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Abstract

Protein allostery is a fundamental biological mechanism that plays a pivotal role in regulating various

cellular processes. It allows proteins to change their shape and function in response to specific signals or

ligands. In the context of nucleotide excision repair (NER), proteins involved in the repair process, such

as the Rad4/XPC protein, undergo conformational changes when they bind to damaged DNA, which

begin the lesion excision process by locating the lesion site, which is followed by the recruitment of

other repair factors and facilitates the removal of damaged DNA segments. Essentially, protein allostery

ensures that the repair machinery is only activated when and where it is needed, contributing to the

precision and efficiency of DNA repair processes in cells.

Molecular dynamics (MD) simulations enable the investigation of the conformational changes that

facilitate complex, selective, and biologically significant processes involving proteins binding to a vari-

ety of substrates. Hence, the present work uses MD to study two processes that proteins participate in:

(a) transcription modulation through mediator allostery and (b) locating UV-lesions present in DNA for

their ultimate excision and repair.

F-helices in CAP are able to ultimately recognise and bind to DNA for transcription when they

undergo reorientation after cAMP, and a mediator has situated itself into the binding pockets of CAP.

The present study uses a simulation-based approach to investigate the mechanism of cAMP-induced

changes in the conformation and energetics of F-helices observed during the allosteric regulation of CAP

by cAMP. The free energy profiles obtained by two-dimensional umbrella sampling of CAP and cAMP-

bound CAP provide a detailed picture of the elasticity modifications observed in the DNA-binding

domain of CAP when cAMP is appropriately situated. Residue-wise interaction energy maps w.r.t.

CAP residues under the different conformations of CAP, cAMP-bound CAP, and cAMP-bound DNA-

complexed CAP are created, which ultimately offer clues on the microscopic origin of the inter-subunit

cooperativity and dimer stability of CAP.

UV radiation-induced DNA damage has adverse effects on genome integrity and cellular function.

The most prevalent DNA lesion is the cyclobutane pyrimidine dimer (CPD), implicated in a variety

of genetic skin-related diseases and cancers in humans. Rad4/XPC is a damage-sensing protein that

recognises and helps repair CPD lesions with high affinity. This binding efficiency of Rad4 depends on

how efficiently the BHD2 and BHD3 domains have been associated with the CPD-containing lesion site

of DNA. The present thesis investigates the mechanism, energetics, dynamics, and molecular basis for

this Rad4-DNA association using CPD-containing perfectly matched DNA. This key molecular event

that occurs in NER is studied using suitable reaction coordinates, and the resultant free energy surface

when compared with the same of TTT/TTT mismatched DNA reveals that Rad4 has a higher tendency

to stay in the associated conformation with CPD-containing DNA than TTT/TTT mismatched DNA,

hence having a higher lesion-recognition efficiency on the former than the latter.
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Chapter 1

Introduction

Contents
1.1 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Nucleic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Protein-DNA complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Research Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Allosteric Response of DNA Recognition Helices of Catabolite Activator Pro-

tein to cAMP and DNA Binding . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.2 Energetics-based analysis of CPD-containing DNA binding to Rad4 to com-

mence the NER process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

At the end of the eighteenth century, the biochemical makeup of the animate world was found to be

astoundingly distinct from that of the inanimate world. Antoine-Laurent Lavoisier was one of the first

to identify the sophisticated chemical nature of the animate world and distinguish it from the classical

makeup of the mineral world. He also found out that living matter had an abundance of elements such

as oxygen, nitrogen, carbon, and phosphorus.

All known life forms to date are found to be carbon-based. The tetravalency of carbon has a major

role to play in this. It can form single bonds with hydrogen atoms and both single and double bonds with

oxygen and nitrogen atoms. Moreover, it can form very stable single bonds with up to four other carbon

atoms. Almost all biomolecules stem from hydrocarbons, with hydrogen atoms being replaced by a va-

riety of functional groups that impart specific chemical properties to the molecule, forming various fam-

ilies of organic compounds. A broad spectrum of proportions and configurations enables biomolecules

to fulfil a variety of functions. The four abundant, functionally important and human-relevant classes

of biomolecules are carbohydrates, lipids, nucleic acids, and proteins (Figure 1.1). Carbohydrates are

involved in serving as a source of stored energy, provision of energy through respiration; Lipids consti-

tute the cell membrane, thus responsible for selective acceptance and rejection on the entry of foreign

bodies/biomolecules, act as energy-rich fuel stores, pigments, and intracellular signals; Nucleic Acids

store an organism’s genetic code; Proteins are involved in serving as transporters for moving nutrients

1



Figure 1.1: The ”Big-4” of biomolecules Image borrowed from [1].

and other molecules in and out of cells, the formation of antibodies for immunity against foreign bodies,

possess catalytic activity. The study of biomolecules, aimed at understanding the behaviour of the cell

and the physiological processes that occur, ultimately governing it and thus providing deeper insights

into the functioning of living organisms, is known as biochemistry.

In addition to exploring how these molecules function, interact, and undergo reactions, biochemistry

delves into the pivotal role of genetic techniques in shedding light on various aspects of this field. This

is especially significant since the biochemistry of nucleic acids forms the core of genetics. For instance,

biochemical assays reveal how DNA and RNA participate in processes like replication, transcription,

and translation; biochemical methodologies are used for various applications such as recombinant DNA

technology and gene cloning. Studying living organisms and their immune systems functions has a

near-complete coincidence with biochemistry. Techniques such as X-ray crystallography, nuclear mag-

netic resonance (NMR) spectroscopy, and mass spectrometry used to determine the three-dimensional

structures of proteins belong to biochemistry. Enzyme-catalysed reactions (belonging to the protein

biomolecule class) are what break down and digest drugs in living organisms, thus forming a solid

foundation in pharmacology and pharmacy. Examination of illnesses like inflammation, cellular dam-

age, and cancer involves the increasingly prevalent use of biochemical methodologies [2].

1.1 Proteins

Proteins have a driver’s seat in almost all cellular processes, thus proving their vast coverage of

functionalities. By virtue of this coverage, a need to study multiple proteins is created in order to

explore the molecular mechanism of a biological process. All proteins are basically a sequence of the

same set of 20 most commonly occurring amino acids, linked covalently to each other. These building

blocks help a variety of living organisms adapt and survive in their habitat, such as the production of

feathers in birds, spider webs, rhinoceros horn, the lens protein of the eye, antibiotics, etc. [3].

2



(a) (b)

Figure 1.2: Amino Acids introduction. (a) A skeletal model of a generalized amino acid showing
the amino(green) carboxyl (yellow) and R-groups(red) attached to a central(α)carbon, Image borrowed
from [4], (b) Formation of a peptide bond by condensation: The α-amino group of one amino acid (with
R2 group) acts as a nucleophile to displace the hydroxyl group of another amino acid (with R1 group),
forming a peptide bond (shaded in yellow). Image borrowed from [3].

As early as the eighteenth century, Antoine Fourcroy distinguished the ability of proteins to coag-

ulate or flocculate under treatments with heat or acid, marking the beginnings of protein history [5].

This led to the identification of ubiquitous proteins such as albumin, fibrin, gelatin, and gluten. In 1838,

Jacob Berzelius proposed the name protein to designate the primitive or principal substance of ani-

mal nutrition [6]. This was followed by the discovery of the peptide bond by Emil Fischer and Franz

Hofmeister [7, 8]. In 1934, the first sharp X-ray diffraction pattern for a crystalline protein, pepsin, was

obtained by J. D. Bernal and Dorothy Crowfoot Hodgkin, confirming its compact globular shape and

further discovering the importance of water for maintaining conformational stability. By 1936, all 20

ubiquitous amino acids had been identified. By 1958, a low-resolution crystal structure for myoglobin,

the first folded protein 3D structure, was published [9].

Amino acids form the building blocks of proteins. They are organic compounds that contain amine

(-NH2) and carboxyl (-COOH) functional groups, along with a side chain (R group) specific to each

amino acid. The most prominent amino acids are the α-amino acids, which have both amino and car-

boxyl groups attached to the α-carbon of the structure ( Figure 1.2a). These side-chain groups vary

in structure, size, and electric charge, which influence the solubility of the amino acid in water. All

proteins, irrespective of the complexity of the biological life from which they come, are constructed

from the same ubiquitous set of 20 amino acids. The individual amino acids are usually represented by

either three-letter codes or a single-letter code (Figure 1.3). The side groups (R groups) of amino acids

determine their properties. For instance, glycine has the smallest side chain and thus can be accom-

modated in places inaccessible to other amino acids; it often occurs where peptides bend sharply [2].

During enzymatic catalysis and electron transport in respiring mitochondria, amino acids with charged

side chains function in charge relay systems via the formation of salt bridges [2].

3



Figure 1.3: The set of 20 ubiquitous amino acids.The structural representation of each is displayed,
the name, the single letter notation inside the parentheses and the triple-letter notation are depicted.
An additional information, regarding the nature of side-chain(R group) of each of the amino acids is
mentioned. Acidic denotes amino acids with a net-negatively charged side-chain, basic denotes amino
acids with a net-positively charged side-chain.

A molecule known as a dipeptide results from the condensation reaction of two participating amino

acids. This reaction involves the loss of a hydroxyl ion from the carboxyl group (COOH) of the first

amino acid and a proton from the amino group (NH2) of the second, releasing a water molecule (H2O)

and leading to a peptide bond (-CO-NH-) formation Figure 1.2b). Within this dipeptide, the amino-

terminal(a.k.a. the N-terminal residue) is the amino acid with a free α-amino group; the residue at the

other end having a free carboxyl group is the carboxyl-terminal (C-terminal) residue.

Polymeric forms of peptides include tripeptides (formed when three amino acids are connected by

two peptide bonds), tetrapeptides( linking of four amino acids), pentapeptides (five amino acid linkage),

and so forth. When a few amino acids are joined in this fashion, the structure is called an oligopeptide.

When many amino acids are joined together, the product is called a polypeptide. Although the terms

4



(a) (b)

(c) (d)

Figure 1.4: Levels of structure in proteins. (a) The primary structure consists of a sequence of amino
acids linked together by peptide bonds and includes any disulfide bonds. (b) The resulting polypeptide
can be arranged into units of secondary structure, such as an α-helix or a β- sheet. These 2 major
secondary structures are joined by another secondary structural unit called turns. (c) The helix/sheet
is a part of the tertiary structure of the folded polypeptide, which is itself one of the subunits that
make up the quaternary structure of the protein. (d) When the protein comprises of multiple units that
assemble together, its quaternary structure is formed. In some proteins, pairs of very long α-helices are
interwound in a left-handed sense to form two-chain coiled coils. A typical example is α-keratin, found
in hair, which is also an example of a fibrous protein. An example of globular proteins is haemoglobin.
All images are borrowed from [3].

protein and polypeptide are at times used synonymously, polypeptides generally have molecular weights

below 10,000 Da and proteins have higher molecular weights [3]. Amino acid sequences of proteins are

read from left to right, i.e., from the N-terminal to the C-terminal.

The simplistic way of representing a protein as a sequence of amino acids does not relay the relevant

functional information of a protein completely. The shape of a protein plays a very important role in de-

termining its function. The four levels of protein structure: primary, secondary, tertiary, and quaternary,

need to be understood in order to aptly know how a protein obtains its final conformation (Figure 1.4).

A description of all covalent bonds (mainly peptide bonds and disulfide bonds) linking amino acid

residues in a polypeptide chain constitutes its primary structure (Figure 1.4a). The most important

element of primary structure is the sequence of amino acid residues.

5



Particularly stable arrangements of amino acid residues that form recurring structural patterns are

referred to as the secondary structure of a protein. These structural patterns emerge as the spatial rela-

tionship between the constituent amino acid residues of a protein. The three basic units of secondary

structure are the α-helix, β-strand, and turns. The distinction between residue sequence and secondary

structure came into play when the crystal structure of proteins started to be resolved. Alanine, Leucine

and Glutamine are found more frequently inα-helices whilst Proline, Glycine and Aspargine were found

less frequently than average. Using this analysis of the primary sequence, a helix propensity scale was

derived, which is still used in predicting the occurrence of helices and sheets in folded soluble proteins

[10]. Usually right-handed in nature, the α-helix is the most common structural motif found in proteins;

in globular proteins, over 30% of all residues are found in helices. The regular α-helix has 3.6 residues

per turn, with each residue offset from the preceding residue by 0.15 nm. This helical arrangement of

amino acids exists due to the formation of hydrogen bonds between the backbone atoms. The hydrogen

bonds occur between the backbone carbonyl oxygen (acceptor) of one residue and the amide hydrogen

(donor) of a residue four positions ahead in the polypeptide chain. The arrangement of hydrogen bonds

shows variation in length and angle with respect to helix axes for various kinds of proteins. The β-sheet

was the second type of secondary protein structure identified by the model-building studies of Pauling

and Corey [11]. The backbone of the polypeptide chain is extended into a zigzag rather than a helical

structure and, in turn, is arranged side by side to form a structure resembling a series of pleats. Hydrogen

bonds are formed between adjacent segments of the polypeptide chain. A single β-strand is not stable,

largely because of the limited number of local stabilising interactions. However, when two or more

β-strands form additional hydrogen bonding interactions, a stable sheet-like arrangement is created.

These adjacent polypeptide chains in a β-sheet can be either parallel or antiparallel, i.e., have the same

or opposite N-terminal to C-terminal orientations, respectively (Figure 1.4b). These β-sheets result in

significant increases in overall stability and are stabilized by the formation of backbone hydrogen bonds

between adjacent strands that may involve residues widely separated in the primary sequence. Turns

refer to short segments of amino acids that join two units of secondary structure, such as two adjacent

strands of an antiparallel β-sheet. In some proteins, the proportion of residues found in turns can ex-

ceed 30%, and in view of this high value, it is unlikely that turns represent random structures [12]. The

polypeptide sequence is able to alter its direction, all thanks to the existence of turns. The reverse turns

or bends arise from the geometric properties associated with these elements of protein structure [12].

Tertiary structure describes all aspects of the three-dimensional folding of a polypeptide (Fig-

ure 1.4c). While the secondary structure constitutes the spatial arrangement of adjacent segments of

amino acid residues in a polypeptide, the tertiary structure depicts even longer-range facets of the

amino acid sequence. Interacting segments of polypeptide chains are held in their characteristic tertiary

positions by several kinds of weak interactions (and sometimes by covalent bonds such as disulfide

crosslinks) between the segments [3]. The tertiary structure indicates the manner in which multiple
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secondary structures assemble to form domains and the way in which these domains relate spatially to

one another. A domain is a section of protein structure sufficient to perform a particular chemical or

physical task, such as binding to a substrate or other ligand.

When a protein has two or more polypeptide subunits, their arrangement in space is referred to as

quaternary structure [3]. A number of tertiary structures may fold into a quaternary structure (Fig-

ure 1.4d). In considering these higher levels of structure, it is useful to classify proteins into two major

groups: globular proteins, which have their polypeptide chains folded into a spherical or globular shape,

and fibrous proteins, which have their polypeptide chains arranged in long strands or sheets [12].

Proteins are complex macromolecules tasked with carrying out critical intra- and extracellular pro-

cesses. The cytoskeleton of a cell comprises a dense protein network and is responsible for maintaining

its shape and structural integrity. The scaffolding of elastic movement in muscles is possible due to Actin

and myosin filaments. Haemoglobin transports oxygen, while the circulating antibodies detect foreign

invaders. Enzymes catalyse reactions that generate energy, synthesise and degrade biomolecules, repli-

cate and transcribe genes, process mRNAs, etc. Cells have the ability to detect environmental changes

and act accordingly thanks to the secretion of hormones, which are then detected by receptors situ-

ated on these target cells. Proteins undergo both structural and functional alterations that mimic the

developmental stages of the organisms they belong to [2]. Conformational changes may very well be

allosterically regulated in nature, at times, be responsible for activating or deactivating the protein. For

instance, binding of cylic adenosine monophosphate (cAMP) to Catabolite Activator Protein (CAP)

brings about the rotation of the α-helices of the latter, which enables a promoter-DNA sequence to bind

to it via docking on these parallel helices.

The classical principles of genetics were deduced by Gregor Mendel in 1865 on the basis of the

results of breeding experiments with peas [13]. Early 20th-century genetic studies focused on the iden-

tification and chromosomal localization of genes that control readily observable characteristics, such as

the eye colour of the fruit fly Drosophila.

The early 20th century saw the discovery of a strong connection between enzymes and genes. This

was further reinforced when phenylketonuria, a hereditary disease, was discovered to stem from a ge-

netic defect in the metabolism of phenylalanine, one of the 20 ubiquitous amino acids [14]. This defect

was hypothesised to result from a deficiency in the enzyme needed to catalyse the relevant metabolic

reaction, leading to the general suggestion that genes specify the synthesis of enzymes. From the 1941

experiments of George Beadle and Edward Tatum, the one gene-one enzyme hypothesis was concluded

(each gene specified the structure of a single enzyme) [15]. During the early days of genetic research,

there was a prevailing belief that genes found within chromosomes were composed of proteins along-

side DNA. These proteins were believed to pass on genetic makeup from a parent to its offspring. The

prevailing notion among most researchers stemmed from the fact that proteins were known as macro-

molecules characterised by extensive diversity and specific functionality. An inadequate knowledge of
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nucleic acids in this part of the century led to the assumption that all nucleic acids shared similar proper-

ties. This invariance led the community to believe that nucleic acids could not possibly possess the wide

coverage of properties that a macromolecule that is a candidate for genetic material should have. An-

other reason for this thought was the fact that the 20-amino-acid alphabet of proteins could potentially

be configured into more unique information-carrying structures than the four-letter alphabet of DNA. It

was thought that perhaps DNA acted as structural support for the chromosomes.

The actual clarification came during the First World War, when Frederick Griffith began studying

Streptococcus pneumoniae in an attempt to develop a vaccine against it, since at the time a lot of ser-

vicemen died due to a lung infection caused by the same. Through his transformation experiment, he

discovered that the R-strain of this bacteria (not pathogenic) when injected into healthy mice, trans-

formed into an S-strain (pathogenic), thereby causing an infection in the host [16]. This was followed

by the experiments of Oswald Avery, Colin MacLeod, and Maclyn McCarty, which later on, along with

other studies of the activity of DNA in bacterial transformation, led to the acceptance of the idea that

DNA is the genetic material.

(a) (b)

Figure 1.5: Formation and differences of nucleic acids. (a) Schematic representational comparison of
the basic unit, nucleotide, in an RNA against a DNA. Two key differences are to be noted. Firstly, the
entire sugar molecule is same, except for a hydroxyl group which is absent in the nucleotide of DNA,
but present in that of RNA. Secondly, Uracil(U) cannot be a nitrogenous base in the nucleotide of a
DNA molecule, and Thymine(T) cannot be a nitrogenous base in the nucleotide of an RNA molecule.
Image source [17, 18] (b) In DNA and RNA, the phosphodiester bond is the linkage between the 3’
carbon atom of one sugar molecule and the 5’ carbon atom of another, deoxyribose in DNA and ribose
in RNA. The above example, although shown only for DNA, is generalizable for RNA as well. Image
source [19]
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1.2 Nucleic Acids

Found in abundance in all living species, nucleic acids are large biomolecules essential to all known

forms of life. The two major types of nucleic acids are RNA (RiboNucleic Acid) and DNA (Deoxy-ribo

Nucleic Acid). Nucleic acids are responsible for creating, encoding, and storing information in every

living cell of each living organism. They are also responsible for passing on this stored information

to the biological successor. By directing the process of protein synthesis, they determine the inherited

characteristics of every living being. They are composed of a series of nearly identical building blocks

called nucleotides.

A nucleotide is made of three components: a pentose (5-carbon) sugar, a phosphate group, and

a nitrogenous base. When the sugar component is ribose, the resulting polymer is called RNA. If

the sugar is deoxyribose (a derivative of ribose), the polymer formed is DNA (Figure 1.5a). The five

most prominent nitrogenous bases found across various RNA/DNA are: adenine(A), thymine(T), gua-

nine(G), cytosine(C) and uracil(U). Among these, A,T,G, and C are found in the nucleotides that build

up to form DNA, whereas A,U,G, and C are the ones found in the nucleotides of RNA. A polymeric

structure is formed when successive nucleotides are covalently linked through phosphodiester linkages

(Figure 1.5b) [20]. All nucleic acids are represented as a sequence of single-letter representations of

their constituent nitrogenous bases. One end of this chain is labelled as 5’ and the other as 3’ because

of the order in which the formation of this nucleic acid chain has occurred, as shown in Figure 1.5b,

wherein the last base that will be added will have a free 3’ end, and the top-most base, through which

the sequence formation had begun, would have its 5’ as the free end.

