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Abstract

The discovery of new molecules and materials helps expand the horizons of novel and innovative
real-life applications. In the pursuit of finding molecules with desired properties, chemists have tradi-
tionally relied on experimentation and recently on combinatorial methods to generate new substances
often complimented by computational methods. The sheer size of the chemical space makes it infeasible
to search through all possible molecules exhaustively. This calls for fast and efficient methods to nav-
igate the chemical space to find substances with desired properties. This class of problems is referred
to as inverse design problems. There is a variety of inverse problems in chemistry encompassing var-
ious subfields like drug discovery, retrosynthesis, structure identification etc. Recent developments in
modern machine learning (ML) methods have shown great promise in being able to tackle problems of
this kind. This has helped in making major strides in all key phases of molecule discovery ranging from
in silico candidate generation to their synthesis with focus on small organic molecules. Optimization
techniques like Bayesian optimization, reinforcement learning, attention-based transformers, deep gen-
erative models like variational autoencoders and generative adversarial networks form a robust arsenal
of methods. The first chapter of this thesis summarizes the development of deep learning to tackle a
wide variety of inverse design problems in chemistry towards the quest for synthesizing small organic
compounds with purpose.

Spectroscopy is the study of how matter interacts with electromagnetic radiations of specific frequen-
cies that has led to several monumental discoveries in science. The spectra of any particular molecule is
highly information-rich; while structure to spectra is straightforward using computational methods, the
inverse relation of spectra to the corresponding molecular structure is still an unsolved problem. Nu-
clear Magnetic Resonance (NMR) spectroscopy is one such critical technique in the scientists’ toolkit
to characterise small organic molecules to biomolecular structures like proteins and nucleic acids. In
the second half of the thesis, a novel machine learning framework is proposed that attempts to solve this
inverse problem by navigating the chemical space to find the correct structure given an NMR spectra.
The proposed framework uses a combination of online Monte-Carlo-Tree-Search (MCTS) and a set of
offline trained Graph Convolution Networks to build a molecule iteratively from scratch. Our method is
able to predict the correct structure of the molecule ~ 80% of the time in its top 3 guesses. We believe
that the proposed framework is a significant step in solving the inverse design problem of NMR spectra

to molecule that would be a significant step forward in high-throughput molecular synthesis.

vi
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Chapter 1

Introduction

1.1 Motivation

Molecule Properties and

o " Characteristics

o Forward(f) >

<

Inverse(f')

X y = f(x)

Figure 1.1: Forward problems are those where in we evaluate properties for a molecule = whereas
inverse involve find about the molecule = given the observed properties y

Historically, chemical advancements are driven by experimentation and synthesis of new compounds,
followed by evaluation of their properties and quirks. The intent being the discovery of novel compounds
for novel applications and uses. Understanding of the structure-property relationships plays a major
role in this process. Traditional computational chemistry methods in addition to experiments have been
shown to be invaluable. Methodological improvements are imperative to keep up with the need of novel
molecules that exhibit required properties as time progressed. For instance, the average time for a drug
to reach the market is about 13 years.[1]] Fortunately, the vast improvement in computational capacity
in tandem with advancements in artificial intelligence and algorithms has enabled chemists to approach
this problem from a different dimension. One such way is to first look at an application with certain

desired requirements and attempt to design substances directly while keeping the required properties
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Figure 1.2: Pipeline of molecular design to realization

and characteristics in mind. Thus, the problem of molecule discovery has been modelled as an inverse

problem.

Machine Learning(ML) advancements in the recent years has enabled us to approach molecule dis-
covery from such new dimension. ML as a problem-solving paradigm has many important applications
across various fields. This ML boom has been fuelled by both the increase in computational capacity
and the increase in the amount of data available to train the frameworks. There have been various efforts
in expanding the set of available libraries of molecules, and their properties.[2, (3] 4] |5} 6, [7]] Contrary
to a traditional knowledge engineering approach where the programmer provides the explicit algorithm
to process the input, ML algorithms try to fit a function to the given data while also generalizing the
pattern. Hence, ML approaches are an effort to enable a machine to ”learn” the underlying science from
examples(dataset). Review articles by Strieth-Kalthoff et al. [8] and Butler et al. [9] give an introduction
to ML from the perspective of synthetic chemistry and also highlight how ML has advanced research in

chemical sciences.

Inverse problem refers to the class of problems wherein the task is to deduce or evaluate the set of
causal factors that led to a particular set of observation or measurements (Figure [I.1)).[10} [11]] Inverse
problems are of great interest in various fields of science owing to the fact that they reveal a lot about
the underlying relations which are not directly observed.[12, [13, [14} [15]] Many of the inverse tasks
pertaining to chemistry belong to the subclass of non-linear inverse problems which are complex to deal
with.[[16} [17] In such problems, the forward function y = f(x) is a non-linear relation between the input
x and the output y.

In essence, the need is to do the following tasks in order: discover new molecules, simulate or
evaluate their potential suitability for a task, find methods to synthesize those molecules, followed by
characterizing the molecules generated(Figure [3.2)). The final goal would be to be able to do the above
tasks as a seamless process which is otherwise arduous and time consuming. This effective “closing
of the loop” would lead to an ideal pipeline which would propel the discovery/validation/realization of
novel molecules for novel applications.

In the next chapter, various inverse problems that are relevant to the process of molecule design are
discussed. Once the requirement of the properties are finalized, the first task is to identify molecules and

their structure which would exhibit desired properties, which is termed as molecule generation. Once



the structure of a target molecule is known, the next task is to find a viable reaction pathway using a set
of available precursor molecules to synthesize the target molecule, which is the task of retrosynthesis.
Once both the target molecule, and its synthesis logic is attained, the next step to automate is the actual
synthesis of the substance using Al assisted robots. Even though this is not exactly an inverse problem,
we are discussing it briefly in this article as it fits in the overarching task of leading a molecule from
design to realization. Once we have realized a sample of a substance in the lab, it is important to ensure
that the substance synthesized is actually the one which was intended, which is the task of chemical
characterization. The second half of the thesis approaches one such tasks of chemical characterization
using the paradigm of deep reinforcement learning.

The following chapter describes some of the important neural architectures that are commonly used
in the works attempting to solve the inverse problems. The chapter also discusses recent ML based
advancements in each of the four subtasks that we enumerated above.



Chapter 2

Inverse Problems in Chemistry: Molecular Design to Realization

2.1 Brief Overview of Modern ML Methods used for Inverse Problems

This section gives a brief overview of some of the commonly used modern ML methods which are

essential to understand the recent work in the domain of inverse problems of molecular design.

GRU LSTM (]

H G
; :

Figure 2.1: Architecture of (a) Gated Recurrent Unit’s cell and (b) Long-Short-Term-Memory’s cell.
x¢, hy and ¢; are the input token, hidden state and cell state respectively and o represents the sigmoid
activation function. x and + represent elementwise addition and product. The input tokens and hidden
states are passed through these cells recursively to get the final output.

2.1.1 Recurrent Neural Networks

Recurrent neural networks generalise feed forward neural networks to be able to handle sequential
data. They can remember what was previously seen in the input and help provide context for elements
that occur later in the sequence. The SMILES representation of molecules is formed by strings and is
hence, sequential in nature. A RNN generally consists of what is known as a hidden state which can
be interpreted as a memory unit which remembers what occurred in the sequence. Every token in the

SMILES string is converted to machine readable vector which is combined with the hidden state to



provide a new hidden state.[18] At time ¢, The general update rule for an RNN is given by
ht = f(xtvht—l) (21)

where z; is the input token and h;_1 is the hidden state after the previous input.

RNNs are optimized using an algorithm called back propagation through time.[19] During back
propagation, each gradient is calculated with respect to the effects of the gradient in the next step.
However, this also brings a problem: if the magnitude of the gradient at the previous step is small, then
the magnitude at the current step is even smaller which means that the effect of the initial tokens does
not reach the final calculated gradient. This is called the vanishing gradient problem. In order to tackle
these, two specialized RNN architectures have been developed (Figure [2.1)) -

* Long Short Term Memory (LSTM): In the LSTM architecture,[20] another state is added along
with the hidden state called cell state. It can be thought of as a memory unit which contains
relative information way down the sequence chain and since, it retains information from earlier
steps, the information from earlier steps is available in the later steps. The information to be
retained and forgotten is controlled using three gates which use the hidden state, cell state and

input at the current step to calculate the hidden state and cell state for the next step.

¢ Gated Recurrent Unit (GRU): The GRUJ221]] architecture is similar to LSTM but instead of three,
they use only two gates and do not contain a cell state. Only the hidden state is used to carry
information. Due to the fewer gates, the number of operations is lesser in GRUs in comparison to

LSTMs and are hence, slightly faster but show similar accuracy.

RNNSs can be used to generate text by using the hidden state at the current step to forecast the token
that is most likely to appear at the next step and add it to the text generated so far and repeat unless
a token is generated which signifies the end or a maximum specified length is reached. This can be
applied to generate SMILES strings but it posts a problem that the resultant string may not represent a
molecule. Several ML architectures have been proposed to generate valid molecules which have RNNs
as the core of their generator.[22} 23| 24, 25/ [26]]

2.1.2 Graph Neural Networks

The graph representation of a molecules opens up the avenue for a wide variety of algorithms that can
be used directly on the graph structure. Each atom is represented by a node in a graph and each bond by
an edge. These vertices and edges are differentiated from each other by the presence of a feature vector
corresponding to each vertex and edge. The atom feature x, for an atom v may consist of information
like one hot encoding of atom type, hybridization, formal charge etc. Similary, the bond feature e, for
a bond between atoms u and v contains information like bond type and stereochemistry etc.

Most graph neural networks are different variants of a common architecture. This architecture con-

sists of two phases -
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Figure 2.2: Overview of Graph Neural Networks. A single layer of a simple GNN. A graph is the input,
and each component (V,E,U) gets updated by a MLP to produce a new graph. Each function subscript
indicates a separate function for a different graph attribute at the n-th layer of a GNN model. Figure
from Sanchez-Lengeling et al. [27] under |Creative Commons licence

* Message Passing: The message passing phase is responsible for capturing the environmental
information around a node. This phase is run for 7" timesteps and at the ith timestep, information
from all nodes that are ¢ edges away reaches the respective node. It is defined in terms of the
message function M, and vertex update function U;. At every timestep ¢, each node has a hidden

state h! and h0 = z,, and are updated using a message vector m! ! according to

mitt = Z My(ht, AL, ewy)
e N (o) 2.2)
ht+1 — Ut(ht mt+1)

v

where N (v) is the set of neighbours of v.

* Readout: In this phase, a feature vector for the entire graph is calculated using some differentiable

readout function R
§=R({hlv e GY) 2.3)

where G is the set of vertices in the graph.

A general overview of a single layer in a simple graph neural network is given in Figure 2.2]

Different graph neural networks use different functions for message passing and readout which can
be used for predicting molecular properties or constructing the graph by adding a node at every timestep
taking into account the graph constructed till that timestep. Building molecules in the form of graphs
brings an advantage that unlike intermediate states of SMILES strings being invalid, it is much easier
to make sure that each constructed subgraph is always valid. GNNs have proven to be a great tool to

featurize the molecules and hence the featurized vectors can be used for further downstream prediction
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tasks.[28] Such featurization of the current state of the molecule can also help in driving feedback
to other parts of an architecture to guide the design of molecules.[30}

§ VAE d(e(x)) /K
/K N N > ® °

@ 00O
o000
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Encoder

0000000000
000000000
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y .3
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Learn Distribution Parameters
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Figure 2.3: Overview of Variational Autoencoders. The input molecule (x) is encoded in a continuous
latent space by estimating parameters of a normal distribution from which the observation is sampled
e(z). The decoder then tries to reconstruct the input from e(z) such that d(e(z)) and x belong to an
identical probability distribution.

2.1.3 Variational Autoencoders

Autoencoders are mainly designed to encode the input into a meaningful and compressed represen-
tation and then decode it back to get the initial input. In theory, an autoencoder would extract only the
information from the input which is necessary to reconstruct the input from the smaller representation
also known as the latent space representation. Mathematically, the problem is to find two functions
f1:R™ - RP and f5 : R? — R™ which satisfy -

argminfl,sz[A(;c, fa- fl(x))] (2.4)

where A is the reconstuction loss.[32, 33]]

Variational autoencoders are a variant of this architecture which provide a probabilistic manner for
describing an observation in the latent space (Figure [2.3).[34] Instead of giving a single value for each
latent space attribute like a conventional autoencoder, VAEs provide a probability distribution for each
attribute. A latent space representation is then sampled from, the obtained probability distribution for
each attribute from the encoder providing a continuous latent space representation. The probabilistic
decoder can be assumed to be a generative model conditioned on a random latent variable z with param-

eters 6 which gives a prior distribution on latent variables py(z;). Similarly, the encoder is equivalent



to an approximate posterior distribution over z given a datapoint x governed by parameters ¢. The ob-
jective function is calculated using the marginal log-likelihood. The first term is the Kullback-Leibler
divergence of the true posterior and the approximate prior. The second term is called the variation lower
bound on the marginal likelihood and is defined as -

L(0, ¢;2i) = —Dir(gp(2]7:)|[po(2)) + By, (21;) [logpe(zi]2)] (2.5)

Hence, the above mentioned objective function should be maximized for all data points with respect
to f and ¢. A wide variety of models have been used for the encoder and the decoder including convolu-
tional neural networks, graph convolution neural networks, RNNs and more. RNNs for SMILES strings
and graph convolution for molecular graphs are the conventional encoders and decoders of choice in the
domain of chemistry.[35] 36, (37,138,139, |40]

2.1.4 Generative Adversarial Networks

Training Dataset

— GAN
<:> m\/ﬁJ Real Data
L

Discriminator

REAL

Generator

FAKE

O
o)
‘o)
bz, o)
“0 Fake Data
o)
(@)
0)
(@)

Figure 2.4: Overview of Generative Adversarial Networks. The generator generates fake data samples
and and some samples are picked at random from the actual training set. These samples are then sent to
the discriminator which classifies if the provided samples are real or fake. The generator and discrim-
inator are then trained such that the generator tries to fool the discriminator and discriminator tries to
correctly identify the fake samples.

GANSs (Generative Adversarial Networks) are a set of models: a generator and discriminator. The

two models are pitched against each other and trained (Figure 2.4). The generator attempts to capture



the distribution of a training dataset and create new sample data points similar to the training samples.
The generator model is expected to do so without having direct access to the training samples but with
feedback from the discriminator model. The discriminator is a classifier that is fed input from both the
original training dataset also datapoints created by the generator. The role of the discriminator is to
correctly discriminate and classify these points as either being generated by the generator or being a
true datapoint. The process of training both these models is a mini-max problem wherein the discrim-
inator wants to correctly distinguish all the samples and the generator wants the samples generated by
it to be indistinguishable from the training distribution. This back-and-forth optimisation is said to be
terminated when the models reach a saddle point which is minimum along one axis and maximum along
another. The most impactful paper on GANs by Goodfellow et al. [41] trained their GAN models on the

following objective function:
mén max V(D,G) =Eyp,a@llogD(x)] +E. p. (»)llog(1 — D(G(2)))] (2.6)

Where py(z) is the training data distribution and p,(z) is a predefined normal distribution from
which the generator samples points. It is to be noted that the second term i.e. log(1 — D(G(z))) may
tend to negative infinity when the training starts if the discriminator is stuck in a local minima. This
is commonly referred to as mode collapse. On the contrary, if the discriminator function is trained too
optimally, the model finds it difficult to train the generator since this leads to a weak gradient and hence
slower training. Arjovsky et al. [42] found a way to overcome this issue by using an alternative method
of training. Use of Wasserstein loss motivates the critic to maximise the distance of distribution of its
output to real data and fake data. One of the key points of WGAN is the use of a linear layer instead of
sigmoid layer for the output layer of the critic model. It is recognised in literature that WGANSs provide
better stability of training and reduces problems like mode collapse or vanishing gradients. Many of the
papers discussed in the following sections like ORGAN,[43]] MolCycleGAN,[44] employ WGANS in
addition to GANs for their studies and evaluations.

