
Information-Theoretic Results for DNA-based Data Storage
in the Shotgun Sequencing Channel with Erasures

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computational Natural Sciences

by Research

by

Hrishi Narayanan
2019113022

hrishi.narayanan@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA

JUNE 2024

Copyright © Hrishi Narayanan, 2024

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Information-Theoretic Results for DNA-based
Data Storage in the Shotgun Sequencing Channel with Erasures” by Hrishi Narayanan, has been carried
out under my supervision and is not submitted elsewhere for a degree.

Date

Adviser: Prof. Prasad Krishnan Adviser: Prof. Nita Parekh

To all those who stood by me during my most challenging times.

Acknowledgments

I am deeply grateful to all those who have supported and encouraged me throughout the journey of
completing this thesis. Without their contributions, whether big or small, this achievement would not
have been possible.

First and foremost, I would like to express my heartfelt gratitude to my primary advisor, Prof. Nita
Parekh, for her invaluable guidance, continuous support and encouragement. Her expertise and insights
have been instrumental in shaping this thesis and enhancing its quality.

I extend my deepest gratitude and indebtedness to my advisor, Prof. Prasad Krishnan. His unwaver-
ing support, expert guidance, and genuine interest in my work have been critical in shaping this thesis
and enhancing its quality. I am truly grateful for his dedication, constructive feedback, and mentor-
ship, which have significantly contributed to my academic growth and the successful completion of this
project.

My heartfelt appreciation goes to my family members, Achchan, Amma, Mottu Chettan and Kannunni,
for their constant love, encouragement, and understanding throughout this journey. Their support has
been my source of strength and motivation.

I would also like to acknowledge the contributions of my friends and peers, who have been there for
me with their moral support, camaraderie, and occasional distractions that provided much-needed relief
during challenging times.

I also extend special thanks to iHub Data Foundation, IIIT Hyderabad for extending the research
fellowship that provided financial support during the course of this study. Their generosity and support
have enabled me to focus on my research and bring this thesis to fruition.

Lastly, I express my gratitude to all those whose names may not be mentioned here but have con-
tributed in any way to the completion of this thesis. Your support, encouragement, and belief in my
abilities have been invaluable.

v

Abstract

In shotgun sequencing, the input string (typically, a long DNA sequence composed of nucleotide
bases) is sequenced as multiple overlapping fragments of much shorter lengths (called reads). Mod-
elling the shotgun sequencing pipeline as a communication channel for DNA data storage, the capacity
of this channel was identified in a recent work, assuming that the reads themselves are noiseless sub-
strings of the original sequence. Modern shotgun sequencers however also output quality scores for each
base read, indicating the confidence in its identification. Bases with low quality scores can be considered
to be erased. Motivated by this, we consider the shotgun sequencing channel with erasures, where each
symbol in any read can be independently erased with some probability δ. We identify achievable rates
for this channel, using a random code construction and a decoder that uses typicality-like arguments to
merge the reads. To do this, we analyse the probability of error of the decoder and establish that the
probability of error vanishes, as the length of the code goes to infinity, when the rate of the code is
bounded based on the parameters of the channel. Our achievability result subsumes the achievability
result obtained in the prior work for the shotgun sequencing channel (without erasures, i.e., with erasure
probability δ = 0) [1]. However, the case of non-zero erasure probability has never been considered
in the literature before, and hence our achievability results are completely novel in this case. For given
parameters of the problem, we give some numerical comparisons of our achievable rate with an ‘inter-
polated’ version of the achievable rate from prior work for the δ = 0 case, and show that our result is a
non-trivial improvement over such an interpolation.

vi

Table of General Notation used in this thesis

Capital letters (X,Y,Λ,Φ etc.) Random quantities

Underline (x, y, ω etc.) Strings or tuples

[a : b] Set of integers a, a+ 1, ..., b

[b] Set of integers [1 : b]

IA Indicator random variable associated with event A

Pr(A) Probability of event A

A Complement of event A

Pr(A,B) Probability Pr(A ∩B), for two events A,B

S⋆ Set of finite length strings with symbols from set S

vii

Table of Select Notations used in this thesis

R Rate

C Capacity of a channel

c Coverage depth

n Block length

L Read length

L̄ Normalised read length

K Number of reads

δ Erasure probability

SSE(δ) Shotgun Sequencing Channel with Erasures (with probability δ)

CI Set of candidate islands

viii

Contents

Chapter Page

1 Introduction . 1
1.1 Promise of DNA as a storage medium . 1
1.2 DNA as a Storage Medium . 3

1.2.1 DNA Storage: Concept, Development, and Information-Theoretic Approaches 3
1.2.2 Sequencing Techniques . 5
1.2.3 Noise in DNA storage: Erasures and Errors 8

1.3 Summary of Results . 10
1.3.1 Numerical Comparisons of Theorem 1 with prior work 12
1.3.2 Organisation of this thesis . 14

2 The Shotgun Sequencing Channel . 15
2.1 Information-Theoretical Approaches to Shotgun Sequencing 15
2.2 Capacity of Shotgun Sequencing Channel . 18
2.3 Our Work: Modelling the Shotgun Sequencing Channel with Erasure Noise 20

2.3.1 Channel Description for the Shotgun Sequencing Channel with Erasures 20

3 Achievable Rates for Shotgun Sequencing Channel with Erasures: Proof of Theorem 1 22
3.1 Outline of the Coding Scheme . 22
3.2 Merging and Coverage: Definitions and Terminology 23
3.3 Concentration Results and Bounds on Quantities . 26
3.4 Decoding Algorithm . 30
3.5 Brief overview of the proof of achievability . 31
3.6 Detailed Proof of Achievability . 31

4 Conclusion and Future Work . 35

Appendix A: Concentration inequalities used in this work 37

Appendix B: Proof of Lemma 1 . 38

Appendix C: Proof of (3.17) (bound for 1
n log |CI| . 41

Appendix D: Proof of (3.19)(expression for limd→0 β(d) 51

Bibliography . 55

ix

List of Figures

Figure Page

1.1 Volume of data generated by year (2010-2027) [2] . 2

1.2 Diagrammatic representation of DNA-based storage process (reproduced from [3]). . . 3

1.3 Trend in the amount of data stored in DNA (reproduced from [4]). 4

1.4 Diagrammatic representation of the high-throughput shotgun sequencing pipeline (re-
produced from [5]). 5

1.5 Diagrammatic representation of the chain termination method (reproduced from [6]). . 6

1.6 Diagrammatic representation of the sequencing-by-synthesis method (reproduced from
[7]). 7

1.7 Diagrammatic representation of the nanopore sequencing technique (reproduced from [8]). 7

1.8 Access frequencies, longevities, functional characteristics, and degradation modes for
different categories of DNA-based storage systems (reproduced from [9]). 9

1.9 The plot shows comparison of the rate from Theorem 1, with L̄ = 1.5, as the coverage
depth c varies, for δ = 0, 0.05, 0.2, and 0.3. These are compared with results from [1]. 12

1.10 The plot shows comparison of the rate from Theorem 1, with L̄ = 1.75, as the coverage
depth c varies, for δ = 0, 0.05, 0.2, and 0.3. These are compared with results from [1]. 13

1.11 The plot shows comparison of the rate from Theorem 1, with L̄ = 2, as the coverage
depth c varies, for δ = 0, 0.05, 0.2, and 0.3. These are compared with results from [1]. 13

2.1 Critical phenomenon in read length established by Motahari et al [10]. The x-axis and
y-axis represent the normalised read length L̄, and the minimum coverage depth cmin
required for reliable reconstruction, respectively. 16

2.2 Diagrammatic representation of the Sampling-Shuffling Channel. 17

2.3 Diagrammatic representation of the Torn-Paper Channel. 17

2.4 Diagrammatic representation of the Shotgun Sequencing Channel. 18

2.5 Diagrammatic representation of the islands. As shown, islands are formed when ob-
tained when subsequent reads do not overlap with one another. 19

2.6 The Shotgun Sequencing Channel with Erasures (SSE(δ)). The collection Ỹ = {ỹ
1
, ỹ

2
, · · · , ỹ

K
}

may be visualized as the output of the Shotgun Sequencing Channel [1], and Y =
{y

1
, y

2
, · · · , y

K
} is the output of SSE(δ), after bits in each read are erased (indicated in

bold/red) with probability δ. 21

x

LIST OF FIGURES xi

3.1 Diagrammatic representation of the merging process between two reads u and v. The
reads here are mergeable with overlap 4. The predecessor and successor reads are u and
v respectively. The merging suffix is u′ and size of the merging suffix is ℓue(u

′) = 2,
corresponding to the unerased positions in the merging suffix. The merge output is given
by the concatenation of u′′, z and v′′. Note that z has erasures at a given position if and
only if there is an erasure in the corresponding position in u′ and v′. 24

List of Tables

Table Page

1.1 Comparison between various Illumina and Oxford Nanopore Technologies (ONT) se-
quencers. 8

xii

Chapter 1

Introduction

1.1 Promise of DNA as a storage medium

On December 29, 1959, in his talk, titled "There’s Plenty of Room at the Bottom: An Invitation to
Enter a New Field of Physics", at the annual American Physical Society meeting at Caltech, Richard P.
Feynman shared his very strong belief that miniaturisation was the key to advancement across various
fields. Feynman discussed in detail about potentially more robust synthetic chemistry through direct
manipulation of individual atoms, the many advantages of miniaturisation, and the various challenges
while working with objects in the nanoscale. [11]

Feynman’s lecture did not garner significant popular impact at the time. However, following the
development of the scanning tunnelling microscope in 1981 and the subsequent emergence of the field of
nanotechnology in the 1990s, Feynman’s lecture suddenly gained considerable academic attention, over
four decades after it was originally presented. Since then, the "Plenty of Room" lecture has been cited
as the motivation behind numerous works in nanotechnology, and has also been cited as an inspiration
behind several other works in cutting-edge fields including quantum computing [12], synthetic biology
and molecular machines [13, 14], optoelectronics [15] etc.

Among other topics, Feynman remarked on the size of the computers in the lecture, which back then
occupied several rooms. He then contrasted this to the size of the brain, which is much smaller and is yet
able to compute much more efficiently, and argued that there must be ways to improve upon the com-
putational efficiency through miniaturisation. Similarly, he compared the highly-inefficient digital data
storage systems of the day, to the storage of information in biological systems. He noted the tremendous
amount of information stored in each cell of the body in the form of DNA and emphasised on the vast
potential of building data storage systems inspired by biological systems. Over half a century later, in
the 2000s, the idea of storing digital data in DNA molecules, started gaining significant momentum.
This was accompanied by practical demonstration of such storage systems, bringing Feynman’s vision
of a data storage inspired by biology to fruition.

In the past decade, there has been considerable academic and industrial interest in studying and
developing DNA as an archival storage medium. Mainly, the motivation for developing DNA-based

1

Figure 1.1 Volume of data generated by year (2010-2027) [2]

storage systems stems from two major practical concerns. Firstly, the amount of data generated by the
world is increasing rapidly. There has been an exponential growth in the amount of data stored (see
Figure 1.1), with total amount of stored data by 2027 projected to be 284 zettabyte [2]. Out of this,
around 80% of the data is cold data or archival data, which need to be stored for long durations of time,
but is infrequently accessed [2].

Secondly, traditional storage devices have certain disadvantages. Such storage devices, including
hard drives, magnetic tapes, solid state drives systems are unstable and prone to data corruption. This
is because such devices use the magnetic spin of electrons in the medium to store digital data. Writing
of the data to the medium is done through polarisation of the electrons, while reading is done through
measuring the magnetic dipole created by the electrons. Thus, factors such as exposure to environmen-
tal electromagnetic (EM) radiations, heat etc. can cause changes in the magnetic polarisation, leading
to corruption of data, especially over a long period of time. HDD and magnetic tape, two of the most
popular traditional candidates for archival storage, have a mean lifetime of only 15 and 20 years respec-
tively [2]. In addition, such storage systems take up a large amount of physical space. For instance, the
GitHub Arctic Code Vault required 3,500 feet of tape to store 21 TB of data [16].

In contrast, DNA molecules are very stable. While magnetic storage can last at most a couple of
decades, synthetic DNA molecules are estimated to last several centuries to several millennia [17] [18],
with some estimates going as high as 400,000 years [9]. Furthermore, the storage density of DNA as

2

a medium is significantly higher. In particular, the theoretical information density of synthetic DNA is
1018B/mm2 and nearly 455 billion GB of data per gram, which is 107 times and 106 times, respectively,
more than that of magnetic tapes [18] [9]. Hence, due to its exceptional stability and high data density,
DNA molecules show great promise as a medium for long term storage of digital data.

1.2 DNA as a Storage Medium

1.2.1 DNA Storage: Concept, Development, and Information-Theoretic Approaches

The conceptual model of a DNA storage systems, like any other storage pipeline, has distinct read
and write steps, as represented in Figure 1.2. In the writing stage, the digital files in the binary format
are first encoded into a nucleobase code (i.e., in A, T, G and C). The encoding into nucleobase includes
error-correction encoding steps, if any. The nucleobase code so generated is used as a template for the
synthesis of DNA strand. The DNA molecule so produced is then stored. In order to retrieve (read) the
data, the DNA molecule is first sequenced and translated into nucleobase code. The nucleobase code is
subsequently decoded to get binary strings corresponding to the stored data.

Figure 1.2 Diagrammatic representation of DNA-based storage process (reproduced from [3]).

The first practical demonstration of storing messages in DNA was done in 1988 [17]. Since then,
researchers have developed sophisticated storage pipelines for DNA-based data storage, and attempted
storing greater amounts of data within synthetic DNA molecules [4, 18]. The trend in the amount of

3

Figure 1.3 Trend in the amount of data stored in DNA (reproduced from [4]).

data stored in DNA molecules by various works across the past years is given in Figure 1.3. In 2019,
Takahashi et al. constructed the first full end-to-end automated DNA storage device, outlining how
various stages of the pipeline can be effectively automated [19].

Characterisation of the errors that occur within the DNA storage pipeline, both the sources of error
and the error probability, is also necessary for further analysis and understanding of the storage process.
Several such works have been conducted in the recent times. For instance, Heckel et al. compared
the results obtained experimentally with the data from two other research groups and identified of the
synthesis and sequencing steps as major sources of errors in the storage process. In addition to the errors
during pipeline, errors may occur due to the decay of DNA molecules over large periods of time. Such
errors were characterised by Grass et al. through in silica simulation [20]. The authors also performed
in silica experiments to demonstrate that error-correction coding can be used to increase the lifetime of
the stored data.