DNA is considered to be the molecular reservoir of genetic information. The arrangement of every

biomolecule and cellular element is determined by the information encoded in a cell’s DNA sequence.

Each nucleotide of DNA consists of either one of the following four distinct nucleobases: adenine

(A), cytosine (C), guanine (G), and thymine (T). A combination of the linear sequence of these bases

along with their three-dimensional orientation is widely understood to be responsible for preserving the

instructions crucial to the functioning and reproduction of the cell. Such an important of a biomolecule

is DNA that its discovery should not go unnoticed.

Soon after Griffiths’s transformation principle experiment, the scientific community slowly be-

gan taking an interest in and exploring more about nucleic acids. The team of Oswald Avery, Colin

MacLeod, and Maclyn McCarty around 1940, began experiments on a very similar trajectory. They

began to isolate the substance responsible for this transformation. Their work finally concluded in 1944

with the discovery that DNA was the molecule responsible for this transformation and that DNA was

the genetic material [21]. In 1952, experiments by Alfred Hershey and Martha Chase on the T2 virus

further supported the findings from this work. They found that DNA carried the instructions to make

new viruses, which were passed on to subsequent generations because, on radioactive labelling of DNA,
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the subsequent generation of viruses were also radioactive in nature, as opposed to radioactive labelling

of proteins, which produced non-radioactive viruses [22]. At this point, the functional importance of

DNA was widely understood by the scientific community, and parallel structural studies were also being

carried out.

(a) (b)

Figure 1.6: Watson-Crick double-helix DNA model. Nucleotides are arranged forming a B-DNA
structure. Adenine(A) is paired with Thymine(T) and Gaunine(G) is paired with Cytosine(C). The
Deep and Shallow grooves are usually referred to as the Major and Minor grooves. (a) DNA double
helix, shown in the B-DNA form. Image source [23] (b) The 2-strands of DNA run anti-parallel to each
other for proper alignment of their 3’ and 5’ ends. Image source [24]

Erwin Chargaff, in the year 1950, proposed a rule regarding the nucleobase composition of DNA,

which stated that the number of adenine (A) and thymine (T) units matched each other, as did the number

of guanine (G) with those of cytosine (C). This would later be known as the tetranucleotide hypothesis.

He also determined that the DNA composition differs among species, resulting in varying quantities

of each base. This observation strengthened DNA’s credibility as the genetic material compared to

proteins [25, 26]. Other researchers had made important but seemingly unconnected findings about the

composition of DNA; Alexander Todd had observed a recurring pattern of phosphate and deoxyribose

sugar groups on the backbone of the DNA molecule, and high-resolution X-ray images of DNA fibres

obtained by Maurice Wilkins and Rosalind Franklin advocated for a helical, corkscrew-like shape of

DNA [27–29]. It was finally in 1953 that, through unifying these disparate findings into a coherent

theory of genetic transfer, two researchers by the names of James Watson and Francis Crick proposed

the double-helix (twisted ladder) structure of the DNA [30].
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The primary features of the Watson-Crick double-helix model are as follows(ref. Figure 1.6):

(i) The DNA molecule consists of two polynucleotide chains or strands that spirally twist around

each other and coil around a common axis to form a right-handed double helix.

(ii) The two strands are antiparallel, i.e., they run in opposite directions so that the 3’ end of one chain

faces the 5’ end of the other.

(iii) The sugar-phosphate backbones remain on the outside, while the core of the helix contains the

purine and pyrimidine bases.

(iv) The two strands are held together by hydrogen bonds between the purine and pyrimidine bases of

the opposite strands.

(v) Most DNA double-helices are right-handed. B-DNA is the most common right-handed form.

DNA may exist in a different form, the A-DNA form, a structure shorter and wider than the B-

DNA but with a narrower tendency to exist. Only one type of DNA, called Z-DNA, is left-handed.

(vi) Adenine (A) always pairs up with thymine (T) by two hydrogen bonds, and guanine (G) always

pairs up with cytosine (C) by three hydrogen bonds. This complementarity is known as the base

pairing rule. Thus, the two stands are complementary to one another.

(vii) The base sequence along a polynucleotide chain is variable, and a specific sequence of bases

carries the genetic information.

(viii) The base compositions of DNA obey Chargaff’s rules.

(ix) The diameter of DNA is 2nm. Adjacent bases are separated by 0.34 nm along the helical axis of

the DNA. The length of a complete turn of helix is 3.4 nm, i.e., there are 10 base pairs per turn.

(x) The DNA helix has a shallow groove called the minor groove (≈1.2nm) and a deep groove called

the major groove (≈2.2nm) across.

Chromatin is a compact structure composed of both DNA and proteins, primarily located within the

cell nucleus and mitochondria. Across individuals of the same species, each cell contains an equivalent

quantity of DNA (6 picograms in the case of humans). Notably, both female and male gametes possess

half of this DNA quantity. Chromatin is formed when DNA binds with proteins known as histones in

the case of eukaryotes. This binding is visualised as the DNA molecule wrapping around a central core

of eight histone units at regular intervals, forming a double helix structure. In contrast, chromatin in

bacteria, plasmids, mitochondria, and chloroplasts consists of circular DNA.

RNA differs from DNA in primarily three aspects: 1. It has a single chain instead of two intertwined

strands; 2. It contains ribose sugar instead of deoxyribose; and 3. It contains uracil instead of thymine.
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Different types of RNA exist in cells, including messenger RNA (mRNA), which transmits genetic

information from the cell nucleus to the cytoplasm; transfer RNA (tRNA), which carries amino acids to

the site of protein synthesis; and ribosomal RNA (rRNA), which has a large (60S) and a minor particle

(40S) and is involved in amino acid assembling during protein synthesis. Other types of RNA include

small nuclear, small cytosolic RNA, microRNA, small silencing RNA, and long noncoding RNA.

Figure 1.7: Chromosomal arrangement of DNA inside a cell. Chromosomal DNA is intricately
organized within tiny nuclei through the assistance of histones. These are proteins with a positive
charge that bind strongly to the negatively-charged DNA, creating structures known as nucleosomes.
Each nucleosome consists of DNA coiled approximately 1.65 times around a core of eight histone
proteins. As these nucleosomes come together, they fold into a 30-nanometer chromatin fiber, which,
in turn, forms loops spanning around 300 nanometers on average. These fibers are further compacted
and folded to generate a narrow 250-nanometer fiber, which is tightly coiled into the chromatid of a
chromosome. Image source [31]

In eukaryotes, the DNA is found inside the nucleus of the cell. The length of this nuclear DNA is

far greater than the size of the region that houses it. Thus, the DNA has to be condensed. In humans,

the packing ratio of this DNA, i.e., the degree to which DNA is condensed, is estimated to be around
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7000. To achieve such large values, the packing of DNA has to be distributed across several hierarchies

of organisations (Figure 1.7) [32, 33].

The first stage of DNA condensation involves wrapping the double helix around an octa-core histone

protein at regular intervals to produce a bead-like structure known as a nucleosome [34, 35]. The part of

DNA connecting the nucleosomes is called linker DNA. This gives a packing ratio of about 6, wherein

the beads are about 10 nm in diameter, in contrast with the 2-nm diameter of a DNA double helix. The

second level of condensation is the coiling of beads in a helical structure 30 nm in diameter called the

chromatin fiber. This structure increases the packing ratio to about 40. The final packaging occurs when

the fibre is organised in loops, scaffolds, and domains that yield the appropriate final packing ratio. A

variety of fibrous proteins are used to pack the chromatin, and they ensure that no two chromosomes

occupy overlapping areas of the nucleoplasm.

Defects in the compression of the chromatin structure can lead to several diseases. Thus, chromatin

has to be organised in an error-free manner for the easy occurrence of gene expression or for the ease of

accessibility of hereditary information residing in the DNA.

For each organism, this genetic information has to be passed to the two daughter cells created when

each cell of this organism undergoes cell division. This necessitates the replication of each of the many

molecules that form the cell, thus all DNA molecules [37–39]. Each parental DNA strand serves as a

template for the synthesis of a new complementary daughter strand, thus making the replication process

semi-conservative [40].

The preparatory proteins for DNA replication undergo a series of complexations and decomplexa-

tions, finally resulting in the activation of the Mcm helicase bound to the parent double-helix DNA,

which causes the latter to unwind. This results in the formation of a structure called a replication

fork [38]. For the part of the template DNA just ahead of the replication fork and existing in an un-

wound state, its strands provide enormous torsional resistance. To release this, proteins called topoi-

somerases temporarily break this DNA region by adding negative supercoils to the DNA helix. These

two unwound strands serve as the template for the formation of the two complementary strands, the

leading and lagging strands. Activation of the helicase is followed by docking of α-primase and other

DNA polymerases onto either of the template DNA strands [41]. DNA polymerases are a family of

enzymes that carry out DNA replication but can only extend an existing DNA or RNA strand paired

with a template strand [42, 43]. Thus, a short sequence, called a primer, must be created and paired with

the template DNA strand (for each of the 2 template strands).

After the template strands are separated, the α-primase makes an RNA primer (a short stretch of nu-

cleic acid complementary to some template) for each of the template strands and adds them next to their

respective neighbouring (to be extended) strands [44]. DNA polymerase then extends this primer along

its 3’ end by joining new nucleotides matched with the sequence of the template strand via phosphodi-

ester linkages. Hence, the DNA polymerase can build up DNA only in the 5’-3’ direction. Therefore,

13



Figure 1.8: DNA-Replication. Helicase(blue-triangle) creates the replication fork, by unwinding the
DNA-double helical strands at target site. Topoisomerase(green ring) is responsible for stabilising the
part of these unwound strands, ahead of the replication fork. Single-strand binding proteins(purple ball
and stick) prevent all sorts of internal binding within the nucleobases of the unwound strands by them-
selves binding at the outer region. DNA-primase(blue ring) generates an RNA-primer as an inception
for replication of both of these unwound template strands. DNA-Polymerase(Pol-δ) locomotes in the
3’→5’ direction, detecting the nucleobase at each nucleotide encountered and generating a comple-
mentary nucleotide, thus building up the leading strand in a 5’→3’ direction. For the lagging strand
however, DNA-Polymerase(Pol α) attaches itself at the neighboring site of this RNA-primer, travel-
ling in the 3’→5’ direction opposite to that of the lagging-template strand and detecting the nucleobase
at each nucleotide encountered, generating a complementary nucleotide, thus building up the lagging
strand in a 5’→3’ direction. This pattern of RNA-primer generation followed by Pol-α locomoting
in the opposite direction is repeated several times, throughout the length of the template-DNA strand,
whereas for the leading strand this has to be done only once. These DNA-nucleotides fragments thus
generated at the lagging strand are called as Okazaki fragments(maroon strand). RNA-primers are then
removed, thus creating a nick, which is then filled up by DNA-ligase. Image source [36]

14



one of the two complementary strands that gets built along the same direction is termed the leading

strand, while the other is referred to as the lagging strand (built along 3’-5’).

The leading strand is built in a continuous fashion via the addition of nucleotides complementary to

its template strand, one at a time. The lagging strand, on the other hand, is made in fragments because, as

the fork moves forward, the DNA polymerase attached to the lagging strand must come off and reattach

to the newly exposed DNA template. The small fragments are called Okazaki fragments. Hence, the

lagging strand needs a new RNA primer for each of the short Okazaki fragments [45]. The RNA primers

are removed and replaced by DNA through the activity of DNA polymerase I. DNA ligase is responsible

for connecting the lagging strand with these smaller DNA strands generated by DNA polymerase I.

After DNA replication, it needs to be wound around histones and undergo two more successive

compressions to form the replicated chromosomes. The replicated DNA double-helix must be coiled

around histones at the same places as the original DNA. To ensure this, histone chaperones disassemble

the chromatin before it is replicated and replace the histones in the correct place. Some steps in this

reassembly are somewhat speculative.

DNA must be replicated with high fidelity. The hydrogen bonds linking two complementary bases

make a significant contribution to the fidelity of DNA replication. However, DNA polymerases repli-

cate DNA more faithfully than these interactions alone can account for. Proofreading mechanisms are

required to ensure that the accuracy of replication is compatible with the low frequency of errors that is

needed for cell reproduction.

As seen in replication, DNA exists in a complexed state with a variety of proteins. Proofreading

mechanisms to ensure its accuracy also require complexation with proteins. DNA tends to get damaged,

either due to internal or external factors, at certain regions throughout its length. To rectify this damage,

a process called NER (nucleotide excision repair) occurs to repair the damaged portions of the DNA

sequence. Appropriate proteins are involved in carrying out NER by complexing with DNA. Hence, the

formation of protein-DNA complexes is a key player in many of the physiological processes involving

DNA [46–48]. It is therefore extremely important to examine the nature of complexes that are formed

between proteins and DNA, as they form the basis of our understanding of how these processes take

place.

1.3 Protein-DNA complexes

The class of proteins involved in binding with a DNA molecule in order to carry out a physiological

process is called DNA-binding proteins. These possess certain regions called DNA-binding domains

that actually form interactions with either specific or general single- or double-stranded DNA. Inter-

action of these proteins with the major groove of the DNA is facilitated by: (a) a significantly lower

electronegative potential and (b) an increased exposition of functional groups that identify a base pair

15



than the interactions with the minor groove of the DNA. Proteins that modulate transcription (known as

transcription factors), polymerases that help in elongation of DNA, helicases and ligases that modify the

DNA during the process of DNA replication, histones involved in packing the DNA to the chromatin

level are some of the well-known examples of DNA-binding proteins.

Protein-DNA binding is not only limited to double-helix DNA but can also occur with a single strand

of DNA. Replication protein-A is a classic example since it is adept at binding to single-stranded DNA

[49]. It’s specifically tasked with preventing the single-stranded DNA obtained during the creation of

the replication fork during the process of DNA replication from forming any stem-loops or degrada-

tion by nucleases. The sequence of the DNA involved in protein-DNA binding can also strengthen or

weaken the binding. For instance, transcription factors bind specifically to a set of DNA sequences, thus

activating or inhibiting the transcription of genes that have these sequences near their promoters. On the

other hand, some proteins bind in a sequence non-specific manner. For instance, structural proteins such

as histones are prominent examples of proteins that bind non-specifically to DNA. Interactions between

the histone-octacore and the region of DNA strand wound around it comprise mainly the ionic bonds

between the basic residues in the histones and the acidic sugar-phosphate backbone of the DNA and are

therefore largely independent of the base sequence [50].

One of the important transcription factors is Catabolite Activator Protein (also known as CAP). It

goes by such a name since it involves the transcription of genes involved in many catabolic pathways.

For instance, in bacterium such as Escherichia Coli, when the amount of glucose transported into the

cell is low, it unusually modifies ATP into a cyclic molecular loop called cyclic AMP (adenosine mono-

phosphate). This increase in cAMP levels is sensed by CAP, which binds to the former, resulting in

an allosteric conformational modification wherein its recognition α-helices, a characteristic helix-turn-

helix motif, undergo a major rotational and slight translational conformational change. This is followed

by an increased affinity for binding to the DNA, leading to the formation of the CAP-cAMP-DNA

complex.

This is required as CAP then coaxes RNA-polymerase into place, an enzyme required for the occur-

rence of transcription. By binding to the α-subunit of RNA Polymerase (RNAP), CAP triggers the onset

of transcription. This binding enables the generation of the RNAP-promoter closed complex and a fur-

ther conformational change of this complex to the open state. This protein-protein engagement induces

a distinctive bending of the DNA in proximity to the transcription initiation site. This phenomenon plays

a pivotal role in catalysing the transcription process of genes linked to lactose catabolism [51].

DNA-Protein complexes may also be formed as a means of rectifying any lesions that may have

crept into the DNA sequence. Proteins such as XPC (xeroderma pigmentosum C) and RAD4 (radiation-

4) via DNA-binding are responsible for locating and removing any damaged nucleobase or nucleotide

entirely. XPC primarily deals with lesions generated from UV-exposure, such as pyrimidine-dimers.

The auxiliary proteins UV-DDB bind to the lesions, thus helping XPC localise the lesion. It subsequently
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recruits TFIIH, whose XPD helicase verifies the lesion [52–55]. Excision of the damaged nucleotide(s)

is carried out by endonucleases, followed by repair synthesis and nick sealing by DNA ligases.

Generally speaking, each interface between a protein and the DNA sequence it is bound to comprises

multiple forms of interaction. Some of these may be highly specific contacts, such as hydrogen bonds

between the protein and the DNA nucleobases, existing due to a different set of non-specific interactions

between elements on the protein and the DNA backbone that orient the DNA-recognition domains the

right way. Protein-DNA interactions can lead to conformational as well as functional changes in both

biomolecules involved.

1.4 Research Focus

1.4.1 Allosteric Response of DNA Recognition Helices of Catabolite Activator Protein
to cAMP and DNA Binding

Transcription factors (TF) are molecular entities that instigate the process of transcription and thus

have a vital role in gene expression. Catabolite Activator Protein (CAP) is one such TF, found in a

variety of species ranging from the microscopic Escherichia Coli to humans, is known to regulate the

metabolism of different organic macromolecules. E.Coli CAP has been extensively covered in numerous

studies for more than half a century now. Its TF abilities are regulated by a small effector molecule

known as cyclic adenosine mono-phosphate (cAMP) [56–61]. This molecule has been known to bind

with CAP, thus bringing it from its inactive state, wherein its binding with DNA is practically non-

existent, to an active state, wherein its binding with DNA is energetically favourable [62–68].

This allosteric shift in conformation brought about by cAMP-binding is manifested in some major

changes, such as the coil-to-helix transistion of the stretch VAL126 to PHE136, and a translational and

rotational change of 7 Å and 60◦ respectively , observed in recognition (F-helices) helices, the entity

in CAP responsible for binding with the incoming DNA molecule [69]. CAP is a ≈50 kDa dimer

consisting of two identical 209 residue subunits, each of which is composed of two distinct domains:

(i) an N-terminal cAMP-binding domain (CBD, residues 1 - 136) and (ii) a C-terminal DNA-binding

domain (DBD, residues 138 - 209), which contains a helix-turn-helix motif for binding to DNA [69–75].

A short hinge region (residues 137-138) links these two domains. The CBD contains a cAMP-binding

pocket region that seats the incoming cAMP molecule, and since this protein is dimeric, a total of 2

cAMP molecules can be accommodated, 1 per monomeric subunit.

The presence of two cAMP-binding sites calls for exploring the type of cooperativity that exists be-

tween them. Kalodimos et al. in 2006 characterised the negatively cooperative binding of cAMP to

CAP and explained the allosteric regulation being mediated exclusively by the changes in protein mo-

tions rather than changes in the intra-protein bonding interactions [76]. The ambiguity in the dynamics
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of the mechanism by which these structural changes are brought about by cAMP-binding, especially in

the key region of the F-helices, is what propelled the study presented in the Chapter-3 of this thesis.

Chapter 3 in this thesis aims at unravelling the ligand binding effects on CAP via the use of MD

simulations and novel reaction-coordinates fuelled umbrella sampling technique. Particularly since the

F-helices are observed to have the most pronounced change on cAMP binding, the study will be pri-

marily focused on their behaviour. Additionally, interactions of all residues (including those of the

F-helices) with differing environments were studied. Lastly, some supplementary systems were derived

from the original three structures, primarily to study their behaviour under MD simulations.

1.4.2 Energetics-based analysis of CPD-containing DNA binding to Rad4 to commence
the NER process

DNA serves as the genetic blueprint for a biological cell, providing necessary information during

its functioning and at the time of cell replication, making it a fundamental molecule for life. Thus, its

damage can have egregious effects. Cyclobutane pyrimidine dimer (CPD), a DNA lesion induced via

UV radiation exposure, is the most prevalent DNA lesion linked to a wide range of genetic skin-related

diseases and cancers in humans [77–80]. Rad4/XPC is a damage-sensing protein that recognises and

repairs CPD lesions with high fidelity, with assistance from an array of proteins.

Rad4 consists of an N-terminal transglutaminase domain (TGD) and three β-hairpin domains

(BHD1, BHD2, and BHD3) [81, 82]. The binding of TGD and BHD1 domains to the undamaged seg-

ment of DNA helps maintain its structural integrity. The interaction between BHD2 and DNA involves

its β-hairpin, which binds to the DNA minor groove near the lesion, establishing hydrogen bonds with

the DNA backbone. On the other hand, the β-hairpin of BHD3 interacts with the DNA major groove,

filling the space left by the flipped-out CPD and its adjacent bases from the undamaged DNA strand.