2.1.5 Reinforcement Learning

Reinforcement learning is a class of machine learning algorithms which has gotten increasingly
popular. They generally consist of two parts: an agent which performs actions and a critic which
rewards or penalizes those actions (Figure 2.5). The system is described as a variable s; which the
agent parameterized by 6 uses as input to predict an action a; such that it leads to the maximum pos-
sible cumulative reward forming a markov decision process. The trajectory of the system is defined
as (80, G0, S1, Al eeeenn.. ar—1, sT) where st is called the terminal state and states between so and s7 are
called intermediate states. The total reward for the trajectory is calculated as a sum of rewards from the
intermediate states and the terminal state.[45]]

A popular idea in most reinforcement learning based algorithms is the () function. The @) function
takes the state s and an action a as input and returns the expected reward for the state action pair. If

the strategy for choosing the actions is optimal, then at every state (s) the best action (a) will be taken
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Figure 2.5: Overview of general reinforcement learning methods. An RL pipeline consists of two parts:
the environment and the agent. The agent interacts with the environment by taking actions and these
actions are then rewarded or penalized depending on if they lead to a more promising state. For example,
in a game if the action takes the agent closer to victory, the agent is rewarded and if the action leads to
a loss, the agent is then penalized.

which will lead to the best value of Q(s,a). If the system is small with few states and few actions, we
can ideally create a table which maps state action pairs to the respective () values and this is is called ()
learning. However, as the systems become larger, enumerating all possible state action pairs becomes
infeasible. Hence, the Deep ()-Learning algorithm was proposed in which the instead of building a
table, an artificial neural network is used to map input states to the (action, -value) pair. The best
possible action is chosen with a probability € and a random action is chosen with probability 1 — € to
make sure the obtained information is exploited and new regions of the space are explored. This is
called the Epsilon-Greedy Exploration Strategy. The values in the () table for both cases are updated
using the Bellman Equation where « and ~y are the learning rate and discount factor respectively.

Q(s,a) = (1 — a)Q(s,a) + a(R + ymazyQ(s',d')) 2.7)

Another popular method for reinforcement learning is maximizing the rewards using policy gradi-
ents. The expected reward can be calculated as a function of the parameters of the machine learning
model () -

J(8) = Ex[r(7)] (2.8)

where 7 is the trajectory and 7 is the policy. The given objective function J(#) can be maximized
using gradient ascent. The term 7(7) in the equation above is approximated using a wide variety of
algorithms like REINFORCE and Actor-Ceritic.
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RL frameworks have proved themselves in the application of chemistry related tasks especially to-
wards molecule optimization.[46} |31} 147, 22] They also have shown promise in tasks like reaction and

geometry optimization.[48], /49| 50]

2.2 Inverse Problems in Molecule Discovery

Neural Networks

Sararaitie e g Predictive Models

VAE GAN

MLPs, RNNs, GNNs

MLPs, RNNs, GNNs

Helps in .
Training Reinforcement Uses for

Learning rewards

Figure 2.6: An overview of components and advancements in deep learning for the task of molecule
generation: VAEs are an important framework that featurize molecules into an explorable latent space
from which we can sample new points. GANSs are useful to generate new data points from a sampled
normal distribution. GANSs are frameworks that use adversarial training to create points from a distri-
bution similar to the training dataset. These generative models employ a variety of neural networks like
RNNs and GNNs to do so. Further, QSAR deep predictive models can be used by various RL algorithms
as a form of reward to aid the training of the generative models. These rewards can also be used as a
means to train the models to optimize for properties of interest.

2.2.1 Molecule Generation

A critical step in the journey of finding novel molecules for desired applications is the process of
molecule design. Finding appropriate candidates having a certain set of required properties or charac-
teristics is an exceedingly difficult task in the chemical discovery pipeline. This is due to the enormous

nature of the chemical space to be explored. The number of total drug-like molecules has been estimated
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to be up to 10%°_[51] Candidate molecule generation can be modelled as an inverse problem wherein
the intent is to find the optimum molecule and its structure that has a specific set of properties. Tradi-
tionally, computational means to find molecules of interest is to generate a large library of molecules
through combinatorial methods.[52, 153} |54} 55 Then these large library of molecules are screened for
desirable properties or experimental outcomes followed by optimization of the structure based on the
understanding of the property-structure relationship. With advancements and progress in modern ma-
chine learning methods, there are reliable methods to accurately predict many properties for molecules
at a rapid pace.[56]|These ML methods try to capture the function that relates molecules to properties
of interest. This has led to development of high throughput virtual screening(VS) methods that make it
possible for us to narrow down possible candidates from a large library of molecules at a much faster
rate than that possible with traditional methods.[57, 58]

In spite of these advancements, a significant computational effort is required to screen these huge
libraries of molecules which may reach sizes beyond billion in number.[3}, 4] This calls for methods that
generate molecules in a more targeted way and explore chemical space more efficiently. de novo design
of molecules contrast with the earlier discussed virtual screening method in a way the structure of the
molecules are known a priori. Whereas in de novo design, the molecules are generated from scratch
with optimization as the goal. The intent in de novo molecular design is to consider and evaluate lesser

number of molecules than one would in screening.

One popular method of optimization is the class of variants of Genetic Algorithms.[59, |60] They
involve usage of rule based heuristics and procedures to generate new population of samples. This new
population is generated by “mutating” the vectors representing each sample. The combined population
is then scored against itself using an appropriate fitness function and best performing set of samples
from the populations are allowed to continue to the next iteration akin to natural selection. Such class of
algorithms have proven to perform on par with leading machine learning approaches when the mutation

heuristics and representation vectors are chosen appropriately.[61} 62, |63]

Deep generative models have been pivotal in driving novel methods for de novo molecular design
methods. They are a class of methods that aim to capture the non-linear relation between the molecular
structures and their properties. Different forms of data are transformed to and from each other using a
series of linear transformation layers with non-linear activation functions between them. By capturing
this information from a large dataset, the models try to emulate or learn the characteristic features of a
molecule that lead to a certain kind of property or behaviour. Generative models have advanced consid-
erably in the recent times with diverse and exciting applications in the fields of image processing,[64]
natural language processing,[65. 66]and audio manipulation.[67]]

Majority of deep generative models can be classified in three categories or a combination of those
categories: Variational Auto Encoders (VAE), Reinforcement Learning (RL), and Generative Adver-
sarial Networks (GAN). Figure gives a high-level overview of the more recently used deep neural
network architectures in the task of molecule generation. In cases where the motive is to optimize a

given molecular property, there is a need of a gradient estimator which can help to improve the gener-
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ator through back propagation. Neural networks require a gradient through which their parameters are
updated, in anticipation that their performance too improves as the choice of loss reduces. This gradient
estimator may act as a representative of simulations, experimental observation or classical property pre-
diction algorithms. In a simpler approach, the property to be optimized could be modelled via another

neural network and back propagated to the generator model.

Gomez-Bombarelli et al. [35] made an attempt using VAEs to generate novel molecules. The model
was trained on SMILES representations of known chemical structure where it encodes the molecules
into a lower dimensional vector space, and the decoder converts these continuous distribution of vectors
back to discrete molecules. Jin et al. [40] proposed JT-VAE, in which the model generates a molecule
in a two-step process. In this process, first a junction tree is constructed to represent the molecular
substructure composition for the molecule. Then, a message passing neural network is used to decode
the final molecular structure of the molecule. Graph-VAE by Simonovsky and Komodakis [36] is a
graph based generative model which learns to generate the adjacency matrix of a molecule at once
rather than step by step. Liu et al. [39] proposed a constrained graph variational autoencoder which
uses a graph structured VAE to train a sequential generative model. Lim et al. [37] proposed a model
based on the conditional variational autoencoder[68] for molecule generation. They demonstrated the
utility of their method by controlling and imposing five target properties simultaneously on the latent
space. They were also able to adjust a single property while keeping the others constant. Grammar
Variational Autoencoder by Kusner et al. [38] represents SMILES strings as a parse tree from a context-
free grammar. Using this parse trees representation for the VAE to encode and decode from directly

ensures that the generated outputs from the VAE are always valid structures.

Another method for the generation of molecules is the use of GANs wherein the generator is compet-
ing against another discriminative model. The goal of the generator network is to model new data points
close to the original distribution such that the discriminative model is not able to distinguish between
the true and synthetic data better than random chance. Non-differentiability of the data and work around
that limitation is the major point of interest in such methods. druGAN by Kadurin et al. [69] was one of
the initial attempts at using GANs in the context of molecule generation. druGAN demonstrates a proof-
of-concept by using generative adversarial autoencoders (AAE)[70]] to identify molecular fingerprints

which have certain anti-cancer properties.

In addition to the generation of molecules through these models, it is important to bias the process
towards required properties. In case of VAESs, the presence of a continuous latent space representation
for molecules opens up the avenue for the application of various global optimization algorithms like
bayesian optimization and particle swarm optimization. These can be used to find the optimal molecule
in the latent space which maximize/minimize the given properties|[71,72]. Blaschke et al. [73]] combined
the VAE and GAN approach for generation to create robust molecule generator and then used bayesian

optimization to make sure that the generater creates molecules with specific properties.

In a work from [Bagal et al., inspired by Generative Pre-Training (GPT) model that have been shown

to be successful in generating meaningful text, the authors train a Transformer-Decoder on the next token
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Figure 2.7: Distribution of the molecules generated by the generator based on the conditions imposed
on QED vs the initial distribution of the dataset (Bagal et al. [23))

prediction task using masked self-attention for the generation of druglike molecules.[23]] Additionally,
they demonstrate that their model can be trained conditionally to control multiple properties of the
generated molecules. An example of such a conditional generation is shown in Figure where the
generator is biased to generate molecules with QED close to a particular value.

ReLeaSE by Popova et al. [47] includes two deep neural networks: a generator (G) and a predictor
(P). Initially, both the networks are trained independently with supervision from a separate dataset. In
a later stage, the models are trained jointly using an RL method. The action space of the “agent” i.e.
the generative model is the set of possible SMILES notation alphabet and the state space is the set
of possible strings in this alphabet. Rather than relying on any pretrained chemical descriptors, the
models are trained on SMILES representation of molecules. The generative model consisted of a stack-
augmented recurrent neural network, and QSAR models were used for the predictions. Goel et al. [22]]
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Figure 2.8: Distribution of binding affinity of molecules generated by an unbiased generator compared
with the distribution of a generator biased for generating molecules with larger binding affinity to SARS-
Cov-2 M. (Goel et al. 22)

proposed MoleGuL AR, another stack augmented RNN based deep generative model which generates
molecules with optimized binding affinity to a target. As an example, the change in distribution of the
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molecules generated after optimizing for SARS-Cov-2 M, is shown in Figure The pipeline is
further extended for multi-objective optimization like logP, drug-likeliness, etc. There have been other

studies with similar paradigm that use SMILES notation for molecular generation.[74, (75} [76]]

ORGAN by Guimaraes et al. [43]] extended the sequence based Generative Adversarial Network in
SeqGAN][77]] to include domain-specific objectives in addition to the discriminator reward in order to
generate valid SMILES strings. By modelling the generator as a policy model in RL, this method by-
passes the problem of discrete nature of molecular data since the model can be trained with gradient
policy updates. The final reward of this is a combination of rewards returned by the GAN’s discrimi-
nator and the reward generated by numerical function of the property prediction. This framework was
tested using objective functions like solubility, synthesizability, and druglikeness. Another method,
ORGANICI78| explores the use case and performance of this model further by analysing how it per-
forms with various other property criteria. Models like RANC, and ATNC uses differentiable neural

computers which have explicit memory banks for generators.[79, [80]

The above models mainly used either learned representation vectors or SMILES strings of molecules
as the descriptor for molecules. MolGAN|81]] uses graph-structured data instead to generate molecules.
Like others, the model uses RL objective that biases the model to generate molecules with specific
desired chemical properties. Similarly, another method, Mol-CycleGAN[44] focuses on generating
molecules or compounds that have a specific chemical scaffold while also optimizing for a property.
LatentGAN by Prykhodko et al. [82] combines autoencoder with GAN for molecule generation. The
GAN directly generates vectors in the latent space of the autoencoder and optimises the target properties.
The model was tested in two scenarios: to generate general drug-like compounds and also target-biased

compounds.

Another way to approach the problem is to train a pure RL agent to operate directly on a graph
wherein the agent has to decide the addition of a new bond or atom in each action step amongst the pre-
defined set of valid actions in the current state. You et al. [31]] trained a general graph convolutional net-
work based model for molecule generation to optimize domain-specific rewards. DeepGraphMolGen[83]]
extended GCPN by using Graph Convolution Networks to design a set of rewards to design small
molecules. These molecules were generated to bind with dopamine transporters but not with nore-
pinephrine. However, this model requires pretraining on specific datasets. Zhou et al. [46] introduced
MoIDQN a framework that combines chemistry domain knowledge and RL. Rather than using any kind
of pretraining which could have reduced the search space, MolDQN learning from scratch based on its
own experience. And unlike former methods, MoIDQN also allows for multi-objective optimization.

