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Abstract

Clustering algorithms have wide applications in Computer Vision, Data mining, Data Visualization,
etc. Clustering is an important step for indexing and searching of documents, images, video, etc. Clus-
tering large numbers of high-dimensional vectors is very computation intensive. CPUs are unable to
handle such load and consume sometimes days and even weeks to cluster large data. GPUs are be-
ing used for general purpose computing of wide range of problems which require high computational
power. Today’s GPUs deliver as high as 1.5 TFLOPs. The GPU has evolved over the time not only by
increasing number of cores but also major architectural changes like faster access of data, more shared
memory, threads per block, etc. Such changes have enabled the GPU programmers to exploit its ar-
chitectural features to the fullest and achieve high performance. In this thesis, we focus on K-Means
algorithm which is a widely used unsupervised clustering algorithm. We develop a GPU based K-Means
implementation for large datasets; also we have used this implementation to develop a video organizing

application.

We present the design and implementation of the /{-Means clustering algorithm on the modern GPU.
All steps are performed entirely on the GPU efficiently in our approach. We also present a load balanced
Multi-node, Multi-GPU implementation which can handle up to 6 million, 128-dimensional vectors. We
use efficient memory layout for all steps to get high performance. The GPU accelerators are now present
on high-end workstations and low-end laptops. Scalability in the number and dimensionality of the vec-
tors, the number of clusters, as well as in the number of cores available for processing are important for
usability to different users. Our implementation scales linearly or near-linearly with different problem
parameters. We achieve up to 2 times increase in speed compared to the best GPU implementation for
K-Means on a single GPU. We obtain a speed up of upto 170 on a single Nvidia Fermi GPU compared
to a standard sequential implementation. We are able to execute single iteration of K-Means in 136
seconds on off-the-shelf GPUs to cluster 6 million vectors of 128 dimensions into 4K clusters and in 2.5

seconds to cluster 125K vectors of 128 dimensions into 2K clusters.

Video data is increasing rapidly along with the capacity of storage devices owned by a lay user.
Users have moderate to large personal collections of videos and would like to keep them in an organized
manner based on its content. Video organizing tools for personal users are way behind even the primitive
image organizing tools. We present a mechanism in this thesis to help ordinary users organize their
personal collection of videos based on categories they choose. We cluster the PHOG features extracted

from selected key frames using K -Means to form a representation for each user-selected category during
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the learning phase. During the organization phase, labels from a K -NN classifier on these cluster centers
for each key frame are aggregated to give a label to the video while categorizing. Video processing is
computationally intensive. To perform the computationally intensive steps involved, we exploit the CPU
as well as the GPU that is common even on personal systems. Effective use of the parallel hardware on
the system is the only way to make the tool scale reasonably to large collections that will be available
soon. Our tool is able to organize a set of 100 sport videos of total duration of 1375 minutes in about
9.5 minutes. The process of learning the categories from 12 annotated videos of duration 165 minutes
took 75 seconds on a GTX 580 card. These were on a standard desktop with an off-the-shelf GPU. The
labeling accuracy is about 96% on all videos.

The ideas, approaches proposed in this thesis have been implemented and validated with experimen-
tal results. For large data-sets we developed a scalable, efficient K -Means clustering on GPU along with
a Multi GPU framework and used it to develop a video organizer application providing high accuracy.
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Chapter 1

Introduction

Computer vision is a vast area which includes methods for acquiring, processing, and understanding
images. It deals with modeling and replicating human vision using computer software and hardware.
This field is a study on how to reconstruct, interpret and understand a 3D scene from its 2D image
in terms of properties of structures present in the scene. The goal of Computer vision is to process
images in order to produce a representation of objects in the world. The motive behind this field is to
duplicate the abilities of human vision by electronically perceiving and understanding an image in the
best possible manner. As a scientific discipline, computer vision is concerned with the theory behind
artificial systems that extract information from images. An image undergoes different steps of computer
vision which typically include classification, recognition, detection, tracking, etc. Humans can easily
recognize content of an image based on objects present, scene etc. For the system to understand an
image we need to consider global as well as local information present. Visual recognition problems
like classification requires a thorough analysis of the visual content in an image. Image classification is
among the most explored area in the field of computer vision. Much work has been done and techniques
proposed for classification purposes. In the modern approach the image data is being represented in the
form of high dimensional descriptive vectors by means of various feature extracting algorithms. Large
collection of images or videos often require extensive machine learning as a part of training the system
which can be used later on. Such tasks are extremely computationally expensive due to large data,
high dimensionality, etc. Unsupervised structure finding is the first step in many approaches related to
vision. In order to solve the general vision problem we will have to come up with answers deep and

fundamental questions about representation and computation at the core of human intelligence.

1.1 Classification

An approach to classifying images treats them as a collection of regions, describing only their ap-
pearance and ignoring their spatial structure. Figure 1.1 shows series of steps involved in the generation
of visual words. Features are extracted from the given set of input images. Images can be represented

by a group of key points but typically the groups vary in size and lack a meaningful order. In order to



address this issue vector quantization technique is used which clusters the descriptors in their feature
space into large number of clusters using K-Means clustering algorithm. Unsupervised structure find-
ing is the first step in many approaches. The main reason for quantisation is the large range of values
and their sensitivity towards small image perturbations. So clustering makes the process robust by par-
titioning data into groups of more related samples. These features are clustered into meaningful groups
as shown in step 3 of the figure. Each cluster is treated as visual word which represents a local pattern
shared by key points present in that cluster. These clusters are used to develop histogram of visual words
extracted from the shoe images. The clustering process generates visual-word vocabulary [45]. The size
of the vocabulary depicts the number of clusters which is typically of the order thousands for large scale
classification. Each key point is associated with a visual word and there by the entire image represents

bag of visual words.

Learning the "Visual Word" Vocabulary

‘ Estimating a Histogram

M|

€ €y €12 €13 €3 Cg C2 € G5 O C b

Figure 1.1 Bag of Words for Vocabulary Generation. Tomasik et al. [46]

This model has been successfully used in the text retrieval for analyzing documents and are known
as “bag-of-words” model, since each document is represented by a distribution over fixed vocabulary.
Using such a representation, methods such as probabilistic latent semantic analysis (pLSA) [19] and
latent dirichlet allocation (LDA) [4] have provided promising results for document collections in an
unsupervised manner. Many current approaches for image classification are based on visual words
(clusters of local descriptors), the per image frequency of these visual words (bag of local features), and

a Support Vector Machine (SVM) classifier for bags of local features.



1.2 Objective

A number of techniques have been proposed lately targeting the accuracy and optimisation of classi-
fication algorithms. Figure 1.2 showcases the classification of a test image using the prior information
gathered from the training images. We have focused on the aspect of optimisation involved in achiev-
ing desired results. Thus we analyze the computationally expensive steps involved in classification like
feature extraction, clustering, etc. Using hybrid accelerators we intend to develop an optimised solution
for these time consuming steps. Another aspect is to get familiar with these latest architectures and
understand them in order to come up with a high performance solutions for the same. The idea is to
learn and develop a solution for large scale clustering. Clustering being the elementary step involved
in various classification techniques. The emphasis is not only to optimize the steps but also to keep the

accuracy consistent.

Figure 1.2 Image Classification

Unsupervised clustering is a means to discover the structure inherent in a large volume of data.
Applications of this are abound in Computer Vision, Data Mining, Search, etc. The derived clusters help
in understanding and visualizing the original data more efficiently and effectively. Many problems use
large numbers of data items of high dimensionality and large number of natural groupings or clusters.
Our objective is to provide a solution that scales well with all aspects of the problem size and the number
of available cores.

Video recording devices are now commonly available to the average consumer. The amount of
personal video content generated by users is increasing exponentially as a result. With the popularity
of video sharing services and increased access to web, a great number of videos are available today.
We intend to develop a clustering based tool for videos so that a user can organize his or her personal
collection of videos. Using modern accelerators we plan to develop a fast clustering based application

which may be used by a user for his personal collection.



1.3 Motivation

Clustering large high dimensional data is computationally very expensive. The users of such process-
ing are no longer limited to large institutions; smaller institutions, research groups, and even individuals
may need similar processing. For instance, clustering could be a first step towards organizing one’s
personal collection of photographs using computer vision based techniques. The state-of-the-art scene
descriptors like SIFT [31] used in computer vision are typically 128 dimensional, in case of GIST [33]
upto 580 dimensional. Many times researchers are forced to use low dimensional data due to compu-
tational limitations. The computation needed will be heavy even for modest photo collections. A fast,
scalable, and available clustering approach is necessary to solve this problem.

Taking into account the volume of the data, tasks such as organization or searching through the
available content can be very time consuming and tiresome. Therefore, such tasks need to be done auto-
matically, preferably using the content of the videos to accomplish this. Collecting videos of interest has
become a hobby lately given the fact that people have large storage devices. Everyone has different cate-
gory of interest in terms of video. Figure 1.3 shows cluster of random videos and set of organized videos
as per their category. Clearly the user will find the organized collection not only visually appealing but

also the ease of access with which he can browse a video category of his choice.

