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Abstract

Among the many 3D representations, Coordinate-based implicit neural networks or neural
fields gained much appreciation in recent times for their ability to represent shape and ap-
pearance with very high fidelity and accuracy in 3D computer vision. Despite the advances,
however, it remained challenging to build generalizable neural fields for the category of the
objects without datasets like shapenet that provide “canonicalized” object instances that are
consistently aligned for their 3D position and orientation (pose). Aligning the objects in 3D
helps in many tasks for better generalization on 3d scene understanding, classification, and seg-
mentation. 3D pose estimation can also be obtained by aligning the objects in the 3D. There
are methods that align 3d objects represented as point clouds/meshes. Now that we have a
new promising 3d implicit representation, there is a need to develop a method that helps to
align the neural-fields so that we can enjoy the same benefits we had in the space of point
clouds/meshes. Unlike point clouds/meshes neural-fields are parametrized by deep neural net-
works which is very hard to interpret. In this thesis, we present Canonical Field Network
(CaFi-Net), a self-supervised method to canonicalize the 3D pose of instances from an object
category represented as neural fields, specifically neural radiance fields (NeRFs).

Neural-fields, specifically NeRfs describe the 3D scene as a function of density and view-
dependent color. Aligning the objects of a category depends on the geometry rather than the
color. That’s why CaFi-Net uses density alone to align the objects within the category. Canon-
icalization is tightly coupled with equivariant networks. In this work, we draw inspiration from
3D Equivariant networks and construct a CaFi-Net as an Equivariant network for rotations.
This network directly learns from continuous and noisy density fields by employing a Siamese
network architecture. Previous work has done this for points, but handling fields, specifically
vector fields, require us to consider rotation equivariance in both the position and orientation
of the field. So, to incorporate the rotation equivariance in the fields, we chose the gradient of
a scalar field density, which is a vector field, as the signal for building the rotation equivariance
in the CaFi-Net. We used spherical harmonics as a basic building block for the equivariant
convolution kernels for CaFi-Net. To handle the noisy signal, we weighted the features with
the density value at the point. We employed density-based clustering for the segregation of the
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background and foreground parts, which is utilized in the calculation of the losses. As there is
no publicly available dataset, in order to train the CaFi-Net, we created a simulator that renders
54 camera omnidirectional views for 1300 Nerf instances across 13 shapenet object categories.

During inference, our method takes pre-trained neural radiance fields of novel object in-
stances at arbitrary 3D pose and estimates a canonical field with consistent 3D pose across
the entire category. As there are no metrics available for canonicalization for neural fields, we
used the same metrics used for the point clouds to evaluate the CaFi-Net Performance. Along
with the above metrics we have introduced a new metric Ground Truth Equivariance Consis-
tency(GEC) which measures the canonical performance of CaFi-Net to manual labels. Exten-
sive experiments on the above dataset of 1300 NeRF models show that our method matches
or exceeds the performance of 3D point cloud-based methods. We conducted ablation studies,
which included exploring the choice of the signal, weighing the equivariant features with the
density value, assessing the need for the Siamese network, and finally justifying the design
choice of the CaFi-Net. In the results section we showed renderings of the Neural-Fields of the
object from the canonical pose that are consistent across the category.
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Chapter 1

Introduction

Neural fields [S8]] coordinate-based neural networks that implicitly parameterize signals
have recently gained significant attention as representations of 3D shape [28, 23] 6], view-
dependent appearance [25,41]], and motion [26].

In particular, neural radiance fields (NeRFs) [25], have been successfully used in problems
such as novel view synthesis [3}4,|65], scene geometry extraction [60,|54], capturing dynamic
scenes [29, 30,151, 133} 20], 3D semantic segmentation [67, 52], and robotics [1} 14}, 22]. De-
spite the progress, it remains challenging to build neural fields that represent an entire category
of objects. Previous methods sidestep the problem by overfitting on a single instance [23], or
learning [28,162, 23] on datasets like ShapeNet [5] that contain objects that are manually canon-
icalized — oriented consistently for 3D position and orientation (3D pose) across a category.
This strong supervision makes it easier to learn over categories but limits their application to
data that contain these labels. Recent work has proposed methods for self-supervised learning
of 3D pose canonicalization [42, 46, |39], however, these operate on 3D point clouds, meshes,
or voxels but not neural fields. In this paper, we present Canonical Field Network (CaFi-Net),
a self-supervised method for category-level canonicalization of the 3D position and orienta-
tion of objects represented as neural fields, specifically neural radiance fields. Canonicaliz-
ing neural fields is challenging because, unlike 3D point clouds or meshes, neural fields are
continuous, noisy, and hard to manipulate since they are parameterized as the weights of a
neural network [59]. To address these challenges, we first extend the notion of equivariance
to continuous vector fields and show how networks for processing 3D point clouds [49] can be
extended to operate directly on neural radiance fields. We design CaFi-Net as a Siamese net-
work that contains layers to extract equivariant features directly on vector fields. These field
features are used to learn a canonical frame that is consistent across instances in the category.
During inference, our method takes as input neural radiance fields of object instances from a
category at arbitrary pose and estimates a canonical field that is consistent across the cate-



gory. To handle noise in radiance fields from NeRF, our method incorporates density-based
feature weighting and foreground-background clustering. Our approach learns canonicaliza-
tion without any supervision labels on a new dataset of 1300 pretrained NeRF models of 13
common ShapeNet categories in arbitrary 3D pose. We introduce several self-supervision loss
functions that encourage the estimation of a consistent canonical pose. In addition, we present
extensive quantitative comparisons with baselines and other methods on standardized canon-
icalization metrics [36] over 13 object categories. In particular, we show that our approach
matches or exceeds the performance of 3D point cloud-based methods. This enables the new
capability of directly operating on neural fields rather than converting them to point clouds for

canonicalization. To sum up, we contribute:

 Canonical Field Network (CaFi-Net), the first method for self-supervised canonicaliza-
tion of the 3D position and orientation (pose) of objects represented as neural radiance
fields.

* A Siamese neural network architecture with equivariant feature extraction layers that are
designed to directly operate on continuous and noisy radiance fields from NeRF.

* A public dataset of 1300 NeRF models from 13 ShapeNet categories including posed

images, and weights for evaluating canonicalization performance.



Chapter 2

Related Work

We focus our review of related work on neural fields, supervised canonicalization, self-

supervised canonicalization, and equivariant neural network architectures.

2.1 Neural Fields

Neural fields are emerging as useful representations for solving problems such as novel view
synthesis [25} 3} 4, 165, [16], shape encoding and reconstruction [28, 23], dynamic reconstruc-
tion [29, 30, 20], appearance modeling [24! 135, 44]], and human motion modeling [50, |19, 45,
8]]. In contrast to voxel/point cloud-based methods that discretize 3D space, neural fields offer
a continuous representation and differentiable framework, enabling more precise modeling of
intricate structures. This attribute is particularly advantageous in tasks like shape encoding and
reconstruction, where the fine-grained details of objects are crucial.

Generalization of neural fields to object categories remains difficult, but some methods have
used pre-canonicalized datasets to circumvent this problem [62]]. Please see 58, 48] for more
details. In this paper, our focus is on canonicalizing for the 3D pose of neural fields, specifi-
cally, neural radiance fields (NeRF) [23]].

2.2 Supervised Canonicalization

Canonicalization, the process of aligning 3D shapes to a standardized reference frame, plays
a pivotal role in various applications, particularly in tasks like instance-level camera pose esti-
mation, human pose estimation and 3D shape analysis.