Molecule Representation

A good representation is necessary for any ML method to perform well since the representation dic-
tates what kind of information is available for the model to exploit and navigate the chemical space
efficiently (Figure [2.9). Incorporating invariant and covariant properties of the system in the repre-
sentation itself helps the models greatly since they don’t have to waste training time on learning these

concepts from scratch. A review by David et al. [84] discusses and analyses various representation of
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Figure 2.9: Overview of commonly used molecule representations

molecules in great detail. Concisely, majority of the representations used in generative models fall into
one of the following categories: discrete string based,[22, 147, [74} [75,[76] continuous vector space,[82]
weighted connected graphs.[31} 146, [85] 83]]

2.2.2 Retrosynthesis

Retrosynthesis is the process of planning organic syntheses by finding possible readily available and
simple precursors which on reacting produce the target molecule in one or more steps. This is done
through breaking of bonds and functional group interconversion and retrosynthetic analysis has become
an integral part of organic chemistry. Retrosynthesis formulates the organic synthesis process as an
inverse problem by working backwards from the target molecule and systematically dissecting it to reach
the simplest possible precursors as described by [Coreyl[86, |87] An example of such a retrosynthetic
planning is shown in Figure [2.10]

Conventionally, this would require a chemist to use their knowledge of potentially thousands of
reaction rules to find which possible precursors would lead to the given target followed by ranking
them based on their feasibility. The process can also be done in silico with the reaction rules from
the expert being translated into a program which can detect molecular substructures and the corre-
sponding environmental information like functional group compatibility, stereoselectivity etc. Tools
like Chematica[88, [89]] (now Synthia) use hundreds of thousands of reaction rules curated by experts
along with heuristics to terminate exploration of unpromising precursors to find reactants which are
commercially available which can produce the desired product via single or multi-step reactions. How-

ever, manual accumulation of reaction rules is extremely labour intensive and dependent on the expertise
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of the contributors. The rise of readily available, curated datasets has given a boost to the use of data

driven methods for retrosynthesis.[90, 91]]

2.2.2.1 Template Based

A wide variety of reaction rules (or templates) can be extracted from datasets like Reaxyﬂ SciFinde1E|
and reactions from chemical literature like the one created by [Lowe| from reactions in U.S. patent
literature.[92] Template extraction is done in two steps: atom-atom mapping (AAM) followed by find-
ing the reaction center. [Plehiers et al.| extracted the rules from InChl and SMILES representations of
molecules by performing AAM using the Reaction Decoder Tool and then, finding the reactive center
by identifying which atoms’ environments changed during the reaction.[93] [94] (Coley et al.| defined
strict SMARTS patterns to describe the reaction center, its neighbouring atoms and the corresponding
functional group in the reactants and the product and finally merging the two into an overall retrosyn-
thetic SMARTS pattern.[95] |[Law et al.|took a different approach by first identifying the reaction center
followed by extending it to encompass the relevant neighbouring atoms and these extended reaction
centers are then clustered to get a generalized template.[96] These extracted templates are then applied

to the given product to obtain the precursors.
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Figure 2.10: Example of retrosynthetic routes of a molecule as tree representation. The target molecule
can be solved if it can be deconstructed to a set of readily available building blocks shown with a
coloured background. Figure from Hong et al. 97 under Creative Commons licence

Using the extracted rules, there is a requirement for algorithms that can effectively search the ret-
rosynthesis tree for the most promising paths and with the extensive amount of available data they can
be driven by machine learning. For predicting the precursors of a single step reaction, studies by [[shida
et al., |(Chen and Jung|using graph convolutions have shown great promise.[98|99] However, most prod-
ucts can rarely be derived from a single step and multi-step reactions should also be found for the task.
The most popular algorithm that helps achieve this is Monte Carlo Tree Search (MCTS). [Segler et al.

used a variant of this algorithm in which they used three neural networks to first sample a template

"https://www.reaxys.com/
Zhttps://scifinder.cas.org/

17


https://creativecommons.org/licenses/by-sa/4.0/

and apply it to the molecules such that the search goes in the most promising directions followed by
predicting if the proposed reactions are feasible or not and finally estimate if the transformation is a
”winning move” i.e. it leads to commercially available compounds to reward or penalize the neural
networks.[100] In the work by |Schreck et al.|the authors proposed using a policy learned through rein-
forcement learning such that the policy minimizes the expected synthesis cost (a metric defined by the
authors).[101] The open source AiZynthFinder software by (Genheden et al.|for retrosynthetic planning
also uses a variant of MCTS.[102]] The Retro* architecture by |(Chen et al.| proposed a best first search
algorithm using an ”AND-OR?” tree which can be used instead of MCTS.[103]]

Template based approaches however, come with the caveat that any possible precursors will not
be identified if the respective reaction does not belong to the extracted rules and it is not feasible to
enumerate the exponential number of outcomes from the retrosynthesis tree. With the advances in
machine learning especially its wide spread use in pattern recognition, template free models have also

been developed which implicitly learn transformation rules between the reactants and the products.

2.2.2.2 Template Free

The SMILES string representation of molecules has its open grammar and semantics opening up
the avenues for applying natural language processing based practices for a wide variety of tasks with
retrosynthesis being one of them. |[Liu et al.| modelled the retrosynthetic prediction task as a neural
machine translation problem and used the seq2seq model to predict the reactant SMILES given the
product molecules.[[104, [105]] With the advent of transformer models as the state of the art in translation
tasks [Karpov et al.| proposed using it for single step retrosynthesis following which [Zheng et al.| and
Kim et al.|added different forms of SMILES correctors to make sure that the generated molecules are
valid.[106} [107, [108] [Mao et al.|and |Seo et al.[combined information from molecular graphs with the
transformer model to create an even more robust model.[[109, [110] |Lin et al., combined the transformer
archtiecture with MCTS for the multi-step problem. They used a heuristic score at each reaction step to
see how promising it would be to explore the subtree.[111] In the work by [Schwaller et al., the authors
trained a forward model to predict the products from reactants and calculate the reaction likelihood. An-
other transformer model was trained to predict the possible reactants that could lead to the product which
there then ranked using the SCScore[/113]] and the reaction likelihood and the process was continued till
commercially available precursors were found using the precursors as initial target molecules.[112]]

Recently, newer approaches that take advantage of the best of both worlds i.e. templates as well
as the ability of machine learning models to implicitly learn transformation rules called semi-template
based algorithms.

2.2.2.3 Semi-Template Based

These algorithms use a two step process for finding precursors
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» Using machine learning to identify the reaction center which gives information about the bonds
that can break during the reaction. These bonds are then disconnected to get structures commonly

referred to as synthons in literature.
* The reactants are then obtained through a series of transformations on these synthons.

One such study was reported by |Shi et al.| who treated the reactants and products as graphs. They used
the R-GCN graph neural networks[115]] to predict which bonds would break to produce synthons and
then added new nodes and edges predicted using the same architecture to each synthon to complete their
structures.[114]] Similarly, Somnath et al. used the MPN][117] architecture for graph convolutions.[116]

Yan et al.| proposed using Edge-enhanced Graph Attention Network for reaction center identification
and the produced synthons were then converted into SMILES format which could be invalid in some
cases. These invalid SMILES strings were then corrected using a transformer model.[118]

With a lot of open source platforms like AiZynthFinder, ASKCOSE] and IBM RXNEI, the accessibility
of AI/ML enabled retrosynthetic planners has improved significantly.

2.2.3 Al Powered Robotic Synthesis

Once a candidate molecule is generated and retrosynthetic logic has provided the recipe, the next step
in the pursuit of complete automation is the automated synthesis of complex molecules. The two major
objectives of automated synthesis are increasing reaction throughput commonly called high throughput
experimentation (HTE) and increasing user autonomy so that the user input required becomes minimal.
The latter objective would help in producing systems with the ability to synthesize molecules based
on the provided retrosynthetic steps without necessarily leading to a high-throughput procedure.[119]
A recent analysis of small drug like molecules found a lot of redundancy in the fragments present in
them in terms of heterocyclic motifs.[[120] In other words, the estimated number of drug like molecules
is practically infinite, but the number of different fragments that form these molecules are less. Most
autonomous systems are built de novo such that they provide high efficiency and flexibility but require
great investment in terms of software and hardware.

With the obtained retosynthetic pathway for the target at hand, the conditions in which the reac-
tion occurs are still missing. The use of machine learning has shown great promise for predicting the
conditions as well. |Gao et al.|used fingerprints from the product and the reaction to predict the cata-
lyst, solvents, reagents and temperature most suitable for the reaction.[121]] In case of existing literature
for reactions, [Vaucher et al.| used natural language processing to extract the experimental procedure
from patents and scientific literature.[[122]] Aided with approaches like these, the pursuit for complete
automation gets a major boost.

The system developed by |Li et al.|showed the possibility of generalized automated synthesis by using

the same automated workflow for 14 distinct classes of molecules.[123]] |Steiner et al.| developed the

*https://askcos.mit.edu/
‘https://rxn.res.ibm.com/
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”Chemputer” architecture, a generalized format for reporting chemical synthesis procedures that could
link the procedure to physical operations. The authors also proposed a framework called ”Chempiler”
to produce specific low-level instructions for the Chemputer architecture. It is responsible for finding
paths between a source flask and target flask as well as address devices like hot-plate stirrers based on the
vessels they are connected to. This architecture was then also applied to a physical platform and tested
on three different drugs with extremely promising results.[[124} [125] The AutoSyn automated synthesis
system created by (Collins et al. has been predicted to be able to synthesize 87% of FDA approved drugs
with minimal manual intervention along with analytical monitoring during the synthesis process on a
milligram to gram scale.[126] However, most automated synthesis systems require a set of instructions
from the users which can then be followed but in order to close the loop these can be connected to a
robust retrosynthetic planner.

Coley et al.| split the automation process into two modules: synthesis planning and and robotic flow.
The synthesis plan from the first module is converted to a chemical recipe file (CRF) which specifies
the fluidic path to be constructed: locations of solutions, sequences of process modules, shutdown flow
rates etc. However, the process is not completely automated and requires human intervention to load
reagents following which the CRF is followed.[127] Another study in which machine learning was used
to aid synthesis planning was presented by |Granda et al.| They used a machine learning model to predict
the reactivity of a reaction mixture and the selected reaction was then automatically performed by a
connected robot. The obtained results were then used as feedback to the machine learning model making
it more robust as the number of reactions increased.[[128] An important aspect of chemical synthesis is
finding the appropriate conditions for a reaction to occur including temperature, solvents and more. Gao
et al. [121] used machine learning to predict the catalyst, solvent, reagent and temperature for a given
reaction. A study by Shields et al. [[129] used bayesian optimization for finding the best conditions for
maximum yield.

The RoboRXN platform by IBME] combines recent advances in cloud infrastructure, Al and chem-
istry to form an end-to-end autonomous system. In the industry, systems developed by companies like
ChemSpeed and Syrris are making robust systems which can be employed in a wide array of reaction
classes. The software for autonomous systems is also being developed with great rigour with platforms
like ChemOS and ESCALATE becoming exceedingly popular.[130, [131]]

We have moved very close to the goal of complete autonomy in synthesizing molecules exploit-
ing well established synthesis methodologies but currently cost forms a major roadblock with systems

costing thousands of dollars making them accessible to very few research groups in the world.[132]

2.2.4 Characterization of Molecules

Once the molecule that was designed in silico is realized in vitro, it is important to verify if the

sample attained is actually the planned molecule. This is the problem of chemical characterization,

>https://research.ibm.com/science/ibm-roborxn/
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wherein we can measure properties of a sample and have to determine its unknown molecular structure.
This has been one of the persisting problems in chemistry and is often approached using spectroscopic
techniques which measure how a molecule interacts with electromagnetic waves. Traditionally, experts
manually identify the molecular structure from different kinds of spectra with highly domain specific
knowledge which is time consuming especially in high throughput setting. The problem of chemical
characterization as presented here is actually a kind of non-linear inverse problem. Forward model
y = f(x) here refers to the calculation of measured properties i.e. different kinds of spectra y given
a molecule x. Whereas, the inverse problem is the task of elucidating the structure of an unknown

molecule x from its experimentally observed spectra y.

Even today, majority of the computer based ways to characterize a sample using its spectra rely on
matching the spectra of the unknown spectra with a database of already known spectra.[133] [134]] The
obvious drawback of such matching methods is that they restrict the usage to identifying only those

molecules that are already stored in the database.

Infrared Spectroscopy (IR) is an analytical technique that reveals information about vibrational
modes of movement of a molecule. Some vibrational modes in a molecule lead to change in the dipole
moment and absorb light corresponding to those frequencies. IR spectra of a molecule is highly rich
in information. The functional group region beyond 1500cm ™! can be used to identify the different
functional groups present in a compound and the fingerprint region of the spectra < 1500cm ™! forms
intricate pattern that are used like a fingerprint to distinguish molecules.[135} [136]] Wang et al. [[137] use
traditional ML algorithm support vector machine to do multi-class classification compounds from the
OMNIC database based on their Fourier transform infrared spectra. The trained support vector machine
identified 16 functional groups with prediction accuracy of 93.3%. Fine et al. [138]] introduce a multi-
label neural network to identify functional groups present in a sample using a combination of FTIR and
MS Spectra. The work claims that their neural network reveals patterns typically used by chemists to
identify standard functional groups. The model is also validated on compound mixtures while being

trained only on single compounds.

Nuclear Magnetic Resonance (NMR Spectroscopy) is a spectroscopy technique that relies on the nu-
clei’s magnetic properties to respond to externally applied magnetic field. The nuclei responds through
signature electromagnetic waves that are then measured and recorded. There have been a few endeav-
ours to solve the inverse problem of NMR Spectra to its original molecule in the recent times. Zhang
et al. [139] used a tree-based search framework with a SMILES Generator to predict the structure from
computationally generated '  NMR spectra. Their method included help from computationally expen-
sive DFT Calculations to guide the tree and were able to predict structure from six out of nine given
spectra. In a work by Jonas [[85]], a graph neural network is trained on molecular graphs with imitation
learning. The NMR spectra is incorporated as per-node information in the molecular graph, and the

molecule is built iteratively by adding edges based on the probabilities returned by the neural network.

The next chapter of this thesis proposes a Monte Carlo Tree Search based framework to approach

this problem.[[140] In this framework, value and prior models are pretrained using guided-MCTS runs
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incorporating substructure information. This method was able to have the correct target molecule among
its guesses for 93.8% of the molecules with < 10 heavy-atoms.

Mass Spectroscopy (MS) is another analytical technique that is used for chemical characterization.
It measures the mass-to-charge ratio of ions present in a sample and presents it as a plot of intensity vs
mass-to-charge ratio. Inverse problem of this kind can also be broken down into smaller parts wherein
we try to find an intermediate representation g such that we learn the function f — ¢g. Hoping that
the conversion from ¢ to z is more convenient. Ji et al. [141] present a deep learning based approach,
DeepEI DeepEI elucidates the structure of an unknown compound from its Electron Ionization Mass
Spectrum. DeepEI predicts molecular fingerprints from a spectrum and searches the molecular structure
database with the predicted fingerprints. MESSAR by Liu et al. [[142]] takes a rule-based approach to
identify and associate spectral features with substructures taken from databases with a goal of partial
structure identification. Litsa et al. [143]] proposed Spec2Mol, a deep learning architecture to be able to
find the correct structure given a Mass Spectra of a molecule. Their approach is based on an encoder-
decoder architecture where in the encoder learns the spectra embeddings, while a pretrained decoder

tries to reconstruct SMILES sequences of the original molecule.

2.3 Summary and Outlook

The advent of modern machine learning algorithms has provided chemists with new tools in the
pursuit of solving different inverse problems. The first task in this subset of inverse problems is to
generate valid molecules, which was achieved by deep generative modelling methods such as RNNs,
autoencoders, graph neural networks, and more recently, transformers. Once this is done, the next step
is to tackle the actual problem of generating molecules that exhibit a specific set of properties. In order
to achieve this, different algorithms like Bayesian optimization and reinforcement learning must be used
to make the aforementioned generator models explore regions of the chemical space where molecules
satisfy the given constraints.

However, generating a molecule in silico is not an end to itself since we still need a way to realize
them. We need methods to find commercially available molecules that can be used to synthesize the
molecule employing viable synthetic methodologies. Conventionally, for a new molecule, this would
require domain knowledge to find possible reaction routes manually. This process has minimal through-
put and depends heavily on the expertise of the scientists. The use of in silico methods to extract reaction
templates essentially make retrosynthesis a pattern recognition problem for which machine learning has
proven to be of great use in domains like natural language processing and computer vision. A collection
of templates can be applied to new molecules to find their precursors, and different heuristics can be
used to explore the most promising branches of the retrosynthesis tree.