Figure 1.3 A set of mixed Videos on left-hand side and on right-hand side a set of Videos organized as
per their categories

Sports is a genre which has large following around the world. People tend to store full recorded
matches or selected highlights of sport events of interest on their personal storage devices. An individual
may have interest in multiple categories of sports and would like to maintain a personal collection in an
organized fashion. There is no tool to do this today for videos; even those available for images are not
sufficiently sophisticated. Other genres of interest to everyday users would be family events, outings,

graduation ceremonies, etc., which also need to be organized appropriately for easy access in the future.



We concentrate on the highly available multi- and many-core accelerator architectures to increase the

reach of the approach. Using CPU and GPU provide us high computational power.

1.4 Challenges

Computer vision often deals with large numbers of images and videos. It also has vast number of
algorithms used for purposes like Classification, Recognition, Detection, etc. Classification algorithms
require intense computation and typically take too much time even during processing of images. At
times it even consumes days for training or testing the given data. Due to limited CPU resources re-
searchers have often felt this computational barrier hindering the progress of their research. Typically
these algorithms are iterative in nature and need to be carried out till a certain condition is met. In to-
day’s fast moving world no one likes to wait for days in analyzing their experiments, people need instant
results at their finger tips.

K -Means is the most commonly used clustering technique [32], with a sequential time complexity of
O(n*¥*1 log n), where n is the input size, d the dimensionality, and k the number of clusters. /-means
is a time consuming algorithm, clustering 125k vectors of 128 dimension into 2k clusters takes nearly
8 minutes on a CPU. The challenge lies in bringing its running time to a practical range by exploiting
computing resources. Reasonable amount of work has been done to optimize the K-Means algorithm,
so we need to come up with an optimal solution which is capable of fixing the loop holes in existing
methodologies and deliver reasonable performance.

Videos are bulky and so content based organization can be really computationally heavy. On the
other hand, we can use evidence from multiple parts of the video for its categorization. The challenging
part in developing a clustering video organizer is to extend the image classification techniques to videos.
These videos may span across wide class of categories. A number of image representations have been
proposed lately, so an appropriate representation technique must be chosen which serves our purpose
for feature extraction. Extracting features from a simple video itself is an expensive step. Doing so for a
collection of videos is very challenging. This task demands a fast and scalable algorithm design which

is capable of clustering videos quickly and accurately with the help of hybrid accelerators.

1.5 General Purpose computing using GPU

Graphics Processing Units (GPUs) are now part of most PCs and laptops. GPUs have been increas-
ingly used for a wide range of problems involving heavy computations in graphics, computer vision,
scientific processing, etc. Figure 1.4 shows a typical GPU card which fits in a laptop or desktop and
may be used for general purpose computing. The main attraction is the high computation power per
unit cost; today’s off-the-shelf GPUs deliver 1.35 TFLOPs of single precision power. While the specific
hardware available may change with time but, their availability is likely to remain. We need algo-

rithms which are scalable over a wide range of current and forthcoming parallel architectures. GPU



Figure 1.4 NVIDIA GPU cards

are being used in a modified form of a stream processor to allow a general purpose unit. This turns
the massive floating-point computational power of a modern graphics accelerator’s shader pipeline into
general-purpose computing power, as opposed to being hard wired solely to do graphics operations.
In certain applications requiring massive vector operations, this can yield several orders of magnitude
higher performance than a conventional CPU.

Recently, Nvidia began releasing cards supporting an API extension to the C programming language
called CUDA (Compute Unified Device Architecture), which allows specified functions from a normal
C program to run on the GPU’s stream processors. This makes C programs capable of taking advantage
of a GPU’s ability to operate on large matrices in parallel, while still making use of the CPU where
appropriate. CUDA is also the first API to allow CPU-based applications to access directly the resources

of a GPU for more general purpose computing without the limitations of using a graphics API.

1.6 Contributions of the thesis

In this thesis we present a complete GPU based K-Means clustering implementation. For large data
we propose a Multi-GPU approach for the same based on the computational capabilities of individual
GPU nodes. We made use of the primitives for efficient memory access and data management. A thor-
ough analysis varying several parameters like n, d, k, cores, etc was done on various GPUs. Graphic
Processor Units (GPU) have become popular on even personal systems and have tremendous compute
power in them. We have also developed a video organizer application using clustering for daily users
who like to keep their personal video collection in a systematic manner. Video processing is compu-

tationally expensive. We exploit all compute power available in a typical desktop or laptop of the user



to achieve this. Our system exploits the parallelism of multicore CPUs as well as the GPUs found on

personal desktops and laptops today. This application makes use of our GPU based clustering we devel-

oped along with other computational steps being performed on GPU. The computation time came down

significantly making it possible for laptop/desktop with low end graphic card to process within no time.

The main contributions of this thesis are the following:

1.

We develop an efficient K-Means implementation for GPU, exploiting intra-vector parallelism
within each data item as well as among the different data items. This is essential to utilize the
hardware resources under the massively multi-threaded model. We use the K-Means++ [2] algo-
rithm on GPU for generating initial cluster centers for better clustering.

We perform label assignment and mean evaluation entirely on the GPU. The row major layout for
input data provided coherent memory access and data management. Use of efficient primitives
like Split, Gather, Transpose, Scan, Compact, etc ensured coalesced memory access and were
highly efficient for clustering high dimensional large datasets. The data transfer between CPU
and GPU is minimized as a result.

. Implementation on different generations of GPUs was done to study their respective architectural

features. We achieve performance that is up to 170 times faster than a standard single-core CPU
implementation on the GPU. Our approach provides almost twice speed-up compared to prior
GPU implementations for high dimensional vectors. We achieve linear scaling in the running
time in the number of vectors and the dimensionality, and super linear scaling in the number of
clusters. The running time scales linearly with number of data objects, feature space and clusters

chosen.

For large data we implemented a Multi-GPU approach, distributing the number of input vectors
as per the computational capability of individual nodes using MPI. These nodes compute partial
sums for the assigned vectors and send it back to the master node. We scale our algorithm for
large n, using multi-GPU approach.

Video segmentation is assisted by the GPU and the PHOG computation is performed entirely on
the GPU. The GPU also does bulk of the K-Means clustering to select representative vectors in
the learning phase. In the categorization phase, the distance evaluation for the K-NN classifier
for each frame is performed on the GPU in addition to feature extraction. The final aggregation
and decision making takes place on the CPU.

Our tool is able to organize a set of 100 sport videos of total duration of 1375 minutes in about 9.5
minutes. The process of learning the categories from 12 annotated videos of duration 165 minutes
took 75 seconds. These were on a standard desktop with an off-the-shelf GPU.



Chapter 2

Background and Related Work

In this chapter we present a literature survey about various existing implementations for optimizing
the K-Means algorithm. These optimizations were not only limited to CPUs but various hybrid accel-
erators. We discuss about the various hybrid accelerators, which are being used for computationally
intensive tasks and are providing high performance. These accelerators are now being used to perform
computation in various applications. We also explore video clustering techniques employed to handle
various categories using wide range of learning techniques. Aspects like dependency on prior learning,
features, accuracy, feasibility, etc have been discussed.

2.1 Accelerator Architectures

We briefly explain about NVIDIA’s GPU, IBM’s CellBE architectures which would provide a basic
understanding. GPU has a manycore architecture where in multiple cores perform a task. The archi-
tecture of the CellBE chip lies somewhere between other modern chip multiprocessors and a high end
GPU, since in some views the eight Synergistic Processing Unit (SPU) mimic pixel shader units. Unlike

GPUs, however, the Cell can chain its processors in any order, and have them operate independently.

2.1.1 GPU Architecture

GPUs are powerful computational devices used for graphics rendering. These days GPU are also
being used for applications requiring high computational power, termed as General Purpose Computing
on GPU (GPGPU). NVIDIA’s Fermi architecture [35] has 16 Streaming Multiprocessors (SM) as shown
in Figure 5.1 with each SM having 32 cores, so on the whole it has 512 CUDA cores. Every core in an
SM executes the same instruction at all times. A set of threads forms a block. Many blocks put together
form a grid. Blocks are assigned to SM for execution. SM processes one warp at a time where each
warp is of 32 threads from a block. The function calls are made in the form of kernel which unleash

multiple threads to perform a task in a Single Instruction Multiple Data (SIMD) fashion. The Compute



Unified Device Architecture (CUDA) [34] programming model allows programmers to design a kernel.

GDDRS5 Memory
Controllers

FrYyvy vVYYy vl

6x8B @ est.3.6- 2B @ 4GT/s
4.0GT/s

Figure 2.1 The Fermi Architecture

Every SM has registers divided equally amongst its threads. Each thread has some private local
memory. The off-chip global device memory per card can be accessed by every thread in the grid
but consumes hundred of clock cycles for a single fetch. NVIDIA GT200 series has 16 KB of shared
memory per SM. The Fermi architecture has a single unified memory request path for loads and stores
using the L1 cache per SM multiprocessor and unified L2 cache that services all operations. L1 cache
is configurable to support both shared memory and caching of local and global memory operations.
The 64 KB memory can be configured as either 48 KB of Shared memory with 16 KB of L1 cache
or vice-versa. By configuring 48 KB of shared memory, programs that make extensive use of shared
memory perform up to three times faster. The lifetime of this memory is same as that of a block. Fermi
features a 768 KB unified L2 cache that services all load, store, and texture requests. The L2 provides
efficient, high speed data sharing across the GPU. Apart from the global device memory the GPU also
has Constant and Texture memory. Unlike previous generation GPU’s, some salient features of Fermi
architecture are faster double precision, faster context switching, faster atomic operations and multiple
kernel execution. The GPU has been able to provide significant speed ups for irregular algorithms like
List ranking [41], Graph algorithms [13, 16].



