
Advancing Domain Generalization through Cross-Domain
Class-Contrastive Learning and Addressing Data Imbalances

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
in

Computer Science and Engineering
by Research

by

Saransh Dave
2019701025

saransh.dave@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500032, INDIA

December, 2023

Copyright © Saransh Dave, 2023

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Advancing Domain Generalization through
Cross-Domain Class-Contrastive Learning and Addressing Data Imbalances” by Saransh Dave, has
been carried out under my supervision and is not submitted elsewhere for a degree.

Date Adviser: Dr. Vineet Gandhi

To my parents!!!

Acknowledgments

I would like to express my sincere gratitude to my advisor, Prof. Vineet Gandhi, for his invaluable
guidance and assistance throughout the course of my research. His profound knowledge, patience, and
insightful feedback greatly contributed to this work. Prof. Gandhi’s unwavering support and commit-
ment have been integral in shaping this research, and I am deeply thankful for his mentorship.

I wish to extend my sincere appreciation to Sarath Sivaprasad, who played an essential role in my
research. His talent for simplifying intricate concepts broadened my understanding considerably. Our
numerous discussions offered valuable insights that fundamentally influenced my work. Beyond his
role as a mentor, Sarath is a supportive friend who is always ready to provide help. His humility, despite
his vast expertise, is an attribute I greatly admire. It’s fair to say that without Sarath’s guidance, my
research would not have been possible. For his invaluable contribution, I am deeply grateful.

I am thankful to my family for providing me with their unwavering love and support throughout
this journey. Their encouragement and belief in my abilities have been my constant source of strength.
I cannot thank them enough for their sacrifices and understanding. Their presence in my life is truly
invaluable, and I owe them more than words can express.

I would like to extend my heartfelt appreciation to my hostel friends, Tushar Abhishek, Tushar
Chandra, Astitva Srivastava, Ashish Singh, Harsh Shukla, and Shubham Raj. Our time together was
filled with laughter, camaraderie, and numerous fun discussions. Their availability and willingness to
help whenever needed have been a tremendous support system. I would also like to acknowledge my
lab friends, Ritam Basu, Jeet Vora, and Abhinaba Bala. Their enthusiasm for learning and technical
discussions added a new dimension to my research journey. Their insights and collaborative efforts
greatly enhanced the quality of my work. A special shoutout goes to my math buddies, Prateek Pani
and Sai Sumanth Natva. Our shared interest and love for mathematics and puzzles created a dynamic
environment that fostered joy and continuous learning. Their presence added vibrant flavors to my
research experience.

Lastly, I am grateful to all the mentors, professors, and colleagues who have provided guidance
and assistance throughout my research work. Their valuable feedback, suggestions, and expertise have
shaped my research and broadened my horizons.

To everyone mentioned above, and to those who have supported me in ways beyond this list, I offer
my deepest appreciation. Your contributions have made a significant impact on my academic journey,
and I am truly grateful for your presence in my life.

v

Abstract

This thesis delves into the critical field of Domain Generalization (DG) in machine learning, where
models are trained on multiple source distributions with the objective of generalizing to unseen tar-
get distributions. We begin by dissecting various facets of DG, including distribution shifts, shortcut
learning, representation learning, and data imbalances. This foundational investigation sets the stage for
understanding the challenges associated with DG and the complexities that arise.

A comprehensive literature review is conducted, highlighting existing challenges and contextualizing
our contributions to the field. The review encompasses learning invariant features, parameter sharing
techniques, meta-learning techniques, and data augmentation approaches.

One of the key contributions of this thesis is the examination of the role low-dimensional representa-
tions play in enhancing DG performance. We introduce a method to compute the implicit dimensionality
of latent representations, exploring its correlation with performance in a domain generalization context.
This essential finding motivated us to further investigate the effects of low-dimensional representations.

Building on these insights, we present Cross-Domain Class-Contrastive Learning (CDCC), a tech-
nique that learns sparse representations in the latent space, resulting in lower-dimensional represen-
tations and improved domain generalization performance. CDCC establishes competitive results on
various DG benchmarks, comparing favorably with numerous existing approaches in DomainBed.

Venturing beyond traditional DG, we discuss a series of experiments conducted for domain general-
ization in long-tailed settings, which are common in real-world applications. Additionally, we present
supplementary experiments yielding intriguing findings. Our analysis reveals that the CDCC approach
exhibits greater robustness in long-tailed distributions and that the order of performances across test do-
mains remains unaffected by the order of training domains in the long-tailed setting. This section aims
to inspire researchers to further probe the outcomes of these experiments and advance the understanding
of domain generalization.

In conclusion, this thesis offers a well-rounded exploration of DG by combining a comprehensive
literature review, the discovery of the importance of low-dimensional representations in DG, the devel-
opment of the CDCC method, and the meticulous analysis of long-tailed settings and other experimental
findings.

vi

Contents

Chapter Page

1 Introduction . 1
1.1 Domain Generalization . 2
1.2 Several Aspects of Domain Generalization . 3

1.2.1 Distribution Shift . 4
1.2.2 Shortcut Learning . 7
1.2.3 Representation Learning . 9
1.2.4 Data Imbalances . 13

1.3 Datasets for Studying Distribution Shift . 15
1.3.1 DomainBed . 15
1.3.2 ImageNet Rendition . 18
1.3.3 ImageNet Sketch . 18
1.3.4 WILDS . 19

1.4 Thesis Contributions . 20
1.5 Conclusion . 22

2 Related Literature . 24
2.1 Learning Invariant Features . 24
2.2 Parameter Sharing Techniques . 26
2.3 Meta-Learning Techniques . 27
2.4 Data Augmentation Approaches . 27
2.5 Conclusion . 28

3 Cross-Domain Class-Contrastive Learning: Finding Lower Dimensional Representations for
Improved Domain Generalization . 29
3.1 Introduction . 29
3.2 Related Work . 31
3.3 Method . 33

3.3.1 Computing the dimensionality . 33
3.3.2 Cross-Domain Class-Contrastive Learning 34

3.4 Experiments and Results . 37
3.4.1 Improving generalisation by hard constraining low dimensionality 37
3.4.2 Computing dimensionalities across different backbones 38
3.4.3 Dimensionality with CDCC . 39
3.4.4 DG benchmarks with CDCC . 40

3.5 Conclusion . 41

vii

viii CONTENTS

4 Going beyond Traditional Domain Generalization . 42
4.1 Class Wise Domain Generalization . 42
4.2 Long-Tailed Domain Generalization . 43

4.2.1 Experiments showing that the performance of CDCC is more robust to Long-
Tailed Distributions . 45

4.2.2 Experiments showing that the order of performances across test domains is ag-
nostic to the order of training domains in the long-tailed setting. 45

4.3 Additional experiments on PACS . 48
4.3.1 Experiments showing that the performance of ERMs is agnostic to pre-training 48
4.3.2 Experiments showing that learning a smoother minima results in a better perfor-

mance for domain shifts . 49
4.3.3 Experiments showing that the performance of models pre-trained with self-

supervised techniques is inconsistent . 49
4.4 Conclusion . 50

5 Conclusion . 52

Bibliography . 55

List of Figures

Figure Page

1.1 This figure shows one of the four splits for Domain Generalization on some sample
images from the PACS dataset. 3

1.2 This illustration offers a visual portrayal of covariate shift, emphasizing the changes in
the distribution of the input features between the training and test set. But the labels
given the input features, stay the same across both. 5

1.3 This illustration offers a visual portrayal of concept shift, emphasizing the changes in
the relationship between the labels and their corresponding input features across the
training and test set, while keeping the distribution of input features unchanged. Note
that the position of all the datapoints remain the same across the training and the test set. 6

1.4 This illustration presents a visual representation of label shift, demonstrating the change
in distribution of labels across the training and the test set. It is to be noted that the test
set has more of red datapoints and lesser of blue datapoints compared to the training
data, hence showing a change in distribution of labels. Also, though it is not visually
obvious, the distribution of input features given the label remain the same across the
train and the test set. 7

1.5 This image shows a toy dataset of starts and moons located at different positions. It
shows how a Neural Networks classifies the IID test set samples correctly, but due to
shortcut learning, it does not correctly classify the OOD test samples. 9

1.6 This figure shows a visual of how the normalized embeddings would lie on a unit hyper-
esphere after Supervised Contrastive Training. Assumung that z is the embedding for
some input samples s, then zp1 and zp2 are the embeddings corresponding to the posi-
tives of sample s (hence closer to z), and zn1 and zn2 are the embeddings corresponding
to the negatives of sample s (hence farther from z). 11

1.7 This figure shows a visualization of the learnt Normalized Embeddings with SupCon.
It can be seen how the two classes (Dogs and Cats) are clustered such that samples
belonging to the same class are closer, and those belonging to the classes are far away
from each other. 12

1.8 This figure illustrates how SupCon transforms N samples into 2N samples using data
augmentation and demonstrates the attraction or repulsion between positive and negative
samples based on their class membership relative to the anchor. In other words, samples
belonging to the same class as the anchor are attracted, while those from different classes
are repelled. 13

1.9 This figure shows some samples from the R-MNIST dataset where the digits are rotated
at different angles. 15

ix

x LIST OF FIGURES

1.10 This figure shows some samples from the C-MNIST dataset where the digits are colored
in either Red or Green. 16

1.11 This figure shows some samples from the PACS dataset. 16
1.12 This figure shows some samples from the VLCS dataset. All these samples belong to

class bird. 16
1.13 This figure shows some samples from the OfficeHome dataset. 17
1.14 This figure shows some samples from the DomainNet dataset. 17
1.15 This figure shows some samples from the TerraIncognita dataset. Every row in this

figure corresponds to a set of images taken from a particular location. 18
1.16 This figure shows some samples from the ImageNet-Rendition dataset. 19
1.17 This figure shows some samples from the ImageNet-Sketch dataset. 19
1.18 This figure shows a summary of all the datasets from WILDS. It summarizes the in-

put, output and domain types for each of the datasets along with a sample example for
each. It also consists of metadata like total number of domains, total number of sam-
ples and spilt of the samples across the domains for all the datasets. (Image Source:
https://wilds.stanford.edu/datasets/) . 21

3.1 This figure shows how Cross-Domain Class-Contrastive Learning clusters samples from
different domains and classes. The color of a sample indicates its class, and the shape
of a sample indicates its domain. See the legend in the top-right corner for more details.
Note that the number of domains may or may not be equal to the number of classes. . . 29

3.2 B, C are the training domains, and A is the test domain. Ri are the discriminative
features (in parameter space) of domain i. RBC is an intersection of features of RB and
RC , which is the smallest set of variances that explains the class separation in train data.
Also, |RABC |

|RB | ≤ |RABC |
|RBC | and |RABC |

|RC | ≤ |RABC |
|RBC | , (here, |S| represents the cardinality

of set S) making a case that a model that learn compact representation on multiple
domains has higher chance of learning domain agnostic features. 30

3.3 This figure shows how the classifier learning and contrastive learning branches of the
hybrid model contribute to learning a classifier over an improved representation in the
feature space. The green colored bi-directional arrows show the ’attraction’ among the
representations of the samples. Similarly, the red colored bi-directional arrows show the
’repulsion’ among the representations of the samples. 35

3.4 The above figure shows the hybrid architecture used for CDCC learning. 36
3.5 This figure shows the correlation between the DG performance (Y-Axis) and the dimen-

sionality (X-Axis) of the learnt feature space for PACS dataset. Please note that the
X-axis is flipped here. 39

4.1 This figure shows the train-test split on some sample images of the PACS dataset in (a)
Traditional DG (TDG) setting as shown on the left, and b. Class-Wise-DG (CWDG)
setting as shown on the right. 43

4.2 This figure shows the distribution of samples across domains and classes in the form of
a heat map. The left image depicts the original distribution of samples, middle image
shows the distribution for ClassLT, and the right image shows the distribution for Do-
mainLT. Note that the common ratio followed for ClassLT is nearly 0.68, and that for
DomainLT is nearly 0.46 . 44

https://wilds.stanford.edu/datasets/

Chapter 1

Introduction

Neural networks have become an essential tool in the field of machine learning owing to their ability
to learn complex patterns and representations from data. In a standard machine learning setting, these
networks are trained and evaluated under the assumption that the data is independently and identically
distributed (IID). This means that both the training and test data are assumed to be sampled from the
same underlying distribution, leading to the expectation that the network’s performance on the training
data will be a reliable indicator of its performance on the test data.

However, real-world scenarios often deviate from the IID assumption. In practice, test data may
originate from a distribution that differs from the one used for training. This discrepancy can result in
a significant decrease in a neural network’s performance when it is deployed in an actual situation. To
address this challenge, researchers have been exploring methods to enhance the robustness of neural
networks to distribution shifts, one of which is Domain Generalization (DG).