Based on the error characterisations, several sequencing and alignment algorithms have been devel-
oped for DNA storage. For instance, Bresler et al. presented an algorithm for optimal assembly of high
throughput shotgun sequencing channel and established that a greedy algorithm is nearly optimal when
length of repeats is approximately equal to the length of interleaving section [21]. Shomorony et al.
presented an algorithm (NOT-SO-GREEDY algorithm) which constructs a sparse read-overlap graph,
which is then used to solve the genome assembly. The work also establishes a performance guarantee
for the algorithm, by showing that the genome assembly problem reduces into a Eulerian path problem
when certain conditions are met [22].

4

Figure 1.4 Diagrammatic representation of the high-throughput shotgun sequencing pipeline (repro-

duced from [5]).

To facilitate further analysis, the DNA storage pipeline has been abstracted as various communi-
cation channels by different works. This has motivated the development of practical error-correction
code schemes [23–25]. Furthermore, it has motivated extensive information-theoretical analysis of the
channel, including determining the fundamental limits of the channel [1, 10, 26–34].

1.2.2 Sequencing Techniques

The advancements, as well as the academic and industrial interest, in DNA-based storage systems
have been fuelled by the developments in sequencing techniques which reduced costs and increased
feasibility of such a technology. One such significant development is that of the high-throughput shotgun
sequencing pipeline, as represented in Figure 1.4. In such a pipeline, multiple copies of the DNA
molecule are first created, and then broken into fragments using restriction enzymes. The fragments are
generally much shorter than the original molecule. These fragments are then sequenced, resulting in a
collection of reads. The reads are then subsequently aligned, by mapping the overlaps between them, to
reconstruct the original sequence.

Some of the most popular sequencing techniques include the chain-termination method (Sanger se-
quencing), the sequencing-by-synthesis (Illumina) and the nanopore sequencing (Oxford Nanopore)
techniques. In the Sanger sequencing process, multiple copies of the DNA strand are created through
chain-termination PCR, in the presence of fluorescently tagged nucleotides with terminator groups. The

5

Figure 1.5 Diagrammatic representation of the chain termination method (reproduced from [6]).

copies so generated are of varying length, and are separated from one another through gel electrophore-
sis. The original strand is read nucleotide-by-nucleotide by ordering the copy strands in increasing
order of length and detecting the last fluorescent nucleotide of each strand, in order. A diagrammatic
representation of the Sanger sequencing technique is given in Figure 1.5

Meanwhile, in Illumina’s sequencing-by-synthesis approach, the sequencing reaction occurs on the
surface of a glass slide (referred to as the flow cell), on which the original fragmented DNA is covalently
attached by adapters. The sequencing process occurs in cycles by creating a reverse complementary
copy of the template strand by adding fluorescent nucleotides one at a time. The copy of the DNA
strand is read nucleotide-by-nucleotide by detecting the last fluorescent nucleotide in each cycle, using
light as a signal [2]. This process is shown diagrammatically in Figure 1.6.

On the other hand, nanopore sequencing is done by passing the DNA molecule through a nanopore
(ion channels) embedded in an artificial membrane. The membrane used in this process typically has a
high electrical resistance. On applying electrical potential, a steady flow of ions is maintained through
the nanopores. As the DNA molecules pass through the pore, there is a change in electrical potential
and which is detected by a sensor. As each nucleotide leads to a specific amplitude of change, this is
used to identify the nucleotides and sequence the DNA strand [2]. A diagrammatic representation of
nanopore sequencing technique is presented in Figure 1.7.

Due to its high accuracy, Sanger sequencing is considered the gold standard among sequencing
methods, with 99.99% base accuracy. However, this sequencing technique does not allow for parallel
sequencing and hence is not a high-throughput method. In contrast, next generation sequencers (NGS)
such as Illumina (second generation) and Oxford Nanopore (third generation) are massively parallel
and allow for high-throughput sequencing. A comparison between the Illumina and Oxford Nanopore
sequencers, as reported in [35], is given in Table 1.2.2.

6

Figure 1.6 Diagrammatic representation of the sequencing-by-synthesis method (reproduced from [7]).

Figure 1.7 Diagrammatic representation of the nanopore sequencing technique (reproduced from [8]).

7

Sequencer MiSeq NovaSeq 600 GridIon MinIon

Manufacturer Illumina Illumina ONT ONT

Sequencing

Technique

Sequencing-by-

Synthesis

Sequencing-by-

Synthesis

Nanopore

Sequencing

Nanopore

Sequencing

Data Output 13-15 Gb 4.8-6 Gb 2.8-50 Gb ∼ 5 Gb

Accuracy ∼ 99.9% ∼ 99.9% ∼ 99% ∼ 95%

Read length 2x300 bp 2x150 bp >4 Mb >4 Mb

Time per run ∼ 48 hours 16-44 hours 1 min - 72 hours 0.5-72 hours

Table 1.1 Comparison between various Illumina and Oxford Nanopore Technologies (ONT) sequencers.

1.2.3 Noise in DNA storage: Erasures and Errors

Both storage (write) and retrieval (read) steps of the DNA-based storage pipeline are susceptible to
noise. The nature and sources of noise depends on the specificities of the implementation as well as
the use-cases [9, 36] (see Figure 1.8). Specifically, the synthesis (write) and sequencing (read) steps
are the most significant sources of noise are mostly in the form of erasures, and insertion, deletion and
substitution (IDS errors) [9, 36].

In many modern sequencers, each nucleotide that is sequenced would be accompanied by a qual-
ity score, for instance Phred scores [37], corresponding to the probability that the base call for that
nucleotide is erroneous. The Phred Score or Q-score, denoted by Q, is given as

Q = − log10 P,

where P is the probability of making an erroneous base call. Considering the availability of such quality
scores, recent works on the information theoretic characterization of the DNA storage channel (for
instance, [38, 39]) have considered the low-quality base calls, below a certain threshold, as erasures in
the reads. Insertion, and deletion respectively, implies that a nucleotide base is added, and respectively
removed, to some position in the strand (thereby increasing, and respectively decreasing, its length),
while substitution refers to replacement of a nucleotide base with another.

Several works have analysed the IDS errors and derived results on how to correct such errors for the
DNA sequencing problem. For instance, in their work, Sabary et al. mathematically analyse the trace
reconstruction problem (reconstruction of DNA under deletion errors) and generalised reconstruction
problem (reconstruction of DNA under all the IDS errors) [36]. They also propose algorithms for effec-
tive reconstruction of the original DNA strand under both regimes. Srinivasavardhan et al., meanwhile,
presented results on coded trace reconstruction, i.e., reconstruction when DNA strand has some redun-
dant bits [40]. The work also introduced a reconstruction algorithm, the Trellis BMA, which has a linear

8

Figure 1.8 Access frequencies, longevities, functional characteristics, and degradation modes for dif-

ferent categories of DNA-based storage systems (reproduced from [9]).

9

complexity in the number of reads and establishes its effectiveness in correcting IDS errors using both
simulated and experimental data.

Error-correction coding for DNA storage under IDS errors was studied in [25]. Here, the model
involved the stored data being represented as an unordered set of sequences of equal length. The au-
thors derived Gilbert-Varshamov lower bounds, as well as the sphere-packing upper bounds on achiev-
able cardinalities for error-correction codes within the storage model. Another work [41] describes the
HEDGES (Hash Encoded, Decoded by Greedy Exhaustive Search) error-correcting code. The outer-
code employed in this method is a modification of the Reed-Solomon code, wherein the code has been
diagonalised to include bits from across all the rows to prevent burst errors. The HEDGES encoding
process is a hashing function where each bit is made to go through a predefined hashing process. The
decoding process involves the generation of a weighted tree of all possibilities, with weights assigned
to occurrence of symbols or certain patterns. The algorithm involves searching, through a greedy ap-
proach, over this weighted tree to find the least expensive path to the sink node. This coding technique
provides significant advantages when used to the DNA storage use-case, as it takes into account several
specificities of the current DNA synthesis and sequencing techniques.

All the aforementioned works consider the errors for simpler DNA storage models, in which the
inputs strands are read completely or reads are of fixed length with non-overlapping segments, with reads
subjected to erasures or IDS errors in either case. To the best of our knowledge, there is no literature that
considers errors for cases wherein there are overlapping reads, as in the shotgun sequencing channel.

1.3 Summary of Results

In the present thesis, we consider the shotgun sequencing channel with erasures, motivated by the
need to incorporate the availability of quality scores of the bases sequenced. We provide a summary
of the channel model we consider and the main result of this work, in this section. We elaborate on
the channel model and the proof of our main result in subsequent chapters. The model is similar to the
Shotgun Sequencing Channel presented in [1], with the addition being that each symbol in each read is
assumed to be erased with probability δ. We denote this channel as SSE(δ) (therefore, SSE(0) represents
the channel considered in [1]). The essential parameters of the SSE(δ) are the coverage depth, denoted
by c, and the normalised read length, denoted by L̄. The coverage depth is the expected number of
times any given position of the transmitted DNA strand occurs in the collection of reads, while L̄ is
linked to the read length L as L = L̄ log n. A code C of block-length n for the SSE(δ) is a subset of
input sequences of length n. The rate of such a code is then written as R = log2 |C|/n bits per channel
use (bpcu). We say that a rate R is achievable, if we can decode the transmitted sequence correctly with
high probability. The largest possible rate is then defined as the capacity of SSE(δ).

This thesis is devoted to obtaining a lower bound for capacity of shotgun sequencing channel with
erasures CSSE(δ). The main result in this work is the following.

10

Theorem 1. Let c and L̄ be the parameters of SSE(δ) such that c > 0 and L̄(1 − δ) > 1. Let

α = c/(L̄(1− δ)). The rate R is achievable on SSE(δ) if

R <
(
1− e−c(1−δ)

)
− (1− δ)

(
e
−c
(
1− 1

L̄(1−δ)

)
− e−c

)
. (1.1)

Observe that at δ = 0, Theorem 1 shows that the rate R is achievable on the channel SSE(0), if

R < (1− e−c(1− 1
L̄)). (1.2)

Indeed, the expression in the R.H.S. of (1.2) is identical to the capacity of the Shotgun Sequencing
Channel (without erasures), which was presented in [1]. The proof of Theorem 1 involves demonstrat-
ing an achievability scheme via a random code construction and a decoder which uses typicality-like
techniques for estimating the true message.

We recount a brief history of the ‘random coding’ technique, in order to place our result in context.
The random coding technique is an idea that originates in Claude Shannon’s original work [42], which
arguably introduced the area of Information and Coding Theory, in the modern sense. In this work,
Shannon introduced multiple fundamental ideas, including modelling information sources and noisy
communication channels using probability distributions, the notion of using a ‘code’ (subsets of input
sequences) as a tool to make communication feasible on noisy channels, etc. Further, Shannon proposed
the notion of the capacity of a noisy channel, obtained for the probabilistic characteristics of the channel-
noise, and remarkably showed that the largest rate of any code which can be decoded correctly with
high probability is exactly the capacity of the channel. Shannon proposed an extraordinarily simple
technique to construct a code called the random coding technique, to prove the achievability of rates
arbitrarily close to the channel capacity, for a large class of channels known as memoryless channels
(which is the foundational model upon which modern channels are modelled). In the random coding
technique, a subset of 2nR input sequences of length n are chosen at random from the set of all possible
input sequences according to some probability distribution. Note that, by definition, the rate of this
code is exactly R. Using a careful probabilistic analysis, Shannon showed that any input sequence
(a codeword) transmitted from such a randomly constructed code can be decoded correctly with high
probability (indeed, with probability going to 1, as n goes to infinity), as long as the rate R of this code
is less than the capacity (precisely, if R is smaller than the capacity by any arbitrary positive constant).
Remarkably, Shannon also showed a converse argument to this result: that is, if the rate R of a code is
larger than the capacity of a channel, then the probability of error in using this code will necessarily be
large.

While the case of memoryless channels was masterfully completed by Shannon, other channels
which have considerably different models, such as channels with memory, multi-look channels (in which
more than one ‘look’ or output sequence is generated from the same input sequence), are much more
difficult to handle. The DNA sequencing channels, specifically the Shotgun sequencing channel, is
one such channel. In the previous work [1], the authors adapted the random coding argument, along
with a novel careful analysis of the probability of error, to show the achievability of rates arbitrarily

11

close to the R.H.S. expression of (1.2). Further, they were also able to prove a ‘matching’ converse
for the same, thus establishing the same as the capacity of the shotgun sequencing channel. However,
the scenario becomes more difficult when we consider erasures in the output reads from this channel,
which is the subject of this thesis. While we are able to show the achievability of rates arbitrarily close
to the expression in the R.H.S. of (1.1), a matching converse for the same remains a work in progress,
at the time of writing this thesis. The mathematical techniques adopted to show the achievability result
generally follow those in [1]. However, there are differences that arise. In some parts, we are able to
simplify the analysis as compared to [1]. In others, the analysis is more complicated, owing to the fact
that we have to account for the erasures in the reads.

1.3.1 Numerical Comparisons of Theorem 1 with prior work

0 1 2 3 4 5
Coverage Depth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ra
te

Rate v/s Coverage Depth graph for L = 1.5

Theorem 1 (=0)
Capacity of SSC [1] with
short reads (=0.05)
Theorem 1 (=0.05)
Capacity of SSC [1] with
short reads (=0.2)
Theorem 1 (=0.2)
Capacity of SSC [1] with
short reads (=0.3)
Theorem 1 (=0.3)

Figure 1.9 The plot shows comparison of the rate from Theorem 1, with L̄ = 1.5, as the coverage depth

c varies, for δ = 0, 0.05, 0.2, and 0.3. These are compared with results from [1].

Figure 1.9, Figure 1.10 and Figure 1.11 plot the upper bound for the achievable rate for SSE(δ) from
Theorem 1, for δ ∈ {0, 0.05, 0.2, 0.3}, against varying values for the coverage depth c. The parameter
L̄ is fixed as 1.5, 1.75 and 2 respectively (thus satisfying the requirement L̄(1 − δ) > 1, for all chosen
δ). We observe that as L̄ increases (for a given c, this means K decreases), the capacity increases.
Further, the difference in capacity for different δ values decreases, as L̄ increases. This might be the
case because, for larger values of read-length, the expected overlap between the reads would be greater

12

0 1 2 3 4 5
Coverage Depth

0.0

0.2

0.4

0.6

0.8

Ra
te

Rate v/s Coverage Depth graph for L = 1.75

Theorem 1 (=0)
Capacity of SSC [1] with
short reads (=0.05)
Theorem 1 (=0.05)
Capacity of SSC [1] with
short reads (=0.2)
Theorem 1 (=0.2)
Capacity of SSC [1] with
short reads (=0.3)
Theorem 1 (=0.3)

Figure 1.10 The plot shows comparison of the rate from Theorem 1, with L̄ = 1.75, as the coverage

depth c varies, for δ = 0, 0.05, 0.2, and 0.3. These are compared with results from [1].