The BHD2-BHD3 binding interface securely retains these displaced partner bases. Existing literature

on the study of RAd4-recognition reveals three key constituent processes: 1. Association of Rad4 with

DNA, mainly binding of the TGD and BHD1 to the undamaged strand and BH2 and BHD3 to the

lesion site, 2. insertion of the BHD2 and BHD3 β-hairpins into the major and minor grooves of the

DNA, respectively, 3. forcing the CPD lesion and its partner bases (referred to as 3’-dA and 5’-dA) to

flip out of the DNA duplex.

Previous work shows that in the absence of Rad4, the partner bases of CPD are unable to flip out

of the DNA duplex. This makes it more apparent that the Rad4-association would’ve preceded the

flipping process. This Rad4-association event seems more simplistic than it actually is. It acts as the

anchor-establishing process for Rad4 on the DNA, especially at the lesion site.

Chapter 4 in this thesis aims at elaborating this Rad4-association process via the use of MD

simulations and reaction-coordinate-fueled umbrella sampling. The kinetic gating mechanism of the

Rad4/XPC damage recognition [83] proves that the residential time of Rad4 on the DNA is what
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determines the overall efficiency of the entire NER process. Thus, it’s of considerable priority to study

the energetics of Rad4-association and compare the results with those of a homologous DNA sequence

with lesions that have been extensively studied.
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2.11.7 Bond-parameteric constraints . . . . . . . . . . . . . . . . . . . . . . . . . 49
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2.1 Introduction

Understanding biological functions requires an extensive study of the involved macromolecular

structures. Interactions within and between these structures are what carry out such functions. Prior

to the discovery of computational methods, the most popular and acceptable sources of gaining in-

formation about a given macromolecular structure were experimental methods such as NMR (nuclear

magnetic resonance) and X-ray crystallography. These experimental methods shared the issue of vari-

ability, which arose from the scarcity of experimental data in some specific regions of the structure. An

introductory take on the flexibility and energetics of a macromolecule would be obtained from these

experimental ensembles. However, the thermodynamic properties of the system, like entropy or free

energy, could be easily derived by analysing what are known as conformational ensembles [84]. These

ensembles were obtained from boosted conformational sampling, which was possible all thanks to the

advent of computational methods.

A piece of software that explores an approximated mathematical model by engaging iterative meth-

ods is known as a computational simulation. When such a mathematical model consists of specific

equations that can be effectively translated into a simulation, computer simulations are called upon.

Another use case for computer simulations is when a model is better characterised as a set of evolu-

tionary rules than traditional mathematical equations. It is often used as an adjunct to, or substitute for,

modelling systems for which simple closed-form analytic solutions are not possible. A prime example

of computational simulation is Molecular Dynamics based computational simulation, an ensemble of

structural restraints employed on the biomolecule(s) being studied and Euler, Hamiltonian, Lagrangian

and Newtonian mechanics baked together in order to obtain a big picture of the system being dealt with

and its role in an interested physiological process.

The earliest practical applications of computational methods were seen in the Manhattan Project

in World War II, which modelled the process of nuclear detonation. Understanding the behaviour of

neutrons was the problem at hand. Since then, computer simulations have been used to study biochem-

ical regulatory networks, to formally model theories of human cognition and performance,to model

biomolecules themselves for drug discovery, and to model viral infection in mammalian cells, and the

list gets appended to date [85, 86]. To gather a holistic view of a given system, agent-based simulations

that capture intra- and inter-component interactions slowly became influential. Computer simulations

have become ubiquitous in the twenty-first century. Many different fields, such as the natural sciences,

social sciences, life sciences, and humanities, have found ways to use computer tools, like simulations,

in their research methods.
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One of the most prevalent applications of computer simulations has been computational biomolecular

modelling. The preliminary step for the Manhattan Project was to build a successful model of 12 hard

spheres about to undergo a Monte-Carlo simulation. The modelling of water and other kinds of fluids to

cultivate an understanding of fluid dynamics so as to exploitatively apply them in the field of automobile

and aerospace mechanics also constitutes a prime example of computational modelling. Computational

modelling is highly scalable; not just 12 atoms but systems as large as 150,000 atoms can be easily

modelled today, all thanks to the advancements in modelling and computing techniques that took place

throughout the late 20th century and still continue in the 21st century.

2.2 Computational Modelling and Visualisation

The properties of biological systems often emerge from complex interactions between their compo-

nents. Predictive computational models of biological systems are useful to fully understand their be-

haviour and generate hypotheses about their functions [87]. Mathematical and computational modelling

of biological processes and biomolecules continue to play important roles in deciphering mechanistic

insight into metabolic and gene regulatory networks, cellular signalling, disease formation, and drug ac-

tion. These models also allow for the prediction of the behaviour of biological systems under different

environmental conditions.

Computational molecular modelling has emerged as a useful tool to understand the mechanisms of

protein-inhibitor/activator recognition and binding and to predict and characterise the structure, dynam-

ics, and energetics of biomolecules, pathogens, and biomolecular assemblies and complexes [88–92].

Thus, it has become an invaluable tool in pharmacology and medicine, wherein it is routinely used in

the design and discovery of new pharmaceuticals with improved efficacy and safety [93–98]. The rapid

determination of biomolecular structures from X-ray diffraction and solution NMR techniques, together

with the recent advances in genomics, molecular biology, synchrotron sources, and computer software

for data processing, continue to fuel the widespread use of modelling techniques in various domains of

biology. In addition, the evolution of databases, data mining methods, and the whole infrastructure of

bioinformatics also catalyses the growth and applications of modelling in biological problems.

Computational visualisation forms an essential part of molecular modelling; after all, a computation-

ally generated molecular model is virtually valueless if it cannot be viewed at. Visualising a molecule

on the computer unlocks avenues for commenting about its stability simply by observing its structure,

shape, and type of bonds, and distances between atoms. It helps in forming a preliminary understanding

of the system being dealt with. Software such as VMD, Pymol, Avogadro, and UCSF Chimera have

widespread visualisation usage across the simulation community [99–102]. Due to the many types of

visualisation modes available, a molecule such as a protein can either be visualised atom-by-atom or as

a composition of its secondary structures. The real-life analogue to computational visualisation would
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generally be observation under a fine electron microscope or an X-ray diffraction-based spectrometer,

both of which would be inaccessible to a lot of researchers today and would be expensive to have multi-

ple units of installed at any facility. On the other hand, visualisation software is just a piece of code that

can be put up on the internet, thus making it available to the public at a much lower cost.

2.3 Statistical Mechanics

Thermodynamics was originally developed in the 19th century and was driven by the dawn of the

industrial revolution [103] and a desire to understand and optimise the extraction of useful work from

engines. It was originally introduced as a phenomenological theory based entirely on the interrelation-

ship of macroscopic variables such as temperature, pressure, volume, and energy. However, studying

systems at a microscopic level, such as the behaviour between various atoms and molecules in a closed

system, led to the birth of statistical mechanics. Stochastic methods are used within this branch of

physics to examine the movements and energies of the constituent particles of a system in an attempt

to bridge the gap between microscopic and macroscopic worlds. Statistical thermodynamics was intro-

duced as the study of equilibrium states, with no net tendency for the system to evolve over time unless

driven from the outside. Boltzmann and others proposed theoretical descriptions for this evolution and

subsequent relaxation [104].

2.3.1 Phase space and states

Consider an N-particle system, with each particle having s degrees of freedom. The l coordinates,

l = sN, are used to describe the spatial orientation of the system. A corresponding set of other l coor-

dinates, the conjugate momenta of each particle with its spatial orientation, are used additionally. These

2l coordinates along with the equations of motion, can now determine the future and past course of the

system. Consider a Euclidean space of 2l dimensions with perpendicular axes representing the orthogo-

nality of spatial coordinates, q1, q2.....ql, against the particle momentum, p1, p2.....pl . Such a space is

referred to as phase space, and any particular point in this space, a phase point . The spatial coordinates

would be hereon referred to as q(t), which is the same as q1, q2.....ql , and the corresponding momenta

as p(t), same as p1, p2.....pl . A phase point is more commonly known by the phrase microscopic state.

2.3.2 Ensembles

Given the time evolution of q(t) and p(t), the time average of an observable A (i.e. 〈A〉time) can be

calculated from the following equation.

〈A〉time = lim
τ→∞

(
1

τ

∫τ
t=0
dtA(p(t), q(t))

)
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On carrying out evaluation of this over an infinitely long duration of time, the integral approaches

the ensemble value of A. This is defined as:

〈A〉ens =

∫ ∫
dNpdNqA(p(t), q(t))ρ(q, p)

The angular brackets represent the mean, a.k.a. the expectation value of a random variable, and the

subscript ens indicates the average value of the property A across all replicas of the ensemble generated

over the course of the simulation, from hereon to be referred to as the ensemble average. The double

integral represents 6N integral signs; one for each of the 6N positions and momenta of all the atoms in

the system. ρ(q, p) denotes the probability density of finding an arrangement of atoms with positions

q(t) and momenta p(t). By integrating over all possible configurations of the system, the above integral

is evaluated.

Statistical mechanics had taken care of studying systems with fewer particles. However, systems

that were closer to reality, i.e., having a number of particles closer to a mole, had a variety of complex-

ities: an enormous number of particles; interpersonal interactions being influenced by factors such as

collisions, electromagnetic forces, and quantum mechanical effects; a lack of positional and momentum

determinism; and a higher dimensionality due to a huge number of degrees of freedom associated. In-

troduced by J. Willard Gibbs in 1902, ensemble is an idealisation consisting of a large number of virtual

copies (sometimes infinitely many) of a system, considered all at once, each of which represents a pos-

sible state that the real system might be in. This system of virtual copies helps in virtualizing the diverse

ways in which particles could arrange themselves. This probability distribution of the microscopic state

helps gauge macroscopic properties. In other words, a statistical ensemble is a probability distribution

for the state of the system.

2.3.2.1 Canonical ensemble

The system to be simulated is immersed in an infinite-dimension bath such that particle exchange

is not allowed and the temperature remains almost constant. This bath is commonly referred to as a

thermostat. In addition, either the volume, energy, or pressure could be kept constant. Particle colli-

sions are said to occur on the boundary. No pressure bath is used within this ensemble, thus causing

fewer disruptions to the trajectory, provided that pressure is an irrelevant macroscopic property. As heat

exchange can occur with the thermostat, the total energy of the system is no longer conserved. The

key idea is to consider the combination of the system and the bath as an isolated system; thus, no heat

exchange occurs with this combination, i.e., its total energy and number of particles remain constant.
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Using the Boltzmann’s distribution, the probability of a system existing in a microstate i defined by

the phase point (qi(t), pi(t)) with total energy Ei at a temperature of T is given by:

P(qi(t), pi(t)) =
1

ZNVT
exp

[
−
Ei
kBT

]
(2.1)

ZNVT =
∑
i

exp

[
−Ei
kBT

]
=

1

3N!

1

h3N

∫ ∫
dNpdNqexp

[
−E(q(t), p(t))

kBT

]
(2.2)

where ZNVT represents the canonical partition function of the system, i.e. the sum of the Boltzman

factor, exp
[
−Ei
kBT

]
, across all possible microstates. Since all particles are uniformly treated, the term N!

has to be placed , and to keep the partition function dimensionless, the factor 1/h3N is included.

2.3.2.2 Isothermal-isobaric ensemble

In the isobaric-isothermal ensemble, the number of particles (N), the pressure (P) and the temperature

(T) are kept constant, thus is known as NPT ensemble. This ensemble is important as most chemical

reactions are usually carried out under constant pressure.

The probability distribution for a possible microstate i follows the equation 2.1 with the partition

replaced with the following:

ZNPT =

∫
ZNVT exp

[
−PV

kBTV0

]
dV (2.3)

Where V is the volume of the system, and the integral is carried out over all the space accessible to the

system, and V0 is defined as a volume constant for normalization.

2.4 Ergodicity

The idea of experiments is to study the time evolution of a certain property (for instance, binding

energy, free energy, entropy, etc.) when the system is left for a certain period of time. The idea of sim-

ulations is to replicate microscopic-scale events that occur in the experiments computationally; hence,

even in simulations, a time average of the desired physical quantity needs to be calculated [105].

The average time spent in a given region of the state space is proportional to the number of feasi-

ble states the region contains after a system has achieved equilibrium. All accessible microstates are

equiprobable over a large period of time and thus have the characteristic of being energetically equiva-

lent.

The dilemma appears to be that one can calculate time averages by molecular dynamics simulation,

but the experimental observables are assumed to be ensemble averages. Resolving this leads us to one

of the most fundamental axioms of statistical mechanics, the ergodic hypothesis, which states that the
time average equals the ensemble average. Ergodicity signifies a system will eventually visit all parts
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of the space while moving in a uniform and random sense. One goal, therefore, of a molecular dynam-

ics simulation is to generate enough representative conformations such that this equality is satisfied.

If this is the case, experimentally relevant information concerning structural, dynamic, and thermody-

namic properties may then be calculated using a feasible amount of computer resources. Because the

simulations are of fixed duration, one must be certain to sample a sufficient amount of phase space.

If the ergodic hypothesis is true, then time averages equal ensemble averages, and equipartition is

a valid assumption. As for ergodicity, equiprobability across all possible states of a system that are

energetically degenerate is assumed. The reason it is typically assumed that the probability density is

uniform in an isolated system is because of Boltzmann’s ergodic hypothesis [106]. This entails two

separate assertions: (i) that for an isolated system, all points in phase space with a given energy lie on a

single trajectory, and (ii) that the probability density in phase space is uniform along this trajectory.

The validity of this hypothesis is very difficult to prove [107]. Some regions of the feasible phase

space are blocked by a concept known as KAM tori (Kolomogorov-Arnold-Moser), despite the random-

ness of the trajectories. The KAM tori have a smaller dimensionality than the entire accessible space of

the system at hand and remain isolated from one another. Apart from the laws of conservation of energy,

other conservation laws dependent on parameters such as the starting structure and other macroscopic

properties can also be seen being applied within KAM tori.

The probability density of the ensemble is given by

ρ(pN, rN) =
1

Z
exp

[
−H

(
pN, rN

)
kBT

]
(2.4)

where H is the Hamiltonian, T is the temperature, kB is Boltzmann’s constant and Z is the partition

function defined in the previous section.

This integral is generally extremely difficult to calculate because one must calculate all possible states

of the system. The configurations of a system of particles are updated at every timestep within an MD

simulation. Hence, a span of the entire set of possible configurations under the given thermodynamic

conditions is required to evaluate the above integral during an MD simulation.

In a molecular dynamics simulation, the points in the ensemble are calculated sequentially in time,

so to calculate an ensemble average, the molecular dynamics simulations must pass through all possible

states corresponding to the particular thermodynamic constraints.

Another way, as done in an MD simulation, is to determine a time average of A(a generalized repre-

sentation of a thermodynamic quantity), which is expressed as

〈A〉time = lim
τ→∞

∫τ
t=0
A
(
pN(t), rN(t)

)
dt ≈ 1

M

M∑
t=1

A(pN, rN) (2.5)

where t is the simulation time, M is the number of time steps in the simulation and A(pN, rN) is the

instantaneous value of A.
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2.5 Potential energy dependent partition function

The total energy (E) and the canonical partition function (ZNVT ) of the system are defined in eq. (2.6)

and eq. (2.7), respectively. Here, K(p) and U(q) denote the total kinetic and potential energies, respec-

tively. By solving the kinetic energy part of the integral, the canonical partition function is expressed as

a function of only the spatial coordinates of the system. C0 in eq. (2.12) represents the final normalized

constant obtained after the reduction.

E(q, p) = K(p) +U(q) (2.6)

ZNVT =
1

3N!

1

h3N

∫ ∫
dNpdNqexp

[
−E(q(t), p(t))

kBT

]
(2.7)

=
1

3N!

1

h3N

∫ ∫
dNpdNqexp

[
−K(p(t)) −U(q(t))

kBT

]
(2.8)

=
1

3N!

1

h3N

∫
dNp exp

[
−K(p(t))

kBT

] ∫
dNq exp

[
−U(q(t))

kBT

]
(2.9)

=
1

3N!

1

h3N

N∏
i=1

∫
dpi exp

[
− ‖pi‖2

2mikBT

] ∫
dNq exp

[
−U(q(t))

kBT

]
(2.10)

=
1

3N!

1

h3N

((
mikBT

2π

)3/2)N ∫
dNq exp

[
−U(q(t))

kBT

]
(2.11)

ZNVT = C0

∫
dNq exp

[
−U(q(t))

kBT

]
(2.12)

Using eq. (2.3), even the partition function for an isothermal-isobaric ensemble could be represented

in a similar manner. Thus, the problem is now broken down to the selection of an appropriate potential

energy function in order to gauge the partition function and, in turn, the probability distribution of all

possible micro-states.

2.6 Potentials Used in MD

In principle, the nature of intermolecular interactions in a system should be built on a quantum

mechanical framework. However, the molecular dynamics simulation embodies a classical view of

the same. Instead of describing the interparticle interactions in terms of overlapping electron clouds

of atoms, MD simulations consider atoms as point masses coupled to each other via exotic springs.

This methodology is adopted due to its reasonable simplicity and capability to be extended across large

systems without substantially increasing the computational load, as opposed to the rigorous quantum

mechanical description, which is still hard pressed in dealing with even the smallest systems. The

Potential Energy Function, from hereon will be referred to as PEF, is a classical mechanics function
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used to describe the potential energy of a system. Computational models for such effective potentials

undergo refinement based on the differences produced in the experimental and model-based studies, and

a substantial amount of evidence pointing against the model begs its ground-up redevelopment.

These PEFs are referred to as force fields in the context of MD simulations. The transformation of

quantum mechanical to classical potential energy functions is feasible with two major approximations.

The first is the Born-Oppenheimer approximation, which suggests considering the electrons to be treated

separately from their nuclei since they can react instantaneously to the nuclei’s motion due to their

much faster dynamics. The second is that nuclei are to be treated as point particles that follow classical

Newtonian dynamics. In conjunction, these permit the use of nuclear positions in conjunction with the

force fields to calculate the actual potential energy of the system.

Often calibrated to experimental and quantum mechanical results, the generation of force fields aims

at reproducibility and computational optimisation. Structural data obtained from X-ray crystallography

and NMR, dynamic data obtained from spectroscopy, inelastic neutron scattering, and thermodynamic

data play an important role in the same. An area of continual research, work is still being done on

generating generalizable potential energy functions applicable to all kinds of biomolecules. The most

commonly used force fields used for MD simulations are the AMBER, CHARMM, GROMOS and

OPLS/AMBER [108–111].

The basic PEF that any of the above listed force fields use is the same. It is a function of the atomic

positions of the constituent atoms of the system, rN (assuming anN-particle system). These force fields

only differ w.r.t. the value of the relevant constants pre-set for each interaction term present in the

equations shown below.

U(rN) =

Ubonded︷ ︸︸ ︷
nbonds∑
i

bi (ri − ri,eq)
2

︸ ︷︷ ︸
Ubond-stretch

+

nangles∑
i

ai (θi − θi,eq)
2

︸ ︷︷ ︸
Ubond-bend

+
∑

1,4 pairs

Kφ (1− cos (nφ))︸ ︷︷ ︸
Utorsion

+

Unon-bonded︷ ︸︸ ︷
natoms∑
i<j

4ε

[(
σij

rij

)12
−

(
σij

rij

)6]
︸ ︷︷ ︸

Uvan der Waals

+

natoms∑
i<j

qiqj

4πεrij︸ ︷︷ ︸
Uelectrostatic

(2.13)

Energy can culminate from internal, bonded interactions denoted by Ubonded and from external, non-

bonded interactions denoted by Unon-bonded. The bonded contribution is a cumulative of the interaction

energy due to bonds, angles and bond rotations in a molecule. A pictorial representation of these com-

ponents is provided in Figure 2.1 .
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Figure 2.1: Bonded interactions.

1. Bond stretch: Covalently bonded atoms, also known as 1,2-pairs, store harmonic potential en-

ergy as a virtue of their harmonic bond. An approximate function to this energy is what is seen in

the above equation. This estimate depends on the displacement from the ideal bond length(ri,eq),

i.e., ri − ri,eq and a force constant bi, which captures the strength of the bond. The chemical type

of the bonded atoms is the determinant of these constants.

2. Bond bend: Two adjacent bonds having a common atom possess angular strain caused by the

deviation of their bond angle from the equilibrium bond angle value(θi,eq), i.e. θi − θi,eq. The

strain constant ai determines the extent of impact even the smallest of angular displacements will

have on the aggregate stability of the molecule. Both of these constants depend on the bond type

and the atom type that constitute these adjacent bonds.

