior and identifying potentially hazardous maneu-
vers, enhancing the overall safety system for two-wheelers.

• Fall Detection System: Introduction of a time-series-based deep learning system capable of real-
time fall detection. Utilizing advanced algorithms, this system accurately identifies instances of
falls, significantly improving emergency response times and potentially reducing the severity of
injuries.

• Fall Prediction Mechanism: Implementation of a predictive model that leverages data on rider
behavior and environmental conditions to forecast potential fall events. This proactive approach
aims to alert riders to imminent risks, offering a novel strategy to prevent accidents before they
occur, thus advancing the safety features available to two-wheeler users.

• Development of LSTM-based autoencoders with contextual attention mechanisms for anomaly
detection in traffic management, facilitating dynamic and efficient traffic control strategies.

• Edge Computing Integration: Deployment of the proposed models on edge devices, such as Rasp-
berry Pi, showcasing the feasibility of real-time, on-device processing for traffic prediction and
two-wheeler safety applications.

This research addresses traffic congestion and two-wheeler accidents, contributing to reduced pollution-
related health problems and fatalities in two-wheelers. It improves traffic flow and enhances two-
wheeler safety, leading to decreased transportation time, and costs and increased safety.
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The thesis is organized as follows: Chapter 3 of this thesis discusses the application of time series
analysis for detecting and recognizing driving events in two-wheeled vehicles, detailing the exploration
of relevant datasets, the development of models, and the deployment of evaluation metrics to assess their
efficacy. Following this, Chapter 4 focuses on the refinement and implementation of time series analysis
techniques specifically designed to improve fall detection and prediction systems within two-wheeled
transportation. This includes a thorough examination of methodologies, addressing challenges, and dis-
cussing the outcomes of these advanced analytical approaches. In Chapter 5, we introduce a novel ap-
proach for anomaly detection in traffic flow analysis using a contextual attention-based encoder-decoder
network. The chapter details the architecture of this model, the training process, and the utilization of
large datasets, demonstrating the model’s effectiveness through various case studies that underscore its
capacity to enhance traffic management systems. Chapter 6 extends the discussion to additional re-
search that contributes to the broader goals of the thesis, including partnerships and other projects that
help advance the field of intelligent transportation systems. The thesis concludes with Chapter 7, which
summarizes the key findings and contributions of the research. This final chapter discusses the implica-
tions of the work for the development of intelligent transportation systems and outlines potential future
research directions that could continue to advance the field, emphasizing the importance of ongoing
innovation in traffic safety and management.
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Chapter 2

Related Works

The Related Works section provides an overview of the existing research and methodologies rele-
vant to the study. It begins by exploring anomaly detection in time series data, categorizing approaches
into statistics-based, prediction-based, and reconstruction-based methods. Each approach is discussed,
highlighting its strengths and applications in anomaly detection for various contexts. The section then
delves into driver behavior studies for two-wheelers, emphasizing the importance of understanding rider
patterns and mitigating potential hazards. Traditional machine learning models and deep learning tech-
niques, particularly LSTM networks, are discussed in the context of recognizing riding patterns and
enhancing safety measures.Additionally, the section addresses pre-impact fall detection, showcasing
studies that aim to detect falls before they occur. Techniques such as SVMs, HMMs, and advanced
machine learning algorithms are employed to develop proactive safety measures for two-wheeler riders.

2.1 Driver Behavior Studies for Two-Wheelers

In the field of two-wheeler safety, various research frameworks have been developed using traditional
machine learning models to enhance the prediction and recognition of rider patterns and potential haz-
ards ([16], [17], [18]). Previous studies have utilized data from accelerometers, gyroscopes, and GPS
to recognize patterns. These systems, while foundational, often do not fully account for the dynamic
kinematic state changes in moving vehicles.

Understanding driver behavior is crucial for enhancing safety measures, particularly for vulnerable
road users like two-wheeler riders. Research in this domain encompasses both traditional machine learn-
ing and deep learning techniques, aiming to recognize riding patterns and mitigate potential hazards.

Initial frameworks utilize classical machine learning models and sensor data to recognize riding pat-
terns [19]. For instance, Mitrovic proposed a system based on accelerometers, gyroscopes, and GPS
data to recognize patterns using Hidden Markov Models (HMMs) [20]. However, these approaches may
not fully capture the dynamic transitions inherent in moving vehicles. Deep learning techniques, partic-
ularly LSTM networks, have emerged as powerful tools for time-series classification in driver behavior
studies. For example, Schalk Wilhelm Pienaar [21] proposed an LSTM-RNN Deep Neural Network
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Architecture for human activity recognition, demonstrating the effectiveness of LSTM networks in pro-
cessing and classifying sequential data. Advancements in collision and hazard detection complement
traditional approaches, showcasing innovations in proactive safety measures [22, 23]. These studies
underscore the potential of advanced machine learning techniques in enhancing safety measures for
two-wheeler riders.

2.2 Pre-Impact Fall Detection

In the domain of Pre-impact Fall detection, several studies have laid the groundwork for human
fall detection, offering valuable insights that can be adapted for two-wheeler fall scenarios. Notably,
methods employing Support Vector Machines (SVM) and Hidden Markov Models (HMM) ([24],[25])
have shown promise. Furthermore, innovative approaches towards enhancing rider safety, including
the development of airbag systems for two-wheelers informed by Long Short-Term Memory (LSTM)
networks to accurately predict the optimal timing for deploying wearable bike airbags during accidents,
have been explored [26]. This emerging research underscores the potential of leveraging advanced
machine-learning techniques to improve proactive safety measures for two-wheeler riders.

Pre-impact fall detection studies offer valuable insights applicable to two-wheeler safety, aiming to
detect falls before they occur. These studies employ a variety of techniques, including Support Vector
Machines (SVMs), Hidden Markov Models (HMMs), and innovative approaches like airbag systems
informed by LSTM networks [26]. For example, previous works have utilized SVMs and HMMs for
pre-impact fall detection, showcasing promising results [24, 25]. Additionally, studies like [26] propose
thresholding-based crash detection algorithms for two-wheelers.

2.3 Anomaly Detection in Time Series Data

Anomaly detection in time series data stands as a critical research domain, addressing the unique
challenges posed by dynamic, sequential data. Methodologies have evolved to encompass diverse ap-
proaches, each offering insights into anomaly detection tailored for specific contexts.

2.3.1 Statistics-based Anomaly Detection

Historical approaches to anomaly detection have predominantly relied on statistical models, under-
pinned by the assumption that data conform to specific statistical patterns. This assumption enables the
identification of anomalies when new data points significantly deviate from these established patterns
[27]. Classical models in this domain include hypothesis testing [28], wavelet analysis [29], and ARIMA
[30], each offering a unique perspective on anomaly detection. Notably, Yamanishi et al. [31] leveraged
statistical learning theory in an online learning algorithm tailored for anomaly detection. More recent

7



advancements, like the application of extreme value theory by Siffer et al. [32], have refined these tech-
niques for univariate time series, though their focus has predominantly been on anomalies exceeding
normal levels, leaving sub-normal anomalies less explored.

2.3.2 Prediction-based Methods

With the advent of more complex data structures and the need for dynamic analysis, prediction-based
methods have gained traction in time series anomaly detection. These methods hinge on forecasting
subsequent values in a series, flagging deviations from these forecasts as potential anomalies [33]. The
advent of deep learning has notably enhanced the efficacy of prediction-based methods. For instance,
Buda et al. [34] utilized LSTM models to achieve precise forecasting capabilities, and Hundman et al.
[35] applied unsupervised LSTM models for anomaly detection in spacecraft telemetry data. Another
innovative approach, DeepAnT, introduced by Munir et al. [36], effectively combined CNNs for time
series prediction. However, despite their success in short-term forecasting, these models often falter in
rapidly changing environments, such as those encountered in financial markets, underscoring the need
for more adaptive and responsive methodologies.

2.3.3 Reconstruction-based Anomaly Detection

Reconstruction-based anomaly detection approaches offer a paradigm shift from prediction-based
methods. These models encode standard sequences into latent spaces and detect anomalies through
discrepancies observed during the reconstruction phase in test data. By training exclusively on normal
data, reconstruction-based models enhance sensitivity and accuracy in anomaly detection, particularly in
semi-supervised learning scenarios. Studies like Darban et al. [37] have demonstrated the effectiveness
of this approach in capturing anomalies in time series data.
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Chapter 3

Analyzing and Recognizing Driving Events in Two-Wheeled Vehicles

Through Time Series Data

Classification of a motorcycle’s driving events can provide deep insights to detect issues related
to driver safety. Safety in two wheelers is a less studied problem, and we are attempting to address
this gap by providing a learning based solution to classify driving events. Firstly, we developed a
hardware system with 3-D accelerometer/gyroscope sensors that can be deployed on a motorcycle. The
data obtained from these sensors is used to identify various driving events. We have investigated several
machine learning (ML) models to classify the driving events. However, in this process, we identified that
though the overall accuracy of these traditional ML models is decent enough, the class-wise accuracy
of these models is poor. Hence, we have developed time-series-based classification algorithms using
LSTM and Bi-LSTM to classify various driving events. We have also embedded an attention mechanism
in the architecture of these models for enhanced feature learning, thus improving the accuracy of event
recognition. The experiments conducted have demonstrated that the proposed models have surpassed the
state-of-the-art models in the context of driving event recognition with reasonable class-wise accuracies.
We have also deployed these models on the edge devices like Raspberrypi and successfully reproduced
the prediction accuracies in the devices. The experiments demonstrated that the proposed Bi-LSTM
model showed a minimum of 88% accuracy and a maximum of 99% accuracy in class-wise prediction
on a 2-wheeler driving dataset.

3.1 Introduction

Transportation has become one of the basic needs of human life. Driving patterns on roads in cities
of developing countries are very different from those in cities in developed countries. In India, two-
wheelers are popularly used [38] for reasons such as 1) Best mobility solution for 1 or 2 people, 2)
Requires less parking space, 3) Easy maneuvering through traffic, and 4) Low purchase and running
cost. With the increasing urbanization, the two-wheeler users are increasing in numbers, resulting in a
greater risk of accidents. The alarming increase in mortality owing to road traffic accidents has been a
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matter of great concern globally. A study [2] was undertaken to find the trend of two-wheeler accidents
over the five years (2000-2004) with respect to age and sex of the victim, type of injury sustained, type
of vehicle involved and time distribution of accidents. Every day as many as 1,40,000 people are injured
on roads across the world, of which more than 3000 die and around 15,000 are disabled for life [1].

The two-wheeler users are directly exposed and come in direct contact with the impacting vehicle or
obstacle during a collision resulting in severe injuries and fatality [6]. In India, two-wheeler accidents
have also been shown to have maximum case fatality in accidents [7]. Three factors impacting the
cause of road traffic accidents are human, vehicle and road conditions. The human factor is the most
difficult to understand, model and predict out of all these three factors. The other factors are more
predictable comparatively. Also, human behavior is something that can be altered and acted upon in
terms of accident prevention and mitigation. Therefore, understanding human behavior while driving
becomes very crucial.

3.1.1 Motivation

Driving behavior plays an important role in maintaining safety on roads [39]. It also affects traffic
flow, fuel consumption, air pollution, public health, personal mental health and psychology. A quarter
of serious or fatal injuries to bike riders occurred in accidents where the rider lost control with no other
vehicle involvement [1].

Firstly, understanding driving behavior becomes vital for safety of other commuters as it can cause
high risk to them on the road. Secondly, the safety point of view of the rider, feedback and driving assis-
tance systems are essential for improving individual driving behavior and creating awareness regarding
the impacts of the way they drive. Drivers differ in the way they choose to accelerate and deceler-
ate, the distance they keep from the leading vehicle, adherence to speed limits, and use body weight
or vehicle handle movement while taking turns. Unlike four-wheelers, identifying driving patterns of
two-wheelers is even more difficult due to their highly transient dynamics during operation, which is
heavily dependent on the riding conditions and rider behaviors. This can help in detecting events that
can potentially result in accidents. However, in order to detect an accident scenario, the first step is to
recognize driving events, a combination of which could lead to accident scenarios.

To the best of our knowledge, there has been very little work (mainly using traditional machine
learning models, which is discussed in Section 4.1.3) on developing a system for automatic recognition
of bike driving events. Hence, we attempt to fill this gap systematically by investigating various ap-
proaches and propose novel time-series based deep learning (DL) models for driving event recognition.
Therefore our contributions in this space are as follows:

1. Due to the unavailability of two-wheeler driving data, we have developed the hardware system
and deployed it on the two-wheeler.

2. We have collected the driving data using this system to understand the driver’s behavior.
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3. We have compared various traditional machine learning algorithms using the data acquired.

4. We propose time-series based DL models for driving event recognition and demonstrate its supe-
riority over traditional machine learning models in terms of accuracy.

5. We deployed the time-series based DL models on Raspberry Pi platform and demonstrated their
trade-offs between accuracy, memory usage and inference time.

3.2 Related work

Driver behavior is the primary cause of two-wheeler accidents. There have been works on studying
driving event recognition in the case of four-wheelers using classical and machine learning approaches.
In this context, there are various frameworks [16], [17], [18] that use unsupervised, semi-supervised
and supervised models for the multi-class classification of driving maneuvers and also identifying the
specific types of abnormal driving behaviors from sensor fusion data of four-wheelers. The few works
on driving behavior studies for two-wheelers are presented next.