Datasets such as ShapeNet [S] and ModelNet40 [57] have 3D shapes that are manually pre-
canonicalized. This inductive bias aids category-level generalization in problems such as 3D



reconstruction [28, 123,47 [12]]. We can also use these datasets to formulate canonicalization as
a supervised learning problem [53] enabling applications such as 6 degree-of-freedom object
pose estimation, multi-view reconstruction [18} 43]], and reconstruction of articulating [21} 64]
and non-rigid objects [63]. However, our goal is to canonicalize without using manual pose
labels.

2.3 Self-Supervised Canonicalization

Traditional supervised approaches rely on labeled datasets, requiring manual annotation of
canonical poses for each point cloud, a process that is both labor-intensive and impractical
in scenarios where labels are unavailable. The emergence of self-supervised canonicalization
methods offers a compelling alternative by using input point clouds without explicit annota-
tions. One common strategy involves predicting the canonical point cloud along with a trans-
formation that maps it to the input point cloud. The loss is then computed between the input
and the transformed input, guiding the model to learn canonical representations without relying
on labeled data.

Recent research has shown that self/weak supervision is sufficient for learning pose canon-
icalization on point clouds [37, 136} 46, 42]. None of these previous self-supervised methods

can operate directly on neural fields — to the best of our knowledge, ours is the first.

2.4 Equivariant Neural Networks

Equivariant neural networks have emerged as a transformative paradigm in 3D point cloud
processing, addressing limitations inherent in traditional 3D point cloud encoders. Conven-
tional methods often struggle to capture and leverage the symmetries and transformations em-
bedded in 3D data, leading to suboptimal representations for subsequent tasks. By explicitly
considering the group symmetries of the input data, equivariant architectures ensure that the
learned representations are invariant under various transformations, contributing to improved
generalization and adaptability.

Pose-equivariant networks are equivariant to input pose [49, 9, 156, 55] by design. Some of
these methods use Spherical Harmonic functions [49, 155} 156, [10]], or vector neurons [9] to ex-
tract equivariant features. Equivariance is closely related to canonicalization since a canonical
pose is also equivariant. Thus, previous methods have used pose-equivariance for canonical-
ization [36, 42,46/ 40]. However, these methods have thus far been limited to 3D point clouds,

voxels, or meshes.



Chapter 3

Background

In this chapter, we lay the groundwork for a comprehensive understanding of canonical
fields. We start by delving into various methods of representing 3D data and camera modeling.
Then pivot to the development of the mathematical tools needed to construct both rotation-

equivariant and invariant deep neural networks.

3.1 3D Representations

The world around us is three-dimensional which means that two-dimensional data such
as images often prove insufficient to adequately represent the world we inhabit. There is an
inherent loss of information of depth in the transition from the 3D world to the 2D world.
This has led to extensive research in the field of 3D Computer Vision to develop a compact
representation that avoids this loss of information. We cover a few of these representations

below with their corresponding pros and cons:

1. Point Clouds
This is a form of unstructured representation consisting of an array of 3D points/coordinates
in space. These coordinates specify points in space occupied by some object. The ob-
jects or scenes represented in this form are essentially discretized into a set of sampled
points. For each point we can optionally store the color and normal information
Pros:

* Easiest and most intuitive form of representation.

* Easy to obtain using sensors with basic processing of sensor data.

Cons:



* Memory is inefficient as this form requires quite a bit of storage to obtain a decent
representation. The more points we sample, the better the representation but the

more memory we consume.

* Loss of information such as connectivity and topology due to the discretization of

objects.

* Poor representation of texture and appearance information if we don’t sample an

adequate number of points to faithfully represent the scene.

2. Meshes

Here we represent the underlying occupied regions of space as a collection of vertices,
edges, and faces. The vertices are basic building blocks of meshes as they define the
corners of faces. The vertices are interconnected to produce a network of faces (where
each face is some polygon such as a triangle or quadrilateral) to represent the surface
of an object in space. The surface of the object can be textured or colored by applying
different attributes to the polygons. This representation is commonly used in graphics
applications such as video games.

Pros:

* Good representation of both, shape and appearance/texture.

* With the texture maps we can render photorealistic images.

Cons:

Storing the large and high-quality meshes are memory intensive.

* Complexity in the representation.

Can’t be directly obtained from sensors.

* Direct acquisition from sensors is not feasible. Needed post-processing.

Not well-suited representation for modern deep learning frameworks.

3. Voxels
Volumetric pixels (voxels) represent a 3D object or space using a regular grid of volume
elements, similar to how pixels represent 2D images. Each voxel represents a small
volume of space and contains information about properties such as RGB color, density,

etc. of that corresponding volume element in 3D space.

Pros:

* Easy to query due to its regular grid structure.



* Easier to process due to its regular grid nature, especially for methods based on
deep neural networks.

* The regular grid structure of voxels facilitates parallel processing, enabling efficient

computations.
Cons:

* Quality improves with an increase in resolution but at the cost of memory.

¢ Loss of information due to discretization.

Lot of redundancy in the representation as it stores information about both occupied

and unoccupied regions.

Poor visual representation of texture and appearance information in 3D.

Not able to capture the high-frequency details.

4. SDFs
Unlike the above representations, This is an implicit representation where a function
outputs the distance of a 3D point from the nearest point on the object’s surface. It
maps points inside the surface to negative values, those on the surface to 0, and all other
points outside the surface to positive values. While this representation on its own carries
no information on appearance and texture, it is possible to store this information using
another function to map 3D points to their texture or RGB color.
Pros:

* Memory-efficient as here we store an implicit representation modeled by some
function. It is common practice to use a neural network to represent this function

making it memory-efficient.
* A continuous and differentiable representation since it is an implicit representation.

» Ray tracing with SDFs is computationally efficient.
Cons:

* Creating the accurate SDF for complex scenes can be challenging.

* SDFs might struggle to accurately represent thin structures or surfaces with high

curvature.

As we have seen above, each representation offers something different having its own ap-
plications. For the purpose of this thesis, we will primarily focus on a more recent form of
representation, namely Neural Radiance Fields (NeRFs).



3.2 Camera Modelling

In this section, we discuss how a 3d point in the world is projected on an image. we can
mathematically model the camera which relates the 3D point in the world to the image pixel.
Given a 3D point p € R? in the world frame, we initially convert it into homogeneous coor-
dinates p, = [Xuw, Y, Zuw, 1]7. Let R € R3*3 represent the world to camera rotation and
X, € R? is the camera center in the world frame, we can transform the p,, into the camera

frame as follows.

X
R —RX,| |Y,
c — 3.1
p o7 ] Z. (3.1)
1

After describing the 3D point in the camera frame, we project it onto the image sensor using
the pinhole projection model. Let p. = [X,Y, Z, 1], where X,Y,Z € R. By the geometric
construction in Fig. [3.1] (right) we derive the following using similar triangles.

Yy o fX
V= u=

Now that we have the projected coordinates on the image sensor, the next step is to transform

(3.2)

them into image pixel coordinates by adding the camera sensor centers c,,c, to projected

points.

\ ‘
principal axis

image plane

camera
cenftre

Figure 3.1: Pinhole camera projection. Image courtesy [13]].

we can combine all of these operations into a single matrix that takes 3D coordinates in the

world and transforms them into 2D pixels as follows:

X
T z U

Y w
y| =K[R| —RX,] 7 = % = |v (3.3)
w 1 1

1



where K € R**? defines the camera intrinsic matrix which has focal length f, (along x), f,

(along y), the camera centers c,, ¢, and it’s shearing parameter s.

fz S Cg
K=1|0 fy Cy 3.4
0O 0 1

From this modeling, it’s evident that world-to-camera transformation is invertible (rigid
transformation), but the pinhole projection is not an invertible transformation. This lack of
invertibility results in ambiguous depth along the Z direction. Due to this ambiguity, we will
only obtain the ray direction if we multiply the inverse of K with image coordinates. The exact

3D point can be found at any distance on that ray.