0 1 2 3 4 5
Coverage Depth

0.0

0.2

0.4

0.6

0.8

Ra
te

Rate v/s Coverage Depth graph for L = 2

Theorem 1 (=0)
Capacity of SSC [1] with
short reads (=0.05)
Theorem 1 (=0.05)
Capacity of SSC [1] with
short reads (=0.2)
Theorem 1 (=0.2)
Capacity of SSC [1] with
short reads (=0.3)
Theorem 1 (=0.3)

Figure 1.11 The plot shows comparison of the rate from Theorem 1, with L̄ = 2, as the coverage depth

c varies, for δ = 0, 0.05, 0.2, and 0.3. These are compared with results from [1].

13

and more information about the relative positions of the bits in the transmitted sequence is likely to be
conserved.

As a note of comparison, we plot the SSC capacity from [1], with shortened reads of size L̄(1 −
δ) log n (note that the read length is L̄ log n in SSE(δ)). We observe that this short-read SSC capacity
is larger than our bound from Theorem 1, when c is small (roughly, c < 1), whereas it is progressively
smaller compared to our bound, as c increases (for given L, this means K increases). We will now
remark on why this may be the case. Firstly, we observe that, due to the length being shorter, the
number of reads K for the SSC is larger than K for the SSE(δ), for any specific c. In spite of this, for
larger values of c, some information about the relative positions of the bits in the transmitted sequence
is likely lost by the SSC, as the read length is shorter. As a result, in the case of SSE(δ), each contiguous
string obtained after merging the reads as per the overlaps tends to be longer, and the number of such
strings will be smaller, in comparison to SSC with shorter reads. Hence, the SSE(δ) channel is probably
able to preserve the information about the relative positions better, due to the longer reads, in spite
of the erasures and lesser K. In the small c regime, there are likely too few reads in SSE(δ) to see
this advantage. Instead, due to K being less, the reconstructed sequence in SSE(δ) likely has many
unrecoverable bits, compared to the SSC channel (in spite of its shortened reads). This arguably leads
to the behaviour seen in Figure 1.9, Figure 1.10 and Figure 1.11.

1.3.2 Organisation of this thesis

This thesis is organised as follows. Chapter 2 sets the background for our analysis. Related information-
theoretical works are presented in Sections 2.1 and 2.2, and Section 2.3 formally states the problem
statement and provides the formal description of the channel model in our work (in subsection 2.3.1),
The proofs leading to the main result (i.e., Theorem 1) of this work are presented in Chapter 3. This
work concludes with some remarks in Section 4, along with a discussion of possible future directions
for related research.

Notation used in this thesis

In this work, ordered tuples or strings are denoted with underlines, such as x. We denote the set of
integers a, a+1, . . . , b as [a : b]. The set of integers [1 : b] is denoted as [b]. For an event A, the indicator
random variable associated with the event is denoted by IA. The probability of an event A is denoted by
Pr(A). The complement of an event A is denoted by A. For two events A,B, we write Pr(A,B) for
the probability Pr(A ∩ B). For a set S, the set of finite length strings with symbols from S is denoted
by S⋆. All logarithms are in base 2.

14

Chapter 2

The Shotgun Sequencing Channel

2.1 Information-Theoretical Approaches to Shotgun Sequencing

One of the early works which analytically modelled the problem of DNA sequence assembly was
the work by Lander and Waterman [43]. In their work, Lander and Waterman consider the task of
creating a physical map of the genomes in microbial DNA. Typically, the approach to such tasks is to
first "fingerprint" many randomly generated clones (smaller fragments of DNA strands) from a recom-
binant library and subsequently inferring the overlaps between the generated clones using similarity in
fingerprints1. There are many possible choices of fingerprints that may be used for this task. Lander
and Waterman explore the problem of selecting an appropriate fingerprinting scheme and analyse the
theoretical considerations that govern the selection of such schemes. To show this, they establish the
expected distribution of islands and compare theoretical results with the experimental data from other
such physical mapping projects. They also derived various limits on the parameters that govern the
sequencing process, which were shown to be necessary for reliable reconstruction. This included read
length and coverage in the sequencing process.

Building on the model developed in [43], Motahari et al. [10] studied the shotgun sequencing from
an information theoretic perspective. In this work, they considered the case where the input sequence
x is generated uniformly at random from all possible quaternary sequences. In this scenario, length of
reads scales as L̄ log n, where L̄ is a fixed constant and n is the length of the input sequence x. The
work demonstrated some necessary and sufficient conditions on L̄, as well as a parameter known as the
coverage depth c (which captures the average number of times any position in x occurs in the collection
of reads), for the reconstruction of x in the asymptotic regime, i.e., when n→∞. In particular, the main
result of their work established a critical phenomenon: reliable sequencing is impossible if L̄ < 2

H2(p)
2,

where p is the probability distribution over the quaternary language, and that if L̄ ≥ 2
H2(p)

, then even a
minimum normalised coverage depth of cmin = 1 is sufficient for reliable sequencing. In other words,

1In this context, fingerprint for a DNA strand refers to some properties or patterns present in it, which can be used for
comparison with other strands.

2H2(p) denotes the Renyi entropy over the quaternary alphabet given by the expression H2(p) ≜ − log
(∑

i p
2
i

)

15

Figure 2.1 Critical phenomenon in read length established by Motahari et al [10]. The x-axis and y-

axis represent the normalised read length L̄, and the minimum coverage depth cmin required for reliable

reconstruction, respectively.

L̄ < 2
H2(p)

and L̄ ≥ 2
H2(p)

represent repeat-limited and coverage-limited regimes, respectively. The
graph in Figure 2.1 represents this result.

The approach taken in [10] also proved useful in studying the fundamental limits of DNA data stor-
age, where the goal is to find the capacity of the DNA sequencing channel, i.e., the largest normalized
size of any collection of input sequences which can be decoded with vanishing error probability when
transmitted through the DNA sequencing channel. For instance, the works [28, 34] model and analyse
the capacity of the Sampling-Shuffling Channel. In this channel, data is stored as a set of M short DNA
strands of equal length L = L̄ log n. In the retrieval process, a set of K reads are obtained by sampling
(with replacement) over this set. Thus, there can be several or no copies of each of the strands that were
stored. Further, reads obtained after the sampling stage are unordered. The works establish the capacity
of the sampling-shuffling channel as C = (1 − ec)

(
1− 1

L̄

)
. They also show that a simple index-based

coding scheme, which assigns indexes to each of the stored strands, achieves the optimal rate. The dia-
grammatic representation of this channel can be found in Figure 2.2. The capacities of noisy versions of
sampling-shuffling channel, which considered various types of errors including erasures, substitution,
noisy sampling etc., were also presented in [34].

Another closely related work is [30], which studies the so-called Torn Paper Channel. Unlike the
sampling-shuffling channel, in this scenario, the data is stored in the form of a large DNA sequence. In
this channel model, during the retrieval process, reads are obtained by fragmenting this large sequence
into non-overlapping pieces. This is done as per a geometric distribution. Thus, unlike the sampling-
shuffling channel, the reads in the torn-paper channel have a variable length. The work [30] analyses
the channel model and establishes the fundamental limits for this channel.

16

Sampling Shuffling
Channel

Figure 2.2 Diagrammatic representation of the Sampling-Shuffling Channel.

Torn Paper Channel

Figure 2.3 Diagrammatic representation of the Torn-Paper Channel.

17

Shotgun Sequencing
Channel

Figure 2.4 Diagrammatic representation of the Shotgun Sequencing Channel.

More specifically, [30] showed that if the "tearing" of the long DNA strand is done as per the dis-
tribution Geometric(p), then the capacity of the corresponding channel is given by C = e−α, where
α = limn→∞ p log n. A diagrammatic representation of the torn-paper channel is given in Figure 2.3.
A more recent work [31] on the torn-paper channel analysed the case where certain fragments are "lost",
i.e., deleted. It also generalised the result for the torn-paper and sampling-shuffling channels and showed
that the capacity of such channels can be expressed in the form C = (coverage) − (reordering cost),
where coverage is the expected number of bits from the transmitted sequence that appear in the collec-
tion of reads, and reordering cost is the number of redundant bits remaining in the fragments [31].

2.2 Capacity of Shotgun Sequencing Channel

The capacity of the Shotgun Sequencing Channel (with binary-valued inputs) was presented in [1].
In this work, during the retrieval process, K reads of fixed length L = L̄ log n are generated by sampling
starting positions uniformly at random from the indices of the input string x. The main result of this
work is the establishment of the capacity of the channel,

CSSE = 1− e−c(1− 1
L̄),

where c = KL
n denotes the coverage depth (the expected number of times any position of x occurs in

the collection of reads). Figure 2.4 shows the diagrammatic representation of the Shotgun-Sequencing
Channel. Note that, unlike the sampling-shuffling and torn paper channels, which had non-overlapping
reads, shotgun sequencing deals with reads which might overlap with one another. The result in [1]
is shown through two distinct results: the achievability result that establishes a lower-bound of the
capacity, and the converse result that establishes an upper-bound of the capacity.

The achievability part utilises a random coding argument, i.e., each symbol in each codeword in
the codebook is generated randomly by picking from {0, 1} with probability 1

2 . In this part, centrality

18

Fragmentation

Merging

Orignal strand

Fragments

Islands

Figure 2.5 Diagrammatic representation of the islands. As shown, islands are formed when obtained

when subsequent reads do not overlap with one another.

results corresponding to several important quantities such as the coverage, the number of real islands,
the number of reads with given overlap etc. are established. Further, it is shown that these quantities do
not deviate from their expected values with high probability.

The work [1] presents a decoding algorithm called the Partition-Merge Algorithm (PMA). This algo-
rithm starts by considering all possible tuples that can describe the overlap between the reads in a given
ordering. Such vectors are referred to as partition vectors in the paper. Using the centrality results that
the authors establish, the decoder eliminates partition vectors which deviate greatly from the established
typical behaviour. The decoder then brute-forces over all possible ordering of reads and checks whether
they can be merged as per the partition vector. If this check goes through, then the reads are merged
as per the partition vector. The result is a collection of islands (each island is a maximal collection of
merged reads, which is no longer merge-able with other islands, as shown in Figure 2.5). The islands so
created are subsequently added to the set of candidate islands. Finally, the decoder compares the code-
words to the set of islands. Decoding is said to be successful if and only if there is a unique codeword
which is a superstring of all islands in each set of islands in the set of candidate islands. In such a case,
the unique codeword identified is returned as output by the decoder. However, if there are more than
one or no such codewords, then decoding failure is declared.

The achievability concludes by considering the probability of error in the decoding process and by
establishing that probability of error goes to 0, as n→∞ if

R ≤ 1− e−c(1− 1
L̄).

The converse part starts by establishing a constraint on the read length, i.e., by showing that recon-
struction is impossible if L̄ < 1. Subsequently, it uses genie-aided arguments to show the converse.
More specifically, [1] first considers an omniscient genie which can merge all reads as per their real

19

overlap. However, the upper-bound so obtained is much higher than the achievability result. Hence,
the authors subsequently consider a constrained genie. This genie can only merge islands under certain
conditions. Through this, they obtain a converse result

R ≤ 1− e−c(1− 1
L̄).

In both the genie-aided arguments, results from an earlier work [31] on the torn-paper channel were
used.

2.3 Our Work: Modelling the Shotgun Sequencing Channel with Era-

sure Noise

We consider the shotgun sequencing channel with erasures, motivated by the need to incorporate
the availability of quality scores of the bases sequenced. The model is similar to that in [1], with the
addition being that each symbol in each read is assumed to be erased with probability δ. We denote this
channel as SSE(δ) (thus, SSE(0) is the channel considered in [1]).

In this work, we obtain an achievability result for the channel SSE(δ), thus showing a lower bound
on its capacity. The mathematical techniques adopted to show the achievability and the converse results
generally follow those in [1]. However, there are differences that arise. In some parts, we are able to
simplify the analysis as compared to [1]. In others, the analysis is more complicated, owing to the fact
that we have to account for the erasures in the reads.

2.3.1 Channel Description for the Shotgun Sequencing Channel with Erasures

We follow the description and terminology similar to those in [1], as the present work essentially
extends the achievability result in [1] to the erasure scenario.

The channel takes a n-length binary3 string x = (x1, . . . , xn) ∈ {0, 1}n as input, corresponding to a
message W ∈ [2nR] chosen at random. The output of the channel can be envisioned as a concatenation
of two stages, as shown in Figure 2.6. Firstly, the channel samples K substrings of length L, from
x. We denote these by a multiset Ỹ = {ỹ

1
, . . . , ỹ

K
}. Each read ỹ

i
is obtained by first selecting a

position S(ỹ
i
) uniformly at random from [n], and then taking the L-length (contiguous) substring from

the position S(ỹ
i
) onwards, i.e., ỹ

i
= (xS(ỹ

i
), . . . , xS(ỹ

i
)+L−1) ∈ {0, 1}L. When S(ỹ

i
) > n − L + 1,

similar to the circular DNA model in [10], we assume that the substring is obtained in a cyclic wrap-
around fashion, for ease of analysis. Thus, Ỹ can be thought of as the output of a noise-free shotgun
sequencing channel (as in [1]), when the input is x.

In the second stage, each read ỹ
i

is assumed to pass through a binary erasure channel with erasure
probability δ (denoted by BEC(δ)), thus erasing each position in ỹ

i
with probability δ independently, to

3The symbols in a DNA sequence take values in a quaternary set, but for simplicity we assume the symbols to be binary.
Our results can be easily extended to the quarternary case.

20

Noiseless

Shotgun

Sequencing

Channel

.

.
.
.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Figure 2.6 The Shotgun Sequencing Channel with Erasures (SSE(δ)). The collection Ỹ =

{ỹ
1
, ỹ

2
, · · · , ỹ

K
} may be visualized as the output of the Shotgun Sequencing Channel [1], and Y =

{y
1
, y

2
, · · · , y

K
} is the output of SSE(δ), after bits in each read are erased (indicated in bold/red) with

probability δ.

obtain y
i
∈ {0, 1,⊥}L, where ⊥ denotes an erasure. The multiset of these reads, denoted as Y = {y

i
:

i ∈ [K]}, is the output of the channel. Note that the start positions are unaltered, i.e., S(y
i
) = S(ỹ

i
), ∀i.

We denote this shotgun sequencing channel with erasures as SSE(δ).
A rate R is said to be achievable on SSE(δ) if the message W can be reconstructed from Y using

some decoding algorithm with a probability of error that is vanishing as n grows large. The capacity of
SSE(δ) is then defined as CSSE(δ) ≜ limn→∞ sup{R : R is achievable}.

