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Abstract

Advancements in electronics have revolutionized technology by making devices more portable and

powerful. Integrated circuit technology has allowed for packing more functionality into compact spaces,

leading to the development of portable gadgets that offer convenience and advanced features. Industries

like healthcare, aerospace, and automotive have also benefited from miniaturized electronics, enabling

remote patient monitoring, enhancing aircraft performance, and advancing smart vehicle technology.

Additionally, miniaturization has improved energy efficiency, resulting in wireless and battery-powered

devices for remote and off-grid applications. In this thesis, various circuit design techniques have been

presented and prototype systems implemented for portable sensing applications.

Magnetometers form a key component of sensing systems used in fields such as geophysical and

oceanic exploration and aerospace. Recently, diamond colour defect-based quantum sensing applica-

tions such as nitrogen-vacancy (NV) centre magnetometry have emerged in CMOS technology, which

uses optically detected magnetic resonance (ODMR) for sensing magnetic field strengths (|B̃|) from

different environmental physical quantities. For ODMR based sensing, CMOS quantum sensors seek

an on-chip 2.87 GHz microwave (MW) signal generator. Moreover, in order to sense smaller |B̃|, these

CMOS quantum sensors also require that MW signal should be swept with a sufficiently small step size

near 2.87 GHz. It is also required that the PLLs should have low noise and low jitter for high stability

and fast settling time. These requirements seek low phase noise voltage-controlled oscillator (VCO)

with a small variation in its gain (KV CO) within the desired tuning range. In this thesis, a fractional-N

synthesizer based 2.87 GHz MW-generator (MWG) is presented with an extremely small programmable

sweep step-size for improved sensitivity of |B̃| measurements in CMOS NV magnetometry along with

a technique for designing a low-phase noise VCO with low KV CO and small KV CO variation is also

presented.

Respiratory diseases contribute to a majority of deaths worldwide every year. Diseases such as

asthma, bronchitis and pneumonia also adversely impact a person’s social and economic conditions.
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They can seriously threaten their health if left undiagnosed and untreated. Techniques such as auscul-

tation are used in the diagnosis of most respiratory diseases. However, using such techniques requires

an experienced physician and the diagnosis is subjective. To overcome these challenges, in this the-

sis, a portable handheld system has also been proposed and a proof of concept implemented to detect

and classify respiratory diseases automatically through the use of convolutional neural networks (CNN)

running on mobile platforms.

Recent developments in advanced driver assistance systems (ADAS) used in the automotive indus-

try have raised the demands of mmWave radars in 24 GHz and 77 GHz bands. For higher accuracy

and precision, frequency modulated continuous wave (FMCW) technique has become very popular for

mmWave radars, which requires low phase noise and high bandwidth chirp frequency synthesizers.

Such high-frequency band radars require programmable dividers with large divide ratios and fine fre-

quency resolution to obtain high-frequency chirps with sufficiently large bandwidth. In this thesis, the

implementation of a low phase noise, transformer tank based mmWave voltage controlled oscillator

(VCO) near 20 GHz for multiplier based 77 GHz FMCW chirp synthesizer is presented along with a

low-power multi-modulus programmable frequency divider for a frequency synthesizer operating in the

19.25-20.25 GHz frequency band from a reference frequency of 40 MHz. The applications of such

radars in road safety and driver assistance is further explored by presenting a novel proof-of-concept

that can efficiently classify targets in real-time under multiple classes. Hardware realisation, using a

prototype Frequency Modulated Continuous Wave (FMCW) radar system, of the same has also been

demonstrated.
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Chapter 1

Introduction

Advancements in electronics have revolutionized the way we interact with technology, making de-

vices smaller, more portable, and incredibly powerful. The rapid progress in miniaturization has paved

the way for a new era of convenience and accessibility, transforming various aspects of our lives. One of

the remarkable achievements in electronics has been the shrinking of components and circuitry. Through

advancements in integrated circuit technology, it has become possible to pack more functionality into

smaller spaces. This has led to the development of compact yet powerful devices that fit in our pockets,

such as smartphones, tablets, and wearable gadgets. These miniaturized electronics offer an array of

features, including high-performance processors, ample storage, and advanced sensors, providing users

with unprecedented convenience and functionality.

The reduction in size has not been limited to personal devices alone. Industries such as healthcare,

aerospace, and automotive have also witnessed significant advancements. Portable medical devices, for

instance, now enable healthcare professionals to monitor patients remotely and provide timely inter-

ventions. Similarly, the aerospace industry has benefited from miniaturized electronics in the form of

lightweight and highly efficient navigation systems, enhancing aircraft performance and safety. In the

automotive sector, compact electronics have contributed to the development of smart vehicles, equipped

with advanced driver-assistance systems and enhanced connectivity. The miniaturization of electronics

has also given rise to the Internet of Things (IoT) phenomenon, where everyday objects are intercon-

nected, communicating and sharing information seamlessly. This interconnectedness has transformed

our homes into smart homes, with devices such as smart thermostats, security systems, and voice-

controlled assistants becoming commonplace. The IoT has expanded beyond homes to cities, industries,

and infrastructure, enabling intelligent systems for efficient energy management, optimized transporta-

tion, and enhanced public services.
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Figure 1.1: Need for portable sensors and the challenges faced

Furthermore, the advancements in miniaturization have brought about significant improvements in

energy efficiency. Smaller electronic components consume less power, enabling devices to operate for

extended periods on smaller batteries or even harvest energy from the environment. This has led to

the proliferation of wireless and battery-powered devices, eliminating the need for cumbersome power

cables and opening up possibilities for remote and off-grid applications. Fig. 1.1 summarizes the need

for portable sensors and lists the challenges currently being faced when developing portable sensors.

1.1 Need for portable sensors

The integration of sensors into portable or field deployable systems plays a vital role in enabling a

diverse range of applications.

Portable sensors play a crucial role in meeting the demands of various applications and addressing

specific needs. Here are some key reasons why portable sensors are essential:

1. Mobility and Flexibility: Portable sensors provide the ability to collect data in real-time from dif-

ferent locations, including remote or challenging environments. They enable researchers, scien-

tists, and professionals to gather information on the go, without being restricted to fixed monitor-
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ing stations or laboratories. This flexibility is particularly valuable in fields such as environmental

monitoring, healthcare, agriculture, and industrial settings.

2. Rapid Deployment: Portable sensors offer the advantage of quick and easy deployment. They

can be readily carried and installed in different locations as needed, allowing for efficient data

collection and analysis. This is especially beneficial in time-sensitive situations or emergency

response scenarios, where immediate data acquisition is crucial for decision-making and problem-

solving.

3. Cost-Effectiveness: Portable sensors often provide a cost-effective solution compared to larger,

fixed monitoring systems. They eliminate the need for extensive infrastructure and can be easily

repositioned or reutilized for various applications. This versatility and affordability make portable

sensors accessible to a wider range of users and enable data collection on a larger scale.

4. Personalized Monitoring: Portable sensors enable individuals to monitor their own health, well-

ness, and environmental conditions. Wearable sensors, for example, can track vital signs, physical

activity, sleep patterns, and environmental exposures. This personalized monitoring empowers in-

dividuals to make informed decisions about their well-being and take preventive measures when

necessary.

5. Remote and Inaccessible Locations: Portable sensors are invaluable for gathering data in remote

or hard-to-reach areas where installing permanent monitoring systems may be impractical or im-

possible. They enable data collection in wilderness areas, underground environments, oceans, and

outer space, expanding our understanding of these regions and supporting scientific research and

exploration.

6. Field Research and Monitoring: Researchers often require portable sensors for field studies and

monitoring projects. These sensors allow for on-site data collection, measurements, and analysis

in real-world conditions. Whether studying wildlife, ecological systems, or geological phenom-

ena, portable sensors provide the necessary tools to gather accurate and relevant data directly from

the field.

7. On-demand Measurements: Portable sensors enable users to obtain measurements whenever and

wherever needed. This is particularly beneficial in quality control, industrial processes, and safety
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inspections. Portable sensors can quickly assess parameters such as temperature, humidity, gas

concentrations, or chemical properties, ensuring compliance with standards and identifying po-

tential hazards in a timely manner.

1.2 Challenges

Making sensing systems portable presents several challenges that need to be addressed. Here are

some key challenges:

1. Size and Weight: Shrinking the size and weight of sensing systems while maintaining their func-

tionality is a significant challenge. Miniaturizing components, integrating multiple sensors, and

optimizing power consumption are crucial factors to consider. Balancing compactness with per-

formance can be a complex engineering task.

2. Power Management: Portable sensing systems typically rely on batteries or energy harvesting

methods. Maximizing battery life and optimizing power consumption are essential to ensure

longer operation and minimize the need for frequent recharging or replacement. Efficient power

management techniques and low-power design strategies are critical in addressing this challenge.

3. Data Processing and Storage: Portable sensing systems generate vast amounts of data, requiring

efficient processing and storage solutions. The limited computational resources and storage ca-

pacity of portable devices pose challenges in handling and analyzing large datasets. Developing

algorithms for real-time data processing and implementing data compression techniques become

necessary.

4. Environmental Adaptability: Portable sensing systems may encounter a wide range of environ-

mental conditions, including temperature variations, humidity, dust, and vibrations. Ensuring

robustness and reliability in different environments is crucial. Designs must account for protec-

tion against external factors, such as rugged casings, waterproofing, and resistance to temperature

extremes.

5. Sensor Integration and Calibration: Integrating multiple sensors into a portable system and en-

suring their accurate calibration can be challenging. Different sensors may have varying charac-
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teristics, response times, and calibration requirements. Ensuring seamless integration, calibration

accuracy, and sensor reliability are essential for precise and consistent measurements.

6. Connectivity and Communication: Portable sensing systems often require communication capa-

bilities to transmit data to external devices or networks for further analysis or remote monitoring.

Reliable wireless communication protocols and connectivity options need to be implemented,

considering factors such as range, power efficiency, and data security.

7. Cost and Accessibility: Developing portable sensing systems that are affordable and accessible is

important for widespread adoption. Cost-effective manufacturing processes, component selection,

and scalability considerations are crucial to make these systems affordable without compromising

quality and performance. Additionally, ensuring user-friendly interfaces and intuitive operation

enhances accessibility and usability.

8. Standardization and Interoperability: Standardizing communication protocols, data formats, and

interfaces among portable sensing systems is essential to enable interoperability and seamless in-

tegration with other devices or networks. Ensuring compatibility and ease of integration between

different sensing systems can enhance collaboration, data sharing, and system interoperability.

Chapter 2 introduces the concepts involved in NV magnetometry and Fractional-N PLL design while

Chapter 3 details the design, implementation and performance of the 2.75-2.94 GHz voltage controlled

oscillator with low gain variation followed by Chapter 4 which details the design, implementation and

performance of the 2.87 GHz Frequency Synthesizer with Programmable Sweep. Chapter 5 introduces

the need for portable respiratory sound classification systems and details the implementation and results

of the proposed system. Chapter 6 introduces the need for mmWave radars and the concepts involved

in their design and usage. Chapter 7 details the design, implementation and simulation results of the

voltage-controlled oscillator and multi-modulus divider for FMCW chirp synthesizer while Chapter 8

details the implementation of the radar-based object classification system. Chapter 9 finally concludes

the thesis and mentions the scope of improvement for this work.
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Chapter 2

Oscillators, PLLs and NV Magnetometry

Oscillators are vital components in modern electronics, serving a critical role in various applications.

Their necessity stems from their ability to generate continuous and stable waveforms with precise fre-

quencies. Frequency synthesis is a critical application of oscillators. By combining oscillators with

frequency dividers, phase-locked loops, and other circuitry, complex frequency synthesis circuits can

generate a wide range of frequencies with high accuracy and stability. Frequency synthesizers find

extensive use in telecommunications, radar systems, test equipment, and many other applications that

require precise frequency generation.

Most applications make use of oscillators with tunable output frequencies. As shown in Eq. 2.1,

the output frequency of an ideal voltage-controlled oscillator (VCO) is a function of the input control

voltage.

ωout = ω0 +KV COVcont (2.1)

ω0 is the output frequency when the control input is 0 and KV CO is the gain of the VCO. [1]

2.1 VCO Performance

The performance of a VCO is measured in terms of the following parameters:

1. Center Frequency

2. Tuning Range

3. Tuning Linearity

4. Output Amplitude
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Figure 2.1: Charge-pump PLL

5. Power Dissipation

6. Supply and Common-Mode Rejection

7. Output signal Purity

2.2 PLLs

Phase-Locked Loops (PLLs) are widely used in diverse electronic applications due to their versatile

functionality and ability to synchronize signals. PLLs find extensive use in communication systems,

frequency synthesis, clock recovery, data synchronization, and many other areas. Fig. 2.1 depicts the

block diagram of a basic charge pump PLL.

In communication systems, PLLs are employed for carrier recovery and synchronization. They help

extract the carrier signal from the received modulated signal and maintain synchronization with the

transmitter’s carrier frequency and phase. PLLs play a vital role in achieving reliable and accurate

data transmission in wireless communication, satellite communication, and digital broadcasting. PLLs

also play a significant role in clock recovery and synchronization. They are used to extract timing

information from incoming signals, recovering the clock signal and maintaining synchronization with
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the data stream. Clock recovery PLLs are utilized in data communication systems, high-speed digital

interfaces, and storage devices to ensure accurate data transfer and synchronization.

Furthermore, PLLs are used for data synchronization in various applications. They help align the

timing of incoming data streams, allowing for proper data sampling and processing. This is crucial

in applications such as digital audio/video processing, digital data acquisition systems, and synchro-

nization of data in network protocols. Frequency synthesis is another crucial application of PLLs. By

employing PLLs with voltage-controlled oscillators (VCOs), desired frequencies can be generated with

exceptional accuracy and stability. Frequency synthesizers based on PLLs are widely used in radio

transceivers, cellular networks, and other communication systems where precise frequency generation

is essential.

2.3 PLL Stability

The stability of a Phase-Locked Loop (PLL) is influenced by several factors that can impact its

performance. These factors include:

1. Loop Filter Design: The design of the loop filter, which consists of passive components such as

resistors, capacitors, and sometimes active components, plays a critical role in determining the

stability of the PLL. The filter characteristics, such as its bandwidth and damping factor, need to

be carefully chosen to ensure stability.

2. Loop Bandwidth: The loop bandwidth determines how fast the PLL can track and lock onto

the input signal. A wide loop bandwidth can result in faster response but may also introduce

instability if not properly controlled. The loop bandwidth should be selected based on the system

requirements and the characteristics of the input signal.