3.3 Neural Radiance Fields

In this section, we describe Neural Network based 3D scene representation. This method
comes under an implicit representation, which means we can query any point in the 3D space
to get its attributes. We will primarily be covering the Neural Radiance Fields (NeRFs).

Nerf Models a scene as a 5D vector-valued continuous function which takes the 3D location
and 2D viewing direction as inputs and outputs the color and density. 5D vector-valued function
is approximated by a series of MLPS which are learned with Ground truth Images and camera
poses. Once trained, it can be queried to generate an image of the scene from any camera pose
around the scene. Essentially, it is a solution to the Novel View Synthesis (NVS) problem but
because of the approach NeRF adopts, it can also be used as an implicit representation of the
scene.

For a given camera view, NeRF initially performs ray marching, where it backprojects a
ray for each image pixel from that view and marches along the ray through the scene. NeRF
samples and collects 3D points along each ray. Next, for each point ¢ along a ray, it queries the
neural network to output a density (o;) and an RGB value (c¢;). It should be noted that the points
and direction are not fed directly to the network but are first encoded into a higher-dimensional
space using Equation [3.5]

v(p) = sin(2°7p), cos(2°mp), . . ., sin(2X L), cos (25 ) (3.5)

This is done because the raw input coordinates result in renderings that perform poorly at
representing high-frequency details in color and geometry. The density can be thought of as a
value that represents the probability of a particular 3D point in space being occupied. Using



the volumetric rending equation [3.6| we can predict the color along the ray r(t) = o + td within
the bounds #,, and ¢;. As there is no closed-form solution to 3.6} we will numerically estimate

1—1
the solution using (3.7, where T; = exp(— > 0;0;) is the transmittance and &; = ;41 — t;
j=1

is the distance between adjacent samples. Transmittance indicates the probability that nothing

has blocked the ray till that point in the space along the ray.
ty tn
Clr) = / T(#)o(r(t))c(r(t), d) dt, where T(t) = exp (— / o (r(s)) ds) (3.6)
tn t

C(r) =) Tl — exp(—0i:))ci 3.7)
=1

Finally, NeRF aggregates this information over all the sampled points along the ray to obtain
a final estimate of the RGB color of the corresponding pixel using the numerical approximated
rendering equation

Nerf uses hierarchical sampling following the uniform sampling along the ray for better
reconstruction. This is useful because querying the free space and occluded regions won’t
contribute to the rendering but still be queried. To overcome this inefficiency Nerf uses two
networks namely coarse and Fine networks. A coarse network takes the uniformly sampled
points along the ray between the near and far bounds. Once the coarse network is evaluated we
can perform important sampling along the ray using outputs of the coarse network.

Once this is done for all the pixels/rays, we have an estimate of the image for that view.
Finally, the network is trained to minimize the L, loss between the RGB values of the estimated
pixels and the ground-truth pixels for the available training views. As can be seen from the
above approach, the model is forced to learn an implicit representation that carries information
on the geometry and appearance of the scene to be able to perform well at its objective of novel
view synthesis.

One thing to note in the design of Nerf is that density is a function of 3D locations whereas
color is a function of both 3D location and viewing direction. This choice of design is logically
coherent as density should not change with the viewing direction thus making it multi-view

consistent.

10



3.4 Canonicalization

Canonicalization generally refers to converting the different forms of data into standard
representation. we are particularly interested in finding a 3D rigid transformation that maps the
neural field of an object in an arbitrary pose to a consistently oriented pose across a category
of shapes. Pose canonicalization is closely related to equivariance.

A function I' over z is said to be equivariant to a group operation O if its output changes
by a fixed mapping M for any O operating on the input z, i.e., ['(Oz) = M(O)I'(x). In
this work, we are interested in equivariance to the SF(3) group denoting 3D position and
orientation (pose) — in particular, we focus on the rotation group SO(3) since 3D translation
equivariance is readily achieved through mean centering [27]. Spherical Harmonics are an

example of functions equivariant to rotation that are defined on a unit sphere.

f1(x) fo(x) = R f1(R1x)

’ N

-_)

Figure 3.2: Rotation Equivariance in Vector Fields. Rotation equivariance in vector fields
F (here, a simulated 2D magnetic field) require two operations: (1) update the position of
the green arrow (the vector), and (2) rotating the green arrow at its new position. A function
I' operating on F is rotationally equivariant over the field if and only if I'[(R - F)(x)] =
M(R)T[F(R'x)], where R is an SO(2) rotation, and M is a rotation-dependent mapping

function.

Rotation Equivariance in Vector Fields: Unlike 3D point clouds, rotation equivariance in
fields is more involved. Consider a 2D vector field F defined Vx € R? (see Figure .
Rotating this field requires two operations: (1) updating the positions of vectors in the field to
new rotated positions, and (2) rotating the directions of the vectors. A function I' operating on
F is rotationally equivariant over the field if and only if ['[(R - F)(x)] = M(R) T[F (R~ x)],
where R is an SO(2) rotation, and M is a rotation-dependent mapping function. In this work,
we operate on NeRF’s density field (a scalar field) but also extract equivariant features.(vector-
valued fields).
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3.5 Rotation invariant features in 3D

The spherical harmonics are complex homogeneous polynomials defined over the unit sphere
S? C R3 there are 2/ + 1 spherical harmonics of degree | € N* denoted by Y\ for — < m < I.
The spherical harmonics can be expressed in spherical coordinates (6, ¢) on the unit sphere.
We can use a function ¢ : Rt — R as a “radial” component and define the function Y, :
R3 — C. These function can be used as kernels for convolution of 3D signals in a neural
network. They are particularly interesting because of their behavior under rotation of the input
signal. For any rotation R € SO(3) and = € R?® we have:

V! (Rax) ZD

n=-—1

where D'(R) € Ugy1.21+1(C) is a complex unitary matrix called the Wigner D matrix of de-
gree [. We would like to exploit this property of spherical harmonics to learn rotation invariant
(and/or equivariant) features in a convolutional neural network. Given a signal X : R® — R

defined over R® we have features given by convolution with the kernels (¢Y!):
X=X xoY! :R* = C.
Now consider the rotated signal R..X defined by:
R.X(z) = X(R 'z)
The corresponding rotated features behave similarly to spherical harmonics under rotation:

(RX)(2) = | X(R7H(t = 2))pY,, ()t

R3

X(t —x)pY! (Rt)dt

R3
= [ X(t— R '2)pY! (Rt)dt
R3
:ZD Xt—R L)Y (t)dt

— Z Dl R.(X!)(x).

n=-—1

We would like to find rotation-invariant features. More precisely we are looking for functions

P((X! )im) of the features which are rotation invariant in the following sense:

P((R-X)y)im) = R.(P(X;,)im))

12



A simple family of invariants is given by the hermitian products:

> XLXL, 1[0, N]]

indeed we have:

m=—1l j=—l k=—I m=—
! !
=3 Y R(XDR(X])
j=—lk=—
l
= R. ( > anX}n)

3.5.1 Spherical harmonics

For any integers ¢ > 0, m € [|0, £|] the associated Legendre polynomial P, is defined by:

P (X) = (_1)771 1 XQ m/2 am+£ X2 1 Y4
PX) = S (= X (X7 - 1]
The definition extends to negative m by:
_ (¢ —m)!
PM(X)=(—-1)™ P(X
7 X) = () e PEY)
The spherical harmonics (Y;")ien,mef—1, are defined by:
(204 1) (¢ —m)! 2 T+ iy
Y (x,y,2) = P m

A real basis of spherical harmonics can be defined in terms of their complex analogues by
setting

13



(V"= (=1)™Y,™) ifm<0
Yim = ifm =0

(Y, + (=1)™Y™) ifm >0,

N\ 7

SRtSEE R

(Y['m' —(—)m YQ’”‘) ifm <0

Il
~

fa ifm=0

]_ —|m m .