2.1.2 CellBE Architecture

CellBE [21] processor can be divided into two units as shown in Figure 5.2 namely the Power Pro-
cessing Unit (PPU) and the Synergistic Processing Units (SPU). The PPU is a 64bit Reduced Instruction
Set Computer (RISC) Power Architecture 2 threaded processing unit. SPUs are special processing ele-
ments that are generally assigned tasks from the PPU. The SPUs implement altivec SIMD instructions
that operate on 128 bit registers. One of the key architecture feature of the SPUs is it is user managed.
Each SPU has a fast 256 KB local store of memory it can access. This can conceptually be thought of
like a cache. An SPU can access data in the main memory by issuing a Direct Memory Access (DMA)
instruction to pull the data into a specified address in its local store.
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Figure 2.2 CELL Architecture. Source M Gschwind et al., Hot Chips 17, August 2005.

The local store has a size of 256 KB so data must be sent in chunks of size less than 256 KB.
Instructions which are repeated for multiple data elements should be properly utilized to exploit the
SIMD. All processors are interconnected with a high-bandwidth ring network called the EIB (Element
Interconnect Bus). The CellBE’s design is one that favors bandwidth over latency, as the memory model
does not include a hierarchical cache. In addition, it favors performance over programming simplicity.
All memory accesses must be performed by the programmer through DMA transfers calls, and the local
cache at each SPE is managed explicitly by the programmer. Each SPE contains an SPU and an SPF.
The SPF consists of a DMA controller, and an MMU (memory management unit) to interact with the
common interconnect bus (EIB). Bandwidth from an SPE to the EIB is about 25 GB/sec, both upstream
and downstream (see Figure 2). SPEs are SIMD, capable of operating on eight 16 bit operands in one
instruction. Applications like Minimum Spanning Tree for graphs [23], Sorting [22], etc have been

implemented on CellBE and provided significant speed-up compared to a sequential implementation.
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2.2 K-Means Clustering

K-Means is an unsupervised clustering algorithm for vectors proposed by MacQueen [32]. Given a
set X C R? of n points in a d-dimensional space and an integer k > 2, the problem is to partition X
into k disjoint subsets (S, Ss..,S;) along with a set C' = ¢y, ..., ¢ of corresponding centers such that
the vectors in S; is closest to the center ¢; than any other c; for a pre-defined distance measure. The
sequential K-Means in Algorithm 1 iteratively calculates the distance from every input vector to each
of the current centers and assigns it a label ¢ between 1 and & based on the center ¢; it is nearest to. In a
second step, each center c; is updated to the mean of all vectors with the label . This 2-step process is
repeated until no vector changes the label or a suitable convergence condition is met. The computations
incurred per iteration may be given by O(nkd) as the distance from each input point to each center

needs to be calculated.

Algorithm 1 K-Means Algorithm

1: Input {z;]i = 1..n} C R%and aset C = cy, ..., ¢, of initial centers

2: Membership evaluation : Assign each vector z; to cluster ¢; with a label j for which the
distance(x;,c;) is minimum among the current cluster centers.

3: Mean evaluation : Evaluate new centers c;» as the mean of all vectors x; that was assigned the label
g

4. Check condition for convergence, if true then convergence is achieved else go back to step 1 with
the set of new centers C’

The first task is to select the initial centers in order to cluster the input data. In Figure 2.3 we
can see centers are selected randomly from the set of points. Then membership is assigned based on
Euclidean distance. New means are computed using which the process of relabelling is done again until
convergence. This iterative process could result in a large number of iterations before convergence. We
use the K-Means++ scheme to generate the initial centers which are spread out [2]. In K-Means++, the
first center is selected at random from the input vectors. The subsequent ones are selected based on the
probability of distance D(x;)? from the previous selected center. K -Means++ is computationally more
expensive but reduces the overall computation time in practice by lowering the number of iterations.

K-Means has been worked on by many researchers. Pelleg and Moore [38] employed kd-tree to
improve the K-Means algorithm. This technique defines regions in n-dimensional space. While assign-
ing labels, it is checked if points lie in bounding box or not. However, Weber and Zezula [50] found
that bounding trees do not scale well with increasing dimensions. Elkan [11] used triangle inequality to
reduce unnecessary distance calculations based on distance from the previous centers and maintaining
a look up table between old and new centers. Although there was a reduction in distance evaluations
by a factor of nearly 10, for high values of £ the book keeping turned out to be a dominant expense.
Multithreaded parallelism on cluster of Symmetric MultiProcessors (SMP) architectures using OpenMP
or MPI [17] may be used on very large data able to achieve high performance but were limited by num-
ber of SMP nodes. There have been approaches for K-Means on GPU. Hall and Hart [14] in their
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Figure 2.3 K-Means Clustering: Selecting Centers and assigning labels accordingly

implementation on NVIDIA’s GeForceFX 5900 Ultra used the fragment shader to fetch input data from
texture memory and cluster center from the constant memory for metric evaluation. Their approach was

constrained in dimensionality due to texture memory limitations.

Che et al. [7] and Zechner et al. [54] put partial steps of K -means onto the GPU, where every thread
is associated with a data object sequentially evaluating its label but the evaluation of new means was
done entirely on the CPU. Hong et al. [20] in their approach further moved the new center evaluation
partially on the GPU, achieving a speed-up of 70 on NVIDIA GeForce 8800 GTX for small clusters
but the rearrangement of input vectors as per labels was done on the CPU. In GPUMiner Ren et al.
[51] discussed two approaches for small and large input data due to the limited device memory on
GPU and streamed data whenever size exceeded and achieved a speed up of 50-88 on a GTX 280. It
used bitmap approach based on the closest center changes the suitable bit into true. A bitmap stores
occurrences of item in a transaction and encode information on GPU. Each thread is responsible for
one centroid and finds corresponding data point from bitmap. The drawback with GPUMiner is poor
memory utilization and bitmap approach is not elegant for high performance also consuming more
space for large k. HPKmeans by Wu et al. [52] considered GPU memory hierarchy utilizing bandwidth
efficiently. They used Constant and texture memory for their cache mechanism and shared memory for
data requiring frequent access. Li ef al. [29] moved the mean evaluation on GPU using a divide and
rule approach. The input data is divided into n/M chunks where M is a multiple of number of SM’s.
Temporary centroids are evaluated on GPU iteratively and eventually sent to CPU for final processing.
The approach would not be beneficial for large n. These approaches exploited the parallelism of the
multiple data items only. Data objects were independent and were assigned to a single thread. The

evaluation on each dimension of that data item is independent and can be parallelized.

There have been implementations of K-means on CellBE platform. Buehrer et al. [6] made use of
single instruction multiple data (SIMD) intrinsics for faster distance evaluations [44] and took care of
load balancing and synchronization amongst the SPU’s. They worked on datasets of size upto 400K

with low number of clusters.
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2.3 Video Applications

Much has been done in the field of computer vision towards analyzing the image content for scene
classification, object detection, image search, etc. Less work has gone on doing the same on videos.
A video genre can be discriminated from the other based on the analogous features and attributes that
is disparate from other genres. Based on the content of a video, it could be categorized into different
genres such as Cartoon, Sports, Commercials, News, Serials, etc.

A number of algorithms have been designed for key frame extraction for videos based on flow. Lui et
al. proposed a triangular model of perceived motion energy to model motion patterns in videos [30]. The
key frames were the turning points of motion acceleration and deceleration. Chen et al. extracted optical
flows and used them to cluster human crowds into groups in unsupervised manner using adjacency-
matrix based clustering (AMC) [8]. Gross image features such as motion and color were used to classify
video genre, along with a decision tree classifier [47] concentrated on background or camera motion and
the foreground object motion using Gaussian Mixture Model (GMM) as the classifier [42]. Ekenel et
al. addressed the problem of video genre classification for five classes with a set of visual features,
with SVM used for classification [10]. They used temporal and spatial information to build an HMM
classifier. The technique described in Vakkalanka et al. [48] uses different types of spatial and temporal
features. The features are modeled using two different classifier methodologies, namely Hidden Markov
Model (HMM) and Support Vector Machines (SVMs). Rea et al. near-automatically classified tennis
videos by modeling the spatio temporal behaviour of the serving player [40]. They then summarized a
match using a number of key-frames on a synthesized court.