The expected number of times a coordinate of x (say the jth coordinate) is sequenced in the first
stage is called the coverage depth, denoted as c. Thus, c ≜ E(

∑K
i=1 I{j∈[S(yi):S(yi)+L−1]}). A simple

calculation reveals that

c =
KL

n
(2.1)

We assume that the length of each read is L = Θ(log n) ≜ L̄ log n. for some positive L̄. As in [1],
we study the regime where c and L̄ are some positive constants. Thus in our regime, K = cn

L̄ logn
=

Θ
(

n
logn

)
.

As mentioned in Chapter 1, our goal in this thesis is to determine a lower bound for capacity of
shotgun sequencing channel with erasures CSSE(δ). In particular, we show Theorem 1, which shows that,

for SSE(δ), the rates that satisfy R <
(
1− e−c(1−δ)

)
− (1− δ)

(
e
−c
(
1− 1

L̄(1−δ)

)
− e−c

)
are achievable,

where c and L̄ are the coverage depth and normalised read length respectively.

21

Chapter 3

Achievable Rates for Shotgun Sequencing Channel with Erasures: Proof

of Theorem 1

We use a random coding argument to show the achievability of the rate as in Theorem 1. We outline
the main components of our code design below. While these share similarities to the techniques in [1],
the decoding algorithm and the proof arguments are more complex, owing to consideration of the reads
with erasures.

3.1 Outline of the Coding Scheme

• Codebook: A codebook with 2nR codewords, denoted as C = {x1, x2, · · · , x2nR}, is generated by
picking each symbol of xj independently and uniformly at random from {0, 1}, for each j ∈ [2nR].

• Encoder: To communicate the message W (chosen uniformly at random from [2nR]) through the
channel SSE(δ), the encoder communicates the codeword xW ∈ C through the channel. The output
Y , a set of reads as described in Section 2.3.1, is generated post-sequencing.

• Decoder: The decoding algorithm we propose takes as input the collection of reads Y and generates
an estimate Ŵ of the transmitted message, or a failure. We briefly describe the process of obtaining
the estimate Ŵ from Y . The decoder proceeds in three phases. In the first phase, which we call the
merge phase, the decoder first implements a merging process of the reads. Such a merging process
will be run for all possible orderings of the reads, considering multiple possible ‘typical’ ways to
merge the reads, where the typicality will be defined based on the concentration properties of some
quantities we will subsequently define.

For each such typical merge process, we get a set of islands, where an island refers to a string of
maximal length obtained in the merging process (formal definitions follow in subsequent sections).
Ultimately, upon going through all possible orderings, several such island sets may be generated. In
the second phase, which we call the filtering phase, these island sets are then filtered based on further
typicality constraints. The filtered island sets which pass the final typicality conditions are referred to

22

as candidate island sets. The third and final phase is called the compatibility check phase. In this
phase, for each candidate island set, the decoder checks if all the islands of that candidate island set
occur as compatible substrings of any codeword. If there is precisely one codeword xŵ in C that passes
this check, across all the candidate island sets, then the estimate is declared as Ŵ = ŵ. Otherwise,
a decoding failure is declared. We show that the decoding algorithm results in the correct estimate,
i.e., W = Ŵ with high probability, as n grows large. A more precise description and analysis of the
decoding is provided in section 3.4 and 3.6. Section 3.2 and section 3.3 describe the various quantities
required for the description and analysis of the decoder, and the concentration results on some of these
quantities, respectively.

3.2 Merging and Coverage: Definitions and Terminology

We now give the formal definitions and terminology for various quantities. Again, these quantities
are either identical or parallel to those defined in [1].

Definition 1 (Length and Size of string). For any u ∈ {0, 1,⊥}⋆, the length of u is denoted by ℓ(u).

The size of u is the number of unerased bits in u and is denoted by ℓue(u).

Definition 2 (Prefix and Suffix). For a string v ∈ {0, 1,⊥}l and any positive integer l′ ≤ l, a string

z ∈ {0, 1,⊥}l′ is said to be a l′-suffix of v, if (vl−l′+1, . . . , vl) = z, and is denoted by suffix(v, l′).

Similarly, if (v1, . . . , vl′) = z, then z is said to be a l′-prefix of v and is denoted by prefix(v, l′).

Definition 3 (Compatibility, l-compatible strings and substring compatibility). Let u and v be any two

strings in {0, 1,⊥}l. We say that v and u are compatible, if

ui =⊥ or vi =⊥, for any i ∈ [l] s.t. ui ̸= vi.

For any u, v ∈ {0, 1,⊥}⋆ (not necessarily of same length), the string v is said to be a compatible

substring of u, if v is compatible with any substring of u. Finally, for any u, v ∈ {0, 1,⊥}⋆, we say v is

l-compatible with u, if suffix(u, l) and prefix(v, l) are compatible.

We define the merging of two reads in the following manner.

Definition 4 (Merge of two strings). Let u and v be any two strings in {0, 1,⊥}⋆ such that v is l-

compatible with u. Let suffix(u, l) = u′ and prefix(v, l) = v′. Suppose ℓue(u
′) ̸= 0. Then,

we say that u and v are mergeable with overlap l. The output of the merge operation is defined as

the string (u′′ | z | v′′) obtained by the concatenation of three substrings: u′′, z and v′′, where u′′ =

23

prefix(u, ℓ(u)− l), v′′ = suffix(v, ℓ(v)− l), and z is defined as follows.

zi =

0 if u′i = 0 or v′i = 0,

1 if u′i = 1 or v′i = 1,

⊥ if u′i =⊥ and v′i =⊥

.

With respect to the merge defined above, we term the substring u′ as the merging suffix, or simply the

suffix. Fig. 3.1 shows an illustration of this merge operation.

(predecessor)

(successor)

merging suffix with
size & length

mergeable with overlap

(merge output)

Figure 3.1 Diagrammatic representation of the merging process between two reads u and v. The

reads here are mergeable with overlap 4. The predecessor and successor reads are u and v respectively.

The merging suffix is u′ and size of the merging suffix is ℓue(u
′) = 2, corresponding to the unerased

positions in the merging suffix. The merge output is given by the concatenation of u′′, z and v′′. Note

that z has erasures at a given position if and only if there is an erasure in the corresponding position in

u′ and v′.

We also recall that, during the sequencing process, each of the read y ∈ Y has a certain starting
position S(y). The following terminologies are regarding the ground truth of Y .

Definition 5 (True Successors, Ordering, and Overlaps). The true successor of a read y
1
∈ Y is another

read y
2
∈ Y , such that S(y

2
) ≥ S(y

1
) (in cyclic wrap around fashion) and (S(y

2
)− S(y

1
)) is smallest

among all reads y
2
∈ Y \ {y

1
}. Thus, the true ordering, is an ordering of the K reads such that each

read is succeeded by its true successor. The true overlap between any read y
1

and its true successor

y
2

is defined to be 0, if S(y
2
) > S(y

1
) + L − 1 (in cyclic wrap around manner). If S(y

1
) ≤ S(y

2
) ≤

S(y
1
) + L− 1, then the true overlap of y

1
with y

2
is S(y

1
) + L− S(y

2
).

As mentioned before, our algorithm merges the reads corresponding to various orderings and typical
overlaps. We now formally define the notion of an island arising out of a merging process of the reads,
following a given ordering and a tuple prescribing the sizes of the merging suffixes.

24

Definition 6 (Orderings, Islands, and True Islands). Let ζ denote a permutation of [K]. Consider

the ordering of the K reads defined by ζ. With respect to this ordering, the read y
ζ(i)

is called the

predecessor of the read y
ζ(i+1)

, while y
ζ(i+1)

is the successor of y
ζ(i)

. Consider ω = (ω1, . . . , ωK) ∈

[0 : L]K . For some j ∈ [K], for some positive integer l, suppose that the following conditions hold.

• ωj′ > 0 and y
ζ(j′)

is mergeable with y
ζ(j′+1)

with size of the merging suffix being ωj′ , for all

j′ ∈ [j : j + l − 1] (in cyclic wrap around fashion).

• ωj−1 = ωj+l = 0.

Then the string obtained by the merging of the reads y
ζ(j′)

: j′ ∈ [j : j + l − 1] successively with

their respective successors, is called an island. If ζt is the true ordering of the reads, and each read y is

merged with its true successor y′ (as per ζt) based only on the true overlap, i.e., if S(y)+L−S(y′) > 0,

then the islands so obtained are called true islands.

Another quantity that will use to check the goodness of our islands is the expected number of
unerased bits in them. Towards that end, we have the following two definitions.

Definition 7. (A bit being covered and visibly covered): The ith bit of xW , denoted by xi, is said to

be covered by a read y ∈ Y if S(y) ∈ [i − L + 1 : i]. Further, xi is said to be visibly covered by y

if it is covered by y and further unerased in y. The bit xi is said to be covered (visibly covered) by the

collection of reads Y if it is covered (visibly covered, respectively) by at least one read in Y .

Definition 8 (Visible Coverage). The visible coverage denoted by Φv of the collection Y is defined as the

fraction of the bits which are visibly covered, by the reads inY . Thus, Φv ≜ 1
n

∑n
i=1 I{xi is visibly covered by reads in Y}.

Remark 1. The notion of visible coverage is parallel to coverage in [1], where coverage (denoted by Φ)

for a collectionY is the fraction of bits which covered by reads inY , i.e, Φ ≜ 1
n

∑n
i=1 I{xi is covered by reads in Y}.

To analyse the errors the decoder can make while merging, we need to bound the different possible
ways a read can be merged with other reads in the set Y . To capture this, we define the quantity Mz .

Definition 9 (The quantity Mz). For a string z = {0, 1,⊥}l, l ∈ [L], the random variable Mz is defined

as the number of reads in Y , which are l-compatible with z (i.e., which have a l-length prefix that is

compatible with z). Thus,

Mz ≜
∑
y∈Y

I{y is l-compatible with z}

25

Towards assessing the goodness of some overlap tuples, we need the following quantity, denoted by
G(τ).

Definition 10 (The quantity G(τ)). We define1 G(τ) to be the number of reads in Y , such that for each

such read, the size of the merging suffix with its true successor is τ log n. Thus,

G(τ) ≜
∑
i∈[K]

Iωt
i=τ logn, (3.1)

where ωt = (ωt
1, . . . , ω

t
K) is the sequence of sizes of the true merging suffixes.

3.3 Concentration Results and Bounds on Quantities

In order to show achievability, we will first prove concentration results for some of the quantities that
we have defined. Our first concentration result is on the number of true islands. Note that by definition,
erasures do not affect the existence of any true islands. Hence, the proof for the following lemma is
identical to the proof of Lemma 2 in [1].

Lemma 1 (Concentration of Number of True Islands). Let the number of true islands be K ′. Thus, for

any ϵ > 0

lim
n→∞

Pr
(∣∣K ′ −Ke−c

∣∣ ≥ ϵKe−c
)
= 0.

For the sake of completeness, proof of this lemma given in Appendix B.
We now show the concentration of the visible coverage.

Lemma 2 (Concentration of Visible Coverage). For any ϵ > 0, the visible coverage Φv satisfies

lim
n→∞

Pr
(
|Φv − (1− e−c(1−δ))| > ϵ(1− e−c(1−δ))

)
= 0. (3.2)

Proof. We have the following equalities,

E[Φv] =
1

n
· E

[
n∑

i=1

I{xi is visibly covered by in reads in Y}

]

= Pr(x1 is visibly covered by in reads in Y)

= 1− Pr(x1 is not visibly covered by in reads in Y)

= 1− Pr(x1 is not visibly covered by y
j
,∀j ∈ {1, · · · ,K})

= 1− Pr(x1 is not visibly covered by read y
1
)K

= 1− (1− Pr(x1 is visibly covered by read y
1
))K .

1In this work, the τ in G(τ) represents the size of the merging suffix (i.e., the number of unerased bits in the overlapping
portion of the predecessor) normalised by logn, rather than the normalised length of overlap itself, as defined in [1].

26

Now, Pr(x1 is visibly covered by read y
1
) = L

n (1− δ). Hence,

E[Φv] = 1−
(
1−

(
L

n
(1− δ)

))K

= 1−
(
1−

(
L

n
(1− δ)

))(cn
L)

= 1−
(
1−

(
L̄ log n

n
(1− δ)

))(cn
L̄ logn

)
.

Let t =
(

n
L̄ logn(1−δ)

)
Hence, we get

lim
n→∞

E[Φv] = lim
t→∞

E[Φv]

= lim
t→∞

(
1−

(
1− 1

t

)(c(1−δ)t)
)

= 1− lim
t→∞

((
1− 1

t

)(c(1−δ)t)
)

(3.3)

= (1− e−c(1−δ)). (3.4)

The rest of this proof follows almost identical arguments as in the Lemma 1 of [1], essentially

bounding the variance of Φv and using the Chebyshev inequality to complete the result. We therefore

omit the details.

Remark 2. Note that the concentration of the coverage Φ (i.e., Lemma 1 in [1]) also follows from

Lemma 2, by substituting δ = 0.

Lemma 3 shows the concentration of the parameter G(τ) in some regime around its mean. Lemma
3 is similar to Lemma 4 in [1], and the proof follows similar arguments. However, a key difference
with [1] is that the deviation around the mean in Lemma 4 of [1] is a function of Ḡ(τ), whereas for our
purpose here, the deviation ϵn/log2 n suffices.

Lemma 3. For any ϵ > 0,

lim
n→∞

Pr

(⋃
τ∈T

{∣∣G(τ)− Ḡ(τ)
∣∣ ≥ ϵn

log2 n

})
= 0,

where T = { 1
logn ,

2
logn , · · · , L̄} and Ḡ(τ) ≜ E[G(τ)].

Proof. We know that,

Pr

(⋃
τ∈T

{∣∣G(τ)− Ḡ(τ)
∣∣ ≥ ϵ

n

log2 n

})
≤ Var(G(τ))

ϵ2 ·
(

n
log2 n

)2 . (3.5)

27

Let Ai denote the event that the ith read y
i

overlaps with its true successor with size of merging

suffix as τ log n. Thus, G(τ) =
∑K

i=1 IAi . As the random variables Ai : i ∈ [K] are identically

distributed, we have Ḡ(τ) = K Pr(Ai), for any i.

As G(τ) is the sum of indicator random variables, the following is true (for a proof, see Chapter 4

in [44], for instance),

Var(G(τ)) ≤ Ḡ(τ) +
∑

i,j∈[K]:i ̸=j

Cov(IAi , IAj), (3.6)

where

Cov(IAi , IAj) = E[IAiIAj]− E[IAi]E[IAj], (3.7)

is the covariance between the random variables IAi and IAj .