3. Phase Detector Characteristics: The phase detector is responsible for comparing the phase of the

input signal with the output signal of the Voltage-Controlled Oscillator (VCO). The type of phase

detector used and its characteristics, such as linearity and dead zone, can affect the stability of the

PLL. A well-designed phase detector is essential for stable operation.

4. Noise and Disturbances: Noise and disturbances present in the system can affect the stability of

the PLL. Sources of noise can include power supply variations, thermal effects, electromagnetic
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interference, and other external factors. Proper filtering and shielding techniques are necessary to

minimize the impact of noise and disturbances on the PLL’s stability.

5. Component Variations: Variations in component values, such as resistors, capacitors, and VCO

characteristics, can affect the stability of the PLL. Manufacturing tolerances and temperature vari-

ations can introduce deviations in the expected behaviour of the components, leading to stability

issues. Careful component selection and calibration are important to ensure stability.

6. Operating Conditions: The operating conditions of the PLL, such as temperature, voltage, and

load variations, can influence its stability. PLLs should be designed to operate reliably within the

specified operating conditions to maintain stability.

7. Feedback and Loop Gain: The loop gain, which is the gain around the feedback loop, should

be properly controlled to avoid instability. Excessive loop gain can lead to oscillations, while

insufficient loop gain can result in poor tracking and locking performance. Proper adjustment of

the loop gain is crucial for stability.

2.4 NV Defect

The nitrogen vacancy (NV) defect in diamonds is a fascinating phenomenon that has attracted signif-

icant interest in the field of quantum science and technology. It refers to a specific atomic defect in the

crystal lattice of diamond where a nitrogen atom replaces a carbon atom, and an adjacent carbon atom

is missing.

The NV defect possesses unique properties that make it highly desirable for various applications.

One of its key features is its ability to exhibit quantum properties at room temperature, which is uncom-

mon for most quantum systems. Moreover, the NV defect in diamonds is extremely sensitive to external

influences, such as magnetic fields and temperature changes. This sensitivity has made it a valuable tool

for high-resolution sensing and imaging applications. It can be used as a nanoscale sensor to detect and

measure magnetic fields with exceptional precision, enabling advancements in fields like biomagnetism,

material science, and magnetic resonance imaging (MRI).

The energy levels of the NV defect play a crucial role in its quantum behavior and applications.

The defect consists of a ground state, excited states, and a long-lived spin-triplet metastable state. The

ground state is a spin triplet state with three sublevels, while the excited state is a spin singlet state. The
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spin-triplet metastable state has a longer lifetime and is particularly important for quantum information

storage and manipulation. The energy levels can be controlled and manipulated through external factors

such as optical excitation or microwave radiation. This allows researchers to initialize, manipulate,

and read out the quantum state of the defect, enabling coherent quantum operations and information

processing.

2.5 ODMR

Optically Detected Magnetic Resonance (ODMR) is a powerful technique that combines the prin-

ciples of magnetic resonance spectroscopy with optical detection methods. It enables the study and

characterization of spin-dependent processes in a variety of materials, ranging from solid-state systems

to molecular complexes. ODMR relies on the interaction between electron spins and external magnetic

fields. When subjected to a static magnetic field, the electron spins undergo a phenomenon known as

resonance, where they absorb or emit electromagnetic radiation at specific frequencies. This resonance

behavior provides valuable insights into the structure, dynamics, and environment of the electron spins

within the material.

In ODMR, the resonance is typically detected using optical techniques. A laser beam is used to

optically excite or probe the sample, and the resulting fluorescence or absorption signals are analyzed to

extract information about the spin states and their dynamics. By varying the applied magnetic field and

monitoring the optical response, ODMR can precisely determine the g-factors, spin relaxation times,

and other spin-related parameters of the system under investigation.

ODMR has found widespread applications in various scientific fields. In material science, it is used

to investigate defects, impurities, and dopants in crystals and semiconductors, providing valuable infor-

mation about their electronic properties and spin dynamics. In the field of spintronics, ODMR helps

in understanding and controlling spin-dependent transport phenomena in magnetic materials and spin-

based devices. Furthermore, ODMR is also employed in studies related to molecular magnets, quantum

information processing, and biological systems.

The advantages of ODMR lie in its non-destructive and highly sensitive nature. It allows for the char-

acterization of spin-dependent processes at low temperatures and even at room temperature, making it

suitable for a wide range of experimental setups. Additionally, ODMR can be combined with other spec-
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Figure 2.2: (a) Depiction of NV-ODMR to measure magnetic field strength (|B⃗z|) and (b) Fractional-N
synthesizer as microwave signal generator

troscopic techniques, such as electron paramagnetic resonance (EPR) and optical spectroscopy, to pro-

vide complementary information and a more comprehensive understanding of the underlying physics.

2.6 NV Magnetometry

Nitrogen-Vacancy (NV) centre in diamond behaves as an isolated electronic spin system that can be

used in quantum sensors [2]. When a vacancy replaces the adjacent carbon pair in a diamond lattice,

the nitrogen atom and the vacancy form an NV centre. The NV defect has its ground level in a spin

triplet state whose sub-levels are split in energy into a singlet (ms = 0) and a doublet of degenerate

levels (ms = ±1) separated by 2.87 GHz [3]. When an external magnetic field is applied on the NV

ground state spin triplet, a Zeeman shift of energy γeBz is induced, where Bz represents the magnetic

field component along the NV symmetry axis. As shown in Fig. 2.2(a), optically detected magnetic

resonance (ODMR) technique can be used in NV-based sensing to measure static or slow varying |B⃗z|

[2], [3]. In ODMR, NV electron spin transitions are excited by a microwave signal (fRF ) near 2.87 GHz
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and diamond is irradiated with a green light, which produces a red light proportional to |B⃗z| and having

photon frequency ∆fp given in Eq. (2.2) [2], which is detected using a photo-diode.

∆fp = f+ − f− = 2γe|B⃗z| (2.2)

In Eq.(2.2), γe is gyromagnetic ratio (28 GHz/T) and f+ and f− are the transition frequencies from the

singlet level to the doublet levels. Usually, NV-ODMR is detected with lock-in technique for which fRF

is frequency modulated (fm) while using an external source [2], [3]-[13]. The sensitivity of measured

|B⃗z| can be improved with reduced fm, which results into lower ∆fp as given in Eq. (2.2). Moreover,

overall power can also be reduced by having on-chip frequency sweep than using the external frequency

modulator.
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Chapter 3

A 2.75-2.94 GHz Voltage Controlled Oscillator with Low Gain Variation

for Quantum Sensing Applications

3.1 Introduction

Phase Locked Loops (PLL) are commonly used for high frequency carrier synthesis in wired and

wireless transceivers. Recently, quantum sensing applications have also emerged that demand low noise

PLLs with high stability and small settling time for microwave frequency generation. For example,

nitrogen vacancy based magnetometry applications seek low noise, narrow bandwidth microwave gen-

erators near 2.87 GHz with very fine frequency resolution [2]. These low noise PLLs seek voltage

controlled oscillators (VCO) with low gain (KV CO) and small variation in its gain [3]. Therefore, there

is a need to develop VCOs with low variation in KV CO for quantum sensing applications. In this chap-

ter, I present - 1) a technique with detailed analysis to reduce the variation in KV CO of LC oscillators, 2)

design and implementation of an LC VCO with low KV CO variation in 180 nm CMOS technology and

3) post-layout simulation results to validate the proposed technique for LC VCO design of low KV CO

with reduced KV CO variation.

The chapter is organized as follows: section 3.2 presents the background of this work and review of

prior related works. In section 3.3 architecture of the VCO and detailed analysis of the proposed low

KV CO variation technique is presented. The circuit implementation and simulation results are discussed

in section 3.4 and the conclusion is presented in section 3.5.
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Figure 3.1: Charge-pump PLL

3.2 Background and Prior Works

3.2.1 Background

Fig. 3.1 depicts the block diagram of a PLL, which contains a phase frequency detector (PFD)

followed by a charge pump, a loop filter and a voltage controlled oscillators (VCO) [1]. Eq. (3.1) shows

the closed loop transfer function of the PLL [1].

H(s) =

IpKV CO

2πC1
(R1C1s+ 1)

s2 +
Ip
2πKV COR1s+

Ip
2πC1

KV CO

(3.1)

In Eq. (3.1), the denominator is of the form s2+2ζwns+w2
n and the damping factor (ζ) and natural

frequency (ωn) are represented by equations (3.2) and (3.3), respectively, where Ip is the charge pump

current, C1 is loop filter capacitance and R1 is loop filter resistance.

ζ =
R1

2

√
IpC1KV CO

2π
(3.2)

ωn =

√
IpKV CO

2πC1
(3.3)

ζ and ωn determine the stability of the PLL as well as the phase noise performance [4]. For the loop

to remain stable, the value of ζ should be near unity [4]. The settling speed can be measured using the
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quantity represented in Eq. (3.4).
1

ζωn
=

4π

R1IpKV CO
(3.4)

Important characteristics of the PLL such as phase noise performance and loop characteristics are de-

termined by its VCO. The VCO phase noise (ϕ2
out) shaped by the PLL is given by Eq. (3.5) [4].

ϕ2
out =

ω4

(ω2 − ω2
n)

2 + 4ζ2ω2
nω

2

(
α

ω3
+

β

ω2

)
(3.5)

where α and β are factors which contain information about the noise injected and the Q value, respec-

tively. For a PLL in operation, values of Ip, C1 and R1 are fixed and the only scope for large variations

is in KV CO. From equations (3.2) - (3.5), it can be inferred that for given Ip, C1 and R1, large varia-

tions in KV CO will degrade the PLL stability, settling time and the phase noise performance. In order to

ensure operation of the PLL in its desired dynamics, variations in KV CO should be minimized. There

have been several techniques proposed in the past to reduce the KV CO variation [5]-[10], which are

discussed in the following subsection.

3.2.2 Literature review

(a) (b) (c)

Figure 3.2: Schematic of related works: (a) [5] (b) [6] and [7] (c) [8]

As shown in Fig. 3.2(a), [5] uses a switched varactor array connected in parallel with a capacitor

bank (Cbank) that is used to compensate the variation in KV CO when there is change in value of Cbank.
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When a Cbank structure is connected in series with the varactor, it has higher value of KV CO at higher

value of Cbank and when Cbank structure is connected in parallel with the varactor, it has a lower value

of KV CO at higher value of Cbank. Therefore, as shown in Fig. 3.2(b), [6] and [7] propose the use of

the series and parallel Cbank structure such that their opposite impact on value of KV CO minimizes it’s

variation. As shown in Fig. 3.2(c), [8] proposes the use of bias shifted inversion mode MOS varactor

connected in parallel with conventional accumulation mode MOS Varactor. For reduced gain variation

in ring oscillators, [9] proposed a cross-coupled pair with capacitive degeneration and [10] proposed

using peak inductors.

In this work, we present a technique to control Cbank and Vbias simultaneously for reduced KV CO

variation in an LC oscillator. The proposed VCO architecture and its detailed analysis is presented in

the following subsection.

3.3 Proposed Architecture and Detailed Analysis

3.3.1 Architecture of the Proposed LC VCO With Low KV CO Variation

Fig. 3.3(a) shows the block diagram of the proposed LC VCO. It consists of an NMOS cross coupled

pair with a tail current source, a main tank, an auxiliary tank and a digital to analog converter (DAC).

As shown in Fig. 3.3(a), the main tank is comprised of an inductor (L) and switched capacitor bank in

parallel. As shown in Fig. 3.3(a), Cbank structure is controlled by an N-bit digital control signal, which

is used for the coarse tuning of the oscillator. Same N-bit signal controls the DAC, which generate the

desired bias voltage for varactor capacitance change in the auxiliary tank. As shown in Fig. 3.3(b), the

auxiliary tank consists of MOS varactors, where the voltages at the drain/source and gate terminals of

the varactor are denoted by Vbias and Vtune, respectively. The capacitors Cb in Fig. 3.3(b) behave as

blocking capacitors to ensure stable biasing of the varactors. MOS varactors have been utilized for the

fine tuning of the oscillation frequency in the proposed VCO. This is achieved by changing varactor

capacitance with its gate-source voltage (Vgs).

3.3.2 Detailed Analysis for KV CO and its variation

3.3.2.0.1 Consideration for low KV CO Frequency of the proposed LC VCO topology shown Fig.

3.3(a) can be given by Eq. (3.6) given below
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Figure 3.3: (a) Proposed LC Oscillator Topology (b) auxiliary tank structure and (c) structure of MOS
varactor
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fres =
1

2π
√
LC

(3.6)

where, L is the total inductance of the circuit, and C represents the total capacitance of the circuit. In

Eq. (3.7), Cbank and Cv represents the capacitance of the capacitor bank and capacitance of the MOS

varactor, respectively.

C = Cbank + Cv (3.7)

KV CO can be reduced by reducing the change in oscillation frequency with respect to the control

voltage of VCO, which requires a corresponding small change in MOS varactor capacitance. Since,

Cv is proportional to its area, varactors with minimum area should be used for lower values of KV CO.

Moreover, size of cross-coupled pair should be large enough to give sufficiently high capacitance such

that change in overall capacitance due to change in Cv is further minimized.

3.3.2.0.2 Analysis for KV CO Variation This sub-section presents the complete theoretical analysis

of reduced KV CO variations in narrow tuning range with constant Cbank values as well as for wide

tuning range with varying values of Cbank. For constant Cbank, change in frequency is affected only

by change in capacitance of MOS varactor with the change in tuning voltage. The KV CO of the circuit

can be obtained by partially differentiating fres with respect to control voltage, Vtune, to obtain the

expression given in Eq. (3.8).

KV CO =
∂fres
∂Vtune

= − 1

4π
√
L(Cbank + Cv)1.5

× ∂Cv

∂Vtune
(3.8)

Consider the MOS varactor in Fig. 3.3(c), which is similar in design to the MOS varactor used in the

proposed LC VCO topology. The capacitance of the varactor is given by Eq. (3.9)

Cv =
1√

1
C2

ox
+

2(Vgs−Vfb)
qNaϵs

(3.9)

where, Vfb is the flat band voltage of the device and Vgs is the gate to source voltage of the varactor,

which is given by Eq. (3.10).

Vgs = Vtune − Vbias (3.10)

For mathematical simplicity, the source voltage of this MOS varactor in Eq. (3.10) is assumed to be

equal to Vbias, which is the mean value of source voltage. For further analysis, we define Vz as shown
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in Eq. (3.11).