A survey of techniques for automatic indexing and retrieval of video data can be found in Lebart et
al. [27] and Wang et al. [25]. A number of descriptors have been proposed for image representation
like GIST [33], PHOG [5], etc. GIST has been found useful for scene classification while PHOG
has been used for object identification [9]. PHOG descriptor was chosen as it depicts the extent to
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Figure 2.5 K-NN Classification

which the images have similarity in any of the shapes and correspond in their spatial layout. In PHOG
descriptor we have histogram of orientation gradients over each of the image subregion as shown in
Figure 5.5 at different levels. Clubbed together these form pyramid of histogram of oriented gradients.
Image is divided into increasing spatial grids by doubling number of divisions. This forms a pyramid
representation as number of points in a cell is summation of all the cells int was divided at next level. At
each level the cell counts are bin counts for histogram representing that level. For each of the grid cell
HOG vector is computed, which is eventually concatenate with others to get the PHOG descriptor. We
follow the current approach using PHOG to classify videos into appropriate categories. The learning
phase uses a few videos tagged by the user of each sports category. We extract a few keyframes from
each video and build a representation using K-Means clustering. Use of other clustering algorithms
apart from K-Means has also been seen. K-NN has also been very successful in cases where a data
object may belong to multiple categories. Especially in cases of videos which may belong to different
categories on the whole but may have set of similar features or content common. For example a Cricket
and Football video have similar frames consisting of crowd, grass, etc. Figure 2.5 shows an example
where the test sample (Red) is to be classified between (Green) and Squares (Blue) if we consider
K =3 nearest neighbour the test sample gets assigned to Triangle class and if we take K=5 it would be
assigned to class of Squares. This algorithm becomes very handy when dealing with such closely related
categories in case of videos. The naive version of the algorithm is easy to implement by computing the
distances from the test sample to all stored vectors, but it is computationally intensive, especially when
the size of the training set grows. Using appropriate neighbors for the application makes the K-NN

algorithm computationally tractable for large datasets.

Image/Video processing algorithms often deal with processing of large number of images/frames,
iterations, high dimensional feature descriptors, etc. They require tremendous computational power.

Processing such algorithms on a CPU often takes weeks and even months in some cases to produce
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results. A number of algorithms are being ported on hybrid accelerators which are capable of dealing

with such parameters.

2.4 Computer Vision on the GPU

Optimized computer vision libraries for CPU often consume too many of the CPU cycles to achieve
real-time performance, leaving little time for other tasks. GPUs are being widely used for computer
vision applications. The operations involved in vision map efficiently on the GPU architecture. Compu-
tationally intensive tasks which have extensive applications in vision algorithms are being ported onto
GPUs like SIFT features extraction by Heymann et al. [18], Graph Cuts by Vineet et al. [49], Singular
Value Decomposition by Sheetal et al. [24], Even applications like 3D reconstruction which require
learning from large dataset of images has been implemented [12] on GPU. GPUs are found on most
personal computers and often exceed the capabilities of the CPU. Thus, we can use the GPU to accel-
erate computer vision computation and free up the CPU for other tasks. Furthermore, multiple GPUs
can be used on the same machine, creating an architecture capable of running multiple computer vision

algorithms in parallel.
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Chapter 3

K-Means on Multicore and Many-core Accelerators

K-Means algorithm has been implemented on various architectures like GPU, CellBE, OpenMP,
MPI etc. We have focused on two accelerators namely the GPU and CellBE. We were able to optimize
the per iteration runtime of K-Means algorithm compared to conventional approaches. Also we varied
our approach as per the architecture so that our implementation is adaptable to evolving architectures.
The cores have been increasing with development in GPU architectures. The interaction between and
CPU and GPU was reduced making the entire algorithm run on GPU. One of the most important thing
was to ensure that the architectural features like shared memory, registers, threads per block, global
read/write, etc are exploited along with other optimizations. We ensured that data access is coalesced
and does not involve concurrent writes. In case of CellBE focus was on load balancing, minimize SPU

to PPU data transfer, SIMD intrinsics for vector operations, etc.

3.1 Single GPU Implementation

The implementation is divided into two parts: membership evaluation and mean evaluation. We
have extended parallelism to the computation done on each component of each input and center vector
compared to a typical one thread per input vector approach. In our approach shared memory, global

memory, L2 cache, etc were used appropriately.

3.1.1 Data Layout

The n input vectors are arranged in a row major format as shown in Figure 3.1, This provides per-
fectly coherent memory accesses as consecutive components of each vector is worked on by consecutive
CUDA threads. For coalesced access consecutive threads must access contiguous memory locations.
This makes the job easier during membership evaluation since consecutive threads are mapped to the
row major input vector. The input vectors and cluster centers are stored in row major format to enable

fast coalesced reading of the whole vector using d threads.
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Figure 3.1 d Dimensional Input data stored in a row major format.
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Figure 3.2 Layout of the CUDA blocks. Each block evaluates the new labels for ¢ input vectors and
writes to the membership array

3.1.2 Membership Evaluation

To generate new membership labels, we need to evaluate the distance of each input vector with
all cluster centers. We process ¢ input vectors in each CUDA block as shown in Figure 3.2. The
membership kernel processes these using a ¢ x d geometry for the block. The total number of blocks is
p = n/q. The minimum square distance and the corresponding cluster number is stored for each of the
q vectors in the shared memory of the block in a sequential manner processing say r centers at a time
based on number of threads and amount of shared memory. Component-wise distances are evaluated
in parallel and stored in the shared memory. The distance for a pair of vector and r cluster centers are
evaluated using a log reduction of these values. This is compared with the current minimum distance

for updation if necessary.



Algorithm 2 Membership Evaluation

Input: I_Data, Centers

Output: Membership

t; + Thread Id in a block

dim < Vector dimension

dist,, < Distance between vector y and center 2
min, < Minimum distance of vector y from a center
s_dist,, < Distance components

1: for y = 1 to n in parallel do
2:  membership_y, s_data_y|dim]
3. s.datay[] - I_Data,]]|
4:  for z =1 to k clusters do
5: s_disty;[t;] = (s_datay[t;] — center[t;])?
6: SyncThreads
7 for i = dim/2to 0 do
8 if Tidx < i then
9: Add s_dist,;[2 x t; + 1] to s_dist,.[t;]
10: end if
11: SyncThreads
12: 14— 1/2
13: end for
14: dist,, = s_dist,z[0]
15: if min, < s_dist,.[0] then
16: miny < s_dist,;[0]
17: Membership, <y
18: end if
19:  end for
20: end for

The distance and membership evaluation are performed using Algorithm 2. We have ignored the
square root function for distance evaluation as it increases the computational cost. We store the follow-
ing onto the shared memory: s_data holds the input vectors, s_dist stores square of the differences for
every dimension, min_y and membership, store global minimum distance and label for vector id y.
On Tesla GPUs, shared memory per SM was restricted to 16 KB. The centers were accessed via texture
memory and [ of them were loaded first onto the shared memory. The gl distance evaluations were done
by the kernel then. The current generation GPUs (Fermi) have an L2 cache and thrice as much as shared
memory. This helps in dedicating the shared memory for input vectors and distance evaluations. We
load the cluster centers directly from the global memory. The L2 cache help us achieve good perfor-
mance as all blocks access the same set of centers. We observed that the performance was good for
1500 centers of 128 dimensional vectors. The performance deteriorated sharply when the number of
centers were increased. This is because L2 cache exceeded its limit and relied on global memory for
accessing the additional centers. So on a Fermi(GTX 480), we send centers in batches of approximately

1500 making use L2 cache efficiently. It is, however, important to select the optimum block dimension,

18



Index Array Membership Array

Global Index Array Sorted Membership Array
45 I = N
o -
1 T
3 LT 1T
Rearranged Input Vectors Transposed Array

Figure 3.3 The membership array is sorted on the labels. The input vectors are then rearranged to bring
those with the same labels together

number of vectors processed per block, shared memory utilization on a per block basis, etc., so that the
GPU is efficiently utilized. The aim is to get better occupancy with more number of active SM’s. The
syncT hreads call ensures that threads in a block which have completed the task wait for other threads

to finish the task before executing the next instruction.

3.1.3 New Center Evaluation

Center evaluation involves finding the sum of all vectors with the same label. For a parallel approach
this task involves concurrent writes since data objects having the same membership may add to the same
histogram bin at a time even to count the frequencies. Our contribution to earlier GPU implementations
is performing the entire process of mean evaluation on the GPU itself. Algorithm 3 shows the sequence
of kernel calls made for center evaluation. In our approach, the input data is partitioned into k clusters
of different sizes to find the sum. We sort the input vectors based on their labels, using the split primitive
[37]. The SplitSort kernel brings the records with each label together. This is done by forming a list
of 64-bit records combining the new label value and global index of the input vector. We split this
using the label value as the key as shown in Figure 3.3, shuffling the original global index order. The
gather primitive [37] is used subsequently to rearrange the input vectors in the order of labels using the
index after the split. The gather primitive moves data efficiently, using coalesced read/write operations.
We mark the cluster boundaries using the function get_Boundaries() based on the change in sorted
labels. These are used to sum the vectors belonging to the same label using a segmented scan [43].

Using histogram() function we finalize the count of each cluster. The vectors with similar label are now
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grouped together using Rearrange() so that the list can be summed component-wise to compute the
new centers.

The row major storage of the vectors make component-wise addition uncoalesced in memory ac-
cesses and hence inefficient on the GPUs. We solve this problem by converting the input vectors to a
column major format, i.e., to a n x d arrangement from the d x n one. This is done using an efficient
transpose operation [3] that uses the shared memory efficiently. The components are now arranged con-
secutively. Using transpose operation T'ranspose() makes a significant contribution towards the mean
evaluation. We use a segmented sum scan of the list of nd elements divided into kd segments. The
kernel Compact() then extracts the new means from the result obtained by segmented scan. Transpose
operation is performed once again to revert back the values from row major storage. The final kernel
call Divide() gives us the new means for this iteration. All steps are performed using full occupancy
and exploit the hardware well. Once we have the new means we check for the convergence condition
which if failed we go back with these new centers and evaluate new labels again else we terminate the
algorithm. Our mean evaluation was able to fix the concurrent write problem which the previous ap-
proaches failed to solve. Also the pure coalesced memory access for data rearrangement proved to be
vital step in enhancing the mean evaluation on GPU.