DG is a framework designed to evaluate a model’s robustness in scenarios where the test data comes
from an unseen domain. The approach involves training a model using multiple related domains in the
training data and assessing its ability to classify the same classes in the test domain. For example, a
model may be trained on labeled image data from photos, paintings, and cartoons, focusing on discrim-
inating between specific classes. The model’s effectiveness is then tested on its ability to classify those
same classes in an entirely different domain, such as sketches (Li et al., 2017) [57].

The DG framework poses a more challenging optimization problem compared to other methods,
such as Domain Adaptation (DA). While DA and other similar frameworks rely on certain assumptions
about the target distribution, DG does not. Instead, it aims to minimize the expected classification loss
across all possible domains that can meaningfully represent the given classes.

However, DG is built upon a strong assumption that data from all classes are available in all domains,
which can be difficult to satisfy in many real-world situations. This limitation highlights the ongoing
challenges in developing models that are robust to distribution shifts.

To further improve neural network’s robustness to distribution shifts, researchers are investigating
various techniques, such as domain adaptation, domain alignment, and data augmentation. These meth-
ods focus on aligning the feature distributions between the source and target domains or augmenting the

1

training data to cover a wider range of possible scenarios, ultimately helping the models to better handle
non-IID settings.

Understanding and addressing distribution shifts is a critical aspect of developing neural networks
that can maintain their performance in real-world applications. Domain Generalization, along with other
techniques, contributes to the ongoing efforts in enhancing the robustness of machine learning models,
ensuring they can effectively adapt to changing data distributions and deliver reliable results.

With this introduction to Domain Generalization, we will explore the formal definition of DG, var-
ious aspects involved in understanding DG, various datasets used in the context of DG for analyzing
distribution shifts, and finally, end with understanding some related work in DG literature.

1.1 Domain Generalization

Domain generalization is a technique used in machine learning to improve the performance of models
on unseen data. In traditional machine learning, models are trained and evaluated on a fixed dataset that
is assumed to be representative of the data that the model will encounter in the future. However, in
practice, the data that a model encounters in the real world may differ from the training data, leading to
poor performance.

Domain generalization aims to address this problem by training models on multiple datasets that
cover a wide range of possible scenarios rather than just one fixed dataset. By doing so, the model can
learn to generalize its predictions to new data that it has not encountered before. This technique can
be particularly useful in situations where the available training data is limited or biased and where the
model needs to perform well on a variety of different tasks or in different contexts.

In a DG setting, the datapoints consist of tuples of form (x, y, d) where x is the input feature, y is
the label corresponding to to input x, and d is the domain corresponding to input x. In general, if we
consider a set of labels L, and a set of domains D to represent a DG dataset S containing n samples,
then S can be represented as follows:

S = {(xi, yi, di)}i∈[1,...,n] (1.1)

Here, (xi, yi, di) corresponds to the ith datapoint of the dataset. Also, yi ∈ L; ∀i ∈ [1, . . . , n], and
di ∈ D; ∀i ∈ [1, . . . , n]. For this dataset S, if we create a train-test split such that the training set
consists of samples with domain set Dtrain where Dtrain ⊂ D, and the test set consists of samples with
domain set Dtest where Dtest = D −Dtrain. Then the training set Strain, and the test set Stest can be
represented as follows:

Strain = {(x, y, d) | (x, y, d) ∈ S, d ∈ Dtrain} (1.2)

Stest = {(x, y, d) | (x, y, d) ∈ S, d ∈ Dtest} (1.3)

2

In DG, the aim is to train models that can generalize to unseen domains. To achieve this, train-test
splits in DG are typically performed such that the training and test sets contain different domains. This
shows that:

(x1, y1, d1) ∈ Strain & (x2, y2, d2) ∈ Stest =⇒ d1 ̸= d2 (1.4)

Figure 1.1 shows a possible train test split on some sample images from the PACS dataset. The
dataset contains the classes Dog, Elephant, Giraffe, Guitar, Horse, House, and Person, and for every
class, it further contains the domains Photo, Art-Painting, Cartoon, and Sketch. The train test split
shown in Figure 1.1 contains all samples belonging to the domain Photo, Art-Painting, and Cartoon in
the train split and the remaining samples belonging to the Sketch class in the test split.

Figure 1.1 This figure shows one of the four splits for Domain Generalization on some sample images

from the PACS dataset.

1.2 Several Aspects of Domain Generalization

Domain Generalization (DG) is a rapidly evolving field that aims to address the challenges associ-
ated with distribution shifts in machine learning applications. In this section, we delve into the vari-
ous aspects of DG, exploring the techniques, methodologies, and considerations that researchers and
practitioners need to take into account when designing models capable of generalizing across multiple
domains. By examining these different facets, we aim to provide a comprehensive understanding of the

3

current state of the art in DG and highlight the key factors that contribute to the success of domain-
generalizing models.

1.2.1 Distribution Shift

Distribution shift refers to the phenomenon where the underlying data distribution changes between
the training and test phases of a machine learning model. It is a critical challenge in real-world appli-
cations, as models that perform well on training data may experience a significant drop in performance
when deployed on unseen data with different characteristics. In this section, we provide a descriptive
overview of the concept of distribution shift, its various types, and its implications on machine learning
models.

Distribution Shift (or Dataset Shift) represents any scenario where the joint probability distribution
of the input features and the output labels differ between the training set and the test set. For a training
dataset Dtrain and a test dataset Dtest, we say that there is a distribution shift between Dtrain and Dtest,
if their corresponding joint probability distributions follow the below relation:

Ptrain(x, y) ̸= Ptest(x, y) (1.5)

Here, Ptrain(x, y) is the joint probability distributions of the input feature vector x and output label
y for the training set, and Ptest(x, y) is the joint probability distributions of the input feature vector
x and output label y for the test set. The datapoints of Dtrain are sampled from the joint distribution
Ptrain(x, y) such that (x′, y′) ∼ Ptrain(x, y); ∀ (x′, y′) ∈ Dtrain. Similarly, the datapoints of Dtest are
sampled from the joint distribution Ptest(x, y) such that (x′, y′) ∼ Ptest(x, y); ∀ (x′, y′) ∈ Dtest.

There are several types of distribution shifts that can occur in practice. Some of the most common
ones are as follows:

• Covariate Shift: Covariate shift occurs when the input feature distribution, p(x), changes be-
tween the train and test set, but the conditional distribution of labels given the inputs i.e. p(y|x),
remains the same. This can be mathematically presented as follows:

Ptrain(x) ̸= Ptest(x) but Ptrain(y|x) = Ptest(y|x) (1.6)

It can be shown that this is a case of distribution shift as follows:

Ptrain(x) ̸= Ptest(x) and Ptrain(y|x) = Ptest(y|x)

=⇒ Ptrain(x)Ptrain(y|x) ̸= Ptest(x)Ptest(y|x) (1.7)

=⇒ Ptrain(x, y) ̸= Ptest(x, y) (1.8)

Covariate shift is commonly encountered in situations where the data collection process is differ-
ent for the train and the test sets, or if the environment in which the data is collected changes over

4

time, leading to different input distributions. For instance, consider a training dataset of photos of
cats and dogs taken in an outdoor environment. For this training dataset, if we consider a corre-
sponding test set of photos of cats and dogs taken in a dark indoor environment, this scenario can
be considered as an example of covariate shift, as there is a change in the input features across the
train and test sets, but the labels given the input features (photos) remain the same.

It is to be noted that the standard Domain Generalization setting falls under the category of co-
variate shifts as the input features of the training domain differs from the input features of the
test domain, implying that Ptest(x) ̸= Ptrain(x). But the output labels (given the input features)
remain the same across all the domains, implying that Ptrain(y|x) = Ptest(y|x).

Figure 1.2 This illustration offers a visual portrayal of covariate shift, emphasizing the changes in the

distribution of the input features between the training and test set. But the labels given the input features,

stay the same across both.

• Concept Shift: Concept shift, also known as concept drift, occurs when the relationship between
the input features and the output labels changes between the train and the test set. In this case, the
input feature distribution, p(x) for both the training and the test set, remains unchanged, but the
conditional distribution of labels given the inputs, p(y|x), can change. This can be mathematically
presented as follows:

Ptrain(x) = Ptest(x) but Ptrain(y|x) ̸= Ptest(y|x) (1.9)

It can be shown that this is a case of distribution shift as follows:

Ptrain(x) = Ptest(x) and Ptrain(y|x) ̸= Ptest(y|x)

=⇒ Ptrain(x)Ptrain(y|x) ̸= Ptest(x)Ptest(y|x) (1.10)

=⇒ Ptrain(x, y) ̸= Ptest(x, y) (1.11)

5

This type of shift can arise in situations where the underlying criterion of classification changes
over time. A classic example to explain concept drift is a machine learning model used for email
spam detection. In this scenario, the model is trained to distinguish between spam and non-spam
emails based on various features such as the sender’s email address, email content, subject line,
and other metadata. Initially, the model may perform well in detecting spam emails. However,
over time, the definition of a spam email might change, and hence, emails that were previously
non-spam might start getting classified as spams and vice-versa.

Figure 1.3 This illustration offers a visual portrayal of concept shift, emphasizing the changes in the

relationship between the labels and their corresponding input features across the training and test set,

while keeping the distribution of input features unchanged. Note that the position of all the datapoints

remain the same across the training and the test set.

• Label Shift: Label shift occures when the distribution of output labels changes between the train
and the test set, while the conditional distribution of the input features given the label, remain the
same. In this case, the output label distribution, p(y), changes between the train and the test set,
while the conditional distribution of the input features given the label, p(x|y), remains the same.
This can be mathematically presented as follows:

Ptrain(y) ̸= Ptest(y) but Ptrain(x|y) = Ptest(x|y) (1.12)

It can be shown that this is a case of distribution shift as follows:

Ptrain(y) ̸= Ptest(y) but Ptrain(x|y) = Ptest(x|y)

=⇒ Ptrain(y)Ptrain(x|y) ̸= Ptest(y)Ptest(x|y) (1.13)

=⇒ Ptrain(x, y) ̸= Ptest(x, y) (1.14)

6

To illustrate this, consider the task of identifying a disease given a patient’s symptoms. Suppose a
disease d results in symptoms s, which can be represented as d → s. Regardless of the proportion
of patients with disease d in the training and test sets, the relation that a patient with disease d will
exhibit symptoms s remains constant across the datasets.

Figure 1.4 This illustration presents a visual representation of label shift, demonstrating the change in

distribution of labels across the training and the test set. It is to be noted that the test set has more of

red datapoints and lesser of blue datapoints compared to the training data, hence showing a change in

distribution of labels. Also, though it is not visually obvious, the distribution of input features given the

label remain the same across the train and the test set.

On a concluding note to this section, the presence of distribution shifts can have a significant impact
on the performance and reliability of machine learning models. When a model is trained on a particular
distribution and tested on a different one, its performance may degrade considerably. This is because
the model has learned patterns specific to the training distribution, which may not generalize well to the
test distribution.

Moreover, distribution shifts can lead to biased or unfair predictions in certain cases. For instance,
if the training data over-represents certain demographic groups, the model may become biased towards
those groups and perform poorly on underrepresented groups when deployed in the real world.

1.2.2 Shortcut Learning

Shortcut learning refers to the phenomenon where a machine learning model learns to exploit simpler
patterns or correlations in the training data rather than genuinely understanding the underlying concepts
it is meant to learn. In the context of classification, shortcut learning occurs in situations where a
model ends up learning the subset of features of the input features that are sufficient for performing

7

classification. If we consider a trained model given by f() that exhibits shortcut learning, then for some
input feature vector x, the model learns a subset of these input features given by s(x), such that:

f(x1) = f(x2) if s(x1) = s(x2) (x1 ̸= x2) (1.15)

If it so happens that expected output corresponding to inputs x1 and x2, lets say y1 and y2 respec-
tively, are such that y1 = y2, but s(x1) ̸= s(x2), then in this case the model might result in f(x1) ̸=
f(x2) which is a case of misclassification. Similarly, the case when y1 ̸= y2, but s(x1) = s(x2) results
in misclassification as well. This can lead to models that perform well on the training data but fail to
generalize to real-world scenarios or more complex, unseen data.

To illustrate shortcut learning, let’s consider the example of training a model to identify cows in
images. Suppose the model is provided with a training dataset consisting of images of cows, where
the majority of the cows are photographed in grassy fields or on farms. A model that truly understands
the concept of a cow would learn to identify its features, such as its shape, the presence of horns, and
other characteristics unique to cows, regardless of the background or environment in which the cow is
situated.