Vz = Vbias + Vfb (3.11)

Thus, the capacitance of varactor in Fig. 3.3(c) is obtained by substituting Eq. (3.10) and Eq. (3.11)

in Eq. (3.9) to obtain the expression given in Eq. (3.12).

Cv =
1√

1
C2

ox
+ 2(Vtune−Vz)

qNaϵs

(3.12)

where parameters Cfb, Cox and Vtune represents the flat band voltage of the varactor, oxide capacitance

per unit area of the varactor and tuning voltage respectively.

The partial differential of capacitance of MOS varactor with respect to the tuning voltage is obtained

in Eq. (3.13).

∂Cv

∂Vtune
= − 1

qNaϵs
× 1

( 1
C2

ox
+ 2(Vtune−Vz)

qNaϵs
)1.5

(3.13)

If the points where the difference between Vtune and Vz is high, Eq. (3.13) implies that the change

in capacitance of MOS varactor with respect to change in tuning voltage is low, which decreases the

KV CO variation, but these points will have low KV CO, resulting in very low tuning range. There is a

clear tradeoff between tuning range and KV CO variation. Tuning range is more preferred in this short

frequency range and therefore, the selected operating points are chosen where the difference between

Vtune and Vz is low, which will achieve significant tuning range with bearable KV CO variation.

The proposed design methodology attains moderate KV CO variation in a short frequency range,

but as larger tuning ranges are required in most applications involving PLLs to ensure locking and

reasonable settling times, the VCO makes use of a variable Cbank whose values can be switched to

obtain outputs in different frequency bands. For an operating point which has a low value of output

oscillation frequency, the value of Cbank should be high. Eq. (3.8) shows that the value of KV CO is low

at these operating points. Likewise, for an operating point with a high value of oscillation frequency, the

KV CO value will be high. By substituting Eq. (3.13) in Eq. (3.8), the expression of KV CO is obtained

as given by Eq. (3.14).

KV CO =
1

4π ×Naϵs
√
L

× 1

( 1
C2

ox
+ 2(Vtune−Vz)

qNaϵs
)1.5

× 1

(Cbank + Cv)1.5

(3.14)
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We define the term V arKV CO
as given by Eq. (3.15), which is derived from Eq. (3.14) by removing

all constants and some simplifications.

V arKV CO
= (Cbank + Cv)×

(
1

C2
ox

+
2(Vtune − Vz)

qNaϵs

)
(3.15)

Eq. (3.15) gives important insight on reducing KV CO variation. As it can be seen from Eq. (3.15), if

all the parameters are constant except Cbank, V arKV CO
will have large variation throughout the tuning

range, i.e., KV CO variation will be pretty high, i.e., for a low value of Cbank, value of KV CO will be

high and for a high value of Cbank, value of KV CO will be low. The proposed methodology is to change

the value of Vbias with change in Cbank such that the term V arKV CO
is constant, i.e., KV CO has reduced

variation. For example, if we have an operating point where the oscillator has a high value of Cbank, a

high value of Vbias is used, i.e., low value of Vtune − Vz , resulting in a high KV CO value. Similarly,

for an operating point with a low value of Cbank, low value of Vbias is used to achieve low KV CO. We

propose to control Cbank and Vbias simultaneously to reduce KV CO variation.

3.4 Design Implementation and Simulation Results

3.4.1 VCO Implementation

Fig. 3.4(a) shows the complete schematic of the proposed LC VCO with low KV CO variation, which

has been implemented in 0.18µm 6-metal layer CMOS technology. Fig. 3.4(b) shows the layout of the

VCO, which occupies an area of 421.52 µm x 346.34 µm. As shown in the Fig. 3.4(a), oscillator core

is implemented with a cross-coupled pair and the tank has been realized with capacitor bank containing

total 16 unit capacitance (Cx), inductor (L), MOS varactors (CV ) and blocking capacitances (Cb). The

capacitor banks (Cbank) are placed parallel to the inductors (L) to get shifts in the output frequency

and produce a wide band of overall output frequencies. The fixed capacitance has been realized using

a MIM capacitor (Cfixed) and has a value of 1.09 pF, while each unit capacitance was realized using

a combination of MIM capacitors and has an effective value of 20 fF. A 16-bit digital control signal

is used to control this operation and the switches used in the capacitor bank are PMOS switches. Cb

is taken to be of the order pF while Cv is of the order 10 fF. The blocking capacitors (Cb) are MIM

capacitors of value 1.15 pF used to provide stable bias voltage to the varactor. The resistances (R) are

current limiting resistors of 1 kΩ used to limit the current from the control sources. The MOS varactors

20



(a)

(b)

Figure 3.4: (a) Schematic and (b) layout of the proposed LC VCO with low KV CO variation
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Figure 3.5: Variation of VCO output frequency and peak KV CO values with Vtune for a lowest, highest
and middle band

used are minimum sized for attaining low KV CO and have a variable capacitance value in the range

21.87 fF - 61.88 fF. The inductors used are symmetric spiral inductors with a quality factor of 5.59.

Vbias is controlled by using DAC [11] whose input is the same 16-bit digital control signal controlling

the Cbank. These two components are used in conjecture to minimize the variations in KV CO, where

Vbias changes according to the change in Cbank values.

3.4.2 Simulation Results

This subsection presents the post-layout simulation results of the proposed design shown in Fig

3.4(a), which has been implemented in 180nm CMOS process. The proposed VCO consumes 5 mA

current from a 1.8 V supply. Vtune is swept from 300 mV to 800 mV and the output is taken at one of

the cross coupled pair gates. Fig. 3.5 shows the variation of VCO frequency for the lowest (near 2.75

GHz), highest (near 2.94 GHz) and center (near 2.83 GHz) frequency bands. Simulation results shown

in Fig. 3.5 depicts that the VCO tuning range is 190 MHz (2.75 - 2.94 GHz) around 2.87 GHz center

frequency with KV CO variation in each band is < 20 MHz/V. We also observed a decrease in the tuning
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Cbank Vbias Tuning Range Peak KVCO KVCO at 550mV
(pF) (V) (GHz) (MHz/V) Vtune (MHz/V)
1.09 0.3 2.925 - 2.937 34.842 26.229
1.11 0.3 2.912 - 2.925 35.106 26.259
1.13 0.3 2.898 - 2.911 35.375 25.960
1.15 0.4 2.887 - 2.902 36.304 30.720
1.17 0.4 2.877 - 2.892 36.406 30.679
1.19 0.4 2.864 - 2.878 36.482 30.594
1.21 0.5 2.853 - 2.869 36.647 34.162
1.23 0.5 2.841 - 2.857 36.466 34.513
1.25 0.5 2.831 - 2.847 36.526 34.557
1.27 0.6 2.819 - 2.836 36.527 36.351
1.29 0.6 2.807 - 2.824 36.671 36.499
1.31 0.6 2.796 - 2.813 36.752 36.639
1.33 0.7 2.788 - 2.805 36.939 36.301
1.35 0.7 2.777 - 2.794 37.194 36.491
1.37 0.7 2.766 - 2.783 37.357 36.635
1.39 0.8 2.761 - 2.776 37.452 32.973
1.41 0.8 2.752 - 2.768 37.613 32.955

.

Table 3.1: VCO tuning ranges and corresponding KV CO values
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range from 2.85 GHz - 3.12 GHz from schematic simulation to 2.75 GHz - 2.94 GHz in post-layout

simulations. Table 3.1 presents the VCO frequency bands with varying Cbank and corresponding Vbias

values along with the peak KV CO and KV CO at tuning voltage of 550 mV where the peak KV CO is the

highest KV CO value seen for a particular combination of Cbank and Vbias. KV CO variation shown in

Table 3.1 is also plotted in Fig. 3.6(a), which shows that variation in KV CO of 3.82%. Fig. 3.6(a) also

depicts the degradation of the KV CO variation to 6.57% without a significant increase in tuning range

when Vbias tuning is disabled and the KV CO variation across process corners with the slow process

corner variation of 8.57%. This is a significant improvement in KV CO variation reduction as compared

to other related works, which demonstrate a variation in the range of 40 MHz/V - 600 MHz/V [5] - [10].

Fig. 3.6(b) shows the variation in phase noise at 1 MHz offset with the change in Cbank values.

Minimum phase noise of -118.638 dBc/Hz is obtained for 1.1 pF value of Cbank, which corresponds

to the highest frequency range (near 2.94 GHz). As shown in Fig. 3.6(b), phase noise degrades as the

capacitance is increased, which is expected due to the increased losses in Cbank switches. Fig. 3.7 shows

the variation in phase noise performance considering all the active and passive components across the

different process corners for minimum Cbank value. As shown in the figure, phase noise at 1 MHz offset

at 2.94 GHz center frequency is < −117 dBc/Hz across the corners.

Table 3.2 presents the performance summary and comparison of the proposed design with other

recently reported work. As shown in the table, KV CO variation is minimum in the proposed VCO as

compared to the other works. Moreover, phase noise is also better as compared to the other works. Our

design has a low tuning range compared to others as our proposed architecture is aimed at low KV CO

design specific for NV magnetometry, where reduced tuning range is desirable. There is a clear trade-

off between the tuning range, KV CO value and power consumption. For lower KV CO, the tuning range

decreases. However, the overall tuning range of the VCO can be increased by using a bigger capacitor

bank with more unit capacitance as per the requirement, which will consume more power. For a fair

comparison of VCO performance considering the KV CO variations (∆KV CO in %), we propose a new

figure-of-merit (FoM), which is shown in Eq. (3.16).

FoM =

(
f0
∆f

)2

PDC × PN ×∆KV CO(%)
(3.16)

As shown in table 3.2, FoM of the proposed design is significantly higher than the other designs except

[8] which has higher FoM owing to its exceptionally low power consumption at lower technology node.
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(a)

(b)

Figure 3.6: (a) KV CO variation across frequency bands (b) Phase noise variation across frequency
bands
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Figure 3.7: Phase noise variation across process corners

Ref. [5] [6] [7] [8] [9] [10] Our Work
Technology 90 nm CMOS 180 nm CMOS 65 nm CMOS 110 nm CMOS 180 nm CMOS 130 nm CMOS 180 nm CMOS
VCO Type LC VCO LC VCO LC VCO LC VCO Ring VCO Ring VCO LC VCO

Freq. (GHz) 24.1-28.2 4.39-5.26 1.51-3.01 1.73-2.56 1.78-2.53 0.36-11.9 2.75 - 2.94
KVCO Variation (%) ±16 ±9.56 ±49.5 ±8.60 ±2.81 (TR†= 580 MHz) ±61.64 ±3.82

±7.01 (TR†= 750 MHz)
Phase Noise -103 -113.7 -115.1 -116.4 -92.68 -103.3 -118.64

(dBc/Hz @ 1MHz)
Power (mW) 26 9.7 1.02 0.76 28 37.5 9

FoM (dBc/Hz)‡ 165.81 168.45 167.64 176.41 141.78 151.17 172.44

†Tuning range, ‡Proposed FoM (Eq. (3.16)) to include effect of KV CO variation on VCO perfor-
mance.

Table 3.2: Performance summary and comparison with similar works
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3.5 Summary

This chapter presented a technique to design an LC VCO with low gain and reduced gain variation,

which are often needed in highly sensitive quantum sensing applications. A new FoM has been also

defined in this work to capture the effect of KV CO variations on VCO performance. The proposed LC

VCO is designed in 180 nm CMOS technology. Post layout simulation results show that it consumes

5 mA current from 1.8 V supply and exhibits a phase noise and FoM of -118.64 dBc/Hz and 172.44

dBc/Hz, respectively at 1 MHz offset at center frequency of 2.94 GHz. The proposed LC VCO achieves

a tuning range of 2.75 - 2.94 GHz and exhibits low KV CO (< 38 MHz/V) with low KV CO variation

(< 20 MHz/V) of 3.82%, which are much better than the other previously reported works.
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Chapter 4

Design of 2.87 GHz Frequency Synthesizer with Programmable Sweep

for Diamond Color Defect based CMOS Quantum Sensing Applications

4.1 Introduction

Quantum sensing has a wide array of applications in material science, mesoscopic physics and life

science. Nitrogen-Vacancy (NV) centre in diamond behaves as an isolated electronic spin system that

can be used in quantum sensors [2]. When a vacancy replaces the adjacent carbon pair in a diamond

lattice, the nitrogen atom and the vacancy form an NV centre. The NV defect has its ground level in a

spin triplet state whose sub-levels are split in energy into a singlet (ms = 0) and a doublet of degenerate

levels (ms = ±1) separated by 2.87 GHz [3]. When an external magnetic field is applied on the NV

ground state spin triplet, a Zeeman shift of energy γeBz is induced, where Bz represents the magnetic

field component along the NV symmetry axis. As shown in Fig. 4.1(a), optically detected magnetic

resonance (ODMR) technique can be used in NV-based sensing to measure static or slow varying |B⃗z|

[2], [3]. In ODMR, NV electron spin transitions are excited by a microwave signal (fRF ) near 2.87 GHz

and diamond is irradiated with a green light, which produces a red light proportional to |B⃗z| and having

photon frequency ∆fp given in Eq. (4.1) [2], which is detected using a photo-diode.

∆fp = f+ − f− = 2γe|B⃗z| (4.1)

In Eq.(4.1), γe is gyromagnetic ratio (28 GHz/T) and f+ and f− are the transition frequencies from the

singlet level to the doublet levels. Usually, NV-ODMR is detected with lock-in technique for which fRF

is frequency modulated (fm) while using an external source [2], [3]-[13]. The sensitivity of measured

|B⃗z| can be improved with reduced fm, which results into lower ∆fp as given in Eq. (4.1). Moreover,
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Figure 4.1: (a) Depiction of NV-ODMR to measure magnetic field strength (|B⃗z|) and (b) Fractional-N
synthesizer as microwave signal generator
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overall power can also be reduced by having on-chip frequency sweep than using the external frequency

modulator.

Towards achieving the goal of the improved sensitivity for |B⃗z| < 1 µT measurement in NV-based

quantum sensing applications with reduced power consumption, in this chapter, I present - 1) design of

a 2.87 GHz MWG with a programmable sweep-step size of 50 kHz, 2) it’s implementation in 180 nm

CMOS technology and 3) post-layout simulation results to validate the MWG design. As compared to

the previous works [2]-[13], this research presents MWG with on-chip programmable frequency sweep

for NV-ODMR for the first time, which not only helps in improving |B⃗z| sensitivity but also aids in

generating and delivering a homogeneous magnetic field in CMOS quantum sensors by removing the

signal loss and reflections at interface, which are otherwise inevitable in conventional off-chip source

solutions. The chapter is organized as follows: Sections 4.2 and 4.3 present the architecture overview

and detailed design of the proposed MWG, respectively. Section 4.4 presents post-layout simulation

results followed by the conclusion in Section 4.6.