3.2.1 Driver behavior studies for two-wheelers

There are some frameworks developed using traditional machine learning models for two-wheelers.
Mitrovic proposed a simple system based on accelerometers, gyroscopes, and GPS data to recognize
patterns using HMMs [20]. Ferreira et al. [40] compared the performance of Multi-Layer Perceptron
(MLP), Support Vector Machines, Random Forest, Bayesian Networks in the classification of driving
maneuvers from smartphone sensors. In [19], a machine learning framework was proposed to identify
the class of riding patterns using data collected from 3-D accelerometer/gyroscope sensors mounted on
motorcycles. Additionally, they also proposed an approach for sensor selection to identify the significant
measurements for improved riding pattern recognition. But this work does not capture the kinematic
state change of moving vehicles. Hence, to capture those dynamic transitions, we have proposed a time-
series based classification models for two-wheelers. In [41], the authors adopted a Machine Learning
based movement identification process with an Artificial Neural Network (ANN) algorithm.

There are some studies based on deep learning as well in the context of time-series classification in
general. LSTMs are proven to excel in learning, processing and classifying such types of data. Schalk
Wilhelm Pienaar [21] proposed an LSTM-RNN Deep Neural Network Architecture for human activity
recognition signifying the importance of usage of RNN for time-series data. A prior work [22] deals
with collision and hazard detection for motorcycles. This is usually done by setting absolute thresholds
on the accelerometer measurements, which is not intuitive. Hence the authors have proposed a method
based on self-organized neural networks that can deal with a large number of inputs from different
types of sensors. In [26], the authors have proposed an airbag system using LSTM to decide on the
deployment of a wearable bike airbag in case of an accident.
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The Journal is further organized into the following sections. In Section III, we explain our approach
to hardware design, data collection strategy and proposed model. Section IV provides a detailed ex-
perimental procedure, data pre-processing, training, and testing of the model. Section V consists of the
conclusion and future scope.

3.3 Methodology

In this work, we have implemented the end-to-end framework for recognizing various driving events.
The overall problem can be addressed in four phases, as shown in the Fig. 3.2. Phase 1 (shown as Phase-
1) comprises of design and development of the hardware followed by data collection. In the 2nd phase
(shown as Phase-2), the dataset is labelled and pre-processing is performed before feeding it as input to
the model. In this work, the proposed time-series based classification models have been developed and
trained in Phase-3. In the 4th phase (shown as Phase-4), the models are optimized and deployed on edge
devices like Raspberry Pi. The deployed models have been analyzed w.r.t. memory usage and inference
time. The different phases presented in Fig. 3.2 have been discussed further in subsequent sections.

The proposed system consists of a microcontroller, accelerometer, gyroscope, GPS module and an
SD card module. The sensors are interfaced using an Arduino Nano 33 IoT controller board as shown
in Fig. 3.1. A brief explanation of the functions of each component of the hardware is presented below.

3.3.1 Microcontroller

Nano 33 IoT is a miniature sized module containing an Arm Cortex M0+ based ATSAMD21 pro-
cessor and a u-blox NINA-W102 WiFi+BlueTooth module. It has 256 kB SRAM and 48 MHz clock
speed, with a flash memory of 1 Mbites, which makes it ideal for running machine learning algorithms.

Figure 3.1: Block diagram of the fabricated hardware system
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Figure 3.2: Overall block diagram of the proposed Driving Event Recognition.

3.3.2 Inertial measurement unit (IMU)

The system included an LSM6DS3 IMU sensor that provides three-axis linear acceleration and an-
gular velocity information. The acceleration is reported in terms of gs (multiples of acceleration due to
gravity), whereas angular velocity is reported in terms of degrees per second (dps). The IMU used in
this work can provide a full-scale range of measurement of ±16 g linear acceleration and ±2000 dps
angular velocity.

3.3.3 GPS module

The NEO-M8 module utilizes concurrent reception of up to three GNSS systems (GPS/Galileo to-
gether with BeiDou or GLONASS), and recognizes multiple constellations simultaneously to provide
outstanding positioning accuracy in scenarios where urban canyon or weak signals are involved. The
position information is obtained in the form of an NMEA sentence is transmitted to the processor us-
ing UART. The information obtained from the sensor also includes the global timestamp and surface
velocity of the module.

3.3.4 SD card module

The module (Micro-SD Card Adapter) is a Micro SD card reader/writer module that communicates
with the microcontroller using an SPI interface. The module is used to write information collected from
all the sensors into a microSD card for analysis later.
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Figure 3.3: Placement of the hardware system on the motorcycle.

3.4 Data collection

The data is collected for various driving events from the hardware system deployed on the two-
wheeler. The system is placed near the foot rest area of the two-wheeler as shown in Fig. 3.3. The data
from the accelerometer and gyroscope sensors are continuously logged in the SD card. Simultaneously,
the entire ride is recorded with the help of a camera. Later, by matching the timestamps between the
sensor data and the video, the dataset is labeled manually. The dataset consists of 7 features, namely
Ax, Ay, Az (accelerometer data on the x, y and z-axis), Gx, Gy, Gz (Gyroscope data on the x, y and
z-axis) and speed. The sampling rate of the sensors is 104 Hz. We have performed five driving events,
such as Left Turn (LT), Right Turn (RT), Straight Line (SL), Speed Bump (SB), and Stop (ST). The
two-wheeler used for collecting the data is Honda Activa. The route selected for data selection covers
all the events and is relatively safe to collect the data.

3.5 Classification using traditional machine learning models

As a preliminary part of this work, we implemented various ML models to understand the capabilities
of each of these models with respect to classifying various driving events. Hence, we implemented
various ML algorithms that have been used in prior works, such as K-Nearest Neighbor (KNN), Support
Vector classifier (SVC), Decision Trees (DT), Random Forest (RF) and Naive Bayes (NB), which gave
accuracies of 88.46%, 41.02%, 87.17%, 89.74% and 84.61%, respectively.

Among the ML models, it is observed that the RF model has the highest accuracy. Though the
overall accuracy of these models are decent, the class-wise accuracy (accuracy to classify a specific
driving event) is pretty low, especially in the case of events like ‘Left Turn’ and ‘Bump’. The main
reason is that the vehicle is in motion due to which there will be some changes in kinematic states
such as acceleration, deceleration, angular velocity, etc., of the vehicle while performing certain events
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like turns, braking, etc. ML models are not capable of capturing these transitions. On the other hand,
neural network models can be trained to capture these transitions. Hence, we propose time-series based
classification models to classify various driving events.

3.6 Proposed DL based time-series classification Models

Time series classification data differs from a typical classification problem since the attributes have
an ordered sequence. In this work, firstly, we test the efficiency of the time series-based DL models on
driving event recognition, which has not been done earlier for two-wheelers. The rationale behind using
time series-based DL models is that the driving events have a dependency on the immediate historical
data pattern. Therefore, we implement LSTM and Bi-LSTM, two widely popular time series-based DL
models.

3.6.1 LSTM

In addition to the rationale mentioned earlier, the reason for choosing LSTM [42] to perform driving
event classification is its ability to learn from the raw time series data directly thereby eliminating the
need to manually engineer input features. LSTM is an efficient recurrent neural network that can hold
information from the time series data for a longer duration of time. It can be used to model sequential
data and is hence used to learn complex human behavior while riding two-wheelers.

3.6.2 Bi-LSTM

Bidirectional LSTMs are an extension of traditional LSTMs that can improve model performance
on sequence classification problems. The input sequence given to the network consists of the seven
features (Ax, Ay, Az, Gx, Gy, Gz and speed) of the dataset. In problems where all timesteps of the input
sequence are available, Bidirectional LSTMs train two instead of one LSTM’s on the input sequence
[43]. The first LSTM traverses on the input sequence in the given order, whereas the second one on
the reversed copy of the input sequence. This can provide additional context of the driving event to the
network and result in faster and even fuller learning on the problem.

3.7 Attention mechanism for the proposed models

The attention mechanism [44] emerged innately from problems that deal with time-varying data (se-
quences). The main objective of the attention mechanism is to filter the critical representations out for
the purpose of recognition. An attention mechanism is used to redistribute the weights of representa-
tions. It can highlight the vital information from the contextual information by setting different weights.
Our attention function is straightforward; it takes the dot product of weights and inputs followed by the
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addition of bias terms. After that, we add a tanh followed by a softmax layer. In time-series problems,
all elements of the sequence generally contribute equally to the result, but in reality, this may not be the
case. For example, a sudden change in acceleration along one direction could be a better indicator of a
particular driving event. Hence it is critical to capture those particular features contributing to recogniz-
ing a particular event. Hence, we have enhanced the LSTM and Bi-LSTM models by paying attention
to specific features that have more impact in recognizing a particular event by embedding an attention
layer.

3.7.1 LSTM with attention mechanism

LSTM cells can’t understand long terms dependencies from arbitrary lengths. Therefore, their per-
formance degrades as the sequence length increases. As the name suggests, attention furnishes a mech-
anism where output can attend to a particular input time step for an input sequence of arbitrary length.
Hence, an attention layer is embedded on the LSTM layer. The simple LSTM model cannot capture
these critical features.

3.7.2 Bi-LSTM with attention mechanism

An attention mechanism is utilized to focus on the information fed out from the hidden layers of
Bi-LSTM. The simple Bi-LSTM structure allows the networks to have both backward and forward
information about the sequence at every time step. In this work, we have added an attention layer over
the Bi-LSTM layer for enhanced feature extraction. The output of the attention layer is given to the
dense layers.

3.8 Experimental Results and Discussions

3.8.1 Experimental setup

The aim of this work is to develop a system and efficient DL models to execute within the system.
which can perform better driving event classification compared to existing models. The training has been
performed on a workstation with an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz and one NVIDIA
GeForce GTX 1650 TI Graphics Card. We have used Jupyter notebook to perform the experiments.
The framework used in our work to build various models is TensorFlow-Keras. In order to evaluate the
models, we have used the ‘accuracy’ which is the most commonly used evaluation metric as denoted in
Eq. (3.1).

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

where true positives (TP) and true negatives (TN) denote the correct classifications of positive and
negative examples, respectively. False positives (FP) represent the incorrect classification of negative
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Figure 3.4: Epochs vs Loss

examples into the positive class, and false negatives (FN) are positive examples incorrectly classified
into the negative class.

3.8.2 Data pre-processing

A pre-processing step is essential to replace the missing values to ensure the continuity of data and
synchronization with the video. The database contains a total of 2,22,857 data points which contain
1,42,138 SL instances, 9729 RT instances, 5937 LT instances, 13163 SB instances and 7316 ST in-
stances. The dataset is normalized to minimize redundancy and improve the integrity of database. The
dataset is divided into training and test set consisting of 80% and 20% of the original data respectively.

The variation of accuracy and loss over the number of epochs for the training and validation dataset
for the LSTM model is demonstrated by Fig. 3.4. Initially, the validation accuracy increases, then slows
down. After 80 epochs, the accuracy and loss values become stable. At 100 epochs, the model has
converged.

3.8.3 Window size vs Accuracy

Window size is one of the crucial parameters that impact the accuracy of the models. The variation
of window size affects the training process, which results in the variation of the model accuracy. For
the data set we have collected, the events were better detected with some window sizes as the appro-
priate amount of information for event detection was present in that window. After performing several
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Figure 3.5: Window Size Vs Accuracy

experiments with various window sizes, we have identified that the best window size for detecting all
the events in this dataset is 80 for LSTM model as shown in Fig. 3.5.

3.8.4 Deployment and Testing on Raspberry Pi

In this work, we demonstrate the implementation of deep neural network models such as LSTM
and Bi-LSTM and evaluate their efficiency on a Raspberry Pi platform. The Raspberry Pi is a popular
single-board computer that has been widely used for numerous applications, including computer science
education, robotics, sensor networks and internet-of-things. Raspberry Pi 4 Model B+ with 1.4GHz
Cortex A53 with 4GB RAM can run Linux-based OS and support several built-in libraries for Python,
C, C++, etc. While LSTM and Bi-LSTM are quite popular models for generic time-series classification
problems, there is little prior work about deploying these models on Raspberry Pis, primarily due to the
limited processing power of older models of the Raspberry Pi.

Hence, in this work, we have implemented the above proposed time-series classification models to
classify various events on Raspberry pi. The model has been trained on a different (more powerful)
machine prior to off-loading the model onto the Raspberry Pi because, in the learning phase, a large
amount of data is used to calculate the weights and biases of the network, thus requiring high compu-
tational resources. Once the learning phase has been completed and the network has been trained, the
model can be used for classification with lower computation requirement. After the weights have been
calculated, they are stored in the program memory and the proposed models can be executed on a device
with a low capacity in terms of RAM.
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Table 3.1: Comparision of traditional ML models and proposed models.

Model Overall Accuracy (%) Straight (SL) Left Turn (LT) Right Turn (RT) Bump (SB) Stop (ST)
KNN 88.46 0.95 0.21 0.62 0.41 1.00
SVC 41.02 1.00 0.56 0.59 0.42 0.78

Decision Trees 87.17 0.53 0.59 0.67 0.47 1.00
Random Forest 89.74 0.58 0.50 0.67 0.48 1.00

Naive Bayes 84.61 0.58 0.46 0.67 0.11 1.00
LSTM 95.72 0.99 0.90 0.93 0.74 1.0

LSTM with attention 96.58 0.97 0.86 0.94 0.88 1.0
Bi-LSTM 97.12 0.97 0.86 0.97 0.88 1.0

Bi-LSTM with attention 98.92 0.98 0.96 1.0 0.91 1.0

The overall and class-wise accuracies of the deployed proposed models on Raspberry Pi have been
tabulated in Table 3.1. From the table, we can observe that the Bi-LSTM with attention mechanism has
the highest accuracy as well as equally distributed class-wise accuracy without having any bias towards
a particular class. The LSTM and Bi-LSTM models with attention mechanism have achieved better
overall and class-wise accuracies, implicitly showing the importance of attention mechanism and time
series-based classification.