3. Torsional strain: Steric influence between atoms separated by three covalent bonds, also known

as 1,4-pairs results in the possession of torsional strain. . Three consecutive covalent bonds form

a dihedral angle, and a rotation about any of the bonds results in the building or loosening up of

this potential. This potential is assumed to be periodic and is often expressed as a cosine function.

Torsional constant Kφ and φ itself depend upon the nature of the atoms and the type of covalent

bonds in between the consecutive atoms.

The non-bonded interactions are an aggregate of electronic cloud repulsion set up due to interacting

dipoles/induced-dipoles, and static coulombic interactions, observed in non-bonded atoms, which may

be of the same of different molecules. The variation of either of these energies w.r.t. interatomic

separation is provided in Figure 2.2.
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Figure 2.2: Non-bonded interactions. The image on the left-hand side represents the variation of the
Lennard-Jones potential used to model the vanderWaals interactions, Uvan der Waals, with the interatomic
separation between the interacting species, r. σ represents the separation value at which potential be-
comes 0, Rmin represents the separation corresponding to the minima of this potential and ε represents
the value of this minima. The image on the right-hand size represents the variation of coulombic in-
teraction potential, Uelectrostatic, with interatomic separation, d. The curve drawn above and below the
x-axis represents this variation for like and unlike respectively.

1. Van der Waals interactions: These arise from a balance between repulsive and attractive forces.

The former are set up at short distances, where the electron-electron interaction is strong, and the

latter, also referred to as the dispersion force, arises from fluctuations in the charge distribution of

the electron clouds. These fluctuations result in an instantaneous dipole which in turn, induces a

dipole in a second atom or molecule giving rise to an attractive interaction.

The van der Waals interaction is most often modelled using the Lennard-Jones 6-12 potential,

which expresses the interaction energy using the atom-type dependent constants σ and εwhich are

experimentally defined in nature, and the interatomic separation denoted by r. These interactions

tend to zero at infinite atomic separation and become significant as the distance decreases. The

attractive interaction is longer range than the repulsion, but as the distance become short, the

repulsive interaction becomes dominant, thus resulting in an energy minima. The positioning of

the atoms at optimal distances stabilises the system.

2. Electrostatic interactions: Interactions set up by coulombic forces between non-bonded atoms

are included in this term. εr is the relative permittivity of the medium in which atoms of charges

qi and qk separated by a distance r, electrostatically interact.
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The empirical PEF is smudged by several limitations, resulting in inaccurately calculated potential

energy. A major limitation is forbidding any sort of radical change in electronic structure, i.e., events

like bond making or breaking cannot be modelled. Mixed quantum mechanical-molecular mechanical

force fields are under development in order to tackle this limitation.

Another limitation stems from a fixed set of atom types employed when determining the parameters

for the force field. Atom types are used to define atoms that are involved in a particular type of bonding.

For instance, an aliphatic, sp3-bonded carbon atom has different properties than a carbon atom found

in the cycloalkane ring. Such atoms are grouped in the same categories in order to minimise the total

number of atom types, in lieu of denoting them as different atoms with unique parameters. This can lead

to type-specific errors. A single set of parameters could still work for environmentally passive atoms

like hydrogen and carbon, but reactive atoms like oxygen and nitrogen involved in various bonding

settings require more types and parameters to completely capture their contribution.

An important point to note is that the PEF by itself does not include entropic effects. Thus, a min-

imum value of U actually corresponds to the minimum value of free energy and not to an actual equi-

librium, the most probable state. Since routine simulations are implemented with isothermal-isobaric

conditions, the equilibrium state corresponds to the minimum of Gibb’s Free Energy. These ignored en-

tropic effects are usually included while evaluating PEFs in a molecular dynamics simulations. Several

other approximations in order to efficiently compute potential energy have been discussed later on in a

section titled Simulation Tactics.

2.7 Energy Minimization

The process of locating the energy-minimum configuration of a system on its PES is termed energy

minimization (EM). The net force on individual atoms of the system in the energy-minimum configura-

tion is approximately zero. For instance, the energy minimum configuration of a water molecule in the

gas phase would correspond to a structure in which the O-H bond lengths and H-O-H bond angle would

be equal to their equilibrium values. The energy minimised structures may correspond to local or global

minima of the PES. Local minima are usually reached when EM stops after finding the first stable con-

figuration. Since this configuration may not be the most-stable one, suitable EM algorithms that allow

the system to cross-over energy barriers on the PES can be used to reach the most stable global minimum

configuration of the system. In all EM methods, the atomic coordinates of a given many-body system

are gradually changed to generate configurations with lower and lower energies until the minimum is

reached [112].

EM methods can be broadly classified into two types: derivative-based and non-derivative-based

methods. Derivatives of the potential energy function with respect to atomic coordinates possess key

information on the shape and stationary points of the PES. Several points need to be considered before
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choosing an EM approach: efficiency, accuracy, computational resources, and time required for execu-

tion. No single viable-for-all EM approach exists, and depending on the molecular model, it may need to

be hand-picked and even fine-tuned. Efficient EM approaches, which usually have a quantum mechan-

ical foundation, may atrociously fail when applied to molecular mechanics due to the number of atoms

in the latter being several multiples higher than those in the former. Procedures such as the inversion

of Hessian or other similar atomic matrices may suffer due to the same issues. Molecular mechan-

ics usually requires an algorithm with a larger number of steps over which energy will be minimized.

Therefore, we have various methods in various popular software packages [113].

No EM algorithm to date has been able to identify the global minima efficiently if forced to start

from a single, random point. Hence, algorithms popularly in use start off with several points on the PES,

and all of them are minimized. At times, the global energy minimum may not be the most populous

minimum, i.e., the most probable structure. For instance, a global minimum could be characterised as a

steep valley having a small population, perhaps owing to a smaller number of vibrational states having

the energy to access it, when compared to a local minimum shaped as a wide basin having a higher

population owing to a larger number of vibrational states being energetically capable of accessing it.

Thus, a combination of the energy minimum value and its population determines the most probable

structure. Hence, the common structure taken by a system could very well not be the global minimum,

or the one with the highest population, or to any local minimum found in its PES [114].

2.7.1 Derivate based minimization methods

The derivative of the PEF w.r.t. each degree of freedom is calculated. Usually, a Cartesian or internal

coordinate representation is used for degrees of freedom. Both analytical and numerical methods are

used to calculate the derivatives, but the former being easier and quicker to generate in addition to being

more accurate, is preferred over the latter. If it’s impossible to generate derivatives using analytical

methods, then it’s advisable to follow the non-derivative minimization-based approach since it’s more

efficient than the numerical one [114].

2.7.1.1 Steepest Descent method

Coordinates of the system are modified in an iterative manner, such that those in the current iteration,

xik, are used to calculate the gradient and in turn xik+1, coordinates of the subsequent iteration. Using

the PEF-gradient:-
∂U
∂xik

for the kth iteration, the corresponding update equation is given by:

xik+1 = x
i
k − η

i.
∂U
∂xik

(2.14)

ηi represents the decay rate for updating the ith coordinate and is usually kept constant while carrying

out all the iterations. A 1D representation of the steps of this algorithm is shown in Figure 2.3. Explo-
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Figure 2.3: Steepest Descent for 1-D PEF. A simple display of the PEF, E(χ) (which is same as U(χ))
varying with the reaction coordinate, χ. On taking either of the starting points A or B, the algorithm is
bound to arrive at the minimum since the sign of gradient decides the direction of movement. The value
of the gradient and the learning rate η determines the step-size.

ration along the direction of net force, which is perpendicular to that of the previous iteration, results in

an inefficient way of reaching the minima, especially on energy surfaces with narrow valleys, since the

method leads to numerous oscillations while descending to the minimum. A slight modification in the

form of updating the position any time the trial point along the gradient has a lower energy will result in

an efficiency increase due to the decrease in the net function evaluations, leading to a drastic decrease

in the computational time.

Relying on gradients is both an advantage and a limitation of this method. Although as the minimum

is reached, the gradient approaches zero, slowing down convergence, it is extremely robust even when

systems are far from harmonic. Hence, it is also termed as A Robust but Slowly Converging Algorithm. It

is often used when initial configurations are considered to be far from the minimum, i.e., large gradients,

for instance in relaxing poorly refined crystallographic or computationally modelled configurations.

2.7.1.2 Conjugate gradient method

Even in this method, gradients are used to obtain the optimum. The gradients are perpendicular to the

search direction at every point, and steps are taken in a conjugate manner (and not perpendicular, as was

the case in steepest descent), which is why it is more correctly known as the conjugate direction method

(Figure 2.4). The energy minimum is located through the use of a set of conjugate directions existing

for a quadratic function of M variables. Here, M = 3N , since the total number of coordinates across

which minimization needs to be carried out is 3N. The conjugate gradient method moves in the direction
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Figure 2.4: Conjugate Gradient. The contour plot of the PEF, with the steps of the steepest descent
method in green and that of the conjugate gradient method in red. The convergence of the conjugate
gradient method is O(n) steps, n being the dimensionality (here n = 2)

hik from point xik where hik is computed from the gradient at the point and the previous direction vector

hik−1.

Update equation:

xik+1 = x
i
k − η(∇U(xik) + βhik) (2.15)

hik = ∇U(xik) + βhik−1 (2.16)

Since the step history is used to accelerate convergence, the algorithm requires storage of all previous

searching directions and coordinates and thus can be computationally expensive. Hence, a robust but

slow algorithm like the Steepest Descent is used, which is not as computationally intensive, to converge

into a small region containing the optimum, followed by running this method for a smaller number of

iterations, which pin-points the actual optimum, thereby limiting the computational resource demand.

2.7.2 Non-derivatives based methods

2.7.2.1 Simplex Method

To minimize a function having M dimensions, a geometrical figure with M + 1 vertices connected

in a pairwise manner is employed which is known as a simplex. Subsequently, a PEF of 3N Cartesian

coordinates will have a corresponding simplex described by 3N+ 1 vertices; if internal coordinates are

used the number of vertices will decrease to 3N− 5.

The simplex algorithm finds the lowest energy point by exploring the potential energy surface. The

simplex constructed using these 3N + 1 vertices rests on the PES such that its vertices cut the PES

at unique points. The simplex algorithm consists of three primary movements. A popular move is to

reflect the vertex with the highest PEF value across the simplex to its opposite side. If this move results
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in a reduced PEF value, the corresponding point replaces the original point in the simplex figure. The

reflection and expansion move is exercised when reflection doesn’t yield a point with a lower PEF value.

If a minimum is reached, which is not necessarily the global one, then to progress, a contraction along

the highest dimension is performed. The simplex will contract along all of its dimensions as a last resort

for finding a lower energy point along the PES.

Employing the simplex method of minimization requires the creation of a preliminary set of vertices.

The M + 1 dimensional figure created as a result will only pass through a single vertex within this set.

By changing the coordinate values for all other points such that they ultimately lie on the PES, an initial

simplex is created.

Simplex method is the most efficient, provided the initial conformation of the system is highly en-

ergetic. The computational time blows up as the system size increases; hence, this method can only be

efficiently used for smaller systems. To add to this dismay, the procedure cannot be readily parallelized

to use distributed computing resources to speed up the computation time. In simulation software, this

algorithm is iterated for a few epochs to energy-minimise the initial structure, followed by the use of an

efficient method that can be used for further calculations.

2.7.2.2 Sequential Univariate Search Method

Figure 2.5: The sequential univariate search approach. Beginning from point 1, points 2 and 3 are
created after exercising the first step of this approach. Point 4, a minimum along a parabola fit w.r.t.
these points is located. Iterative repetition of these algorithmic steps yields rest of the points. Image
source [115]

Since the simplex algorithm requires numerous energy calculations, the sequential univariate search

method is preferred when the computational demand is high enough. For every unique degree of free-

dom, two new states are created by making changes in the existing ones (i.e., using a degree of freedom

having value as xi, 2 configurations with values = xi + ∂xi and xi + 2∂xi are generated). These three

points are then fit on a parabola. The minima of this parabola is located. The subsequent step involves
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warping the coordinate to this located minima, i.e., the conformation corresponding to this minima is

taken as the new starting configuration, and the parabola-construction procedure is repeated. A mini-

mum is achieved when infinitesimally small fluctuations across all directions (degrees of freedom) are

taken. Fewer PEF evaluations are carried out than the simplex method. A slow convergence is observed

when: 1. two points taken share a strong bond; or 2. the PES is shaped like a gradual shallow valley.

2.8 Molecular Dynamics Simulation

Alder and Wainwright were the first scientists to introduce the MD method in the late 1950s [116,

117]. Their work involved simulating the behaviour of hard spheres. Their results led to an increased

understanding of simple liquids. In 1964, Rahman carried out a simulation of liquid argon using a

realistic potential for the first time [118]. Later on, in 1974, along with Stillinger, he carried out what

was the first of its kind: molecular dynamics simulation of a realistic system: liquid water [119]. This

was followed by the simulation of BPTI (bovine pancreatic trypsin inhibitor) in 1977, which was the

first protein to be computationally simulated [120].

Fast forward to today, and studies based on MD simulations of solvated proteins, protein-DNA com-

plexes, and lipid systems have addressed a variety of issues, including the thermodynamics of ligand

binding and the protein folding of small proteins. Specialised simulation techniques tailored for han-

dling specific problems have been discovered, such as mixed quantum mechanical-classical simulations

to study enzymatic reactions. NMR experiments used to resolve the structures of various compounds

suffer from high variability when experimental data regarding specific regions of the structure is inad-

equate. Instead of analysing a single set of coordinates obtained from the PDB file of a molecule to

be simulated, MD simulations employ conformation ensembles as a means of increasing the sampled

space. This is possible due to significant progress made in the computational efficiency of the under-

lying simulation algorithms. The data from these ensembles can be fed into the appropriate mathemat-

ical functions to evaluate the macroscopic properties of the foundational system. Complicated events

such as certain configuration shifts and protein foldings can be simulated thanks to ensembles. Even

experiment-based studies can be replicated since they measure nothing but the time-averaged properties

of a conformational ensemble.

The MD technique shall be listed from hereon.

Consider a system of N particles, with:

• atomic positions of the entire system represented as r = {r1, r2, ....rN}

• atomic momenta of the entire system represented as p = {p1, p2, .....pN}

• the PEF of the system represented as U(r)

• the total kinetic energy of the system denoted by K(p)
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• mi and Fi(t) represents mass and net force on particle i respectively

The equations of motion for the ith particle can then be presented as:

ṙi =
pi
mi

(2.17)

Fi(t) = ˙pi(t) (2.18)

The net force applied on each particle is exactly equal to the negative of the gradient of the PEF w.r.t.

its coordinate. Mathematically speaking, Fi(t) = −∇iU(r). Thus, on initialisation of velocities via

Boltzmann distribution at some temperature T of the system, and the calculation of the PEF using the

force fields files for the system, the force on each atom can be calculated, thus enabling the estimation

of momentum and finally that of the position, for each particle, using the equations (2.17) and (2.18).

These steps when re-iterated for a certain number of timesteps, constitute of the basic MD algorithm. A

numerical integration algorithm is required for updating the momentum and position values, since these

kinetic and potential energy functions are highly complicated, thus rendering a generalised analytical

solution unavailable.

2.8.1 Verlet Integration

The first numerical integration algorithm to be proposed goes by the name Verlet integration. Ex-

pressing the position as a taylor series w.r.t. time, we get:

ri(t+ ∆t) = ri(t) + ∆t
∂r

∂t
+
1

2!
(∆t)2

∂2r

∂t2
+
1

3!
(∆t)3

∂3r

∂t3
+O((∆t)4) (2.19)

⇒ ri(t) + ∆tṙ+
1

2!
(∆t)2

Fi
mi

+
1

3!
(∆t)3

∂3r

∂t3
+O((∆t)4) (2.20)

In theory, this value of ∆t tends to 0, thus higher order terms are ignored since they would have little

to no impact due to higher powers of this ∆t term. This ∆t is referred to as the integration timestep.

Similarly, the position of the previous timestep, using that of current timestep is:

ri(t− ∆t) = ri(t) − ∆tṙ+
1

2!
(∆t)2

Fi
mi

−
1

3!
(∆t)3

∂3r

∂t3
+O((∆t)4) (2.21)

Adding equations 2.20 and 2.21, followed by rearranging so that ri(t + ∆t) becomes the LHS, we

get:

ri(t+ ∆t) = ri(t− ∆t) − 2ri(t) + (∆t)2
Fi
mi

+O((∆t)4)
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Hence, to estimate the particle position at the next timestep, the algorithm requires storage of the

current and previous timesteps. Using PEF, the force on each particle will be calculated, and the fourth-

order terms can be conveniently ignored. Notice that velocities are not required for updating the po-

sitions. However, on thinking carefully, it seems that during the starting up of the algorithm, ri(0)

denotes the initial coordinates of the system fed into the algorithm, but for calculating ri(∆t) we have

no ri(−∆t) since this timestep does not exist by definition. Thus, velocity calculation is required only

once, in order to start up the algorithm.

2.8.2 Velocity Verlet integration

A related and more commonly used algorithm is the velocity Verlet algorithm, first introduced in

1982 [121]. As the velocities and positions of particles are updated at the same time, this algorithm

bypasses the problem faced in the first time step of the basic Verlet algorithm.

The update equations of this integration method are extracted via expressing them in terms of inter-

mediate timestep quantities, i.e. values of quantities at t+
∆t

2
. The intermediate momentum can be

expressed as:

pi

(
t+

∆t

2

)
= pi(t) +

Fi(t)

mi

∆t

2
(2.22)

And the final momentum, in terms of this intermediate momentum can be expressed as:

pi(t+ ∆t) = pi

(
t+

∆t

2

)
+
1

2

Fi(t+ ∆t)

mi
∆t (2.23)

Adding 2.22 and 2.23, we get:

pi(t+ ∆t) = pi(t) +
[Fi(t) + Fi(t+ ∆t)]∆t

2mi

The steps of the algorithm are as follows:

1. Initialise the coordinates ri(0) from the starting the structure and the momenta pi(0) from a

boltzmann distribution at the simulation temperature.

2. Update the position from the current timestep t to next timestep t+ ∆t as:

ri(t+ ∆t) = ri(t) +
pi(t)

mi
∆t+

1

2!

Fi
mi

(∆t)2

For this step, the knowledge of the momentum(velocity), PEF and thus net force for the current

timestep of each particle is required.
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3. Since the positions at t + ∆t is known, compute the PEF and thus the net force on each particle,

i.e. Fi(t+ ∆t).

4. Update the momentum

pi(t+ ∆t) = pi(t) +
[Fi(t) + Fi(t+ ∆t)]∆t

2mi

Returning to the discussion of MD simulations, simulating systems with 50K-100K atoms has now

become a common practice, and provided that the computational power is low, simulating 500K atoms

can also be performed effortlessly. The development of high-performance computing (HPC) facilities

has a subpar but important role to play in the evolution of computational MD simulations, along with

the simplicity of the basic MD algorithm.

CPU parallelization and accelerators have now made their way into most of the day-to-day com-

puters. Through the message-passing interface (MPI), certain computer programmes can now utilise

multiple cores of CPUs concurrently, which is being taken advantage of by some of the widely used

simulation packages such as AMBER, GROMACS, NAMD, and CHARMM [108, 122–124]. Each

CPU is responsible for simulating a small but continuous portion of the actual ensemble, thus being

able to leverage the proximity of the corresponding interactions. It is important for CPUs that simulate

adjoining sections of a system to transfer information between each other.

The use of GPUs as fully programmable, high-performance processing units has been a solid break-

through in simulation packages. All of the aforementioned widely used simulation packages already

have GPU-optimised, parallelised versions. Since GPUs excel at parallelism and speed of calculations,

a wider adoption of GPU-optimised simulation software has taken place. Energy efficiency is an added

benefit realised when opting for GPU-optimised packages.

2.9 Potential of Mean Force

MD simulations are also routinely used to examine the variation of thermodynamic quantities (free

energy or the potential of mean force (PMF), in particular) with respect to a few key collective variables

of the system of interest. The reaction coordinates could be as simple as the distance between two

atoms or as complex as the number of contacts between two functionally important domains of the

system. Mathematically, the PMF of a system of N particles is the potential that gives the average

force exerted by all the n + 1...N particles on a particle j, over all the configurations, where for each

configuration a set of particles 1...n is kept fixed [125].