A variety of alternate tools and methods to design molecules catering to their specific requirements
are accessible. However, one could argue that the effort in automating the molecular design process

has been disproportionately skewed towards just molecule generation and retrosynthesis. In contrast,
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other vital tasks in the pipeline like automated robotic synthesis and chemical characterization are less
explored. Research that uses spectroscopy data to solve the inverse problem of spectra to the molecule
is sparse, and hence the problem could be considered an open one. The initial attempts at solving this
problem using NMR and MS spectra show great potential, and the authors expect that this potential will
be continued to be explored by many more studies in the coming years. Most of the work for IR spectra
involves using the functional group region to classify molecules based on their functional groups. Even
though Infrared Spectroscopy is known to be highly information-rich, with the fingerprint region of the
spectra often being used to characterize samples in the lab, there are yet to be computational methods
that aim to learn and exploit those relations to determine the target structure. Thus, such an application
to relate IR spectra directly to molecular structures would be an exciting avenue for further research.
Since each of the spectra discussed in this highlight reveals a different kind of information about a
molecule, a method combining different kinds of spectra to evaluate the structure of a sample would
also be of great promise in the molecular design pipeline.

Unlike other subtasks in this highlight which mainly depend on computational resources and novel
architecture for progress, the high cost of robotic equipment and the need for hardware expertise makes
research in Al-assisted robotic synthesis inaccessible to a large section of the community. With spec-
ulations that complex robots would only become cheaper and more accessible, it may not be a distant
dream that this would allow more and more research groups to conduct leading research in this area of
Al-assisted robotic synthesis.[[144, [1435]]

The speed and throughput with which the problems mentioned in this highlight are being solved
today did not seem possible at the beginning of the decade. However, the availability of new algorithms
and reduction in costs of hardware like GPUs that work in conjunction with each other has helped
open up many possibilities in this domain. Democratization of information and ease of accessibility
of leading research to the general population has greatly helped the scientific community develop and
share their work on these problems. Such rapid progress and development is expected to continue as

time progresses and would extensively drive the discovery of novel molecules and their application.
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Chapter 3

Deep Reinforcement Learning for Molecular Inverse Problem of Nuclear

Magnetic Resonance Spectra to Molecular Structure

3.1 Introduction

Spectroscopy in general has played a significant role in diverse applications such as drug discovery,
protein structure determination and material discovery. Nuclear Magnetic Resonance (NMR) spec-
troscopy is one of the most crucial and versatile methods for chemical characterization. It is an analyti-
cal technique based on the nuclei’s magnetic properties that either have an odd mass number or an even
mass number with an odd atomic number. Nuclei with non-zero spin? would always have a non-zero
magnetic dipole moment, ﬁ NMR relies on this for the nuclei to respond to electromagnetic waves
as perturbations in the presence of an external magnetic field. In addition to small organic molecules,
NMR spectroscopy is a critical method to obtain high-resolution information about proteins, DNA, and
RNA[146, [147]. It can also be used to obtain knowledge of energy minima and barriers by observing

conformational dynamics of proteins [[148]]. This can be pivotal in the process of drug discovery.

The '3C NMR spectra measures the properties of individual nuclei and consists of peaks that corre-
spond to each carbon atom present in the molecule. The peak position (chemical shifts) and the peak
splits (spin-spin coupling) are dependent on the local environment of that atom. Usually in labs, experts
manually identify the molecular structure from the NMR spectra using highly specific domain knowl-
edge. Till today, most computer-based methods to verify the structure of a sample from its NMR spectra
rely on matching the spectral data with a database of already known spectra [133| [134]]. These methods
restrict the usage to identifying only those molecules that are stored in the database.

The problem concerned here is a non-linear inverse problem. Forward model y = f(x), in this context,
refers to the task of calculating the NMR spectra y, given a molecule x. Whereas, the inverse problem
refers to drawing conclusions about an unobserved molecule = from its experimentally observed NMR
spectra ¢y. One of the first attempts in literature at recognizing and modelling this problem as an inverse
problem was done by Jonas (85 (Figure [3.1)).

The forward problem f for NMR spectra is relatively well studied with many methods ranging from
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Figure 3.1: Schematic representation of the Forward and Inverse problem of NMR Spectra.As an exam-
ple, 2-methyl butane and its NMR spectra is given. Each carbon and its corresponding peak is indicated
by the same colour.

quantum mechanical calculations and density functional theory [149] to deep learning [150, [151] to
solve the task. Other empirical methods such as featurizing the neighbourhood of a nuclei and then
matching it against a database of known motifs to predict its shift are also common[152} [153]].
Recently, there have been many significant studies on the use of modern deep learning and RL methods
to solve problems in chemical sciences ranging from prediction of properties of molecules to de novo
molecule generation with optimized properties[46l [31]]. There are various high-throughput combinato-
rial methods to generate organic molecules with desired properties that are well known and essential in
the process of drug discovery([52,153} 22} 23| 147]]. In such a workflow, it would be of great help to have a
framework to verify the structures of samples generated in situ based on easily acquirable spectral data
in a high-throughput manner.

In this work, an effort has been made to determine the structure of a molecule, given its NMR spectra
and molecular formula. There have been a few endeavours to solve this inverse problem. Zhang et al.
[139] used a tree-based search framework with a SMILES generator to predict the structure from com-
putationally generated ' H NMR spectra. Their method included help from computationally expensive
DFT calculations to guide the tree and were able to predict structure for six out of nine given spectra.
In a work by Jonas [85]], a graph neural network is trained on molecular graphs with imitation learning.
The NMR spectra is incorporated as per-node information in the molecular graph, and the molecule is
built iteratively by adding edges based on the probabilities returned by the neural network. Their work
was tested on molecules with up to 32 heavy atoms.

In this work, we use a combination of online Monte Carlo Tree Search (MCTS) [[154]] and a set of offline
trained Graph Convolutional Networks [[155] to navigate through the chemical space and find the correct

molecular structure of a given target '3C' NMR spectra.
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3.2 Methods

To reiterate, the problem is defined in the following way: given '3C’' NMR spectra of a molecule
consisting of each carbon’s shift and split values and the molecular formula, identify the structure of the
molecule. The process of solving the problem is modelled as a Markov Decision Process (MDP) wherein
the molecule is built iteratively from scratch by adding atoms and bonds to the current structure at each
step. In this section, different components and details about the proposed framework are explained. The
first part contains information about the dataset used. Then the text gives details of the reinforcement
learning algorithm used followed by information about the neural networks that aid the RL algorithm.
Finally, the last paragraph of this section introduces a novel methodology of training prior and value

networks.

3.2.1 Dataset

We use nmrshiftdb2,[156] which is a database for organic structures and their experimentally ob-
served 13C' NMR spectra. In this work, we only consider organic molecules that have less than 10
non-hydrogen atoms (C, O, N, F). Charged molecules and radicals are also excluded. Thus, the dataset
comprises a total of 2134 molecules with experimentally obtained chemical shift and split values of 13C'
NMR spectra.

3.2.2 Reinforcement Learning (RL)

In this subsection, we attempt to define the state space and action space for the MDP comprehen-
sively. This is followed by information about the agent which chooses the appropriate actions at a
particular state. Choosing an accurate and appropriate measure of reward is essential for any RL algo-
rithm to perform well. We use a forward NMR prediction model to formulate a reward function defined

at the end of this subsection.

3.2.2.1 State Representation

* The current state in the search process is represented as a Molecular Graph.

* Each atom in the target molecule is present in the current state as a node. The graph of the current
state has n — s + 1 components, where 7 is the total number of atoms in the target molecule,
and s is the number of atoms present in molecule of the current state. Out of these n — s + 1
components, one is a connected component representing the molecule of the current state, and the
rest of the n — s components are individual atoms that may join the current molecule by addition
of new bonds later on. Here a component is a sub-graph which doesn’t have any outgoing edges

to the rest of the graph.

26



* Featurization of the target NMR: Each NMR peak is assigned to a carbon in the beginning when
the state consists only of individual nodes and no edges. The node feature of an atom consists of
the one-hot encoding of the atomic number of the element that the node represents and the current
valency of that atom that is available for further addition of bonds. A Gaussian, with the peak of
the assigned shift centred at the chemical shift value and o = 2, is discretized into 64 bins. This

feature is then appended to the node feature.

» Since this work uses '3C' NMR spectra as an input, it is certain that the target molecule contains
at least one carbon atom. Hence, without the loss of generality, we choose to start building our

molecule from a molecular state containing a single carbon atom i.e. Sy is just a carbon atom.

3.2.2.2 Action Representation

In this work, we formulate a fixed-dimension action space in which each action signifies the addition
of an edge between any two nodes in the graph. The environment ensures the validity of these actions

by checking for the following conditions:

» At least one of the endpoints of the newly added edge must belong to the sub-graph containing

molecule of the current state.

* The addition of this new edge must obey the chemical rules of valency for each atom. If the va-
lency due to connection with other heavy atoms is not enough to complete its octet, it is implicitly
assumed that the rest of the valency is satisfied by hydrogens. These hydrogens are not taken as

nodes in the molecular graph.
* The edge must not lead to formation of a ring with four or three atoms.

* The edge must not lead to a bond within an already present ring. EI

3.2.2.3 Agent

Since the problem is formulated as a Markov Decision Process, we are left to decide on a planning
algorithm that would use some prior knowledge about the problem and explore various branches of the
search tree before taking action a on a state s. A typical RL algorithm has two components: an Agent,
and an Environment. The task assigned to the “agent” is to choose an action given the current state. On
the other hand, the role of the “environment” is to simulate the action which was chosen by the agent
and return the reward for the action which was taken.[[157, [158]] One such algorithm is Monte Carlo
Tree Search (MCTS) (Figure[3.2). MCTS performs one of the four following steps repeatedly:

"Note that this restriction does not prevent the formation of bicyclo and spiro compounds. It just guides the formation so
that the smaller ring is formed before the larger ring. Doing so proved to be helpful in the initial experiments since this helps
prune some redundant branches of the tree search.
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1. Selection 2. Expansion

3. Rollout 4. Backpropogation

Neural Network

(Graph Featurizer + Value Head)

(Evaluation of V) < e e e @

Rils, 2) = Ry (s) = V

T1:Updating UCT Value

Figure 3.2: Monte Carlo Tree Search: A heuristic search algorithm where each node in tree is a state of
the environment. One of these 4 steps is taken at each step to navigate the search space. 1. Selection:
New bonds are added to the root based on UCT values until a leaf node is reached, 2. Expansion:
A new node is added to the leaf node after environment checks the validity of new node.3. Rollout:
Value neural network evaluates the value of the newly added node. 4. Back-propagation: The tree then
back-propagates the new information to update the UCT values of all the nodes till the root node.

1. Select : In this stage of MCTS, the tree is traversed from the root according to the UCT (Upper
Confidence Bound for Trees) values at each level until it reaches a leaf node. The UCT value at any

state is calculated based on the following formula:

UCT(s,a) = Q(s,a) + ¢ * Tmodel (a|s) *

Where s: Current state, (s, a) : Mean Action Value estimate Q(s,a) = If{((;f)), W (s,a): the cumu-

lative of all returns R(s, a’) till the leaf node, 7,,04e1(als) : Prior probability by the policy network,
N(s) : Number of times state s has been reached, n(s, a) is the number of times action a was taken
from state s, and c is the constant with which one can manipulate exploration vs exploitation ratio. The
form of UCT value used in this work is inspired by Moerland et al. [159]], which proved to improve the
performance of cases with asymmetric trees.
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2. Expand: Once a leaf node s is reached by the tree search, the tree is expanded by addition of
a new leaf node sy. The environment simulates this action and ensures its validity and also returns an
intermediate reward.

3. Roll-out: In a typical MCTS, the initial value of the new leaf node is estimated using a series of
random rollouts from the leaf node sy. Due to computational limitations, this work uses a value neural
network Viodel () to estimate the value function.

4. Back propagation: After estimating the value of the newly added leaf node, R(s,a) of the
whole backward trace is updated through back propagation which in turn updates the UCT value of

intermediate nodes belonging to this trace.
R(si,ai) = (i a;) + vR(Sit+1, @it1)

The above four steps are repeated for nmcts number of times. Then, a real action ay is taken by the
environment based on the policy of the tree. The tree’s policy probability is determined by the visitation

count of all the actions at the root node s.

3.2.2.4 Role of the Forward Predictor

While the inverse problem is defined as the task to determine the molecular structure from the spectra,
it naturally follows that the forward problem is that of calculating the NMR spectra given the molecule
and its structure. Here, a forward NMR prediction model [150] is used for the following:

1. For intermediate reward: Typical MCTS applications also have an intermediate reward returned
by the environment for each action. The step reward is calculated based on how close is the current
state to the target molecule. The forward model predicts the NMR spectra of the current state and

the reward is defined by:

r(s,a) =r(s') =2 (% - WS(s))

W S(s') = First Wasserstein Distance = 1 (S, S¢)

O

—00
where U and V' are the CDFs for the distribution of some random variables « and v [[160]], St is
the NMR spectra of the target molecule, and S¢ is the NMR spectra of the current molecules’.
The reward r(s") = WS(s') is returned whenever the current state s’ is known to be a terminal

state. Otherwise, r(s") = 0 is returned.

2. For the Scoring Function: Each episode performed by the agent returns one prediction of what
the target molecule is. Since MCTS has some element of randomness, all guesses made by the

agent are not the same. In such cases, after running the agent for a predetermined fixed number
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of times, all the unique guesses are ranked against each other by the means of the reward function

discussed above. Then, the guess which returns the highest reward is taken as the final prediction.

3.2.3 Neural Architecture of the Prior Policy and Value network

There are three modules of neural network used in this work.

3.23.1 Graph Featurizer:

Graph Featurizer: This module uses Message Passing Neural Network[155) [161]], which provides
a formulation for supervised learning on graph structured data. Consider a molecular graph G(V, E)
with node features z,, (having information about the current state and also the target NMR spectra) and
edge features e,,,. The features of each node at time step ¢ are represented as h!, initialized to z, at

t = 0. The features of nodes are updated for 3 time steps using messages m’*! in the following way:

mith =" My(hl, bl eow)
weN (v)

ht-‘rl — Ut(ht mt+1)
Fy=g(xy,hl) =2, +hl, Yo eV

where N (v) is the set of neighbouring nodes of v. M; and U, are the message function and vertex update
function respectively. The function g is simply taken to be vector addition in this work. F}, is the final
atomic feature for the node which has information about the atomic properties, the local environment,
and also the target NMR shift value that was assigned to this node. The feature (F7,) generated here will
be further used by the policy neural network mode(@|s) and value network Viyoder () -

3.2.3.2 Policy Head:

Policy Head: /N nodes form (];7 ) pairs, each representing a possible edge. For each of these pairs, let
the feature vector of the pair be the concatenation of the feature vector of the two nodes concerned. This
pair’s feature vector is then passed through two fully connected layers to obtain a 3—tuple representing

the possibility of single, double, and triple bond between this pair.

3.2.3.3 Value Head:

Value Head: All the node features received from the graph featurizer are then sum-pooled to attain
a molecule-level feature vector which has information about both the current molecule and the target
NMR. This molecule level feature is then passed through two fully connected layers to finally predict
the value V041 () of the current state.
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Figure 3.3: Training Methodology : An example search tree while in the training mode on how subgraph
isomorphism is used to make dataset for the neural networks to train on. The target molecule is shown
on the top left . Assuming that the current state in the environment is n-butane, we see a possible state
of the search tree. Each node in the tree is also accompanied by an illustration showing how it is a
subgraph of the target molecule. Since this can be evaluated when the training mode is on, this is used
to return intermediate reward r(s,a) = 1 when the current state is subgraph isomorphic to the target
state, otherwise r(s,a) = 0.