3.8.5 Performance of Proposed models on Rapspberry Pi

3.8.5.1 Optimization of the models

Before deploying on the Raspberry Pi, the models have been quantized w.r.t. model size. In this
work, we have used the TensorFlow Lite framework. Quantization works by reducing the precision of
the numbers used to represent a model’s parameters, which by default are 32-bit floating-point numbers.
This results in smaller model size and faster computation. We have used the dynamic range quantiza-
tion technique, in which weights are converted to 8-bit precision values. Dynamic range quantization
achieves a significant reduction in the model size. There is a significant reduction in model size in ex-
change for minimal impact to accuracy. We achieved a more than four times reduction in model size
with optimization to 8 bits, which ensured a feasible model capable of fast inference on edge devices.

3.8.5.2 Trade-off between accuracy, model size and inference time

After performing the quantization of the models, we have compared the accuracy, memory used,
and inference time for the proposed models. From Table 3.2, we can observe that the model size after
optimization has been significantly reduced. Similarly, there is a notable decrease in the inference time,
making the deployed models faster. Among the optimized models, Bi-LSTM has the highest accuracy
while LSTM has the most diminutive model size and inference time. From the table, we can also
observe that the %reduction in accuracy, model size and inference time in the case of Bi-LSTM are
0.37%, 43.44% and 54.27% respectively. In the case of Bi-LSTM with attention the % reduction in
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Table 3.2: Comparision of accuracy, memory usage and inference time for the proposed models before
and after optimization.

Model Accuracy Memory required Prediction time
Unoptimized (%) Optimized (%) Unoptimized (MB) Optimized (MB) Unoptimized (sec) Optimized (sec)

LSTM 95.72 95.19 572.09 434.96 2.39 0.93
LSTM with attention 96.58 96.05 614.07 583.66 3.22 1.68

Bi-LSTM 97.12 96.76 793.66 448.83 5.03 2.3
Bi-LSTM with attention 98.92 97.84 829.01 648.84 5.57 3.36

model size and inference time is 21.73% and 39.67%, respectively, at the cost of 1.09% reduction in
accuracy. Accuracy and inference time trade-offs differ from application to application. In the context of
driving event recognition, if the edge deployed two-wheeler has no power supply constraints, Bi-LSTM
with attention can be used though it consumes more RAM, but provides the best possible accuracy
values for all the classes. However, in two-wheelers where power supply is a critical resource (e.g.,
electric vehicles), models such as LSTM with the smaller sizes are preferred with lesser classification
accuracy. These resource-efficient models can also be deployed on low-power controllers like ESP32.

3.9 Conclusion and Future scope

In this work, we have developed a hardware system that can be deployed on a two-wheeler to collect
the dataset with various parameters like acceleration, angular velocity, and speed. We have applied
various machine learning models to the collected dataset to classify certain driving events. However,
we identified that though the overall accuracy of these models is decent, the class-wise accuracies are
not up to the mark. Hence, we proposed time-series based DL models which mitigate the problems
persisting in the machine learning models. Then, we enhanced the DL models by adding attention
layer for superior feature extraction. The experimental study shows the importance of adapting time-
series based classification models in the context of driving event recognition. We have also deployed
these models on Raspberry Pi to check the performance on an edge device. We have also performed
quantization to these models and successfully reduced the model size and inference time. Hence, the
proposed models outperform the other models not only w.r.t. overall accuracy but also w.r.t. class-wise
accuracies, model size and inference time. This work is just the beginning of a more comprehensive
vision. In future work, we plan to classify several other critical driving events. We will carry forward
the work of driving event classification and utilize it to facilitate greater safety of two-wheelers.
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Chapter 4

Time-Series Analysis for Enhanced Fall Detection and Prediction Systems

in Two-Wheeled Transportation

4.1 Time-Series based Fall Detection in Two-Wheelers

Driving event recognition plays a crucial role in understanding and enhancing road safety. This
research focuses on developing efficient time-series based models for Fall detection in two-wheelers.
Traditional machine learning models proved inadequate in accurately classifying Fall scenarios due
to their inability to capture temporal transitions in kinematic states. To address this limitation, time-
series based Deep Learning (DL) models are proposed, utilizing Long Short-Term Memory (LSTM)
networks. These networks enable direct learning from raw time series data, eliminating the need for
manual feature engineering. Additionally, Bi-LSTMs were employed to capture contextual information
from both past and future timesteps, further improving the model’s understanding of driving events.
The architecture was enhanced with an attention mechanism to boost accuracy. Experimental results
showcased that the proposed Bi-LSTM model achieved an overall accuracy of 97%, with a specific
accuracy of approximately 92% in detecting Fall scenarios. This research contributes to the development
of an accurate Time-series based system for Fall detection, facilitating improved road safety in the
context of two-wheelers.

4.1.1 Introduction

Transportation plays an indispensable role in our lives, and as advancements continue to shape this
sector, certain challenges have emerged. One significant issue faced by developing countries is the
higher proportion of two-wheeler accidents. Motorcycles and scooters are widely used as primary
modes of transportation in these regions, but unfortunately, they pose a greater risk to riders due to
their inherent vulnerability. Unlike enclosed vehicles, two-wheelers lack structural protection, leaving
riders significantly more exposed to injuries in the event of a Fall. This vulnerability is reflected in the
statistics, as highlighted in a recent report published by the Ministry of Road Transport and Highways,
India. According to the report [4], more than a third (37%) of road accident fatalities in 2019 involved
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two-wheeler riders. The problem extends beyond developing countries, as motorcycle and moped fa-
talities account for a considerable proportion (17.7%) of the total number of road accident fatalities in
Europe [5]. Comparatively, the likelihood of a motorcycle rider dying in a Fall is 26 times higher than
that of a passenger car occupant, considering the distance traveled. These distressing figures clearly
indicate that riders are among the most vulnerable road users [7].

Every day as many as 1,40,000 people are injured on roads across the world, of which more than 3000
die and around 15,000 are disabled for life [1]. The implications of such accidents are not limited to
the individual riders alone; they also pose a significant risk to the general population. When an accident
occurs, the response time to provide medical assistance and minimize harm is crucial. Unfortunately,
the inherent risks associated with two-wheelers, coupled with the lack of structural protection, often
result in severe injuries or fatalities. This increased reaction time, compounded by the vulnerability of
riders, further contributes to the alarming number of deaths on the roads.

4.1.2 Motivation

The frequency of two-wheeler Fall poses a serious threat to road safety, needing a thorough under-
standing of the underlying causes. Numerous factors, including rider behavior, vehicle attributes, road
conditions, weather, and traffic circumstances, have an impact on these collisions [45]. The intricate
interactions between human behavior, infrastructure, and environmental elements that cause these inci-
dents can be better understood by thoroughly examining these factors. However, regardless of the spe-
cific causes behind the occurrence of Falls, the early detection and timely notification of accidents hold
immense potential for saving lives. Therefore, implementing a Fall detection system in two-wheelers is
of great importance as a safety precaution.

To the best of our knowledge, there has been very little work on identifying Fall scenarios, specif-
ically in two-wheelers utilizing deep learning techniques. To address this gap, we propose the devel-
opment of a Time-series based Fall detection system for two-wheelers as an extension of our previous
work [3]. By training the system on a comprehensive dataset of two-wheeler Fall scenarios, it will
learn to recognize and differentiate between normal riding behavior and instances of Fall. This system
will leverage time-series based DL algorithms to detect and classify falls accurately, enabling prompt
communication with nearby hospitals or emergency services.

The research holds significant potential to revolutionize two-wheeler safety and emergency response
systems. Additionally, with the increasing usage of Electric Vehicles (EVs), the fall detection system
can play a crucial role in improving the safety and reliability of electric two-wheelers, thereby promot-
ing their adoption in sustainable transportation. Leveraging deep learning capabilities, the proposed
fall detection system offers a proactive approach to mitigate risks for two-wheeler riders. Hence, our
contributions in this field can be summarized as follows:

1. Due to the unavailability of two-wheeler Fall data, we have used a simulator to generate various
Fall scenarios and collect the data.
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2. We have compared various traditional machine learning algorithms using the data acquired.

3. We propose time-series-based DL models for Fall detection and demonstrate their superiority over
traditional machine-learning models in terms of accuracy.

4.1.3 Related work

Driver behavior is the primary cause of two-wheeler accidents. There have been works on studying
driving event recognition in the case of four-wheelers using classical and machine learning approaches.
In this context, there are various frameworks [16], [17], [18] that use unsupervised, semi-supervised and
supervised models for the multi-class classification of driving maneuvers and also identify the specific
types of abnormal driving behaviors from sensor fusion data of four-wheelers. A few works on driving
behavior studies for two-wheelers are presented next.

4.1.3.1 Driver behavior studies for two-wheelers

There are some frameworks developed using traditional machine learning models for two-wheelers.
Mitrovic proposed a simple system based on accelerometers, gyroscopes, and GPS data to recognize
patterns using HMMs [20]. In [19], a machine learning framework was proposed to identify the class
of riding patterns using data collected from 3-D accelerometer/gyroscope sensors mounted on motor-
cycles. Additionally, they also proposed an approach for sensor selection to identify the significant
measurements for improved riding pattern recognition. But this work does not capture the kinematic
state change of moving vehicles. Hence, to capture those dynamic transitions, we have proposed time-
series-based classification models for two-wheelers. In [41], the authors adopted a Machine Learning
based movement identification process with an Artificial Neural Network (ANN) algorithm.

There are some studies based on deep learning as well in the context of time-series classification in
general. LSTMs are proven to excel in learning, processing and classifying such types of data. Schalk
Wilhelm Pienaar [21] proposed an LSTM-RNN Deep Neural Network Architecture for human activity
recognition signifying the importance of the usage of RNN for time-series data. A prior work [22] deals
with collision and hazard detection for motorcycles. This is usually done by setting absolute thresholds
on the accelerometer measurements, which is not intuitive. In [23], they have used to GMMs and KNN
to identify fall and near fall scenarios. In [26], the authors have proposed an airbag system using LSTM
to decide on the deployment of a wearable bike airbag in case of an accident.

4.1.4 Proposed Methodology

The focus of this study is to develop a Fall detection system using time-series based deep learning
techniques. Our prior work [3], which involved the development of time-series based models for the
analysis and classification of different driving events. In this current study, we extend our research to
address the critical scenario of Fall detection. By leveraging deep learning techniques and analyzing
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Figure 4.1: Snapshots of various scenarios simulated in Bikesim during simulations.

time-series data, we intend to create a robust system capable of accurately detecting and identifying
Falls. This work represents an important step forward in enhancing the understanding and response to
Fall events, thereby saving precious lives.

4.1.4.1 Data Collection

Given the unavailability of a real-world Fall scenario dataset and the challenges associated with col-
lecting real-time data due to safety risks, we employed a simulator called BikeSim [46] to generate
diverse Fall scenarios that closely resemble real-world situations. BikeSim is a highly regarded tool
for simulating the performance of two and three-wheeled vehicles, offering high accuracy, detail, and
efficiency. With over two decades of real-world validation, BikeSim has become the industry standard
for analyzing motorcycle dynamics. Therefore, we utilized this simulator in our research to create a
range of Fall scenarios.

Our simulations consists of various scenarios commonly encountered during motorcycle rides, in-
cluding left and right turns, traversing speed bumps, riding straight, swaying and coming to a stop. In
the case of Fall scenarios, we specifically simulated situations that are prone to lead to Fall. For instance,

24



Figure 4.2: Graphs depicting the variations of different parameters during a simulation in Bikesim

taking steep turns at high speeds can result in Fall. To ensure a comprehensive understanding of Fall
dynamics, we generated Fall scenarios with varying intensities, such as rolling over and falling.

By utilizing the BikeSim simulator, we were able to accurately replicate real-world riding conditions
and generate Fall scenarios that closely resemble actual events as shown in Fig. 4.1. This approach
allowed us to study and analyze the dynamics and patterns associated with different Fall scenarios, pro-
viding valuable insights into the factors contributing to Falls and the potential consequences for riders.
The simulated Fall provides a controlled environment for investigating Fall detection methodologies and
developing effective algorithms that can be used in detecting Falls and ultimately enhance motorcycle
safety.

The dataset collected from BikeSim consists of several parameters, includingAx,Ay,Az(acceleration
in the x, y, and z directions), Gx, Gy, Gz (angular velocity around the x, y, and z axes). During our
preliminary data analysis, we observed significant variations in these parameters over time specifically
in the context of Fall scenarios.

In the case of Fall scenarios, the acceleration parameters (Ax, Ay, Az) exhibited notable fluctuations
that deviated from typical riding patterns. These fluctuations can indicate sudden changes in the ve-
hicle’s motion, such as sharp deceleration or unusual lateral movements, which are indicative of a Fall
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event. Similarly, the angular velocity parameters (Gx,Gy,Gz) captured the rotational movements of the
vehicle. The Fig. 4.2 depicts the variations of various physical parameters such as longitudinal speed,
angular velocities (yaw, pitch, roll), Force, vertical acceleration, torque, etc. All these parameters have
been captured during the simulation, but only Acceleration and angular velocity values in the x, y, and z
directions have been used for training the models. In Fall scenarios, these parameters demonstrated ir-
regular patterns, deviating from the expected smooth and controlled movements observed during regular
riding.