\E (n | |+(—1)mn| |> ifm > 0.
V2(=1)™ Im[Y,™] ifm <0

=Y ifm=0

V2(=1)" Re[Y;"] if m > 0.

\

The corresponding inverse equations are:

1 | .
75 (ot = Yeom)  ifm <0
Yy =4 Yy it m =0
=™

V2

The transition matrix C* € My, 1(C) from complex to real spherical degree ¢ spherical har-

(Yg‘m‘ + Z‘Yé77|m|) if m > 0.

monics is given by:
.

—i
ct . =— if m <0
m,m \/5
_1 m
Crom = ( \/% if m >0
1
ct = ifm <0
m,—m \/5
V2 ym
Ch = Z<\/§) itm >0
Cio=1
\Cf,k = otherwise

the transition from real to complex harmonics is given by the transpose conjugate matrix (C*)*.



Figure 3.3: Visualization of Real spherical harmonics till type-3. Image courtesy Wikipedia.

Definition 3.5.1 (Wigner d Matrix) Let j € N. We define the Wigner d’ matrix for any angle
B3 by:

] . . . . _ m! —m+s
BunB) = G +m)G =G+ = MY L | G

) (COS §)2j+m—m'—2s (sin 8

g)m’—m+2s:| '

form,m’ € [| — 7, j|| where the sum over s is over such values that the factorials are nonneg-

ative.

Definition 3.5.2 (Wigner D-matrix) Let j € N the Wigner D’ matrix is defined for any an-
gles o, B, by:

D’ (a, B,7) := e‘imladfn,m (B)e~"™

Jorm,m" € [| —j, jl]
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Chapter 4

Method

Our method assumes that we have pre-trained NeRF models of scenes containing single
object instances at arbitrary poses from common shape categories. Our scenes contain primar-
ily the object, but also some background — perfect foreground-background segmentation is not
available. Our goal is to build a method that estimates a canonicalizing S E(3) transformation
that aligns these object NeRFs to a consistent category-level canonical field.

Rather than operate on 3D point clouds, meshes, or voxels, our method (see Figure |.1)) op-
erates directly on samples from the continuous neural radiance field. During training, we learn
canonical fields from a pre-trained NeRF dataset in a fully self-supervised manner. We use a
Siamese network architecture that extracts equivariant field features for canonicalization (see
Figure4.1)). During inference, given a previously unseen NeRF model of a new object instance
in an arbitrary pose, our method estimates the transformation that maps it to the canonical field.

4.1 NeRF Sampling

For a pre-trained neural radiance field that maps 3D position (z, y, z) and direction 6, ¢ to
color and density (¢, o), the input to our method consists of samples on the density field. We do
not use color because it is direction-dependent in NeRF and also varies for different instances.

During both training and inference, we uniformly sample the pre-trained NeRF density field
to find the object center and its bounding box. We then sample a uniform grid in the density
field of the object’s bounding box. We empirically choose uniform grid sampling over fully
random sampling since we found no difference. The uniformly sampled density grid is then

normalized to obtain density values o in the continuous range [0, 1], i.e.,
op:={1l—exp(—d-T(x)) |z e X}, “4.1)
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where X is the regularly sampled grid within the object bounding box and d is the depth step
size used in the coarse NeRF sampling.

Before querying NeRF for occupancy, we do not have the extremities of the object. We
query a uniform grid within the unit cube to obtain a 323 grid density field to find the object
bounds and the center of the object. The density values are normalized to range [0, 1]. We then
perform an initial K-means clustering with X' = 2 to separate the foreground and background
clusters. The foreground and background are automatically detected by calculating the mean
density values within each cluster. The cluster with a high mean is declared as the foreground,
while the other one is considered the background. This assumption is generally true in our
setting because we have single-object neural radiance fields. The mean of query coordinate
locations in the foreground cluster gives us the center of the object ¢. We then obtain the ex-
tremities from the foreground cluster and find its maximal diagonal length (I). We re-sample
the region within the bounding cube (at center ¢ side length I) and use it as input to CaFi-Net.
Translation and scale canonicalization is simply achieved by moving the bounding box’s cen-

ter and scaling it, so our next concern is on rotation canonicalization.

4.2 CaFi-Net

CaFi-Net (Canonical Field Network) is our method for 3D rotation canonicalization using
NeRF’s density field (red box in Figure {.T)). We now describe its components.

Tensor Field Networks (TFNs): Many methods have been proposed for using equivariant
features for rotation canonicalization of 3D data, for instance, spherical CNNs [7,, 42]], vec-
tor neurons [9], or capsule networks [66, 46]. However, these and other methods [37] are
limited to 3D point cloud or voxel representations. In this work, we extend Tensor Field Net-
works [49, 134]] pose canonicalization directly on samples from NeRF’s density field. TFNs
operate by computing Type-/¢ real-valued spherical harmonic functions that are rotation equiv-
ariant: DY(R)YY(X) = Y*(Rz). Where D* : SO(3) — SO(2/ + 1) is the Wigner ma-
trix of type £ (please see [49] 34] for details). For a 3D point set P € RY*3, a rotation-
equivariant TFN convolution layer (EQConv) at point p € P is defined as: EQConv’ (p) =
Q- (EyEQRN kr(p—y) ® sé[y]). Where 2/ is a set containing neighbors of point p at
twice the resolution and Q(™-7(.) is the Clebsh Gordon decomposition to combine type-n
kernel k" and type-{ equivariant signal s‘. The EQConv(-) layer aggregates type-¢ feature s* at
multiple receptive fields along with learnable weights to perform equivariant convolution. Our
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Figure 4.1: CaFi-Net samples a density field from NeRF and uses its density, position and
density gradients as input signals (A) to canonicalize the field. We predict rotation equivariant
features and weigh them by density (B) to guide our learning from the occupied regions of the
scene. We then compute an invariant embedding by taking a dot product between equivariant
features. This invariant embedding is used to canonicalize the field that enables rendering all
the objects in the canonical frame (E). Our method also applies an inter-instance consistency
loss (D) that aligns different instances of the same category in the canonical frame. We do not

assume pre-canonicalized fields, and canonicalize in a self-supervised manner

method uses the EQConv layer as the fundamental building block to canonicalize continuous
fields.
Signal Representation:

At each of the sampled density field locations, we have several choices of signals to use as
the input for CaFi-Net. For instance, we can (1) use the NeRF density value directly, (2) use the
xyz location of the sampled field, or (3) use the gradient of the density field. Densities alone
do not capture the position and directional components of the field, so we use a combination of
densities and gradients of densities at query locations of the grid as our input signal for CaFi-
Net. Gradients of density capture the object surface and help in canonicalization (see ablation
study in Chapter [3)).