3.2.4 Training and Testing Methodology

3.2.4.1 Guided runs for training of the neural networks

While in the training mode, the environment has access to not only the NMR spectra but also the
structure of the target molecule. This can be used to guide the tree by giving a strong positive reinforce-
ment in the form of (s, a) (Figure . The tree policy (derived from visitation counts of the actions)
and approximation of (s, a) hence obtained is used as the training dataset for the prior policy neural
network mmoger(a|s) and value network Vioger(s). When any action a at state s leads it to state s, i.e
s % ¢, then:

r(s,a):=1 iff S(st,s'), else 0

where S(s¢, s') is Boolean function that returns True iff s’ is subgraph isomorphic to the s;. This work
employs rdkit[[162] to check whether the state s’ is a sub-graph of the target molecule s;. With training
mode on, the model was run on system with Intel Xeon E5-2640 v4 processor and Nvidia GeForce GTX
1080 Ti GPU for 23 hours to collect experience and train the neural networks. Five models were trained

on different crossvalidation training sets.

3.2.4.2 Using the Split Information to prune the trees during MCTS runs

Each shift value in the dataset is accompanied by a split value as well. The split value is a categorical

variable that belongs to one of {S, D, T, Q}, and it is dependent on the number of hydrogen atoms that
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Figure 3.4: a) Target state of cyclohexane and current state of 2-methyl-butane along with their splitvec-
tors b) Target state of 4-hydroxy-3-methylpentan-2-one and current state of 3-methylpentan-1-ol along
with their splitvectors

are attached to the carbon. A quaternary carbon (no hydrogen attached) leads to a singlet (.5) split, a
tertiary carbon (one hydrogen attached) leads to a doublet (D) split, a secondary carbon (two hydrogens
attached) leads to a triplet (71") split, and a primary carbon (three hydrogens) leads to a quartet (Q))
split. Let splitvector be the vector that stores the information about the number of carbons of each split
kind in the current state. Since the only action possible in the modelled MDP is that of addition of an

edge(decreases the number of implicit hydrogens), note the following two invariant properties:

* The sum of values in the splitvector would remain constant for states with only 1 connected

component since the total number of carbons can’t increase.

* With addition of bonds, the kind of split made by a particular carbon can only move in the direc-

tion:

S—D+T<+Q

As a consequence of this, certain states can be flagged as terminal states if it is known that they can

never lead to the target molecule based on the following criteria:
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Figure 3.5: An example run for the target molecule CC1=CC=NO1 with nmcts = 1000, Tyee(ai|s;)
represents the probability of taking action a; according to the policy returned by the MCTS Search with
state s; as the root. In the above figure, each state s; is also accompanied by the splitvector of that state.

* When the number of quaternary carbons in the current state becomes lower than the number of

quartet splits in the target spectra.

* When the number of singlet carbons in the current state becomes more than the number of singlet

splits in the target spectra and so on.

For example, in Figure a, the agent can safely terminate search through this branch since once a
duplet has formed in the current state, that carbon can never be transformed back to triplet or quartet
and we know that the target molecule does not have any duplet or singlet carbon. Similarly, in Figure
[3.4]b, the agent can safely terminate since the number of quartets in the current state has gone below
the number of quartets in the target molecule and there is no way to produce new quartet carbon atoms.
These chemistry guided conditions greatly prune the search tree and prevents the tree from exploring

branches that can lead to the incorrect structure.
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3.3 Results and Discussion

3.3.1 Accuracy of the Forward model

The forward model used in this work was trained on nmrshiftdb2 dataset [[156] as included in the
original work by Jonas and Kuhn [150]. The mean absolute error obtained for the prediction of the

shiftvalue per peak for the predictor was 1.374 ppm.

3.3.2 Crossvalidation
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Figure 3.6: Accuracy over 5-fold cross-validation with nmcts = 1000

The total dataset of 2134 molecules was randomly split into 5 equal groups. In each of the five
experiments, one of the groups was chosen as the hold-out test dataset and the model was trained on
the remaining four groups. For each molecule, the agent made a number of guesses depending on how
many episodes it ran. There were 20 processes initiated, with each of them running an episode. An
example of one of such episode runs in illustrated in Figure[3.5] As shown in Figure[3.6] on an average,
the agents guessed the correct structure of the molecule of the target spectra 93.8% of the time. All the
guesses of the agent are then ranked based on the scoring function discussed in the earlier section. The
Top]1 ranked structure among the guesses was the target structure 57.2% of the time. Accuracy for Top3,
Top35, and Top7 of the scored guesses can be seen in Figure [3.6] Figure [3.12] shows the Top3 guesses
made by the framework ranked by the criterion mentioned earlier for a couple of examples where the
Topl ranked molecule is the correct target structure and Figure [3.13] shows examples where the Topl

ranked molecule is not the correct target structure.
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3.3.3 Effect of nmcts on the Accuracy
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Figure 3.7: Effect of nmcts(Number of traversal from the root to leaf in MCTS search) on the various
metrics of accuracy

nmcts is the number of times that the search tree is traversed from the root to leaf node to explore
different branches before making a true action in the current state. As expected, it can be observed in
Figure [3.7|that the net accuracy improves as nmcts increases.
It is also seen that the trend for Top1 accuracy is not the same as others and it actually decreases with
increase in nmcts. This can be reasoned with the fact the increasing nmcts increases the exploration of
the chemical space and more potential candidates are scored against the current structure. This down-
ward trend reveals that a better scoring function would improve the TopN accuracy of the agent since it

would be able to rank the candidate guesses in a more accurate way.

3.3.4 Relation with the Forward Model

Even when the agent has the correct structure among its guesses, sometimes the scoring function
ranks it lower than other guesses made which reduces accuracy. Since the scoring function is dependent
on the pretrained forward model, a more capable forward model is expected to increase the accuracy of
the framework. In the event that a better, albeit computationally expensive scoring function is deviced,
the overall practical accuracy can still be improved while being even more time efficient. This can be
done by scoring only the TopN guesses of the agent with the time intensive scoring function. As can
be seen in Figure target spectra’s correct molecular structure is present in the Top7 of the guesses

> 85% of the time for all the runs with nmcts > 200. In such a scenario, we can determine the correct
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Figure 3.8: Effect of nmcts on the time taken by the system to predict a molecule

structure for an NMR spectra by scoring only 7 structures while the MCTS search takes less than 100

seconds for most of the molecules.

3.3.5 Holdout Experiment with Training Data
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Figure 3.9: Accuracy when the model is trained of molecules with < 7 atoms and tested on molecules

with < 10 atoms.

In another experiment, molecules with < 7 non-hydrogen atoms were filtered from the dataset. After
running the agent on these filtered set of molecules with training mode on, the agent was tested on 200

randomly sampled molecules with > 7 and < 10 heavy atoms. The result of this experiment is plotted
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in the Figure [3.9] However, the system performs well on the class of data that it was never exposed to

before, by guessing the correct structure 86.5% of the time.

3.3.6 Time difference between correctly guessed and incorrectly guessed molecules
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Figure 3.10: Histogram of time taken for the model to run on each molecule for nmcts = 1000)
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Figure 3.11: Time taken for a molecule when it is guessed correctly and incorrectly (nmcts = 1000)

The histogram of the time taken for the agent to run all the episodes for a molecule can be seen in
Figure[3.10] On an average, it takes &~ 330 seconds for the agent to make all its guesses for a target NMR
spectra. All episodes are run within 300 seconds for 71.8% of the molecules and within 600 seconds
for 88.5% of the molecules. It is observed in Figure that the mean time taken for all the episodes
for a molecule that is guessed correctly is /& 305 seconds, whereas the mean time for molecules that are
guessed incorrectly is ~= 780 seconds. This difference of distribution can be used to have more reliable

predictions and improve the potential practical use-case of this framework. Stopping the search at a
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threshold time can improve accuracy for predicted molecules while also saving computational expense.
When the framework makes predictions for all the molecules, i.e without any threshold time, the correct
structure is among the guesses made for 94.8% of the molecules. Having a threshold time of 300 seconds
leads to the framework making predictions for 72% of the molecules and timing-out for the rest of the
molecules. The correct structure is among these guesses for 99% of the molecules. Similarly, when
the threshold is set to 1000 seconds, the framework makes predictions for 94% of the molecules. The

correct structure is among the guesses for 97% of the time.
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3.4 Conclusion

This thesis provides a framework using graph convolution networks and reinforcement learning to
solve the inverse molecular problem of NMR spectra. The work also introduces a novel method to train
the policy and value networks apriori in guided MCTS runs (Training Mode on) and demonstrates the
utility of Monte Carlo Tree Searches in navigating the chemical space. Unlike other prior attempts to
solve this problem like the one by Jonas [85] where the model makes a prediction only 50% of the
time (even though their work is tested on molecules with 32 heavy atoms), or the work by Zhang et al.
[139] where the model is tested only on 9 hand-picked target spectra, this model shows good promise by
predicting the correct structure among its Top3 guesses, ~ 80% of the time. Additionally, it is observed
that the proposed framework performs better than brute-force checking in an enumerated database of
known molecular structures. On average, it is seen that the framework calls the forward model for less
than 7% of the molecules in QM9 which have the same molecular formula as the target structure, while
still identifying the molecule correctly. More information on comparison of the framework against
brute-force enumeration is provided in the supplementary material. Still, there are various avenues
for improvement for future work. Since the RL algorithm is dependent on the forward model for its
intermediate reward, a better scoring function would potentially improve the prediction accuracy. 3C
NMR is just one of the many spectroscopy techniques that are widely used. For example, ' H NMR
spectroscopy has a higher signal to noise ratio owing to the significantly larger abundance of spin-active
isotope. Infrared spectroscopy sheds light on the vibrational transitions in a molecule and is considered
to be complementary to NMR spectroscopy for characterizing small organic molecules. A promising
extension of work presented in this thesis would be to incorporate other spectral data and leverage
different kinds of information to elucidate the correct structure of an unknown molecule. Finally, we
believe that proposed work is a crucial step in high-throughput synthesis, where swift and efficient
verification of structures generated can make the whole process of drug discovery more robust and

reliable.
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Appendix A

Important sets of work discussed in relation to the inverse problems

discussed in Chapter 2

Table A.1: Representative list of publications that have proposed methodologies related to molecular

generation
Title Methods Authors
Automatic chemical design using a | VAE with RNN Encoder and De- | Gémez-
data-driven continuous representa- | coder Bombarelli
tion of molecules et al. [35]]

Junction tree variational autoen-
coder for molecular graph genera-

tion

VAE with Graph Encoder and De-

coder

Jin et al. [40]

GraphVAE: Towards Generation of
Small Graphs Using Variational Au-

toencoders

VAE with Graph Encoder and De-

coder

Simonovsky
and Ko-
modakis [36]

Constrained graph variational au-

toencoders for molecule design

VAE with Gated Graph NN Encoder

and Decoder

Liu et al. [39]

Molecular generative model based
on conditional variational autoen-

coder for de novo molecular design

VAE with RNN Encoder and De-

coder

Lim et al. [[163]]

Grammar variational autoencoder

VAE with RNN Encoder and De-

coder

Kusner et al.
[164]

Learning continuous and data-
driven molecular descriptors by
chemical

translating equivalent

representations

VAE with RNN/CNN Encoder and
RNN Decoder

Winter et al.
[165]]
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generation

Table A.1: Representative list of publications that have proposed methodologies related to molecular

Title Methods Authors
Constrained Bayesian optimization | VAE with RNN Encoder and De- | Griffiths and
for automatic chemical design using | coder with Bayesian Optimization Hernandez-

variational autoencoders

Lobato [71]

Efficient multi-objective molecular
optimization in a continuous latent

space

VAE with RNN Encoder and De-
coder with Particle Swarm Opti-

mization

Winter et al.
[72]

druGAN: an advanced generative

adversarial autoencoder model
for de novo generation of new
molecules with desired molecular

properties in silico

Autoencoder with adverserial train-

ing

Kadurin et al.
[69]

Application of generative autoen-

coder in de novo molecular design

Autoencoder with adverserial train-
ing followed by Bayesian Optimiza-

tion

Blaschke et al.
(73]

Deep reinforcement learning for de

novo drug design

RNN with Reinforcement Learning

Popova et al.
(47]

MoleGuLLAR: Molecule Generation
using Reinforcement Learning with

Alternating Reward

RNN with Reinforcement Learning

Goel et al. [22]

Objective-reinforced generative ad- | GAN with Reinforcement Learning | Guimaraes
versarial networks (ORGAN) for se- et al. [43]]
quence generation models

Optimizing  distributions  over | GAN with Reinforcement Learning | Sanchez-
molecular space. An objective- Lengeling
reinforced generative adversarial et al. [[78]]

network for inverse-design chem-
istry (ORGANIC)

Reinforced adversarial neural com-

puter for de novo molecular design

GAN with Reinforcement Learning

Putin et al. [[79]

Adversarial threshold neural com-

puter for molecular de novo design

GAN with Reinforcement Learning

Putin et al. [80]

MolGAN: An implicit generative

model for small molecular graphs

WGAN with Reinforcement Learn-

ing

De Cao and
Kipf [81]]
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generation

Table A.1: Representative list of publications that have proposed methodologies related to molecular

Title Methods Authors
Mol-CycleGAN: a generative model | GAN with Reinforcement Learning | Maziarka et al.
for molecular optimization [44]

A de novo molecular generation | Combination of VAE and GAN Prykhodko
method using latent vector based et al. [I82]]

generative adversarial network

Graph convolutional policy network

Graph NN with Reinforcement

You et al. [31]

for goal-directed molecular graph | Learning

generation

DeepGraphMolGen, a multi- | Graph NN with Reinforcement | Khemchandani
objective, computational strategy | Learning et al. [[1606]
for generating molecules with

desirable properties: a graph con-
volution and reinforcement learning

approach

Optimization of molecules via deep

reinforcement learning

Graph NN with Reinforcement

Learning

Zhou et al. [46]]
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Table A.2: Representative list of publications related to application of modern ML methods for mapping

retrosynthesis pathways

Title

Methods

Authors

Efficient syntheses of diverse, medici-
nally relevant targets planned by com-
puter and executed in the laboratory

Only Reaction Templates

Klucznik et al.
(89]

Prediction and interpretable visualization
of retrosynthetic reactions using graph
convolutional networks

GCN with Reaction Templates

Ishida et al.
(98]

Deep retrosynthetic reaction prediction
using local reactivity and global attention

GLN with Reaction Templates

Chen and Jung
[99]

Planning chemical syntheses with deep

MCTS with Reaction Templates

Segler et al

neural networks and symbolic Al [100]

Learning retrosynthetic planning through | MCTS with Reaction Templates Schreck et al.
simulated experience [101]
AiZynthFinder: a fast, robust and flex- | MCTS with Reaaction Templates Genheden et al.
ible open-source software for retrosyn- [102]

thetic planning

Retro*: Learning Retrosynthetic Plan- | Best First Search with Reaction Tem- | Chen et al
ning with Neural Guided A* Search plates [LO3]]
Retrosynthetic reaction prediction using | Template Free RNN Liu et al. [104]

neural sequence-to-sequence model

A transformer model for retrosynthesis

Template Free Transformer

Karpov et al
[106]

Predicting retrosynthetic reactions us-
ing self-corrected transformer neural net-
works

Template Free Transformer

Zheng et al.
[[LO7]

Valid, Plausible, and Diverse Retrosyn-
thesis Using Tied Two-Way Transformers
with Latent Variables

Template Free Transformer

Kim et al
[108]]

Molecular graph enhanced transformer
for retrosynthesis prediction

Template Free GNN and Transformer

Mao et al
[109]