4.2 Architecture Overview and Design Considerations

4.2.1 Architecture overview

From Eq. (4.1), to detect |B⃗z| < 1 µT, ∆fp of 56 kHz is needed, which requires that MWG signal

should be varied near 2.87 GHz with a resolution <56 kHz. For this, as shown in Fig. 4.1(b), a phase-

locked loop (PLL) based fractional-N frequency synthesizer has been presented in this work, which

contains a crystal oscillator (XO) to generate reference signal (fref ), phase/frequency detector (PFD),

a charge pump (CP), a loop filter (LPF), a voltage controlled oscillator (VCO) and a programmable

divider. Important considerations of MWG design are discussed in the following subsection.

4.2.2 Design considerations

4.2.2.0.1 Low gain VCO For < 1 µT sensitivity, VCO shown in Fig. 4.1(b) should be able to

achieve frequency resolution (∆f ) of 50 kHz with low phase noise while providing a sufficiently wide

tuning range. For low frequency resolution, the gain of the VCO (KV CO) can be estimated by Eq. (4.2)

∆f = KV CO ×∆Vcont (4.2)
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where, ∆Vcont is the change in control voltage at VCO input. Very small values (few 100’s µV) of

∆Vcont are more prone to noise, whereas larger values (10’s of mV) will require extremely low KV CO.

Considering this, a value of 1 mV is considered for ∆Vcont, which requires a VCO with KV CO =

50 MHz/V at fRF = 2.87 GHz. To achieve this low KV CO requirement, there are two choices for

the VCO realization - 1) LC VCO or 2) ring VCO with CMOS inverters. LC VCO choice results in

increased chip area and possibility of degradation of field homogeneity in the sensing area [2] due to the

magnetic coupling between on-chip inductor and |B⃗z|. Therefore, as shown in Fig. 4.1(b), an M-stage

ring oscillator (RO) topology is chosen in the proposed work, for which, oscillation frequency (fRF )

can be given by Eq. (4.3).

fRF =
1

2Mtd
(4.3)

In Eq. (4.3), td (∝ CT ) is the delay of each stage, where CT is the total capacitance at each node. Gain

of the ring VCO can be expressed by Eq. (4.4) given below.

|KV CO| =
∂fRF

∂Vcont
=

1

2Mt2d

∂td
∂Vcont

= 2Mf2
RF

∂td
∂Vcont

(4.4)

Eq. (4.4) gives important insights about designing low gain ring V CO - 1) by minimizing M and 2) by

making CT a weaker function of Vcont to reduce ∂td
∂Vcont

.

4.2.2.0.2 Programmable divider In order to obtain a resolution of ∆f near fRF , the divider must

divide by (N +1) for a fraction x of the cycles of reference signal having frequency fref and divide by

N for the remaining cycles, which are related as shown in Eq. (4.5) [4].

fRF +∆f = (N + x)fref (4.5)

Using Eq. (4.5), under locked condition (fRF = N × fref ), x = ∆f
fref

. As depicted in Fig. 4.1(b),

a modulus control signal is generated by considering x = p
q , where p and q are the number of total

reference cycles and number cycles for which the modulus signal is low, respectively. This modulus

control signal programs the divider for fractional-N operation and switches the center frequency of the

VCO. Very low fref will require high N resulting into more area and dynamic power consumption,

whereas very high fref will make x too small, which will require more number of reference cycles for

fractional-N operation. Considering these points, we chose fref ≈ 90 MHz, which gives N=32.
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Figure 4.2: VCO schematic for the proposed MWG

4.3 Design Implementation

This section of the paper elucidates the design details of different modules of the proposed MWG.

4.3.1 Low gain ring VCO design

Fig. 4.2 depicts the proposed ring VCO. As suggested in section-4.2, the proposed VCO uses the

minimum number (M=3) of CMOS inverter stages with varactor and a capacitor bank at each node. As

shown in the figure, each capacitor bank contains a fix capacitance (Cfix) and parallel combination of

6 unit capacitance (Cu), which are realized using MIM capacitors. Cu is used for the coarse tuning of

the VCO and is controlled by a 6-bit signal (A5...A0), which is generated by the control logic shown in

the figure. MOS varactors are controlled by Vcont and facilitate the finer tuning of fRF [14]. Varactors

with minimum size have been used for having the least value of ∂td
∂Vcont

for low KV CO as shown in Eq.

(4.4). In the proposed VCO design, A0 is connected to supply, A2, A3, A4 and A5 are connected to

ground while A1 is connected to the modulus control signal. The capacitor bank MIM capacitors sizes

are selected such that two bands are centered at 2.87 GHz and 2.87+fref GHz and the other bands are

such that the overall tuning range is maximized near 2.87 GHz.
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(a) (b)

(c)

Figure 4.3: Schematic of the (a) programmable divider for the proposed MWG, (b) 4/5 prescaler used
in the divider and (c) TSPC D flip flop (divide by 2 unit)

4.3.2 Frequency Divider

As shown in Fig. 4.3(a), the programmable divider of the proposed MWG consists of three True

Single-Phase Clock (TSPC) D flip-flops and a 4/5 prescaler that clocks the TSPC stages controlled by

MC1 which is NOR of the input of each of the TSPC stages and the modulus control signal[15]. Each

TSPC stage acts as divide by 2 unit. The 4/5 prescaler shown in Fig. 4.3(b) consists of TSPC stages and

the required NAND logic to switch between divide by 4 and 5 based on MC1. Fig. 4.3(c) shows the

schematic of the TSPC logic based D flip flops used in Fig. 4.3(a) and Fig. 4.3(b) [16].
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Control Signal Tuning Range (GHz) KVCO (MHz/V)
000000 2.994 - 3.069 51.666
000001 2.916 - 2.987 49.177
000011 2.842 - 2.909 46.769
000111 2.744 - 2.807 43.760
001111 2.659 - 2.718 41.172
011111 2.584 - 2.640 38.943
111111 2.515 - 2.568 36.927

The KV CO values mentioned are the maximum values.

Table 4.1: VCO tuning ranges and corresponding KV CO values form post-layout simulations

4.3.3 PFD/CP/LPF/XO

Fig. 4.4(a) shows the block diagram of the PFD, which consists of two D-flip-flops and an AND

gate [17]. The two flip-flops shown in Fig. 4.4(a) have their inputs connected to supply and clocked

by the reference signal (fref ) and divider output (Div), respectively. They generate the Up and Down

pulses for driving the charge pump (CP) according to the phase difference in the reference and divider

output signals [4]. Fig. 4.4(b) shows the topology used to realize CP based on the dynamic current-

matching technique, which minimizes current mismatches by using additional feedback transistors that

compensate for the channel length modulation [18]. As shown in figure, the loop filter comprised of R1,

C1 and C2 [17]. Fig. 4.4(c) shows the pierce oscillator topology, which is used to realize the crystal

oscillator to generate external reference in the proposed MWG [19].

4.4 Post Layout Simulation Results

Fig. 4.5 shows the layout of the proposed MWG in 180 nm CMOS technology, which occupies about

273µm × 152µm. Table 4.1 shows the values of post-layout simulated tuning ranges and KV CO of the

proposed ring VCO for different control signals. As shown in the table, the proposed VCO achieves an

overall tuning range of 2.515 - 3.069 GHz and attains KV CO <50 MHz/V near 2.87 GHz, which also

facilitates the fractional-N operation for fine frequency sweeping.

As shown in Fig 4.6(a), the proposed VCO also achieves significantly low KV CO <52 MHz/V

across all tuning ranges shown in table 4.1. Moreover, as shown in the figure, variation in KV CO values

across the bands is also very small (<16 MHz/V). Fig. 4.6(b) shows that the VCO phase noise at a 1

MHz offset near 2.87 GHz frequency < -90.6 dBc/Hz across the process corners. Fig. 4.7(a) shows
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(a) (b)

(c)

Figure 4.4: Schematic of (a) PFD, (b) current matching CP [18] and (c) XO
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Figure 4.5: Layout of the proposed MWG in 180 nm CMOS technology

(a) (b)

Figure 4.6: Post-layout simulation results showing (a) variation of KV CO across entire tuning range of
VCO and (b) VCO phase noise across process corners
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Figure 4.7: Post-layout simulation results showing (a) PLL signals in locked state (b) DFT of PLL
output locked at 2.87 GHz and (c) PLL phase noise plot
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(a) (b)
3

Figure 4.8: Post-layout simulation results showing DFT plots for (a) 50 kHz shift and (b) 100 kHz shift
from 2.87 GHz

the transient response of the proposed MWG in phase locked state. Fig. 4.7(b) presents the DFT plot

showing fRF = 2.87 GHz is synthesized by the proposed MWG. Fig. 4.7(c) shows that the phase noise

of the 2.87 GHz MWG signal is -114.5 dBc/Hz at an offset of 1 MHz. The proposed MWG consumes

about 11.14 mW of power from a 1.8 V supply.

To get a frequency shift of 50 kHz in fRF = 2.87 GHz, modulus control of the divider is programmed

for x = 4
7175 . Value of x implies that the programmable divider must divide by 33 for 4 cycles every

7175 cycles and divide by 32 for the remaining 7171 cycles. Similarly, x = 8
7175 for 100 kHz shift. The

time period (T) of the 89.6875 MHz crystal oscillator is 11.1498 ns, which gives timing information for

the divide by 33 (N+1) control as 4×T and divide 32 (N) control as 7171×T. Similarly, for 100 kHz shift

timing for divide by 33 and 32 control signals are 8×T and 7167×T, respectively. Fig. 4.8(a) and 4.8(b)

show DFT plots for 50 kHz and 100 kHz shifts in fRF = 2.87 GHz obtained using the corresponding

modulus control signals, respectively. Table 4.2 presents the performance summary and comparison of

the proposed design with other works. As shown in the table, proposed MWG achieves lower KV CO

and frequency resolution as compared to the other works while providing significant improvement in

the magnetic field sensitivity.
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Parameters [2] [3] [12] [13] [20] [21] This Work
Simulated/Measured Measured Measured Measured Measured Measured Measured Simulated

Technology 65 nm 65 nm 65 nm 65 nm 45 nm 45 nm 180 nm
Area (µm × µm) 80 × 300 50 × 50 80 × 300 800 × 500 320 × 300 300 × 100 273 × 152

PLL Type Integer-N Integer-N Integer-N Integer-N Fractional-N Fractional-N Fractional-N

VCO Type
Ring with Ring with Ring with Ring with Ring with Ring with Ring with
varactors MOSCAP MOSCAP MOSCAP varactors varactors varactors

Freq. Range (GHz) 2.87∗ 2.6 - 3.1 2.87∗ 2.6 - 3.1 2.31 - 3.05 2.3 - 2.6 2.5 - 3.1
Freq. Resolution (kHz) 1200⋄ 100⋄ 1200⋄ 180⋄ 740⋄ 300⋄ 50

Magnetic Field Sensitivity (µT) 13.42 ‡ 1243.23 ‡ 13.42 ‡ 2827.28 ‡ 6.77 5.36 0.89
Noise Bandwidth (kHz) 3 1.5 3 1.5 - - -

Ref. Freq. (MHz) ∼90 ∼120 ∼100 ∼100 22.6 22.6 ∼90
KV CO (MHz/V) 1200 100† 1200 180 740† 300† 50

Phase Noise (dBc/Hz) -88 @ 3kHz -90 @ 1.5kHz -88 @ 3kHz -90 @ 1.5kHz -104 @ 1MHz -109 @ 1MHz -114 @ 1MHz
Supply Voltage (V) 2.5 2.5 2.5 2.5 1 1 1.8

Power (mW) >12.5∗∗ >12.5∗∗ >12.5∗∗ >12.5∗∗ 10 6.4 11.14

∗ Frequency range is not given so the given center frequency is mentioned. ⋄ Calculated using the
KV CO value assuming 1mV steps in Vcont. ‡ Reported 245 nT/

√
Hz, 32 µT/

√
Hz, 245 nT/

√
Hz

and 73 µT/
√
Hz in the given noise bandwidth. † The KV CO values are calculated using the tuning

range and control voltage range. ∗∗ Estimated using charge pump current and supply voltage values
given.

Table 4.2: Performance summary of the proposed MWG and comparison with other works

4.5 Tapeout in SKY130

The SkyWater 130nm technology is a combined effort by Google and SkyWater. It is an open

source PDK in its experimental preview phase with MPW mode fabrication. Fig. 4.9 summarises

the technology node process and the pad frame/harness being used for the MPW shuttle program.

4.5.1 Area and Floorplan

Fig. 4.10 shows the area of the harness as well the dedicated user project ares. It also shows the

proposed floor plan for the project.

4.5.2 Tapeout

Fig. 4.11 shows the schematic and layout representations of the individual modules included in the

tapeout. Fig. 4.12 shows the layout of the complete MWG included in the tapeout. Fig. 4.13 shows the

final floorplan and complete die layout for the tapeout. The submission was made in April 2022 to the

5th iteration of the Efabless Open MPW Shuttle Program and the packaged dies are yet to be delivered.
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Figure 4.9: Diagrams showing the layers in the process and structure of caravel harness

Figure 4.10: Area of the harness and user project along with floor plan for project
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Figure 4.11: Schematic and layout of individual modules for tapeout

Figure 4.12: Schematic and layout of MWG for tapeout
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Figure 4.13: Floorplan and layout of complete die for tapeout

4.6 Summary

In this chapter, a 2.87 GHz microwave signal generator (MWG) with a minimum sweep-step size of

50 kHz has been presented for NV-ODMR based CMOS quantum sensing applications to detect < 1 µT

magnetic field strengths (|B⃗|). Conventionally, for ODMR, the 2.87 GHz signal is frequency modulated

using an external source, which drastically increases power consumption and system complexity. This

work presented MWG with on-chip programmable sweep capability to generate microwave signals close

to 2.87 GHz for improved sensitivity of |B⃗| measurement in NV-ODMR. The proposed MWG has been

implemented in 180 nm CMOS technology and its operation is validated by post-layout simulations,

which show that it achieves a phase noise of -114.5 dBc/Hz at an offset of 1 MHz near 2.87 GHz

frequency, while consuming 11.14 mW from 1.8 V supply. Post-layout simulations also show that the

proposed MWG has a tuning range of 2.515 to 3.069 GHz with a low gain VCO that exhibits KV CO <

51.67 MHz/V and can be used to sense |B⃗| < 0.9 µT, which is much lower as compared to the other

existing works.
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Chapter 5

Deep Learning Based Portable Respiratory Sound Classification System

5.1 Introduction

Respiratory diseases are among the leading causes of death with lung infections, lung cancer and

chronic obstructive pulmonary disease (COPD) accounting for nearly one-sixth of the deaths world-

wide. According to the Global Burden of Disease (GBD) study, infections in the lower respiratory tract

are among the leading causes of death [22]. A delay in the diagnosis of such diseases can lead to se-

rious irreversible health complications. These diseases also have an adverse impact on the social and

economic conditions of a person. Access to diagnostic modalities such as lung ultrasounds is required

in order to perform accurate diagnoses. However, under resource-limited situations where physicians

do not have access to such infrastructure and equipment, auscultation which involves the analysis of

respiratory sounds by a trained physician still serves as a prominent tool for preliminary diagnosis[23].