4.1.4.2 Classification using traditional machine learning models

We initially employed traditional machine learning models, such as Support Vector Machines (SVM),
K-Nearest Neighbors (KNN), and Random Forests (RF) for classification. While these models achieved
high overall accuracy, their performance in classifying Fall scenarios was notably poor. The discrepancy
arises from the dynamic nature of the vehicle, where kinematic states like acceleration, deceleration, and
angular velocity undergo significant changes during driving events such as turns, Fall, and braking. Tra-
ditional machine learning models struggle to effectively capture these transitional patterns.

In contrast, neural network models exhibit the ability to learn complex temporal relationships, mak-
ing them well-suited for capturing the dynamic changes in kinematic states during driving events. By
training these models on the time-series data collected from the vehicle, they can effectively detect and
classify different driving events, including Fall scenarios. The inclusion of temporal information en-
ables the models to capture nuanced variations in the data, enhancing their accuracy in identifying Fall
events.

4.1.4.3 Proposed DL-based time-series classification Models

To address the above limitation, we propose time-series based classification models that are capa-
ble of capturing and understanding the temporal transitions in kinematic states. By leveraging neural
network models, we can train classifiers that have the capacity to capture and learn these intricate tran-
sitions. Time-series-based models offer the advantage of considering the sequential nature of the data,
enabling them to recognize patterns and dependencies over time that eventually lead to Fall.

1. LSTM In addition to the rationale mentioned earlier, the reason for choosing LSTM [42] to per-
form driving event classification is its ability to learn from the raw time series data directly thereby
eliminating the need to manually engineer input features. LSTM is an efficient recurrent neural
network that can hold information from the time series data for a longer duration of time. It can
be used to model sequential data and is hence used to learn complex human behavior while riding
two-wheelers.

2. Bi-LSTM Bidirectional LSTMs are an extension of traditional LSTMs that can improve model
performance on sequence classification problems. The input sequence given to the network con-
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sists of the six features (Ax, Ay, Az , Gx, Gy, Gz) of the dataset. In problems where all timesteps
of the input sequence are available, Bidirectional LSTMs train two instead of one LSTM’s on the
input sequence [43]. The first LSTM traverses on the input sequence in the given order, whereas
the second one on the reversed copy of the input sequence. This can provide additional context of
the driving event to the network and result in faster and even fuller learning on the problem.

4.1.4.4 Attention mechanism

The attention mechanism [44] emerged innately from problems that deal with time-varying data (se-
quences). The main objective of the attention mechanism is to filter the critical representations out for
the purpose of recognition. An attention mechanism is used to redistribute the weights of representa-
tions. It can highlight the vital information from the contextual information by setting different weights.
Our attention function is straightforward; it takes the dot product of weights and inputs followed by
adding bias terms. After that, we add a tanh followed by a softmax layer. In time-series problems, all
sequence elements generally contribute equally to the result, but this may not be the case. For exam-
ple, a sudden change in acceleration along one direction could better indicate a particular driving event.
Hence, capturing those features contributing to recognizing a particular event is critical. Hence, we have
enhanced the LSTM and Bi-LSTM models by focusing on specific features that have more impact in
recognizing a particular event by embedding an attention layer.

1. LSTM with attention mechanism LSTM cells can’t understand long terms dependencies from
arbitrary lengths. Therefore, their performance degrades as the sequence length increases. As
the name suggests, attention furnishes a mechanism where output can attend to a particular input
time step for an input sequence of arbitrary length. Hence, an attention layer is embedded on the
LSTM layer. The simple LSTM model cannot capture these critical features.

2. Bi-LSTM with attention mechanism

An attention mechanism focuses on the information fed out from the hidden layers of Bi-LSTM.
The simple Bi-LSTM structure allows the networks to have both backward and forward informa-
tion about the sequence at every time step. In this work, we have added an attention layer over
the Bi-LSTM layer for enhanced feature extraction. The output of the attention layer is given to
the dense layers.

4.1.5 Experimental results and discussions

4.1.5.1 Experimental setup

The aim of this work is to develop a system and efficient DL models that outperform existing ap-
proaches in driving event classification. The training was conducted on a MacBook Air M1, which
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Model Overall accuracy Normal Fall
SVM 0.904 1.00 0.243
RF 0.934 0.93 0.765

LSTM 0.941 0.973 0.807
LSTM-attn 0.969 0.981 0.846
Bi-LSTM 0.968 0.943 0.884

Bi-LSTM-attn 0.976 0.962 0.923

Table 4.1: Comparison of accuracies of the proposed models.

features an Apple M1 chip with an 8-core CPU and 8-core GPU. We have used Jupyter notebook to per-
form the experiments. The framework used in our work to build various models is TensorFlow-Keras.
In order to evaluate the models, we have used the ‘accuracy’, the most commonly used evaluation metric
as denoted in Eq. (4.1).

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

where true positives (TP) and true negatives (TN) denote the correct classifications of positive and
negative examples, respectively. False positives (FP) represent the incorrect classification of negative
examples into the positive class, and false negatives (FN) are positive examples incorrectly classified
into the negative class.

4.1.5.2 Data pre-processing

A pre-processing step is essential to replace the missing values to ensure the continuity of data and
synchronization with the video. The database comprises approximately 25,000 data points, consisting
of various driving events such as left turns, right turns, straight rides, and stops categorized as ‘Normal’.
Additionally, it consists of critical scenarios like ‘Fall’. The dataset is divided into training and test set
consisting of 80% and 20% of the original data, respectively.

4.1.5.3 Results

The obtained results are presented in Table I, showcasing the overall and class-wise accuracies of the
proposed models. The table reveals that the Bi-LSTM model with an attention mechanism exhibits the
highest accuracy, particularly in Fall detection. Both the LSTM and Bi-LSTM models with attention
mechanisms demonstrate higher overall and class-wise accuracies compared to other models. This high-
lights the importance of attention mechanisms and their ability to capture relevant patterns and features
within the temporal data. Although the Bi-LSTM model has slightly lower overall accuracy than the
LSTM model with attention, it exhibits superior performance in detecting Fall scenarios. This indicates
its sensitivity towards Fall-specific patterns. On the other hand, the LSTM model with attention, while
achieving decent overall accuracy, does not perform as well in detecting Fall scenarios. This indicates
limitations in capturing the distinctive features or patterns associated with Falls.
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Figure 4.3: Epochs vs Loss

The variation of accuracy and loss over the number of epochs for the training and validation dataset
for the LSTM model is demonstrated by Fig. 4.3. Initially, the validation accuracy increases then slows
down. After 80 epochs, the accuracy and loss values become stable. At 100 epochs, the model has
converged.

4.1.6 Concluding Remarks and Future scope

In this work, we have addressed the challenge of critical driving event classification, with a specific
focus on Fall detection. We have simulated various critical scenarios using a simulator. The proposed
time-series-based models exhibited superior accuracy in detecting fall scenarios compared to traditional
machine learning models, highlighting the significance of considering temporal factors in classifica-
tion. The proposed models, particularly the Bi-LSTM with attention mechanism, demonstrated superior
performance in detecting Fall scenarios, highlighting the importance of attention mechanisms and time-
series-based classification. Implementing this fall detection system can potentially reduce response time
for medical help, ultimately decreasing fatalities. There are several avenues for further exploration and
enhancement of this work. The performance of the proposed models can be evaluated on larger and more
diverse datasets, including real-world driving data, to validate their effectiveness in practical scenarios.
In addition to the proposed fall detection system, there is potential for further advancements in develop-
ing models for fall prediction to predict potential fall events before they occur and alarm the rider.
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4.2 Enhanced Two-Wheeler Safety leveraging Isolation Forest for Pre-

Impact Fall Prediction

In two-wheeler safety, the prior works have predominantly focused on post-accident detection sys-
tems. However, the importance of prediction systems need not be overstated. This work delves into the
development of a proactive predictive model specifically tailored to predict falls by Leveraging Isola-
tion Forest, emphasizing the significance of rider behaviour as the primary input. By aggregating data
points leading up to falls, the model offers a holistic understanding of fall events, enabling real-time
interventions. With the ultimate goal of preventing accidents rather than merely reacting to them, this
research embodies the data-driven approach to enhance two-wheeler safety. This work also investigates
how variations in lead time influence the accuracy of fall prediction. This examination sheds light on
the trade-off between lead time and prediction accuracy. Leveraging a dataset generated through ro-
bust simulation, this work demonstrates the superiority of the proposed fall prediction model over the
conventional machine learning models in terms of prediction accuracy.

4.2.1 Introduction

Transportation is a vital aspect of modern life, playing a critical role in both personal mobility and
the broader economic landscape. As technological advancements continue to influence this sector, new
challenges arise, particularly in the context of road safety in developing countries. These regions are
witnessing a concerning surge in accidents involving two-wheelers, such as motorcycles and scooters,
which are often the primary means of transportation due to their affordability and maneuverability in
dense urban environments. The increased risk associated with two-wheelers stems from their fundamen-
tal design. This lack of a protective barrier means that riders are more susceptible to direct impact during
accidents. The inherent instability of two-wheelers also contributes to this risk. Unlike four-wheeled
vehicles, which remain stable at rest, two-wheelers require constant balance from the rider, increasing
the potential for falls and collisions, particularly for less experienced riders or in poor road conditions.

This increased vulnerability is clearly reflected in recent accident statistics, which indicate a dispro-
portionately high rate of accidents and fatalities involving two-wheelers in these regions. The recent
national road safety [4] report released by the Ministry of Road Transport & Highways, Government
of India, casts a stark light on the escalating crisis of road accidents and fatalities in India, presenting
an acute public health concern that necessitates immediate attention. Even as the COVID-19 pandemic
seemingly reduced traffic volumes, the data from 2022 presents a contrary narrative—an increase in road
accidents by 12% to a total of 461,312 incidents, and a concomitant rise in fatalities by 11%, resulting
in 168,491 lives lost [47]. This phenomenon is most acute among two-wheeler users, who represent a
staggering majority of these fatalities. In a single year, the mortality rate for these individuals surged
from 69,385 to 74,897.
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The WHO South East Asian Region, for example, experiences 43% of all road traffic deaths involv-
ing powered two- and three-wheelers [1]. In countries like Thailand and Cambodia, motorcycle deaths
accounted for 73% and 74% of all road fatalities in 2016. Additionally, young adults aged 15–34 years
constitute over 60% of all powered two-wheeler related deaths in these countries. Such figures not only
reflect the inherent risks associated with two-wheeler transportation but also highlight the critical need
for robust research into preventative strategies to curb this growing trend.

4.2.2 Motivation

Accidents involving two-wheelers are a significant safety concern that arises from various factors,
including rider error and challenging road conditions [45]. In safety technology, there is a noteworthy
distinction between fall detection and fall prediction. Fall detection is about identifying an accident after
it has happened, which is useful for emergency services. However, fall prediction is about understanding
and identifying the risk before an accident happens, which is far more valuable for preventing harm.

In the current work, fall prediction focuses primarily on rider behaviour. By understanding how riders
behave and the mistakes they commonly make, technology can help warn them or take steps to prevent
a potential fall. This approach is proactive, aiming to stop accidents before they occur rather than just
responding to them afterwards. It’s like having a co-pilot who constantly watches for signs of trouble
and can help steer the rider away from danger. For two-wheeler riders, this could mean the difference
between a safe journey and a serious accident. That’s why this research zeroes in on fall prediction—it’s
about keeping riders safe by addressing the root causes of falls, specifically their behaviour on the road.”

To the best of the authors’ knowledge, there has been limited research on fall prediction for two-
wheelers. Recognizing this, the current research endeavor is committed to advancing the understanding
and development of fall prediction technologies for two-wheelers. The main contributions of this work
are as follows:

1. In the absence of available data on two-wheeler falls, a simulator was employed to generate a
variety of fall scenarios and collect data.

2. Isolation Forest has been proposed for Pre-impact Fall prediction.

3. The study presents insights about relationship between lead time extension and predictive accu-
racy, offering insightful revelations for the development of more effective predictive systems.

4.2.3 Related Works

In the field of two-wheeler safety, various research frameworks have been developed using tradi-
tional machine learning models to enhance the prediction and recognition of rider patterns and potential
hazards ([16], [17], [18]). Previous studies have utilized data from accelerometers, gyroscopes, and
GPS to recognize patterns, employing techniques such as Hidden Markov Models (HMMs) to analyze
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the data collected [20]. These systems, while foundational, often do not fully account for the dynamic
kinematic state changes in moving vehicles.

Building on this, subsequent research has sought to refine sensor data usage and sensor selec-
tion, aiming to capture more nuanced riding patterns through data collected from 3-D accelerome-
ter/gyroscope sensors mounted on motorcycles [19]. However, there remains a gap in capturing the full
spectrum of vehicular dynamics. To bridge this gap, the introduction of time-series-based classification
models provides a more sophisticated approach, allowing for the capture of dynamic transitions more
accurately. Beyond traditional machine learning, deep learning has also made significant strides in the
realm of time-series classification. Long Short-Term Memory (LSTM) networks [21], a type of Recur-
rent Neural Network (RNN), have been shown to be particularly effective in processing and classifying
sequential data, as evidenced by their successful application in human activity recognition.