However, due to shortcut learning, the model might instead focus on the presence of grass or farm-
related objects as indicators of a cow being present in the image. This is because the model has learned
a spurious correlation between the presence of grass or farm elements and the presence of cows in the
training data. The model has essentially taken a ”shortcut” in its learning process by relying on these
superficial cues rather than learning the intrinsic features of a cow.

Now, let’s imagine we present the model with an image of a cow at the beach, a scenario not encoun-
tered in the training data. In this situation, the model is likely to fail in identifying the cow, as the image
does not contain grass or farm-related elements. The model’s reliance on shortcut learning has led to
poor generalization performance when faced with an atypical example.

This example highlights the importance of carefully curating training datasets to ensure that models
learn to identify the essential features of the target concept rather than relying on simple correlations.
It also emphasizes the need for developing algorithms that are robust to shortcut learning, encouraging
models to learn the genuine underlying concepts rather than exploiting easy-to-learn patterns in the data.

Figure 1.5 explains another standard example of shortcut learning from [31]. It shows a toy example
in which a neural network is trained on a simple dataset of stars and moons located at diffferent positions.
A standard neural network can effortlessly categorize new dataset with samples similar to those in the
training set (IID). However, when tested on a slightly different dataset (OOD), the network’s shortcut
strategy is revealed. In this example, the neural network has learned to associate object location with a
category. During training, stars were consistently displayed in the top right or bottom left locations of
the image, while moons were shown in the top left or bottom right locations. This pattern persists in
samples from the IID test set but is absent in OOD test images, which uncovers the shortcut taken by
the network, resulting in misclassification.

8

Figure 1.5 This image shows a toy dataset of starts and moons located at different positions. It shows

how a Neural Networks classifies the IID test set samples correctly, but due to shortcut learning, it does

not correctly classify the OOD test samples.

(Image Source: [31])

In a broader, philosophical sense, shortcut learning raises questions about the nature of intelligence
and understanding. While machine learning models can achieve impressive results in many tasks, their
reliance on shortcut learning may indicate a lack of genuine understanding of the concepts they are
learning. Developing models that can learn and reason more like humans without relying on shortcut
learning remains a challenging and intriguing area of research in artificial intelligence.

1.2.3 Representation Learning

Representation learning is at the core of domain generalization in image classification, as it involves
automatically discovering and extracting useful and meaningful features from raw image data. These
learned representations capture the inherent structure, relationships, and patterns present in images,
enabling the model to generalize effectively to new, unseen domains. In the context of domain general-
ization, the goal is to learn transferable and invariant features across different domains, which makes the
model more robust and less sensitive to changes in the data distribution between the source (training)
and target (test) domains.

Deep learning architectures, such as convolutional neural networks (CNNs), have been pivotal in
representation learning for image classification, as they can automatically learn hierarchical features

9

from raw data. However, recent advances in unsupervised and self-supervised learning have further
broadened the scope of representation learning. One such self-supervised method is contrastive learning,
which aims to learn useful representations by comparing and contrasting different features of the data.
By encouraging the model to learn representations that bring similar images closer together and push
dissimilar images farther apart in the embedding space, contrastive learning allows the model to discover
transferable and discriminative features that are essential for domain generalization. By employing
techniques like contrastive learning, models can gain a deeper understanding of the underlying structure
of image data, allowing them to adapt more efficiently to new, unseen domains. Let’s explore Supervised
Contrastive Learning in further detail.

• Supervised Contrastive Learning:
Supervised Contrastive Learning (SupCon) [51] is a learning framework that extends the concept
of contrastive learning, which has been widely adopted for self-supervised learning (SimCLR
[17]), to the supervised setting. In contrastive learning, the goal is to learn representations by
contrasting positive and negative examples. In SupCon, distorted pairs are generated by apply-
ing different augmentations to the same input instance. This process encourages the model to
learn representations that are similar to the augmented versions of the same instance. By doing
so, the model is guided to focus on the essential features that remain consistent across various
augmentations, further improving its generalization capabilities.

In Supervised Contrastive Learning, positive pairs consist of any two samples that belong to the
same class, indicating that they share similar properties or features. On the other hand, negative
pairs are defined as any two samples that belong to distinct classes, implying that they possess
different characteristics or features. In the context of contrastive learning, positive and negative
pairs play a crucial role in learning meaningful and discriminative representations by encourag-
ing the model to maximize the similarity between positive pairs while minimizing the similarity
between negative pairs.

To understand the Supervised Contrastive Loss (LSupCon), let’s consider one mini-batch with N

datapoints, we have N tuples of the form (input sample, class label), (xk, yk)k=1...N . In each
input batch of the model, we augment the input to create a pair of two distorted images with the
same class labels. We use only the augmented pair (not the actual samples), making the batch size
2N . The effective dataset for training hence comprises of 2N tuples: (x̃l, ỹl)l=1...2N , where x̃2k

and x̃2k−1 are two random augmentations of xk (k = 1...N) and ỹ2k−1 = ỹ2k = ỹk. Using these
conventions, the loss LSupCon is given as follows,

LSupCon =
∑

i∈{1...2N}

−1

|P (i)|
∑

p∈P (i)

log
exp(zi

⊙
zp/τ)∑

a∈A(i) exp(zi
⊙

za/τ)
(1.16)

Where, the
⊙

denotes the inner (dot) product, τ ∈ R+ is a scalar temperature parameter, and for
i ∈ {1...2N}:

– zi is the Normalized Embedding Vector of x̃i (Note that ||zi|| = 1)

10

– A(i) ≡ {1...2N} excluding the ith sample

– P (i) ≡ {p ∈ A(i) | ỹp = ỹi}

Here, P (i) is the set of all samples belonging to the same label as that of the ith sample except
for the ith sample itself. In other words, P (i) is the set of all positives of the ith sample.

To understand equation 1.16 better, let us try to understand when the loss LSupCon is minimized.
As the component log exp(zi

⊙
zp/τ)∑

a∈A(i) exp(zi
⊙

za/τ)
of the equation is multiplied with a −ve value, our

objective is to maximize this component to so as to minimize the overall expression. For the
normalized embedding zi of the ith sample, this component is maximized when its numerator
exp(zi

⊙
zp/τ) is maximized, and its denominator

∑
a∈A(i) exp(zi

⊙
za/τ) is minimized. This

implies that (zi
⊙

zp) should be maximized ∀p ∈ P (i), i.e. the set of all positive samples, and
(zi

⊙
za) should be minimized ∀a ∈ A(i)− P (i), i.e. the set of all negative samples.

Visually speaking, (zi
⊙

zp) is maximized when the embedding unit vectors zi and zp are close to
each other in a unit hypershpere (ideal case is when zi = zp). Similarly, (zi

⊙
za) is minimized

when the embedding unit vectors zi and za are far from each other in a unit hypershpere (ideal
case is when zi = −za). See Figure 1.6.

Figure 1.6 This figure shows a visual of how the normalized embeddings would lie on a unit hypere-

sphere after Supervised Contrastive Training. Assumung that z is the embedding for some input samples

s, then zp1 and zp2 are the embeddings corresponding to the positives of sample s (hence closer to z),

and zn1 and zn2 are the embeddings corresponding to the negatives of sample s (hence farther from z).

In Supervised Constrastive Learning (SupCon), data augmentations are employed to create posi-
tive pairs and improve the learned representation’s robustness and generalization. The augmenta-
tions used in SupCon typically include:

1. Random cropping and resizing: The input images are cropped randomly and resized to
the original dimensions. This augmentation enforces the model to learn features that are invariant
to translation and scale changes.

11

Figure 1.7 This figure shows a visualization of the learnt Normalized Embeddings with SupCon. It can

be seen how the two classes (Dogs and Cats) are clustered such that samples belonging to the same class

are closer, and those belonging to the classes are far away from each other.

2. Random horizontal flipping: Images are horizontally flipped with a certain probabil-
ity. This transformation encourages the model to learn features invariant to left-right orientation
changes.

3. Random color jittering: Randomly perturbing the brightness, contrast, saturation, and
hue of input images introduces variations in the color space. This augmentation helps the model
to learn features that are robust against color-related variations.

4. Random grayscale conversion: With a certain probability, input images are converted to
grayscale. This augmentation forces the model to focus on texture and structural features rather
than relying on color information.

5. Gaussian blur: Applying Gaussian blur with random kernel sizes to the images simulates
the effect of out-of-focus images or different camera quality. This transformation encourages the
model to learn features invariant to blur variations.

6. Cutout or Random Erasing: Randomly masking a portion of the input image with a
rectangular patch enforces the model to learn features based on partial information, making it
more robust against occlusion.

12

Figure 1.8 This figure illustrates how SupCon transforms N samples into 2N samples using data aug-

mentation and demonstrates the attraction or repulsion between positive and negative samples based on

their class membership relative to the anchor. In other words, samples belonging to the same class as

the anchor are attracted, while those from different classes are repelled.

These augmentations, when applied in combination, provide a diverse set of positive pairs and help
the model learn more robust and generalizable representations. However, the choice of augmentations
can vary depending on the specific task and dataset, and it is essential to select relevant and meaningful
augmentations to the problem at hand.

We will see more about Contrastive Learning for representation learning in Chapter 3.

1.2.4 Data Imbalances

The input data being highly unbalanced results in the model to learn some features with a higher bias
compared to others. As most of the real-world datasets follow a long-tailed distribution, it is required
for us to come up with better ways of feature learning which are agnostic to data imbalances.

13

In a domain generalization setting, long-tail data imbalances can manifest in several ways, impact-
ing machine learning model’s performance and generalization capabilities. Let’s examine the different
forms of long-tail imbalances that can occur in domain generalization:

1. Across classes: Within a single domain, certain classes may have a significantly larger number
of samples compared to others. This class imbalance can lead to models prioritizing learning
patterns from the majority classes while neglecting the minority classes. As a result, the model’s
performance on minority classes may suffer when encountering new, unseen data from the same
domain.

2. Across domains: There might exist a long-tail distribution across domains, where some domains
having significantly more samples compared to others domains. This inter-domain imbalance
can pose challenges for models attempting to generalize across multiple domains, as the feature
learning gets biased towards the domains with more samples, resulting in poor feature learning
from the domains with fewer samples.

3. Across both classes and domains: In a more complex scenario, long-tail data imbalances can
occur simultaneously across both classes and domains. This can compound the challenges faced
by models, as they must not only account for imbalances within each domain but also adapt to
the varying number of samples across domains. This makes generalizing to new domains and
maintaining performance on minority classes and domains more difficult.

Addressing long-tail data imbalances in a domain generalization setting involves developing tech-
niques that can effectively learn from imbalanced data across multiple domains. Some strategies to
tackle these challenges include:

1. Re-sampling techniques: Balancing the representation of classes across domains by oversam-
pling minority classes, undersampling majority classes, or a combination of both, potentially
using domain-specific re-sampling strategies.

2. Transfer learning and meta-learning: Leveraging knowledge from related tasks or domains
to improve learning on the long-tailed distribution or adapting to new domains with underrepre-
sented classes.

3. Loss function modifications: Designing cost-sensitive learning approaches or customized loss
functions that account for class and domain imbalances, encouraging models to prioritize learning
from underrepresented samples.

4. Ensemble methods: Combining multiple models or learning strategies that focus on improving
performance on minority classes and generalizing across domains.

5. Representation Learning: Recent advancements in Long-Tail classification demonstrate that
utilizing self-supervised learning techniques to enhance representations within the latent space can

14

significantly boost performance in a long-tail classification setting. The approach involves first
applying self-supervised learning to develop improved, and ideally sparse, feature embeddings in
the latent space. When these sparse feature representations are then used for classification, it leads
to better performance in long-tailed classification settings. Wang et al. (2021) [96] serves as an
excellent illustration of how better representation learning contributes to progress in addressing
long-tail classification challenges.

By understanding the nuances of long-tail data imbalances across classes, domains, and both, prac-
titioners can develop more robust and generalizable machine learning models that can effectively adapt
to diverse real-world scenarios.

1.3 Datasets for Studying Distribution Shift

This section provides an overview of various datasets used for studying distribution shifts in machine
learning, including DomainBed [36], ImageNet Rendition [39], ImageNet Sketch [93], and WILDS [53]
datasets. Understanding distribution shifts is crucial for developing robust and generalizable models that
can perform well under different real-world conditions.

1.3.1 DomainBed

DomainBed is a benchmark suite designed for evaluating domain generalization algorithms. It con-
tains several datasets with multiple domains, allowing researchers to train and evaluate algorithms that
can generalize across these domains. The datasets included in DomainBed are:

• Rotated MNIST (R-MNIST): R-MNIST [33] is a variant of the MNIST handwritten digit
dataset, where the digits are rotated by different angles in each domain.