Algorithm 3 Kernel Sequence for evaluation of New centers
Input: I_data, Membership
Output: new_centers

sorted_M embership < SplitSort(Membership, Key)
flag_hist < get_Boundaries(sorted_Membership)
hist_scan <— Segscan(Sorted_Membership, Flag_hist)
Histogram < Histogram(Hist_scan, Flag_hist)
data_sorted < Rearrange(I_data, Sorted_index)
transp_data < Transpose(Data_sorted)

flag_scan < get_Boundaries(sorted_membership)
seg_scan < Segscan(transp_data, flag_scan)

sum <— Compact(seg_scan)

total_sum <— Transpose(sum)

. new_centers < Divide(total_sum, histogram)

D A A

—_ =
— O

3.2 CellBE Implementation

Parallelization of K -Means on CellBE architecture is done by partitioning the input data set equally
based on the number of Synergistic Processor Units (SPU) for load balancing. The boundary of each
processor segment is aligned on a 16 byte boundary. Records must be padded accordingly. Large num-
bers of distance evaluations are to be performed in K-Means algorithm so all data objects and centers
have to be sent to the SPU. The local storage is not sufficient to store all the centers. Since input is of

large size it is wise to send input vectors to SPE only once and pass the center multiple times. For DMA
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transfers of sizes greater than or equal to 16K bytes, the memory address in both the local store and
main memory must be 16 byte aligned. Using SIMD we can calculate distance to multiple centers at
once, distance between a center and multiple data points at once and multiple dimensions at once. We

use two functions:

v3 = vector_subtract(vy, va) (3.1)

vy = vector_multiply_add(vy, ve, v3) (3.2)

Operation 3.1 subtracts vectors vy, vz and stores the result in v3 and Operation 3.2 multiplies ele-
ments in vy, ve and adds the result to v3 to store in v4. The load is to be divided amongst the SPU
equally. We divide the centers accordingly and store them till the end. The chunk of vectors assigned to
a particular SPU are passed to it later. As the centers are accessed frequently for every input vector, we
store the center in the SPUs local storage until all the input vectors assigned to that particular SPU are
done with their processing. This way the DMA load can be reduced to great extent. We would have to
pass the center vectors just once to the SPU and stream the input vectors accordingly. Most of the time
is spent on computations when compared to that of pulling in memory. The CellBE PPU performs quite

badly compared to CPU so one must off load the PPU as much as possible.

3.2.1 SPU for membership evaluation

For every vector assigned to a SPE we perform its distance evaluation from every center and decide
its membership based on it. A chunk of vectors are assigned to the SPU along with its address, dimen-
sion, number of centers. Algorithm 4 gives distance evaluation on a SPU which is assigned R vectors.
Using Algorithm 5 we compute the final labels for each input vector. When distances are evaluated we
need to store a local distance minima and corresponding center id and update the global membership
once all the centers have been processed by the SPU. If centers do not fit into the local store then we use

stream.

Algorithm 4 Distance Evaluation on SPU
Input: I_data, Center

Output: distance

1: for i = 0 to Dim/4 do

2 vector sub =vector_Subtract(I_data[i],Center[])
3 vector sum =vector_Multiply _Add(sub,sub,sum)
4: i+ 11
5
6

: end for
. distance = sum[0]J+sum/[ I [+sum/[2 [+sum/[3]
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Algorithm 5 Membership on SPU

1: Get the chunk of data; centers to be loaded through DMA

2: For every vector of that SPU compute Distance(V,C)

3: Get the remaining centers from PPU

4. Compare distances for a vector against all the centers and assign membership to the center closest
to it

5: Return the global membership to PPU

3.2.2 SPU for center evaluation

Unlike Buehrer ef al. [6] we evaluate our mean evaluation on SPU instead of PPU. Mean evaluation
on PPU is efficient for small n. For mean evaluation we send the vectors with similar memberships to
a single SPU, and use SIMD intrinsic to evaluate their mean as shown in Algorithm 6. This requires
gathering all the data objects belonging to a cluster. The center evaluation involves two steps grouping
vectors with similar label and send them to SPU as per the labels. Since all the vectors sent to SPU bear
same membership we just have to perform vector addition on the entire set of vectors. Once evaluation
is done we send new centers to PPU. Since cluster had variable sizes the load could not be balanced
amongst the SPUs. The new centers need to be sent to the PPU for verifying convergence condition.

The memory usage is high for increasing clusters and input vectors.

Algorithm 6 Mean Evaluation on SPU

1: Get data objects belonging to same cluster and the histogram count.
2: Summation using intrinsics.

3: Evaluate the new mean taking average for each.

4: Return the new centers to PPU.

3.3 Results

We evaluated the performance of our approach on NVIDIA’s 8600, GTX 480, IBM CellBE with 8
SPUs, and for sequential implementation used 32 bit Intel (2.4 GHz, 1Gb RAM). For the sequential
results, we used standard Bardia Sardi’s [15] implementation which has produced results for sequen-
tial K-Means. The input for our K-Means implementation were SIFT vectors. SIFT vectors are high
dimensional vectors (128 dimensions) which represent a key point in an image, which are clustered to
build vocabulary for classification purposes. These are generated using Lowe’s [31] implementation.
We made comparison with the latest approach on GPU. We comparing with a standard CPU implemen-
tation as a reference to show how the accelerators can enhance the performance in practice for someone
using the CPU. The timings given below are average timing for 20 iterations. The iteration time includes

labeling and new mean evaluation. In our experiments, we used K-Means++ for selecting initial clus-
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Input | Numberof | CPU GPU GPU IBM
Size: n | Centers: k | 2.4 GHz | Tesla | GTX 480 | CellBE
10 K 80 1.3 0.119 0.18 0.389
50 K 800 71.3 2.73 1.73 11.2
125 K 2,000 463.6 14.18 7.71 64
250 K 4,000 1320 38.5 27.7 149
500 K 4,000 5985 58.2 30.9 339
1M 8,000 28936.2 | 268.6 177.61 1356

Table 3.1 Running time of our K-Means implementations per Iteration on GPUs, the CellBE, and
sequential implementation on the CPU. The times given are in seconds.

ters. It is an expensive evaluation consuming a time equivalent to 2-4 iterations of K-Means for large
n but it has found to drastically reduce the number of iterations. This extra time can be shared by all
the iterations which is high for large input data. For an input size of 10K we observed it took almost 74
iterations to converge using random centers. Initialization using K -Means++ provided a 2-fold speed
compared to initialization using random initial centers. We have performance timings for input sizes
upto 1 million vectors of 128 dimension. By varying the cluster centers k, dimension d and input size
n, we study the scalability of our approach.

Each CUDA block uses 256 threads in a row major format contributing two membership values after
looping over all centers. For the Tesla GPU device, we process 2 vectors per block (i.e., ¢ = 2). We
loop over the cluster centers, taking two centers (i.e., [ = 2) a time. With more shared memory on Fermi
GPU, we process 2 input vectors per block (i.e., ¢ = 2) looping over the cluster centers, taking four
centers (i.e., | = 4) a time. The centers were accessed globally via texture memory for the Tesla and
the global memory for the Fermi via L2 cache. The amount of shared memory used by 2 input vectors
and performing 8 distance evaluations was 5136 KB. We achieved an occupancy of 83% for the above
parameters on GTX 480. This combination of parameters gave the best performance in practice. The

looping over all centers is the time consuming part of membership kernel.

On the IBM CellBE, We perform the membership on the SPU’s by streaming the cluster centres in
each iteration. Centre evaluation is also performed on the SPU by bringing vectors of selected labels
to it. The SIMD intrinsics work very well for the large vectors we use. Buehrer ef al. [6] made use
of single instruction multiple data (SIMD) intrinsics. The architecture is slightly dated, but our results
help to compare it with the GPUs. The running times shown in Table 3.1 provide a comparison between
CPU, CelIBE and different generations GPUs for different combinations of n and k. The speed-up
obtained is from 170 on a GTX480 and almost 25 on CellBE. Figure 3.4 shows a plot of the time per
iteration for different n with a fixed dimension of 128 and £ = 4000. A single GPU provided a speed
up ranging from 50-170 with increasing n. The variation of performance was nearly linear and scalable

with increasing n.
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Figure 3.4 Running time per iteration in seconds for different input sizes for d = 128 and k£ = 4K.

Figure 3.5 shows the variation of running time with the dimension d. We can deduce that the perfor-
mance varies nearly linearly with the input size and the number of dimensions. The distance evaluation
time vary linearly with d and the number of distances linearly with n.

In Figure 3.6 we vary the number of cluster centers and found that as number of centers decrease the
gap between GPU and CellBE was reducing mainly due to the fact that CellBE had to send the centers
multiple number of times to the SPU but with less number of centers it was evident that its performance
would improve drastically. So it could be said that performance of CellBE is highly dependant on
number of cluster centers chosen and also the size of the input. It also shows the dependence of the
running time on k, the number of cluster centers. The variation in performance was slightly more than
linear. Increasing centers not only add up more work in membership evaluation step but also divergence
in the mean evaluation on GPU.