In the field of motorcycle safety, innovative approaches for collision and hazard detection have been
developed, such as those discussed in [22], which primarily rely on accelerometer data with set thresh-
olds, though this method may not fully capture the intricacies of real-world scenarios. Advancing fall
and near-fall detection, studies like [23] have applied Gaussian Mixture Models (GMMs) and k-Nearest
Neighbors (KNN) to refine accuracy. Specifically, for two-wheeler fall detection, [48] unveils a cost-
effective framework using a microcontroller-based Accident Detection Unit (ADU) with GPS and GSM
for prompt emergency alerts in India. Complementing this, [49] details a system that detects vehicle tilt
and monitors the rider’s heartbeat to quickly communicate accidents to medical centers via a smartphone
app, ensuring precise location sharing for faster medical response. Further enriching the domain, [50]
introduces a sophisticated crash detection algorithm for two-wheelers, employing GNSS for speed mon-
itoring, along with acceleration and roll angle analysis, offering a nuanced crash identification method
that sharply contrasts with those designed for four-wheeled vehicles. In our previous works ([3],[51])
we have used temporal models like LSTMs and Bi-LSTMs with attention mechanisms for detecting
various driving events as well as the Fall scenarios. Together, these studies represent significant strides
in enhancing two-wheeler safety through technological innovation.

In the domain of Pre-impact Fall detection, several studies have laid the groundwork for human
fall detection, offering valuable insights that can be adapted for two-wheeler fall scenarios. Notably,
methods employing Support Vector Machines (SVM) and Hidden Markov Models (HMM) ([24],[25])
have shown promise. Furthermore, innovative approaches towards enhancing rider safety, including
the development of airbag systems for two-wheelers informed by Long Short-Term Memory (LSTM)
networks to accurately predict the optimal timing for deploying wearable bike airbags during accidents,
have been explored [26]. This emerging research underscores the potential of leveraging advanced
machine-learning techniques to improve proactive safety measures for two-wheeler riders.

4.2.4 Methodology

In two-wheeler transportation safety, the focus has traditionally been on systems designed to detect
various driving events and fall scenarios after they have occurred, which is explored in our previous
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works ([3],[51]). While such detection mechanisms are vital for facilitating immediate post-accident
interventions, the importance of predictive systems, which aim to preempt accidents by identifying
potential risks before they materialize, cannot be overstated. This research takes a proactive stance
towards enhancing two-wheeler safety by concentrating on the development of a predictive model. This
model uniquely focuses on analyzing the rider’s behavior to predict falls, ignoring other factors like the
environment or the bike itself. It aims to deeply understand how the actions of a rider can indicate a
possible fall.

4.2.4.1 Data collection

Due to the inherent challenges and ethical considerations involved in collecting real-world fall data
from two-wheelers, this research has adopted an alternative approach by utilizing the BikeSim simulator.
BikeSim [46] is recognized as a robust and industry-standard tool for simulating two-wheeler dynam-
ics and scenarios. Its credibility stems from its widespread acceptance and use within the automotive
industry to develop, test, and validate vehicle designs and safety systems.

The use of the BikeSim simulator to meticulously replicate a wide array of fall and non-fall scenar-
ios marks a significant advancement in the context of fall prediction for two-wheelers. By simulating
conditions ranging from abrupt braking and navigating steep turns to routine maneuvers such as straight
riding and overcoming bumps, the dataset generated provides a comprehensive overview of the varied
situations a rider may face. This extensive range of simulated scenarios enriches the predictive model
with a better understanding of rider behaviour and the dynamics that lead to falls, allowing for a more
accurate distinction between safe and potentially dangerous riding patterns. Furthermore, the inclu-
sion of both fall-prone and normal riding scenarios in our dataset ensures that the predictive model is
well-equipped to identify subtle indicators of risk amidst everyday riding activities. This capability is
crucial for developing a predictive system that is both sensitive to imminent fall scenarios and specific
in its alerts, thereby offering riders timely warnings and the opportunity to avert potential accidents. By
laying a robust foundation for fall prediction through detailed simulations, this approach enhances the
accuracy of fall prediction models.

The data obtained from BikeSim consists of various parameters, such as Ax, Ay, Az (measuring
acceleration across three axes) and Gx, Gy, Gz (gauging angular velocity around the same axes). Initial
analysis of this data highlighted distinct patterns, particularly within scenarios leading to a fall. For falls,
there were significant changes in acceleration (Ax, Ay, Az) beyond what is typically seen in standard
riding behaviour. These changes suggest abrupt alterations in the bike’s speed or direction, signalling
a potential fall event. Likewise, variations in angular velocity (Gx, Gy, Gz) were observed, reflecting
the bike’s rotational dynamics during a fall, and offering insights into the complex patterns of such
incidents.
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Figure 4.4: Stages of a Two-Wheeler Fall Event.

4.2.4.2 Data Pre-processing and Aggregation

The simulated data, generated with a sampling frequency of 40 Hz, offers a high-resolution view of
the rider’s actions and the bike’s response leading up to the fall. This high sampling rate is essential
for capturing the rapid dynamics of two-wheeler falls, where fractions of a second can hold critical
information about the factors contributing to an accident. The dataset was meticulously labelled by hand
to ensure accuracy in identifying fall incidents. A critical step in our preprocessing involved pinpointing
the exact moment a fall begins within the simulated data. This precise identification allowed us to
retrospectively examine the sequence of events leading up to the fall, capturing the critical moments just
before the incident occurred.

To create a comprehensive view of each fall event, we combined the data points immediately pre-
ceding the fall with the instances of the fall itself. This aggregation process was guided by the intention
to capture not just the fall, but the conditions and actions leading up to it, providing a rich dataset for
analysis. The combined sequences, encompassing both the precursors and the actual fall events, have
been collectively labelled as Pre-impact Fall as shown in Fig. 4.4. The aggregation of these sequences
into the Pre-impact Fall category is influenced by the concept of Lead time. Lead time can be defined
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Figure 4.5: Workflow of Fall Prediction Framework for Two-Wheelers.

by the time interval between when the fall was detected and the fall impact, and accounts for the time
for protective measures to be activated to protect the fall victims from fall impacts. This label signifies
that the sequence of data points provides insight into the progression towards a fall, offering a detailed
narrative of the events that culminate in such incidents. The overall flow of the propsed framework is
shown in Fig. 4.5. This methodical approach of strategic aggregation of data sequences sets a strong
foundation for the subsequent analysis. It ensures that our models are trained on data that accurately
reflects the complexity and rapid evolution of scenarios leading to two-wheeler falls, enhancing the
potential for effective fall prediction.

4.2.4.3 Proposed Isolation forest model for Fall Predicition

In this work, we propose the utilization of the Isolation Forest [52] technique as a novel model for the
prediction of fall incidents in two-wheelers. This method stands out for its anomaly detection capabili-
ties, making it highly suitable for identifying potential precursors to falls within vehicular driving data.
The Isolation Forest technique distinguishes itself through its unique approach to detecting outliers, em-
ploying binary trees to isolate anomalies rather than profiling normal instances. The algorithmic flow is
shown in Algorithm 1. In this model, data is randomly sampled and examined in a tree structure, with
analysis based on randomly chosen features. Data points that descend deeper into the tree are deemed
less anomalous due to the higher number of splits needed to isolate them. In contrast, data points in
shorter branches are marked as anomalies, as they were easier to isolate with fewer splits.

The Isolation Forest algorithm, adapted for fall prediction in two-wheelers, begins by constructing an
ensemble of isolation trees from the sensor data, which includes accelerometer and gyroscope readings
denoted by {ax, ay, az, gx, gy, gz}. Each tree in the ensemble isolates data points by randomly select-
ing a feature and a split value within that feature’s range, aiming to segregate each point into its own leaf
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Figure 4.6: Isolation Forest Visualisation.

node. This iterative process either isolates all points or reaches a maximum tree depth as shown in Fig.
4.6. In this representation, red nodes signify anomalies—data points that are isolated with fewer splits,
indicative of their divergence from typical patterns. Blue nodes represent potential anomalies, which
require more splits than red nodes but fewer than typical instances to isolate. The remaining nodes,
depicted in white, correspond to normal instances that conform to the expected data distribution and are
isolated after several splits. This visualization captures the essence of the Isolation Forest’s approach to
anomaly detection, highlighting its ability to efficiently separate unusual data points from the norm.

The underlying hypothesis of the Isolation Forest is that anomalies can be isolated more easily than
normal observations, necessitating fewer splits. This is quantified through the path length from the root
to the leaf, with shorter paths indicating a higher likelihood of an anomaly. The anomaly score for a data
point is calculated by averaging its path lengths across all trees in the ensemble, where shorter average
paths signify greater anomaly probability. The mathematical representation of the anomaly score A(s)
for a sample s is given by:

Anomaly Score = 2
−E(h(x))

c(n) (4.2)

Here, E(h(x)) represents the average path length of the point x across the trees, c(n) is the nor-
malization factor based on the sample size n, and an anomaly score approaching 1 suggests a high
likelihood of the point being an anomaly. This model excels at identifying both the immediate moments
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Algorithm 1 Isolation Forest for Fall Prediction in Two-Wheelers
1: Initialize ensemble of iTrees E.
2: for each Ti in E do
3: Select random sub-sample S ⊂ D, D: {ax, ay, az, gx, gy, gz}.
4: Assign S to root of Ti.
5: while sequences in S not isolated & max depth not reached do
6: Select random feature F ∈ {ax, ay, az, gx, gy, gz}.
7: Choose θ ∼ Uniform(min(F ),max(F )).
8: Split S into Sleft, Sright by θ.
9: Apply recursively on Sleft, Sright.

10: end while
11: end for
12: Training complete when all Ti ∈ E constructed.
13: For scoring, pass sequence through all Ti ∈ E.
14: Anomaly score A(s) = 1

|E|
∑

Ti∈E depth(s, Ti).
15: Score interpretation: A(s)↗⇒ higher fall risk.

of a fall and the precursor instances leading up to it, highlighting deviations from normal riding patterns
and enabling prompt emergency interventions.

4.2.4.4 Machine Learning Models for Fall Prediction

In the context of Fall prediction, a suite of machine learning classifiers offers diverse approaches for
accurate and efficient analysis. The Random Forest Classifier, with its ensemble of decision trees, pro-
vides robust predictions even in imbalanced datasets, making it highly suitable for complex fall pattern
detection. Gradient Boosting and AdaBoost classifiers refine this approach by iteratively improving on
mistakes and focusing on difficult cases, enhancing model sensitivity to subtle indicators of falls. The
Support Vector Classifier (SVC) excels in high-dimensional spaces, ideal for binary fall/no-fall classi-
fications, while the K-Nearest Neighbors (KNN) relies on the similarity of data points for prediction,
embodying simplicity and effectiveness. Decision Tree Classifier’s clear, interpretable structure allows
for straightforward identification of fall risk factors, rounding out a comprehensive set of tools for fall
prediction in two-wheelers.

4.2.5 Experimental Results and Discussion

In this section, we present the experimental results obtained from our comprehensive evaluation
of the machine learning models for fall prediction discussed in the previous section. The experimental
phase of our study serves as a critical component, shedding light on the performance and effectiveness of
the selected models in real-world fall prediction scenarios. Our aim is to provide a rigorous assessment
of each model’s capabilities in identifying potential falls before they occur.

37



Table 4.2: Comparision of Performance of various models.

Model Accuracy Precision Recall F1-Score
Random Forest 0.729 0.827 0.723 0.760

Gradient Boosting 0.864 0.860 0.863 0.862
AdaBoost 0.853 0.848 0.858 0.852

SVC 0.882 0.886 0.882 0.843
KNN 0.738 0.808 0.733 0.763

Decision Tree 0.729 0.823 0.720 0.757
Isolation Forest 0.916 0.935 0.910 0.920

4.2.5.1 Experimental Setup

The aim of this work is to develop an approach to predict the fall scenarios. The training was
conducted on a MacBook Air M1, which features an Apple M1 chip with an 8-core CPU and 8-core
GPU. We have used Jupyter Notebook to perform the experiments. The framework used in our work to
build various models is TensorFlow-Keras. In order to evaluate the models, we have used the ’accuracy’,
the most commonly used evaluation metric as denoted in Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(4.3)

Where true positives (TP) and true negatives (TN) denote the correct classifications of positive and
negative examples, respectively. False positives (FP) represent the incorrect classification of negative
examples into the positive class, and false negatives (FN) are positive examples incorrectly classified
into the negative class.

A crucial preprocessing step involves handling missing values to maintain data continuity and syn-
chronize it with the video. The dataset comprises approximately 20,000 data points, encompassing a
variety of driving events, including left turns, right turns, straight rides, and stops categorized as ’Nor-
mal’. Furthermore, it includes critical scenarios like ’Pre-impact Fall’. To facilitate model training and
evaluation, the dataset is partitioned into a training set, which constitutes 80% of the original data, and
a test set, which constitutes the remaining 20%. This division ensures robust model assessment and
validation.

4.2.5.2 Results and Discussion

1. Performance of various models: In our study, we rigorously evaluated various machine learn-
ing models for their efficacy in predicting pre-impact fall events compared to normal activities.
The results from Table 4.2 demonstrate that the Isolation Forest significantly outshines its coun-
terparts, achieving an accuracy of 95.5%, precision of 94.9%, recall of 95.5%, and an F1-score
of 94.7%. It’s important to note that these results are based on a lead time of 30, equivalent to
750 milliseconds, providing a substantial window for potentially life-saving preemptive actions.
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Table 4.3: Confusion Matrix of Isolation Forest.

Predicted Classes

Normal Pre-impact Fall

A
ct

ua
l Normal 0.94 0.06

Pre-impact Fall 0.09 0.91

Although the subsecond granularity may raise issues regarding its effectiveness for manual inter-
ventions, given the rapid pace at which a rider might lose control, it’s crucial to emphasize the
utility of automated safety features. Specifically, this narrow window allows for the activation of
automatic safety systems, such as the inflation of airbags, underscoring the significant benefits
of Pre-impact Fall detection in enhancing rider protection. These metrics not only highlight the
model’s exceptional capability in accurately discerning pre-impact fall scenarios from normal ac-
tivities but also underscore its efficiency in reducing false positives, which is vital for deploying
fall prediction systems in real-world settings.