GTA: Graph Truncated Attention for Ret-
rosynthesis

Template Free GNN with Attention

Seo et al. [[110]

Automatic retrosynthetic route planning
using template-free models

Template Free Transformer with MCTS

Lin et al. [L11]

Predicting retrosynthetic pathways using
transformer-based models and a hyper-
graph exploration strategy

Template Free Transformer with Beam
Search

Schwaller et al.
[112]

A graph to graphs framework for ret-
rosynthesis prediction

Template Free Graph Convolutional Net-
work

Shi et al. [[114]

Learning graph models for template-free
retrosynthesis

Template Free Message Passing Network

Somnath et al.
[116]

Retroxpert: Decompose retrosynthesis
prediction like a chemist

Semi-Template Based Graph Attention
Network

Yan et al. [[118]]
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Table A.3: ML based studies that attempted to decipher spectra to molecule inverse problem

Title Methods Authors
Chiral Molecular Structure Determina- | SVM Wang et al.
tion for a Desired Compound Just from [137]

Its Molecular Formula and Vibrational

Optical Activity Spectra

Spectral deep learning for prediction | MLP Fine et al

and prospective validation of functional
groups

[138]

NMR-TS: de novo molecule identifica- | Tree Search, DFT Calculations Zhang et al
tion from NMR spectra [139]

Deep imitation learning for molecular in- | MLP, GCN Jonas [85]
verse problems

Spectra To Structure : Deep Reinforce- | MCTS, GCN Sridharan et al.

ment Learning for Molecular Inverse
Problem

[140]
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Appendix B

Supplementary Information To Chapter 3

Table 1 : Crossvalidation Accuracy

The total dataset of 2134 molecules was randomly split into 5 equal groups. In each of the five
experiments, one of the groups was chosen as the hold-out test dataset and the model was trained on
the remaining four groups. For each molecule, the agent made a number of guesses depending on how
many episodes it ran. There were 20 processes initiated, with each of them running an episode. The

accuracy of the 5 experiments ran are given in the table below:

Table B.1: Crossvalidation accuracy for 5 different folds

setl set2 set3 set4 setS
Topl 56.7% 562% 579% 58.3% 56.8%
Top3 81.0% 792% 78.4% 78.0% 79.8%
Top5 87.1% 86.4% 84.7% 859% 84.7%
Top7 89.7% 88.5% 871.6% 89.0% 86.7%

All Guesses | 94.8% 93.9% 92.5% 92.0% 95.8%

Table 2 : Dependence of Accuracy on nmcts

nmcts is the number of times that the search tree is traversed from the root to leaf node to explore
different branches before making a true action in the current state.The dataset was divided in train-test
split of ratio 90-10 and trained. During the test time, the agent was ran with varying value of the variable
nmects for its MCTS Searches. The accuracy of each of these experiment is shown in the table below:
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Table B.2: nmcts vs Accuracy

nemts — 50 100 200 400 1000
Topl 59.8% 57.6% 59.8% 554% 552%
Top3 71.9% 76.8% 78.1% 78.1% 77.1%
Top5 5% 80.1% 83.5% 839% 83.3%
Top7 772% 839% 87.1% 871.5% 87.1%

All Guesses | 77.2% 853% 89.7% 92.9% 94.8%

Table 3 : Holdout testing by training on molecules with number of atoms
< 7 and testing on molecules with number of atoms < 10

In another experiment, molecules with < 7 non-hydrogen atoms were filtered from the dataset. After
running the agent on these filtered set of molecules with training mode on, the agent was tested on 200
randomly sampled molecules with > 7 and < 10 heavy atoms. The accuracy of the agent on the test in

this experiment is shown in the table below:

Table B.3: Accuracy in holdout testing

Accuracy
Topl 48.5%
Top3 72.5%
Top5 78.0%
Top7 80.5%
All Guesses 86.5%

Table 4 : Comparison with forward model operated on enumerated QM9

dataset

The first column in the above table contains the SMILES of the target molecule for a few randomly
chosen examples. The second column shows the number of molecules in the QM9 database with the
same molecular formula as the target structure. An endeavour that tries to search for the correct structure
of spectra by ranking an enumerated database would have to rank all these candidate molecules using the
forward model. The third column shows the number of times the framework discussed in the manuscript
calls for the forward model while resolving the unknown spectra. We note that less than about 7% of
all the molecules in QM9 have the forward model called on them on average, yet the correct molecular
structure was found by the framework.

It is observed that even after enumerating the chemical space, only a part of the problem is solved.
For instance, the spectral distance between the experimentally observed spectra and the one predicted

by the forward model is sometimes not the ideal way of ranking potential candidates, as discussed

48



Table B.4: Comparing forward calls on a bruteforce method

Target Total Mols in Number of
Smiles QM9 with the Forward calls
same molecular made by the
formula as target framework
COC(=0)C(C)=0 915 21
CCOC(=0)CC(C)=0 7082 73
COC(CCC#N)OC 14329 155
C1=CCOCOC1 498 218
Cclcee(O)e(O)cl 16325 172
CCCCC=CC(C)=0 13572 169
CC=CCCCO 570 64
0=C(0)C1CC(O)CN1 3916 510
CN(C)clncennl 1128 341

in the manuscript. Often, it is because of the inaccuracy of the forward model that the correct target
molecules are ranked lower. This problem would only get enhanced when the entire QM9 database is
ranked against each other. For example, more than 7,000 molecules have the same molecular formula
as the target molecule CCOC(=0)CC(C)=0 in the qm9 database; ranking all of them using the forward
model is potentially expensive and time-consuming. On the other hand, the framework mentioned in
this manuscript makes only 73 forward prediction calls in the process of correctly identifying the target
structure. Another consequence of the above is that the rank of the correct structure when ranking
against the 7000 molecules in the qm9 database is 13th where as the correct structure is ranked 1st
among the candidate structures as returned by our framework.

Similarly, in another example, the molecule CC(=O)N1CC=CC1=0 has more than 14,000 molecules
with the same molecular formula in qm9. Ranking all of them takes 10m 12s, with the target molecule
being at the rank of 43 after ranking using the scoring reward. Whereas the framework in the manuscript
takes 105 seconds to complete all of its runs, the target molecule is at the rank of 7 among the output
candidate structures.

This is again indicative of the model’s ability to interpret spectral data and navigate the chemical

space efficiently and return only the most promising candidate structures.

49



Related Publications

. Bhuvanesh Sridharan, Sarvesh Mehta, Yashaswi Pathak, and U. Deva Priyakumar. “Deep Re-
inforcement Learning for Molecular Inverse Problem of Nuclear Magnetic Resonance Spectra to
Molecular Structure.” The Journal of Physical Chemistry Letters 13, no. 22 (2022): 4924-4933.

. Bhuvanesh Sridharan*, Manan Goel*, and U. Deva Priyakumar. "Modern machine learning for
tackling inverse problems in chemistry: molecular design to realization.” Chemical Communica-
tions 58, no. 35 (2022): 5316-5331.

. Manan Goel*, Rishal Aggarwal*, Bhuvanesh Sridharan*, Pradeep Kumar Pal, and U. Deva
Priyakumar. “Efficient and enhanced sampling of drug-like chemical space for virtual screening
and molecular design using modern machine learning methods.” Wiley Interdisciplinary Reviews:
Computational Molecular Science (2022): e1637.

. Korlepara, Divya B., C. S. Vasavi, Shruti Jeurkar, Pradeep Kumar Pal, Subhajit Roy, Sarvesh
Mehta, Shubham Sharma, Vishal Kumar, Charuvaka Muvva, Bhuvanesh Sridharan, Akshit-
Garg, Rohit Modee, Agastya P. Bhati, Divya Nayar, and U. Deva Priyakumar. “Plas-5k: Dataset
of protein-ligand affinities from molecular dynamics for machine learning applications.” Scien-
tific Data 9, no. 1 (2022): 548.

. Sriram Devata*, Bhuvanesh Sridharan®, Sarvesh Mehta*, and U. Deva Priyakumar. “Deep-
SPInN - multimodal Deep learning for molecular Structure Prediction from Infrared and NMR
spectra” [SUBMITTED]

. Bhuvanesh Sridharan*, Animesh Sinha*, Jai Bardhan, Rohit modee, and U. Deva Priyakumar.
”Review of Reinforcement Learning in Chemistry” [SUBMITTED]

50



[1]

[3]

[4]

[6]

[9]

[10]

Bibliography

Steven M. Paul, Daniel S. Mytelka, Christopher T. Dunwiddie, Charles C. Persinger, Bernard H.
Munos, Stacy R. Lindborg, and Aaron L. Schacht. How to improve r&d productivity: the pharma-
ceutical industry’s grand challenge. Nature Reviews Drug Discovery, 9(3):203-214, Mar 2010.
ISSN 1474-1784. doi: 10.1038/nrd3078. URL https://doi.org/10.1038/nrd3078.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration
of 166 billion organic small molecules in the chemical universe database gdb-17. Journal of
chemical information and modeling, 52(11):2864-2875, 2012.

John J Irwin and Brian K Shoichet. Zinc- a free database of commercially available compounds

for virtual screening. Journal of chemical information and modeling, 45(1):177-182, 2005.

Teague Sterling and John J Irwin. Zinc 15-ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324-2337, 2015.

Andreas Mayr, Giinter Klambauer, Thomas Unterthiner, and Sepp Hochreiter. Deeptox: toxicity

prediction using deep learning. Frontiers in Environmental Science, 3:80, 2016.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey,
Yvonne Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl:
a large-scale bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100-
D1107, 2012.

Daniel Mark Lowe. Extraction of chemical structures and reactions from the literature. PhD

thesis, University of Cambridge, 2012.

Felix Strieth-Kalthoff, Frederik Sandfort, Marwin HS Segler, and Frank Glorius. Machine learn-
ing the ropes: principles, applications and directions in synthetic chemistry. Chemical Society
Reviews, 49(17):6154-6168, 2020.

Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh. Machine
learning for molecular and materials science. Nature, 559(7715):547-555, 2018.

Charles W Groetsch and CW Groetsch. Inverse problems in the mathematical sciences, vol-

ume 52. Springer, 1993.

51


https://doi.org/10.1038/nrd3078

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

Francisco Duarte Moura Neto and Anténio José da Silva Neto. An introduction to inverse prob-

lems with applications. Springer Science & Business Media, 2012.

James L Buchanan, Robert P Gilbert, Armand Wirgin, and Yongzhi S Xu. Marine acoustics:
direct and inverse problems. SIAM, 2004.

Heinz W Engl, Alfred K Louis, and William Rundell. Inverse Problems in Medical Imaging
and Nondestructive Testing: Proceedings of the Conference in Oberwolfach, Federal Republic of
Germany, February 4-10, 1996. Springer Science & Business Media, 2012.

J Carlos Santamarina and Dante Fratta. Discrete signals and inverse problems: an introduction

for engineers and scientists. John Wiley & Sons, 2005.

Andrew Goldenberg, Beno Benhabib, and Robert Fenton. A complete generalized solution to the
inverse kinematics of robots. IEEE Journal on Robotics and Automation, 1(1):14-20, 1985.

Jacek Karwowski. Inverse problems in quantum chemistry. International Journal of Quantum
Chemistry, 109(11):2456-2463, 2009.

Xueliang Li, Zimao Li, and Lusheng Wang. The inverse problems for some topological indices

in combinatorial chemistry. Journal of Computational Biology, 10(1):47-55, 2003.

Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory
(Istm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550-1560, 1990.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation

of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Manan Goel, Shampa Raghunathan, Siddhartha Laghuvarapu, and U Deva Priyakumar. Molegu-
lar: Molecule generation using reinforcement learning with alternating rewards. 2021.

Viraj Bagal, Rishal Aggarwal, PK Vinod, and U Deva Priyakumar. Molgpt: Molecular generation

using a transformer-decoder model. Journal of Chemical Information and Modeling, 2021.

Xiufeng Yang, Jinzhe Zhang, Kazuki Yoshizoe, Kei Terayama, and Koji Tsuda. Chemts: an
efficient python library for de novo molecular generation. Science and technology of advanced
materials, 18(1):972-976, 2017.

52



[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS central science, 4(1):
120-131, 2018.

Daniel Neil, Marwin Segler, Laura Guasch, Mohamed Ahmed, Dean Plumbley, Matthew Sell-
wood, and Nathan Brown. Exploring deep recurrent models with reinforcement learning for
molecule design. 2018.

Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce, and Alexander B Wiltschko. A gentle
introduction to graph neural networks. Distill, 6(9):e33, 2021.

Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas
Seidel, and Thierry Langer. A compact review of molecular property prediction with graph neural

networks. Drug Discovery Today: Technologies, 2020.

Yashaswi Pathak, Sarvesh Mehta, and U Deva Priyakumar. Learning atomic interactions through
solvation free energy prediction using graph neural networks. Journal of Chemical Information
and Modeling, 61(2):689-698, 2021.

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph
neural networks for automated de novo drug design. Drug Discovery Today, 2021.

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. arXiv preprint arXiv:1806.02473, 2018.

Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. arXiv preprint arXiv:2003.05991,
2020.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and
Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http://
arxiv.org/abs/1312.6114.

Rafael Gomez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernandez-Lobato,
Benjamin Sanchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Aldn Aspuru-Guzik. Automatic chemical design using a data-driven contin-

uous representation of molecules. ACS central science, 4(2):268-276, 2018.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In International conference on artificial neural networks, pages 412—
422. Springer, 2018.

53


http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

Jaechang Lim, Seongok Ryu, Jin Woo Kim, and Woo Youn Kim. Molecular generative model
based on conditional variational autoencoder for de novo molecular design. Journal of chemin-
formatics, 10(1):1-9, 2018.

Matt J Kusner, Brooks Paige, and José Miguel Hernandez-Lobato. Grammar variational autoen-
coder. In International Conference on Machine Learning, pages 1945-1954. PMLR, 2017.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L Gaunt. Constrained graph

variational autoencoders for molecule design. arXiv preprint arXiv:1805.09076, 2018.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pages 2323-2332.
PMLR, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Commun. ACM, 63(11):
139-144, oct 2020. ISSN 0001-0782. doi: 10.1145/3422622. URL https://doi.org/10.
1145/3422622.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial net-

works. In International conference on machine learning, pages 214-223. PMLR, 2017.

Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pedro Luis Cunha
Farias, and Aldn Aspuru-Guzik. Objective-reinforced generative adversarial networks (organ)

for sequence generation models. arXiv preprint arXiv:1705.10843, 2017.

Lukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Tomasz Danel, and
Michat Warchot. Mol-cyclegan: a generative model for molecular optimization. Journal of
Cheminformatics, 12(1):1-18, 2020.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume 135.
MIT press Cambridge, 1998.

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of

molecules via deep reinforcement learning. Scientific reports, 9(1):1-10, 2019.

Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de

novo drug design. Science advances, 4(7):eaap7885, 2018.

Zhenpeng Zhou, Xiaocheng Li, and Richard N Zare. Optimizing chemical reactions with deep
reinforcement learning. ACS central science, 3(12):1337-1344, 2017.

Youngwoo Cho, Sookyung Kim, Peggy Pk Li, Mike P Surh, T Yong-Jin Han, and Jaegul Choo.
Physics-guided reinforcement learning for 3d molecular structures. In Workshop at the 33rd

Conference on Neural Information Processing Systems (NeurIPS), 2019.