On CellBE a speed up of 7.26 folds was achieved by increasing the number of SPUs from 1 to 8.
In Figure 3.7 speed-up factor was dependent on number of SPUs used and variation with increasing
number of SPU’s gave almost a linear speed-up with increasing SPUs The performance time was almost
linear also with respect to dimension of the vector.

K-Means involves large amount of distance evaluations. Most of them do not affect the current
membership of the data object. We may reduce the computational load by terminating the distance
computation for an input vector and a particular center as soon as the partial component-wise distance
exceeds the local minima for the input vector. We then switch to the next center there by avoiding the
unnecessary computation. This approach is referred as Lazy Evaluation. We added a lazy evaluations
step in which the threads whose running sum of the distance exceeds the present minimum exiting early.
The can eliminate unnecessary evaluations, but can introduce thread divergence on the GPUs. This is

not very serious as the terminated threads only abstain from the computations. Table 3.2 compares the
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Figure 3.5 Running time per iteration in seconds for vectors of different dimensionality for n = 1M
and k£ = 8K

Input | Number of || Approach | [20] with | Our Version
Size: n | Centers: k [20] Lazy eval of [20]

30K 1,000 2.955 1.63 0.945
50K 2,000 10.11 5.2 3.14
125K 2,000 18.8 8.1 7.41
250 K 4,000 78.3 374 26.7

Table 3.2 Running time in seconds on a GTX480 of Hong-Tao et al. [20] approach with and without
lazy evaluation and our approach for d=128

result of the implementations of the prior method with and without lazy evaluations to that of our own
method. Our fully parallel implementation is faster by a factor of roughly 1.5 over the lazy evaluation
method for large n andk. In few cases the lazy evaluations did catchup with our results. In case of small

dimensional data lazy evaluations are not effective.

We compared our GPU approach with that of Li ef al. [29] which claims to provide the best per-
formance and also HP K-Means. Table 3.3 shows the comparison of various approaches on GTX 280
hardware. Unfortunately HP K-Means did not provide results for high dimensional data. The compu-
tation iterates over the dimensions and cluster centers. Our performance was nearly 4 times better than
HP K-Means. For low dimensional data and centers Li ef al. performance was marginally better but as
the dimension, clusters increased our performance was almost better by a factor of 2.

Membership evaluation consumes a major percentage of total time of each K-Means iteration. Table

3.4 shows time division for label evaluation and new mean evaluation. The efficient mean evaluation
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Figure 3.7 Running time by varying number of SPUs for 50k vectors of 128 dimension in 2k centers

performed on the GPU results in its time share to about 6% of total time for large input of high dimen-
sion. For low d, k the mean evaluation consumes major time but with increasing parameters its share
reduces.

3.3.1 Performance: Discussions

The membership evaluation step is both computation and memory bandwidth intensive. Each input
vector needs to compute its distance with each cluster centre. A single distance evaluation needs 3d
floating point operations (one subtraction, one multiplication, and one addition to find the sum). The
max finding uses K comparisons per vector. Thus the total computations are bound by 4N Kd. This

comes to 4 x 220 x 212 x 27 or 2 terra floating point operations per iteration for 1M vectors of 128
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Input Dimension | Number of Our Lietal [29] | Wu et al. [52]
Size: n d Centers: k£ || K-Means K -Means K -Means
2 Million 8 400 1.27 1.23 4.53
4 Million 8 100 0.734 0.689 4.95
4 Million 8 400 2.4 2.26 9.03
51,200 64 32 0.191 0.403 -
51,200 128 32 0.282 0.475 -

Table 3.3 Running time in seconds of our approach and those of Li et al. and Wu et al. on a GTX280.

CPU 1 Tesla GTX 480
n,d, k New | New | New | New | New | New
Label | Mean| Label | Mean| Label | Mean
50K, 32, 34 33.5 2.28 1 0.104 | 0.24 | 0.073 | 0.2
0.5M, 32,34 207.78] 16.67| 0.316 | 0.4 | 0.248 | 0.29
0.5M, 1282k || 2499 | 548 | 42.3 1.9 | 245 2.9
1M, 128, 4k 11864 | 2604 | 113 7.6 | 692 |41

Table 3.4 Times for the labelling and mean evaluation steps per iteration in seconds

dimensions with 4K clusters. A single Tesla, with a peak compute power of 1 TFLOPS, should be able
to perform these in 2 seconds if fully utilized. Membership evaluation also loads all K cluster centers
from the global memory for each input vector. This results in a memory traffic of 4N Kd bytes per
iteration for 4-byte float data. This comes to 2 terrabytes of memory reads, which should take about 20
seconds if the rated peak bandwidth of 100GB per second can be sustained. Table 3.4 shows the total
time to be about 113 seconds on 1 Tesla GPU. This shows that the average effective performance we
obtain is off by a factor of 7 from the peak. This leaves the possibility for significant future speed-up by

utilizing the resources more efficiently.
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Chapter 4

Clustering on Multiple GPUs

K-Means is a highly computational and memory consuming algorithm. Overloading a single device
with large amount of data to cluster will consume time and large data transfers even if performed in
batches. A single GPU device has limited global memory, hence makes it hard to process very large
number of high dimensional input vectors. Registers and shared memory also restrict accommodation
of more number of vectors to process at a time. The scalability of the algorithm also becomes an issue

with limited GPU memory.

Master Node

Partitioned Input Data as per devices on nodes

/ kstcr Centers \
Node A

TR TR

Gk-1 Gk

GPU devices on Node A GPU devices on Node Z

Figure 4.1 For Multinode, Multi-GPU configuration, the input vectors are partitioned among the GPUs
of all nodes without duplication. The cluster centres are copied to each GPU in each node.

4.1 Multi-GPU Implementation

We propose an implementation on the multiple GPU’s where in multiple threads efficiently compute
label for a single data object. Algorithm 7 describes our approach using (G, GPU devices and Z nodes.
Figure 4.1 shows the data partition amongst the G, GPUs and Z nodes. The input vectors are partitioned
uniformly among all available GPUs. When devices have different capabilities, the partitioning should
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be done on the basis of the capability of the device like number of cores and available device memory.
The cluster centres are copied to all GPUs as typically it occupies much less space. One of the CPUs
serves as the master node (Figure 4.1) and distributes the data to other nodes. The cluster centers are
broadcast to all nodes and copied to all GPUs at the start of each iteration. We can truly exploit the
computational power of each device and balance the load distribution. This frame-work may be adopted

in cases where we have large number of GPU devices available on multiple nodes.

Algorithm 7 Multi-GPU K-Means algorithm
Input: I_data, Centers, No of Nodes Z, No of GPUs - GG
Output: Membership, new_centers

1: Partition the input data into chunks propotional to number of cores, Global memory on each GPU
for every node and transfer them to each of the GPUs.
Broadcast the k cluster centers to all the nodes, GPUs.
for G GPUs in parallel do
Perform membership evaluation using Algorithm 2 for own partition.
Perform mean evaluation using algorithm 3 to calculate partial centers on each device and send
them back to respective Nodes.
end for
Every node performs summation of partial means collected from their respective GPUs.
Nodes send these partial sum to the Master node.
Perform final summation to evaluate new centers for the next iteration on the Master Node.
10: Check condition for convergence, if true then convergence is achieved else go back to step 2 with
new centers.

R

Each GPU performs operations similar to the single GPU implementation. It first computes the new
membership for each input vector in its partition. Then, the partial sums of its share of vectors for each
of the K clusters is computed on the GPU. This data is sent to the CPU of the node along with the size
of each new cluster. This data is accumulated at the CPU and send to the master node. The master
node computes actual cluster centres from the data, which is broadcast to each GPU via its node CPU
for the next iteration. This ensures that all O(n) work is performed on the parallel GPUs while some
of the O(k) work is performed on the CPU. In practice, the work on the CPU is small compared to
membership evaluation.

The number of clusters & is much smaller than the number of vectors n. Typically & = O(y/n))
and hence it is fine to have all centres stored in each GPU. In Computer Vision, visual vocabulary is
built using high values of n — in tens of millions — depending upon the application. The number of
clusters is typically 5000 for such data. In each node, the GPU to CPU bandwidth is reasonably high,
to the order of 4GB/s. The cluster centres consist of kd numbers, which comes to 2MB of data for SK
vectors of 128 dimensions. The partial sums can thus be sent in less than 1 millisecond to the CPU.
Since the node CPU aggregates all data from its GPUs, an equal amount of data needs to be sent from
each node to the master node. We used a commodity LAN to connect the network which takes 10-20
milliseconds for such a transfer. A proper HPC cluster will have better bandwidth using which message

passing between nodes can be made efficient and faster. At the start of each iteration, the new cluster
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Input | dim || 1 Tesla | GTX 480 | 4xTesla | 4xTeslas +
Size:n | d Device | Device Devices | GTX 480
1M 128 120.4 73.3 34.6 22.8
1.5M | 128 181.7 95.6 47.2 34.8
3M 128 | 364.2 - 94.671 67.4
6M 128 - - 183.8 136.7
16 M 16 2204 - 57.8 40.9
32M 16 - - 116 84.3

Table 4.1 Running time per iteration in seconds for different input sizes on 1 T10, GTX480, 4x Tesla
devices, and 4 x T10 + GTX480 for k=4K.

centres need to be broadcast to all nodes, which involve exactly the same amount of data transfer as
partial sums. Transferring input data across the nodes is a one time cost. The communication times are
not significant for such large data sets as the membership evaluation takes several seconds even on the
GPUs.