Equivariant Convolution: To canonicalize for rotation, we leverage equivariance properties
of spherical harmonic functions to obtain rotation-equivariant learnable features on the field
[49] 34]. Type-¢ spherical harmonic functions (Y*) are degree-¢ polynomials of points on the
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Figure 4.2: Example NeRF renderings of chair on the left and an example 3D visualization of

the gradient field of chair on the right.

sphere that are equivariant to SO(2¢ + 1). The densities sampled from NeRF reconstructions
are often noisy and contain outliers. To promote our method to learn only from occupied
regions, we weigh each equivariant feature type by its density. This weighing has no effect on
the equivariance of features (see [{.4.2] for proof). We have the option to weigh equivariant
features with the local average of the density to smoothen the signal or to weigh directly by
the density. We found weighing by density worked better than taking the local average density
(see ablation study in Chapter [3)).

We learn equivariant features of type ¢ as:

fst = f,("z) (WHEQConv! (V(op("x)))) + docd) , (4.2)
mean, (op(fx)), or
fu(fz) = e&;R’“() (=) 4.3)

where, W* and b are the weights and biases, 'z is a 3D point queried at resolution R and

mean, (o p(fx)) is the average density at location #z from points sampled at radius 7. We
11
274>
The EQConv’ convolution layer is the same as defined in We employ non-linearities from

hierarchically aggregate features at resolutions and % to obtain global equivariant features.
that preserve equivariance and capture better equivariant features. We also compute the
max-pool of point-wise features of the last layer to obtain global type-¢ equivariant features
F*.

TFN Kernel Implementation: TFN’s are equivariant point convolution networks. We are
using the modified version of this network for the feature extraction. We will describe the
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implementation details of the TFN in this section. TFN network takes the 32x32x32 grid
sampled density values as inputs and aggregates the features at multiple scales i.e., 32,16,8 and
4. For input down-sampling, we use 3D avg-pooling with kernel size 2 and stride length 1. We
store the resultant down-sampled inputs in a list which will be used in features calculation.

Similar to the 2D convolution, where a kernel operates on a signal to extract features, here
also we need a kernel and a signal. At each level, the current resolution serves as the kernel,
while its immediately down-sampled resolution serves as the signal. For example, when oper-
ating at 32x32x32, 16x16x16 becomes the signal and 32x32x32 becomes the kernel. we refer
to kernel points as source points and signal points as target points.

In the convolution process at each target point, 32 points are chosen from the source, de-
termined by their Euclidean distance from the target point. A specified radius is defined, and
if any of these points extend beyond the radius from the target point, their contribution to the
overall convolution at the target point is set to zero. Once these 32 points are selected, we use
the relative distance of these points from the target to evaluate spherical harmonic polynomials
to get equivariant features. All these distance measures are taken relative to target i.e. (z; —y;)
where y; is the target and x; is the source point. In this work, features up to type-3 are utilized.

After obtaining the kernel features, the Next step would be taking the tensor product between
the signal and kernel equivariant features. For the signal, we choose the gradient of the density
as type-1 and one’s as type-0 signal. The gradients are calculated discretely by taking the
difference between the adjacent samples along the x,y, and z directions to get a 3d equivariant
signal. All these equivariant signals are implemented using Python dictionaries, where the
key corresponds to the feature type and the value is a 4D a vector representing batch, points,
feature type, and feature dimensions. Following the tensor- product calculation between the
kernel and signal, Clebsch-Gordon coefficients are utilized to decompose the final features into
irreducible representations.

Now, we will describe the decomposition process using an example. TFNs are constructed

using 3D steerable kernels, which are defined by Equation (@.4).

X

b = 0r el v () (@4
]l

In the Equation (#.4), [ represents the type of the signal. In the CaFi-Net, we consider up
to type-3. Y, is a spherical harmonic function that takes a 3D vector « as input and produces
type [ vector of the length (21 + 1).

Suppose we have the target point y; and source point z;, then the convolution is defined by
Equation (#.4), where (x; — y;) is the relative vector and f; is a signal at x;. In the CaFi-Net we
start with the type-0 (all ones) and type-1 signals (discrete gradient of the density values along
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x, y, z directions).
y=_nlzi—y)f: (4.5)
Let’s take a numerical example and calculate the dimensions of the convolution. we have,
1. Signal type = 1
2. Kernel type = [0,1,2,3]
3. Target points size = 1024
4. Neighbour hood size = 32

By evaluating the kernel using (4.4) for all the above types, we obtain the following dimen-
sional vector for types 0, 1, 2, and 3 respectively.

o KOz; —y;) — 1024 x32x 1
o K'(z; —y;) — 1024 x32x 3
o K2(z; —y;) — 1024 x32x 5
o K3(x; —y;) — 1024 x32x 7

As all these kernels will operate on the type-1 signal to simplify calculations, we can com-
bine the signals of all the kernels into a single extensive vector with dimensions 1024 x 32 x
16. Using the Equation (4.3)), we can obtain the features of the dimension (1024 x 16 x 3) given
the kernel function vector (1024 x 32 x 16) and the signal vector (1024 x 32 x 3). Now we can

unstack the features based on the kernel type into the following dimensions:
e y[0] —» 1024 x 1x3
e y[1] - 1024 x3x3
* y[2] - 1024 x5x%x 3
* y[3] - 1024 x7x3

Consider the features obtained through the convolution of the type-2 kernel with the type-
1 signal, represented as y[2] with dimensions 1024x5x3. Reshaping these vectors to 1024 x
15 yields a type-7 (2*7 + 1 = 15) equivariant vector. The type-7 equivariant feature vector is
then decomposed into lower types using Clebsch-Gordon coefficients (). For a given two
equivaraint signals j;, j; the size of the clebsch-Gordon decomposition matrix will be ((2j; +
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Fibonacci Sampling on a Sphere

Figure 4.3: Visualization of 128 points distributed on a sphere using the Fibonacci sampling

method,

1)*(2j2+1)) x ((2j1 + 1) % (272 +1)). After multiplying the features with the (), the result will
be decomposed into multiple type features in the range (abs(j1 — j2),(j1 + j2 +1)). In our case
J1=2 and j,=1, which makes the clebsch-Gordon decomposition matrix to be of dimension 15
x 15. After multiplying the @) with y[2] we get 1024x15 dimensional vectors which will be
split into type 1,2 and 3 feature signals.

Up to this point, there has been no learning involved. We introduced a trainable MLP with-
out a bias term for types greater than 1. For the non-linearities, we use [34] which interprets
equivariant features as coefficients of functions in the spherical harmonics basis. For each
point, we can compute inverse Spherical Harmonic Transform (SHT), which results in a func-
tion on the unit sphere that is equivariant under SO(3). Inverse SHT functional representation
allows us to apply non-linearities in a pointwise fashion. We further use the Forward Spherical
harmonic transform to compute the coefficients of the spherical harmonic basis using Equation
#.6). Unfortunately, there is no closed form for the integral; in practice, we have to rely on a
discrete approximation of the SHT and its inverse. For this, we sample 128 points on a sphere

using Fibonacci sampling as shown in figure4.3] Please refer to Algorithm [I]for pseudo-code.

[ 50.0)¥;6.0) smodsas (4.6)
sphere
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x = Density Grid
y = Grid coordinates

n=4
z[0] =1
for : < ndo

x1 = Downsample(x)

y1 = Downsample(y)

k = Gradient(x)

k1 = Gradient(z)

z[1] = concat(z[1],k)

z = Equivariant Convolution (y, y1, k, 2)
z[1] = concat(z[1],k1)

z = apply-linear-weights(z)
z = compute-iSHT(z)

z = apply-non-linearties(z)
z = compute-fSHT(z)

r =T
Y=y
end for

z = compute-iSHT(z)
y = max-pool(z,dim=1)

return y
Algorithm 1: Density TFN Network

Canonicalization: After obtaining the global type-¢ equivariant feature F*, we compute its
dot product with point-wise spherical harmonics Z* scaled by their norms (refer Eqn. to

obtain a pose-invariant embedding H* [36].