−∇jw
(n) =

∫
e−βU (−∇jU)dqn+1...dqN∫

e−βUdqn+1...dqN

, jε[1, 2, 3.....n] (2.24)
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−∇jw
(n) is the mean force acting on particle j, and w(n) is the potential of this force, i.e. PEF of

this force. To simplify, if n = 2, the resultant PEF or potential of force w(2) (r12) would represent the

average work to be done in order to pull 2 particles initially at an infinite separation to a distance of r

units.

The potential of force along a reaction coordinate (degree of freedom) is usually expressed as a

natural logarithmic function of its probability distribution. Since MD simulations are usually carried

out in an ensemble, the ensemble average of this probability distribution is usually used to calculate the

PMF. Formally, it is given by

P(χ) = 〈δ[χ− χ(q)]〉

For a canonical ensemble(NVT constant):

P(χ) =
∫
dq δ[χ− χ(q)]exp.(−U(q)/kBT)∫

dq exp.(−U(q)/kBT)
=

Z(χ)
Z

Z indicates the partition function and Z(χ) is also a partition function but for a system which is con-

strained to lie on a surface defined by the equation χ(q) = χ. The Landau free energy is then given

by:

F(χ) = F− kBT ln ((P)(χ))

where F is a arbitrary fixed constant.

For processes with an activation barrier higher than kBT the distribution function ρ(χ) cannot be

computed by a straight molecular dynamics simulation. Such computations would not converge due to

low sampling in higher-energy configurations. Special sampling techniques (non-Boltzmann sampling)

have been developed to obtain a PMF along a coordinate χ. One of such enhanced sampling techniques

is Umbrella Sampling. Often PMF simulations are used in conjunction with umbrella sampling due to

the aforementioned problem of convergence and low sampling for high-energy configurations [113].

2.10 Enhanced Sampling: Umbrella Sampling

Having its foundation laid on previous works [126, 127], umbrella sampling was founded by Torrie

and Valleau [128, 129]. Umbrella sampling was employed to achieve and study molecular interactions

in fluids well below their critical point. The method gained popularity in the 1980s with advancements

in computational resources and simulation algorithms. Researchers started applying umbrella sampling

to study a wide range of biological, chemical, and physical processes, including protein folding, ligand

binding, and phase transitions.

The free energy profile of a system may be characterised by numerous local minima, local maxima,

and saddle points. It may so happen that some of these minima are separated by saddle points having

a barrier height much larger than the thermal energy (kBT ) for that particular temperature, and thus a
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(a) (b)

Figure 2.6: (a) Schematic illustration of the umbrella sampling method. x-axis represents the reaction
coordinate value and y-axis represents the corresponding free energy value. Red lines represent the PMF
functions Fi, for each window, in other words harmonic bias potentials added to the system Hamiltonian
at different windows along the reaction coordinate(s(q)) space. Black represents the actual, unbiassed
PMF function F. Figure borrowed from [130]. (b) Biassed probability distribution of the reaction coor-
dinate(in this figure, Extension) for each window. x-axis and y-axis represent the reaction coordinate
and corresponding probability value respectively.

lot of time may be spent transitioning from one minima to the other, resulting in their poor sampling.

This lack of sampling signifies the generation of an inaccurate PMF. Even for small systems, simulation

timescales in the order of a millisecond MD are required at the very least to obtain useful sampling.

This is obviously not tractable, and so a smarter approach must be used.

A way to go about handling this would be to perform MD simulations using a bias potential exactly

equal to −F(s), where F(χ) represents the PMF along a reaction coordinate χ (if its already known, or

accurately estimated that the free energy surface will have a functional representation of F(χ)). This

will make the biassed free-energy landscape flat and barrier less. This potential acts as an umbrella that

helps in safe crossing of the transition state in spite of its high free energy.

Since it would be almost impossible to generalize functional estimation of the free energy profile

along a reaction coordinate, if the location of the barrier, w.r.t. this reaction coordinate is accurately

estimated, the sampling of this barrier could easily be favoured by addition of an artifical harmonic

restraint on the CV, for e.g. in the form of the following potential:

U(χ) = k

2
(χ− χ0)

2
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After applying such a bias, the sampled distribution will change from P(q) to P’(q), and these are

related as:

P ′(q) ∝ P(q).exp

[
−k (χ(q) − χ0)

2

2kBT

]
(2.25)

For large values of k, only points close to s0 will be explored. By combining simulations performed

with different values of χ0, one could obtain a continuous set of simulations going from one minimum

to the other, crossing the transition state(s). The ensemble in such a biassed sampling scenario would be

known as biassed or extended ensembles, and will no longer remain a pure NVT/NPT/NVE ensemble.

If a very small force constant (k) of bias is used for the enhanced sampling, the system may still

be unable to cross the aforementioned barriers. On the contrary, if a large force constant is used, the

barrier will be crossed, but the sampling in turn suffers from extremely narrow and non-overlapping

probability distributions. To tackle this, the resolution of the chosen windows needs to be finer, i.e.,

more intermediary windows need to be sampled. This may, however, lead to a manifold increase in the

computational demand, and thus the selection of a balanced force constant paired with an apt resolution

is required for optimising both sampling and computational demand.

There are numerous methods to obtain the actual PMF from umbrella sampling simulations. One

of the most popular methods developed by a pioneer in the field, Shankar Kumar, is the Weighted

Histogram Analysis Method [131]. The corresponding software tool was developed by another pioneer,

Alan Grossfield [132]. Since it’s a free-to-use software, it forms the perfect basis for young researchers

to learn and understand umbrella sampling and obtain free energy profiles for a variety of reaction

coordinates, thus garnering such a wide audience.

2.10.1 Weighted Histogram Analysis Method

This method, popularly known as its abbreviated form, WHAM, involves solving of the following 4

equations [133].

e−βFi =

∫
Pu(χ)eβU(χ)dχ (2.26)

Pu(χ) =
Nw∑
i

pi(χ)Pui (χ) (2.27)

pi(χ) =
ai(χ)
Nw∑
i

ai

(2.28)

ai(χ) = Nie
−βUi(χ)+βFi (2.29)

2.26 was seen earlier on during the discussion of umbrella sampling, its the one used to calculate

the free energy value for the ith window, Fi, using the global unbiassed probability distribution of the
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reaction coordinate, Pu(χ), along with the biasing potential used, U(χ). This global distribution is

computed from a weighted average of the distributions of the individual windows, as given by 2.27,

wherein pi is the weight for the probability distribution Pi(χ) for the ith window andNw represents the

total number of windows.

The input equations 2.26 and 2.27 are solved under the following 2 conditions, in order to minimize

the statistical error(standard deviation of global unbiassed probability distirbutions, σ) in Pui (χ) [131]:

∂σ2 (Pu(χ))
∂pi(χ)

= 0 (2.30)

Nw∑
i

pi(χ) = 1 (2.31)

This eventually leads to the obtaining the equations 2.28 and 2.29. The Ni in 2.29 represents the

number of steps sampled for window i. Its easily observable that for calculating 2.29, the values from

2.26 need to be borrowed, hence these equations are to be computed iteratively, in a self-consistent

manner, until convergence is achieved.

2.11 Simulatory Optimization Tactics

2.11.1 Implementing Ensembles - Canonical ensemble via thermostat

Although MD simulations at high temperatures are able to circumvent the inadequate sampling of

the high-energy barrier scenario, the computational time itself at such considerably high temperatures

is quite large, especially when utilising explicit solvent. However, engaging Langevin dynamics at

realistic temperatures could be used as a successful alternative [134]. Since the solvent collisions make

the dynamics stochastic, Newton’s equations could be well replaced with Langevin’s as the following:

m
d2x

dt2
= F(t) − ζ

dx

dt
+ R(t) (2.32)

〈R(t)R(t ′)〉 = 2mγkTδ(t− t ′) (2.33)

where, x is the position, m is the reduced mass, ζ is the friction constant, F is the systematic force

(represents the real potential) , and R(t) is a random force, assumed to be uncorrelated with the positions

and velocities of the particle and is rather a Gaussian function with a mean of zero and variance given

by 2.33. The collision frequency γ in 2.33 is defined as
ζ

m
. Newtonian equations are recovered when

γ = 0. The random force represents the thermal kicks from the small solvent-particles. The friction

constant and the random force combine to give the correct canonical ensemble.
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When choosing a timestep δt both the highest frequency of the systematic force and the collision

frequency γmust be taken into account [135, 136]. The coordinates and velocities are updated according

to the following steps:

1. fetch intermediate velocities as : v(t+ ∆t
2 ) = v(t−

∆t
2 ) + (xn − xn−1)

1−γ∆t
2

1+γ∆t
2

+ (Fn+Rn).(∆t)
2

m.(1+γ∆t2 )

2. Calculate updated coordinates using intermediate velocities, x(t + ∆t) = x(t) + v(t + ∆t
2 )

3. Get the velocities for the new time-step: v(t+∆t) =
(
1+ γ∆t2

)1/2 (
v(t+ ∆t

2 ) + v(t−
∆t
2 )
)
/2∆t

2.11.2 Implementing Ensembles - Isothermal-isobaric ensemble via barostat

The commonly used isochoric and adiabatic ensembles that maintain a constant volume of the given

system cannot be employed if the system being studied is characterised by a continuous loss of energy.

This method was initially used to simulate single-component fluids and study phase transitions. Ander-

ssen was one of the first to propose a pressure-constraining method [137] for simulations, and its imple-

mentation by Haile and Grabben [138] yielded static properties that corresponded closely to (N,V, E)

simulations, but the dynamic properties remained untested. A large array of pressure-constraining meth-

ods were suggested subsequently, which dealt primarily with modifying the Hamiltonian [139–142].

The Berendsen barostat method was finally brought forth in 1984.

This method weakly couples a system to be simulated within this ensemble with an external bath

based on the theory of least localised perturbation, thus fulfilling any required systemic coupling. The

impact of this coupling can be adjusted and examined by controlling its strength. This ensures the

presence of any perturbation that is naturally found within a system in an out-of-equilibrium state.

This ensemble could be implemented using the method of weak coupling to a thermal bath proposed

by Berendsen [143]. It proposes to add an extra term to the equations of motion which effects the

pressure change:
dP

dt

∣∣∣
bath

=
P0 − P

τP

where P0 is the reference pressure, i.e. the pressure of the external bath, P is the instantaneous

pressure and τP is a time constant. The pressure is given by:

P =
2

3V
(Ek − Ξ) (2.34)

Ξ = −
1

2

∑
i<j

rij.Fij, rij = ri − rj (2.35)

Here, P is the pressure, V is the volume, Ξ represents the virial of the pairwise additive potentials,

and Fij represents the force acting on particle i due to particle j. Within this scheme the coordinates and

44



the box sides are rescaled at every step, in order to maintain the constant pressure. Assuming the system

is isotropic and within a cubic box the scaling factor µ is given by:

µ = 1−
κT∆t

3τp
(P0 − P)

κT is the isothermal compressibility. In theory, an inaccuracy in the value of isothermal compress-

ibility only influences the accuracy of the non-critical time constant τP, its not consequential to the

precision of the simulation. In reality, the value of κT should be reasonable, and may depend upon the

simulation package used, for instance GROMACS and DL POLY use κT = 4.6× 10−5bar−1) at P0 = 1

atm and T0 = 300K.

The following steps would account for a brief employ of this barostat in an MD simulation:

1. Evaluate all forces on all atoms, ai(t) =
Fi(t)

m

2. Evaluate the virial and the kinetic energy, thus measuring the pressure, using 2.35 and 2.34.

3. Compute the intermediary-timestep velocities, i.e. v
(
t+ ∆t

2

)
4. Evaluate the new atomic-coordinates, using the intermediate velocities computed in the preceding

step and pressure-scale them by taking a product with µ .

5. Calculate the velocities for this new timestep.

2.11.3 Periodic boundary conditions

Commonly referred to as PBC, these involve periodic duplication of the system in all directions to

represent an infinite system. A cubic lattice is typically used, with the central box housing our main

system and other replica-cubes containing atoms that are the images of the central-box atoms. The

coordinates of atoms inside these replica boxes can be obtained simply by adding or subtracting integral

multiples of the central box dimensions. A particle leaving the box during simulation is replaced by

an image particle that enters from the opposite side of the box, as shown in Figure 2.7. Hence, the net

number of atoms in the central box remains constant.

On employing PBC, it’s impossible to have fluctuations of wavelengths greater than the edge length

of the cell. For simulations of systems with a near liquid-gas critical point this could cause some

problems. The cell size should be larger than the range of interactions, or else some pseudo-long-range

(mainly electrostatic) interactions may get imposed unnecessarily.

Apart from cubic systems, the rhombic dodecahedron [144] and truncated octahedron [145] can also

employ PBC. The added benefit is the reduction in the number of solvent atoms required, resulting in

a decreased computational load. For a given number of atoms, the distance between adjacent cells is
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Figure 2.7: Periodic Boundary conditions in 3-D. The red and blue spheres represent atoms of two
different elements. Arrows drawn on some of them represent their current direction of movement.
Notice that in each image of the central box, the direction of movement of a particular atom and its
corresponding images is the same. Image adapted from Central Michigan University.

larger for such cell types when compared to the cubic cell, so they require fewer solvent particles when

compared to the cubic cell. Additionally, it’s often sensible to pick a cell type with a shape that reflects

the underlying geometry of the system. In the absence of periodicity, stochastic boundary conditions

can be used for any system geometry [146].

Stochastic boundary conditions, a lesser-known boundary conditions tactic, are highly useful for lo-

cal exploration of a system, such as a binding site. Enabling them allows the exclusion of a major chunk

of the system from being simulated, thus saving considerable computational resources. A spherical,

stochastic shell is said to enclose the local region and is characterised by stochastic dynamics, which

can be evaluated using Langevin dynamics equations. A bath enclosing this stochastic shell contains

and is responsible for maintaining the structural integrity of the rest of the system. Although proteins

such as BPTI (bovine pancreatic trypsin inhibitor) have been studied under this approach [147], artificial

density fluctuations that arise as a result of such constricting boundaries, even in the simplest of models,

can alter the solvent-structure [148]. However, some models with improved features have been explored

[149, 150].

Periodic boundary conditions are imposed with what is known as the nearest image convention.
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(a) (b)

Figure 2.8: Nearest image convention and potential truncation. (a) The nearest atoms/copies wil be
used for potential calculations, those which lie inside the circle. (b) The actual vanderwaal’s interaction
potential function used switches to a linear decay function when the interatomic separation reaches the
switchdist value, and becomes 0 on reaching the cutoff.

2.11.4 Nearest image convention

Systems to be simulated usually have around 105 - 106 atoms. The computational load to compute

pairwise non-bonded interactions scales as N2, N being the total number of particles in the system,

somewhere around 1010 - 1012. For a large fraction of atoms, however, since the interatomic separation

is considerably high, the theoretical value of non-bonded interactions would remain somewhere around

zero, as suggested from equation 2.13. To compute such truncating non-bonded interactions, the PBC

have to be augmented with what is known as the nearest image convention.

In this convention, each individual particle in the simulation interacts with the closest image of the

remaining particles in the system. A radial cutoff is applied w.r.t. each atom, and all the atoms/nearest-

images having separation greater than this cutoff are said to have zero interactions, and only the rest

are assumed to contribute to the total interaction energy of the system. This cutoff should be large

enough for reasons of accuracy but small enough to not include an interaction between a particle and

its own image. This cutoff is also influenced by other systemic factors, such as the central-box shape

and size of atoms. A cutoff of 2.5σ , where σ is the force constant seen in the Leonard-Jones potential

equation, is known to produce a relatively small error. On the contrary, for long-range interactions

such as coulombic interactions, using such a cutoff may produce considerable errors, depending on the

system being simulated.
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2.11.5 Neighbouring list
(a) (b) (c)

Figure 2.9: Approaches to compute pairwise interactions. (a) Consider all pairs, (b) using neighbour
lists, where the concentric circles show the interaction range and the extra area covered by the neighbor
list for one of the atoms. (c) Cell list method, the edge length exceeds the interaction range. All images
have been borrowed from [151].

Although using the cutoff exempts the energy calculation for atoms of a certain interatomic sepa-

ration, nonetheless, the separation still gets calculated, thus still increasing the computational time by

an order of N2. If there was a way to know a list of atoms to consider while calculating non-bonded

interactions, a considerable amount of time would be saved by omitting the separation calculations for

the rest. The first-ever list was proposed by Verlet, which went by the name Verlet list [152]. The in-

teratomic separation for all pairs of atoms is initially calculated, and only those pairs are stored whose

separation is under another cutoff called the neighbour cutoff.

Initialising this neighbour list although takes O
(
N2
)

computational load, is a one-time investment

since the neighbour list is updated at regular intervals throughout the simulation, and the updates occur

in a linear time. To reflect the change in the interatomic separation from a value greater than the neigh-

bour cutoff to a value lesser than the non-bonded cutoff within the time interval of the update for the

neighbour list, the neighbour cutoff has to be larger than the non-bonded cutoff. The use of the verlet

list results in a net drop in the computational load from the initial O
(
N2
)

to O
(
N
5
3

)
.

The two main hyperparameters that tread on the efficiency-accuracy tradeoff are the update fre-

quency and the neighbour cutoff value. The value of the update frequency is important since too high a

frequency will increase the computational load, and too low a frequency may result in an incorrect cal-

culation of PEF and thus forces due to the atoms moving within the non-bonded cutoff region, resulting

in an inaccurate simulation. A larger neighbour cutoff would cause a surge in storage complexity, and a

smaller value would result in the aforementioned inefficiencies.

Another, more efficient technique of optimising pairwise interaction calculations would be the use

of a cell list. It is a data structure used to find all atom-pairs separated by a distance that is well within a
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given cut-off distance. On dividing the simulation box into cubic cells, each with an edge length greater

than or equal to the non-bonded cutoff, the particles are sorted into these cells, and the interactions are

computed between particles in the same or neighbouring cells. This entire procedure is known as the

cell index method. It brings down the computational time from the typical O
(
N2
)

to O(N), thus an

improvement over the neighbour list method.

2.11.6 Ewald sums

Interactions that tend to be considerable even at large values of interatomic separation are highly

problematic to simulate. Such interactions need to be modelled with the utmost care since they affect

fundamental properties such as the dielectric constant of the system. Thus, a variety of methods were

developed to handle these long-range forces.

To study the energetics of ionic crystals, the Ewald sum came to light [153]. The short-range in-

teractions are calculated in real space, whereas the long-range interactions are calculated using Fourier

transforms. For the long-range interactions, instead of calculating point-charge interactions, a neutral-

ising Gaussian charge distribution is functionally added to the actual system in the real space. Another

distribution, to neutralise this, is added in the reciprocal lattice space. Thus, the amount of charge re-

mains the same, and the initially conditionally convergent series of long-term interactions expressed as

point-charges is now decomposed into two completely convergent series.

Since it rapidly converges in comparison to direct summation, it is the de facto standard method for

long-range interactions when employing PBC. Time complexity of the method is still O
(
N2
)

due to

the bottleneck calculations of the reciprocal space, but by using fast-Fourier transforms to handle the

reciprocal space contribution, the time complexity can be reduced down to O (NlnN) where ln is the

natural logarithm, i.e. logarithm to the base e. Nonetheless, it is still laced with certain limitations. Each

inter-charge interaction decrements when the interatomic separation is half the central-box edge-length.

Since the summation method considers the central and image boxes, rapid conformational changes in

the former are reflected in the latter instead of fading away. All of these can be bagged into the Ewald

method, inflating the errors introduced as a result of using PBC.

2.11.7 Bond-parameteric constraints

From a fixed computational power standpoint, factors such as the quantity of interactions to resolve

per time-step, time spent extracting each interaction, the period of the time-step, and the total degrees

of freedom to be handled affect the actual time a simulation takes. By decreasing the total degrees of

freedom to be handled in the form of freezing high-frequency normal modes, the simulation efficiency

could be incremented. This is usually done by constraining parameters of covalent bonds that involve

hydrogen atoms using algorithms such as SHAKE [154, 155], RATTLE [156] and LINCS [157]. Hence
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the current highest-frequency vibration has a frequency value much lower than these hydrogen-bond

involving modes. Since the timestep has to be marginally smaller than the time-period of this highest-

frequency mode, it can now be made larger, thus allowing for longer simulation time-scales. In practice,

the time step can typically be increased by a factor of 3 compared to simulations with the original Verlet

algorithm.

The SHAKE algorithm is an improvement over the Verlet algorithm in that the velocities of atoms

involved in covalent bonding with hydrogen (and the hydrogen atoms themselves) are updated so as

to constrain the corresponding bond lengths and bond angles at their respective equilibrium values.