Figure 1.9 This figure shows some samples from the R-MNIST dataset where the digits are rotated at

different angles.

• Colored MNIST (C-MNIST): C-MNIST [5] is a variant of the MNIST dataset, where the digits
are colored using different color schemes across domains. This dataset introduces a distribution
shift by altering the color of the digits, which provides a unique challenge for domain generaliza-
tion algorithms.

15

Figure 1.10 This figure shows some samples from the C-MNIST dataset where the digits are colored in

either Red or Green.

• PACS (Photo, Art, Cartoon, Sketch): PACS [57] is a dataset containing images from four
different domains (photographs, art, cartoons, and sketches), each with the same seven object
classes. This is the most widely used dataset for performing initial experiments for any DG task.

Figure 1.11 This figure shows some samples from the PACS dataset.

• VLCS (Pascal VOC2007, LabelMe, Caltech-101, SUN09): VLCS [26] is a dataset of im-
ages from four different datasets, each representing a different domain, with five common object
classes.

Figure 1.12 This figure shows some samples from the VLCS dataset. All these samples belong to class

bird.

• Office-Home: Office-Home [91] is a dataset consisting of images from four distinct domains
(Art, Clipart, Product, and Real-World), each containing images of 65 object classes.

16

Figure 1.13 This figure shows some samples from the OfficeHome dataset.

• DomainNet: DomainNet [74] is a large-scale benchmark for domain generalization, containing
six different domains: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch. Each domain
consists of images from 345 object classes.

Figure 1.14 This figure shows some samples from the DomainNet dataset.

• TerraIncognita: TerraIncognita [10] is a dataset consisting of images featuring wild animals
taken from various locations. It includes four domains (L100, L38, L43, and L46) and consists of
10 different categories that are common across all the domains.

We will explore more about these datasets in Chapter 3.

17

Figure 1.15 This figure shows some samples from the TerraIncognita dataset. Every row in this figure

corresponds to a set of images taken from a particular location.

1.3.2 ImageNet Rendition

ImageNet Rendition is a dataset derived from the original ImageNet dataset. It introduces distribution
shifts by modifying the images using various image processing techniques, such as changes in color
balance, saturation, contrast, the addition of noise, blurring, and the application of artistic filters. It
contains art, cartoons, deviantart, graffiti, embroidery, graphics, origami, paintings, patterns, plastic
objects, plush objects, sculptures, sketches, tattoos, toys, and video game renditions of a subset of 200
ImageNet classes. This dataset allows researchers to study the effects of distribution shift on model
performance and robustness due to changes in visual style.

1.3.3 ImageNet Sketch

ImageNet Sketch is another dataset derived from the original ImageNet dataset. It consists of hand-
drawn sketches representing the same object categories as the original dataset. It consists of 50 images
for each of the 1000 ImageNet classes (i.e., 50,000 images in total). Sketches inherently introduce
a significant distribution shift, as they are abstract, simplified, and stylistically diverse compared to
photographs. This dataset enables researchers to investigate a model’s ability to generalize to different
visual representations and identify potential limitations.

18

Figure 1.16 This figure shows some samples from the ImageNet-Rendition dataset.

Figure 1.17 This figure shows some samples from the ImageNet-Sketch dataset.

1.3.4 WILDS

WILDS is a collection of large-scale datasets designed to study the problem of distribution shifts in
various real-world settings. Each dataset in WILDS comes with a natural distribution shift between the
training and test sets. The datasets included in WILDS are:

• iWildCam: iWildCam [9] is a dataset for animal species classification in camera trap images,
with distribution shifts due to different camera trap locations and camera intrinsics.

• Camelyon17: Camelyon17 [8] is a dataset for metastatic cancer detection in histopathology im-
ages, with distribution shifts due to data from different hospitals.

19

• RxRx1: RxRx1 [89] is a cell biology dataset with microscopy images of human cells subjected to
genetic perturbations. The dataset contains batch-to-batch variations, which introduce distribution
shifts.

• FMoW: FMoW [19] is a dataset for land use classification in satellite images, with distribution
shifts due to changes in regions and images across time.

• PovertyMap: PovertyMap [101] is a dataset for predicting economic well-being from satellite
imagery, with distribution shifts due to variations in location, both due to country-to-country
variations and also due to variations in rural and urban regions within a country.

• GlobalWheat: GlobalWheat [20] [21] is a dataset for wheat head detection in agricultural images,
with distribution shifts due to geographic location and variation across time.

• OGB-MolPCBA: OGB-MolPCBA [43] is a dataset designed for predicting molecular properties,
exhibiting distribution shifts resulting from the utilization of distinct molecule scaffolds.

• CivilComments: CivilComments [13] is a dataset of online comments annotated for toxicity,
with distribution shifts arising from different discussion groups and comment sources.

• Amazon: The Amazon dataset [73] is a collection of product reviews used for user sentiment
analysis. The goal is to predict the sentiment of a user based on the text of their review. Distribu-
tion shifts may occur due to varying user preferences.

• Py150: Py150 [64] [80] is a dataset for predicting which Python functions contain bugs based on
their source code, with distribution shifts due to different repositories and programming styles.

The discussed datasets, consisting of DomainBed, ImageNet Rendition, ImageNet Sketch, and WILDS,
provide a comprehensive set of resources for researchers to study distribution shifts and develop ma-
chine learning models that are more robust and generalizable across different conditions.

1.4 Thesis Contributions

The main contributions of this thesis are threefold. First, we identify the importance of low-dimensional
representations for domain generalization performance. We introduce a method to compute the implicit
dimensionality of latent representations, exploring its correlation with performance in a domain general-
ization context. This essential finding motivated us to further investigate the effects of low-dimensional
representations.

Second, we present Cross-Domain Class-Contrastive Learning (CDCC), a technique that learns
sparse representations in the latent space, resulting in lower-dimensional representations and improved
domain generalization performance. CDCC establishes competitive results on various DG benchmarks,
comparing favorably with numerous existing approaches.

20

Figure 1.18 This figure shows a summary of all the datasets from WILDS. It summarizes the input,

output and domain types for each of the datasets along with a sample example for each. It also consists

of metadata like total number of domains, total number of samples and spilt of the samples across the

domains for all the datasets. (Image Source: https://wilds.stanford.edu/datasets/)

Third, we discuss a series of experiments conducted for domain generalization in long-tailed settings,
which are common in real-world applications. Additionally, we present supplementary experiments
yielding intriguing findings. Our analysis reveals that the CDCC approach exhibits greater robustness in
long-tailed distributions and that the order of performances across test domains remains unaffected by
the order of training domains in the long-tailed setting. This section aims to inspire researchers to fur-
ther probe the outcomes of these experiments and advance the understanding of domain generalization.

To summarize it all, this thesis makes the following contributions:

• Examination of the role of low-dimensional representations in enhancing DG performance.

– Introduced a method to compute the implicit dimensionality of latent representations.

– Explored the correlation between implicit dimensionality and performance in a domain gen-
eralization context.

• Presentation of Cross-Domain Class-Contrastive Learning (CDCC).

– A technique that learns sparse representations in the latent space.

21

https://wilds.stanford.edu/datasets/

– Results in lower-dimensional representations and improved domain generalization perfor-
mance.

– Establishes competitive results on various DG benchmarks.

• Findings about domain generalization in long-tailed settings.

– CDCC approach exhibits greater robustness in long-tailed distributions.

– Order of performances across test domains remains unaffected by the order of training do-
mains.

These contributions have the potential to advance the state-of-the-art in domain generalization and
make it more applicable to real-world problems.

1.5 Conclusion

In conclusion, this introductory chapter has provided a comprehensive overview of domain general-
ization, an important and rapidly growing area in machine learning research. We have delved into the
various aspects and challenges of domain generalization, shedding light on the complexities involved in
creating models that can generalize effectively across different domains and tasks.

We have discussed the concept of distribution shift, which arises when the data distribution in the
target domain differs from the training data distribution and explored shortcut learning, where models
exploit superficial correlations in the training data, leading to poor generalization. Representation learn-
ing has been highlighted as a key component in achieving domain generalization, focusing on learning
features that are invariant across different domains. Additionally, we have addressed the issue of data
imbalances, which can further hinder the generalization performance of models.

In order to study distribution shifts and evaluate the performance of domain generalization meth-
ods, we have explored several benchmark datasets, including DomainBed, ImageNet Rendition, Im-
ageNet Sketch, and WILDS. These datasets provide diverse challenges and unique opportunities for
the development and testing of new domain generalization techniques, allowing researchers to push the
boundaries of current AI capabilities.

As we move forward, the foundations laid in this chapter will serve as a stepping stone for a deeper
understanding of the complexities and subtleties of domain generalization and its broader applications
in the coming chapters. Addressing the challenges and opportunities highlighted in this chapter will be
crucial in developing more robust and generalizable models for real-world applications.

The flow of further chapters is as follows,

• Chapter 2: Related Literature, This chapter reviews seminal literature and research, identifying
the existing challenges and setting the context for understanding our contributions to the field.

22

• Chapter 3: Cross-Domain Class-Contrastive Learning: Finding Lower Dimensional Rep-
resentations for Improved Domain Generalization, This chapter serves as the primary con-
tribution of this thesis. In this chapter, we propose a novel method to compute the implicit di-
mensionality of latent representations and also study its correlation with performance in a domain
generalization setting. Taking forward the findings of this study, we propose a new Cross-Domain
Class-Contrastive Learning (CDCC), which learns a sparse representation in the latent space and
hence results in a better domain generalization performance.

• Chapter 4: Going beyond Traditional Domain Generalization, In this chapter, we discuss
various experiments performed for domain generalization in a long-tailed setting, as well as some
additional experiments that resulted in some interesting findings. This chapter is intended to
motivate researchers in the field to further investigate the findings of these experiments and take
forward the understanding of domain generalization.

• Chapter 5: Conclusion, This chapter finally provides some concluding remarks on the overall
work stated in this thesis.

23

Chapter 2

Related Literature

The field of domain generalization has attracted significant attention in recent years, with numerous
approaches being proposed to address the challenges associated with learning invariant features, sharing
parameters, utilizing meta-learning techniques, and applying data augmentation. This chapter provides a
comprehensive review of the related literature, focusing on seminal works and the key advancements that
have shaped the current state of domain generalization research. We begin by discussing the progress
in learning invariant features, followed by parameter sharing techniques, meta-learning strategies, and
data augmentation approaches.

2.1 Learning Invariant Features

Invariant features are features that are not affected by changes in the environment or the way the data
is presented. For example, an invariant feature for a face recognition system might be the shape of the
nose, which would be the same regardless of the person’s pose or lighting conditions. In the context
of machine learning, invariant features are those features that remain unchanged despite variations in
the input data for a given label. Learning invariant features is a challenging problem, but it is essential
for many machine learning tasks. For example, in a domain generalization setting, where the model is
trained on data from a variety of domains and then tested on data from a new domain, invariant features
can help the model to generalize to the new domain.

There are a number of different approaches to learning invariant features. One common approach
is to use feature extraction algorithms, which extract features from the data that are invariant to certain
types of changes. For example, a feature extraction algorithm might extract features that are invariant to
rotation, translation, or scale.

Another approach to learning invariant features is to use deep learning algorithms. Deep learning
algorithms can learn to extract invariant features from data by training on a large dataset of labeled data.
The choice of approach to learning invariant features depends on the specific machine learning task.
However, in general, invariant features can be a valuable asset for machine learning models.

24

In the context of previous works on learning invariant features for improving domain generalization,
Kernel methods have been employed to identify a feature transformation that simultaneously minimizes
the distance between transformed feature distributions across domains and preserves the information be-
tween the original features and targets [70]. In their groundbreaking work, Ganin et al. [30] introduced
Domain Adversarial Neural Networks (DANN), a domain adaptation method that leverages Generative
Adversarial Networks (GANs) [34] to learn a feature representation consistent across training domains.

DANN has been extended by Akuzawa et al. [2] to address cases where a statistical dependence
exists between domain and class label variables. Albuquerque et al. [3] further developed DANN
by considering one-versus-all adversaries attempting to predict each example’s training domain. Li et
al. [60] applied GANs and the maximum mean discrepancy criteria [35] to align feature distributions
among domains.

Matsuura and Harada [67] utilized clustering techniques to learn domain-invariant features when
training domain separation is unknown. Li et al. [61, 62] discovered a feature transformation ϕ ensuring
that the transformed input ϕ(x), given the output label y, belong to the same distribution for all the
training domains. Shankar et al. [83] employed a domain classifier to create adversarial examples for a
label classifier and vice versa, resulting in an improved label classifier for domain generalization.