4.2 Results

We have performed our Multi-GPU implementation using 4 x T'esla T10 devices and a GTX 480
card. Using MPI we performed node to node communication for data transfers. The load was divided as
per the number of cores present in each of the devices to ensure load balancing and efficient utilization
of resources. Table 4.1 shows a comparison of timings for increasing input size on single GPU and
Multi-GPU devices. The blank values in the table are due to limited global memory on devices we
were not able to run experiments on single GPU device for large datasets and had to rely on Multi-GPU
approach.

The scalability in the number of cores of the GPU can be seen on low end card like 8600 with 32
cores and limited device memory (256 MB). We limit the input size to 200K vectors and compared the
individual performance of 8600 (peak performance 100 GFLOPS) with that of Tesla (peak performance
of 1TB) and GTX 480 (peak performance of 1.35TB). For low input size the performance of 8600
compared to other high end cards is shown in Figure 4.2. GTX 480 boosted the speed on an average
by a factor of 1.5-1.8 compared to Tesla. The 4 x T'esla T10 devices gave speed-up of nearly 3.8
compared to a single Tesla T10 device. The significant points are that the 8600 also was able to give
good performance and the algorithm scales well with increasing number of cores.

We have used Open Message Passing Interface (MPI) for node to node communication in case of
multi node multi GPU using 4 x Tesla devices on node A and GTX 480 on node B. The node to node
communication took place over local area network (LAN), using a SMP based cluster of nodes we
may able to reduce the communication overhead. The scalability of n is dependant on total number of

devices across the nodes. We maximized n up till the point where devices can handle data since they
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Figure 4.2 Running time on 8600, T10, GTX480 and 4 x 7'10 GPUs for various input values, d=128
and k=1k.

have global memory restrictions. So if we have large number of devices available we may scale our
performance to a larger n and d. Dividing the input data based on cores present on a node ensured that
GPU resources have been properly utilized achieving load balancing. This approach will be useful when
we have cluster of GPU nodes with different computational capability.

Figure 4.3 shows the performance of Multi-GPU using 4 x T'esla T10 devices for n upto 6 million.
The variation is pretty much linear with increasing n. We were able to overcome the memory limitations
faced on a single GPU device and able to scale our approach to n. Figure 4.4 shows the graph for
variation of number of centers and how it affects the performance. The variation is mainly due to
the architectural differences each of these devices have. The architecture has evolved from low end
card 8600 to Fermi architecture. Features like shared memory, L2 cache, etc have added up to the
performance. Also the implementation has been altered as per the GPU architecture, in case of Tesla

the centers were accessed via Texture memory where as in Fermi via L2 cache.
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Chapter 5

GPU Assisted Video Organizer

We present in this chapter the design and implementation of a scheme that helps categorize large
collections of videos on a desktop or a laptop. We focus on the sports genre which has wide range of
categories and will be a good test subject for our approach. Our categorization approach is an extension
to videos of current scene classification [1,26, 53] and object detection [28, 36] research carried out by
computer vision community. The user annotates a few videos or parts of it by one of the category names
which he wishes to use. Our scheme uses the Pyramidal Histogram of Oriented Gradients (PHOG)
features [5] and their clustered collection as the representation for each category the user provides,
which is computed by the system in the learning phase. A K-NN classifier and aggregation of votes
by individual key frames are used to assign categories to the unlabeled collection in the categorization
phase. The focus is on a scalable implementation in this work and not on pushing the state of the art on

image/video classification.

5.1 Video Classification

Describing the entire video using a single descriptor, as is often done in images is not easy. Videos
for many purposes can be considered as a collection of images which have a certain connection or pat-
tern with each other. In our discussions, we use the term frame to refer to an image from the video
stream. A video can be broken into small shots which are a collection of similar frames. Our clas-
sification approach has two parts: Category Determination and Category Assignment. We assume no
off-line training data is available; so we need to form a basis for classification in order to categorize the

remaining test videos. Also our training process adapts to the user’s collections.

5.1.1 Category Determination

In this phase, we use a few videos tagged with their categories by the user. These are used to
train our video organization system. Figure 5.1 shows the flow of the algorithm for this step. The

representation formed at the end is the basis for categorizing the videos. We extract the key frames
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using color histogram differencing. We remove small shots from the obtained result using a threshold
on the number of frames to keep only major content. Each remaining shot is represented using a small

number of key frames for further processing.

Segment &
Threshold

|

Category K-Means
Representation Clustering

Figure 5.1 Category Determination: Algorithm Flow

We use PHOG feature descriptor. In our experience, video frames are best distinguished based on
objects present in the frames like pitch in the case of cricket, net in the case of tennis, etc. In the image,
each region is represented as a Histogram Of Gradients (HOG) as explained in [9]. The HOG vector is
computed for each grid cell at each pyramid resolution level. The final PHOG descriptor for the image is
a concatenation of all the HOG vectors. In forming the pyramid, the grid at level  has 2 cells along each
dimension. Level 0 is represented by a V-dimensional vector corresponding to V' bins of the histogram,
level 1 by a 4V vector, etc. Three spatial pyramid levels are used (1 x 1,2 x 2,4 x 4). The PHOG
vector is normalized to sum to unity. This normalization ensures that images with more edges or texture
rich or larger are not weighted more strongly than others. The dimension of our PHOG descriptors is
640. We compute descriptors for all key frames of the tagged videos. The distance between two PHOG
image descriptors then reflects the extent to which images contain similar shapes and corresponding in
their spatial layout. We use K-Means clustering to group similar frames so that minor variations can be
accounted for, similar to how visual words are formed in the object process of Video Google [45]. This
results in a set of meaningful centers to represent each category. Our aim is to reduce the large number
of descriptors to those that describe a particular category. We typically use 200 clusters to represent
each video category. The cluster centers of form the representation for each category.

5.1.2 Category Assignment

The above representation is used to assign categories to other videos in the user’s collection. Shot

segmentation and PHOG extraction on user videos are carried out as described earlier. We use a K-
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Algorithm 8 Category Assignment

Input: Test Keyframe Descriptors, Centers
Output: Category Label

[: number of key frames, kF: Key frame

for y =1 to [ in parallel do

l:

2:  K-NN (kF,) /* Returns K neighbors, distances */
3: end for

4: fory=1tol do

5. dl < distance(15'-NN(kF,))

6:  d2 < distance(2"¢-NN(KF,))

7. if d1/d2 > r then

8: Allocate kF,, a single category, of Centre[1]

9: else
10 Allocate kF,, to all K categories for the frame
11:  endif
12: end for
13: topper < Highest count among categories for video

=

runner-up <— Next highest count

. if topper is 20% more than runner-up then
Assign video to category of the highest count
. else

Ask user for category assignment

. end if

e

nearest neighbor (K -NN) approach using Euclidean distance to assign a label to each key frame of the
video. Algorithm 4 shows flow for category assignment phase. Some of the frames may be classified
wrongly due to the similarity in individual frames between different categories, such as the ground
seen in different sports videos. We give all labels to each frame based on the distances to K nearest
neighbors. K may be decided based on the closeness of these sport categories. We use a number that is

close to half the number of categories for K in practice.

Lowe’s criterion [31] considers the distances d1 and d2 (d2 > d1) to the first and the second nearest
neighbors. A query and its closest neighbor are matched when the ratio » = d1/d2 between these two
distances is below a threshold. This criterion is more robust than a global threshold on distances and
behaves well when the structure to be matched is present exactly once in the candidate database. In
our case, if the top match passes the ratio test, only one category is assigned to that frame. Otherwise,
multiple labels are assigned to it as per the K nearest neighbors. In this manner, we are able to ensure
that multiple close matches against the training frames are considered for final scoring. Each frame has
one or more labels at the end of this process. We aggregate them for a video to give it a final label. We
compute a category histogram for each video by combining the labels of its key frames. Frames with
multiple labels contribute to multiple bins. We assign the most probable label to the video based on

the final histogram, provided its score is clearly above all others. To assign a category based on score
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we require that the top category of a video to have 20% more score than the next best category. We let
the user decide the category manually if a clear label cannot be assigned using this criterion. Involving
user at the end ensures even ambiguous videos are classified properly also in our view, preferable over

mislabeling them. Fewer than 5% of the videos required user intervention in our experiments.

5.2 Implementation Details

The computationally intensive tasks like segmentation, PHOG feature extraction, K -Means cluster-
ing and K nearest neighbor are performed on GPU. Figure 5.2 indicates the division of work between
CPU and GPU for different steps. We adapted the histogram sample code provided by NVIDIA for seg-
mentation and key frame extraction. After the histograms are evaluated, we perform difference between
consecutive frames to mark boundaries for shots. PHOG feature descriptors are evaluated on GPU using
the approach by Prisacariu and Reid [39]. Their approach uses one thread per pixel and the thread block
size is 16 x 16. Trilinear interpolation is used in cell/block configuration and pixel contributes to up to
4 histograms (one for each cell), and up to 2 bins per histogram. To compute the color gradients, we
use two separable convolution kernels similar to the ones from the NVIDIA CUDA SDK. There are two
kernels, the first kernel convolutes the row with the centered 1-D mask, while the second kernel com-
putes the column convolution, gradient orientations and magnitudes. HOG is computed for different
scales and then merged to get PHOG descriptors. Using the results we get from K-NN we perform the
final scoring on CPU.