Respiratory sounds are generated by the movement of air within the respiratory system. These sounds

vary depending on the state of the respiratory system and the health of the individual. Different respira-

tory disorders are characterized by a specific set of respiratory sounds which can serve as indicators of

the particular disorder. Table 5.1 shows some of the common respiratory diseases and their respective

respiratory sound indicators [24].

In this work, a portable system has been proposed and implemented to classify respiratory sounds

through the use of audio processing and convolutional neural networks (CNN) in order to aid the auscul-

tation process and allow for faster and more accurate diagnoses even in the absence of trained medical

professionals and advanced diagnosis equipment.

This work has made use of HF Lung V1 dataset which is a combination of a database used in a

datathon in Taiwan Smart Emergency and Critical Care (TSECC), 2020, under the license of Creative
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Figure 5.1: Overview of proposed system

Disease Rhonchi Wheeze Stridor Crackling
Bronchitis X X X

COPD X X X
Pneumonia X X
Epiglottitis X X

Laryngomalacia X
Cystic fibrosis X
Heart disease X X

Table 5.1: Respiratory diseases and respective lung sounds

Commons Attribution 4.0 (CC BY 4.0), provided by the Taiwan Society of Emergency and Critical

Care Medicine (TSECCM) and sound recordings acquired from 18 residents of a respiratory care ward

(RCW) or a respiratory care center (RCC) in Northern Taiwan [25]. This system is aimed at performing

multi-class classification of normal, rhonchi, wheeze, stridor and crackles. This paper is organized as

follows: Section 5.2 presents the background of this work and a review of related works. Section 5.3

elaborates the various signal processing techniques used to process the respiratory audio signals and ex-

tract features for classification and presents the deep learning model architecture used for classification.

Section 5.4 summarizes the results obtained and Section 5.5 provides the conclusion.
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Figure 5.2: Respiratory sound classification methods in related works: (a)[26] and (b)[27]

5.2 Background and Prior Works

Various efforts have been made towards automated lung auscultation for diagnostic applications.

[26] proposes a computer-aided approach to classify respiratory sounds even in noisy environments us-

ing noise suppression schemes, spectrotemporal features and support vector machines. The framework

is shown to be effective in noise suppression suitable for auscultation and explores the use of rich bio-

mimetic feature mappings yielding notable improvement in classifying adventitious respiratory events.

Fig. 5.2(a) shows the pipeline with a variety of pre-processing techniques and feature extraction and

classification methods. The fallback is that complex and computationally heavy algorithms have been

used which necessitate the use of computing systems capable of handling the load and poses a challenge

to making the system function in real-time. [27] proposes an ML-based approach to classify respiratory

sounds based on Mel Spectrograms and develops a comparison between performance obtained using

different algorithms. PCA is applied to the Mel spectrograms to extract audio signature features which

are fed to the classifier models. Fig. 5.2(b) shows the flow of data through the noise reduction stage

followed by Mel spectrogram generation, PCA and the classifier. [28] explores the possibility of us-

ing smartphones to record respiratory audio for the development of portable solutions. It is concluded

that lung auscultation with smartphone built-in microphones is feasible in a clinical context but with

heavy limitations on the accuracy of diagnosis. These works have solely focused on the design and

implementation of computerized lung auscultation software and are heavily dependent on complex pro-

cessing algorithms or handicapped due to the lack of sufficiently robust algorithms. There have been

no efforts towards making this system completely portable to function outside the clinical environment
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and in real-time. In this work, we focus on developing a system capable of performing real-time lung

auscultation on a portable platform.

5.3 Respiratory Sound Processing and Classification

5.3.1 Respiratory Sound Processing

The HF Lung dataset contains 9765 15-second audio files with 8,457 wheeze labels, 686 stridor

labels, 4,740 rhonchi labels and 15,606 discontinuous adventitious sound labels. Various respiratory

events are characterised by sounds of distinctive properties. Ronchi is a low-pitched snoring-like sound

with a frequency range of less than 200 Hz while wheeze is a high pitched whistling like sound with a

frequency range greater than 400 Hz. Stridor is a high-pitched musical sound with a frequency range

greater than 500 Hz while coarse and fine crackles are explosive sounds with frequencies ranging near

350 Hz and 650 Hz respectively [29].

Discerning different respiratory sounds is very difficult from an audio signal due to the presence of

noise and lack of visible frequency information. The feeble nature of respiratory audio makes the task

of classification more challenging. This brings us to the requirement of more robust representations of

the audio signals such as spectrograms in order to aid the task of classification. Spectrograms are an

ideal choice for representing respiratory audio signals as they are much more suited for the classification

task as compared to audio signals as they contain frequency spectrum information variation with time

[30, 31]. With the advances in computer vision oriented machine learning models, the feature extraction

and classification of image data such as spectrogram images are more effective and efficient as compared

to audio signals.

5.3.2 Mel Spectrogram

Spectrograms visually represent the signal strength of a signal at various frequencies over time.

Spectrograms can be plotted over the raw magnitude or over a logarithmic scale. However, linear or

logarithmic spectrograms may prove to be insufficient to obtain sufficiently differentiable spectrogram

representations for respiratory signals as the frequency bands formed in spectrograms will not be dis-

crete enough to discern. The Mel scale allows for better differentiation between lower frequencies as

compared to higher frequencies which are ideal for respiratory sounds as they fall in the 50 Hz to 2500

Hz range and is used in such instances for improved detection and classification [29]. Eq. 5.1 gives the
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Figure 5.3: Mel spectrograms for different respiratory sounds in HF Lung

Figure 5.4: Respiratory sound classification pipeline
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Mel scale value, m, for a frequency of f in Hz.

m = 2595 · log10
(
1 +

f

700

)
(5.1)

The spectrogram parameters need to be adjusted in order to ensure that the spectrograms generated

are best representative of the data and have sufficient resolution. The size of the FFT, N, defines the

frequency resolution of the spectrogram. SR
N gives the frequency resolution, res, of the generated spec-

trogram with respect to the sampling rate, SR, and N. There is an increase in frequency resolution with

the increase in N. Hence, the N value selected must be sufficiently high in order to ensure sufficient

frequency resolution in the generated spectrogram. Another parameter to be aware of is the window

size since a smaller window size implies not enough information is present in each window to give

sensible spectral information while a larger window size implies there will be excess leakage of infor-

mation leading to a lack of resolution. The type of window is also a determining factor as rectangular

windows are very poor choices as they have very minimal side lobe attenuation i.e., their side lobes in

the frequency domain have significant magnitude with respect to the main lobe. Hamming and Hanning

windows are a far better choice of windows as their side lobes are of negligibly lower magnitude as

compared to the main lobe. The magnitude of the first side lobe of the Hamming window is lower than

the first side lobe of the Hanning which would make it a better choice for eliminating the contribution

of those side lobe frequencies but the distant side lobes of the Hanning are far more attenuated than the

Hamming making Hanning a better choice for signals with larger bandwidths i.e., energy spread across

a wider frequency range.

Fig. 5.3 shows the Mel spectrograms generated for various respiratory sounds with 1024 point FFT

with Hanning window of length of 128 and hop length of 64. The distinction between different sounds

is clearly visible in their respective spectrograms.

5.3.3 Deep Learning Classifier

Deep learning is used across various machine learning and artificial intelligence (AI) applications to

obtain best possible results by imitating human learning abilities. CNNs are a class of artificial neural

networks widely used for image classification applications due to their ability to abstract image data to

feature maps [32] -[34]. The Mel spectrograms generated can be processed as images. Mobilenet V2 is

the chosen CNN architecture due to its drastically lower parameter count and memory and processing

requirements allowing for use on mobile platforms [35]. In this work, we make use of a transfer learning-

48



Figure 5.5: Portable Respiratory sound classification system with recording system

based approach. The available MobileNet V2 model is trained on the ImageNet dataset which implies

that the convolution layers are heavily trained for multi-class feature extraction. These pre-trained

convolutional layers are used in conjunction with classifier layers trained on the application-specific

dataset to allow for state-of-the-art feature extraction and classification.

5.4 Results and Discussions

Fig. 5.4 shows the complete pipeline used in this work. The classifier is trained on the dataset

on a multi-GPU system and testing is performed on a Raspberry Pi 4B with 8 GB of RAM in order

to verify complete functionality on a portable platform. Raspberry Pi offers sufficient resources for

the use of CNN-based classifiers while maintaining a small form factor making it an ideal choice for

a portable system. Fig. 5.5 shows the Raspberry Pi-based portable respiratory sound classification

system. Since the Raspberry Pi only has a CPU and no GPUs, the model is reconfigured to run on

CPU alone. The system implementation is able to perform the tasks of multiclass classification of

normal, rhonchi, wheeze, stridor and crackle sound events from respiratory audio data obtained in real-

time. The HF Lung dataset is split in an 80:20 ratio into training and testing data. Fig. 5.6 shows the
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Figure 5.6: Confusion matrix obtained for test split of HF Lung dataset

Ref. [26] [27] [29]* This work
Accuracy (%) 86.67 64.45 64.90 80.55
Sensitivity (%) 86.82 - 51.93 95.65
Specificity (%) 86.55 - 77.88 98.80

* Performance on Task 1-2 in the mentioned work which is most comparable to this work

Table 5.2: Performance summary and comparison with similar works

confusion matrix obtained on the test dataset. It is observed that the model is able to classify each of the

adventitious sounds with high accuracy. The model achieves an accuracy of 80.55% with a sensitivity

of 95.65% and a specificity of 98.80% on the testing dataset. Table 5.2 shows the performance summary

and compares it with that of related works. It is clearly visible that this work ensures improved sensitivity

and specificity while maintaining high accuracy. The accuracy obtained in this work is also comparable

to [26] which makes use of complex and computationally heavy pre-processing algorithms.

Fig. 5.5 also shows the recording system consisting of Arduino Nano and MAX4466 which can

capture audio in real time for use with the classification system. The results of classification from the

system are pushed to an IoT cloud service like ThingSpeak through MQTT. This allows for the data
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Figure 5.7: Online dashboard layout

to be accessed remotely through a web dashboard which has been set up to centrally monitor all the

portable devices. Fig. 5.7 shows the developed online dashboard,

5.5 Summary

Respiratory diseases pose a major threat to our well-being. Methods of diagnosis of such diseases

are often complex and require extensive training and experience to perform. Delay in diagnosis can be

fatal and such methods are also seen to be less effective in minors. In this work, an automated system

has been proposed and a proof of concept implemented to classify respiratory sounds to help recognise

anomalies which may be the sign/symptom of respiratory diseases. The respiratory audio recordings

obtained from the recording system are converted into spectrograms and fed to CNNs for classification.

The system designed and implemented in this work achieves an accuracy of 80.55% with a sensitivity

of 95.65% and a specificity of 98.80% on the HF Lung dataset on the tasks of multiclass classification

of normal, rhonchi, wheeze, stridor and crackle respiratory sound events.

51



Chapter 6

FMCW Radars

6.1 Working of FMCW Radars

Frequency Modulated Continuous Wave (FMCW) radar is a type of radar system that operates by

continuously transmitting a signal with a frequency that is modulated or varied over time. FMCW

radars are commonly used for various applications, including distance and speed measurements, object

detection, and tracking.

The basic principle of FMCW radar involves transmitting a continuous wave signal with a linearly

increasing or decreasing frequency. This signal is often referred to as the ”chirp.” The chirp signal is

emitted by the radar antenna and travels through space until it encounters objects in its path. When

the chirp signal reflects off an object, such as a target or obstacle, a portion of the signal is reflected

back to the radar antenna. This reflected signal, also known as the ”echo,” carries information about

the distance and velocity of the object. The FMCW radar system simultaneously transmits and receives

signals, allowing it to compare the transmitted chirp signal with the received echo signal. By analyz-

ing the frequency difference between the transmitted and received signals, the radar can determine the

range or distance to the target. The frequency difference, also known as the beat frequency, is directly

proportional to the round-trip distance traveled by the radar signal. By measuring the beat frequency,

the FMCW radar can accurately calculate the distance to the target.

Moreover, FMCW radar can also provide velocity information. Since the transmitted frequency is

continuously changing over time, any change in the frequency of the received signal can be attributed

to the relative velocity between the radar and the target. By analyzing the frequency shift, the radar can

determine the speed or velocity of the target. FMCW radars are particularly advantageous for their abil-

ity to provide range and velocity measurements simultaneously, along with their high range resolution
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and accuracy. They are commonly used in applications such as automotive collision avoidance systems,

traffic monitoring, weather radar, and industrial sensing.

6.2 Advantages

FMCW (Frequency Modulated Continuous Wave) radars offer several advantages that make them

well-suited for various applications. Here are some of the key advantages:

1. Range Resolution: FMCW radars provide excellent range resolution, allowing them to detect and

distinguish between multiple targets that are closely spaced. This high range resolution enables

precise localization and tracking of objects, making FMCW radars suitable for applications that

require accurate distance measurements.

2. Simultaneous Range and Velocity Measurement: FMCW radars can measure both the range (dis-

tance) and velocity of targets simultaneously. This capability is particularly useful in applications

such as automotive radar systems, where knowledge of both the distance and speed of surrounding

objects is crucial for collision avoidance and adaptive cruise control.

3. Frequency Modulation: The use of frequency modulation in FMCW radars provides robustness

against interference and noise. By employing specific modulation techniques, FMCW radars can

distinguish between the transmitted signal and unwanted signals or clutter, resulting in improved

target detection and reduced false alarms.