By training a robust feature extractor and classifier, Li et al. [59] achieved robustness by (i) requiring
the feature extractor to produce features that allow a classifier trained on domain d to classify instances
for domain d′ ̸= d, and (ii) demanding the classifier to predict labels on domain d using features
generated by a feature extractor trained on domain d′ ̸= d. Li et al. [56] implemented a lifelong
learning approach to address the domain generalization problem. Motiian et al. [69] learned a feature
representation that satisfied three conditions: (i) examples from different domains with the same class
are close, (ii) examples from different domains and classes are distant, and (iii) training examples can
be accurately classified.

Ilse et al. [47] trained a variational autoencoder [52] to factorize the bottleneck representation knowl-
edge about domain, class label, and residual variations in the input space. Fang et al. [26] learned a
structural SVM metric to guarantee that each example’s neighborhood includes examples from the same
category and all training domains. The algorithms of Sun and Saenko [87], Sun et al. [86], and Rahman
et al. [78] matched feature covariance (second-order statistics) across training domains at some repre-
sentation level. Ghifary et al. [32] and Hu et al. [42] employed kernel-based multivariate component
analysis to reduce the mismatch between training domains while maximizing class separability.

Despite its popularity, learning domain-invariant features has been criticized [106, 49]. There exist
alternative approaches, as discussed below. Peters et al. [75] and Rojas-Carulla et al. [81] suggest
searching for features that yield the same optimal classifier across training domains. In their pioneering
work, Peters et al. [75] connected this type of invariance to the causal structure of data and proposed a
fundamental algorithm to learn invariant linear models based on feature selection. Arjovsky et al. [5]
expanded upon the previous work to include general gradient-based models, such as neural networks,
in their Invariant Risk Minimization (IRM) principle. Teney et al. [90] built upon IRM to learn a

25

feature transformation that minimizes the relative variance of classifier weights across training datasets,
applying their method to reduce the learning of spurious correlations in Visual Question Answering
(VQA) tasks. Ahuja et al. [1] analyzed IRM from a game-theoretic perspective to develop an alternative
algorithm. Krueger et al. [55] proposed an approximation to the IRM problem by reducing the variance
of error averages across domains. Bouvier et al. [15] tackled the same problem as IRM by re-weighting
data samples.

2.2 Parameter Sharing Techniques

Parameter sharing is a technique in machine learning where the same parameters are used across
different parts of a model. This can be done to reduce the number of parameters in a model, which can
make it easier to train and generalize. Parameter sharing can be used in a variety of machine learning
models, including neural networks, support vector machines, and decision trees. In neural networks,
parameter sharing is often used in the convolutional layers, where the same weights are applied to
different parts of the input image. This can help to reduce the number of parameters in the model, while
still preserving the ability to learn complex features.

Parameter sharing can also be used in the context of domain generalization. One way to address
domain generalization is to use parameter sharing to encourage the model to learn features that are
invariant to changes in the domain. For example, if a model is trained on data from two different
domains, one with images of cats and one with images of dogs, then parameter sharing can be used to
encourage the model to learn features that are common to both cats and dogs. This can help the model
to generalize to new domains, such as a domain with images of both cats and dogs.

In the context of previous works on parameter sharing techniques for improving domain generaliza-
tion, Blanchard et al. [12] construct classifiers f(xd, µd), where µd is a kernel mean embedding [71]
that summarizes the dataset related to the example xd. As the distributional identity of test instances
is unknown, these embeddings are approximated using single test examples during testing. Theoretical
results on this family of algorithms can be found in [11, 22]. Khosla et al. [50] learn a max-margin
linear classifier wd = w +∆d for each domain d, from which they extract the final, invariant predictor
w. Ghifary et al. [33] employ a multitask autoencoder to learn invariances across domains, assuming
that each training dataset contains the same examples, such as photographs of the same objects under
varying views.

Mancini et al. [66] train a deep neural network with a dedicated set of batch-normalization layers
[48] for each training dataset. A softmax domain classifier is then used to predict the linear combina-
tion of the batch-normalization layers during testing. Similarly, Mancini et al. [65] learn a softmax
domain classifier to combine domain-specific predictors at test time linearly. DInnocente and Caputo
[24] investigate more sophisticated methods of aggregating domain-specific predictors.

Li et al. [57] extend Khosla et al. [50] to deep neural networks by augmenting each of their param-
eter tensors with an additional dimension, indexed by the training domains, and set to a neutral value

26

for domain-agnostic test example prediction. Ding and Fu [23] apply parameter-tying and low-rank
reconstruction losses to learn a predictor that relies on shared knowledge across training domains. Hu et
al. [44] and Sagawa et al. [82] weigh the importance of training distribution mini-batches proportional
to their error.

2.3 Meta-Learning Techniques

Meta-learning is a technique that learns to learn. This means that meta-learning algorithms can learn
to improve their performance on a new task, even if they have never seen that task before. Meta-learning
algorithms typically do this by storing information about previous tasks and using that information to
improve their performance on new tasks. This information can include the parameters of previous
models, the loss functions used to train previous models, or the features that were found to be important
in previous tasks.

Meta-learning has been used for a variety of tasks, including domain generalization. One way to
address domain generalization with meta-learning is to use meta-learning to learn a good initialization
for a model. This means that the meta-learning algorithm can learn to initialize a model in a way that
makes it more likely to generalize to new domains. Another way to use meta-learning for domain
generalization is to use meta-learning to learn a good optimization algorithm. This means that the meta-
learning algorithm can learn to optimize a model in a way that makes it more likely to generalize to new
domains.

In the context of previous works on meta-learning techniques for improving domain generalization,
Li et al. [58] utilizes Model-Agnostic Meta-Learning (MAML) [27] to create a predictor that learns to
adapt between training domains quickly. Dou et al. [25] employ a similar MAML strategy, along with
two regularizers that encourage features from different domains to adhere to inter-class relationships
and be compactly clustered by class labels. Li et al. [63] extend the MAML meta-learning approach to
domain generalization instances where the categories differ across domains. Balaji et al. [7] use MAML
to meta-learn a regularizer that encourages a model trained on one domain to perform well on another
domain.

2.4 Data Augmentation Approaches

Data augmentation is a technique that artificially increases the size of a dataset by creating new
data points from existing data points. This can be done by applying a variety of transformations to
the data, such as flipping, rotating, cropping, or translating the data. Data augmentation is a powerful
technique that can be used to improve the performance of machine learning models. This is because
data augmentation can help to reduce overfitting, which is a problem that occurs when a model learns
the training data too well and is unable to generalize to new data.

27

We already explored some of the data augmentation techniques in 1.2.3. These data augmentation has
proven to be an effective strategy for addressing domain generalization [105]. Unfortunately, designing
efficient data augmentation routines depends on the data type and requires significant effort from human
experts. Xu et al. [99], Yan et al. [100], and Wang et al. [98] employ mixup [104] to blend examples
from different training distributions. Carlucci et al. [16] create an auxiliary classification task aimed
at solving jigsaw puzzles of image patches, which learns features that improve domain generalization
through self-supervised learning. Albuquerque et al. [4] introduce a self-supervised task of predicting
responses to Gabor filter banks to learn more transferable features.

Wang et al. [94] remove textural information from images to enhance domain generalization. Volpi
et al. [92] demonstrate that training with adversarial data augmentation on a single domain can improve
domain generalization. Nam et al. [72] and Asadi et al. [6] promote data representations disregarding
texture and focusing on shape. Rahman et al. [79], Zhou et al. [108], and Carlucci et al. [16] offer three
alternatives that utilize GANs to augment the data available during training time.

2.5 Conclusion

In summary, this chapter has provided an in-depth review of the related literature on domain gen-
eralization, covering a wide range of approaches that aim to address the challenges associated with
learning invariant features, sharing parameters, utilizing meta-learning techniques, and applying data
augmentation. The diverse range of techniques and methodologies discussed in this chapter highlight
the complexity and importance of domain generalization in the broader context of machine learning and
artificial intelligence.

28

Chapter 3

Cross-Domain Class-Contrastive Learning: Finding Lower Dimensional

Representations for Improved Domain Generalization

3.1 Introduction

C1
C2
C3
C4

D3D2D1 D4
repe

l
attract

Figure 3.1 This figure shows how Cross-Domain Class-Contrastive Learning clusters samples from

different domains and classes. The color of a sample indicates its class, and the shape of a sample

indicates its domain. See the legend in the top-right corner for more details. Note that the number of

domains may or may not be equal to the number of classes.

The relevance of evaluating deep neural networks on test data sampled from outside of the train
distribution is multi-faceted. It not only aids model deployment across varied environments but also
helps reveal the learning mechanism of networks. Domain generalization (DG) is a formalized setting
for Out of Distribution (OOD) generalization where a model is trained on multiple domains and tested
on the same classes of an unseen domain. The ability to give good DG performance is desirable when
the test conditions are either not always predictable or are difficult to gather and annotate (e.g. in self
driving cars).

29

DG methods aim at learning domain agnostic discriminative features and not fitting domain specific
ones. Some of the popular methods in DG include learning features by reversing gradients from domain
labels [29], learning a common feature representation space for different domains [70], learning both
domain-specific and domain agnostic features together [50], and inhibiting features corresponding to
the highest gradients [46].

However, recent work [36] shows that the intuitive methods tailored for DG, fail to give consistent
improvement over a simple Empirical Risk Minimization (ERM) when trained with a similar strategy
across the different datasets. Sivaprasad et al. [85] explains this observation arguing that the same phe-
nomenon that leads to shortcut learning in IID (fitting the low lying variance), improves performance in
OOD, specifically DG. Figure 3.2 shows how the probability of learning RABC is higher when network
learns the least number of features to explain the train data (RBC), compared to learning RB or RC

independently. In the presence of multiple domains (B and C), the network has a higher probability of
learning domain agnostic features RABC compared to learning from individual domains.

RA
RC

RB

RAB

RBC
RAC

RABC

Discriminative
features in
domain C

Discriminative
features in
domain B

Discriminative
features in
domain A

Features that
discriminate
classes in all

three domains

Figure 3.2 B, C are the training domains, and A is the test domain. Ri are the discriminative features

(in parameter space) of domain i. RBC is an intersection of features of RB and RC , which is the

smallest set of variances that explains the class separation in train data. Also, |RABC |
|RB | ≤ |RABC |

|RBC | and
|RABC |
|RC | ≤ |RABC |

|RBC | , (here, |S| represents the cardinality of set S) making a case that a model that learn

compact representation on multiple domains has higher chance of learning domain agnostic features.

We hypothesize, that learning a more compact/low dimensional representation (RBC) is beneficial
to DG. To this end, we perform experiments to bring out the correlation between the performance of a
model in DG with the dimensionality of the feature space. The correlation holds true across six different
popular image classification architectures studied in our work. We measure the dimensionality of feature
space by using the cardinality of the dominant singular values of the weight matrix that projects data to

30

the last layer embedding. We show how this measurement guarantees an upper bound to dimension of
the learned feature space.

We take this idea forward and propose a new training strategy to learn domain agnostic feature
representation for DG. We propose Cross-Domain Class-Contrastive (CDCC) loss, a modified version
of Supervised Contrastive Loss (SCL) [51] and similar to the Cross-domain Contrastive loss proposed
by [97] for domain adaptation. CDCC brings samples of the same class from all the domains together
and pushes the samples that belong to different classes (irrespective of its domain) farther apart, resulting
in better domain agnostic learning. Figure 3.1 shows how Cross-Domain Class-Contrastive (CDCC)
Loss applied on batches sampled from different domains explicitly learns domain agnostic features.
Features from the same class fall in the same cluster irrespective of their domain. Over the epochs,
the features become clustered such that features of same class from different domain are ‘attracted’ to
form a cluster, and features from different classes in the same domain are pulled apart or ‘repelled’ into
separate clusters. The embedding space post-training is clustered such that all elements from the same
class fall in the same cluster irrespective of their domain.

We establish SOTA results on five popular DG benchmarks using this method. We show that using
CDCC reduces the dimensionality of the feature space tying together this finding with the previous
claim. Overall, our work makes the following contributions:

• We show that the DG performance of models are correlated to the implicit dimensionality of its
learned representation.

• We propose a new loss function (CDCC) that beats state-of-the-art results on five different DG
benchmarks.

• We show that the proposed loss function helps reduce the dimensionality of the learned represen-
tation resulting in better DG performance.