Now,

E[IAi] = Pr(Ai) =
Ḡ(τ)

K
= E[IAj]. (3.8)

Further, Ai and Aj are independent if reads y
i

and y
j

do not overlap, i.e., |S(y
i
)−S(y

j
)| ≥ L. Thus,

we have

E[IAiIAj] = Pr(Ai, Aj)

≤ Pr(Ai, Aj |{|S(yi)− S(y
j
)| ≥ L})

+ Pr({|S(y
i
)− S(y

j
)| < L})

≤ Pr(Ai) Pr(Aj) +
L

n

=
Ḡ(τ)2

K2
+

L

n
. (3.9)

Using (3.7), (3.8) and (3.9) in (3.6), we get

Var(G(τ)) ≤ Ḡ(τ) +
∑

i,j∈[K]:i ̸=j

L

n

≤ Ḡ(τ) +K2L

n
(3.10)

(a)

≤ K + cK = (1 + c)K, (3.11)

where (a) holds as G(τ) ≤ K, by definition. Using (3.11) in (3.5),

Pr

(⋃
τ∈T

{∣∣G(τ)− Ḡ(τ)
∣∣ ≥ ϵ

n

log2 n

})
≤ Var(G(τ))

ϵ2 ·
(

n
log2 n

)2 ≤ (1 + c)K

ϵ2 ·
(

n
log2 n

)2 = Θ

(
log3 n

n

)
→ 0,

as n→∞.

28

Lemma 4 gives us concentration results for the parameter Mz in various regimes. This is similar to
Lemma 3 in [1], except that the proof is simpler than in [1].

Lemma 4. For z ∈ ∪l∈[L]{0, 1,⊥}l, let τue(z) = ℓue(z)/ log n. The following are then true for any

ϵ > 0,

a) limn→∞ Pr
(⋃

z : τue(z)≤1−ϵ

{∣∣Mz −Kn−τue(z)
∣∣ ≥ ϵKn−τue(z)

})
= 0.

b) lim
n→∞

Pr
(⋃

z : τue(z)>1−ϵ{Mz ≥ nϵ}
)
= 0.

Proof. Consider vectors with erasures of the form z = {0, 1,⊥}l, l ≤ L. For the transmitted code-

word x ∈ {0, 1}n, let D ≜ {i ∈ [n] : (xi, · · · , xi+l−1) is l-compatible with z}. Therefore, Mz =∑K
i=1 I{S(yi)∈D}. Observe that Pr(I{S(y

i
)∈D} = 1) = 1/2τue(z) logn = n−τue(z). Further, the random

variables I{S(y
i
)∈D} : i ∈ [K] are independent, as S(y

i
) : i ∈ [K] are independent random variables.

We first prove part a). Consider τue(z) ≤ 1− ϵ.

Pr

 ⋃
z:τue(z)≤1−ϵ

{∣∣∣Mz −Kn−τue(z)
∣∣∣ ≥ ϵKn−τue(z)

}
≤

∑
z:τue(z)≤1−ϵ

Pr
({∣∣∣Mz −Kn−τue(z)

∣∣∣ ≥ ϵKn−τue(z)
})

(a)

≤ L̄ log n · nL̄ log 3·

max
z:τue(z)≤1−ϵ

Pr
({∣∣∣Mz −Kn−τue(z)

∣∣∣ ≥ ϵKn−τue(z)
})

(b)

≤ L̄ log n · nL̄ log 3 · 2e
−
(

K·n−τue(z)ϵ2

(1−n−τue(z))

)

≤ L̄ log n · nL̄ log 3 · 2e
−
(

c·n1−τue(z)ϵ2

2L

)
(c)

≤ L̄ log n · nL̄ log 3 · 2e−
(

c·nϵϵ2

2L

)
.

Here (a) holds as |{z : τue(z) ≤ 1 − ϵ}| ≤
∑L

l=1 3
l ≤

∑L
l=1 3

L ≤ L · 3L = L̄ log n · nL̄ log 3.

The inequality (b) is from Hoeffding’s inequality in Lemma 5 (which we use with the parameters Xi =

I{S(y
i
)∈D}, N = K, and p = n−τue(z)), and (c) follows as τue(z) ≤ 1 − ϵ. Thus, part a) of the lemma

can be seen to be true, from the R.H.S. of the inequality (c).

Similarly, for τue(z) > 1− ϵ, we have,

29

Pr

 ⋃
z:τue(z)>1−ϵ

{Mz ≥ nϵ}

 ≤ L̄ log n · nL̄ log 3 max
z:τue(z)>1−ϵ

Pr
(
{Mz ≥ nϵ}

)
(a)

≤ L̄ log n · nL̄ log 3 · e
−
(

(nϵ−Kn−τue(z))
2

2Kn−τue(z)(1−n−τue(z))

)

≤ L̄ log n · nL̄ log 3 · e
−
(
(nϵ−(c/L)n1−τue(z))

2

2(c/L)n1−τue(z)

)

(b)

≤ L̄ log n · nL̄ log 3 · e
−
(
(nϵ−(c/L)nϵ)2

2(c/L)nϵ

)

≤ L̄ log n · nL̄ log 3 · e
−
(

nϵ(L̄ logn−c)2

2cL̄ logn

)
,

where (a) is due to Hoeffding’s inequality in Lemma 6 (with parameters Xi = I{S(y
i
)∈D}, p = n−τue(z),

and x = nϵ −Kn−τue(z)) and (b) is because τue(z) > 1 − ϵ. From the above R.H.S. expression, it is

easy to see that part b) of the lemma holds.

Remark 3. Observe that the bounds on Mz obtained from Lemma 4 are independent on the vector z

itself, depending instead only on ℓue(z) = τue(z) log n.

3.4 Decoding Algorithm

We are now ready to present the decoding algorithm, Algorithm 1. Following the outline presented in
section 3.1, we can understand the decoding algorithm in three phases. The first phase attempts merging
of the reads Y , using the suffix-sizes from a special subset of [0 : L]K , defined as follows.

Definition 11 (Typical Suffix-size tuples). For a tuple ω ∈ [0, L]K and integer b ∈ [0 : L], let

count(ω, b) be the number of times b appears in ω. For any ϵ > 0, we define the set Ω of typical

suffix-size tuples as the set of ω ∈ [0, L]K satisfying the following conditions.

• |count(ω, 0)−Ke−c| ≤ ϵKe−c, and

• |count(ω, τ)− Ḡ(τ)| ≤ ϵn
log2 n

,∀τ ∈ T , where T = { 1
logn ,

2
logn , · · · , L̄}.

For each typical suffix-size tuple ω = (ω1, . . . , ωK) ∈ Ω, for each permutation ζ of [K] (which we
view as an ordering of the K reads), Algorithm 1 attempts to merge the reads such that each value ωi

is the size of the merging suffix of each read y
ζ(i)

The intuition for the first condition in Definition 11
follows from the following observation. As mentioned in Definition 6, in the process of merging, an

30

island is created, with the last read of the island being read y
ζ(i)

whenever ωi = 0. Thus, count(ω, 0)
denotes the number of islands generated in the process of merging the reads, if it is successful. This
is the merge phase of Algorithm 1, which is performed for each ordering ζ and each typical suffix-size
tuple ω ∈ Ω, corresponding to the steps 4-8.

In the filtering phase, the set I of islands, obtained from a successful merge process, is filtered based
on its visible coverage. That is, the total number of unerased bits in the islands obtained, denoted by
ϕ(I), is checked (as per step 9) for the following condition (designed based on Lemma 2).

|ϕ(I)− (1− e−c(1−δ))| ≤ ϵ(1− e−c(1−δ)).

If the above check is passed, then the set I of islands obtained is added to a collection CI of candidate
island sets (step 10).

The third phase is the compatibility check phase, which is done in steps 15-18. Any codewords
which are compatible with all the islands of any set I of islands is added into a set X̂ of candidate
codewords. Finally, in steps 19-21, the estimated message index ŵ ∈ [2nR] is returned, corresponding
to the only codeword in the candidate set X̂ , if that is the case. Else, a failure is declared (steps 22-23).

3.5 Brief overview of the proof of achievability

We first show that the true ordering ζt is surely picked by step 5, and the true suffix-size tuple ωt be-
longs to Ω (and thus considered in step 4) with high probability for large n, following the concentration
properties shown in Lemma 1 and Lemma 3. The set of islands resulting from these will be the set of
true islands, which will have visible coverage close to the expected visible coverage, following Lemma
2. Thus, the true set of islands, with visible coverage close to the expected visible coverage, will pass
the check in step 9, and thus will be in the candidate island set with high probability. Thus, the true
transmitted codeword xw belongs to the set of candidate codewords X̂ , with high probability. Finally,
using the concentration lemmas shown in section 3.3, we show that |X̂ | = 1 (therefore containing only
the true codeword) with high probability, for large n, provided R satisfies (1.1) in Theorem 1. The
precise arguments of the proof follow in section 3.6.

3.6 Detailed Proof of Achievability

Our analysis of the decoder’s probability of error follows that in [1]. We define the following unde-
sirable events.

B1 = {K ′ > b1}, B2 = {Φv < b2},

B3 =
⋃
z∈Z
{Mz > b3(τ)}, B4 =

⋃
τ∈T
{G(τ) > b4(τ)},

31

Algorithm 1: Decoding Algorithm

1 Input: Codebook C = {x1, x2, · · · , x2nR}, Reads Y , Typical suffix-size tuples Ω.

2 Output: Estimate ŵ of the input codeword, or Failure.

3 Initialize: Collection of Candidate Islands CI← ∅.

4 for each suffix-size tuple ω ∈ Ω do

5 for permutation ζ of [K] do

6 if y
ζ(i)

and y
ζ(i+1)

are mergeable with size of merging suffix as ωi, ∀i ∈ [K] then

7 Merge reads according to the suffix-size tuple ω to form set of islands I.

8 ϕ(I)← number of unerased bits in resulting islands.

9 if |ϕ(I)− (1− e−c(1−δ))| ≤ ϵ(1− e−c(1−δ)) then

10 Add I to CI.

11 end

12 end

13 end

14 end

15 Candidate codewords X̂ ← ∅.

16 for each set of islands I ∈ CI do

17 Insert into X̂ , all the x ∈ C such that all islands in I are compatible substrings of x.

18 end

19 if |X̂ | = 1 then

20 Estimate ŵ ← message index corresponding to x ∈ X̂ .

21 return ŵ

22 else

23 return FAIL (decoding failure)

24 end

where Z = ∪l∈[L]{0, 1,⊥}l, and the constants b1, b2, b3(τ), and b4(τ) are defined as follows.

b1 ≜ (1 + ϵ)Ke−c, b2 ≜ (1− ϵ)(1− e−c(1−δ)),

b3(τ) ≜

(1 + ϵ)n1−τ if τ ≤ 1− ϵ,

nϵ if τ > 1− ϵ,
,

32

b4(τ) ≜ Ḡ(τ) +
ϵn

log2 n
.

Let B =
⋃4

i=1Bi. Recall that the transmitted message W is chosen uniformly at random. We thus get
the following expression for the probability of decoding error.

Pr(W ̸= Ŵ) = Pr(W ̸= Ŵ |W = 1) ≤ Pr(W ̸= Ŵ |W = 1, B̄) + Pr(B), (3.12)

by the law of total probability.
Now, for some island set I ∈ CI, if each island in I is a compatible substring of some codeword xi,

then we say that island set I is compatible with i. The event {Ŵ ̸= 1} can occur in one the following
ways: (a) no island set in CI is compatible with i = 1 (event E1), or (b) some island set in CI is
compatible with i ∈ [2 : 2nR] (event Ei). Thus, we can write,

Pr(W ̸= Ŵ |W = 1, B̄) + Pr(B) ≤ Pr(E1|W = 1, B̄) +

2nR∑
i=2

Pr(Ei|W = 1, B̄) + Pr(B). (3.13)

Now, from Lemmas 1-4, we then have limn→∞ Pr(B) = 0. As argued in section 3.5, the event B̄1 ∩
B̄2 ∩ B̄4 ensures the occurrence of the true island set in the CI set with high probability as n → ∞,
following Definition 11 and steps 4 to 9 of Algorithm 1. This true island set is surely compatible with
i = 1, as W = 1 is the true message in our case. Thus, limn→∞ Pr(E1|W = 1, B̄) = 0.

Let the collection of candidate islands CI = {I1, . . . , I|CI|}. Hence, we have, for i ∈ [2 : 2nR],

Pr(Ei|W = 1, B̄)

= Pr(∃I ∈ CI s.t. I is compatible with i |W = 1, B̄)

≤
|CI|∑
s=1

Pr
(
Is is compatible with i |W = 1, B̄

)
. (3.14)

Now, recall that the number of islands in Is is at most b1, for any typical suffix-size tuple ω ∈ Ω.
Further, from the condition on ϕ(Is) in the filtering phase, the visible coverage of Is must be at least b2.
Thus, the islands in Is can be arranged in one of at most nb1 orderings, when checking for compatibility
with message i. Further, for any such ordering, the probability of compatibility is at most 2−nb2 , as the
bits in the codewords x1 and xi are generated independently and uniformly at random (since i ̸= 1).
Thus, the event that Is is compatible with i can be bounded as

Pr
(
Is is compatible with i |W = 1, B̄

)
≤ nb1

2nb2
. (3.15)

Using (3.15), (3.14), (3.13) and (3.12), we have

Pr(W ̸= Ŵ) ≤ 2nR · |CI| · nb1 · 1

2nb2
+ o(1)

= 2nR+log |CI|+b1 logn−nb2 + o(1)

= 2nR+log |CI|+(1+ϵ)Ke−c logn−n(1−ϵ)(1−e−c(1−δ)) + o(1).

33

Using the fact that K log n = cn/L̄, we see that Pr(W ̸= Ŵ)→ 0 as n→∞, if

R ≤ lim
n→∞

(
(1− ϵ)

(
1− e−c(1−δ)

)
− (1 + ϵ)

ce−c

L̄
− 1

n
log |CI|

)
≤ (1− ϵ)

(
1− e−c(1−δ)

)
− (1 + ϵ)

ce−c

L̄
− lim

n→∞

1

n
log |CI|. (3.16)

In Appendix C, the term 1
n log |CI| is shown to be upper bounded as shown below, for any p > 0 and

d > 0.