The Isolation Forest model is adept at handling imbalanced data, a common characteristic in fall
prediction datasets where pre-impact fall events are substantially less frequent than normal activ-
ities. The individual class performance of the Isolation Forest model can be observed from the
confusion matrix shown in Table 4.3. The algorithm’s design, centered around isolating anoma-
lies, allows it to excel in identifying the patterns that distinguish pre-impact falls, thereby ensuring
high recall rates. This means the model is exceptionally reliable in capturing almost all true pos-
itive fall events, minimizing the risk of overlooking potential fall situations which is critical for
the practical application of fall detection technologies. The outlier fraction setting in the Isolation
Forest model greatly affects its performance. The outlier fraction defines the proportion of data
points the model considers as outliers or potential fall events. When this parameter is set low,
the model is very precise, meaning it can correctly identify most falls but may miss some (high
precision, low recall). As the parameter increases, the model starts to catch more falls (higher
recall), but it also starts to incorrectly label some normal activities as falls (lower precision). For
fall detection, it’s crucial not to miss any actual falls (true positives) while keeping the number
of false alarms (false positives) low. Therefore, selecting the appropriate outlier fraction is essen-
tial for balancing precision and recall, ensuring the model is both reliable and trustworthy in its
predictions.

The graphs shown in Fig. 4.7 illustrate the efficacy of the Isolation Forest algorithm in identifying
a fall event within a sequence of gyroscope sensor data. The horizontal axis represents the time
series index, and the vertical axis quantifies the sensor readings. We have considered a sub-sample
sequence from the dataset in which fall has been recorded from 14571 to 14605 index. Throughout
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Figure 4.7: Depiction of Pre-impact Fall within a dataset where a fall event has been recorded.

this interval, there is a noticeable perturbation in sensor readings, diverging markedly from typical
patterns. These Pre-impact Fall instances are highlighted in red on the graphs. Notably, the
Isolation Forest model successfully pinpoints not just the fall event but also the precursor instances
that lead up to it (Pre-impact Fall). The sine-like patterns in the sensor data from a two-wheeler,
observed before a fall incident, could be attributed to the high sampling rate that captures more
detailed cyclical movements. These precursors are particularly valuable, as they may encompass
initial indicators of balance loss or instability. The model’s ability to capture such precursors
underscores its utility for preemptive measures in fall detection systems, enabling interventions
before a fall occurs.

Furthermore, the robustness of the Isolation Forest model against noise and outliers significantly
enhances its precision and F1-score, showcasing its ability to maintain a balanced performance in
accurately detecting pre-impact falls. Compared to other evaluated models like Gradient Boost-
ing, AdaBoost, SVC, KNN, and Decision Tree, none exhibited the comprehensive effectiveness
of the Isolation Forest in the context of fall prediction. In our study, we explored deep learning
models like LSTM and Bi-LSTM, but faced overfitting with our current dataset. This suggests that
while these temporal models show promise, a more diverse dataset is needed to fully harness their
potential and enhance accuracy by capturing temporal dynamics more effectively. This analysis
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Table 4.4: Performance of Isolation Forest Model for Various Lead Times.

Lead Time Accuracy Precision Recall F1-Score
10 0.920 0.960 0.920 0.935
20 0.916 0.948 0.916 0.929
30 0.910 0.935 0.910 0.920
40 0.904 0.922 0.904 0.912
50 0.898 0.910 0.898 0.903
60 0.892 0.898 0.892 0.894
70 0.885 0.885 0.885 0.885
80 0.877 0.873 0.877 0.875

solidifies the Isolation Forest model’s superiority in predicting Pre-impact Fall events, making it
an ideal candidate for integration into systems designed to safeguard individuals by proactively
identifying and mitigating fall risks.

2. Determining Optimal Lead Time: Optimal lead time is crucial in fall detection systems for two-
wheelers because it strikes a balance between early warning and prediction accuracy. An ideal
lead time ensures that the system provides timely alerts that are both reliable and actionable,
allowing for interventions that could prevent the fall or mitigate its impact. This concept is par-
ticularly important because too short a lead time might not offer enough advance notice to take
preventive action, while too long a lead time could lead to a high rate of false alarms or irrelevant
alerts due to the dynamic nature of riding scenarios.

In Table 4.4, as the lead time increases from 10 to 80 units equivalent to 250ms to 2000ms,
a notable trend emerges in the precision and recall values. Both precision and recall exhibit a
gradual reduction as we move further away from the fall event, providing empirical support for the
intuitive notion that patterns related to Pre-impact Falls become clearer and more distinguishable
as we approach the actual event. This reduction in precision and recall with increasing lead time
is consistent with the expectation that the closer we are to the fall incident, the more distinct and
recognizable the patterns associated with impending falls become. This pattern holds true for all
the proposed machine-learning models.

From the Table 4.4 we can also observe that when predicting Pre-impact Falls, a shorter lead
time leads to higher precision and recall, underscoring the importance of timely detection and
intervention to prevent fall-related injuries. It’s important to note that having higher lead times
provides the leverage to avoid falls and can act as feedback to the rider, enabling them to take
timely action. These findings emphasize the significance of considering lead time as a critical
factor when developing predictive models for fall detection and highlight the trade-off between
the timeliness of detection and the accuracy of predictions in such scenarios.
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4.2.6 Conclusion and future scope

In this study, we have taken the initial steps towards addressing the complex challenge of Pre-impact
Fall prediction for two-wheeler safety. Through a comparative analysis of various machine learning
models, the Isolation Forest has distinguished itself with superior performance in detecting Pre-impact
Fall. A pivotal aspect of our work has been the critical examination of the relationship between lead time
extension and predictive accuracy, offering insightful revelations for the development of more effective
predictive systems. This research sets a promising direction for future exploration to catalyze further
innovations, advancing the development of safety technologies that can preemptively alert riders and
mitigate the risks of accidents. Future advancements in Pre-impact Fall Fall impact prediction hold
immense potential, starting with the expansion of fall data diversity to train more sophisticated temporal
models. The aim is to achieve precise fall predictions at extended lead times and real-time application
efficiency, significantly improving two-wheeler rider safety through timely preventative measures.
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Chapter 5

Advancements in Anomaly Detection for Traffic Flow Analysis

5.1 Introduction

In the realm of intelligent traffic management, the identification of anomalies in traffic flow data
stands as a pivotal concern. Such anomalies, defined as notable deviations from standard traffic patterns,
often manifest as univariate time series fluctuations. The criticality of accurate and prompt anomaly de-
tection cannot be overstated; it forms the backbone of proactive incident response mechanisms that
significantly enhance the efficacy of traffic management systems. This introductory discourse aims
to elucidate the indispensable role of anomaly detection within the broader context of intelligent traf-
fic management, underpinning its necessity through statistical insights and the manifold advantages it
presents. The critical role of anomaly detection in traffic management is fundamentally linked to its ca-
pacity to enhance road safety and improve traffic flow. Anomalies, such as sudden stops or unexpected
congestion, act as early indicators of possible road incidents or dangerous conditions. According to
the World Health Organization, road traffic accidents led to around 1.35 million deaths worldwide in
2016 [8]. Employing anomaly detection proactively enables faster response to emergencies, potentially
reducing the severity of accidents and saving lives. Additionally, anomaly detection plays a vital role
in making traffic flow smoother. It helps in identifying the unusual patterns of traffic, like unnecessary
congestion or interruptions, allowing traffic control systems to make timely adjustments. These adjust-
ments might include changing traffic signals or suggesting different routes to prevent bottlenecks. Such
measures are essential when considering the U.S. Department of Transportation’s report [12], which
states that traffic congestion leads to over $100 billion annually in lost time and wasted fuel for Ameri-
cans. This information highlights the importance of using anomaly detection not just for safety, but also
for efficiency on the roads.

The environmental impact of implementing advanced anomaly detection in traffic management ex-
tends far beyond improving safety and efficiency. By enabling more efficient traffic control, anomaly
detection leads to smoother traffic flows and fewer instances of vehicles idling. This reduction in idle
times significantly decreases vehicular emissions. The Environmental Protection Agency (EPA) has
highlighted that the transportation sector is the primary source of greenhouse gas emissions in the
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United States, responsible for almost 29% of the nation’s total emissions [9]. Therefore, improve-
ments in anomaly detection technology not only aim to decrease the delays caused by congestion but
also contribute to creating a more environmentally friendly and sustainable urban ecosystem.

The economic advantages of utilizing efficient traffic anomaly detection systems are significant,
highlighting the importance of such technologies in modern traffic management. By reducing con-
gestion, these systems not only save time for commuters but also lead to substantial cost savings for
businesses that depend on road transportation for their logistics and delivery operations. The Federal
Highway Administration (FHWA) [10] has noted that enhancements in traffic management can result
in savings of billions of dollars by minimizing delays and reducing fuel consumption, thus supporting
the broader economy. Additionally, anomaly detection is pivotal for the development of smart cities,
which aim to improve the quality of urban life and sustainability. By incorporating real-time traffic data
analysis, cities can improve road safety and traffic flow, while also working towards wider goals like
lowering greenhouse gas emissions, improving public transit systems, and promoting economic growth.

The complexity of traffic flow patterns, influenced by several factors like road conditions, daily
commuting patterns, and unforeseen incidents, necessitates robust and adaptive models for anomaly
detection. Traditionally, a range of methodologies have been employed to tackle this challenge, as
outlined in a comprehensive survey by Braei and Wagner (2020). These methodologies span across
statistical models, such as ARIMA (Zhang et al., 2005) [13], classical machine learning techniques like
K-Means Clustering (Nairac et al., 1999; Rebbapragada et al., 2009) [14] and One-Class SVM (Eskin
et al., 2002) [15], to cutting-edge deep learning methods. The latter, notably, attempts to unravel the
intricate, nonlinear correlations in data to predict future traffic patterns and identify anomalies based on
deviations from these predictions ( Buda et al., 2018; Pang et al., 2021) [11], [53].

In addressing the challenges of anomaly detection in traffic flow data, it is evident that a lot of
improvement can be made on this front. These challenges can be as follows:

5.1.0.1 Threshold Dependency

A significant limitation in current anomaly detection approaches is their reliance on thresholds to
identify anomalies. These thresholds are often either preset or dynamically adjusted. The efficacy of
such methods hinges heavily on the accurate setting of these thresholds, a complex task due to variability
in traffic conditions and temporal factors. Furthermore, thresholds are inherently location-dependent,
as traffic patterns and data scales vary from one road to another. This necessitates the establishment of
unique threshold settings for different locations, adding layers of complexity to the anomaly detection
process.

5.1.0.2 Lack of Labeled Data for Supervised Learning

Another constraint lies in the supervised nature of many anomaly detection systems. These models
require well-labelled datasets for training, which classify data points as normal or anomalous. In real-
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world scenarios, like ours, such labelled datasets are often unavailable. Manually labelling large datasets
to create ground truth for anomalies in traffic data is not only labour-intensive but also impractical, given
the volume of data typically involved.

5.1.0.3 Detection of Anomaly Sequences

Our focus is on identifying sequences of anomalous data points within traffic flow time series, as
opposed to isolated instances of anomalies. The challenge here is that the length of these anomaly
sequences is not fixed and can vary significantly. Most current approaches tailored to sequence-based
anomaly detection operate on the assumption of a predefined sequence length. This assumption limits
their effectiveness, as it lacks the flexibility needed to accommodate the varying lengths of anomalous
sequences that we aim to detect in traffic flow data. The severity of the challenge lies in differentiating
between detecting boundaries and identifying segments within the data.

In light of these challenges, our research introduces a novel approach to anomaly detection in traf-
fic flow data, specifically tailored to address the unique characteristics. By leveraging advanced deep
learning techniques, we aim to develop a model that not only overcomes the limitations of threshold
dependency and label scarcity but also exhibits the flexibility required to detect variable-length anomaly
sequences. This work presents the methodology, results, and implications of our findings, contributing
to a significant advancement in anomaly detection in the field of intelligent traffic management.

5.1.1 Contributions

1. We synthesized a traffic flow dataset with real-life-like anomalies, offering a practical tool for
advancing anomaly detection research. This dataset replicates complex traffic irregularities, sup-
porting the development and testing of anomaly detection algorithms.

2. We proposed an encoder-decoder model enhanced with contextual attention, significantly boost-
ing the detection of complex traffic anomalies. This approach marks a considerable advancement
by enabling more nuanced identification of traffic flow disruptions.

3. Leveraging the PeMS dataset, we created a synthetic baseline enriched with realistic anoma-
lies and integrated it with California Highway Patrol (CHP) incident reports. This novel dataset
merges actual traffic incidents with traffic flow data, facilitating comprehensive anomaly detection
research on a widely recognized traffic dataset.

5.2 Related Works

Anomaly detection in time series data has been extensively researched, with methodologies evolving
to address the unique characteristics of different data types and application domains [54, 55]. This sec-
tion delves into the existing literature on time series anomaly detection, categorizing the methodologies
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into four distinct approaches: statistics-based, prediction-based, similarity-based, and reconstruction-
based methods, with a particular emphasis on their application to traffic flow data.

5.2.1 Statistics-based Anomaly Detection

Historical approaches to anomaly detection have predominantly relied on statistical models, under-
pinned by the assumption that data conform to specific statistical patterns. This assumption enables the
identification of anomalies when new data points significantly deviate from these established patterns
[27]. Classical models in this domain include hypothesis testing [28], wavelet analysis [29], and ARIMA
[30], each offering a unique perspective on anomaly detection. Notably, Yamanishi et al. [31] leveraged
statistical learning theory in an online learning algorithm tailored for anomaly detection. More recent
advancements, like the application of extreme value theory by Siffer et al. [32], have refined these tech-
niques for univariate time series, though their focus has predominantly been on anomalies exceeding
normal levels, leaving sub-normal anomalies less explored.