In LINCS, instead of altering the velocities, the atomic positions themselves are reset. This avoids

a statistical error innate to the SHAKE method and enables an increment in the time-step value by a

factor of four. Generalised SHAKE [158] adds support for general nonholonomic constraints, and no

numerical drift is observed even when the number of constraints is large.

2.12 Need for Computational Studies

Before the advent of computers, one had to write force balance equations describing the equilibrium

of forces and volume constancy equations and solve them by hand. This procedure wasn’t scalable

since the number of equations and variables involved in a realistic, single- or multi-molecule system

were too many to keep track of, thus rendering this method impractical. To make matters worse, as the

molecule(s) moved, their geometries changed, and the equations had to be re-derived and re-solved for

each small increment of motion.

In the early 1970s, computers were first introduced in universities for research purposes. Sooner,

it was discovered that code written and executed on them could be used potentially to solve the dense

equations of molecular dynamics (and other sciences for that matter). This evolved into studying in-

teractions between multiple biomolecules in one another’s vicinity, which soon morphed into studying

cell movements themselves. Computational algorithms experienced improvements in performance and

reliability with the passage of time, bridging the gap between experimental and model-based studies.

The extent of improvements in recent times has led to computational models being considered a reliable

option when experimental studies yield less favourable results.

Evaluation of alternate scenarios via variation of the most important parameters opens up newer

directions in which a biological system could be looked at, drawing more insights regarding the pro-

cess(es) that it is involved in. Problems for which an analytical solution either does not exist or is very

complex to arrive at can be solved, or at the very least, a leap towards the solution can be made by

approaching them from a simulatory perspective. Simulations are also useful to assess the behaviour

of a system in a nearly-real environment when a lack of experimental data regarding the same makes it

difficult to study the system.
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The existence of complicated and buggy computational software creates obvious doubts regarding

the results derived from it being trustworthy. This also demands checks on the software being used at

various levels and simpler ways to convey the physical meaning of the computational methods employed

and the models used to peer reviewers. A fundamental problem with computational methods is that

all such software is generally filled with complexities, even in the smallest of details, and a detailed

understanding of the same is usually reserved for its authors.

A first order evidence is an evidence which by itself is enough to enunciate a hypothesis [159].

Usually experimental results of a study on a biomolecular entity are classic examples of first order

evidence, the hypothesis being that the molecular entity participates in some process that is the objective

of the study. Higher-order evidence, on the other hand, is evidence that leads to first-order evidence

being real and important for some hypotheses [160, 161]. Results from simulations and observations

can be constituted as higher order evidence. These generally need to match experimental results, or else

either the simulation or the experiment, or both of them, could be wrong.

A computer simulation system is reliable in a domain of application if, and to the extent that, the

majority of results that it would produce in that domain are true (or are accurate enough, given an

agent’s tolerance for error), when interpreted as claims about the world. If it yields very reliable results

that are accurate to within a specified margin of error, then its result(s), attributing to some particular

target feature of the biomolecular system being studied, can be evidence for a proposed hypothesis for

the same. A sequence of steps could qualify as evidence for a hypothesis when represented as mathe-

matical equations solved by hand that are reliable enough to accurately study a particular mechanism

or reaction. Computer simulations are nothing but solving these equations via computers, using some

approximations so as to ease out the calculations.
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Chapter 3

Allosteric Response of DNA Recognition Helices of Catabolite Activator
Protein to cAMP and DNA Binding
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3.1 Introduction

The modulation of proteomic activities across the cell can be influenced by the execution of gene

transcription processes [162–166]. Molecules known as transcription factors (a.k.a. TF) are primar-

ily responsible for impelling the gene-regulatory network [167, 168]. Comprehending the intricate

processes within this network involves evaluating elements that impact the individual behaviors of tran-

scription factors and DNA, as well as their binding dynamics [169–174].

Among these important TFs is a protein called Catabolite Activator Protein, hereafter referred to as

CAP. Found in bacteria, it administers the metabolism of different organic macromolecules by respond-

ing to fluctuations in the cellular concentration of another molecular species called cyclic adenosine

monophosphate (cAMP) [56–61].
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CAP, a dimer of approximately 50 kDa, is constituted by two identical subunits of around 209

residues each. Each subunit consists of two unique domains: (i) an N-terminal domain (residues 1 -

136) responsible for cAMP binding, and (ii) a DNA-binding domain (residues 138 - 209) situated at the

C-terminal, which incorporates a helix-turn-helix structural motif for DNA interaction [69–75]. The two

domains are linked through a brief hinge region (residues 137-138). The cAMP-binding domain encom-

passes a pocket area for binding cAMP, allowing for the accommodation of two cAMP molecules due to

the protein’s dimeric nature, with one molecule per monomeric subunit. CAP manifests in two primary

configurations: one with weak DNA binding and another where the affinity is markedly stronger. The

introduction of cAMP results in an allosteric alteration, inducing a transition from the former, termed

the inactive state, to the latter, termed the active state [62–68]. cAMP-bound CAP attaches to DNA at

sites proximate to the target promoter region, thereby regulating the interactions between RNA poly-

merase and the target promoter, initiating the transcription process [56, 175, 176]. Since the influence

of CAP’s regulatory mechanism cascades into subsequent downstream biological processes, achieving

a fundamental comprehension of this allosteric shift holds utmost significance [177–179].

MD simulations [180–185] and site-targeted NMR experiments [69, 76] have lately helped in un-

sheathing the intricacies of the allosterically mediated pathways involving regulatory sites and residues

that are essential for protein allostery. Kalodimos et. al employed NMR and isothermal titration

calorimetry experiments [76] to exhibit negative cooperativity (cAMP binding at one site decreases

the binding affinity of the other cAMP molecule for the other binding site) with regards to the binding

of the two cAMP molecules and the changes in protein motion. These changes mainly comprise of

a coil to helix transition of the VAL126 to PHE136 segment in the CBD and conformational changes

in the recognition helices (commonly known as F-helices) of the DNA, wherein they experience a net

translation and rotation of ≈ 7 Å and ≈ 60◦ respectively, relative to their orientation in the ligand-free

CAP [69].

Establishing extensive connections with DNA base pairings and the sugar-phosphate backbone is

promoted by these alterations in configuration, aiding the favorable docking of an incoming target DNA

sequence onto these F-helices [69, 186]. The present study aims at understanding the cAMP- and

DNA-induced energetics behind these changes by exercising molecular dynamics and two-dimensional

umbrella sampling simulations on cAMP-free, cAMP-bound, and DNA-bound CAPs. A set of unique

collective variables is proposed to capture the key interactions between CAP, DNA, and the cAMP

molecules, and the corresponding free energy profiles are analysed to grasp their energetic perspectives.
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(a) (b) (c)

Figure 3.1: Crystal structures of (a) unliganded CAP (Apo-CAP), (b) CAP bound with cAMP (CAP-
cAMP) and (c) cAMP liganded CAP complexed with DNA (CAP-cAMP-DNA). The CBD (cAMP-
binding domain) on the catabolite activator protein is coloured in blue, whereas the DBD (DNA-binding
domain) is coloured in orange. The α-helices of interest in this study are coloured in magenta and
belong to the DBD. The ligand (cAMP) is in red, and the complexed DNA in green.

3.2 Simulation Details

3.2.1 Models

The following three states of CAP were chosen for the present study as follows: (a) the ligand-free

CAP (henceforth referred to as the apo-CAP), (b) the cAMP-bound state, wherein two cAMP molecules

are bound to CAP (CAP-cAMP complex), and (c) the DNA-bound state, wherein cAMP-bound CAP is

further bound to the DNA (CAP-cAMP-DNA complex). Solution NMR and X-ray crystal diffraction-

determined PDB structures were chosen as an initial conformation for the 3 states, 2WC2 for apo-

CAP [69], 1G6N for CAP-cAMP [71] and 1ZRC for CAP-cAMP-DNA [74]. The missing terminus

residues of CAP for 1G6N (1-6, 207-217, 417-418) were modelled using Modeller [187]. A pictorial

representation of the important domains for these 3 structures is rendered in Figure 3.1.

In addition to the aforementioned models, the following three models that represent the meta-stable

intermediate conformational states were also investigated: (a) the cAMP-bound form of CAP with both

the cAMP molecules removed from their respective cAMP-binding domains (henceforth referred to

as the CAP-cAMP* model), (b) the DNA-bound form of CAP-cAMP-DNA with DNA removed from

the DNA-binding domain (the CAP-cAMP-DNA* model), and (c) a composite system generated by

docking the DNA molecule from the CAP-cAMP-DNA system onto the CAP-cAMP complex from the

original CAP-cAMP system (the CAP-cAMP· · ·DNA model).

The pre-processing steps iterated for each model comprised: (a) addition of missing hydrogen atoms;

(b) solvation in a cubic TIP3P water box of apt dimensions; and (c) the addition of Cl− counterions to

neutralize the system.
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3.2.2 Molecular Dynamics Simulation

200 ns MD simulations of all six systems were performed using the AMBER 2016.10 simulation

package [108] with the ff14SB force fields [188] for the protein, ParmBSC1 force fields [189] for DNA,

and the TIP3P model [190] for water molecules. Force fields defined in [191] were used for cAMP

molecules. The SHAKE algorithm was used to constrain the length of bonds involving hydrogen atoms

[155]. Periodic boxes of the following dimensions were used: 115 Å × 97 Å × 78 Å for apo-CAP,

90 Å × 107 Å × 101 Å for CAP-cAMP, 108 Å × 94 Å × 143 Å for CAP-cAMP-DNA, and 90 Å ×
90 Å × 90 Å for the remaining 3 systems, as part of employing periodic boundary conditions. The

Particle Mesh Ewald method was used for evaluating long-range electrostatic interactions, with a 10 Å

cutoff and tolerance of 0.00001 . A direct cutoff of 10 Å was used for the van der Waals interactions. A

Berendsen barostat [143] was employed to maintain isobaric conditions 1 bar with a time constant of 1

ps, while a Langevin thermostat [134] kept the temperature at 300 K using a time constant of 1 ps. The

velocity Verlet [121] algorithm was used to integrate the equations of motion with a time step of 2 fs.

Potential energy minimization for the entire system was split into 2 phases: the first involved re-

straining the heavy atoms of the solute (protein, cAMP, DNA) with a high force constant in an effort

to relax all hydrogen atoms, and the second phase comprised a restraint-free minimization. Each phase

was carried out by an initial 1000 cycles of the steepest descent algorithm and a subsequent 1500 cy-

cles of conjugate gradient minimization. The structure obtained at the end of phase-2 was introduced

in an NVT ensemble for annealing to 300 K for 20 ps, restraining the heavy atoms of the solute( with

a harmonic spring constant of 10 kcal mol −1 Å−2 ). The Maxwell-Boltzmann velocity distribution

corresponding to 300 K was used to assign random atomic velocities to all particles of the system. The

annealed structure was brought into an NPT ensemble with the temperature and pressure held at 300 K

and 1 bar respectively. This simulation was carried out for 2 ns with the positional restraints still intact.

Each system underwent a 3 ns NPT simulation at 300 K and 1 bar pressure in the conclusive phase, after

which all positional restraints were removed. This was followed by a 200 ns NPT production run with

the same temperature and pressure values.

3.2.3 Umbrella Sampling

3.2.3.1 Collective Variables to Analyse Relative Motion of F-helices

As mentioned previously, exploring the underlying dynamics and energetics of the orientational

changes of F-helices [69] on cAMP binding was the prime motto of this study. Therefore, the systems

CAP-cAMP*, CAP-cAMP-DNA*, and CAP-cAMP· · ·DNA are expected to transition to apo-CAP,

CAP-cAMP and CAP-cAMP-DNA, on simulating them as mentioned in the Simulations subsection.

However, the time-averaged structures of CAP in these 3 systems are found to be comparatively more

structurally similar to the CAP in CAP-cAMP, CAP-cAMP-DNA, and CAP-cAMP, respectively. The
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Figure 3.2: Collective variables η and ξ used to describe the relative motion of Fα-helices of CAP. The
centers of mass (COM) of the four chosen groups on the two Fα-helices - g1 (blue), g2 (red), g3 (green)
and g4 (orange) are shown as black dots. η and ξ are represented by dotted lines connecting the COM
of (g1, g4) and (g2, g3) respectively.

rugged nature of the underlying energy surface can vouch for the fact that the time scales of the expected

rare, transitionary events appear to be longer than those of the MD simulations used by the authors.

Thus, it is practically infeasible to capture these binding-induced large-scale structural changes in CAP

using conventional MD simulations. Thus comes the need for employing enhanced sampling techniques

such as Umbrella Sampling.

In an effort to aptly capture structural changes (rotational and translational) in F-helices resultant of

binding, two distance-based collective variables (CVs) η and ξ were defined, as shown in Figure 3.2.

To define these, F-helices were first divided into 4 groups: groups 1 and 2 consisted of the C-α atoms of

residues 186-191(upper half) and 179-185 (lower half), respectively, of the first F-helix, while the C-α

atoms of residues 179’-185’ (upper half) and 186’-191’ (lower half) of the second F-helix formed groups

3 and 4, respectively (in the above and henceforth, the superscript ’ denotes the residues of subunit-2

of CAP). The distance between the centres of masses of groups 1 and 4 was labelled to be η, and the

distance between the centres of masses of groups 2 and 3 was referred to as ξ.

3.2.3.2 Simulation Parameters

Using the definitions of η and ξ as reaction coordinates, two-dimensional (henceforth referred to as

2D) umbrella sampling (US) simulations were performed on the systems Apo-CAP, CAP-cAMP and

CAP-cAMP-DNA. This captured the variations in the potentials of mean force (PMFs) for the relative

transformations of the two F-α helices. The resultant reaction coordinate sampling was subjected to
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weighted histogram analysis to formulate the PMF profile. For each of these 3 models, the starting

structure of their US runs was taken from the final timestep of their respective unbiased production

runs. The collective variable η was varied from 28 Å to 48 Å, and ξ was varied from 18 Å to 35 Å, in

steps of 0.5 Å for each of them. Thus a total of 101× 35 = 3535 unique configurations or windows were

simulated, per system. For each system, the starting structure underwent potential energy minimization

to bring η and ξ to the centre of the chosen window using a harmonic biasing potential with a higher

spring constant (100 kcal mol−1 Å−2) on both the collective variables. Following this, in each window,

the minimized structure was equilibrated for 100 ps followed by 2 ns of production run at 300 K and

1 atm pressure in an NPT ensemble. These umbrella sampling simulations were carried out using the

same conditions as those of unbiased MD runs, but with η and ξ being restrained by a harmonic biasing

potential of force constant 4 kcal mol−1 Å−2.

To preserve the orientational sanctity of the F-α helices from the effects of the applied bias, the

distances between all pairs of heavy backbone atoms in each of these helices were harmonically con-

strained using a spring constant of 2.5 kcal mol−1 Å−2. This ensures the structural integrity of these

helices and eliminates their internal motions during the PMF evaluation. Taking into account the 200

ns unbiased production runs per system (6 systems) and all the umbrella sampling runs (3 systems), the

gross computational time of these simulations was ≈ 9.2µs.

3.3 Results and Discussion

3.3.1 Free Energy Profiles

Figure 3.3 shows the 2D free energy profiles (henceforth referred to as FEP) from umbrella sampling

calculated as per the details mentioned in the previous section, (η, ξ) indicates a unique point on the 2D

contour plot that represents the FEP. The subscripts U and C are used for the unbound and cAMP-bound

CAP respectively, thus FU(η, ξ) (ref. Figure 3.3a) and FC(η, ξ) (ref. Figure 3.3b) denote the free energy

contours for Apo-CAP and CAP-cAMP respectively. Analysis of the effect of DNA-binding has already

been discussed in [192], thus effects of the cAMP-binding event are analysed here. Hence, only the

PMFs of Apo-CAP and CAP-cAMP are shown.

The global minimum of FU(η, ξ) is located at (38.8 Å , 23.9 Å). The elliptical contour lines seen in

Figure 3.3a display a greater spacing along ξ when compared to that of η. The width of an energy basin

of a system along η(denoted by δη ) and ξ(denoted by δξ ) was devised as a numerical measurement of

its freedom along these reaction coordinates, and are calculated as follows:

δη = ηmax − ηmin , δξ = ξmax − ξmin

Subscripts ”max” and ”min” denote the maximum and minimum values, respectively, of that par-

ticular reaction coordinate along the contour line of free energy equal to 6 kcal mol−1 , for the FEP of
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(a)

(b)

Figure 3.3: Calculated two-dimensional PMF profiles as a function of η and ξ for (a) apo-CAP, denoted
as FU(η, ξ) and (b) CAP-cAMP complex, denoted as FC(η, ξ) . The contour plots are truncated to leave
out high-energy regions (> 30 kcal mol−1) on these PMF profiles. The reported energies are in units of
kcal mol−1. The distribution of η and ξ obtained from the unbiased MD simulations is superimposed
on the PMF plots with translucent light-blue circles.
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a particular system. The region demarcated by this free energy value is considered to aptly engulf the

spread of η and ξ obtained from unbiased MD simulations (blue data in Figure 3.3). For FU(η, ξ) , δη

≈ 10 Å and δξ ≈ 13 Å.

The FC(η, ξ) is characterised by a comparatively larger basin that FU(η, ξ) , and its minima are lo-

cated at (37.7Å, 28.8 Å) and (35.3 Å , 28.0 Å). This dual minimum indicates a back-and-forth existence

of the CAP-cAMP complex in these conformations. The value of (η, ξ) for the crystal structure of

the complex corresponds to (37.56 Å , 29.52 Å) which is situated well under the recorded minima of

FC(η, ξ) . When compared to FU(η, ξ) , the elliptical contour lines seen in Figure 3.3b, i.e. FC(η, ξ) dis-

play a greater spacing along η than that along ξ, with the δη and δξ values for CAP-cAMP being 15 Å

and 11 Å respectively. A prominent shift in the energy minimum caused by cAMP-binding is observed

and denoted along the reaction coordinates η and ξ as ∆U→Cη and ∆U→Cξ respectively. The values of

∆U→Cηand ∆U→Cξare -1.1 Å and 4.9 Å respectively. Therefore, a switch in the rigidity along the reac-

tion coordinates observed from the PMF comparisons could be an effect of the resultant conformational

changes of the cAMP-binding event, thus commissioning the binding of CAP with the promoter region

on the DNA.

Regarding the unbiased MD-derived scattered spread of (η, ξ) of a system (blue data in Figure 3.3),

it is observed that this spread is highly dense and uniform inside the region demarcated by the 6 kcal

mol−1 contour line for both Apo-CAP and CAP-cAMP. The consistency of the free energy profiles with

the unbiased simulations for either of the systems is evident from the spread being directed more along

the major axis of the ellipsoidal free-energy contours.

3.3.2 Key Interactions Between Protein (CAP), Ligand (cAMP) and DNA

Changes in the reaction coordinates η and ξ during the cAMP-binding event reflect interactional

changes within the system from this event. Analysing potential energy changes associated with the

event serves as a way of unveiling hidden features in the 2D PMF profiles corresponding to the event.

Thus, electrostatic and van der Waals interaction energies of each amino acid of CAP with water, cAMP,

DNA, and other amino acids of the protein itself were evaluated using the linear interaction energy (lie)

tool available in the CPPTRAJ module [193] of AMBER16. UU and UC denote the potential energy of

the protein CAP in Apo-CAP and CAP-cAMP respectively, and ∆UU→C = UC - UU denotes the change

in interaction energy of the protein on the occurrence of the cAMP-binding event. Superscripts ”intra”

and ”water” denote the interaction energy calculated for an amino acid of the protein with itself and with

water respectively. Figure 3.4 depicts the cAMP-binding-induced changes in these interaction energies.

Interactional effects of DNA-binding were already studied in [192], thus cAMP-binding effects will be

the subject of discussion.

Although CAP is composed of two subunits that have identical structure and amino-acid sequence,

the cAMP-induced change in their interaction energies with the environment begs to differ, as is seen
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(a) (b)

(c)

Figure 3.4: Interaction energy changes in the cAMP-binding event. The (a) cAMP-induced changes,
∆UU→C in the mean electrostatic energy of individual residues of CAP are shown. The corresponding
changes in the mean intra-protein energy ∆Uintra

U→C is presented in (b). The residues in the DNA-
binding domains (bounded by the dashed orange rectangle), cAMP-binding pockets (green), and F-
helices (red) are highlighted. The (c) cAMP-induced, ∆Uwater

U→C changes in the mean electrostatic energy
of interaction between individual residues of CAP and water are shown. For each graph, residues are
ranked according to their absolute interaction energy values, with a higher rank(1) and a lower rank(5)
denoting a higher value and a lower value respectively.
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in Figure 3.4. Amino acids primarily involved in salt-bridge and hydrogen-bonding stabilisation such

as SER, THR, ASP, GLU, ASP and LYS, experience a large ∆UU→C thus showcasing the forma-

tion (negative change in ∆UU→C ) and breakage (positive change in ∆UU→C ) of salt-bridges and

hydrogen-bonds. The most remarkable changes were observed in GLU-72, GLU-77, and GLU-81,

which have a negatively charged side-chain, and ARG-82, which has a positively charged side-chain.