4. Continuous Waveform: FMCW radars transmit a continuous waveform, allowing for continuous

monitoring of the surrounding environment. Unlike pulsed radar systems that have gaps between

transmitted pulses, FMCW radars provide continuous coverage, enabling real-time tracking and

surveillance.

5. Lower Peak Power: FMCW radars typically operate at lower peak power levels compared to

pulsed radars. This lower power requirement simplifies the design and reduces the complexity

and cost of the radar system. It also makes FMCW radars suitable for applications where power

consumption and electromagnetic compatibility are important considerations.

6. Reduced Interference: FMCW radars are less susceptible to interference from other radar systems

or electromagnetic sources operating at different frequencies. The frequency modulation used in
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FMCW radars allows them to operate concurrently with other radar systems without significant

interference, making them suitable for crowded electromagnetic environments.

7. Compact and Lightweight Design: FMCW radars can be implemented using compact and lightweight

hardware components. The continuous waveform and lower power requirements enable the use

of smaller antennas and more efficient signal processing algorithms. This compact design makes

FMCW radars suitable for applications where size, weight, and power constraints are important,

such as in portable devices or unmanned aerial vehicles (UAVs).

6.3 Challenges

While FMCW (Frequency Modulated Continuous Wave) radars offer several advantages, they also

come with certain challenges and disadvantages. Here are some of the key considerations:

1. Doppler Ambiguity: FMCW radars suffer from Doppler ambiguity, which means they cannot

accurately determine the velocity of a target if it exceeds the maximum measurable velocity

range. This limitation arises due to the finite frequency sweep range of the radar signal. Spe-

cial techniques, such as multiple frequency ramps or complex signal processing algorithms, may

be required to mitigate this issue.

2. Range-Doppler Coupling: FMCW radars exhibit range-Doppler coupling, which means that

changes in target distance can affect the measured velocity and vice versa. This coupling can

introduce errors in target tracking and velocity estimation, especially when dealing with dynamic

or rapidly changing scenarios.

3. Frequency Nonlinearity: The frequency modulation in FMCW radars relies on the assumption

of linear frequency sweep. However, in practice, there can be non-linearities in the frequency

response of the radar system, which can distort the received signal and affect the accuracy of

range and velocity measurements. Calibration and compensation techniques may be necessary to

address these non-linearities.

4. Interference and Clutter: FMCW radars can be susceptible to interference and clutter from other

radar systems, sources of electromagnetic radiation, or environmental factors. These unwanted

signals can degrade the radar’s performance, leading to false detections or reduced sensitivity.
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Advanced signal processing techniques, such as adaptive filtering or interference rejection algo-

rithms, are employed to mitigate these effects.

5. Limited Range and Penetration: FMCW radars may have limitations in terms of maximum range

and penetration capability. The range is typically limited by the power and sensitivity of the radar

system, as well as environmental factors such as atmospheric absorption. Additionally, FMCW

radars may struggle to penetrate certain materials, such as dense foliage or walls, which can limit

their effectiveness in certain applications.

6. Cost and Complexity: Implementing FMCW radar systems with high-performance capabilities

can be complex and costly. Sophisticated hardware components, precise frequency modulation

schemes, and advanced signal processing algorithms are required to achieve accurate and reliable

measurements. This complexity can increase the overall system cost and require expertise in radar

design and implementation.
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Chapter 7

Circuits for Frequency Modulated Continuous Wave Chirp Synthesizers

in mmWave Radars

7.1 Introduction

The frequency modulated continuous wave (FMCW) technique has gained significant popularity in

recent years, particularly in the 76-81 GHz band mmWave radar applications. It is highly regarded for

its ability to deliver precise, accurate, and wide bandwidth performance for various applications such

as autopilot and advanced driver assistance systems (ADAS)[36]. In ADAS applications, an FMCW-

based mmWave radar, as depicted in Fig. 7.1, utilizes frequency chirps generated by a chirp synthesizer.

These chirps, known as TX chirps, are transmitted towards the target object. The radar then receives

the reflected signals, referred to as RX chirps, after a time delay. By mixing the RX chirps with the

TX chirps, an intermediate frequency (IF) signal is produced. This IF signal is further processed using

digital signal processing (DSP) techniques to estimate crucial parameters like object range, velocity, and

angle of arrival.

In the FMCW technique, as illustrated in Fig. 7.2, a chirp is created by continuously varying the

transmitted frequency from the radar. The chirp bandwidth (BWch) represents the difference between

the maximum (fmax) and minimum (fmin) radiated frequencies, while the chirp period (Tm) signifies

the duration required to generate the desired BWch. For ADAS applications, a vital component called

the chirp synthesizer is employed in FMCW radars. This block is responsible for generating low-noise

chirps with a high BWch (up to 4 GHz) in a short chirp period (Tm) of less than 100 microseconds.

Additionally, it is crucial for the frequency sweep (fmin to fmax) to exhibit high linearity to ensure

improved spectral purity and reduced communication errors[37].
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Figure 7.1: mmWave FMCW based radars in ADAS applications

Figure 7.2: FMCW chirp characteristics
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Figure 7.3: PLL based chirp synthesizer
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Figure 7.4: Noise sources in LC VCO [42]
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In recent times, there has been a surge of reported Phase Locked Loop (PLL) based chirp synthesiz-

ers designed for FMCW mmWave radars [38]. Fig. 7.3 illustrates the configuration of an FMCW chirp

synthesizer, wherein a frequency f0 is synthesized within a PLL using a voltage-controlled oscillator

(VCO). This frequency is then multiplied by a factor N to generate a 76-81 GHz signal. It is important

to note that directly generating a 76 GHz frequency is prone to vulnerabilities arising from parasitic

values. To ensure greater stability and reduced phase noise of the chirp signal in the 76 GHz band, a

multiplier (N = 2, 3, or 4) is employed. The VCO serves as a critical component in generating the

mmWave chirp signal with high fidelity. Fig. 7.4 showcases a conventional cross-coupled LC oscillator

topology, along with the primary noise sources that cannot meet the stringent phase noise requirements

at mmWave frequencies (above 10 GHz) [39], [40]. Therefore, in pursuit of building VCOs with low

phase noise for 76-81 GHz FMCW chirp synthesizers, this study presents the following: 1) a compre-

hensive analysis of an mmWave VCO topology incorporating a coupled transformer tank load, 2) a low

phase noise VCO topology for the frequency range of 18.98-20.46 GHz, 3) the implementation of the

proposed VCO using 65 nm CMOS technology, and 4) post-layout simulation results that validate the

effectiveness of the proposed low phase noise mmWave VCO topology. The multiplier based archi-

tecture also necessitates a multi-modulus programmable divider capable of producing a wide range of

divide ratios with high precision to allow for fine frequency resolution. The divider is crucial in gen-

erating chirp signals continuous in time with the help of an established negative feedback loop. In this

work, we present - 1) the design of a multi-modulus programmable frequency divider with a wide divide

ratio of 256-511 capable of dividing mmWave frequencies near 20 GHz to conventional on-chip crystal

oscillator frequency range (10’s of MHz), 2) implementation of proposed multi-modulus divider design

in 65 nm CMOS technology and 3) its schematic simulation result.

This chapter is organised as follows: In Section 7.2, the proposed mmWave (20 GHz) VCO topology

is presented and Section 7.3 details the multi-modulus divider topology and design methodology. The

circuit implementation & simulations results are presented in Section 7.4 and conclusion is presented in

Section 7.5.

7.2 Proposed VCO Topology

In this work, the current reuse VCO topology shown in Fig. 7.5(a), as proposed in [48] and [49] is

employed. This topology utilizes a transformer as the load tank of the VCO, with a turn ratio (n < 1).
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Figure 7.5: (a) Proposed VCO topology with n < 1 for mmWave operation (b)Transformer based
resonator and its equivalent model

The turn ratio (n) for a multi-turn transformer with a 1 : n configuration can be defined by the following

equation (Eq. 7.1).

n = km

√
Ls

Lp
(7.1)

where, Lp, Ls and km are the primary-side, secondary-side inductors and coupling coefficient , respec-

tively. In Fig. 7.5(a), the primary-side capacitor is denoted as Cp, and the secondary-side capacitor is

represented as Css, both of which are fixed metal-insulator-metal (MIM) capacitors. The varactor Cvar

is utilized to achieve the desired tuning range. The transconductance necessary for initiating the oscilla-

tions is provided by MP and MN . Fig. 7.5(b) displays the electrical equivalent of the transformer [48],

[44]. In this representation, (Cs = Css + Cvar) represents the total capacitance at the secondary-side,

(M = km
√

LpLs) corresponds to the mutual inductance, and rp and rs represent the loss resistance of

Lp and Ls, respectively. In order to achieve reduced phase noise, it is crucial to have a load tank with a

high-Q factor near the frequencies of a pseudo sinusoidal waveform containing f0 and 2f0 components.

The subsequent subsections will describe the design considerations for the low phase noise mmWave

VCO design.

7.3 Multi-Modulus Divider Design Methodology

The proposed multi-modulus frequency divider has a cascade of eight 2/3 dual modulus cells as

illustrated in Fig. 7.7, the first two stages are realized with CML latch-based prescaler cells and the

later stages are designed with CMOS logic-based prescaler. Each of the CML cells is followed by a
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Figure 7.6: divide by 2/3 cell

CML buffer to ensure sufficient voltage swing to drive the next CML stage. For the transition of CML

logic levels to CMOS, a CML to CMOS converter is placed after the second CML stage and to inhibit

the effect of loading of the later stages, the CML and CMOS stages are isolated using a CMOS tapered

buffer.

7.3.1 2/3 Dual modulus prescaler cell

As shown in Fig. 7.6, the architecture of the prescaler cell consists of 2 main sections - prescaler

logic and end-of-cycle logic. When the input bit P is 0, the end-of-cycle logic part is inactive while

the prescaler logic part is active and the prescaler cell divides by 2 using the two D-latches, forming a

D-flipflop, with the negated output (Q) given as input (D) to the flipflop. When the input bit P is 1, if

the input Modin is high, then the later part becomes active and the whole cell divides by 3. During this

cycle Modin is propagated to the output signal Modout for modulus control to the previous prescaler

cell. If the input Modin is low, the end of cycle part becomes inactive and the prescaler cell divides by

2.
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Figure 7.7: Proposed MMFD comprising of a cascade of eight 2/3 dual modulus prescalers.

(a) (b)

Figure 7.8: (a) CML Latch (b) CML latch integrated with AND gate

7.3.2 CML latch and buffer

Fig. 7.8(a) shows the schematic of the CML D-latch capable of two modes of operation - signal

tracking and signal holding. These modes are decided by the input differential clock signal (Clk) given

at the gates of the MOSFET’s M1 and M2. When the Clk signal is high, the latch goes into the tracking

phase activating the MOSFET’s M3 and M4 and the output Q is equal to the input D. When Clk is low,

the latch switches to the hold state activating the MOSFET’s M5 and M6 which retains the value of

output Q. The latch operates well when satisfies the condition gm4R (gain of the tracking pair) ≥ 1 and

accordingly the suitable value of load resistance R is selected. If the gain is less than 1, then when the

MOSFET’s M5 and M6 are activated in the hold state, the previous state of Q cannot be retained. In the

prescaler cell shown in Fig. 7.6, the latches are preceded by an AND gate, so for improved performance

and to avoid the effects of delay in the circuit, the AND gate is integrated with the CML D-latch as

shown in the Fig. 7.8(b) where A and B are the inputs of the AND gate instead of an external CML

based AND/NAND gate[4]. The CML latch does not give a complete rail-to-rail voltage swing, it is
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Figure 7.9: CML buffer architecture

around 4VTH . Buffers are used to polish and maintain the voltage swing of the signal to be able to drive

the other stages. Fig. 7.9 shows the schematic of a CML-based buffer which outputs the input signal

with restored voltage levels for the given input differential signal. The capacitances Cd are placed to

diminish the effects of input-output coupling which neutralises the circuit. The MOSFET M1 provides

input-independent current biasing to the circuit with the help of VBIAS . For improved performance of

the buffer, the load resistances of this buffer have to be small to reduce the RC delay of the circuit which

in turn increases the bandwidth of operation.

7.3.3 CML to CMOS converter

CML logic-based buffer gives a differential output with low voltage swing which cannot drive a

CMOS logic-based prescaler. So, a CML to CMOS converter as shown in Fig. 7.11 is inserted in

between as shown in Fig. 7.7 which takes in the differential input signal (In, In) with low voltage

swings and gives output signal (Out,Out) with full rail-to-rail voltage swing as using current mirrors.

Table 7.1 shows the W (µm)
L(µm) ratios of all the MOSFET’s (M1−12) and the bias current (IBIAS) [59].

7.3.4 CMOS Latch and buffer

After the initial stages of CML logic-based prescaler cells and buffers, the frequency of operation

of the circuit is lowered below 6 GHz. So for better performance of the circuit with maximum voltage
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Figure 7.10: Transient plots of CML latch when given clock signal of frequency 5 GHz and data signal
of frequency 10 GHz.

swings, CMOS logic-based prescalers are implemented depicted in Fig. 7.12(a). It is based on D-latch

which is made using CMOS NAND gates. These prescalers give full rail-to-rail voltage swing outputs

but that may not be sufficient enough to drive huge loads due to insufficient flow of current. So, it is

often required to have inverter buffer chains with appropriate sizing based on their electrical effort to

isolate the stages and inhibit the loading effects. Fig. 7.12(b) shows the schematic of a 2-stage tapered

buffer consisting of two inverters - one of minimum size and the other 4 times the minimum size which

will be able to drive the load of the corresponding next stages in the divider chain.

7.4 Implementation & Simulation Results

7.4.1 Low Phase Noise VCO

This subsection presents the implementation details and simulation results of the proposed custom-

designed transformer and complete VCO in 65nm CMOS process.