1

n
log |CI| ≤ (1 + 2p)d

(1− δ)
·
(c

L̄

)2
· eαpd−c ·

(
eαd(eα − 1)

(eαd − 1)
−

e2αd
((
eα(1+d) − eα

)
− d
(
eα(1+d) − 1

))
(eαd − 1)

2

)
,

(3.17)

where α = c
L̄(1−δ)

.
Using (3.17) in (3.16) and letting p→ 0, we get

R <
(
1− e−c(1−δ)

)
− ce−c

L̄
− β(d), (3.18)

where

β(d) =
d

(1− δ)
·
(c

L̄

)2
· e−c ·

(
eαd(eα − 1)

(eαd − 1)
−

e2αd
((
eα(1+d) − eα

)
− d
(
eα(1+d) − 1

))
(eαd − 1)

2

)
.

Now, as d→ 0,

lim
d→0

β(d) = (1− δ)(e
−c
(
1− 1

L̄(1−δ)

)
− e−c) +

c

L̄
e−c. (3.19)

The proof of (3.19) is provided in Appendix D.
Thus, using (3.19) in (3.18), we have proven our result, which is that if

R <
(
1− e−c(1−δ)

)
− (1− δ)

(
e
−c
(
1− 1

L̄(1−δ)

)
− e−c

)
,

then Pr(W ̸= Ŵ)→ 0 as n→∞.

34

Chapter 4

Conclusion and Future Work

In this thesis, we identified achievable rates for the shotgun sequencing channel SSE(δ) with erasure
probability δ, using techniques inspired from [1]. The expression in Theorem 1 is identical to the
capacity of the erasure-free shotgun sequencing channel, derived in [1]. As expected, we see that the
obtained achievable rate for SSE(δ) reduces progressively as δ increases. For the shotgun sequencing
channel, the converse result obtained in [1] depends on results from prior work on the torn-paper channel
[30, 31]. A converse result for SSE(δ) can possibly be obtained by generalizing these results to torn-
paper channels with erasures; however, this appears not straightforward, a fact that has been noticed
before (see [31, Section VII]).

In particular, the converse result in [1] works is established by using the fact that the capacity of
such channels can be expressed in the form C = (coverage)− (reordering cost), where reordering cost
is the number of redundant bits remaining in the fragments. However, due to the added complexity of
erasures, the calculation of this quantity is not trivial and requires further analysis.

Apart from erasures due to substitution, the Shotgun Sequencing pipeline is also prone to other types
of error. The sensors in the sequencing process may misidentify the nucleotide base, which could lead
to substitution errors. In practice, we are likely to see both erasure (due to low quality scores) and
substitution errors (quality score above threshold, but nucleotide is misidentified1) in the output of the
sequencing process. Further, the PCR amplification process that precedes the sequencing step is also
prone to IDS errors.

Hence, the analysis of the shotgun sequencing pipeline is still a work in progress. Some directions
for further works are as below:

1. Converse result for SSE(δ), giving the upper-bound for the capacity of the channel.

2. Development of practical error-correction codes for SSE(δ), which realises the bound on achiev-
able rates.

1While high quality score implies high probability that the nucleotide is identified correctly, there is still a small probability
that the nucleotide is misidentified. This becomes significant when the total number of nucleotide in the sequence becomes
extremely large.

35

3. Examination of the shotgun sequencing pipeline in the context of other errors (insertion, deletion,
substitution etc.).

36

Appendix A

Concentration inequalities used in this work

The following Hoeffding-type concentration inequalities are used in this work (see [45], for in-
stance).

Lemma 5. For i.i.d. Bernoulli random variables X1, X2 · · ·XN with parameter p,

Pr

(∣∣∣∣∣ 1N
N∑
i=1

Xi − p

∣∣∣∣∣ ≥ ϵp

)
≤ 2e

−Npϵ2

1−p .

Lemma 6. For i.i.d. Bernoulli random variables X1, X2 · · ·XN with parameter p,

Pr

(
N∑
i=1

Xi −Np ≥ x

)
≤ e

− x2

2Np(1−p) .

37

Appendix B

Proof of Lemma 1

We start by noticing that if the suffix of a read does not overlap with any other read, then the read
must be the last read of a real island. Hence, the number of real islands can be obtained by counting the
total number of such reads. Therefore,

E[K ′] =

K∑
i=1

E[Iy
i

does not overlap with any other read]

= K Pr(y
i

does not overlap with any other read)

= K

(
1− L

n

)K−1

.

Hence,

lim
n→∞

log n

n
E[K ′] = lim

n→∞

log n

n
K

(
1− L

n

)K−1

= lim
n→∞

log n

n

cn

L̄ log n

(
1− L̄ log n

n

) cn
L̄ logn

−1

=
c

L̄
e−c.

Therefore, from the definition of limit, for large enough n we have |E[K ′]−Ke−c| <
(
ϵ
2

)
Ke−c,

for any
(
ϵ
2

)
> 0. Thus, by triangle inequality

|K ′ −Ke−c| ≤ |K ′ − E[K ′]|+ |E[K ′]−Ke−c| ≤ ϵKe−c,

if |K ′ − E[K ′]| ≤
(
ϵ
2

)
Ke−c.

Hence,

Pr
(∣∣K ′ −Ke−c

∣∣ ≥ ϵKe−c
)
≤ Pr

(∣∣K ′ − E[K ′]
∣∣ ≥ (ϵ

2

)
Ke−c

)
(B.1)

38

Further, for large enough n, we have,

Pr
(∣∣K ′ − E[K ′]

∣∣ ≥ (ϵ
2

)
Ke−c

)
≤ Var(K ′)(

ϵ
2

)2
(Ke−c)2

. (B.2)

Let Ai denote the event that the ith read y
i

does not overlap with another read. Thus, K ′ =
∑K

i=1 IAi .
As the random variables Ai : i ∈ [K] are identically distributed, we have E[K ′] = K Pr(Ai), for any i.

As K ′ is the sum of indicator random variables, the following is true (for a proof, see Chapter 4
in [44], for instance),

Var(K ′) ≤ E[K ′] +
∑

i,j∈[K]:i ̸=j

Cov(IAi , IAj), (B.3)

where

Cov(IAi , IAj) = E[IAiIAj]− E[IAi]E[IAj], (B.4)

is the covariance between the random variables IAi and IAj .

Now,

E[IAi] = Pr(Ai) =

(
1− L

n

)K−1

= E[IAj]. (B.5)

Further, Ai and Aj are independent if reads y
i

and y
j

do not overlap, i.e., |S(y
i
)−S(y

j
)| ≥ L. Thus,

we have

E[IAiIAj] = Pr(Ai, Aj)

≤ Pr(Ai, Aj |{|S(yi)− S(y
j
)| ≥ L})

+ Pr({|S(y
i
)− S(y

j
)| < L})

≤ Pr(Ai) Pr(Aj) +
L

n

=

(
1− L

n

)2(K−1)

+
L

n
. (B.6)

Using (B.4), (B.5) and (B.6) in (B.3), we get

Var(K ′) ≤ E[K ′] +
∑

i,j∈[K]:i ̸=j

L

n

≤ E[K ′] +K2L

n
(B.7)

(a)

≤ K + cK = (1 + c)K, (B.8)

39

where (a) holds as K ′ ≤ K, by definition. Using (B.2) and (B.8) in (B.1),

Pr
(∣∣K ′ −Ke−c

∣∣ ≥ ϵKe−c
)
≤ Pr

(∣∣K ′ − E[K ′]
∣∣ ≥ (ϵ

2

)
Ke−c

)
≤ Var(K ′)(

ϵ
2

)2
(Ke−c)2

≤ (1 + c)K(
ϵ
2

)2
(Ke−c)2

= Θ

(
log n

n

)
→ 0,

as n→∞.

40

Appendix C

Proof of (3.17) (bound for 1
n log |CI|

We start with a simple upper bound on |CI|, following steps 4-11 of Algorithm 1.

|CI| ≤
∑
ω∈Ω

(number of read-orderings ζ compatible with ω),

where an ordering ζ is said to be compatible with a suffix-size tuple ω = (ω1, . . . , ωK) if each read y
ζ(i)

is mergeable with its successor y
ζ(i+1)

with the specified merging suffix-size ωi, ∀i ∈ [K].

For any ω ∈ Ω, we now provide the intuition for counting the number of compatible orderings.
Consider that an arbitrary read y is selected as the first read. Note that, due to the presence of erasures,
there may be multiple potential merging suffixes with size ω1 in this specific read y. A trivial upper
bound for the number of such possible merging suffixes is ℓ(y) = L̄ log n. Now, suppose we pick a
particular merging suffix, z, such that ℓue(z) = ω1 = τ log n, where τ = ω1/ log n .

We know that, for a given z, Mz represents the number of reads which are ℓ(z)-compatible with z. In
other words, Mz gives the number reads which are mergeable with the read y with z as merging suffix.
Thus, there are at most Mz possible successors for y, such that the compatibility with ω is maintained.
Note that Mz ≤ b3(τ) (due to the assumption that the event B̄ occurs). Once the size of the merging
suffix and the successor to the first read are fixed, similar counting arguments hold the second read’s
merge with its successor. Note that the expected number of times τ log n appears in ω ∈ Ω is exactly
G(τ), and G(τ) ≤ b4(τ) by the definition of Ω. Also, we observe that, since the ordering and merging
process are cyclical, only those orderings where the last read is a valid predecessor of the first read, as
per the merge given by the suffix-size tuple ω, are allowed. Thus, every pick where the successor of the
last read is not the first read is not considered in the counting.

To summarise, for a fixed τ , the number of possible ways of merging a read, choosing some successor
and some suffix with size τ log n, is upper bounded by L̄ log n · b3(τ). Such mergings can occur for
G(τ) reads among the K reads. Using this, we get

|CI| ≤
∑
ω∈Ω

∏
τ∈T

(L̄ log n · b3(τ))b4(τ)

41

≤ (L+ 1)K ·
∏
τ∈T

(L̄ log n · b3(τ))b4(τ)

= (L+ 1)K ·
∏
τ∈T

(L̄ log n · b3(τ))
Ḡ(τ)+ϵ n

log2 n

= (L+ 1)K ·
∏
τ∈T

(L̄ log n · b3(τ))Ḡ(τ)

·
∏
τ∈T

(L̄ log n · b3(τ))
ϵ n
log2 n .

Thus, we have

lim
n→∞

1

n
log |CI|

≤ lim
n→∞

1

n
log

(
(L+ 1)K ·

∏
τ∈T

(L̄ log n · b3(τ))Ḡ(τ)

)

+ lim
n→∞

1

n
log

(∏
τ∈T

(L̄ log n · b3(τ))
ϵ n
log2 n

)
.

Now,

lim
n→∞

1

n
log

(∏
τ∈T

(L̄ log n · b3(τ))
ϵ n
log2 n

)

= lim
n→∞

ϵ

log2 n
log

(∏
τ∈T

(L̄ log n · b3(τ))

)

= lim
n→∞

ϵ

log2 n
log

(∏
τ∈T

L̄ log n

)

+ lim
n→∞

ϵ

log2 n
log

(∏
τ∈T

b3(τ)

)
= lim

n→∞

ϵ

log2 n

∑
τ∈T

log
(
L̄ log n

)
+ lim

n→∞

ϵ

log2 n

∑
τ∈T

log b3(τ)

(a)

≤ lim
n→∞

ϵ

log2 n

∑
τ∈T

log
(
L̄ log n

)
+ lim

n→∞

ϵ

log2 n

∑
τ∈T

log n

(b)

≤ lim
n→∞

ϵ

log2 n
(L̄ log n+ 1) log

(
L̄ log n

)
+ lim

n→∞

ϵ

log2 n
(L̄ log n+ 1) log n

= 0 + ϵL̄.

42

Here, (a) holds as b3(τ) ≤ n, ∀τ ∈ T and (b) is due to |T | = L̄ log n+ 1. Thus, as ϵ→ 0, the value of
this term goes to 0.

Hence, we have,

lim
n→∞

1

n
log |CI|

≤ lim
n→∞

1

n
log

(
(L+ 1)K ·

∏
τ∈T

(L̄ log n · b3(τ))Ḡ(τ)

)

= lim
n→∞

K

n
log (L+ 1) + lim

n→∞

1

n
log

(∏
τ∈T

(L̄ log n)Ḡ(τ)

)

+ lim
n→∞

1

n
log

(∏
τ∈T

b3(τ)
Ḡ(τ)

)
= lim

n→∞

c

L̄ log n
log
(
L̄ log n+ 1

)
+ lim

n→∞

1

n
log (L̄ log n)

∑
τ∈T

Ḡ(τ)

+ lim
n→∞

1

n
log

 ∏
τ>(1−ϵ)

(nϵ)Ḡ(τ)

+ lim

n→∞

1

n
log

 ∏
τ≤(1−ϵ)

(
n1−τ

)Ḡ(τ)

= 0 + lim

n→∞

K

n
log (L̄ log n)

+ lim
n→∞

ϵ

n
log n

∑
τ>1−ϵ

Ḡ(τ)

+ lim
n→∞

1

n
log n

∑
τ≤1−ϵ

(1− τ)Ḡ(τ)

≤ lim
n→∞

c

L̄ log n
log (L̄ log n)

+ lim
n→∞

ϵ

n
log n ·K

+ lim
n→∞

1

n
log n

∑
τ≤1−ϵ

(1− τ)Ḡ(τ)

= 0 +
ϵc

L̄

+ lim
n→∞

1

n
log n

∑
τ≤1−ϵ

(1− τ)Ḡ(τ),

Thus, as ϵ→ 0,

lim
n→∞

1

n
log |CI| ≤ lim

n→∞

1

n
log n

∑
τ≤1−ϵ

(1− τ)Ḡ(τ)

43

The following claim gives an upper bound for the quantity limn→∞
logn
n

∑
τ≤1−ϵ(1−τ)G(τ). Using

this completes the proof.

Claim 1. Let Ḡ(τ) denotes the expectation of G(τ), and α = c/(L̄(1− δ)). The following statement is

true.

lim
n→∞

log n

n

1∑
τ=0

(1− τ)Ḡ(τ)

≤(1 + 2p)d

(1− δ)
·
(c

L̄

)2
· eαpd−c·(

eαd(eα − 1)

(eαd − 1)

−
e2αd

((
eα(1+d) − eα

)
− d
(
eα(1+d) − 1

))
(eαd − 1)

2

)
, (C.1)

for any p > 0 and any d > 0.

Proof. Recall that ωt = (ωt
1, . . . , ω

t
K) denotes the true sizes of the merging suffixes of the reads, taken

in the true ordering ζt. Thus, ωt
i refers to the true suffix-size of the ith read y

ζt(i)
. Note that ωt

i : i ∈ [K]

are random variables, depending on the length of the overlapping region, as well as the erasure pattern

in the overlapping region. Let Li denote the length of the overlapping region of read y
ζt(i)

with read

y
ζt(i+1)

. Let ω̄t
i denote the expectation of ωt

i conditioned on Li, over the randomness of the erasures.