5.2.2 Prediction-based Methods

With the advent of more complex data structures and the need for dynamic analysis, prediction-based
methods have gained traction in time series anomaly detection. These methods hinge on forecasting
subsequent values in a series, flagging deviations from these forecasts as potential anomalies [33]. The
advent of deep learning has notably enhanced the efficacy of prediction-based methods. For instance,
Buda et al. [34] utilized LSTM models to achieve precise forecasting capabilities, and Hundman et al.
[35] applied unsupervised LSTM models for anomaly detection in spacecraft telemetry data. Another
innovative approach, DeepAnT, introduced by Munir et al. [36], effectively combined CNNs for time
series prediction. However, despite their success in short-term forecasting, these models often falter in
rapidly changing environments, such as those encountered in financial markets, underscoring the need
for more adaptive and responsive methodologies.

5.2.3 Reconstruction-based Anomaly Detection

Addressing the shortcomings of forecasting-based models, the field has seen a paradigm shift to-
wards reconstruction-based models. These models are particularly adept at handling the challenges
posed by rapidly changing time series data. By encoding standard sequences into latent spaces, they
enable the detection of anomalies through discrepancies observed during the reconstruction phase in
the test data [37]. This approach has proven to be highly effective, especially in semi-supervised learn-
ing scenarios where the model is trained exclusively on normal data. This training focus inherently
enhances the model’s ability to identify deviations, thereby improving the sensitivity and accuracy of
anomaly detection.
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Figure 5.1: Illustration of sequence anomalies in time series flow data, highlighting disruptions in regu-
lar patterns over time.

In conclusion, each of these methodological approaches offers unique insights and capabilities in
the realm of anomaly detection for time series data. While statistical methods lay a robust foundational
framework, prediction-based models introduce advanced forecasting capabilities through deep learning.
However, the intrinsic dynamism and complexity of traffic flow time series data call for more adaptable
and responsive approaches, such as those offered by reconstruction-based models. Our work seeks to
synthesize the strengths of these varied methodologies to develop a comprehensive anomaly detection
framework, specifically tailored for traffic flow data analysis.

5.3 Contextual Attention Information based Encoder-Decoder Network

In this research work, we have proposed a reconstruction model using an encoder-decoder archi-
tecture, specifically tailored for anomaly detection in traffic flow time series. Our approach involves
the LSTM Autoencoder framework, known for its efficacy in processing sequential data. Through the
encoder, input sequences are condensed into a compact, lower-dimensional representation, enabling a
focused analysis of critical data characteristics. The decoder component then reconstructs the original
sequence from this compressed form, allowing us to measure reconstruction loss as a key indicator of
anomalies.

5.3.1 Anomaly in Time Series

The concept of an anomaly in time series data pertains to any significant deviation from the typical
distribution of the dataset. This deviation can manifest as an aberrant single observation, known as a
point anomaly, or as a sequence of unusual observations, termed a subsequence anomaly as shown in
Fig. 5.1. Such anomalies are characteristically infrequent, suggesting that the bulk of the dataset adheres
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Figure 5.2: Flow diagram of the traffic flow anomaly detection process using an encoder-decoder archi-
tecture.

to a normal distribution. However, real-world data, including time series, often encompass substantial
amounts of noise, which may be tangential to the core analytical focus.

5.3.2 Proposed Encoder and Decoder Architecture

The overall flow of the proposed architecture is shown in Fig. 5.2. Anomaly detection in traffic flow
time series is a critical task for maintaining efficient traffic management systems. We approach this
problem using an LSTM Autoencoder – a specific type of Encoder-Decoder LSTM architecture that
excels in handling sequence data. The LSTM Autoencoder is composed of two main components: the
encoder, which compresses the input sequence into a fixed-length representation, and the decoder, which
attempts to reconstruct the input sequence from this compressed form. Fig. 5.3 provides a detailed
representation of the encoder-decoder architecture that is depicted in a more general form in Figure
2. The encoder processes the sequence of traffic flow data, X = {x1, x2, . . . , xn}, and transforms
it into a lower-dimensional representation, Z = {z1, z2, . . . , zm}, where m < n. The decoder then
takes this representation and attempts to reconstruct the original sequence, X̂ = {x̂1, x̂2, . . . , x̂n}. The
model’s performance is quantitatively assessed by measuring the reconstruction loss, which quantifies
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Figure 5.3: Detailed architecture of an LSTM encoder-decoder network for sequence classification.

the difference between the input sequence X and the reconstructed sequence X̂ . This reconstruction
loss is minimized during training.

Once the model is adequately trained, the decoder is detached, and the encoder serves as a stan-
dalone model that maps input sequences to a compressed vector space. The encoded vectors can be
used for various applications, such as input features for supervised learning models or for data visual-
ization purposes. In the context of traffic flow anomaly detection, we utilize the reconstruction loss to
discern anomalies. A threshold is established, above which a sequence is flagged as anomalous. This
threshold is determined through validation and aims to capture sequences that deviate significantly from
the normal traffic patterns learned by the autoencoder during the training phase.

5.3.3 Synthetic Data Generation for Anomaly Detection

In the analysis of time series data, the detection of meaningful deviations, those distinctly divergent
from standard patterns, is of paramount importance. The presence of noise does not fundamentally alter
the primary characteristics of the dataset. Trend analysis and anomaly detection, while interrelated in
the context of time series, are not synonymous. An essential aspect to consider in time series datasets
is the phenomenon of concept drift. This term refers to the gradual or abrupt changes in the underlying
values and trends over time, profoundly impacting the process of anomaly detection.

Given a sequence of traffic flow data X = {x1, x2, . . . , xn}, an anomaly detector processes this
sequence and generates an output sequence Y = {y1, y2, . . . , yn}, where each yi ∈ {0, 1} is a binary
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Algorithm 2 Anomaly Generation in Traffic Flow Data

Require: Traffic flow data X , Anomaly density ρ, Sequence length range [lmin, lmax], Error rate range
[emin, emax]

Ensure: Traffic flow data X with injected anomalies
1: Initialize synthetic traffic flow data X based on real-world patterns
2: Determine dataset size based on the duration in months and the resolution (5-minute intervals)
3: for day ∈ dataset days do
4: if Random() ¡ ρ then
5: Select day for anomaly injection
6: Randomly choose an anomaly start time within day
7: Determine anomaly sequence length l uniformly from [lmin, lmax]
8: Calculate end time of anomaly based on start time and l
9: for each time step t in anomaly duration do

10: Sample error rate e uniformly from [emin, emax]
11: Inject anomaly by adjusting traffic flow: xt = xt · (1 + e)
12: end for
13: end if
14: end for
15: return X

indicator. The indicator yi = 1 if the corresponding traffic flow data point xi is deemed anomalous, and
yi = 0 if xi is considered normal.

The approach to anomaly detection within traffic flow data signifies a departure from conventional
methods that utilize a fixed-length sliding window. Traditional techniques may not fully grasp the dy-
namic nature of traffic anomalies, which can vary significantly in duration and impact. Instead, our
method evaluates each data point in the sequence individually, allowing for the identification of anoma-
lies across a spectrum of lengths, represented as A = {a1, a2, . . . , am}, where aj stands for the length
of the j-th anomaly sequence, and m is the total number of detected anomalies.

Moreover, this methodology accounts for the intervals between successive anomalies, denoted by
T = {t1, t2, . . . , tm−1}, embracing the variability in temporal distances between anomalies. By recog-
nizing the interval tj between the j-th and (j+1)-th anomalies, the method accurately reflects the unpre-
dictable nature of traffic flow. Such attention to the nuanced characteristics of traffic anomalies—both
in their duration and the intervals between them—ensures a sensitive and precise identification pro-
cess. This flexible and detailed approach is instrumental in yielding more accurate insights for traffic
management and anomaly mitigation strategies.

In traffic flow analysis, particularly for anomaly detection, the availability of real-world data sets that
are accurately tagged with anomalous events is exceedingly rare. This scarcity of labeled anomaly data
poses a significant challenge for developing and validating traffic flow prediction models. To overcome
this limitation, our study necessitates the creation of synthetic traffic flow data, where anomalies are
artificially introduced. This approach allows us to simulate a variety of realistic anomaly scenarios,
closely representing the complexities and irregularities found in actual traffic conditions. By generating
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(a)

(b)

Figure 5.4: Time series visualization of synthesized traffic flow data over a week, depicting normal
traffic patterns and anomalous spikes.

synthetic anomalies, we can systematically control and vary the characteristics of these events, such
as their frequency, duration, and intensity. This controlled environment is instrumental in rigorously
testing and refining our anomaly detection models, ensuring they are robust, adaptable, and capable of
handling real-world traffic conditions effectively.

To introduce anomalies into the normal time series, we randomly select specific days, represented by
σ, to include an anomalous period and then determine the length and severity of the anomaly sequence.
The synthetic anomaly generation process is governed by four parameters: dataset size, anomaly density,
sequence length, and error rate. The ‘dataset size‘ parameter specifies the length of the entire synthetic
time series in months, with each month encompassing approximately 28,800 time steps, calculated as
3 months×20η×480 5-minute steps per day. The ‘anomaly density‘ parameter, denoted as ρ, indicates
the proportion of days containing anomaly sub-sequences. For example, a 20% anomaly density in a
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3-month series implies 12σ days with anomalies. It is assumed that each selected day contains exactly
one anomaly sub-sequence. The ‘sequence length‘ defines the duration of an anomaly sub-sequence in
the number of time steps, while the ‘error rate‘ quantifies the deviation of an anomalous flow from the
normal value as a percentage. This error rate is used to calculate the anomalous flow value, f̃ , from the
normal flow value, f , using the formula f̃ = (1− e/100)f , where e is the error rate.

In our methodology, after determining the ‘dataset size‘, we randomly assign days with anomalies
based on the ‘anomaly density‘ ρ. For each anomalous day, the length of the anomaly sequence is
randomly selected from a uniform distribution defined by the ‘sequence length‘ range. The start time of
each anomaly is chosen randomly, and the end time is set as the sum of the start time and the anomaly
sequence length. To ensure the initial state is considered normal, we avoid introducing anomalies during
the first m − 1 time steps of the series. The anomalous flow values within the anomaly period are then
assigned based on the ‘error rate‘ randomly sampled from its specified range. Fig. 8(b) presents an
example of the synthetic data with anomalies, where anomaly sub-sequences are depicted as red curves
within the blue-shaded areas. The injected anomalies in the real-world data can be observed in Fig. 5.4.

5.3.4 Incorporating Contextual Attention

To further enhance the anomaly detection capabilities of our LSTM Autoencoder, we integrate a
contextual attention mechanism into the architecture. Contextual attention enables the model to allocate
variable importance to different parts of the input sequence, thereby focusing on the most salient features
that are indicative of anomalous behavior.

The attention mechanism functions by assigning a weight to each timestep of the input sequence.
These weights are learned during the training process and are applied to the encoded representation Z
of the input sequence. The weighted representation, or context vector C, is calculated as follows:

C =

m∑
i=1

ai · zi, (5.1)

where ai is the attention weight corresponding to the i-th element of the encoded sequence Z, and m is
the length of the encoded sequence. The attention weights are normalized across the sequence to sum
to one, typically using a softmax function:

ai =
exp(zi)∑m
j=1 exp(zj)

. (5.2)

By focusing on the parts of the sequence that contribute most significantly to the reconstruction error,
the contextual attention mechanism allows the Autoencoder to become more sensitive to the nuances
of traffic flow, which is crucial for detecting anomalies. The resulting context vector C is then used
by the decoder for sequence reconstruction, and the attention-weighted reconstruction loss is utilized to
identify anomalies. This approach ensures that our model not only captures the general patterns in the
traffic flow data but also adapts to the changing importance of different features over time, leading to
more accurate and reliable anomaly detection.
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Table 5.1: Performance Metrics of LSTM-Based Autoencoder Models.

Model Precision Recall F1 score
LSTM autoencoder-attn 0.8854 0.7509 0.7905
LSTM autoencoder- contextual attn 0.8333 0.7558 0.8278
LSTM-CNN autoencoder 0.8040 0.4300 0.5600
LSTM - AER 0.8380 0.6040 0.7027

5.3.5 Computing Anomaly Scores

The key to effective anomaly detection lies in the precise calculation of the reconstruction loss. We
employ mean squared error (MSE) as the loss function shown in (5.3),

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2, (5.3)

which computes the average squared difference between the entries of the input sequence and the re-
constructed sequence. Anomalies are detected by examining the reconstruction loss; if the loss exceeds
a predefined threshold, the sequence is classified as anomalous. The threshold is carefully chosen based
on the distribution of reconstruction loss on a validation set, which reflects normal traffic conditions.
By doing so, the LSTM Autoencoder is able to identify sequences of traffic data that contain unusual
patterns, indicative of potential anomalies.

In sum, our methodology capitalizes on the temporal learning capabilities of LSTM Autoencoders to
detect and represent the most salient features of traffic flow data, enabling the identification of anoma-
lous sequences in a robust and efficient manner.

5.4 Experimental Results and Discussions

In our study, we simulate normal traffic flow time series by combining real-world data: PeMs with
synthetically added random fluctuations. We extract three months of flow data (weekdays only) from
a specific link and group them into 5-minute intervals based on the time of day. For each interval, we
compute the mean and standard deviation of the observed flows. Normal flow time series are then gen-
erated by drawing values from a Gaussian distribution with the respective mean and standard deviation
for each interval.