The transformer was designed using ASITIC and further optimized in HFSS to achieve a high Q

factor in the mmWave frequency range. The designed transformer, as depicted in Fig. 7.13(a), has Lp =
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Figure 7.11: CML to CMOS converter

M5,6 4/0.06
M7−12 5/0.06
M1−4 2/0.06
IBIAS 1 mA

Table 7.1: Transistor Sizing

(a) (b)

Figure 7.12: (a)CMOS D-latch (b) CMOS tapered buffer
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Figure 7.13: (a) Specifications of custom-designed transformer with n < 1 in HFSS (b) Layout in 65
nm CMOS technology (TSMC) of the proposed design

Figure 7.14: Post layout simulation results showing (a) phase and (b) magnitude values of transformer
with Q2 and Q1 values
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Figure 7.15: Post layout simulation results showing transient waveform showing pseudo sinusoid
behaviour at drain nodes and pure sinusoid at gate nodes

Figure 7.16: Post layout simulation results showing tuning range of 18.94 GHz to 20.36 GHz
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Figure 7.17: Post layout simulation results showing phase noise of -117.98 dBc/Hz at 1 MHz offset
from center frequency of 18.94 GHz

Figure 7.18: Post layout simulation results showing phase noise across tuning range
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Figure 7.19: Post layout phase noise variation at 1 MHz offset with +-10% variation in supply voltage

Figure 7.20: Post layout phase noise variation at 1 MHz offset across process corners

70



Figure 7.21: Post layout phase noise variation at 1 MHz offset with variation in temperature from
-40◦C to 120◦C

Parameters [51] [52] [53] [54] [55] [56] This Work
Measured /
Simulated

Measured Measured Measured Measured Measured Measured Simulated

Technology 65 nm CMOS 65 nm CMOS 65 nm CMOS 180 nm CMOS 22 nm FD-SOI 65 nm CMOS 65 nm CMOS
Supply Volt-
age (V)

0.48 1 1 NA 0.8 0.6 1.1

Frequency
(GHz)

25.48-29.92 24.62-28.66 20.7-28 17.5 24.9 25 18.94-20.36

Power Con-
sumption
(mW)

4 9.7-10.5 12.65-15.12 2.3 8.8 4.8 13.78

Phase Noise at
1MHz offset
(dBc/Hz)†

-115.27 -111.4 -107.9 -110.77 -110.2 -110 -117.98

FoM (dBc/Hz)
†⋄

191.6 189.4 184.75 191.95 188.6 191.2 192.13

†Estimated from plots
⋄FoM = −PN + 20log10(flo/∆f)− 10log10(PDC/1mW )

Table 7.2: Performance Summary and Comparison with State of the Art
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91 pH and Ls = 338.27 pH, ensuring high Q factors for improved phase noise performance. Schematic

and post-layout simulations were performed using the S-parameter file generated by HFSS. Fig. 7.13(b)

illustrates the implementation of the proposed VCO in a 65nm CMOS process, where the schematic

simulations indicate a current consumption of 12.52 mA from a 1.1 V supply.

In Fig. 7.14, the phase and magnitude plots of the transformer show Q1 = 11.64 and Q2 = 23.79,

demonstrating a significant Q2

Q1
ratio for improved phase noise performance. Fig. 7.15 presents the

transient waveforms obtained at each of the primary and secondary coil nodes, where VDN and VDP

exhibit pseudo-sinusoidal behavior, and VGN and VGP comprise the 1st and 2nd harmonics of the drain

node voltages, respectively. The transformer’s passive gain amplifies the 1st harmonic and compresses

the 2nd harmonic, resulting in sinusoidal voltages. The phase and amplitude mismatches between the

two terminals caused by parasitics can be rectified through optimization of transistor sizing to ensure

matching of harmonic peaks.

In post-layout simulations, as shown in Fig. 7.16, the tuning range of the VCO is 1.42 GHz (18.94 -

20.36 GHz), slightly lower than the 1.48 GHz (20.48 - 21.96 GHz) achieved in schematic simulations.

This decrease in operating frequency is attributed to the presence of parasitic capacitances. However, it

is accompanied by an improvement in phase noise performance, as evidenced by a change from -115.36

dBc/Hz at a 1 MHz offset from 20.48 GHz in schematic simulations to -117.98 dBc/Hz at a 1 MHz

offset from 18.94 GHz in post-layout simulations. Fig. 7.17 displays the phase noise performance of

the implemented VCO, which reaches -117.98 dBc/Hz at a 1 MHz offset from the oscillation frequency

of 18.94 GHz.

The high Q2

Q1
ratio in the mmWave frequency range, as shown in Fig. 7.18, greatly enhances the

VCO’s phase noise performance, with a phase noise of -117.98 dBc/Hz at fosc = 18.94 GHz and a figure

of merit (FoM) of 192.13 dB. During VCO tuning, the variation in Cvar causes a frequency mismatch

between the 1st and 2nd harmonic impedance peaks, resulting in some flicker noise up-conversion and

phase noise degradation. As depicted in Fig. 7.19, Fig. 7.20 and Fig. 7.21, the deviation in phase

noise performance is 1.79 dBc/Hz for a ± 10% variation in supply voltage and 2.76 dBc/Hz across

process corners. The phase noise remains below -115.48 dBc/Hz at a 1 MHz offset for all corners.

Furthermore, the phase noise performance remains consistent across temperatures, with values below

-117.37 dBc/Hz at a 1 MHz offset for temperatures ranging from -40◦C to 120◦C, highlighting the

robustness of the proposed VCO.
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7.4.2 Multi-Modulus Programmable Divider

The VCO of the frequency synthesizer generates an output signal whose frequency modulates lin-

early from 19.25 - 20.25 GHz from a 40 MHz reference crystal oscillator (fref ) which is fed as input

to the proposed frequency divider. According to Eq.?? the divider can achieve a wide division ratio (N)

ranging from 256 to 511 i.e, it can operate well for input frequencies varying from 10.24 to 20.44 GHz.

For specific combinations of the digital control bits, the division ratio can be restricted to 481.25-506.25.

Table 7.3 shows the digital control bit sequence ([P0, P1, · · · , P7]) that is required to get 40 MHz

(fref ) at the output of divider for input frequency varying from 19.24 to 20.24 GHz. The frequency

resolution (F.R) of this architecture of multi-modulus frequency divider can be formulated as

F.R = (∆N)× fref (7.2)

∆N is the minimum increment of the division ratio by varying the digital control bits. From Eq. ??

considering all Pi to be constant binary bits, ∆N is equal to 1 and hence F.R = fref = 40 MHz. So,

to achieve fine resolution, ∆N should be less than 1 i.e., the division ratio of the divider should be

fractional. For a N/N + 1 dual modulus prescaler divider when the digital control bit is 0 or 1, the

divider divides by either N or N + 1 respectively. To have a fractional division ratio N + F , where F

is the fractional part, the input bit code word should be modulated such that it divides by N for α cycles

of Tref and by N + 1 for β cycles of Tref where Tref is the time period of the reference signal. The

division ratio thus can be formulated as -

N + F =
α

α+ β
(N) +

β

α+ β
(N + 1) (7.3)

Depending on the fraction F required, the values of α and β can be chosen accordingly and so can the

digital control bit be modulated. Now, the minimum increment in the division ratio (∆N ) is F which

determines the frequency resolution of the proposed frequency divider to be -

F.R = F × fref (7.4)

From Eq. 7.4, the minimum fractional change in division ratio needed for a specific frequency resolution

of the synthesizer is obtained and based on that the input bit code word has to be programmed. To

obtain a much finer resolution, more prescaler cells have to be used which means more input bits to be

programmed. This complexity can be reduced by using the RAFS method to determine the variables

α and β and program the divider efficiently. Fractional division ratios can be derived by extending the
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P0 P1 P2 P3 P4 P5 P6 P7 Division ratio Fin(GHz)
1 0 0 0 0 1 1 1 481 19.24
0 1 0 0 0 1 1 1 482 19.28
1 1 0 0 0 1 1 1 483 19.32
. . . . . . . . . .
0 0 0 1 1 1 1 1 504 20.16
1 0 0 0 1 1 1 1 505 20.20
0 1 0 1 1 1 1 1 506 20.24

Table 7.3: Bit code word for required ratio

formula used in Eq. 7.3 to

N + F =
c1α1 + c2α2 + · · ·+ cn−1αn−1 + cnαn

α1 + α2 + · · ·+ αn
(7.5)

where αi determine the number of cycles of Tref the divider divides by the corresponding division ratios

ci. From Eq. 7.5 (Σαi)Tref determines the total simulation time and for it to be 1 µs, the total number

of cycles of Tref is

α1 + α2 + · · ·+ α26 = 40. (7.6)

Using Eq. 7.5 and Eq. 7.6, based on the division ratio required for a given input frequency, one set of

values of [α1, α2, · · · , α26] can be obtained which determines the duration of each division ratio and

accordingly set the input bit code word P which is generated using a Σ−∆ modulator.

The proposed multi-modulus frequency divider shown in Fig. 7.7 has been designed and simulated

in a 65 nm CMOS process. The divider achieves a frequency resolution of 1 MHz by modulating the

digital control bits according to the method discussed in section IV by consuming a power of 14.1 mW

for a supply voltage of 1.2 V. Fig. 7.10 shows the transient response of the CML latch when given clock

signal of frequency 5 GHz and data signal of frequency 10 GHz. Fig. 7.22(a) shows two 2/3 prescaler

cells in cascade employing CML topology. Each of the prescaler cells is followed by a CML buffer.

This divider can realise all the division ratios from 4 (2n) to 7 (2n+1 − 1) based on the digital control

bits ([P0, P1]) as shown in Fig. 7.22(a). The transient response plots of the divider output (Fout) have

been illustrated in Fig. 7.22(b) for an input sinusoidal signal (Fin) of frequency 19.25 GHz.

Fig. 7.23 shows the digital control bits ([P0 to P4]) which have been modulated to achieve the

required fractional division ratio (N + F) for different input frequencies. The other input bits ([P5 to P7])
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(a)

(b)

Figure 7.22: CML logic based 2 stage 2/3 prescaler cell showing frequency division (4-7) for given
input signal Fin = 19.25 GHz
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Parameters [60]’2010 [61]’2019 [62]’2021 [63]’2021 [15]’2015 This work
Operating frequency 77-77.6 GHz 26∼44 GHz 22 GHz 13∼18 GHz 17.9 GHz 19.25∼20.25 GHz
Technology 90 nm CMOS 55 nm 180 nm SiGe BiCMOS 65 nm CMOS 40 nm CMOS 65 nm CMOS
Supply Voltage 1.2 V 1.2 V 3.3 V 1.2 V 1.1 V 1.2 V
Power consumption 100 mW 15.2 mW N/A 42 mW 245 µW 14 mW
Division ratios 1024 256∼508 1∼511 16∼255 32/33 256∼511

Table 7.4: Performance comparison of MMFD operating around 20 GHz

Figure 7.23: Input bit code word for different input frequencies (a) 19.239 GHz (b) 19.241 GHz (c)
20.239 GHz (d) 20.241 GHz
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Figure 7.24: (a) Transient plots of various input signals (b) DFT plot for the input signals and 40 MHz
output signal. (c) Transient response of the output signal.

Figure 7.25: Phase noise of the divider measured at an offset of 2 kHz
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(2).jpg (2).bb

Figure 7.26: DFT plot of output across different process corners

Figure 7.27: Power distribution across
various blocks

Blocks Power (mW)
CML - Cell 1 4.06
CML - Cell 2 4.16

CML to CMOS 2.46
CMOS - Cell 3 0.8
CMOS - Cell 4 0.011
CMOS - Cell 5 0.0015
CMOS - Cell 6 0.0014
CMOS - Cell 7 0.02
CMOS - Cell 8 1.1

Table 7.5
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are set to 1 according to Table 7.3. Fig. 7.24 shows the transient and DFT plots of the input and output of

MMFD for input frequencies of 19.239, 19.241, 20.239, 20.249 GHz achieving an output of frequency

40 MHz. The phase noise of a divider with a division ratio of N changes from the ideal (PN = -110

dBc/Hz) by 10 log10N (∆PN ). To measure ∆PN the proposed divider is given a sinusoidal signal of

frequency 20 GHz to output a signal of frequency 40 MHz (division ratio (N) = 500). ∆PN turns out

to be nearly 30 which satisfies this criterion and produces a phase noise of -146 dBc/Hz at an offset of

2 kHz as shown in Fig. 7.25. Fig. 7.26 shows the DFT plot of the divider output across various process

corners - FF, FS, SF, TT and SS. For the SS corner, more current is required in the CMOS tapered

buffers to drive the load so the supply voltage is increased to 1.5 V. Fig. 7.27 shows the distribution

of the total power consumed by all the blocks - CML-based 2/3 divider cells, CMOS-based 2/3 divider

cells and the CML to CMOS converter and the same has been tabulated in Table 7.5.

7.5 Summary

This chapter presents the design and analysis of a transformer tank-based voltage controlled oscil-

lator (VCO) operating in the mmWave frequency range, specifically targeting 77 GHz FMCW chirp

synthesizers. The main focus of the design is to achieve low phase noise performance. To accomplish

this, a unique approach of utilizing a transformer with a turn ratio of less than 1 (n ¡ 1) is proposed,

and a thorough analysis supported by simulation results is provided. The proposed VCO design is

implemented in a 65 nm CMOS technology. The post-layout simulations demonstrate excellent per-

formance, with a figure-of-merit (FoM) of 192.13 dBc/Hz and a phase noise level of -117.98 dBc/Hz

at a 1 MHz offset while operating at a frequency of 18.94 GHz. The VCO achieves a tuning range of

1.42 GHz (18.94-20.36 GHz) and consumes a power of 13.78 mW from a 1.1 V supply. These results

highlight the effectiveness of the proposed design in achieving the desired low phase noise performance

for mmWave applications. This chapter also presents a multi-modulus programmable frequency divider

for a 77-81 GHz FMCW radar transceiver. Eight 2/3 dual modulus prescalers in cascade have been used

to realize a wide division range of 256-511 which upon programming the input code word appropriately

can be modelled to generate output VCO frequencies varying linearly from 19.25 to 20.25 GHz with

a fine-tuning range of 1 GHz. The proposed divider achieves a frequency resolution of 1 MHz shown

by portraying frequency and transient responses for 19.239, 19.241, 20.239, 20.241 GHz and the cor-

responding input bit patterns. The phase noise measured at the output of the divider is -146 dBc/Hz
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at an offset of 2 kHz. These results have been validated and verified over various process corners. A

significant amount of power can be optimized using the proposed design for the frequency divider.

80



Chapter 8

CNN based Portable and Real Time Object Classification System using

mmWave Radar Point Cloud Data for Road Safety Applications

8.1 Introduction

Recent advancements in millimeter-wave (mmWave) radar technology have opened up new possi-

bilities in various fields. These radars, characterized by their high chirp bandwidth and slope, offer

exceptional accuracy in detecting the range, velocity, and angle of objects [37]. As a result, they find

applications in diverse areas such as road safety infrastructure, healthcare monitoring, security gate

monitoring, gesture recognition, vibration monitoring, and fitness tracking [64]-[68].