54


https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Kabir Ahuja, William H Green, and Yi-Pei Li. Learning to optimize molecular geometries using

reinforcement learning. Journal of Chemical Theory and Computation, 17(2):818-825, 2021.

P. G. Polishchuk, T. I. Madzhidov, and A. Varnek. Estimation of the size of drug-like chemical
space based on gdb-17 data. Journal of Computer-Aided Molecular Design, 27(8):675-679, Aug
2013. ISSN 1573-4951. doi: 10.1007/s10822-013-9672-4. URL https://doi.org/10.
1007/s10822-013-9672-4.

Ruiwu Liu, Xiaocen Li, and Kit S Lam. Combinatorial chemistry in drug discovery. Current
Opinion in Chemical Biology, 38:117-126, 2017. ISSN 1367-5931. doi: https://doi.org/10.1016/
j.cbpa.2017.03.017. URL https://www.sciencedirect.com/science/article/
pi1i1/S1367593117300534. Next Generation Therapeutics.

Maximilian Benz, Mijanur R Molla, Alexander Boser, Alisa Rosenfeld, and Pavel A Levkin.
Marrying chemistry with biology by combining on-chip solution-based combinatorial synthesis

and cellular screening. Nature communications, 10(1):1-10, 2019.

Oleksandr O Grygorenko, Dmitriy M Volochnyuk, Sergey V Ryabukhin, and Duncan B Judd. The
symbiotic relationship between drug discovery and organic chemistry. Chemistry—A European
Journal, 26(6):1196-1237, 2020.

Priska Frei, Rachel Hevey, and Beat Ernst. Dynamic combinatorial chemistry: a new methodol-

ogy comes of age. Chemistry—A European Journal, 25(1):60-73, 2019.

Sabrina Jaeger, Simone Fulle, and Samo Turk. Mol2vec: unsupervised machine learning ap-
proach with chemical intuition. Journal of chemical information and modeling, 58(1):27-35,
2018.

Sarvesh Mehta, Siddhartha Laghuvarapu, Yashaswi Pathak, Aaftaab Sethi, Mallika Alvala, and
U Deva Priyakumar. Memes: Machine learning framework for enhanced molecular screening.
Chemical science, 12(35):11710-11721, 2021.

Rishal Aggarwal, Akash Gupta, Vineeth Chelur, CV Jawahar, and U Deva Priyakumar. Deep-
pocket: Ligand binding site detection and segmentation using 3d convolutional neural networks.
2021.

Oliver Kramer. Genetic algorithms. In Genetic algorithm essentials, pages 11-19. Springer,
2017.

Lawrence Davis. Handbook of genetic algorithms. 1991.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as

a scalable alternative to reinforcement learning, 2017.

55


https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1007/s10822-013-9672-4
https://www.sciencedirect.com/science/article/pii/S1367593117300534
https://www.sciencedirect.com/science/article/pii/S1367593117300534

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Naruki Yoshikawa, Kei Terayama, Masato Sumita, Teruki Homma, Kenta Oono, and Koji Tsuda.
Population-based de novo molecule generation, using grammatical evolution. Chemistry Letters,
47(11):1431-1434, 2018.

Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for
the exploration of chemical space. Chemical science, 10(12):3567-3572, 2019.

Wei Ren Tan, Chee Seng Chan, Herndn E Aguirre, and Kiyoshi Tanaka. Artgan: Artwork syn-
thesis with conditional categorical gans. In 2017 IEEE International Conference on Image Pro-
cessing (ICIP), pages 3760-3764. IEEE, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language un-

derstanding by generative pre-training. 2018.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. Advances in neural information processing systems, 28:
3483-3491, 2015.

Artur Kadurin, Sergey Nikolenko, Kuzma Khrabrov, Alex Aliper, and Alex Zhavoronkov. drugan:
an advanced generative adversarial autoencoder model for de novo generation of new molecules

with desired molecular properties in silico. Molecular pharmaceutics, 14(9):3098-3104, 2017.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adver-
sarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Ryan-Rhys Griffiths and José Miguel Herndndez-Lobato. Constrained bayesian optimization for
automatic chemical design using variational autoencoders. Chemical science, 11(2):577-586,
2020.

Robin Winter, Floriane Montanari, Andreas Steffen, Hans Briem, Frank Noé, and Djork-Arné
Clevert. Efficient multi-objective molecular optimization in a continuous latent space. Chemical
science, 10(34):8016-8024, 2019.

Thomas Blaschke, Marcus Olivecrona, Ola Engkvist, Jiirgen Bajorath, and Hongming Chen.
Application of generative autoencoder in de novo molecular design. Molecular informatics, 37
(1-2):1700123, 2018.

56



[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

Sowmya Ramaswamy Krishnan, Navneet Bung, Gopalakrishnan Bulusu, and Arijit Roy. Accel-
erating de novo drug design against novel proteins using deep learning. Journal of Chemical
Information and Modeling, 61(2):621-630, 2021.

Navneet Bung, Sowmya R Krishnan, Gopalakrishnan Bulusu, and Arijit Roy. De novo design of
new chemical entities for sars-cov-2 using artificial intelligence. Future medicinal chemistry, 13
(06):575-585, 2021.

Tirtharaj Dash, Ashwin Srinivasan, Lovekesh Vig, and Arijit Roy. Using domain-knowledge to

assist lead discovery in early-stage drug design. bioRxiv, 2021.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversar-
ial nets with policy gradient. In Proceedings of the AAAI conference on artificial intelligence,
volume 31, 2017.

Benjamin Sanchez-Lengeling, Carlos Outeiral, Gabriel L Guimaraes, and Alan Aspuru-Guzik.
Optimizing distributions over molecular space. an objective-reinforced generative adversarial net-

work for inverse-design chemistry (organic). 2017.

Evgeny Putin, Arip Asadulaev, Yan Ivanenkov, Vladimir Aladinskiy, Benjamin Sanchez-
Lengeling, Alan Aspuru-Guzik, and Alex Zhavoronkov. Reinforced adversarial neural computer
for de novo molecular design. Journal of chemical information and modeling, 58(6):1194—-1204,
2018.

Evgeny Putin, Arip Asadulaev, Quentin Vanhaelen, Yan Ivanenkov, Anastasia V Aladinskaya,
Alex Aliper, and Alex Zhavoronkov. Adversarial threshold neural computer for molecular de
novo design. Molecular pharmaceutics, 15(10):4386-4397, 2018.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973, 2018.

Oleksii Prykhodko, Simon Viet Johansson, Panagiotis-Christos Kotsias, Josep Ards-Pous, Es-
ben Jannik Bjerrum, Ola Engkvist, and Hongming Chen. A de novo molecular generation method
using latent vector based generative adversarial network. Journal of Cheminformatics, 11(1):1-
13, 2019.

Yash Khemchandani, Stephen O’Hagan, Soumitra Samanta, Neil Swainston, Timothy J Roberts,
Danushka Bollegala, and Douglas B Kell. Deepgraphmolgen, a multi-objective, computational
strategy for generating molecules with desirable properties: a graph convolution and reinforce-

ment learning approach. Journal of cheminformatics, 12(1):1-17, 2020.

Laurianne David, Amol Thakkar, Rocio Mercado, and Ola Engkvist. Molecular representations
in ai-driven drug discovery: a review and practical guide. Journal of Cheminformatics, 12(1):
1-22, 2020.

57



[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Eric Jonas. Deep imitation learning for molecular inverse problems. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
b0bef4c9a6e50d43880191492d4fc827-Paper.pdf.

Elias James Corey. The logic of chemical synthesis. 1991.

Marc A. Shampo, Robert A. Kyle, and David P. Steensma. Elias james corey—nobel prize
for retrosynthetic analysis. Mayo Clinic Proceedings, 88(1):e7, 2013. ISSN 0025-6196.
doi: https://doi.org/10.1016/j.mayocp.2012.01.024. URL https://www.sciencedirect.
com/science/article/pii/S0025619612010427.

Bartosz A Grzybowski, Sara Szymkué, Ewa P Gajewska, Karol Molga, Piotr Dittwald, Agnieszka
Wotos, and Tomasz Klucznik. Chematica: a story of computer code that started to think like a
chemist. Chem, 4(3):390-398, 2018.

Tomasz Klucznik, Barbara Mikulak-Klucznik, Michael P McCormack, Heather Lima, Sara
Szymkué, Manishabrata Bhowmick, Karol Molga, Yubai Zhou, Lindsey Rickershauser, Ewa P
Gajewska, et al. Efficient syntheses of diverse, medicinally relevant targets planned by computer
and executed in the laboratory. Chem, 4(3):522-532, 2018.

Yuning Shen, Julia E Borowski, Melissa A Hardy, Richmond Sarpong, Abigail G Doyle, and Tim
Cernak. Automation and computer-assisted planning for chemical synthesis. Nature Reviews
Methods Primers, 1(1):1-23, 2021.

Connor W Coley, William H Green, and Klavs F Jensen. Machine learning in computer-aided
synthesis planning. Accounts of chemical research, 51(5):1281-1289, 2018.

Daniel Mark Lowe. Extraction of chemical structures and reactions from the literature. PhD
thesis, University of Cambridge, 2012.

Pieter P Plehiers, Guy B Marin, Christian V Stevens, and Kevin M Van Geem. Automated
reaction database and reaction network analysis: extraction of reaction templates using chemin-
formatics. Journal of cheminformatics, 10(1):1-18, 2018.

Syed Asad Rahman, Gilliean Torrance, Lorenzo Baldacci, Sergio Martinez Cuesta, Franz Fen-
ninger, Nimish Gopal, Saket Choudhary, John W May, Gemma L Holliday, Christoph Steinbeck,
et al. Reaction decoder tool (rdt): extracting features from chemical reactions. Bioinformatics,
32(13):2065-2066, 2016.

Connor W Coley, William H Green, and Klavs F Jensen. Rdchiral: An rdkit wrapper for han-

dling stereochemistry in retrosynthetic template extraction and application. Journal of chemical
information and modeling, 59(6):2529-2537, 2019.

58


https://proceedings.neurips.cc/paper/2019/file/b0bef4c9a6e50d43880191492d4fc827-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b0bef4c9a6e50d43880191492d4fc827-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0025619612010427
https://www.sciencedirect.com/science/article/pii/S0025619612010427

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

James Law, Zsolt Zsoldos, Aniko Simon, Darryl Reid, Yang Liu, Sing Yoong Khew, A Peter
Johnson, Sarah Major, Robert A Wade, and Howard Y Ando. Route designer: a retrosynthetic
analysis tool utilizing automated retrosynthetic rule generation. Journal of chemical information
and modeling, 49(3):593-602, 2009.

Siqi Hong, Hankz Hankui Zhuo, Kebing Jin, and Zhanwen Zhou. Retrosynthetic planning with
experience-guided monte carlo tree search. arXiv preprint arXiv:2112.06028, 2021.

Shoichi Ishida, Kei Terayama, Ryosuke Kojima, Kiyosei Takasu, and Yasushi Okuno. Prediction
and interpretable visualization of retrosynthetic reactions using graph convolutional networks.
Journal of chemical information and modeling, 59(12):5026-5033, 2019.

Shuan Chen and Yousung Jung. Deep retrosynthetic reaction prediction using local reactivity and
global attention. JACS Au, 1(10):1612-1620, 2021.

Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep
neural networks and symbolic ai. Nature, 555(7698):604-610, 2018.

John S Schreck, Connor W Coley, and Kyle JM Bishop. Learning retrosynthetic planning through
simulated experience. ACS central science, 5(6):970-981, 2019.

Samuel Genheden, Amol Thakkar, Veronika Chadimov4, Jean-Louis Reymond, Ola Engkvist,
and Esben Bjerrum. Aizynthfinder: a fast, robust and flexible open-source software for retrosyn-
thetic planning. Journal of cheminformatics, 12(1):1-9, 2020.

Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro*: Learning retrosynthetic plan-
ning with neural guided a* search. In Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 1608—1616. PMLR, 2020. URL http://proceedings.

mlr.press/v119/chen20k.htmll

Bowen Liu, Bharath Ramsundar, Prasad Kawthekar, Jade Shi, Joseph Gomes, Quang
Luu Nguyen, Stephen Ho, Jack Sloane, Paul Wender, and Vijay Pande. Retrosynthetic reaction
prediction using neural sequence-to-sequence models. ACS central science, 3(10):1103-1113,
2017.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural net-

works. In Advances in neural information processing systems, pages 3104-3112, 2014.

Pavel Karpov, Guillaume Godin, and Igor V Tetko. A transformer model for retrosynthesis. In
International Conference on Artificial Neural Networks, pages 817-830. Springer, 2019.

Shuangjia Zheng, Jiahua Rao, Zhongyue Zhang, Jun Xu, and Yuedong Yang. Predicting retrosyn-
thetic reactions using self-corrected transformer neural networks. Journal of Chemical Informa-
tion and Modeling, 60(1):47-55, 2019.

59


http://proceedings.mlr.press/v119/chen20k.html
http://proceedings.mlr.press/v119/chen20k.html

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Eunji Kim, Dongseon Lee, Youngchun Kwon, Min Sik Park, and Youn-Suk Choi. Valid, plausi-
ble, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of
Chemical Information and Modeling, 61(1):123-133, 2021.

Kelong Mao, Xi Xiao, Tingyang Xu, Yu Rong, Junzhou Huang, and Peilin Zhao. Molecular
graph enhanced transformer for retrosynthesis prediction. Neurocomputing, 457:193-202, 2021.

Seung-Woo Seo, You Young Song, June Yong Yang, Seohui Bae, Hankook Lee, Jinwoo Shin,
Sung Ju Hwang, and Eunho Yang. Gta: Graph truncated attention for retrosynthesis. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pages 531-539, 2021.

Kangjie Lin, Youjun Xu, Jianfeng Pei, and Luhua Lai. Automatic retrosynthetic route planning
using template-free models. Chemical Science, 11(12):3355-3364, 2020.

Philippe Schwaller, Riccardo Petraglia, Valerio Zullo, Vishnu H Nair, Rico Andreas Haeusel-
mann, Riccardo Pisoni, Costas Bekas, Anna [uliano, and Teodoro Laino. Predicting retrosynthetic
pathways using transformer-based models and a hyper-graph exploration strategy. Chemical sci-
ence, 11(12):3316-3325, 2020.

Connor W Coley, Luke Rogers, William H Green, and Klavs F Jensen. Scscore: synthetic com-
plexity learned from a reaction corpus. Journal of chemical information and modeling, 58(2):
252-261, 2018.

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, and Jian Tang. A graph to graphs framework
for retrosynthesis prediction. In International Conference on Machine Learning, pages 8818—
8827. PMLR, 2020.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web

conference, pages 593-607. Springer, 2018.

Vignesh Ram Somnath, Charlotte Bunne, Connor W Coley, Andreas Krause, and Regina Barzi-
lay. Learning graph models for template-free retrosynthesis. arXiv preprint arXiv:2006.07038,
2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pages
1263-1272. PMLR, 2017.

Chaochao Yan, Qianggang Ding, Peilin Zhao, Shuangjia Zheng, Jinyu Yang, Yang Yu, and Jun-
zhou Huang. Retroxpert: Decompose retrosynthesis prediction like a chemist. arXiv preprint
arXiv:2011.02893, 2020.

60



[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Daniela S Mattes, Nicole Jung, Laura K Weber, Stefan Brise, and Frank Breitling. Miniaturized
and automated synthesis of biomolecules—overview and perspectives. Advanced Materials, 31
(26):1806656, 2019.