3.2 Related Work

Our discussions are limited to efforts exploring DG properties of deep neural networks on the image
classification tasks. We refer the reader to the work by Moreno et al. [68] for a more comprehensive
discussion on DG, discussing literature beyond the task of image classification, including methods from
the pre-deep learning era.

Some popular image classification benchmarks for DG evaluation are: PACS [57], VLCS [26],
Office-home [91], RMNIST [33], Domain-Net [74] and CMNIST [5]. The statistics of these datasets
are given in Table 3.1

Efforts in DG in neural networks can be broadly categorized into three categories [95]. Firstly,
significant efforts have been made in improving domain generalization through data generation and
augmentation [103, 83, 77]. These techniques improve the variances in the training data aiming to

31

Dataset #D Domains #C #Images

RMNIST [33] 6 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ 10 70000

CMNIST [5] 2 Red, Green 2 120000

DomainNet [74] 6 Clipart, Infograph, Painting, Quickdraw, Real, Sketch 345 586575

PACS [57] 4 Photo, Art-Painting, Cartoon, Sketch 7 9991

VLCS [26] 4 Caltech101, LabelMe, SUN09, VOC2007 5 10729

Office-Home [91] 4 Art, Clipart, Product, Photo 65 15558

Table 3.1 This table presents the statistics of popular datasets used for evaluating DG performance. #D,

#C and #Images represent the number of domains, number of classes and total number of images in the

dataset respectively.

improving the generalization of the model. Data augmentation is done by shape and style manipula-
tion [103], adversarial augmentation [83] and image generation [77]. These methods move towards
domain randomization where, the target domain is another domain to the network. Methods like data
augmentation [14, 109, 99] has shown to consistently improve DG in deep networks. It is worth noting
that data augmentation is known to enhance the robustness of feature learning towards different kinds
of noise and adversarial attacks [41, 40]. These ideas have shown to have merits and data augmentation
is a part of all DG training protocols.

The second major direction in tackling DG has been through learning strategies. Gradient manipu-
lation is one of the primary efforts in this direction [29, 46]. RSC [46] iteratively masks the features
corresponding to the highest gradient in every training step. The hypothesis behind RSC formulation
follows that feature that most contribute to the prediction when masked; the neural network learns al-
ternate features that are more domain agnostic. Gradient reversal [29] aims to remove domain specific
features by reversing the gradients from an additional domain prediction branch.

[29] involves branching the network at a selected layer, and using a separate classification head to
predict the class label and the domain label. The gradient from the domain prediction head is reversed
such that the feature at the branching layer is devoid of domain information. Both these methods implic-
itly do feature learning to remove domain information from features and improve class discrimination.
More recent methods like IDFM [85] also achieve performance in OOD through feature learning.

The third category of methods involve representation learning. Most of these methods employ strate-
gies that implicitly improve feature learning. The popular attempts here includes ensemble learning [65],
and feature disentanglement [50, 76]. Efforts have been made to understand the effect of spectral norm
regularization for improving generalization performance [102]. It involves penalizing the high spectral

32

norm of weight matrices of the neural network. It results in better generalizability for sensitivity to input
perturbations.

[95, 107] gives a comprehensive list of recent works that tackle DG. Recently, Gulrajani and Lopez-
paz [36] propose a test bench that facilitates a fair comparison of methods by freezing training strategies
like augmentation across various benchmarks. They show that the DG tailored methods fail to improve
over the ERM baseline. Sivaprasad et al. [85] attribute this success of ERM to the fact that with more
domains in the training set, the neural network already learns domain agnostic features (Figure 3.2).
Comparing with an alternate OOD framework, they show how in DG framework, neural networks have
incentive for learning domain-agnostic features.

We take this idea forward and hypothesize that the low lying variance that enables performance in
DG (with multiple domains in train) is also the lowest dimensional representation. We show empirical
evidence towards this hypothesis by comparing the rank of the weight matrix that projects data into the
feature space. We propose a supervised Cross-Domain Class-Contrastive feature learning method and
show that it outperforms the current SOTA methods. We empirically show that the upper bound of the
span of the feature space learnt through this method is lower than the prior art.

3.3 Method

In this section, we propose a method to measure the upper bound of the dimensionality of learnt
feature space. This measure is later shown to correlate with the generalization performance of the
models. We also describe the proposed Cross-Domain Class-Contrastive loss function.

3.3.1 Computing the dimensionality

For a given task, a robust representation of data is believed to be found at the last layer of the neural
network. This assumption is widely used in transfer learning applications. We call this representation
Hi and compute the dimension of this feature space (minimum number of independent features that are
necessary and sufficient for classification).

It is to be noted that, the rank of the matrix of train features alone cannot give an estimate of dimen-
sion of Hi as it gives no indication to the the rank of feature matrix of OOD test samples. We use the
rank of the weight matrix (W) that projects the previous features (Hi−1) to Hi to give an upper bound
to the dimension of Hi irrespective of the input data. That is, given Hi = W ×Hi−1 the dimension of
the span of Hi ≤ rank(W). Hence, we argue that the rank of W is a hard constraint on the dimension
of the span of Hi.

To get a measure of the dimension of learnt feature space, we use the minimum number of singular
values required to reconstruct W such that the training accuracy does not reduce below a threshold
h. This proxy can give a useful upper bound of the dimension of the learnt feature space. That is,

33

features before this layer already occupy a subspace and the resulting features after the layer have its
dimensionality at most as the rank of the weight matrix.

Post SVD decomposition, we get the singular value matrix S as a diagonal matrix. We use the
top n values of this matrix such that the reconstruction of W with the n values does not drop the
neural network’s performance by more than h. h is a hyper-parameter, and we choose it to be 0.5%
across all our experiments. Since the train performance increases monotonically with the value of n,
we use binary search to faster determine n for each run (note that we use only the training data for this
purpose). Simply choosing the knee of the singular value spectrum gives inconsistent results as some
of the singular values might correspond to spurious variances. The proposed method ensures that we
consider the discriminative variances in the train data, and we call this the effective rank of the weight
matrix.

3.3.2 Cross-Domain Class-Contrastive Learning

Traditional DG formulation follows that we train on N domains and test on the (N + 1)th domain.
We propose Cross-Domain Class-Contrastive (CDCC) loss for this setting. The network consists of two
branches: a feature learning branch BCDCC and a classifier learning branch BCL.

The feature learning branch learns a better representation with CDCC loss, and the classifier branch
uses cross-entropy loss for classification learning. The feature learning head and the classification head
are jointly trained. The objective for minimization in DG setting with Hybrid loss consisting of CDCC
loss, and cross-entropy loss is as follows:

LHybrid = α · LCDCC + (1− α) · LCE ;α ∈ [0, 1] (3.1)

where LCDCC is the Cross-Domain Class-Contrastive Loss, LCE is the Cross Entropy Loss, and α

is the weight factor that takes a weighted average of both the losses. For the hybrid model, α linearly
decreases from 1 to 0 over the epochs. That is, α = 1 when epoch = 0 and α = 0 when epoch =

epochmax. α determines the trade-off between the classification and representation losses. The linear
decrease in α results in the model to emphasize more on learning a better representation during the
initial epochs and then gradually shifting the emphasis to learning a better classifier till the finishing
epoch. Figure 3.3 shows a visual of how the hybrid model works. In this figure, we consider 4 input
images as House-Cartoon, Giraffe-Photo, Dog-Cartoon and Giraffe-Art Painting. The (green colored)
contrastive learning branch on the right brings closer the representations of Giraffe-Photo and Giraffe-
Art Painting (different domains, same class), and brings apart the representations of House-Cartoon and
Dog-Cartoon (different class, same domain) in the feature space. The (blue colored) classifier learning
branch learns a classifier for the input samples.

Unlike vanilla contrastive learning formulation, which creates tuples consisting of (input sample,
class label) pairs, CDCC uses triplets of the form (input sample, class label, domain label). Supervised
contrastive formulations like CDCC follows that data points with the same class are positives and differ-
ent class are negatives irrespective of the domain. We sample batches such that for each anchor point,

34

["House" , "Giraffe" , "Dog",
"Giraffe"]

Different domains same classes pulled closer

Same domains different classes pulled apart

Giraffe-Art PaintingGiraffe-Photo

House-Cartoon Dog-Cartoon

Giraffe-Photo Giraffe-Art PaintingHouse-Cartoon Dog-Cartoon

Same domains different classes pulled apart

House-Cartoon

Contrastive
Learning

Classifier
Learning

Figure 3.3 This figure shows how the classifier learning and contrastive learning branches of the hybrid

model contribute to learning a classifier over an improved representation in the feature space. The green

colored bi-directional arrows show the ’attraction’ among the representations of the samples. Similarly,

the red colored bi-directional arrows show the ’repulsion’ among the representations of the samples.

atleast 80% of the negative samples are picked from the same domain but different class and atleast 80%
of the positive samples are picked from the same class but different domain (refer Figure 3.4).

Considering one such mini-batch with N datapoints, we have N triplets of the form (input sample,
class label, domain label), (xk, yk, dk)k=1...N . In each input batch of the model, we augment the input
to create a pair of two distorted images with the same class and domain labels. We use only the aug-
mented pair (not the actual samples) making the batch size 2N . The effective dataset for training hence
comprises of 2N triplets: (x̃l, ỹl, d̃l)l=1...2N , where x̃2k and x̃2k−1 are two random augmentations of xk
(k = 1...N) and (ỹ2k−1, d̃2k−1) = (ỹ2k, d̃2k) = (ỹk, d̃k). Using these conventions, the loss LCDCC is
given as follows,

LCDCC =
∑

i∈{1...2N}

−1

|P (i)|
∑

p∈P (i)

log
exp(zi

⊙
zp/τ)∑

a∈A(i) exp(zi
⊙

za/τ)
(3.2)

Where, the
⊙

denotes the inner (dot) product, τ ∈ R+ is a scalar temperature parameter, and for
i ∈ {1...2N}:

35

LogitsLinear Projection

MLP

Epoch

Contrastive Learning

Classifier Learning

Backbone

A

Legend

Positive samples such
that 80% of samples
belong to same class
but different domain

Negative samples such
that 80% of samples

belong to same domain
but different class

An input batch

A
ugm

entation

Figure 3.4 The above figure shows the hybrid architecture used for CDCC learning.

• zi is the Normalized Embedding Vector of x̃i.
That is zi = BCDCC(xi) / ||BCDCC(xi)||

• A(i) ≡ {1...2N} excluding the ith sample

• P (i) ≡ {p ∈ A(i)|ỹp = ỹi}

Here, P (i) is the set of all samples belonging to the same label as that of the ith sample except
for the ith sample itself. In other words, P (i) is the set of all positives of the ith sample. Stratified
sampling of P (i) based only on the domains (sampling from other domains) helps the contrastive loss
to bring samples from different domains with the same label closer to each other and pull samples
with different labels apart from each other (Figure 3.1). This results in explicitly learning the domain
agnostic features. It is to be noted that this is a modified version of NT-Xent Loss as proposed in [17],
and is not to be misinterpreted as an unsupervised triplet loss formulation.

Figure 3.4 shows the end-to-end architecture of our hybrid model. It demonstrates a case where
the input samples consist of 4 domains (represented by different shapes) and 4 classes (represented by
different colors). Refer the legend provided at the bottom-right corner of the figure to understand the
convention for the same. For the input batch, we consider an anchor A belonging to domain D1 and class
C1. For this anchor, we sample equal number of positive and negative examples as shown in the figure.
Positive samples are randomly sampled (with repetition) such that 80% of samples belong to same class
but different domain. Similarly, negative samples are randomly sampled (with repetition) such that 80%
of samples belong to same domain but different class. Here, r is the output embedding of the backbone.
This embedding is forwarded to both Contrastive Learning branch and Classifier Learning branch. The

36

Training Domains Test Domain
Number of neurons in last layer

8 64 256 512 1024

Art Painting, Cartoon, Sketch Photo 89.10 90.48 88.38 89.10 88.50

Cartoon, Photo, Sketch Art Painting 73.19 73.54 71.58 72.12 70.85

Art Painting, Photo, Sketch Cartoon 77.47 75.90 76.62 75.85 77.22

Art Painting, Cartoon, Photo Sketch 82.01 80.25 78.29 78.47 78.72

Average 80.44 80.04 78.72 78.89 78.82

Table 3.2 This table lists the DG performance achieved on PACS dataset using ResNet-18 backbone

with varying number of neurons in the last fully connected layer. An SGD optimiser with a learning rate

of 0.01, and a batch size of 32 was used for this experiment.