Observe that ω̄t
i = Li(1− δ). Also, we recall that Li ≤ L.

We split the interval [0, 1) into subintervals of size d for some d > 0. Thus, there are 1/d intervals.

For k ∈ {0, 1, . . . , 1/d − 1}, the kth interval is denoted as [kd, (k + 1)d). Let Ḡ([kd, (k + 1)d))

denote the expectation of the number of reads which have suffix-size between kd and (k + 1)d, i.e.,

Ḡ([kd, (k + 1)d)) ≜ E[
∑

i∈[K] Iωt
i∈[kd logn,(k+1)d logn)]. Thus, Ḡ([kd, (k + 1)d)) ≤

∑(k+1)d
τ=kd Ḡ(τ).

Thus, we can write

1∑
τ=0

(1− τ)Ḡ(τ) ≤
1/d−1∑
k=0

(1− kd)Ḡ([kd, (k + 1)d)). (C.2)

We now consider Ḡ([kd, (k + 1)d)). We can write the following inequalities. Without loss of

generality, we assume that the true ordering starts with read y
1

(i.e., ζt(1) = 1), and y
1

starts at the first

position, i.e., S(y
1
) = 1. Let Ak denote the event that the y

1
is mergeable with read y

2
as its successor,

with suffix size ωt
1 ∈ [kd, (k+1)d). Let Dj denote the event that S(y

j
) ≥ S(y

2
). Thus, by the definition

44

of Ḡ([kd, (k + 1)d)) and because ωt
i : i ∈ [K] are identically distributed, we have

Ḡ([kd,(k + 1)d))

= K Pr
(
y
1

is mergeable with y
j′

with suffix-size

ωt
1 ∈ [kd, (k + 1)d), for some j′ ∈ [K] \ {1},

s.t
{
S(y

j′
) ≤ S(y

j
),∀j ∈ [K] \ {1, j′}

})
= K(K − 1)Pr(Ak, {Dj : j ≥ 3}). (C.3)

We recall that Pr(S(y
j
) = s) = 1/n, for any s ∈ [n]. Since we assumed that S(y

1
) = 1, thus we

see that S(y
2
) = L − L1 + 1 = L − ω̄t

1/(1 − δ) + 1. Thus, for any 1 ≤ w ≤ L, then Pr(ω̄t
1 = w) =

Pr(S(y
2
) = L − w/(1 − δ) + 1) = 1/n. We now intend to bound Pr(Ak, {Dj : j ≥ 3}), as n → ∞,

using the fact that if ω̄t
1 is concentrated in a small interval, then so is ωt

1.

Consider some small p > 0 such that (1+ pd) log n ≤ L(1− δ) (such a p exists, as L̄ > 1/(1− δ)).

We define the following intervals, 1/d of them.

Ik =

[(k − p)d, (k + 1 + p)d], if 1 ≤ k ≤ 1/d− 1

[0, (1 + p)d], if k = 0.

(C.4)

Let Ck denote the event that ω̄t
1 ∈ Ik. We have that,

Pr(Ak, {Dj : j ≥ 3}) =Pr(Ak, {Dj : j ≥ 3}, Ck)

+ Pr(Ak, {Dj : j ≥ 3}, Ck). (C.5)

We now show that the term Pr(Ak, {Dj : j ≥ 3}, Ck) is O(log n/n2). We do this in two parts.

For k ≥ 1, we can write

Pr(Ak, {Dj : j ≥ 3}, {ω̄t
1 < (k − p)d log n})

=
∑

w<(k−p)d logn

Pr(Ak, {Dj : j ≥ 3}, ω̄t
1 = w)

≤
∑

w<(k−p)d logn

Pr(Ak|ω̄t
1 = w) Pr(ω̄t

1 = w). (C.6)

Now, we can use Hoeffding’s inequality1 to bound the quantity Pr(Ak|ω̄t
1 = w). To see this, observe

that when ω̄t
1 = w, the suffix-size ωt

1 of the merge of y
1

and y
2

is the sum of L1 = w/(1−δ) independent

1See [46]. The inequality is as follows. For S being the sum of n independent Boolean random variables and any t > 0,
Pr(S − E(S) ≥ t) ≤ 2e−2t2/n

45

Boolean indicator random variables (1 indicating erasure, 0 indicating no-erasure). Therefore, we get,

for w < (k − p)d log n

Pr(Ak|ω̄t
1 = w)

≤ Pr(ωt
1 ≥ kd log n|ω̄t

1 = w)

= Pr(ωt
1 ≥ ω̄t

1 + (kd log n− ω̄t
1)|ω̄t

1 = w)

(a)

≤ 2e−2(kd logn−w)2(1−δ)/w

(b)

≤ 2e−2(pd logn)2(1−δ)/((k−p)d logn) = 2e−2p2(1−δ)d logn/(k−p)

= Θ(1/n),

where (a) holds by the Hoeffding’s inequality, and (b) holds as w < (k − p)d log n. Using this in (C.6),

we get

Pr(Ak, {Dj : j ≥ 3}, {ω̄t
1 < (k − p)d log n})

(a)

≤ (k − p)d log n

(1− δ)
· 1
n
· 2e−p2(1−δ)d logn/(k−p)

= Θ

(
log n

n2

)
, (C.7)

where (a) holds because ω̄t
1 takes values in steps of (1− δ), (as ω̄t

1 = L1(1− δ) where L1 takes values

in unit steps).

Using similar arguments, we can show the following for all k ∈ {0, . . . , 1/d− 1}.

Pr(Ak, {Dj : j ≥ 3}, {ω̄t
1 ≥ (k + 1 + p)d log n})

=
∑

w≥(k+1+p)d logn

Pr(Ak, {Dj : j ≥ 3}, ω̄t
1 = w)

=
∑

w≥(k+1+p)d logn

Pr(Ak, {Dj : j ≥ 3}|ω̄t
1 = w) Pr(ω̄t

1 = w)

≤
∑

w≥(k+1+p)d logn

Pr(Ak|ω̄t
1 = w) Pr(ω̄t

1 = w)

≤
∑

w≥(k+1+p)d logn

(
Pr(ωt

1 < (k + 1)d log n|ω̄t
1 = w)

· Pr(ω̄t
1 = w)

)
≤

∑
w≥(k+1+p)d logn

(
Pr(ωt

1 < ω̄t
1 − (ω̄t

1 − (k + 1)d log n)

46

| ω̄t
1 = w) Pr(ω̄t

1 = w)
)

≤
∑

w≥(k+1+p)d logn

2e−2(w−(k+1)d logn)2(1−δ)/w Pr(ω̄t
1 = w)

≤
∑

w≥(k+1+p)d logn

2e−2(pd logn)2(1−δ)/((k+1+p)d logn) Pr(ω̄t
1 = w)

≤ 2e−2p2d logn(1−δ)/(k+1+p)

 ∑
w≥(k+1+p)d logn

Pr(ω̄t
1 = w)

= Θ

(
log n

n2

)
. (C.8)

Using (C.7) and (C.8), we see that

Pr(Ak, {Dj : j ≥ 3}, Ck)

= Pr(Ak, {Dj : j ≥ 3}, {ω̄t
1 < (k − p)d log n})

+ Pr(Ak, {Dj : j ≥ 3}, {ω̄t
1 ≥ (k + 1 + p)d log n})

= O

(
log n

n2

)
. (C.9)

Now, starting with the first term in the R.H.S. of (C.5), we have

Pr(Ak, {Dj : j ≥ 3}, Ck)

≤ Pr({Dj : j ≥ 3}, ω̄t
1 ∈ Ik) (C.10)

=
∑
w∈Ik

Pr({Dj : j ≥ 3}|ω̄t
1 = w) Pr(ω̄t

1 = w)

=
1

n
·
∑
w∈Ik

Pr({Dj : j ≥ 3}|ω̄t
1 = w)

=
1

n
·
∑
w∈Ik

Pr({Dj : j ≥ 3}|S(y
2
) = L− w/(1− δ) + 1)

=
1

n
·
∑
w∈Ik

(
1− L− w/(1− δ)

n

)K−2

. (C.11)

Using (C.2), (C.3), (C.5), (C.9) and (C.11), we get

log n

n

1∑
τ=0

(1− τ)Ḡ(τ)

≤ log n

n
· (K(K − 1))

(1/d−1∑
k=0

(1− kd)·

47

1

n
·
∑
w∈Ik

(
1− L− w/(1− δ)

n

)K−2)
+

log n ·K(K − 1)

n
Pr(Ak, {Dj : j ≥ 3}, Ck))

≤ log n

n2
· (K(K − 1))·(

1/d−1∑
k=0

(1− kd) ·

∑
w∈Ik

(
1− L− w/(1− δ)

n

)K−2
)

+ O

(
1

n

)
≤ log n

n2
· (K(K − 1))·[

1/d−1∑
k=0

(1− kd)·∑
w∈Ik

(
1− (L̄− (k + 1 + p)d/(1− δ)) log n

n

)K−2
]

+ O

(
1

n

)

≤ log n

n2
·
(

cn

L̄ log n

)2
[

1/d−1∑
k=0

(1− kd)·

·

(∑
w∈Ik

(
1− (L̄− (k + 1 + p)d/(1− δ)) log n

n

)K−2
)]

+ O

(
1

n

)
(a)

≤ (1 + 2p)d log n

(1− δ)
· log n

n2
·
(

cn

L̄ log n

)2

[
1/d−1∑
k=0

(1− kd)·

(
1− (L̄− (k + 1 + p)d/(1− δ)) log n

n

)K−2
]

+ O

(
1

n

)
≤ (1 + 2p)d

(1− δ)
·
(c

L̄

)2
·[

1/d−1∑
k=0

(1− kd)·

48

(
1− (L̄− (k + 1 + p)d/(1− δ)) log n

n

)K−2
]

+ O

(
1

n

)
≤ (1 + 2p)d

(1− δ)
·
(c

L̄

)2
·[

1/d−1∑
k=0

(1− kd)·

(
1− (L̄− (k + 1 + p)d/(1− δ)) log n

n

) cn
L̄ logn

−2
]

+ O

(
1

n

)
where (a) due to the size of interval Ik.

Now as n→∞, the above value goes to

(1 + 2p)d

(1− δ)
·
(c

L̄

)2
·
1/d−1∑
k=0

(1− kd)e
−c(L̄(1−δ)−(k+1+p)d)

L̄(1−δ)

=
(1 + 2p)d

(1− δ)
·
(c

L̄

)2
· e−c ·

1/d−1∑
k=0

(1− kd)e
c((k+1+p)d)

L̄(1−δ)

Taking α = c
L̄(1−δ)

, we get

(1 + 2p)d

(1− δ)
·
(c

L̄

)2
· eαpd−c ·

1/d−1∑
k=0

(1− kd)eα(k+1)d

=
(1 + 2p)d

(1− δ)
·
(c

L̄

)2
· eαpd−c·1/d−1∑

k=0

eα(k+1)d −
1/d−1∑
k=0

kdeα(k+1)d

=

(1 + 2p)d

(1− δ)
·
(c

L̄

)2
· eαpd−c·

·

eαd(eα − 1)

(eαd − 1)
− deαd

1/d−1∑
k=0

keαkd

(a)
=

(1 + 2p)d

(1− δ)
·
(c

L̄

)2
· eαpd−c·(

eαd(eα − 1)

(eαd − 1)

−
e2αd

((
eα(1+d) − eα

)
− d
(
eα(1+d) − 1

))
(eαd − 1)

2

)
,

49

where (a) holds because
∑N

i=0 iq
i =

∑N
i=1

∑N
j=i q

j = N qN+1

q−1 −
qn+1−1
(q−1)2

, for any q ̸= 0.

50

Appendix D

Proof of (3.19)(expression for limd→0 β(d)

Recall that

β(d) =
d

(1− δ)
·
(c

L̄

)2
· e−c ·

(
eαd(eα − 1)

(eαd − 1)
−

e2αd
((
eα(1+d) − eα

)
− d
(
eα(1+d) − 1

))
(eαd − 1)

2

)

=

(
1

(1− δ)
·
(c

L̄

)2
· e−c

)
· d

(
eαd(eα − 1)

(eαd − 1)
−

e2αd
((
eα(1+d) − eα

)
− d
(
eα(1+d) − 1

))
(eαd − 1)

2

)

=
(
(1− δ)α2e−c

)
·

(
d.eαd(eα − 1)(eαd − 1) + d2e2αd(eα(1+d) − 1)− de2αd(eα(1+d) − eα)

(eαd − 1)2

)
,

where α = c
L̄(1−δ)

.
We start by observing that β(d) at d = 0 gives an indeterminate

(
0
0

)
form, and thus we can apply

L’Hôpital’s rule twice to obtain the limit 1.
Now, we can re-express β(d) as,

β(d) = γ · β1 + β2 + β3

β4
, (D.1)

where,

γ = (1− δ)α2e−c

β1 = d.eαd(eα − 1)(eαd − 1)

β2 = d2(eα(1+d) − 1)e2αd

β3 = −de2αd(eα(1+d) − eα)

β4 = (eαd − 1)2.

Now,
∂β1

∂d
= (eα − 1)(eαd(eαd − 1) + αde2αd + αdeαd(eαd − 1))

= (eα − 1)(e2αd(1 + 2αd)− eαd(1 + αd)),

1By observation, it was found that the expression remains in the indeterminate
(
0
0

)
form after applying L’Hôpital’s rule

once, i.e., after differentiating both numerator and denominator once. Only on applying L’Hôpital’s rule twice, i.e., after
double-differentiating both numerator and denominator, a determinate expression is obtained.

51

and,

∂2β1

∂d2
= (eα − 1)(2αe2αd(1 + 2αd) + 2αe2αd − αeαd − αeαd(1 + αd)).

Hence,

lim
d→0

∂2β1

∂d2
= (eα − 1)(2α+ 2α− α− α) = 2α(eα − 1). (D.2)

Further,

∂β2

∂d
= 2d(eα(1+d) − 1)e2αd + αd2eα(1+d)e2αd + 2αd2(eα(1+d) − 1)e2αd

= de2αd(eα(1+d)(2 + 3αd)− 2(1 + αd)),

and,

∂2β2

∂d2
= e2αd(eα(1+d)(2 + 3αd)− 2(1 + αd)) + d · ∂

∂d
(e2αd(eα(1+d)(2 + 3αd)− 2(1 + αd))).