Melanie Trobe and Martin D Burke. The molecular industrial revolution: automated synthesis of
small molecules. Angewandte Chemie International Edition, 57(16):4192-4214, 2018.

Hanyu Gao, Thomas J Struble, Connor W Coley, Yuran Wang, William H Green, and Klavs F
Jensen. Using machine learning to predict suitable conditions for organic reactions. ACS central
science, 4(11):1465-1476, 2018.

Alain C Vaucher, Federico Zipoli, Joppe Geluykens, Vishnu H Nair, Philippe Schwaller, and
Teodoro Laino. Automated extraction of chemical synthesis actions from experimental proce-

dures. Nature communications, 11(1):1-11, 2020.

Junqi Li, Steven G Ballmer, Eric P Gillis, Seiko Fujii, Michael J Schmidt, Andrea ME Palazzolo,
Jonathan W Lehmann, Greg F Morehouse, and Martin D Burke. Synthesis of many different
types of organic small molecules using one automated process. Science, 347(6227):1221-1226,
2015.

Sebastian Steiner, Jakob Wolf, Stefan Glatzel, Anna Andreou, Jarostaw M Granda, Graham
Keenan, Trevor Hinkley, Gerardo Aragon-Camarasa, Philip J Kitson, Davide Angelone, et al.

Organic synthesis in a modular robotic system driven by a chemical programming language. Sci-
ence, 363(6423):10, 2019.

Piotr S Gromski, Jarostaw M Granda, and Leroy Cronin. Universal chemical synthesis and dis-
covery with ‘the chemputer’. Trends in Chemistry, 2(1):4—12, 2020.

Nathan Collins, David Stout, Jin-Ping Lim, Jeremiah P Malerich, Jason D White, Peter B Madrid,
Mario Latendresse, David Krieger, Judy Szeto, Vi-Anh Vu, et al. Fully automated chemical

synthesis: toward the universal synthesizer. Organic Process Research & Development, 24(10):
2064-2077, 2020.

Connor W Coley, Dale A Thomas, Justin AM Lummiss, Jonathan N Jaworski, Christopher P
Breen, Victor Schultz, Travis Hart, Joshua S Fishman, Luke Rogers, Hanyu Gao, et al. A robotic
platform for flow synthesis of organic compounds informed by ai planning. Science, 365(6453):
10, 2019.

Jarostaw M Granda, Liva Donina, Vincenza Dragone, De-Liang Long, and Leroy Cronin. Con-

trolling an organic synthesis robot with machine learning to search for new reactivity. Nature,
559(7714):377-381, 2018.

61



[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Benjamin J Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus I Martinez
Alvarado, Jacob M Janey, Ryan P Adams, and Abigail G Doyle. Bayesian reaction optimization
as a tool for chemical synthesis. Nature, 590(7844):89-96, 2021.

Loic M Roch, Florian Hise, Christoph Kreisbeck, Teresa Tamayo-Mendoza, Lars PE Yunker,
Jason E Hein, and Alan Aspuru-Guzik. Chemos: An orchestration software to democratize au-
tonomous discovery. PLoS One, 15(4):¢0229862, 2020.

Ian M Pendleton, Gary Cattabriga, Zhi Li, Mansoor Ani Najeeb, Sorelle A Friedler, Alexander J
Norquist, Emory M Chan, and Joshua Schrier. Experiment specification, capture and laboratory
automation technology (escalate): a software pipeline for automated chemical experimentation
and data management. MRS Communications, 9(3):846-859, 2019.

Katharine Sanderson. Automation: Chemistry shoots for the moon. Nature, 568(7752):577-580,
2019.

Shungo Koichi, Masaki Arisaka, Hiroyuki Koshino, Atsushi Aoki, Satoru Iwata, Takeaki Uno,
and Hiroko Satoh. Chemical structure elucidation from 13c nmr chemical shifts: Efficient data

processing using bipartite matching and maximal clique algorithms. Journal of chemical infor-
mation and modeling, 54(4):1027-1035, 2014.

JFG Vliegenthart, JA van Kuik, and K Hard. A 1h nmr database computer program for the
analysis of the primary structure of complex carbohydrates. Carbohydrate research, 235:53-68,
1992.

Fingerprint region, aug 24 2020. URL https://chem.libretexts.org/@go/page/
40288.

Barbara H. Stuart. Infrared Spectroscopy: Fundamentals and Applications. In Stuart [136], 2004.
ISBN 9780470854273. doi: 10.1002/0470011149.

Zhimeng Wang, Xiaoyu Feng, Junhong Liu, Minchun Lu, and Menglong Li. Functional
groups prediction from infrared spectra based on computer-assist approaches. Microchem-
ical Journal, 159:105395, 2020. ISSN 0026-265X. doi: https://doi.org/10.1016/j.microc.
2020.105395. URL https://www.sciencedirect.com/science/article/pii/
S0026265X20320853L

Jonathan A. Fine, Anand A. Rajasekar, Krupal P. Jethava, and Gaurav Chopra. Spectral
deep learning for prediction and prospective validation of functional groups. Chem. Sci., 11:
4618-4630, 2020. doi: 10.1039/C9SC06240H. URL http://dx.doi.org/10.1039/
C9SC06240H.

62


https://chem.libretexts.org/@go/page/40288
https://chem.libretexts.org/@go/page/40288
https://www.sciencedirect.com/science/article/pii/S0026265X20320853
https://www.sciencedirect.com/science/article/pii/S0026265X20320853
http://dx.doi.org/10.1039/C9SC06240H
http://dx.doi.org/10.1039/C9SC06240H

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

Jinzhe Zhang, Kei Terayama, Masato Sumita, Kazuki Yoshizoe, Kengo Ito, Jun Kikuchi, and
Koji Tsuda. Nmr-ts: de novo molecule identification from nmr spectra. Science and Technology
of Advanced Materials, 21(1):552-561, 2020. doi: 10.1080/14686996.2020.1793382. URL
https://doi.org/10.1080/14686996.2020.1793382. PMID: 32939179.

Bhuvanesh Sridharan, Sarvesh Mehta, Yashaswi Pathak, and U Deva Priyakumar. Spectra to

structure: Deep reinforcement learning for molecular inverse problem. 2021.

Hongchao Ji, Hanzi Deng, Hongmei Lu, and Zhimin Zhang. Predicting a molecular fingerprint
from an electron ionization mass spectrum with deep neural networks. Analytical Chemistry, 92
(13):8649-8653, 2020. doi: 10.1021/acs.analchem.0c01450. URL https://doi.org/10.
1021/acs.analchem.0c01450. PMID: 32584545.

Youzhong Liu, Aida Mrzic, Pieter Meysman, Thomas De Vijlder, Edwin P. Romijn, Dirk Valken-
borg, Wout Bittremieux, and Kris Laukens. Messar: Automated recommendation of metabolite
substructures from tandem mass spectra. PLOS ONE, 15(1):1-17, 01 2020. doi: 10.1371/journal.
pone.0226770. URL https://doi.org/10.1371/journal.pone.0226770.

Eleni Litsa, Vijil Chenthamarakshan, Payel Das, and Lydia Kavraki. Spec2mol: An end-to-end
deep learning framework for translating ms/ms spectra to de-novo molecules. ChemRxiv, 2021.
doi: 10.33774/chemrxiv-2021-6rdh6.

Erico Guizzo. Robots with their heads in the clouds. IEEE Spectrum, 48(3):16-18, 2011.

Benjamin Pitzer, Sarah Osentoski, Philip Roan, C Bersh, and Jan Becker. Making robots cheaper,
more capable, and safer. In The PR2 Workshop: Results, Challenges and Lessons Learned in
Advancing Robots with a Common Platform, IROS. Citeseer, 2011.

Sam Asami, Peter Schmieder, and Bernd Reif. High resolution 1h-detected solid-state nmr
spectroscopy of protein aliphatic resonances: Access to tertiary structure information. J. Am.
Chem. Soc., 132(43):15133-15135, Nov 2010. ISSN 0002-7863. doi: 10.1021/jal06170h. URL
https://doi.org/10.1021/3a106170hl

Christian A.E.M. Spronk, Jens P. Linge, Cornelis W. Hilbers, and Geerten W. Vuister. Improving
the quality of protein structures derived by nmr spectroscopy**. J. Biomol. NMR, 22(3):281-289,
Mar 2002. ISSN 1573-5001. doi: 10.1023/A:1014971029663. URL https://doi.org/10.
1023/A:1014971029663.

A. Y. S. Balazs, N. L. Davies, D. Longmire, M. J. Packer, and E. Chiarparin. Nuclear magnetic
resonance free ligand conformations and atomic resolution dynamics. Magnetic Resonance, 2
(1):489-498, 2021. doi: 10.5194/mr-2-489-2021. URL https://mr.copernicus.org/
articles/2/489/2021/.

63


https://doi.org/10.1080/14686996.2020.1793382
https://doi.org/10.1021/acs.analchem.0c01450
https://doi.org/10.1021/acs.analchem.0c01450
https://doi.org/10.1371/journal.pone.0226770
https://doi.org/10.1021/ja106170h
https://doi.org/10.1023/A:1014971029663
https://doi.org/10.1023/A:1014971029663
https://mr.copernicus.org/articles/2/489/2021/
https://mr.copernicus.org/articles/2/489/2021/

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Michael W Lodewyk, Matthew R Siebert, and Dean J Tantillo. Computational prediction of 1h
and 13c chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic
chemistry. Chem. Rev. (Washington, DC, U. S.), 112(3):1839-1862, 2012.

Eric Jonas and Stefan Kuhn. Rapid prediction of nmr spectral properties with quantified uncer-
tainty. J. Cheminf., 11(1):50, Aug 2019. ISSN 1758-2946. doi: 10.1186/513321-019-0374-3.
URLhttps://doi.org/10.1186/s13321-019-0374-3!

Eric Jonas, Stefan Kuhn, and Nils Schlorer. Prediction of chemical shift in nmr: a review. Magn.
Reson. Chem., 2021.

W. Bremser. Hose — a novel substructure code. Anal. Chim. Acta, 103(4):355-365, 1978.
ISSN 0003-2670. doi: https://doi.org/10.1016/S0003-2670(01)83100-7. URL https://www.
sciencedirect.com/science/article/p11/50003267001831007.

Brian Cherinka, Brett H. Andrews, José Sanchez-Gallego, Joel Brownstein, Maria Argudo-
Fernandez, Michael Blanton, Kevin Bundy, Amy Jones, Karen Masters, David R. Law, Kate
Rowlands, Anne-Marie Weijmans, Kyle Westfall, and Renbin Yan. Marvin: A tool kit for
streamlined access and visualization of the SDSS-IV MaNGA data set. Astron. J., 158(2):74, jul
2019. doi: 10.3847/1538-3881/ab2634. URL https://doi.org/10.3847/1538-3881/
ab2634.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. CoRR, abs/1712.01815,2017. URL http://arxiv.org/
abs/1712.01815.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. CoRR, abs/1704.01212,2017. URL http://arxiv.
org/abs/1704.01212.

Stefan Kuhn and Nils E. Schlérer. Facilitating quality control for spectra assignments of small
organic molecules: nmrshiftdb2 — a free in-house nmr database with integrated lims for aca-
demic service laboratories. Magn. Reson. Chem., 53(8):582-589, 2015. doi: https://doi.org/10.
1002/mrc.4263. URL |https://analyticalsciencejournals.onlinelibrary.
wiley.com/doi/abs/10.1002/mrc.4263.

Bhuvanesh Sridharan, Manan Goel, and U Deva Priyakumar. Modern machine learning for tack-

ling inverse problems in chemistry: Molecular design to realization. Chem. Comm., 2022.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. J. Artif. Intell. Res., 4:237-285, 1996.

64


https://doi.org/10.1186/s13321-019-0374-3
https://www.sciencedirect.com/science/article/pii/S0003267001831007
https://www.sciencedirect.com/science/article/pii/S0003267001831007
https://doi.org/10.3847/1538-3881/ab2634
https://doi.org/10.3847/1538-3881/ab2634
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.4263
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.4263

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M. Jonker. Monte carlo tree
search for asymmetric trees, 2018. URL https://arxiv.org/abs/1805.09218.

Aaditya Ramdas, Nicolas Garcia, and Marco Cuturi. On wasserstein two sample testing and
related families of nonparametric tests, 2015. URL https://arxiv.org/abs/15009.
02237.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy
Hirzel, Alan Aspuru-Guzik, and Ryan P Adams.  Convolutional networks on graphs
for learning molecular fingerprints. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, editors, Adv. Neural Inf. Process. Syst., volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
f9be311e65d81a9ad8150a60844bb9%4c—-Paper.pdf.

Greg Landrum. Rdkit: Open-source cheminformatics software. 2016. URL https://
github.com/rdkit/rdkit/releases/tag/Release_2016_09_4.

Jaechang Lim, Seongok Ryu, Jin Woo Kim, and Woo Youn Kim. Molecular generative model
based on conditional variational autoencoder for de novo molecular design. Journal of chemin-
formatics, 10(1):1-9, 2018.

Matt J Kusner, Brooks Paige, and José Miguel Herndndez-Lobato. Grammar variational autoen-
coder. In International Conference on Machine Learning, pages 1945-1954. PMLR, 2017.

Robin Winter, Floriane Montanari, Frank Noé, and Djork-Arné Clevert. Learning continuous and
data-driven molecular descriptors by translating equivalent chemical representations. Chemical
science, 10(6):1692-1701, 2019.

Yash Khemchandani, Stephen O’Hagan, Soumitra Samanta, Neil Swainston, Timothy J Roberts,
Danushka Bollegala, and Douglas B Kell. Deepgraphmolgen, a multi-objective, computational
strategy for generating molecules with desirable properties: a graph convolution and reinforce-

ment learning approach. Journal of cheminformatics, 12(1):1-17, 2020.

65


https://arxiv.org/abs/1805.09218
https://arxiv.org/abs/1509.02237
https://arxiv.org/abs/1509.02237
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4

	Introduction
	Motivation

	Inverse Problems in Chemistry: Molecular Design to Realization
	Brief Overview of Modern ML Methods used for Inverse Problems
	Recurrent Neural Networks
	Graph Neural Networks
	Variational Autoencoders
	Generative Adversarial Networks
	Reinforcement Learning

	Inverse Problems in Molecule Discovery 
	Molecule Generation
	Retrosynthesis
	Template Based
	Template Free
	Semi-Template Based

	AI Powered Robotic Synthesis
	Characterization of Molecules

	Summary and Outlook

	Deep Reinforcement Learning for Molecular Inverse Problem of Nuclear Magnetic Resonance Spectra to Molecular Structure
	Introduction
	Methods
	Dataset
	Reinforcement Learning (RL)
	State Representation
	Action Representation
	Agent
	Role of the Forward Predictor

	Neural Architecture of the Prior Policy and Value network
	Graph Featurizer:
	Policy Head:
	Value Head: 

	Training and Testing Methodology
	Guided runs for training of the neural networks
	Using the Split Information to prune the trees during MCTS runs


	Results and Discussion
	Accuracy of the Forward model
	Crossvalidation
	Effect of nmcts on the Accuracy
	Relation with the Forward Model
	Holdout Experiment with Training Data
	Time difference between correctly guessed and incorrectly guessed molecules

	Conclusion

	Appendix A: Important sets of work discussed in relation to the inverse problems discussed in Chapter 2
	Appendix B: Supplementary Information To Chapter 3