Z4(X) = | XL, Y(X/ [1X]l,) “.7)

As the two vectors F* and Z* are both equivariant to input rotation, their dot product is
invariant. We use a linear layer on top of the pose-invariant embedding to estimate grid coordi-
nates in the canonical frame (P € R¥*W>*DPx3) for each point in X and M equivariant trans-
formations £/ € RM>3*3 [36] that orient the canonical coordinates to the input coordinates.
We then choose the best canonicalizing transform £, and penalize it for canonicalization. The
invariant embedding /, grid coordinates P and equivariant rotation £ are given as,
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HZ(O-DaX) = <F£(0'D)>Z£<X)>a (48)
P := MLPy(H(op, X)), (4.9)
E = MLPy(F(op, X)). (4.10)

Here, we have dropped the type-¢ notation for H and F' as we concatenate all equivariant
feature types.

Siamese Network Architecture: Experimentally, canonicalizing noisy density fields is dif-
ficult without guidance on shape similarity within a category. We therefore use a Siamese
training strategy [27] where two different object instances are forced to be consistently canon-
icalized (see the lower branch in Figure @.1).

Clustering: CaFi-Net predicts a canonical coordinate for every grid point, but unlike point
clouds, fields have many unoccupied regions that do not provide any information. We penalize
the network on foreground regions only by performing K-means clustering on the densities
within the object bounding box with K = 2 and choose the cluster Cy with a higher mean.
Note that we still operate on continuous fields, but only cluster samples to guide our training.

4.3 Training

CaFi-Net is trained on a large dataset of pre-trained NeRF models over 13 object categories.
We use the following loss functions to train our model.
Canonicalization Loss: To self-supervise our learning, we transform the predicted canonical
grid coordinates to the input grid using the canonical rotation £} and compute a point-wise L2
distance between them. This loss forces the predicted invariant grid coordinates P to recon-
struct the shape and forces the predicted canonicalizing transform to be equivariant to the input
transformation. The final loss is computed over the canonicalizing transform that minimizes

this loss:

Ey := min (meaniecf |1 X, — EjPzH;) ) (4.11)
J

Leanon = meanec, || Xi — E,P[3, (4.12)
where (Y is a set of points belonging to the foreground.
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Orthonormality Loss: The predicted equivariant transformations £ should have orthonormal
vectors and we use the following to force orthonormality using:

1
‘Cortho = M Z HE] — UJ‘/JT| (414)
J

2 Y

where SVD(FE;) computes the singular value decomposition of the ;% equivariant transforma-
tion.

Siamese Shape Loss: We use a Siamese loss that penalizes for consistency between different
shapes belonging to the same category. Given two un-canonicalized fields in different frames
of reference o}, and o%,, we canonicalize both the fields to the canonical frame and compute
chamfer distance between their predicted canonical coordinates for points in the foreground

cluster Cy, i.e.,
Lyiamese = CD(P(op), P(a)). (4.15)

This loss regularizes the training by ensuring that instances of the same category should be
aligned in the canonical frame.

Architecture and Hyper-parameters: CaFi-Net predicts a 128 dimensional invariant embed-
ding for each point in space and performs convolution at resolutions 1/2, 1/4, and 1/8. Each
equivariant convolution layer aggregates features from 512 neighboring points at twice the
resolution. We then use equivariant non-linearities introduced in [34] by applying Batch Nor-
malization [15]] and ReLLU activation [2] in the inverse spherical harmonic transform domain.
We use a three-layer MLP with intermediate Batch Normalization and ReLLU layers followed
by a final linear layer to predict canonical coordinates. To train our network, we weigh the
canonicalization 10ss (L..n0n) the highest with weight 2.0 and 1.0 for all the other loss func-
tions. All our models are written in PyTorch [31] and are trained for 300 epochs with a batch
size of 2 on an Nvidia 1080-Ti GPU. We use the Adam Optimizer [17] with an initial learning
rate of 6e — 4 and L2 weight regularization of 1e — 5 for all our experiments. Please see our

experiments in Chapter [5|for more details.

4.4 Equivariance Properties of CaFi-Net

4.4.1 Averaging Equivariant Signals is Equivariant

A tensor field of type ¢ (¢-field) is a map f : R3 — R, We have an action of SO(3) on
any /-field f given by (R.f)(x) := D*(R)f(R~'z) for any rotation R € SO(3) and 2 € R3
y g y y
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where D*(R) € SO(2¢ + 1) is the Wigner matrix of type /. We say that transformation F'
transforming tensor fields of type p into tensor fields of type ¢ if it commutes with the action
of SO(3), i.e. for all type p-field f and rotation R € SO(3) we have F'(R.f) = R.F(f). We

will call such transformations (p, ¢)-equivariant transformations.

Lemma 1 For any r > 0 the local average operator mean, defined over p-fields by:

mean,.(f)(z) := /B( )f(y)dy

where B(x,r) C R? is the open ball of radius r centered at x € R® is a (p, p)-equivariant

transform of fields.

Proof: Letz € R? and R € SO(3) we have:

mean, (R.f)(z) /B RRCRIOL
= [ DRy
= pr(R) R_IJ;Eu))du

DP(R) f(u)du

B(R 1z,r)

= (R.mean,(f))(z)

4.4.2 Locally Averaged Density Weighted Equivariant Vectors are Equiv-

ariant

Lemma 2 Scaling an equivariant field with density is a (1, 1)-equivariant transformation.
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Proof: Let o be a type-0 density field and f be a type-1 field at the corresponding location,
weighing f by the average of o is:

mean, (o)) S0 = ( [ ot sta)

mean, (R -

(z,r)

o)) - (R- 1))
—( / (R-o)(y)dy ) D' (R)(f)(R"'=)
(R)()

_ ( @) DR
= D'( meanr( )(z) - (f) (R ')

Thus, mean, (R-o)(z)- f(x) = D'(R)-mean,(c)(x)- f(R™'z) proving the result that scaling
equivariant features by average density do not break the equivariance property.

4.4.3 Gradient is Type-1 Equivariant
Lemma 3 The gradient operator is a (0, 1)-equivariant transformation.

Proof: Let f be a O-type field, by the chain rule of differentiation, for any z,h € R3 and
R € SO(3) we have
(V(R.f), h) = Dy(R.f)(h)

= D,foR*(h)

= Dg-1,f o D,R7'(h)

= (Viof, R h)

= (RVg-1.f,h)

= (RVg-1.f, )
thus V(R.f) = R.V f which concludes the proof.
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Chapter 5

Experiments and Results

Input NeRFs Canonical Fields

@ i Al
» i &8 > = =
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Figure 5.1: Canonical Field Network (CaFi-Net), a self-supervised method for 3D position

and orientation (pose) canonicalization of objects represented as neural fields. We specifically
focus on neural radiance fields (NeRFs) fitted to raw RGB images of arbitrarily posed objects
(left), and obtain a canonical field (fixed novel view shown on right) where all objects in a

category are consistently positioned and oriented.

5.1 Dataset

All our experiments use a new large synthetic NeRF dataset of shapes from 13 categories
(that overlap with [[12} 46, 36]]) from the ShapeNet [5] dataset.