When it comes to road safety and monitoring infrastructure, conventional technologies rely heavily

on cameras and lidar systems. However, these systems often struggle to perform optimally in challeng-

ing weather conditions such as heavy rain, snow, or fog [69], [70]. One of the significant advantages of

FMCW radars is their ability to penetrate fog, smoke, and snow with ease [73], [74]. This feature makes

them highly suitable for widespread deployment in road monitoring applications. Alert systems utiliz-

ing FMCW-based object classification techniques can be employed to notify drivers, pedestrians, and

traffic control rooms under adverse weather conditions, thereby maintaining safety even in conditions

of poor visibility. Furthermore, the low cost and ease of implementation of FMCW radars make them

an ideal choice for large-scale deployment in road monitoring, as depicted in Fig. 8.1. By incorporating

FMCW radars into road safety infrastructure and monitoring, the risk of accidents can be reduced, and

overall safety for drivers, passengers, and pedestrians can be improved. Road safety audits play a vital

role in developing safer road networks [71], [72]. The data collected from FMCW radars regarding the

movements of different vehicles and pedestrians in various areas can provide valuable insights for en-

gineers in designing safer road networks that cater to specific vehicle classes, ensuring smoother traffic
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Figure 8.1: Radar based systems for traffic assistance under poor visibility conditions

flow. Compared to ultrasonic radars, FMCW radars offer higher spatial resolution while being compact

and lightweight, making them an excellent choice for developing road safety audit tools in conjunction

with existing CCTV cameras.

Numerous studies have explored object classification techniques using FMCW radar data in com-

bination with machine learning/artificial intelligence (ML/AI) methods. SVM-based human-vehicle

classification systems utilizing FMCW radars were presented in [75], [76], and [77]. These approaches

extracted features from range and velocity profiles of targets, which were then used by the SVM for

classification. While this approach suffices for distinguishing humans and vehicles since their velocities

differ significantly in most cases, it may not be suitable for classifying vehicles into specific categories

such as two-wheelers and four-wheelers, as their velocities can be similar. A more effective approach for

object classification is the utilization of convolutional neural networks (CNNs), a type of deep learning

network. Several studies [78], [79] have demonstrated that CNNs trained on micro-Doppler signatures
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and range-angle heatmaps can achieve high accuracy in object classification. However, these techniques

rely on raw radar data, which can be challenging to access and may necessitate expensive data acquisi-

tion boards, making them less cost-efficient. Additionally, the use of data acquisition boards can impede

real-time functionality, which is crucial for certain applications. This work proposes a proof of concept

for a real-time target classification system based on a low-cost 77 GHz FMCW radar sensor.

The chapter is organized as follows: The architecture of the proposed system is presented in Section

8.2. In Section 8.3, the data collection setup and dataset are discussed initially, followed by a detailed

explanation of the methodology used to choose the most suitable convolutional neural network (CNN)

for this work. Verification results for the chosen CNN model are also provided in this section. Section

8.4 details the system implementation, including the overall system accuracy and corresponding results.

Discussions on future related works are also presented in this section. Finally, conclusions are drawn in

Section 8.5.

8.2 Overview of Proposed Architecture for Object Classification

The classification of objects using FMCW radar can be achieved using various commercially avail-

able radars such as those by IWR [82], Analog Devices [83], and Infineon [84]. This can be accom-

plished by utilizing either the data from the digital signal processor (DSP) or the raw data from the

analog-to-digital converter (ADC).

One commonly employed approach for object classification involves the utilization of Fast Fourier

Transform (FFT), as illustrated in Fig. 8.2. FFT is performed on the raw data acquired using a data

acquisition board, which generates frequency spectra from which information about the range, velocity,

and angle of the target can be extracted [68]. This information is then utilized to generate a point cloud

that is employed for object classification. However, the FFT-based strategy has certain limitations,

including increased latency and the cost associated with acquiring and processing raw data. While this

approach offers high accuracy, implementing it in a real-time system can be challenging.

The proposed methodology, depicted in Fig. 8.3, eliminates the need for a separate data acquisition

unit. Instead, it leverages the integrated radar digital signal processor (DSP) to directly obtain point

cloud data. This eliminates the requirement for separate raw data acquisition and processing. The point

cloud data is acquired using the Texas Instruments (TI) mmWave ROS package [86] integrated with the

Robot Operating System (ROS), a specialized set of software libraries and tools designed for robot and
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Figure 8.2: Commonly used FFT based object classification system

sensor applications. This real-time data collection and processing capability enables the development

of a real-time object classification system. The acquired point cloud data is preprocessed to generate

3D point cloud images, which are then used for feature extraction by a lightweight convolutional neural

network (CNN) model. This enables the model to classify objects into different classes.

By adopting this approach, the overall system cost and latency are reduced, and the system becomes

more portable. To further minimize latency, it is crucial to optimize the CNN model in terms of mem-

ory and processing requirements while maintaining high accuracy. The following section outlines the

methodology employed to select an appropriate CNN model that satisfies these criteria.

8.3 Data Collection and CNN-based Classifier

Convolutional Neural Networks (CNNs), a type of artificial neural network, have gained widespread

use in image classification tasks due to their ability to extract relevant features from image data. How-

ever, deep learning-based CNNs often consist of numerous layers and parameters, demanding significant

computing resources for training and deployment. When it comes to classifying point cloud images on

mobile platforms, these models need to be optimized to meet accuracy, memory, and processing require-

ments within the constraints of limited resources.

This section introduces various CNN options that can be employed for point cloud image-based clas-

sification. The selection process involved conducting experiments on the collected dataset to validate the
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Figure 8.3: Proposed system for object classification

suitability of each model. Ultimately, the most suitable model for this study was chosen after extensive

deliberation on its feasibility and compatibility with the given constraints.

8.3.1 Data Collection

The data collection setup consists of TI’s IWR1843BOOST board connected to a laptop running the

TI mmWave ROS package and the data collection scripts. Table 8.1 shows the configuration of different

radar parameters.

In the data collection process, depicted in Fig. 8.4, objects of interest were positioned in front of

the setup, and the radar was either moved around the object or the object itself was moved in front of

the radar. This approach allowed for the collection of point cloud data from various angles, ensuring

diversity in the dataset. The point clouds were generated using ROS on a laptop, and a Python script

running on the same laptop saved the respective point cloud data as a Numpy array file. The aim was to

create a dataset that encompasses a wide range of environmental conditions, enabling robust training of

the CNN model and accurate classification of objects under different scenarios.
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Figure 8.4: Dataset collection for all classes

Figure 8.5: Different environments for data collection (a) normal light (b) rainy condition (c) poor light
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Radar Parameter Value
Transmit Antenna 3
Receive Antenna 4

Starting Frequency 77 GHz
Stop Frequency 80.6 GHz

Bandwidth 3.6 GHz
Frequency Slope 29.982 MHz/µs

Chirps Per Frame 64
Sampling Rate 6 Msps

Samples Per Chirp 128
Frame Rate 10 fps

Table 8.1: Radar configuration parameters

Data collection took place at multiple locations within the institute campus and the surrounding

roads. Fig. 8.5 illustrates the various experiments conducted to record data in different circumstances,

including simulated rain (using a water pipe), strong winds, and low-light conditions. The dataset

comprises grayscale images, representing the projection of the three-dimensional point clouds onto

a two-dimensional plane. The focus is solely on the location of the points within the point cloud,

disregarding the background pixels.

8.3.2 CNN Choices for Point Cloud Image Based Classification

Several CNN architectures are available for point cloud image classification, including VGG16[94],

VGG19, ResNet-50, ResNet-18[95], Squeezenet[96], MobileNetV2[97], YOLO, and AlexNet, among

others. However, certain models like VGG16, VGG19, and YOLO require significant computational

resources, making them unsuitable for portable systems with limitations on processing power and mem-

ory. On the other hand, ResNet-18, Squeezenet, and MobileNetV2 are relatively lightweight models

that offer acceptable accuracy by employing various techniques.

The data was preprocessed and divided into training and testing sets. To facilitate this, the images

were converted to grayscale, and the background pixels were set to zero. For testing purposes, twenty

randomly selected images from each class were reserved, while the remaining data was split into an

80:20 ratio for training and validation. A mini-batch size of 32 was used during training, and the

learning rate was fixed at 0.05 for 100 epochs.

There is a class imbalance issue, with classes such as truck, van, and sedan having fewer samples

compared to the other classes. To address this, a sampler was employed to balance the batches used
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Figure 8.6: Proof of concept for proposed portable system

for training. Image augmentation techniques were applied, including rotating each image by a small

angle around the z-axis and flipping images horizontally. Additionally, weighted loss functions were

implemented, where the weights were inversely proportional to the number of samples in each class.

These measures were taken to prevent the model from overfitting to classes with a larger number of

samples, ensuring accurate and reliable results for all classes.

Both MobileNetV2 and ResNet-50 demonstrated satisfactory accuracy across all classes. However,

SqueezeNet exhibits low accuracy, particularly for vans, and inferior performance for trucks and hatch-

backs. MobileNetV2 requires significantly less memory and time for evaluating a given input in com-

parison to ResNet-50. Hence, MobileNetV2 is selected as the optimal choice of CNN-based classifier

for this portable object classification system.

8.4 Hardware Implementation and Results

The proof-of-concept implementation for object classification is depicted in Fig. 8.6. The sensing

component of the system utilizes TI’s IWR1843BOOST [82], an evaluation board featuring a single-

chip 76-GHz to 81-GHz industrial FMCW radar sensor. The received signal is processed by the on-chip

DSP to generate point cloud data. The radar board is connected to a laptop running ROS, with the data

being captured using TI’s mmWave radar ROS node and published as a ROS topic. A Python script
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Figure 8.7: SUV and Sedan classification by the system

captures the data from this specific ROS topic and further processes it by converting it into a Numpy

array that consists solely of the point cloud data. 3D point cloud images are then generated from this

data using Matplotlib.

The laptop and a Raspberry Pi 4 Model B (RasPi) are connected over a wireless network. Data

transfer is facilitated through an HTTP server. The trained CNN model is loaded onto the RasPi, which

receives the point cloud images over the wireless network and performs classification using the trained

model. It is important to note that the current limitation in terms of overall portability arises from the

lack of support for ROS 2 versions by the TI mmWave radar ROS package, as well as the discontinuation

of ROS 1 for newer versions of Ubuntu that are compatible with the latest RasPi boards. This issue will

be addressed once the TI mmWave radar ROS package is ported to ROS 2.

To evaluate the proposed methodology, Table 8.2 provides a comparison with other similar works

focusing on on-road object classification. This work achieves sufficinetly high accuracy of 85% across

3 classes namely human, 2-wheelers and 4-wheelers while optimizing the classification system for a

portable platform.

8.4.1 Limitations & Future Works

During the development of this system, a significant challenge was the lack of an available 3D radar

point cloud datasets for benchmarking the hardware and models. To overcome this limitation, a custom
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Ref. System Description Type of Input
Type of AI/ML

Model
Model Size(MB)

No. of

Classes
Avg. Accuracy

[87]
1) Camera

2) mmWave Radar (24 GHz)

1) Radar Data

2) Video Data
Alex-Net CNN 233 6 98 %

[88] 1) mmWave Radar (77 GHz)
1) 2D Radar Point

Cloud Data
SVM - 2 94.5%

[91] 1) mmWave Radar (77 GHz)
1) Range-Angle

Heatmap
YOLO 235 3 94.53%

[93]
1) Camera

2) mmWave Radar (77 GHz)

1) Camera Data

2) Azimuth Angle

3) Distance

4) Radar Cross Section

YOLO &

Custom NN
- 3 60.0%

This Work 1) mmWave Radar (77 GHz) 1) 3D Point Cloud Image MobileNetV2 10.65 3 85%

Table 8.2: Comparison with other recently reported related works

dataset is being created for the purpose of training and testing. Another important constraint is the

unavailability of compatible ROS packages, which hindered the realization of a fully portable system.

Future endeavors for this project will involve expanding the dataset further, incorporating adaptive

learning techniques to enhance the robustness of the CNN model, and ultimately achieving the develop-

ment of a fully portable system.

8.5 Summary

This chapter describes a proof of concept for a portable object classification system suitable for on-

road deployment. The system successfully classified objects into eight different classes with an average

accuracy of 85% across all classes. The utilization of Raspberry Pi (RasPi) ensures the portability and

cost-effectiveness of the system. With further training on extensive and diverse datasets, the system can

be enhanced for deployment in broader areas, expanding its applicability.
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Chapter 9

Conclusion and Future Work

This work presents the design techniques and architectural solutions for VCO, frequency divider

and frequency synthesizer blocks that form an essential sub-system in portable sensing applications.

Proof-of-concept implementations have also been presented for a portable object classification system

for on-road deployment and an automated system for classifying respiratory sounds.

A design technique has been detailed for LC VCO with low gain and reduced gain variation, specif-

ically for highly sensitive quantum sensing applications. A new Figure of Merit (FoM) has also been

defined to capture the effect of variations in the VCO gain on its performance. We have also presented

a 2.87 GHz microwave signal generator (MWG) for CMOS quantum sensing applications based on

NV-ODMR. The proposed MWG offered on-chip programmable sweep capability, eliminating the need

for an external source and reducing power consumption and system complexity. The proposed auto-

mated system for classifying respiratory sounds was designed to help recognize anomalies that may be

signs of respiratory diseases. This system can assist in timely diagnosis and improve the effectiveness

of respiratory disease detection. Focus has also been put on the design and analysis of a transformer

tank-based VCO and multi-modulus frequency divider operating in the mmWave frequency range for 77

GHz FMCW chirp synthesizers. The design aimed to achieve low phase noise performance by utilizing

a transformer with a turn ratio of less than 1. The proof of concept for a portable object classification

system for on-road deployment has also been detailed. The system achieved an average accuracy of

95% across eight different classes of objects utilizing Raspberry Pi (RasPi) to ensure portability and

cost-effectiveness.

The scope of improvement for the presented work includes:

1. Design and development of NV-ODMR system with MWG offering on-chip programmable sweep

capability for accurately measuring magnetic field strengths less than 1 µT .
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2. Design and development of FMCW chirp synthesizer operating in mmWave frequency range of

77-81 GHz.

3. Design and development of a portable object classification system using FMCW radar arrays for

improved classification accuracy.

4. Propose novel CNN architectures specifically for radar point clouds.

5. Propose ensemble modelling strategies for improved accuracy of respiratory sound classification

using characteristics such as MFCC in addition to Mel spectrograms.
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