Contrastive Learning branch consists of fe : A multi-layer perceptron, f : The output embedding of
fe, and z : An embedding obtained after performing l2 normalization on f . The Classifier Learning
branch consists of fc : A Linear Projection (or a single-layer perceptron) and s : The logits obtained
as the output of fc. Contrastive loss (LCDCC) is computed over the output of the Contrastive Learning
branch (z) and Cross-Entropy loss (LCE) is computed of the output of the Classifier Learning branch
(s). Lastly, a hybrid loss with a weight factor of α is computed over LCDCC and LCE as shown.

3.4 Experiments and Results

In this section, we detail our four experiments. In the first experiment we show the motivation to why
the dimention of the network can be correlated to the generalization performance in DG. We systemati-
cally reduce the number of neurons in the last fully connected layer of the neural network and report its
generalisation performance. In the second experiment, we compute the dimensionalities across different
backbones and try to understand the correlation between the dimensionality and domain generalisation
performance. For the third experiment, we compute the dimensionalities across the backbones using
CDCC loss further showing that reduced dimensionality improve domain generalisation performance.
For the last experiment, we pick the best performing backbone from the third experiment and achieve
state-of-the-art performance on 5 popular DG benchmarks.

3.4.1 Improving generalisation by hard constraining low dimensionality

In this experiment, we use PACS [57]. We train a ResNet-18 backbone (pre-trained on ImageNet
dataset) with an SGD optimizer with a learning rate of 0.01 and a batch size of 32.

37

PACS VLCS

w/o w/ w/o w/

InceptionV2 5.18 4.38 3.14 3.01

ResNet50 5.89 5.07 3.89 3.39

DenseNet121 5.95 5.32 3.92 3.22

ResNet18 5.95 5.23 3.90 3.33

VGG 8.35 7.69 4.34 3.61

AlexNet 13.98 11.11 25.21 18.99

Table 3.3 This table lists the upper bounds over the dimensionality of the feature space learned by

different backbones. The dimensionalities of the backbones with (w/) and without (w/o) CDCC loss are

shown in the two columns for both PACS and VLCS datasets.

We created 5 different models by modifying the number of neurons in the last fully connected layer
of the ResNet-18 backbone to 8, 64, 256, 512, and 1024 respectively. By doing this, we constrain the
dimensionality of the weight matrix corresponding to the last fully connected layer. For each of these
models, we train the model 4 times, each time considering a different domain as a test domain and the
remaining domains as training domains.

The results of these experiments are reported in Table 3.2. We observe that the average performance
is maximum for the model with minimum number of neurons in the last fully connected layer. Fur-
thermore, with the increasing number of neurons in the last layer, the generalization performance came
down, albeit with an increased number of parameters.

3.4.2 Computing dimensionalities across different backbones

We use the two DG benchmark datasets, namely PACS [57] and VLCS [26] for this experiment.
In this experiment, we measure the dimensionality of the learnt feature space using the rank of weight
matrix as explained in Sec. 3.3.1. We compute the dimensionality on 6 different backbones, Incep-
tionV2 [88], ResNet50 [38], DenseNet121 [45], Resnet18 [37], VGG [84] and AlexNet [54]. For a fair
comparison across these backbones, we modify the last layers to ensure that the last weight matrix is
always a square matrix of size 512× 512.

For training the networks, we use a learning rate of 0.01 for training PACS (except for AlexNet,
which uses a learning rate of 0.001) and 0.001 for VLCS. We base our choice of training strategies,
optimizers, and augmentations on DomainBed [36] with ImageNet pre-trained weights for all the back-
bones. We report the average effective rank of the last layer matrix over five runs.

38

In Table 3.3, the w/o columns corresponding to the PACS and VLCS dataset shows the upper bound
of the dimensionality of the feature space learnt by each backbone. We observe that the performance
of a backbone is inversely correlated to its corresponding dimensionality. The yellow line in Figure 3.5
shows this inverse correlation of the model performance with its dimensionality. This provides evidence
to the hypothesis that a model that learns a low dimensional feature representation performs better in
DG setting.

3.4.3 Dimensionality with CDCC

In the third experiment, we train our five different backbones with CDCC loss. All training hyperpa-
rameters are the same as the above experiment (3.4.2) except for having the extra loss function (CDCC
loss). Table 3.3 shows that, when trained with CDCC loss, the model consistently achieves a lower
dimensionality across all backbones when compared to the counterpart model trained without CDCC.
Also, In Figure 3.5, the red colored plot (w/ CDCC) shows that we always achieve a better performance
when a backbone is trained with CDCC loss, compared to when trained without CDCC loss. This fur-
ther strengthens the hypothesis that a model’s performance is inversely correlated to its dimensionality
of the feature space.

These observations suggest that contrastive loss functions specific to DG, (like CDCC) can further
reduce the dimensionality of the learnt feature space and improve the DG performance. Our experiments
empirically suggest that constraining feature dimensionality could be a promising direction for DG.

246810121416
Dimensionality

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Ac
cu

ra
cy

Performance v/s Dimensionality

Legend
w/o CDCC
w/ CDCC
AlexNet
VGG
ResNet18
ResNet50
DenseNet121
InceptionV2

Figure 3.5 This figure shows the correlation between the DG performance (Y-Axis) and the dimension-

ality (X-Axis) of the learnt feature space for PACS dataset. Please note that the X-axis is flipped here.

39

PACS VLCS Office-home CMNIST RMNIST Average

GRL 83.69 77.38 70.20 50.50 98.49 76.05

IRM 82.90 77.20 66.70 59.16 97.70 76.73

DANN 84.00 77.70 65.50 73.03 89.10 77.87

C-DANN 81.70 74.00 64.70 73.03 96.30 77.94

RSC 84.77 78.80 70.80 61.20 98.23 78.76

MLDG 82.40 77.10 67.60 71.64 98.00 79.35

MMD 82.80 76.70 67.10 73.35 98.10 79.61

DRO 83.10 77.50 67.10 73.35 97.90 79.79

CORAL 83.60 77.00 68.60 73.35 98.10 80.13

Mixup 83.70 78.60 68.20 73.34 98.10 80.38

ERM 89.04 78.84 71.95 74.35 99.20 82.67

CDCC 90.30 79.16 72.07 74.46 99.65 83.12

Table 3.4 This table compares the performance of InceptionV2 with CDCC loss, with other popular

algorithms from DomainBed. The algorithms are sorted by their average performance across the five

datasets.

3.4.4 DG benchmarks with CDCC

For this experiment, we choose the best performing backbone from the previous experiment (3.4.3)
i.e. InceptionV2 with CDCC Loss. To find evidence for our claim that explicit feature learning gives im-
proved results in a DG setting (as it seems from Figure 3.5), we train CDCC with InceptionV2 backbone
on 5 different DG datasets: PACS [57], VLCS [26], Office-home [91], RMNIST [33], and CMNIST [5].

We use the hyperparameters, and the random-seed, as used in DomainBed [36] to maintain uni-
formity of comparison. We use a learning rate of 0.01 for training PACS, RMNIST, and CMNIST,
and a learning rate of 0.001 for training VLCS and OfficeHome datasets. We use a batch size of 32
per GPU and a total of four GPUs. We use image augmentations as in DomainBed, which follows that
MNIST datasets, namely CMNIST [5] and RMNIST [33] are not augmented. To create augmented pairs
for CDCC, we use Random-Resized-Crop, Random-Horizontal-Flip, and Color-Jitter augmentations
(also used in DomainBed). Our preprocessing is also similar to [36]. We compare our results against
popular methods, namely: C-DANN [62], IRM [5], MLDG [58], DRO [82], MMD [60], ERM [36],
CORAL [87], Mixup [99], RSC [46], DANN [30] and GRL [29].

It is to be noted that the number of epochs is a significant hyper-parameter for this experiment as
it uses the hybrid loss. Loss weighting (α) at every step is a function of the current epoch number
Sec. 3.3.2. Therefore, unlike simple categorical cross-entropy loss used in the prior art, the number of
epochs is a vital modeling choice which we maintain as 150 across all runs. Despite the significance of
the number of epochs, we employ validation based model selection as explained by [36].

40

We run the CDCC model D times for each of the five datasets, where D corresponds to the number
of domains in each dataset. In each run, the accuracy is computed on the kept out domain. The accuracy
on a dataset is the average of D runs. This is repeated five times for each dataset, and the average is
reported in Table 3.4. The results clearly show the consistent improvement of CDCC over the other
methods.

CDCC improves over the best DG specific model on the PACS dataset by 5.5% and above 1% over
the ERM. Given that none of the DG specific methods improved over ERM on PACS, this statistically
significant improvement shows the efficacy of CDCC in DG. We get an average gain of roughly 3%
when compared against the next best DG specific method across the five datasets. The evidence suggest
that feature learning can improve DG. By establishing state-of-the-art results on the benchmarks, we
suggest that feature learning is a promising direction for improving DG going forward.

3.5 Conclusion

Domain generalization is a much-coveted property for neural networks. Various datasets and meth-
ods have been proposed over the years to evaluate and improve the performance of neural networks in
DG. Prior art focused on learning better feature representations that are robust across domains. Recent
explorations showed that neural networks already learn domain agnostic features with multiple domains
in the train data, outperforming implicit methods of learning domain agnostic features. We show that
using explicit supervised feature learning improves DG. We propose a modified Supervised Contrastive
Learning method called Cross-Domain Class-Contrastive loss and show consistent improvement over
ERM. As the second key takeaway, we show how the dimension of the feature space learned can explain
the generalization performance of networks in DG. We show this by comparing the dimensionality of
features across backbones, both with and without the proposed loss. Across all the studies, we observe
that a lower dimensional feature representation leads to better performance.

41

Chapter 4

Going beyond Traditional Domain Generalization

In the traditional setting of domain generalization, it is assumed that enough samples are available
for all classes across all training domains. However, this assumption is often not met in real-world sce-
narios where some classes may be missing, or there may be an uneven distribution of samples across
classes and domains, leading to data imbalance. This issue is especially relevant as many real-world
distributions tend to follow a long-tailed pattern. To investigate the impact of data imbalance, we con-
duct a set of experiments on the PACS dataset. Later in this chapter, we also discuss some additional
findings that were discovered during the experimentation on the PACS dataset.

4.1 Class Wise Domain Generalization

We start this chapter with an experiment in the Class-Wise-Domain-Generalization framework pro-
posed by Sarath et al. [85]. Within this setting, we can access all domains during training, though not
necessarily every class from each domain. For each class, all examples from a single domain (randomly
selected) are reserved for the test set, while the remaining samples from other domains are designated
for the training set. This creates a more realistic and applicable environment for investigation. However,
due to the model’s inclination to learn simpler discriminative features, the lack of access to all classes
across domains heightens the likelihood of misclassification. To illustrate this, imagine a scenario utiliz-
ing the PACS dataset, where all training samples are from the Art-Painting domain, while test samples
belong to the Sketch domain. Suppose we substitute Giraffe class samples in the training set with Gi-
raffe samples from the Sketch domain. In that case, the model is inclined to learn basic sketch image
features and classify them as giraffe. Consequently, even non-giraffe test samples may be misclassi-
fied as giraffe during inference, as they share sketch features. In this configuration, using Empirical
Risk Minimization (ERM) for training results in a reduced performance during inference compared to
the traditional DG setting, even though the test domain is partially available during training, unlike the
traditional DG setting.

We run an ERM with Inception-ResNetV2 backbone in CWDG setting for 50 epochs. For classes
Dog, Elephant, Giraffe, Guitar, Horse, House, and Person, we keep test domains as Art-Painting, Sketch,

42

Art-Painting, Photo, Cartoon, Cartoon, and Photo, respectively (Please see Table 4.1). We achieved
an average accuracy of 82.64 on five runs of this experiment. Note that this accuracy is much lesser
compared to 89.11 by ERMs in traditional DG setting.

Throughout this chapter, for all experiments (except those in section 4.3), it is assumed that models
are pre-trained on ImageNet and that the Stochastic Gradient Descent (SGD) optimizer is utilized unless
mentioned otherwise.

Figure 4.1 This figure shows the train-test split on some sample images of the PACS dataset in (a)

Traditional DG (TDG) setting as shown on the left, and b. Class-Wise-DG (CWDG) setting as shown

on the right.

4.2 Long-Tailed Domain Generalization

In this scenario, we assume that the training samples adhere to a long-tailed distribution, which
is common in situations involving data imbalances. We consider two different cases for Long-Tailed
distribution in DG:

• ClassLT: In this setting, the distribution of samples across classes follows a long-tailed distribu-
tion, while the total number of samples across all domains is kept relatively equal. This results in
some classes having more influence during training compared to others.

• DomainLT: In this setting, the distribution of samples across domains follows a long-tailed dis-
tribution, while the total number of samples across all classes is kept relatively equal. This results
in some domains having more influence during training compared to others.