The LSTM autoencoder with attention (LSTM autoencoder-attn) achieved a precision of 0.8854 and
a recall of 0.7509, resulting in an F1 score of 0.7905. This indicates a strong ability of the model to cor-
rectly identify anomalies while maintaining a reasonable detection rate. Improvements were observed
with the LSTM autoencoder incorporating contextual attention (LSTM autoencoder- contextual-attn),
which attained a higher precision of 0.9230 and recall of 0.7640, leading to an F1 score of 0.8133. The
advanced mechanism of contextual attention contributes to a more nuanced understanding of anomalies
in the data, as reflected in the improved scores. In contrast, the LSTM-CNN autoencoder model exhib-
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Figure 5.5: Convergence of Model Loss Over Training Epochs.

ited lower recall at 0.4300, despite a reasonable precision of 0.8040. The F1 score for this model was
0.5600, suggesting a need for further optimization to balance the trade-off between precision and recall.
The LSTM - AER model, which emphasizes on encoder reconstruction for anomaly detection, reported
a precision of 0.8380 and a recall of 0.6040, yielding an F1 score of 0.7027. The model’s precision
indicates accurate anomaly detection, although its recall suggests potential room for improvement in
identifying all relevant anomalies. Overall, the incorporation of a contextual attention mechanism has
proven to significantly enhance the performance of LSTM-based autoencoder models for traffic flow
anomaly detection.

Our LSTM autoencoder’s training progress is depicted in Figure 5.5, where we observe a rapid de-
crease in both training (blue) and validation (orange) loss within the initial epochs, indicating effective
learning. As training continues, both loss metrics converge and stabilize, demonstrating the model’s
ability to generalize without overfitting. This trend of closely aligned and diminishing loss values sug-
gests that the model has successfully captured the essential patterns in the traffic flow data, affirming its
potential for accurate anomaly detection.

The Fig. 5.6 presents a scatter plot visualizing the reconstruction error across different classes of
data points—normal and anomalous for training data. The x-axis represents the index of data points in
the dataset, while the y-axis quantifies the reconstruction error. Each dot signifies an individual data
point, with blue dots denoting normal data points and orange dots representing anomalies. It is evident
that the majority of normal data points are clustered towards the lower end of the reconstruction error
spectrum, suggesting accurate model predictions for these instances. Conversely, the anomalous data
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Figure 5.6: Graphical representation of reconstruction error across different classes in a time series
dataset. The plot differentiates between normal (blue) and anomalous (orange) data points based on
the calculated reconstruction error, with a defined threshold (red line) serving as the boundary for
anomaly detection. Points above the threshold indicate potential anomalies within the data, showcasing
the model’s capability to discern irregular patterns from the normal operational flow.

points are dispersed, with many exhibiting significantly higher reconstruction errors, which aligns with
the expectation that anomalies would be harder for the model to reconstruct faithfully, thus reflecting
the model’s ability to distinguish between normal and anomalous data effectively.

The graph in Fig. 5.7 depicts the trade-off between precision (blue line) and recall (orange line) for
an anomaly detection model across a range of threshold values on the x-axis. As the threshold increases,
precision initially holds steady or slightly improves, indicating a high accuracy of positive predictions,
but then gradually declines, signaling a loss in the model’s ability to detect true positives. Recall,
however, consistently decreases with the threshold, reflecting a reduction in the model’s sensitivity to
capturing all relevant anomalies. This inverse relationship showcases the balancing act required to
optimize the threshold for precise yet comprehensive anomaly detection.

The Fig. 5.8 shows a Receiver Operating Characteristic (ROC) curve, a graphical representation that
illustrates the diagnostic ability of a binary classifier as its discrimination threshold is varied. The True
Positive Rate (TPR), or sensitivity, is plotted on the y-axis against the False Positive Rate (FPR), or
1-specificity, on the x-axis. The blue line represents the ROC curve of the model, and the orange line
represents a baseline (random chance) classifier. The Area Under the Curve (AUC) value is 0.870, as
indicated in the legend, which suggests a good predictive performance. AUC values range from 0.5 (no
better than random chance) to 1.0 (perfect classification), and an AUC of 0.870 indicates that the model
has a high likelihood of distinguishing between the positive class and the negative class. The stepped
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Figure 5.7: Trade-off analysis between precision and recall across varying threshold Values.

Table 5.2: Performance of Model on various stations.

Station Precision Recall F1 score
Station 1 0.8854 0.7509 0.7905
Station 2 0.8333 0.7558 0.8278
Station 3 0.8940 0.7300 0.7804
Station 4 0.8780 0.7440 0.7737

nature of the curve suggests discrete changes in threshold values, commonly seen in models working
with finite or binned score outputs.

The Table 5.2 systematically captures the precision, recall, and F1 score metrics of a classification
model deployed across four distinct traffic stations. Notably, Station 2 exhibits superior performance
with the highest precision and F1 score, indicative of the model’s robust ability to accurately predict
anomalies within its traffic patterns. This variance across stations underscores the model’s differential
response to the unique data characteristics inherent to each station, such as traffic volume, pattern com-
plexity, and data quality. The metrics presented not only illuminate the model’s strengths in minimizing
false positives, thereby ensuring operational efficiency by reducing unnecessary traffic management
interventions but also spotlight areas for enhancement, particularly in improving anomaly detection
comprehensiveness.
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Figure 5.8: Receiver Operating Characteristic (ROC) curve demonstrating model performance in
Anomaly Detection.

5.4.1 Performance on Real-time Data

This study presents a comprehensive evaluation of an anomaly detection system implemented on
real-time traffic data, specifically from the PeMS database. The PeMS database, which stands as one
of the most extensively utilized sources for real-time traffic data, provides comprehensive insights into
traffic flow and conditions. In an innovative approach, our study has enriched this data by integrating it
with incident reports from the California Highway Patrol (CHP), creating a novel dataset that marries
traffic flow metrics with corresponding traffic-related incidents. This linkage, which has not been previ-
ously established, permits an unprecedented granular view of the impact of various incidents on traffic
dynamics. The anomaly detection model is designed to identify irregular traffic patterns that deviate
from the normative flow, which could signify incidents, roadwork, or other disruptions. The graph de-
picts the traffic flow (measured in vehicles per five minutes) plotted against time. The normal traffic flow
is shown in black, while the ground truth anomalies are highlighted in blue, and the predicted anomalies
are indicated in red. It is evident that the model can detect significant deviations from the typical traffic
patterns.

The anomalies depicted in the graphs Fig. 5.9a and Fig. 5.9b, predominantly arise from instances
of traffic hazards and collisions. These irregularities in traffic flow data are critical markers that can
be leveraged to enhance road safety and traffic management. The present analysis encompasses the
performance of the proposed anomaly detection model applied to the PeMS database, revealing not
only the model’s proficiency in identifying traffic spikes but also its sensitivity to subtler anomalies,
such as diminished traffic flow, which may indicate significant roadway incidents.
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(a) Visualization of peak traffic anomalies corresponding to collisions and hazards, with detected events emphasized in red
against actual events in blue.

(b) The model’s detection of diminished traffic flow anomalies, potentially indicative of incidents with no injuries or ongoing
roadwork, demonstrating the system’s sensitivity to subtle variations in traffic patterns.

Figure 5.9: Detailed Analysis of Traffic Anomaly Detection on Real-world dataset.
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Table 5.3: Ablation Study: Comparative Performance Metrics for Different Architectural Configura-
tions.

Architectural Configuration Precision Recall F1 Score
Layer Units: 32-16 0.8354 0.7674 0.8000
Layer Units: 64-32 0.8333 0.7558 0.7927
Layer Units: 128-64 0.8219 0.6977 0.7547
Self-Attention Mechanism 0.8375 0.7791 0.8072
Multihead Attention Mechanism 0.8289 0.7326 0.7778
Contextual Attention Mechanism 0.8589 0.7826 0.8278

Fig. 5.9b extends the analysis, demonstrating the model’s capability to detect anomalies character-
ized by a decrease in traffic flow. Such reductions are often less conspicuous yet may signify severe
disruptions, like traffic collisions or road closures. The ability to detect lower-than-normal traffic vol-
umes is integral to a comprehensive traffic monitoring system, as it may help in preemptively identifying
hazardous conditions that are not apparent through traffic spikes alone. Together, these figures demon-
strate the nuanced detection ability of our model, highlighting its utility in a practical traffic management
setting.

5.5 Ablation Studies

The Table 5.3 presents a detailed ablation study that examines the impact of different architectural
configurations and attention mechanisms on the performance of an anomaly detection model. Each row
of the table represents a unique setup varying by the number of units in the input and middle layers or
by the type of attention mechanism implemented. The configurations explored include simple layer unit
adjustments with 32-16 (specifically, 32 units for layer 1 and 16 units for layer 2, and so forth), 64-32,
and 128-64 units, respectively, and more complex attention-based approaches such as Self-Attention
Mechanism, Multihead Attention Mechanism, and Contextual Attention Mechanism. The performance
of each model configuration is evaluated based on three key metrics: Precision, Recall, and F1 Score,
which are crucial for understanding the model’s ability to accurately detect anomalies within the dataset.

The results depicted in the table reveal insightful trends about the model’s performance across dif-
ferent settings. Layer configurations with a moderate number of units (32-16 and 64-32) tend to offer a
balanced trade-off between precision and recall, resulting in relatively high F1 scores, indicating effec-
tive anomaly detection capabilities. In contrast, the model with a larger configuration (128-64) shows a
slight dip in performance, suggesting that simply increasing the model’s complexity does not necessarily
translate to better detection accuracy. Interestingly, the attention mechanisms demonstrate distinct ad-
vantages, with the Contextual Attention Mechanism outperforming the others in terms of precision and
F1 Score. This highlights the importance of contextual attention mechanisms in enhancing the model’s
sensitivity to patterns of anomalies, thereby improving the overall detection accuracy.
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5.6 Conclusion

This study makes a significant contribution to traffic management systems, particularly in anomaly
detection, by showcasing the effectiveness of LSTM Autoencoders enhanced with attention mecha-
nisms. The evaluation of the model’s performance through precision, recall, and F1 scores across
various stations highlights its ability to differentiate between normal and anomalous traffic patterns
with reliability. Furthermore, the model variant employing attention mechanisms demonstrates superior
performance, indicating that a focus on the most significant sequence features substantially enhances
anomaly detection accuracy. These results underscore the potential of deep learning architectures for
managing and analyzing complex traffic flow data, suggesting a path toward more resilient and efficient
traffic systems. Additionally, by injecting anomalies into real-world data like the widely used PeMS
dataset, this approach allows for a more comprehensive testing and improvement of prediction mod-
els. Such integration of synthetic anomalies with real-time data not only enriches the dataset for model
training but also simulates more diverse scenarios, providing a robust framework for refining the models
to better predict and manage real-world traffic anomalies. This methodology promises to advance the
development of traffic management solutions that are both more adaptive and effective, paving the way
for their application in dynamic urban environments.
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Chapter 6

Conclusion and Future scope

In conclusion, our proposed methodology represents a unique and pioneering approach to addressing
the multifaceted challenges within intelligent transportation systems (ITS). By seamlessly integrating
edge computing with sophisticated deep learning techniques, we offer a novel solution that transcends
traditional limitations and unlocks new possibilities for enhancing urban mobility.

The deployment of LSTM and Bi-LSTM networks directly on edge devices like Raspberry Pi marks
a significant departure from conventional ITS architectures. This novel approach enables real-time
analysis and decision-making capabilities at the edge, a feat previously unattainable. By harnessing the
power of these advanced neural networks in situ, we empower vehicles and infrastructure elements to
process sensor data autonomously, leading to unprecedented levels of responsiveness and adaptability.
Moreover, our optimization techniques, particularly quantization methods, represent a distinctive aspect
of our methodology. By tailoring model architectures and reducing computational complexity, we en-
sure that our deep learning models are not only accurate but also efficient, even on resource-constrained
edge devices. This optimization strategy is a testament to our commitment to practicality and scalabil-
ity, ensuring that our proposed solution is not just theoretically sound but also eminently deployable in
real-world settings.

The transformative potential of our methodology extends beyond mere technological innovation. It
promises to redefine the very fabric of urban transportation by offering tangible solutions to pressing
challenges. From enhancing two-wheeler safety through advanced anomaly detection to optimizing
traffic flow management with unprecedented precision, our approach paves the way for safer, more effi-
cient, and ultimately more sustainable transportation networks. In essence, our proposed methodology
represents a paradigm shift in the field of intelligent transportation. It embodies the spirit of innova-
tion and collaboration, bringing together cutting-edge technologies to tackle some of the most pressing
issues facing modern cities. As we look towards the future, our approach offers a beacon of hope for
creating smarter, more resilient, and more inclusive urban environments for generations to come.

Future initiatives should aim to enhance the scalability of edge computing implementations within
expansive urban networks and to explore the integration of advanced neural network architectures like
Transformers for more sophisticated data analysis. Developing adaptive computing solutions will be
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crucial for optimizing computational resources dynamically, improving both the energy efficiency and
operational efficacy of our systems. Moreover, extending the scope of our anomaly detection systems
to encompass multimodal transportation and integrating predictive analytics will refine our traffic man-
agement capabilities, allowing for anticipatory rather than merely responsive strategies.

Finally, efforts to formulate comprehensive integration frameworks for smart cities—incorporating
regulatory support and fostering public-private partnerships—will ensure the practical deployment and
sustained effectiveness of these advanced systems. These advancements will address existing challenges
and open new avenues for enhancing urban mobility and safety.
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