These 4 residues are part of a subdomain in CAP that goes by the name phosphate-binding cassette

(henceforth referred to as PBC) [194].

A signature motif of all cAMP-binding proteins, PBC stretches from GLY-71 to ALA-84. A bunch

of amino acids in this subdomain form salt-bridges that provide scaffolding for the coiled region of

VAL126 - PHE136, namely these contacts exist between the following amino-acid residues: (1) ARG-

82 with GLU-129’, (2) GLU-77 with ARG-122’, and (3) GLU-78 and ARG-122’ [195–197]. These are

broken on the arrival of cAMP, but new bridges in the form of : (1) ARG-82 with cAMP’s phosphate

and (2) ARG-122’ with GLU-129’ stabilise the newly formed helical region of VAL-126 to PHE-136

[69]. Hence, the changes observed in cAMP-binding are in accordance with these experimental results.

Although F-helices are nowhere in the vicinity of cAMP, their interaction energy with the environment

experienced substantial changes during the cAMP binding event, as shown in Figure 3.4. The previously

mentioned coil to helix transition impacts inter-amino acid contacts of CAP, thus impacting ∆Uintra
U→C

for the F-helices. As for the change in interactions with water, since F-helices form the exterior of CAP,

changes in the solvent distribution around them occur due to their aforementioned conformational shift.

3.3.3 Allosteric Pathways

Prospective allosteric pathways in CAP were explored on account of the identification of amino acids

in the CAP that experienced distinguishably large changes in their intra-protein interactions during the

events of cAMP and DNA binding Figure 3.5. These residues are highlighted in Figures 3.5a, 3.5b, 3.5d

. Figure 3.5c portrays a pathway of allosteric signals emanating at the cAMP binding pockets (CBP-1

and CBP-2), transmitted through the C-helices and finally received at F-helices, i.e. the DNA-binding

domain, based on ∆Uintra
U→C . These inferred allosteric pathways rivetingly display the intertwined nature

of the two subunits of CAP, with information flow occurring between the CBD of subunit-1 and the

DBD of subunit-2 and vice versa. This seems to provide a basis for the intersubunit cooperativity at a

compositional level.

3.3.4 Secondary Systems

As pointed out earlier on, the fact that the CAP in the systems CAP-cAMP*, CAP-cAMP-DNA*,

and CAP-cAMP· · ·DNA instead of converging towards its structure as observed in Apo-CAP, CAP-

cAMP and CAP-cAMP-DNA respectively, remains much closer to its initial orientations observed in
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(a)

(b)

(c) (d)

Figure 3.5: Allosteric pathways. The C-α atoms of the CAP residues that showed a marked change
in inter-residue interactions in response to cAMP binding (blue) or to DNA binding (red), or to both
DNA and cAMP binding (purple) are shown in (a) apo-CAP (b) cAMP-CAP and (d) cAMP-CAP-
DNA(cAMP (orange), DNA (green)). (c) The predicted cAMP-activated allosteric pathways between
the cAMP-binding pockets (CBP 1 and CBP 2) and the F-helices (F-helix 1 and F-helix 2) of subunits 1
and 2 of CAP. In (a), (b) and (d) , the C-α atoms of those residues mentioned in (c) are shown in green
spheres and are labelled as well.
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(a) (b)

Figure 3.6: MD-derived time-averaged structures of CAP in (a) CAP-cAMP (blue) and CAP-
cAMP· · ·DNA (green) and (b) CAP-cAMP-DNA (red) and CAP-cAMP· · ·DNA(green)

CAP-cAMP, CAP-cAMP-DNA and CAP-cAMP respectively, persuaded the proposal of novel reaction

coordinates in the form of (η, ξ) and carrying out an umbrella sampling simulation. The system of

CAP-cAMP· · ·DNA however, additionally provides key insights into the symmetricity of F-helices

throughout the two binding events of cAMP and DNA.

The CAP is a symmetrical molecule and the cAMP-binding seems to keep this symmetry. However,

DNA-binding substantially reorients both helices and thus seems to break the symmetry. Since the

focus of this study has been F-helices, the symmetry being talked about also concerns them. The time

evolution of the collective variables, interaction energies and the structure of CAP-cAMP· · ·DNA are

examined and compared with those of CAP-cAMP-DNA in Figure 3.6 and Figure 3.7 . F1-helix and

F2-helix are defined as the F-helix on the first and second subunits, respectively.

In both of these models, the F2-helix seems to interact strongly with DNA than the F1-helix, thus

indicating the symmetry breaking induced by DNA-binding (Figure 3.7). However, the structural com-

parison (Figure 3.6 and Figure 3.7) reveals that the CAP in CAP-cAMP· · ·DNA exhibits a greater

structural similarity with the CAP in CAP-cAMP than with the CAP in cAMP-CAP-DNA (Figure 3.6)

. The calculated RMSD of CAP in CAP-cAMP· · ·DNA with respect to CAP-cAMP-DNA is 2.87 Å .
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(a) (b)

(c) (d)

Figure 3.7: MD-derived time series of the energy of interaction between the (a) F1-helix and DNA, and
(c) F2-helix and DNA; (b) the scattered plot for collective variables η and ξ obtained from the unbiased
MD trajectories; In (a-c), CAP-cAMP· · ·DNA (red) and CAP-cAMP-DNA (black); (d) RMSD of F1-
helix (black) and F2-helix (red) in CAP-cAMP· · ·DNA with respect to CAP-cAMP-DNA.
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3.4 Conclusion

The mechanistic details and the molecular map of allosteric pathways of cAMP-mediated DNA

recognition by CAP are investigated in the present study. Mainly, the cAMP-induced conformational

changes in the F-helices are examined using MD and umbrella sampling simulations. By defining

a set of unique reaction coordinates, the energetics and dynamics of the cAMP-binding event were

captured by calculating and comparing the FEPs of the unbounded and ligand-bound proteins. The

binding-induced shift in the energy minimum and changes in the shape and density of energy contours on

the resultant free-energy profiles reveal important flexibility constraints imposed on DBD upon cAMP

binding.

To aid the transmission of allosteric regulatory signals within CAP, residue-wise interaction maps

were utilized to discern plausible pathways connecting CBD and DBD. These predicted allosteric path-

ways connect the CBD of one subunit to the DBD of the other subunit and proceed via hotspot residues

of the unstructured part of the C-helices and of the CBD-DBD hinge of CAP. While the primary focus

of this study was on characterising the structural alterations within CAP’s F-helices, it’s important to

note that cAMP-induced changes can give rise to more intricate and interconnected movements. These

encompass various additional secondary structural components (such as the β-strand-4/β-strand-5 flap

segments and the C-helices) and molecular phenomena that extend beyond the orientational modifica-

tions observed in the F-helices. Future research should focus on understanding the coupling between

some of these key molecular events using novel collective variables and different enhanced sampling

methods.
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Chapter 4

Energetics-based analysis of CPD-containing DNA binding to Rad4 to
commence the NER process
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4.1 Introduction

DNA lesions, including base alteration, base deletion, sugar alteration, and strand break, occur com-

monly either naturally or via environmental factors [198]. The UV light-induced cyclobutane pyrimi-

dine dimer (CPD) is the most prevalent DNA lesion and is implicated in a variety of genetic skin-related

diseases and cancers in humans [77–80].

Hydrogen bonding patterns are known to be modified when DNA contains CPD, which in turn affects

the integrity of the DNA base pairing in and around the damage site. CPD-containing DNA is found to

have its overall helical axis bent at ≈ 30 ◦toward its major groove and unwound by ≈ 9◦as per molec-

ular modelling, electron microscopy, and electrophoretic behaviour-based studies of dimer-containing

oligonucleotides [199–201] . Inability to form hydrogen bonds between the 5’-dT of the CPD dimer

with its partner bases leaves the CPD dimer with only one Watson-Crick base pairing, between 3’-

dT and its partner Adenine [202]. Such DNA also experiences physical blockage in both replication

and transcription that serve as a cell-cycle checkpoint to potentially avoid replication errors that could
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alternatively lead to mutagenesis, chromosomal breakage, and DNA recombination [203–205]. Most

importantly, UV photoproducts in the DNA molecule are the main cause of cell death by apoptosis post

UV irradiation [80].

A specific repair protein detects the structural distortions in CPD-containing DNA, initiating the

nucleotide excision repair (NER) mechanism. This mechanism involves the subsequent recruitment of

other proteins to mend the DNA damage [206–214]. This repair protein probes for the lesion while slid-

ing along the length of the DNA, halting and inducing significant conformational changes at the lesion

site for damage verification and further NER actions [215–220]. Xeroderma pigmentosum C (XPC) ,

a key CPD repair protein in mammalian cells identifies the damage site and calls TFIIH (transcription

factor) to unwind the duples and open a bubble in the DNA around the lesion site [211–214, 221–233].

Endonucleases XPG and XPF cut the lesion-containing oligonucleotide, and DNA polymerase fills up

this gap, followed by the sealing action of DNA ligase to maintain the DNA structure [234–239].

Rad4 consists of an N-terminal transglutaminase domain (TGD), and three β-hairpin domains

(BHD1, BHD2, and BHD3) [81, 82]. The binding of TGD and BHD1 domains to the undamaged

segment of DNA helps maintain its structural integrity. The interaction between BHD2 and DNA

involves its β-hairpin, which binds to the DNA minor groove near the lesion, establishing hydrogen

bonds with the DNA backbone. On the other hand, the β-hairpin of BHD3 interacts with the DNA

major groove, filling the space left by the flipped-out CPD and its adjacent bases from the undamaged

DNA strand. The BHD2-BHD3 binding interface securely retains these displaced partner bases.

Given that the partner bases could not flip out of the CPD-containing DNA duplex in the absence

of Rad4[199], it appears that the association of Rad4 with DNA must have preceded the flipping of the

partner bases. In addition to this, the kinetic gating model proposed by Chen et. al (2015) [83] shows

that Rad4/XPC needs to stay longer in order to form a stable complex with the DNA site of a smaller

helical distortion. This makes association, i.e., the residential time of Rad4 on DNA, the most critical

point that determines the overall lesion recognition efficiency. The present work attempts to explore the

mechanisms and energetics of this association/dissociation of Rad4 with/from CPD-containing DNA

using molecular dynamics and enhanced sampling simulations.
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4.2 Simulation Details

4.2.1 Models

4.2.1.1 Rad4-DNA Complex

Figure 4.1: DNA sequence and nucleotide numbering scheme used in the study. The CPD (red), the

partner bases (green), and the neighbouring base pairs (blue) are shown.

The Rad4-DNA complex’s crystal structure (PDB ID: 2QSG) served as a model for the final associ-

ated open complex. In this bound state, Rad4’s BHD2 and BHD3 are in close proximity to the damage

site. The β-hairpins of BHD2 and BHD3 insert themselves into the minor and major grooves of DNA

near the lesion, causing the CPD and its consecutive adenine partner bases on the undamaged strand to

be entirely expelled from the DNA duplex. The DNA sequence from the crystal structure was extended

to a 28-base pair sequence (Figure 4.1), incorporating a CPD-lesion at the 19th and 20th base pairs. The

undamaged strand’s CPD’s partner bases, A19u and A20u (denoted by subscript u), are referred to as 5’-

dA and 3’-dA, respectively. This nucleotide sequence corresponds to a CPD-containing DNA perfectly

matched, differing from our previous studies focused on mismatched DNA [240]. To model the open

complex since the CPD lesion’s coordinates were unresolved in the crystal structure, we introduced the

CPD lesion using the protocol used to construct the pre-association encounter complex. Moreover, in

the open complex’s crystal structure, we replaced each of the two mismatched thymine partner bases

opposite the lesion with an adenine base utilising UCSF Chimera’s Swapna module [241, 242]. While

CPD-containing ’perfectly-matched’ DNA might not be the most efficient substrate for direct recogni-

tion by Rad4/XPC compared to CPD within a three-base mismatch [243, 244], this model was chosen

to explore the Rad4-DNA binding process in the absence of mismatches, focusing solely on the lesion’s

contributions. The model of the resultant associated open complex of Rad4 and DNA is depicted in

Figure 4.2.

4.2.1.2 Intermediates of Rad4-DNA Complex

The above Rad4-DNA Complex is used to simulate the NER processes of de-insertion of BHD3-β

hairpin from the lesion site, followed by flipping in of the partner bases 3’-dA and 5’-dA along with

the flipping in of the CPD lesion. This model, termed as model F in the study, is used to simulate the

dissociation of BHD2/BHD3 from the damaged DNA.
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Figure 4.2: CPD containing DNA-Rad4 complex. The TGD, BHD1, BHD2, BHD3 domains of RAD4
are shown in golden-yellow, purple, cyan and pink respectively. As for the DNA, the CPD lesion is
shown in red and its partner Adenine bases in blue. The image was generated using VMD [99].

To investigate the intermediate states, unbiased NPT molecular dynamics (MD) simulations were

employed. These simulations began with diverse collective variable (CV) values specific to each inter-

mediate process. Analysing the CV time series unveiled numerous trajectories that converged around a

particular CV value. Clustering the structures from these trajectories, based on the root mean square de-

viation (RMSD) of key nucleotides surrounding the damaged DNA lesion site (C17u - C22u and G17d -

G22d), allowed the determination of the metastable state for each process by selecting the centre of the

top-ranked cluster. Using this method, several significant metastable states of the Rad4-DNA complex

were identified and are illustrated in Figure 4.3.
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Figure 4.3: Models and sequences of events (denoted by numbered arrows) considered. (A) Rad4-DNA
bound complex, (B) bound complex with BHD3 β-hairpin deinserted from the damage site, (C) same
as (B) except for 3’-dA (blue) flipped into the DNA duplex, (E) same as (B) but both partner bases are
flipped into the DNA duplex, (F∗∗) same as (B) except that both partner bases and the CPD lesion are
flipped into the DNA duplex, (G) same as (E) but the BHD2 and BHD3 domains are dissociated from
the DNA. Structures marked with ** are the same meta-stable state formed after flipping in CPD.

4.2.2 Molecular Dynamics Simulation

AMBER 2018.1 simulation package [108, 245] was used to conduct all-atom MD simulations of

all systems modelled. ff14SB [188] and ParmBSC1 [189] force fields were used for the protein and

DNA respectively and the TIP3P model [190] for solvating the systems with a 20 Å of water molecule

padding in each direction. 24 Na+ ions were added to this water-boxed system for neutralization. Pe-

riodic boundary conditions were applied across all three dimensions, along with the usage of SHAKE

algorithm to constrain hydrogen-related bonds. Particle Mesh Ewald(PME) [246] method having space

cutoff, Ewald coefficient, and tolerance set to 10 Å, 0.27511 and 10−5 respectively, incorporating a

4th order B-spline interpolation was used to gauge long-range electrostatic interactions. Long-range

vanderWaals interactions were simulated with a distance cutoff of 10 Å.

During the initial stage of energy minimization, robust harmonic constraints were employed on the

crystallographically determined atoms of the DNA-Rad4 complex to preserve its overall structural in-

tegrity, while weak constraints were placed on the yet-to-be-determined coordinates of the unresolved

atoms in the complex. The robust harmonic constraints were kept in place, but the weak constraints were

removed in the next phase of energy minimization. No constraints were applied to water molecules or

counterions during minimization. This was followed by a 20 ps (picosecond) NVT simulations at 300

K retaining the robust harmonic constraints and then a 2 ns (nanosecond) NPT simulation at 300 K and

1 bar. Again, the entire system was energy minimised, equilibrated in an NVT ensemble at 300 K for 20

ps followed by an NPT equilibration at 300 K for 2 ns such that all restraints were lifted. Characterised

by 20,000 steepest descent steps and 20,000 conjugate gradient steps, each minimization was carried out

with a convergence tolerance of 10−4 kcal mol−1 Å−1 [108]. A Berendsen barostat [143] was employed
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for isobaric conditions of 1 bar with a pressure relaxation time of 1 ps. Langevin thermostat [134] was

used to maintain the temperature at 300 K with a collision frequency of 1 ps−1 . The velocity Verlet

[247] algorithm was used to integrate the equations of motion with a time step of 2 fs.

Figure 4.4: Schematic representation of the Collective Variable used to simulate the association
processes of NER. ξ is the distance between COM of heavy atoms of amino acids(yellow ellipses) and
the backbone heavy atoms of BHD3-β-hairpin amino acids(pink loop), and the COM of the sugar rings
of the neighbouring bases of CPD and its partners, i.e. (A18u, G21u, T18d, C21d) (in green).

4.2.3 Umbrella Sampling

4.2.3.1 Collective Variable Definition

The association of the BHD2 and BHD3 domains of Rad4 with the damaged DNA was captured by

the distance between the COM of the sugar rings of the four neighbouring nucleotides to the lesion site

(see Figure 4.1) and the COM of the backbone heavy atoms of the binding pocket residues 372, 375,

376, 432, 434, 436, 438, 440, 470, 472, 474-487 of BHD2 and BHD3 (refer Section 4.2.2), which will

be denoted as ξ . ξ was varied from 10 to 30 Å in steps of 0.5 Å, corresponding to a total of 41 windows

with the biasing harmonic force constants for the equilibration and production runs were set to 100 kcal

mol−1 Å−2 and 10 kcal mol−1 Å−2 , respectively.
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It is uncertain if the CPD and its partner bases remain in their extrahelical states once Rad4 has been

successfully dissociated from damaged DNA, whereas both are fully extruded when DNA is bound to

Rad4. This called for examination of the dissociation of Rad4 from DNA in two different models of

the partner bases: the intra-helical (Model F) and extra-helical (Model A) models(ref Figure 4.3). As

mentioned previously, in Model F, the BHD3 β-hairpin is removed from the DNA duplex, while in

Model A, it remains inserted.

In theory, the association of Rad4 to DNA (Model F) should force the partner bases and CPD to

flip into the DNA duplex. Since this cannot be observed within the duration of our simulations, model

A was employed to investigate the dissociation process post-flipping out of the partner bases and CPD

from the DNA duplex.

4.2.3.2 Umbrella Sampling Protocol

The final frame of the unbiased MD simulations was used as the starting structure for the umbrella

sampling simulations. An umbrella sampling run involved shifting the system to the required window

using a harmonic biassing potential with a high spring constant (keq) in a 200 ps NPT equilibration

run (at 300 K and 1 bar) such that the appropriate CV is brought to the centre of this required window.

A 6 ns NPT production run succeeded this, where the biassing potential of a weaker spring constant

(kprod, considerably smalled than keq) was placed. The simulation setup of these umbrella sampling

simulations was kept the same as that of the unbiased MD runs, with an additional restraint on the

following distances: (1) distance between the COMs of bases dA-583 and dT-603 restrained at 6.06

Å using a harmonic bias of 25 kcal mol−1 Å−2 (2) distance between the COMs of bases dT-586 and

dC-601 restrained at 5.85 Åusing a bias of 25 kcal mol−1 Å−2. The bases dC-601,dT-603 and dA-

583,dT-586 are the neighbouring bases of the CPD lesion and its partner adenines, respectively. These

constraints maintain the intra-helical states of these neighbouring bases, which is expected throughout

the NER process [248].

4.3 Results and Discussion

The results of umbrella sampling simulations for DNA-Rad4 association are discussed in this sec-

tion. These results are from the reverse pathway of the NER process, as their initial structure was the

crystal structure of the bound complex. In other words, Rad4-DNA dissociation was performed after

deinserting the BHD3 β-hairpin from the DNA lesion site and flipping the CPD and its partner bases

into an intrahelical conformation.

To solely investigate the effects of Rad4 dissociation from the damaged DNA, a model of the Rad4-

DNA complex having both CPD and its partner bases in intrahelicular conformation and a de-inserted

BHD3 β-hairpin, a.k.a. model F in Figure 4.3 was considered.
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Figure 4.5: PMF for Rad4-DNA dissociation calculated for the crystal structure (red; Model A) and the
encounter complex (black; Model F) in which the partner bases and CPD are intrahelical and the BHD3
β-hairpin is deinserted. The time series of the dissociation CV ξ obtained from unbiased MD runs of
Model A (blue) and Model F (megenta) are also shown.