We created a simulator in Blender to render images for Nerf training. The simulator consists
of a cube with each side panel hosting 9 cameras directed at the origin. Figure [5.2] shows
renderings for one of the instances in the dataset. We avoided the objects having a white
texture, given that the background also has a white texture. This decision aims to enhance Nerf
training. In each category, we select 100 instances from ShapeNet, randomly rotate them, and
place the object at the origin. Finally, we render the images from 54 omnidirectional views.
Different from other datasets, we also simulate cluttered backgrounds.
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These posed views are used to train NeRF models using the public PyTorch implementation
of NeRF [61] for a total of 1300 NeRF models. To our knowledge, this is one of the largest
(compared to [11, 52]]) 360° synthetic NeRF datasets. Each NeRF model is trained for 400
epochs with 1024 randomly selected rays per iteration, a coarse sampling resolution of 64
points, and a fine sampling resolution of 128 points along each ray. Rather than train NeRF
to maximize PSNR on a novel view, we fix the number of epochs for all models to enable a
fair comparison between instances. As a consequence, some NeRF models may have a lower
PSNR, but our goal is not to increase NeRF quality but rather improve canonicalization
quality — hence we fix the number of epochs. For each category, we set aside 20% of the
models for testing.

|t g p -

Figure 5.2: Visualization of renderings from all 54 views of a car object. Each row corresponds

to the Front, Right, Back, Left, Top, and Bottom views, respectively.
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5.2 Metrics

Since there are no known metrics for evaluating canonical fields, we resort to 3 metrics used
for 3D point cloud canonicalization [36]]. For a fair comparison, we extracted the point clouds
from the Pre-trained NeRFs and used them to train the point cloud methods. All these point
cloud methods use surface points for training. So, we tried to extract the surface points from
the pre-trained Nerf as follows:

We perform K-means clustering with k=2 on the density values obtained from pre-trained
NeRF instances, which are queried with points sampled from a uniform grid. For each cluster,
we calculate the mean density value and designate the cluster with the higher density as fore-
ground (replacing the densities with 1) and the other as background (replacing the densities
with 0). On the modified density grid, we perform the gradient calculation to get the boundary
points which will be used for training point cloud methods. Boundary points are those having
zero crossing of gradient values. For all the metric calculations, we fixed 180 rotations sampled

on a sphere. All these point clouds are mean-centred as follows:

1 N
x:N;xi (5.1)
r=x—x (5.2)

(1) Instance-Level Consistency (IC): This metric aims to measure the canonical perfor-
mance across the instances under different rotations. We use the chamfer distance between two
canonical outputs corresponding to differently rotated inputs of the same instance. For better
canonicalization, we expect a smaller value of overall IC. The mean of the IC metric is defined

as follows:

Z > CD[(R;.X;)*, X] (5.3)

|><H Bt

(2) Category-Level Consistency (CC): This metric aims to measure the canonical perfor-
mance across different instances in the same category. We compute the chamfer distance across
all the possible pairs of the canonical outputs for all the rotations. For better canonicalization,

we expect a smaller value of overall CC. The mean of the CC metric is defined as follows:

Z Z CD[X?, X¢]. (5.4)

‘X| X;eX X;eEN

(3) Ground Truth Equivariance Consistency (GEC), a variant of the Ground Truth Con-
sistency (GC) metric proposed in [36] to measure canonicalization performance compared to
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manual labels. We use the GEC because we observed that the original GC metric is prone to
degeneracy when the canonicalizing transform is identity. We fix this issue by taking three
point clouds P;, P;, and P}, from a canonicalized dataset P and rotating F; by R, P; by R
where both R; and R, are random rotations. Let C(P) predict a canonicalizing rotation for a

point cloud P, we then compute the Ground Truth Equivariance consistency as:

GEC = L Z CD(C(RyP;)R1 Py, C(RyPj) Ry Py,), (5.5
PP 1 e
where CD refers to the Chamfer distance. Here, we apply canonicalizing transforms of shape P;
and P; to the shape P,. This modified metric will not be degenerate for identity canonicalizing
transforms and is more rigorous in evaluating ground truth consistency.

We first analyze the performance of our method on the three metrics across 13 different
categories. In Table [5.1, we highlight our method that operates on a field as Ours (F). Our
method performs well across all categories with low variance between different categories. We
observe similar trends across metrics for a set of categories (e.g., firearms, lamps) indicating
that category shape plays a role in canonicalization performance.

Next, we compare our method against three benchmarks: Principal Component Analysis
(PCA) [32]], Canonical Capsules (CaCa) [46], and ConDor [36]. All prior methods canonicalize
clean point clouds with all points on the surface. To have a fair comparison, we train the above
methods on point clouds (P) sampled from NeRF using the method described in the Most
scenes have points in the range of 120-1200 when sampled uniformly on the 32% grid. We
resample the scene when points are less than 1024 and train both Canonical Capsules and
ConDor on the resulting point clouds. CaFi-Net estimates a canonicalizing transform directly
from the density field. For the metric calculation, it is possible that extracted surface point
clouds from pre-trained Nerf can be noisy which will affect the evaluation. To address the noise
issue, we save the input pose and canonical poses for each instance using different methods.
We then utilize these poses to transform the corresponding ShapeNet point cloud for metric
calculation. We follow the same protocol as [36] to measure and benchmark canonicalization
performance for all the methods.

Analysis: Table compares the metrics for PCA (P), CaCa (P), ConDor (P), and CaFi-Net
[Ours (F)]. We list point cloud canonicalizers with (P) and field canonicalizer as (F) in the
table. On average, our method performs better than point cloud-based methods in the CC and
GEC metrics and is on par with the state-of-the-art method (ConDor) in the IC metric. This is
despite the fact that our method directly operates on the field. We observe that PCA underper-
forms in all categories suggesting that the noisy point clouds make it unreliable. Similarly, we
observe that CaCa fails to canonicalize in categories where high noise is observed. Given that
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bench cabinet car cellph. chair couch firearm lamp monitor plane speaker table water. | avg. med.

Instance-Level Consistency (IC) |

PCA (P) 14.65 594 6.13 0.67 6.13  7.63 15.07 12.84 6.78  7.90 5.40 1031 1072 | 847 17.63
CaCa (P) [46] 2.89 2.09 201 281 1.08 1.90 023 297 235 151 221 242 2.60 | 208 221
ConDor (P) [36] 0.56 1.27 0.36 0.53 096 0.32 0.60 3.78 044 0.64 197 132 215 | 115 0.64

Ours (F) 2.62 115 0.39 1.28 0.81 143 0.74  3.87 041  0.36 0.60 1.09 274 134 1.09

Category-Level Consistency (CC) |

PCA (P) 14.55 9.68 7.48 426 990 1345 15.13 11.87 13.09 8.15 551 1043 11.07 | 1036 1043
CaCa (P) [46] 2.79 0.38 1.05 083 1.82 1.59 131 434 039 1.83 0.65 191 2.06 | 1.61 159
ConDor (P) [36] 1.98 1.68 0.47 1.04 128 0.88 096 4.44 1.58  1.26 2.10  2.10 256 | 1.72  1.58
Ours (F) 2.77 1.36  0.48 126 0.75 1.59 092 3.92 0.58 0.63 0.77 148 235 | 145 1.26

Ground Truth Equivariance Consistency (GEC)]

PCA (P) 14.40 5.86 6.32 1.64 632 8.12 15.01 12.49 6.82 8.16 532 10.17 1127 | 861 8.12
CaCa (P) [46] 3.65 228 240 274 190 222 1.28  4.69 248  2.09 222 301 279 | 259 240
ConDor (P) [36] 2.12 1.79 0.50 1.17 134 093 1.04 4.58 1.59 131 222 224 2.67 | 1.81 1.59

Ours (F) ‘ 3.26 1.51 0.54 143  0.94 1.90 1.01 437 0.63  0.66 081 1.63 3.02‘ 1.67 143

Table 5.1: This table compares the canonicalization performance of our method (F - operating
on fields) with other 3D point cloud-based methods (P) on three standard metrics (IC, CC and
GEC) on our dataset of 13 categories. We compare with PCA, Canonical Capsules (CaCa) [46]
and ConDor [36]. All metrics are multiplied by 100 for ease of reading. The top two perform-
ing methods are highlighted in magenta (best) and blue (second best). We are better than
SOTA [36]] on the Ground Truth Equivariance Consistency (GEC) and Category-Level Consis-
tency (CC) with lower mean and median canonicalization error. However, we perform on par

with ConDor [36] on the Instance-Level Consistency.