Hence,

lim
d→0

∂2β2

∂d2
= 2(eα − 1). (D.3)

Furthermore,

∂β3

∂d
= −(e2αd(eα(1+d) − eα) + 2αde2αd(eα(1+d) − eα) + αdeα(1+3d))

= −(e2αd(eα(1+d) − eα)(1 + 2αd) + αdeα(1+3d)),

and,

∂2β3

∂d2
= −(2αe2αd(eα(1+d) − eα)(1 + 2αd) + αeα(1+3d)(1 + 2d)

+ 2αe2αd(eα(1+d) − eα) + αeα(1+3d) + 3α2deα(1+3d)).

Hence,

lim
d→0

∂2β3

∂d2
= −(αeα + αeα) = −2αeα. (D.4)

Also,

∂β4

∂d
= 2α(eαd − 1)eαd,

and,

∂2β4

∂d2
= 2α2e2αd + 2α2(eαd − 1)eαd.

52

Hence,

lim
d→0

∂2β4

∂d2
= 2α2. (D.5)

Thus, using (D.2), (D.3), (D.4), and (D.5) in (D.1),

lim
d→0

β(d) = (1− δ)α2e−c ·
(
2α(eα − 1) + 2(eα − 1)− 2αeα

2α2

)
= (1− δ)e−c(eα − (1 + α))

= (1− δ)e−c

(
e

c
L̄(1−δ) −

(
1 +

c

L̄(1− δ)

))
= (1− δ)(e

−c
(
1− 1

L̄(1−δ)

)
− e−c) +

c

L̄
e−c.

53

Related Publications

• H. Narayanan, P. Krishnan, and N. Parekh, “On achievable rates for the shotgun sequencing chan-
nel with erasures”, Accepted for presentation at the 2024 IEEE International Symposium on In-
formation Theory (ISIT), to be held at Athens, Greece during July 7-12, 2024. (Full version
available on ArXiv at https://arxiv.org/abs/2401.16342).

54

https://arxiv.org/abs/2401.16342

Bibliography

[1] A. N. Ravi, A. Vahid, and I. Shomorony, “Coded shotgun sequencing,” IEEE Journal on Selected
Areas in Information Theory, vol. 3, no. 1, pp. 147–159, 2022.

[2] K. Weide-Zaage, “DNA digital-storage: Advantages, approach and technical implementation,” in
2024 Pan Pacific Strategic Electronics Symposium (Pan Pacific), 2024, pp. 1–6.

[3] R. Kim, L. Pschetz, C. Linehan, C. H. Lee, and S. Poslad, “Archives in DNA: Workshop exploring
implications of an emerging bio-digital technology through design fiction,” in Proceedings of
the 24th International Academic Mindtrek Conference, ser. Academic Mindtrek ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p. 102–105. [Online]. Available:
https://doi.org/10.1145/3464327.3464966

[4] C. Ezekannagha, A. Becker, D. Heider, and G. Hattab, “Design considerations for
advancing data storage with synthetic DNA for long-term archiving,” Materials Today Bio,
vol. 15, p. 100306, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2590006422001041

[5] E. Green, “Shotgun sequencing,” 2024. [Online]. Available: https://www.genome.gov/
genetics-glossary/Shotgun-Sequencing

[6] A. M. Nafea, Y. Wang, D. Wang, A. M. Salama, M. A. Aziz, S. Xu, and Y. Tong, “Application of
next-generation sequencing to identify different pathogens,” Frontiers in Microbiology, vol. 14,
2024. [Online]. Available: https://www.frontiersin.org/journals/microbiology/articles/10.3389/
fmicb.2023.1329330

[7] C. Baum, “New approaches and concepts to study complex microbial communities,” Theses,
Université Paris-Saclay ; New England Biolabs France, Oct. 2021. [Online]. Available:
https://theses.hal.science/tel-03531325

[8] A. Beckett, K. Cook, and S. Robson, “A pandemic in the age of next-generation sequencing,” The
Biochemist, vol. 43, 12 2021.

55

https://doi.org/10.1145/3464327.3464966
https://www.sciencedirect.com/science/article/pii/S2590006422001041
https://www.sciencedirect.com/science/article/pii/S2590006422001041
https://www.genome.gov/genetics-glossary/Shotgun-Sequencing
https://www.genome.gov/genetics-glossary/Shotgun-Sequencing
https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1329330
https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1329330
https://theses.hal.science/tel-03531325

[9] K. Matange, J. M. Tuck, and A. J. Keung, “DNA stability: a central design consideration for
DNA data storage systems,” Nature Communications, vol. 12, no. 1, p. 1358, Mar 2021. [Online].
Available: https://doi.org/10.1038/s41467-021-21587-5

[10] A. S. Motahari, G. Bresler, and D. N. C. Tse, “Information theory of DNA shotgun sequencing,”
IEEE Transactions on Information Theory, vol. 59, no. 10, pp. 6273–6289, 2013.

[11] R. P. Feynman, “There’s plenty of room at the bottom,” Engineering and Sciences., vol. 23, no. 5,
pp. 22–36, Feb. 1960.

[12] T. Hey, “Quantum computing: an introduction,” Computing & Control Engineering Journal,
vol. 10, no. 3, pp. 105–112, 1999.

[13] A. Gibbons, M. Amos, and D. Hodgson, “DNA computing,” Current Opinion in Biotechnology,
vol. 8, no. 1, pp. 103–106, 1997. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0958166997801644

[14] V. Balzani, A. Credi, F. Raymo, and J. Stoddart, “Artificial molecular machines,” Angewandte
Chemie International Edition, vol. 39, no. 19, pp. 3348–3391, 2000. [Online]. Avail-
able: https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3773%2820001002%2939%3A19%
3C3348%3A%3AAID-ANIE3348%3E3.0.CO%3B2-X

[15] R. Keyes, “Physical limits in digital electronics,” Proceedings of the IEEE, vol. 63, no. 5, pp.
740–767, 1975.

[16] Github, “Arctic world program: Our approach,” 2024. [Online]. Avail-
able: https://archiveprogram.github.com/approach/#:~:text=Arctic%20world%20archive,will%
20last%20twice%20as%20long

[17] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital information storage
in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628, 2012. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.1226355

[18] D. Carmean, L. Ceze, G. Seelig, K. Stewart, K. Strauss, and M. Willsey, “DNA data storage and
hybrid molecular–electronic computing,” Proceedings of the IEEE, vol. 107, no. 1, pp. 63–72,
2019.

[19] C. N. Takahashi, B. H. Nguyen, K. Strauss, and L. Ceze, “Demonstration of end-to-end
automation of DNA data storage,” Scientific Reports, vol. 9, no. 1, p. 4998, Mar 2019. [Online].
Available: https://doi.org/10.1038/s41598-019-41228-8

[20] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust chemical
preservation of digital information on DNA in silica with error-correcting codes,” Angewandte

56

https://doi.org/10.1038/s41467-021-21587-5
https://www.sciencedirect.com/science/article/pii/S0958166997801644
https://www.sciencedirect.com/science/article/pii/S0958166997801644
https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3773%2820001002%2939%3A19%3C3348%3A%3AAID-ANIE3348%3E3.0.CO%3B2-X
https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3773%2820001002%2939%3A19%3C3348%3A%3AAID-ANIE3348%3E3.0.CO%3B2-X
https://archiveprogram.github.com/approach/#:~:text=Arctic%20world%20archive,will%20last%20twice%20as%20long
https://archiveprogram.github.com/approach/#:~:text=Arctic%20world%20archive,will%20last%20twice%20as%20long
https://www.science.org/doi/abs/10.1126/science.1226355
https://doi.org/10.1038/s41598-019-41228-8

Chemie International Edition, vol. 54, no. 8, pp. 2552–2555, 2015. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201411378

[21] G. Bresler, M. Bresler, and D. Tse, “Optimal assembly for high throughput shotgun
sequencing,” BMC Bioinformatics, vol. 14, no. 5, p. S18, Jul 2013. [Online]. Available:
https://doi.org/10.1186/1471-2105-14-S5-S18

[22] I. Shomorony, S. H. Kim, T. A. Courtade, and D. N. C. Tse, “Information-optimal genome
assembly via sparse read-overlap graphs,” Bioinformatics, vol. 32, no. 17, pp. i494–i502, 08 2016.
[Online]. Available: https://doi.org/10.1093/bioinformatics/btw450

[23] S. Nassirpour, I. Shomorony, and A. Vahid, “Reassembly codes for the chop-and-shuffle channel,”
arXiv preprint arXiv:2201.03590, 2022.

[24] D. Bar-Lev, S. Marcovich, E. Yaakobi, and Y. Yehezkeally, “Adversarial torn-paper codes,” in 2022
IEEE International Symposium on Information Theory (ISIT), 2022, pp. 2934–2939.

[25] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over sets for DNA storage,” IEEE
Transactions on Information Theory, vol. 66, no. 4, pp. 2331–2351, 2020.

[26] I. Shomorony, T. A. Courtade, and D. Tse, “Fundamental limits of genome assembly under an
adversarial erasure model,” IEEE Transactions on Molecular, Biological and Multi-Scale Commu-
nications, vol. 2, no. 2, pp. 199–208, 2016.

[27] K. Levick, R. Heckel, and I. Shomorony, “Achieving the capacity of a DNA storage channel with
linear coding schemes,” in 2022 56th Annual Conference on Information Sciences and Systems
(CISS), 2022, pp. 218–223.

[28] R. Heckel, I. Shomorony, K. Ramchandran, and D. N. C. Tse, “Fundamental limits of DNA storage
systems,” in 2017 IEEE International Symposium on Information Theory (ISIT), 2017, pp. 3130–
3134.

[29] I. Shomorony and R. Heckel, “Capacity results for the noisy shuffling channel,” in 2019 IEEE
International Symposium on Information Theory (ISIT), 2019, pp. 762–766.

[30] I. Shomorony and A. Vahid, “Torn-paper coding,” IEEE Transactions on Information Theory,
vol. 67, no. 12, pp. 7904–7913, 2021.

[31] A. N. Ravi, A. Vahid, and I. Shomorony, “Capacity of the torn paper channel with lost pieces,” in
2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 1937–1942.

[32] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “An upper bound on the capacity of the
DNA storage channel,” in 2019 IEEE Information Theory Workshop (ITW), 2019, pp. 1–5.

57

https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201411378
https://doi.org/10.1186/1471-2105-14-S5-S18
https://doi.org/10.1093/bioinformatics/btw450

[33] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakohi, “Achieving the capacity of the DNA
storage channel,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2020, pp. 8846–8850.

[34] I. Shomorony and R. Heckel, “DNA-based storage: Models and fundamental limits,” IEEE Trans-
actions on Information Theory, vol. 67, no. 6, pp. 3675–3689, 2021.

[35] Eurofins, “How to do NGS 50% faster – the NGS platforms,” 2021. [Online]. Available:
https://the-dna-universe.com/2021/11/25/how-to-do-ngs-50-faster-with-our-ngs-platforms

[36] O. Sabary, A. Yucovich, G. Shapira, and E. Yaakobi, “Reconstruction algorithms for
DNA-storage systems,” Scientific Reports, vol. 14, no. 1, p. 1951, Jan 2024. [Online]. Available:
https://doi.org/10.1038/s41598-024-51730-3

[37] M. Li, M. Nordborg, and L. M. Li, “Adjust quality scores from alignment and improve sequencing
accuracy,” Nucleic Acids Res., vol. 32, no. 17, pp. 5183–5191, Sep. 2004.

[38] I. Shomorony and R. Heckel, “Information-theoretic foundations of DNA data storage,”
Foundations and Trends® in Communications and Information Theory, vol. 19, no. 1, pp. 1–106,
2022. [Online]. Available: http://dx.doi.org/10.1561/0100000117

[39] S. Shin, R. Heckel, and I. Shomorony, “Capacity of the erasure shuffling channel,” in ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2020, pp. 8841–8845.

[40] S. R. Srinivasavaradhan, S. Gopi, H. D. Pfister, and S. Yekhanin, “Trellis BMA: Coded trace
reconstruction on IDS channels for DNA storage,” in 2021 IEEE International Symposium on
Information Theory (ISIT), 2021, pp. 2453–2458.

[41] W. H. Press, J. A. Hawkins, S. K. Jones, J. M. Schaub, and I. J. Finkelstein, “Hedges
error-correcting code for DNA storage corrects indels and allows sequence constraints,”
Proceedings of the National Academy of Sciences, vol. 117, no. 31, pp. 18 489–18 496, 2020.
[Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.2004821117

[42] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal,
vol. 27, no. 3, pp. 379–423, 1948.

[43] E. S. Lander and M. S. Waterman, “Genomic mapping by fingerprinting random clones: A
mathematical analysis,” Genomics, vol. 2, no. 3, pp. 231–239, 1988. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0888754388900079

[44] N. Alon and J. H. Spencer, The Probabilistic Method, 4th ed., ser. Wiley Series in Discrete Math-
ematics and Optimization. Nashville, TN: John Wiley & Sons, Jan. 2016.

58

https://the-dna-universe.com/2021/11/25/how-to-do-ngs-50-faster-with-our-ngs-platforms
https://doi.org/10.1038/s41598-024-51730-3
http://dx.doi.org/10.1561/0100000117
https://www.pnas.org/doi/abs/10.1073/pnas.2004821117
https://www.sciencedirect.com/science/article/pii/0888754388900079

[45] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities - A Nonasymptotic
Theory of Independence. Oxford University Press, 2013. [Online]. Available: https:
//doi.org/10.1093/acprof:oso/9780199535255.001.0001

[46] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of
the American Statistical Association, vol. 58, no. 301, pp. 13–30, 1963. [Online]. Available:
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830

59

https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830

	Introduction
	Promise of DNA as a storage medium
	DNA as a Storage Medium
	DNA Storage: Concept, Development, and Information-Theoretic Approaches
	 Sequencing Techniques
	Noise in DNA storage: Erasures and Errors

	Summary of Results
	Numerical Comparisons of Theorem 1 with prior work
	Organisation of this thesis

	The Shotgun Sequencing Channel
	Information-Theoretical Approaches to Shotgun Sequencing
	Capacity of Shotgun Sequencing Channel
	Our Work: Modelling the Shotgun Sequencing Channel with Erasure Noise
	Channel Description for the Shotgun Sequencing Channel with Erasures

	Achievable Rates for Shotgun Sequencing Channel with Erasures: Proof of Theorem 1
	Outline of the Coding Scheme
	Merging and Coverage: Definitions and Terminology
	Concentration Results and Bounds on Quantities
	Decoding Algorithm
	Brief overview of the proof of achievability
	Detailed Proof of Achievability

	Conclusion and Future Work
	Appendix A: Concentration inequalities used in this work
	Appendix B: Proof of Lemma 1
	Appendix C: Proof of (3.17) (bound for)
	Appendix D: Proof of (3.19)(expression for)
	Bibliography