A free energy profile (F(ξ )) using this model for Rad4-DNA dissociation is shown in Figure 4.5.

The point where F(ξ) reaches its lowest free energy, designated as ξmin from now on and positioned at

ξ= 16.9 Å, is surrounded by an uneven basin. The sharp surge in F(ξ) occurs when ξ < ξmin due to

steric clashes between the DNA and the BHD2/BHD3 domains. Conversely, the gradual attenuation of

favourable interactions between the BHD2/BHD3 domains and DNA is the reason behind the elevation

of F(ξ) for ξ > ξmin. A shift in slope around ξ = 19.5Å implies that the critical interactions that once

stabilised the bonded complex are nearly lost for ξ ≥ 19.5Å.

4.3.1 Free Energy Profiles

A free energy profile for the dissociation of Rad4 from DNA for the experimentally resolved crystal

structure of the Rad4-DNA bound complex (Model A in Figure 4.3) is shown in Figure 4.5. The lowest

free energy point for this curve is at ξ≈ 12Å, closer to the experimental crystal structure value of

ξ=13.81 Å and corresponds to the truly associated state of the Rad4-DNA complex.
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Comparing the two free energy profiles reveals a notable distinction: displacing Rad4 from DNA by 3

Å (departing from the energy minimum) is less energetically demanding in the former model compared

to the latter. The associated energy cost for ξ − ξmin = 3 Å is 11.14 kcal mol−1 in the former model

and 27.67 kcal mol−1 in the latter. In the former scenario, an elevation is evident around ξ ∼ 11.5 Å,

indicating a decrease in stability by 23.9 kcal mol−1 relative to the corresponding global minimum state.

Intriguingly, the position of this elevation roughly corresponds with the location of the energy minimum

in the energy profile of the latter model.

A mechanism for the Rad4-DNA association can be inferred from these findings. The intermediate

complex is initially formed at ξ = 16.9 Å, where CPD and its partner bases are found to be intrahelical.

The shift in energy minimum to ξ = 12 Å is caused by the flipping of CPD and partner bases into an

extrahelical conformation. This results in an increased capability of Rad4 to interact with and access

deeper regions of the lesion site. The energy expenditure associated with flipping the CPD and partner

bases out of the DNA duplex can be approximated using the energy difference (F(ξ = 11.5 Å) - F(ξmin
= 16.9 Å) between the global minimum and the elevated state, indicating an approximate cost of 23.9

kcal mol−1. Importantly, the cumulative energy expenses for these flipping events of both partner bases

and CPD expressed in other parts of the extended study closely align with this estimated value.

The kinetic gating model proposed by Chen et al. (2015) states that Rad4/XPC needs to stay longer

in order to form a stable complex with the DNA site of a smaller helical distortion. This makes the

dissociation of Rad4 the most critical point that determines the overall lesion recognition efficiency. To

obtain a qualitative assessment of this residential time of Rad4 onto CPD-containing perfectly-matched

DNA (as shown in Figure 4.1 the CPD-forming bases are themselves thymines matched with partner

adenines on the undamaged strand.), the model A profile was compared with the dissociation profile of

a TTT/TTT mismatched DNA of homologous sequence studied in Abhinandan et. al[240]. The energy

difference ∆F = |F(ξmin + ∆ξ) − F(ξmin)| served as a metric for the energy required to dissociate

Rad4 from the DNA. Here, ξmin represents the position of the energy minimum, and ∆ξ denotes the

displacement on the high ξ side of the minimum. After fixing ∆ξ to 3 Å, ∆F enables the measurement

of the energy expenditure necessary to displace Rad4/XPC from the energy minimum over a distance

of 3 Å. Using this scheme, the PMF profile comparison calculations reveal that the dissociation energy

is comparatively higher for the CPD-containing matched DNA in comparison to the mismatched DNA.

This implies that Rad4 is likely to stay longer in an associated conformation with a CPD-containing

matched DNA than with a TTT/TTT mismatch-only DNA.

4.4 Conclusion

Given the rugged underlying potential energy landscape of this complex system, the NER molecular

processes turn out to be necessarily slow, making them particularly difficult to investigate using con-
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ventional molecular dynamics simulation. Therefore, there was a need for utilising enhanced sampling

methods in addition to classical MD simulations to investigate the mechanism and energetics of Rad4-

DNA association and the effect of BHD3 β-hairpin and CPD and its partner bases on the same. The

corresponding detailed PMF profiles demonstrated the attribution of a shift in the energy minimum to

the switch in the conformations of CPD and its partner bases relative to the DNA helix.

Furthermore, a comparison of these profiles with the dissociation profile of a homologous DNA-

sequence base-pair mismatched DNA-Rad4 complex revealed a greater dissociation energy for the CPD-

containing matched DNA. Such a deduction suggests that in the case of DNA containing a CPD, Rad4

is more likely to assume an associated conformation for an extended duration compared to a DNA

sequence solely consisting of a TTT/TTT mismatch. This implies a greater overall lesion recognition

efficiency for the CPD-containing damaged DNA.
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Chapter 5

Conclusion

Biologists are increasingly recognising the value of moving beyond static snapshots to explore the

dynamics and energetics of complex biomolecular processes. To gain deeper insights into the dy-

namic and energetic aspects of these intricate systems, researchers have turned to Molecular Dynamics

(MD) simulations. The use of MD simulations facilitates exploration of the motion and behaviour of

biomolecules over different lengths of time. While empirical methods such as X-ray crystallography and

nuclear magnetic resonance (NMR) research have provided vital insights into the makeup of molecules,

they fall short of capturing the dynamic nature of biological processes. This examination of the dynam-

ics and energetics of various processes of interest and importance is where MD finds its use, providing

a dynamic perspective and enabling the study of conformational changes, ligand binding, and other cru-

cial events with high temporal resolution. However, MD simulations face difficulties when exploring

energetically prohibitive regions of free energy landscapes. This is where enhanced sampling methods,

such as Umbrella Sampling, come into play. These methods are able to drive the system into states

that are typically inaccessible under standard experimental conditions with the application of suitable

biassing potentials. The present thesis aims at inspecting structural alterations and the interactions in

proteins brought forth by allostery within two biologically significant systems: (b) the conformational

changes experienced by a transcription factor, Catabolite Activator Protein, post ligand-binding and

subsequent DNA-binding; and (b) understanding how the Rad4/XPC protein binds to a cyclobutane-

pyrimidine dimer (CPD) containing DNA while studying the recognition mechanism of the former on

the lesion-containing segment of the latter.

Chapters 1 and 2 present how proteins and DNA, two popular and functionally important

biomolecules, were discovered and offer an initial look at factors influencing their binding and the

computational methods employed to study them. The biological makeup of DNA, proteins, and the

complexes formed when they associate with each other is also discussed, delving into the underly-

ing interactions that enable them to perform their roles. Following this, a concise introduction to

Molecular Dynamics (MD) and the various strategies implemented by contemporary MD software like

GROMACS and AMBER to enhance their efficiency and accuracy is also elaborated.
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In Chapter 3, MD simulation and umbrella sampling techniques are utilised to explore the dynamics

of cAMP-mediated allostery of CAP and the subsequent binding to DNA. Notably, the cAMP-binding

conformational changes effected in the F-helices of CAP and the interaction tendency of CAP-cAMP

and CAP-DNA when some meta-stable intermediate conformational states based on cAMP-bound CAP

and cAMP-bound CAP complexed with DNA are simulated in an unrestrained environment were ex-

amined. Interaction energies between key residues of CAP with cAMP and DNA were observed to

ultimately decode allosteric communication pathways between the monomeric subunits of CAP. A set

of novel reaction coordinates (η and ξ) were created to examine the conformational changes brought

forth in the F-helices of CAP when (a) cAMP molecules are situated inside the binding pocket of each

monomeric subunit of CAP, followed by (b) docking the DNA onto the DNA-binding domain of this

liganded CAP. The corresponding free energy profiles were created for the unliganded and cAMP-bound

complexes using umbrella sampling. These provide a detailed picture of the elasticity imposed on the

DNA-binding domain of CAP when cAMP is appropriately situated.

Based on the interaction energy of individual residues of CAP, residue-wise interaction maps are

created and used to identify potential pathways between CBD and DBD that facilitate the allosteric

transduction of regulatory signals in CAP. Each of the predicted allosteric pathways connects the CBD

of one subunit to the DBD of the other subunit and passes through hotspot residues of unstructured parts

of the C-helices and of the CBD-DBD hinge of CAP. This criss-crossing of the inter-subunit interface

offers clues on the microscopic origin of the inter-subunit cooperativity and dimer stability of CAP.

Chapter 4 entails the exploration of energetics around the Rad4-DNA interactions using molecular

dynamics and umbrella sampling simulations as part of the nucleotide excision repair process of a CPD-

containing perfectly matched DNA carried out by Rad4/XPC. The aim is to lay out the first phase:

the association of the BHD2 and BHD3 domains of Rad4 onto the lesion site of the DNA. The fact

that a kinetic gating mechanism study done in 2015 revealed the importance of the residential time of

Rad4 on DNA, which in turn is determined by how efficiently Rad4 has been associated with the DNA,

underscores the critical role of this phase of NER. Moreover, the extended version of this study includes

studying the other two phases of NER: partner-base pair flipping and BHD3 β-hairpin insertion; hence,

there was a need to study the Rad4-DNA association in order to completely layout the NER mechanism

of a CPD-containing DNA. The free energy profile corresponding to this event was evaluated using a

suitable reaction coordinate.

The free energy profile obtained from this study was compared with another corresponding to the

Rad4-DNA association of a DNA having a TTT/TTT base-pair mismatch as the only lesion, covered as

part of a previous study. This comparison was performed because the latter is an extensively studied

system in terms of the binding efficiency of Rad4 with DNA. The comparison ultimately revealed that

Rad4 is more likely to remain in an associated conformation for an extended duration with a CPD-

containing matched DNA compared to a TTT/TTT mismatch-only DNA.
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Future Work

With regards to the allosteric study performed in Chapter 3, although the allosteric response exhibited

by the F-helices of CAP was the highlight, cAMP-induced CAP-DNA binding processes could poten-

tially involve an assortment of various coupled motions involving other key secondary structural units

(such as the β-strand-4/β- strand-5 flap segments and the C-helices) and molecular movements beyond

the transformations in the F-helices. Future research should focus on understanding the coupling be-

tween some of these key molecular movements using novel collective variables and multi-dimensional

umbrella sampling methods.

As for Chapter 4, since the present study, including the extended version, only dealt with one-

dimensional reaction coordinates, the use of multidimensional enhanced sampling methods involving

variation of more than one collective variable is bound to be more realistic in an attempt to capture the

intricacies of lesion recognition dynamics and to understand the coupling between the aforementioned

molecular events. Additionally, comparing NER of different DNA systems, i.e., DNA having different

lesions both in an isolated setting and when multiple lesions exist on the same or different strand, may

be needed to gain insights into the similarities, distinctions, and any aspect of lesion specificity across

the different lesions and mismatch recognition mechanisms by Rad4.
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catabolite activator protein revealed by interatomic forces. PLoS Comput. Biol., 11(8):e1004358,

August 2015.

[57] Virgil A Rhodius and Stephen JW Busby. Positive activation of gene expression. Curr. Opin.

Microbiol., 1(2):152–159, April 1998.

[58] Victor De Lorenzo, Marta Herrero, Fabio Giovannini, and J.B. Neilands. Fur (ferric uptake

regulation) protein and cap (catabolite-activator protein) modulate transcription of fur gene in

escherichia coli. Eur. J. Biochem., 173(3):537–546, 1988.

[59] A. Kolb, S. Busby, H. Buc, S. Garges, and S. Adhya. Transcriptional regulation by cAMP and its

receptor protein. Annu. Rev. Biochem., 62(1):749–797, June 1993.

[60] Catherine L Lawson, David Swigon, Katsuhiko S Murakami, Seth A Darst, Helen M Berman,

and Richard H Ebright. Catabolite activator protein: DNA binding and transcription activation.

Current Opinion in Structural Biology, 14(1):10–20, February 2004.

[61] W S Reznikoff. Catabolite gene activator protein activation of lac transcription. J. Bacteriol., 174

(3):655–658, February 1992.

[62] Shiou-Ru Tzeng and Charalampos G. Kalodimos. Dynamic activation of an allosteric regulatory

protein. Nature, 462(7271):368–372, November 2009.

84



[63] Aichun Dong, Jedrzej M. Malecki, Lucy Lee, John F. Carpenter, and J. Ching Lee. Ligand-

induced conformational and structural dynamics changes inEscherichia coliCyclic AMP receptor

protein†. Biochemistry, 41(21):6660–6667, May 2002.

[64] Hyung-Sik Won, T. Yamazaki, Tae-Woo Lee, Mi-Kyung Yoon, Sang-Ho Park, Y. Kyogoku, and

Bong-Jin Lee. Structural understanding of the allosteric conformational change of cyclic AMP

receptor protein by cyclic AMP binding†. Biochemistry, 39(45):13953–13962, November 2000.

[65] James G. Harman. Allosteric regulation of the cAMP receptor protein. Biochim. Biophys. Acta,

1547(1):1–17, May 2001.

[66] Otto G. Berg and Peter H. von Hippel. Selection of DNA binding sites by regulatory proteins.

Trends Biochem. Sci., 13(6):207–211, June 1988.

[67] Erica A. Pyles and J. Ching Lee. Mode of selectivity in cyclic AMP receptor protein-dependent

promoters inEscherichia coli†. Biochemistry, 35(4):1162–1172, January 1996.

[68] Dietmar Porschke. Allosteric control of cAMP receptor binding dynamics. Biochemistry, 51

(19):4028–4034, May 2012.

[69] Nataliya Popovych, Shiou-Ru Tzeng, Marco Tonelli, Richard H Ebright, and Charalampos G

Kalodimos. Structural basis for camp-mediated allosteric control of the catabolite activator pro-

tein. Proc. Natl. Acad. Sci. U.S.A., 106(17):6927–6932, 2009.

[70] David B McKay and Thomas A Steitz. Structure of catabolite gene activator protein at 2.9 å

resolution suggests binding to left-handed b-dna. Nature, 290(5809):744, 1981.

[71] JM Passner, SC Schultz, and TA Steitz. Modeling the camp-induced allosteric transition using

the crystal structure of cap-camp at 2.1 å resolution. J. Mol. Biol., 304(5):847–859, 2000.

[72] Steve C Schultz, George C Shields, and Thomas A Steitz. Crystal structure of a cap-dna complex:

the dna is bent by 90 degrees. Science, 253(5023):1001–1007, 1991.

[73] Gary Parkinson, Christopher Wilson, Angelo Gunasekera, Yon W Ebright, Richard E Ebright,

and Helen M Berman. Structure of the cap-dna complex at 2.5 å resolution: a complete picture
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Giese, Holger Gohlke, Andreas Götz, Nadine Homeyer, Saeed Izadi, Pawel Janowski, J Kaus,

88



Andriy Kovalenko, Tai-Sung Lee, S LeGrand, P Li, C Lin, Tyler Luchko, and Peter A. Kollman.

Amber 16, university of california, san francisco., April 2016.

[109] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Gu-

vench, P. Lopes, I. Vorobyov, and A. D. Mackerell. CHARMM general force field: A force field

for drug-like molecules compatible with the CHARMM all-atom additive biological force fields.

Journal of Computational Chemistry, pages NA–NA, 2009.

[110] Wilfred F. van Gunsteren, Xavier Daura, and Alan E. Mark. GROMOS force field, September

1998.

[111] William L. Jorgensen, David S. Maxwell, and Julian Tirado-Rives. Development and testing of

the OPLS all-atom force field on conformational energetics and properties of organic liquids.

Journal of the American Chemical Society, 118(45):11225–11236, November 1996.

[112] Stewart A Adcock and J Andrew McCammon. Molecular dynamics: survey of methods for

simulating the activity of proteins. Chemical reviews, 106(5):1589–1615, 2006.

[113] Andrew R Leach and Andrew R Leach. Molecular modelling: principles and applications. Pear-

son education, 2001.

[114] Frank L. Somer. Molecular modelling for beginners (alan hinchliffe). Journal of Chemical

Education, 81(11):1573, November 2004.

[115] H. Bernhard Schlegel. Optimization of equilibrium geometries and transition structures. Journal

of Computational Chemistry, 3(2):214–218, 1982.

[116] B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere system. The Journal of

Chemical Physics, 27(5):1208–1209, November 1957.

[117] B. J. Alder and T. E. Wainwright. Studies in molecular dynamics. i. general method. The Journal

of Chemical Physics, 31(2):459–466, August 1959.

[118] A. Rahman. Correlations in the motion of atoms in liquid argon. Physical Review, 136(2A):

A405–A411, October 1964.

[119] Frank H. Stillinger and Aneesur Rahman. Improved simulation of liquid water by molecular

dynamics. The Journal of Chemical Physics, 60(4):1545–1557, February 1974.

[120] J. Andrew McCammon, Bruce R. Gelin, and Martin Karplus. Dynamics of folded proteins.

Nature, 267(5612):585–590, June 1977.

89



[121] William C. Swope, Hans C. Andersen, Peter H. Berens, and Kent R. Wilson. A computer simula-

tion method for the calculation of equilibrium constants for the formation of physical clusters of

molecules: Application to small water clusters. The Journal of Chemical Physics, 76(1):637–649,

January 1982.

[122] Mark Abraham, Andrey Alekseenko, Cathrine Bergh, Christian Blau, Eliane Briand, Mahesh

Doijade, Stefan Fleischmann, Vytautas Gapsys, Gaurav Garg, Sergey Gorelov, Gilles Gouail-

lardet, Alan Gray, M. Eric Irrgang, Farzaneh Jalalypour, Joe Jordan, Christoph Junghans,

Prashanth Kanduri, Sebastian Keller, Carsten Kutzner, Justin A. Lemkul, Magnus Lundborg, Pas-
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factor binding site evolution. PLos Genet., 11(11):e1005639, November 2015.

[173] Manuel Razo-Mejia, Stephanie L. Barnes, Nathan M. Belliveau, Griffin Chure, Tal Einav,

Mitchell Lewis, and Rob Phillips. Tuning transcriptional regulation through signaling: A pre-

dictive theory of allosteric induction. Cell Systems, 6(4):456–469.e10, April 2018.

[174] Yongping Pan, Chung-Jung Tsai, Buyong Ma, and Ruth Nussinov. How do transcription factors

select specific binding sites in the genome? Nat. Struct. Mol., 16(11):1118–1120, November

2009.

[175] David West, Roy Williams, Virgil Rhodius, Andrew Bell, Naveen Sharma, Chao Zou, Nobuyuki

Fujita, Akira Ishihama, and Stephen Busby. Interactions between the escherichia coli cyclic AMP

receptor protein and RNA polymerase at class II promoters. Mol. Microbiol., 10(4):789–797,

November 1993.

[176] Wei Niu, Younggyu Kim, Gregory Tau, Tomasz Heyduk, and Richard H Ebright. Transcrip-

tion activation at class II CAP-dependent promoters: Two interactions between CAP and RNA

polymerase. Cell, 87(6):1123–1134, December 1996.

[177] Ruth Nussinov, Chung-Jung Tsai, and Jin Liu. Principles of allosteric interactions in cell signal-

ing. J. Am. Chem. Soc., 136(51):17692–17701, December 2014.

[178] Ruth Nussinov and Chung-Jung Tsai. Allostery in disease and in drug discovery. Cell, 153(2):

293–305, April 2013.

[179] Meng-Xi Zhao, Yong-Liang Jiang, Yong-Xing He, Yi-Fei Chen, Yan-Bin Teng, Yuxing Chen,

Cheng-Cai Zhang, and Cong-Zhao Zhou. Structural basis for the allosteric control of the global

transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. Proc. Natl. Acad. Sci.

U.S.A., 107(28):12487–12492, June 2010.

[180] Ron O. Dror, Hillary F. Green, Celine Valant, David W. Borhani, James R. Valcourt, Albert C.

Pan, Daniel H. Arlow, Meritxell Canals, J. Robert Lane, Raphaël Rahmani, Jonathan B. Baell,
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André P.M Eker, Fumio Hanaoka, Dirk Bootsma, and Jan H.J Hoeijmakers. Xeroderma pig-

mentosum group c protein complex is the initiator of global genome nucleotide excision repair.

Molecular Cell, 2(2):223–232, August 1998.

97
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