ConDor also uses TFNSs in a different architecture, we conclude that the choice of TFNs makes
canonicalization more robust to noise. Our method has the additional advantage of operating
directly on the field. Please see[5.3|for a qualitative comparison of the different methods.

5.3 Ablations

We conduct additional experiments to justify key design choices in our method. For all
the ablation studies, we use a smaller subset of our data consisting of 4 categories: bench,
cellphone, chair, and airplane.
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Figure 5.3: This figure visually compares the canonicalization performance of our method with
3D point cloud-based methods. Input NeRFs shows one of the RGB views used to learn our
NeRF input (notice how orientations of instances are random). CaFi-Net (Ours) shows the
results of our canonical field rendered from a novel view unseen during NeRF training. PCA
(blue), CaCa [46] (red), and ConDor [36]’s (green) results are also presented for the same
Our method matches or exceeds ConDor. We also show some failure cases for

instances.

several instances (red box) which occur either due to thin structures or symmetry.

5.3.1 Choice of Signal Representation

To select the appropriate signal representation to use (see[d)), we conducted an ablation study
using just the density field xyz locations or its gradients.

The intuition behind this design choice is that gradients of the density capture the surface
of the object, which can provide clues for the network. Providing the xyz grid coordinates
does not offer specific information about the object, as it remains the same for every instance;
then the network must rely solely on weighing the features with density to learn the relevant
geometric features for canonicalization. However, even though Nerf densities may not be con-
stant within the foreground and background of objects, gradients can reveal boundaries by
generating zero-crossings at these boundaries. This helps the network to learn better geometric
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bench cellphone chair plane | Average

Ground Truth Equivariance Consistency (GEC)/

Tyz 2.17 1.84 1.72  2.07 1.95
Gradient signals | 3.26 1.43 094 0.66 1.57

Instance-Level Consistency (IC).

xYz 2.04 1.6 1.4 1.88 1.73
Gradient signals | 2.62 1.28 0.81 0.36 1.26

Category-Level Consistency (CC).

TYz 1.99 1.49 1.52 1.9 1.72
Gradient signal 2.77 1.26 0.75 0.63 1.35

Table 5.2: Choice of Signal Representation - Canonicalization metrics for using Gradients vs.

xyz locations as input signal. Gradients capture the object surface that help in canonicalization.

features which in turn helps in canonicalization. As seen in Table[5.2] the average canonical-
ization error over 4 categories is lower when using gradient as compared to using density xyz

locations on all three metrics.

5.3.2 Weighing Features by Local Average Density

Next, we justify why weighing the equivariant features using the density is helpful. Table
[5.3] shows results for weighing features by local average density compared to weighing fea-
tures by density. The main intuition behind this design choice is to suppress outliers. Upon
visualizing Nerf-density fields, we observed the presence of high-density outlier samples in
the background. These outliers can influence the overall canonicalization process if we simply
weigh the features based on individual density alone. To overcome this, we thought of tak-
ing the local average density around the point to weigh features. However, it turns out that

34



bench cellphone chair plane | Average.

Ground Truth Equivariance Consistency (GEC)/|

w/o Local Average Density | 3.26 143 094 0.66 1.57
Local Average Density 3.38 1.63 1.3 0.64 1.73

Instance-Level Consistency (IC)|

w/o Local Average Density | 2.62 1.28 0.81 0.36 1.26
Local Average Density 2.72 1.63 2.64 0.39 1.85

Category-Level Consistency (CC).

w/o Local Average Density | 2.77 1.26 0.75 0.63 1.35
Local Average Density 2.82 1.54 1.07  0.51 1.49

Table 5.3: Weighing Equivariant Signals by Local Average Density deteriorates the perfor-
mance by smoothing out important details of the shape. We show canonicalization with (w)

and without (w/0) weighing by the local averaged density.

weighing features by local average smoothens out details that are necessary to canonicalize the
volume. This is especially observed in thin structures. Our average ground truth canonical-
ization error increases from 1.57 to 1.73 if we weigh features by local averaged densities. In
future works, we will delve into better methods for reducing input signal noise that does not

smoothen out the geometry details of objects to further improve our canonicalization.

5.3.3 Siamese Architecture

Finally, we justify the need for a two-branch Siamese network architecture. Although our
method can canonicalize even without this architecture, it makes it easier to learn over instances
in a category as observed in [27]. In this approach, we introduced an additional Chamfer
loss between the predicted canonical point clouds from the two branches that are fed with
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bench cellphone chair plane | Average

Ground Truth Equivariance Consistency (GEC)/

w/o siamese 3.52 1.61 1.02 1.31 1.86
with siamese | 3.26 1.43 0.94 0.66 1.57

Instance-Level Consistency (IC).

w/o siamese 2.73 1.3 0.82 1.1 1.48
with siamese | 2.62 1.28 0.81 0.36 1.26

Category-Level Consistency (CC).

w/o siamese 2.95 1.44 0.83 1.26 1.62
with siamese | 2.77 1.26 0.75 0.63 1.35

Table 5.4: Siamese Training improves performance on all canonicalization metrics on average.
We show canonicalization performance with siamese and without (w/o0) siamese training. The

average of Ground Truth Equivariance Consistency GG EC' metric reduces to 1.57 from 1.86

two randomly selected instances with different rotations. Both the branches share the same
weights, so we perform two forward passes with different instances, average out the losses,
and do one backward pass. Table[5.4|compares our method using a single branch architecture
and a Siamese architecture. Clearly, the Siamese architecture helps improve results confirming
our hypothesis. Enforcing different instances of the same category to align with each other
reduces the Ground Truth Canonicalization error from 1.86 to 1.57. We also see a decrease in

all the other metrics including Instance-Level Consistency.
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5.4 Qualitative Results
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Figure 5.4: CaFi-Net qualitative canonicalization results for 7 categories (see following pages

for more results).
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Figure 5.5: CaFi-Net qualitative canonicalization results for the remaining 6 categories.
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Chapter 6

Conclusion

We presented Canonical Field Network (CaFi-Net), a method for self-supervised category-
level canonicalization of the 3D pose of objects represented as neural radiance fields. CaFi-
Net consists of a Siamese network architecture with rotation-equivariant convolution layers to
extract features for pose canonicalization. Our approach operates directly on NeRF’s noisy but
continuous density field. We train our method on a large dataset of 1300 NeRF models obtained
for 13 common ShapeNet categories. During inference, our method is able to canonicalize
arbitrarily oriented NeRFs. Experiments show that our method matches or outperforms 3D
point cloud-based methods.

Limitations & Future Work: Our approach has several limitations that future work should
investigate. First, we require a 360° NeRF model of objects and cannot handle partial views
from front-facing NeRFs. Second, canonicalizing densities with uncertainty is more difficult
as the uncertainty increases for very thin/small structures that can be missed. Furthermore, we
also inherit the issues that TFNs have with symmetry. In future work, we plan to extend our
approach to create a large real dataset of common object categories without requiring manual

pose canonicalization and combat the symmetry issue in CaFi-Net as in [38]]
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