5.2.1 K-Means on GPU

We use our own GPU implementation of K-Means as referred in previous chapter. Fast GPU based
clustering was used in order to organize similar frames extracted from all the videos. Our implementa-
tion is divided into two parts: membership evaluation and mean evaluation. We extended parallelism to
the computation done on the d components of each input and center vector. Also the mean evaluation

is performed in a coalesced manner. The detailed implementation has already been discussed in chapter

Category Determination

R‘;L‘;ﬁg ;Q{e{%mmldmg W }/Z%/ ‘
Rosiing WTMSMMH@ /y/?cf W Scoring

Category Assignment

\:| CPU GPU

Figure 5.2 Work division between CPU and GPU.
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3. In this case we deal with high dimensional PHOG vectors (520). Using our implementation which

scales well with increasing dimension provided quick results clustering the set of frames.

5.2.2 K-NN on GPU

Algorithm 9 KNN in parallel for all keyframes

1: Each block handles [ new keyframes at a time loops over all keyframes

2: Find distances for each keyframe against all centers sequentially using Algorithm 5.1.2
3: k distances are in the global memory

4: Sort the distances using Splitsort for each keyframe

Distance Array

o [ |~
P
2

1 2 3

2 3 p-1
Indices of cluster centers

3P p-1 1

| 2 k
Sorted Distance Array

Figure 5.3 The distance array is sorted as per the distance values. The top k values represent the K
Nearest Neighbors

The basic process of K-NN algorithm involves finding K nearest neighbors for each keyframe of our
test video. To achieve this, we find the distances to the given centers for each test vector and sort them
on a distance criteria. The class label of the point is given by the labels of the closest K vectors. For K
nearest neighbor evaluations, we use Algorithm 9. Distance of a vector from a centre is evaluated using
Algorithm 2. Data elements which are frequently accessed are stored onto the shared memory. We store
the following onto the shared memory: s_data holds the input keyframe vector, s_dist stores square
of the differences for every dimension, min_y and membership, store the global minimum distance
and label for vector id y. The syncT hreads ensures that threads in a block which have completed the
task to wait for other threads to finish the task before executing the next instruction. We have all the
distances for the testing frames from the centers. The number of testing frames is typically large. We
use the SplitSort operation to get K nearest centers. We sort the index of center based on their distance
from a single data object, using the split primitive [37]. This is done by forming a list of 64-bit records
combining the distance and center index. We split this using the distance value as the key as shown in
Figure 5.3, shuffling the original center index order. After sorting the centers index based on distance

we send the top K centers from the sorted list to the CPU for the final categorization.
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GPU | Noof No of Segmenting | PHOG | K-Means
Device | Videos | Key frames video features | Clustering
8600 4 756 182.7 139.6 3.94
8600 12 2432 584.3 468.4 14.3
280 4 756 24.8 19.2 0.59
280 12 2432 76.9 61.8 1.97
580 4 756 11.8 9.1 0.26
580 12 2432 37.91 30.2 0.89

Table 5.1 Time taken in seconds to process the Category Labeling phase on NVIDIA 8600, GTX 280
and GTX 580 cards

5.3 Results

We worked on a collection with four sport category videos, including cricket, tennis, football, table
tennis, for our initial experiments. We downloaded highlights of these sports from popular websites
like You Tube, Vimeo, Metacafe, etc., ranging over a period of 5-6 years. The videos typically have 30
frames per second and range from 8-15 minutes of duration. For our experiments, we took 100 videos
belonging to 4 categories. Each video roughly had 20K frames. The user tagged 12 videos belonging to
four categories. We performed our experiments using computers which have a dual-core Intel CPU and
a GPU. A high-end Nvidia GTX 580 and a low end Nvidia 8600 GPUs under the CUDA programming
model were tried to gauge the effect of performing the classification on a desktop and on a laptop. In
case of cricket videos, we observed that the following shots emerged as key frames: Full screen Score
card, Pitch, Wicket celebration, Boundary, Focus on a player, Hawkeye prediction and Crowd (Figure
5.4). Even in case of football we found such similar frames (Figure 5.5) of player positioning, goal
post, goal celebration, football trajectory, crowd, etc. Pretty similar was the case for other categories.
During the category determining phase, we performed video segmentation, PHOG evaluation, and K-
Means clustering on the GPU device. Instead of representing a shot by single frame we take 4 frames
to represent a single shot. In this manner, we get an entire summary of the shot consisting of adequate
details. Figure 5.6 shows the frames extracted during the category determining phase using the tagged
information. Similar frames extracted from every video are clubbed together using clustering. We
perform 10 iterations of K-Means on each category to get representative centers for each. The final
representation consists of about 200 key frames for each category, distributed evenly.

During the labeling phase we perform the video segmentation, PHOG feature descriptor, K -nearest
neighbor on the GPU. Table 5.1 shows the time taken for each stage of training process for 4 videos of
one category and 12 videos of all categories by the user. The times in seconds are shown on a low-end
(8600) and a hig-end (GTX 280, GTX 580) GPU showing that the algorithm can be scaled to number
of cores. The comparison shows that even the low-end users can benefit from our application.
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Table 5.2 shows the processing time of K -NN algorithm for the category assignment phase on 8600,
GTX 280 and GTX 580. The time consuming steps in our application are the video segmentation and
PHOG feature extraction. The ratio test was useful for frames which had close ups of an individual or
the crowd. Such frames were labeled in multiple categories. Frames consisting of the cricket pitch, the

table in tennis table, etc., were classified clearly.

GPU | Noof No of K-NN
Device | Videos | Key frames

8600 88 16946 40.33
280 88 16946 5.39
580 88 16946 2.46

Table 5.2 Time taken in seconds for K-NN during the category assignment phase on NVIDIA 8600,
GTX 280 GTX 580 cards

In Table 5.3 we see the percentages of individual frames which are correctly classified for different
number of neighbors for a single test video in each category. In case of 3 neighbors, we label the category
of a frame based on the majority neighbor criteria. In cases where there was no majority the frame may
belong to any of the 3 neighbor categories. Improvement could be seen in categories which have frames
consisting of field, players, etc. Not much improvement could be seen in table tennis as majority of the
frames consisted of the table views which were easy to match. Using K-NN was beneficial in boosting
the classification of frames. We did have some misclassification in certain categories like football due
to lack of information from majority of the key frames which have field, players in it. Our tool is able to
organize a set of 100 sport videos of total duration of 1375 minutes in about 9.5 minutes. The process of
learning the categories from 12 annotated videos of duration 165 minutes took 75 seconds. We achieved

an accuracy of nearly 96% on our testing dataset.

Figure 5.4 Key Frames for Cricket video
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Figure 5.6 Training Frames accumulated for various categories

No of Cricket | Football | Tennis TT
Neighbors | Videos | Videos | Videos | Videos
1 64% 58% 69% 82%
3 73% 66% 77% 84%

Table 5.3 The percentage of frames correctly classified using K -NN
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Chapter 6

Conclusions

We presented the design and implementation of the K-Means clustering algorithm entirely one or
more GPUs in this thesis. We achieved high performance on different GPU generations using the mas-
sive parallelism supported by the CUDA model. Our implementation is scalable in the problem size, the
number of dimensions, the number of centers, and the number of available cores on the available GPU.
The multi-GPU approach produced nearly linear speed-ups with large data. Our multi-GPU framework
can efficiently solve the clustering problem using multiple nodes each with multiple GPUs. Even low
end GPUs found on laptops are shown to provide speed-ups of 10-20 compared to the CPU version. The
performance we achieve are indicators of the performance that can be obtained on future accelerators,
in our view. Such accelerators are becoming more common and are likely to play key roles in different
computation steps performed by individuals on their PCs. Scalability to large vectors and problems is
important as all aspects of data handled by even individual users is growing very fast. With architectures
evolving there will always be scope to improve our approach taken for K -Means algorithm. Work could
be carried out in developing a hybrid many-core implementation utilizing the resources of both GPU
and CPU.

We also presented the design and initial results from a GPU-assisted system to organize a personal
collection of videos. We used a combination of the CPU and the GPU to get good computational
performance. Using GPU K-Means approach we developed implementation for K -NN algorithm. We
used simple methods adapted from object recognition literature to classify video frames. In future we
would like to use more sophisticated methods from the visual object detection and scene classification
literature in the future. We have to be selective about this as computational requirements have to be
kept reasonable for any personal system. We intend to test the system on larger databases with more
categories popular in personal videos. In future, with people having thousands of videos, GPU devices
on their machines such application will always be handy for maintaining an organized collection of

personal videos.

GPU is a good platform and its architecture has evolved making it suitable for wider range of appli-
cations. These graphics cards are highly available in the current market and will certainly play a major

role in time to come. Usage of both CPU and GPU at the same time, will surely be an approach for ef-
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ficient resource utilization. We have certainly made a beginning in developing GPU based applications.

In future wide range of GPU based applications on personal laptops/desktops can be developed.
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