43

It is important to note that in all of these scenarios, the quantity of samples in the test set (those from
the target domain) is maintained equal to the number of samples from that target domain in the initial
dataset (and not from the ClassLT or DomainLT variants of it).

When dealing with a distribution that exhibits a long tail, we use the term common ratio to describe
the ratio between two consecutive values in the distribution. Note that this common ratio always stays
between zero and one, i.e., 0 < common ratio ≤ 1. For example, if we have a long-tailed distribution
of samples across classes such as 100, 80, 64, 51, 41, and 33, we can determine that this is a long-tailed
distribution with a common ratio of roughly 0.8. This is because the ratio between each value and the
one before is approximately 0.8 in this specific instance. In the long-tailed setting, the order of the
classes (or domains) can result in certain classes (or domains) having more influence than others. For
instance, if we have classes A, B, and C (in that order) with a long-tailed distribution across classes as
100, 50, and 25 (i.e., a common ratio of 0.5), switching the order of the classes to B, C, and A would
change the ordering and result in class B having the highest number of samples (100), class C having
50 samples, and class A having only 25 samples. As a result, during training, class A would have the
least influence instead of the most influence, as it did in the previous ordering. Therefore, it is crucial to
consider the impact of varying the order of domains and classes in a DG scenario and understand how
it affects the performance using ERMs, showing that it is harder for ERMs to perform in a long-tailed
setting compared to a traditional DG setting.

Figure 4.2 This figure shows the distribution of samples across domains and classes in the form of a heat

map. The left image depicts the original distribution of samples, middle image shows the distribution for

ClassLT, and the right image shows the distribution for DomainLT. Note that the common ratio followed

for ClassLT is nearly 0.68, and that for DomainLT is nearly 0.46

44

Domain Original ClassLT DomainLT

TDG CDCC TDG CDCC TDG CDCC

Sketch 85.85 86.31 66.90 75.99 78.04 83.57

Cartoon 85.25 86.48 81.30 83.70 81.25 85.71

Art-Painting 88.80 91.50 85.76 90.91 83.21 85.36

Photo 96.65 98.38 94.00 93.83 96.79 97.14

Average 89.14 90.67 81.99 86.11 84.82 87.95

Table 4.1 This table displays the outcomes of an Empirical Risk Minimization (ERM) run on the long-

tailed versions of the PACS dataset (single run) under both Traditional Domain Generalization (TDG)

and Cross-Domain Class Contrastive (CDCC) settings.

4.2.1 Experiments showing that the performance of CDCC is more robust to Long-

Tailed Distributions

We perform our experiments on the Original, ClassLT, and DomainLT variants of our PACS DG
dataset (the distribution of which are as shown in Figure 4.2). We train them both using TDG (Tradi-
tional DG) and using CDCC (as described in Chapter 3) using an Inception-ResNetV2 backbone. A
learning rate of 0.01 was used throughout. For a single run, we observe that there is a drastic drop in
performance for both ClassLT and DomainLT in the case of ERMs. Whereas, in the case of CDCC,
the performance drop is much lesser than that of the ERMs. This shows that using CDCC has a lesser
effect on the performance even when trained on a long-tailed dataset, making it more robust than ERMs.
Please see Table 4.1 for results.

4.2.2 Experiments showing that the order of performances across test domains is agnos-

tic to the order of training domains in the long-tailed setting.

From Table 4.1, we see that the order of performances across the test domains on the original PACS
dataset in traditional DG setting is in the following order:

Cartoon < Sketch < Art− Painting < Photo

The results of our experiments demonstrate that this performance hierarchy persists even when the
training domains exhibit a long-tailed distribution. Furthermore, this performance ranking is maintained
regardless of the variations in the arrangement of training domains within a long-tailed distribution
across different domains.

45

To show that the order of performances across the test domains remains consistent, we first find this
order of performances on a Balanced-PACS dataset. The Balanced-PACS dataset is created from the
PACS dataset, such that the number of samples across all domains and across all classes remains the
same. It can be thought of as a long-tailed distribution across both classes and domains, with a common
ratio of 1. We keep 80 samples per class per domain for creating the Balanced-PACS dataset. This
dataset ensures that there are no biases whatsoever due to data imbalances, ensuring that every domain
and every class has the same influence on feature learning. In a traditional DG setting, we train an ERM
on the Balanced-PACS dataset with an Inception-ResNetV2 backbone for this experiment. We use a
learning rate of 0.01 across all the experiments. For all these experiments, the model was trained for
30 epochs. Table 4.2 shows that the order of performances remains the same for the Balanced-PACS
dataset, i.e., Cartoon < Sketch < Art− Painting < Photo. All values in the table are the averages
across five different runs. Note that this table shows all the per-class-per-domain accuracies to under-
stand the influence of every class on the overall accuracy of the test set. As the dataset is balanced, the
accuracy on a test domain is simply the average of all the per-class-per-domain accuracies for that test
domain.

Domain Statistic Dog Elephant Giraffe Guitar Horse House Person Accuracy

Sketch

MIN 31.25 88.75 62.50 96.25 91.25 88.75 73.75 81.61

MAX 57.50 95.00 78.75 100.00 96.25 98.75 91.25 84.29

AVG 44.50 92.75 68.50 98.50 94.50 95.50 83.75 82.57

STD-DEV 10.99 2.40 6.46 1.63 2.09 4.01 6.67 1.04

Cartoon

MIN 57.50 61.25 86.25 97.50 61.25 95.00 63.75 81.25

MAX 76.25 80.00 96.25 100.00 86.25 97.50 91.25 82.86

AVG 67.00 71.50 92.75 99.25 70.25 96.00 79.00 82.25

STD-DEV 6.65 6.93 3.79 1.12 10.05 1.05 10.77 0.61

Art-Painting

MIN 80.00 83.75 90.00 80.00 80.00 91.25 67.50 85.54

MAX 91.25 91.25 98.75 91.25 88.75 98.75 82.50 87.50

AVG 83.75 88.00 95.25 84.00 85.25 94.50 72.50 86.18

STD-DEV 4.59 3.38 3.47 4.37 3.35 2.74 5.93 0.80

Photo

MIN 83.75 92.50 88.75 95.00 87.50 100.00 98.75 94.29

MAX 96.25 100.00 98.75 98.75 96.25 100.00 100.00 97.32

AVG 91.25 96.75 95.25 97.00 91.50 100.00 99.75 95.93

STD-DEV 4.76 3.38 4.09 1.43 3.24 0.00 0.56 1.15

Table 4.2 This table lists the accuracies obtained on the Balanced-PACS dataset. All these mentioned

accuracies are the averages on five different runs. An ERM with an Inception-ResNetV2 backbone was

trained for the purpose of this experiment.

46

ACP APC CAP CPA PAC PCA Average

Sketch 82.85 83.48 83.74 84.42 79.66 79.56 83.36

CPS CSP PCS PSC SCP SPC

Art-Painting 89.05 88.42 88.62 89.16 88.87 88.33 88.70

APS ASP PAS PSA SAP SPA

Cartoon 81.87 81.27 76.23 77.87 82.59 82.08 79.79

ACS ASC CSA CAS SAC SCA

Photo 96.23 95.87 94.01 95.21 95.21 93.42 95.37

Table 4.3 This table shows the results obtained across all the permutations in a long tail across training

domains. These results were obtained on a single run of these experiments. An ERM with an Inception-

ResNetV2 backbone was trained for the purpose of this experiment. The columns in this table resemble

the different arrangements of the training domains. For example, considering the test domain Sketch,

we have six different permutations possible for the training domains shown as ACP, APC, CAP, CPA,

PAC, and PCA in the columns. In these permutations, ”P” represents the domain Photo, ”A” represents

the domain Art-Painting, ”C” represents the domain Cartoon, and S represents the domain Sketch.

Further, to show that the order is maintained even across all the permutations of the training domains,
with a long-tailed distribution across the training domains, we find the performances across all the per-
mutations of the training domains in a train-test split. For every train-test split of the PACS dataset, we
consider one of the domains as the test domain and the remaining three domains as the training domains.
Considering the three domain’s permutations in the training split, we get six different permutations for
every training split. For each of these permutations, we maintain a long-tailed distribution with a com-
mon ratio of approximately 0.1 across the permuted training domains. We train an ERM using the same
settings as in the previous experiment, i.e., a learning rate of 0.01, Inception-ResNetV2 backbone, and
training for 30 epochs. Table 4.3 shows the results of these experiments on a single run. When com-
paring the average accuracies across the permutations of the training domains, we see that the order of
performances remains Cartoon < Sketch < Art−Painting < Photo, demonstrating that the model
has a high tendency to maintain the relative ordering of the performances, irrespective of the long-tailed

47

distribution across training domains, along with different permutations.

4.3 Additional experiments on PACS

In this section, we will examine some further experiments conducted on PACS. The outcomes of
these experiments are expected to enhance our understanding of how ERMs work in the context of DG
and provide motivation for further work to the researchers in the field.

4.3.1 Experiments showing that the performance of ERMs is agnostic to pre-training

For this experiment, we train a ResNet-18 backbone on both ERM and CDCC based DG settings. For
both these settings, we perform the training with five different pre-training criteria, which are a) Without
any pre-training, b) pre-trained on Photos, c) pre-trained on Art-Paintings, d) pre-trained on Cartoons
and e) pre-trained on Sketch. For all these pre-trained models, we then fine-tune these models for every
train-test split in the DG setting using the keep-one-domain-out strategy (one domain is kept out as the
target domain, and the remaining ones are kept as training domains). The results of this experiment are
reported in 4.4. All the numbers reported in the table are the results of a single run. 30 epochs were run
for all the experiments with a learning rate of 0.1.

Domain No pre-training pre-trained on P pre-trained on A pre-trained on C pre-trained on S

ERM CDCC ERM CDCC ERM CDCC ERM CDCC ERM CDCC

Photo 60.58 63.39 62.41 64.46 58.97 59.64 60.89 61.96 62.10 63.21

Art-Painting 48.48 49.64 55.22 55.71 50.72 53.93 46.96 47.68 50.98 51.07

Cartoon 63.57 65.03 64.51 65.89 69.42 70.54 62.41 64.46 67.59 68.57

Sketch 72.46 75.07 72.77 74.11 74.55 75.71 68.35 68.93 75.27 77.68

Order APCS APCS APCS APCS APCS APCS APCS APCS APCS APCS

Table 4.4 This table reports the accuracies of the PACS dataset with various pre-trainings in both ERM

and CDCC settings. Also, the order of performances across the target domain is presented in the last

row.

These results show an interesting observation that the order of performances across the target do-
mains remains consistent across all the pre-trainings, showing that the order of performances is agnostic
to the pre-trainings. This is an interesting observation that could help researchers analyze and predict

48

the order of performances across different pre-trainings and, moreover, help get a fair estimate of the
expected performances without actually running the experiments.

4.3.2 Experiments showing that learning a smoother minima results in a better perfor-

mance for domain shifts

Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg

ERM 44.44 54.97 64.24 47.14 54.76 57.08 50.72 44.40 65.16 58.01 50.17 71.25 55.20

ERM + SAM 52.97 65.17 72.50 56.28 63.84 66.01 53.69 48.61 70.71 64.85 58.28 77.27 62.52

Table 4.5 The table above compares the performance of ERMs without SAM (using SGD) and with

SAM. It shows results for all 12 possible one-to-one domain shifts in the PACS dataset.

In this section, we investigate the impact of achieving smoother minima on the performance of
ERMs. Foret et al. [28] introduced a novel gradient update technique called Sharpness Aware Min-
imization (SAM), which ensures the learning of a smooth minima during optimization. Empirically,
it has been shown to lead to enhanced generalization and deliver stable performance, meaning that a
model trained with SAM achieves similar results across multiple runs.

To examine whether the advantages of SAM can be leveraged to improve performance and robustness
in the face of various domain shifts, we conduct an experiment comparing the performances of standard
ERMs to ERMs employing the SAM optimizer (ERM + SAM). We run the experiment for all possible
one-to-one domain shifts in the PACS dataset, resulting in a total of 12 distinct domain shifts. The
experiment revealed a significant and consistent improvement in performance for ERM + SAM. Refer
to 4.5 for the experimental results. These findings strongly indicate that SAM has the potential to be a
highly effective optimizer for domain generalization in future DG research trends.

4.3.3 Experiments showing that the performance of models pre-trained with self-supervised

techniques is inconsistent

In this section, we attempt to understand the effects of self-supervised pre-training techniques on
model performance. In the context of Domain Generalization, self-supervised methods like SimCLR
[17] and MoCo [18] are expected to allow the model to learn better embeddings. However, when
considering semi-supervised pre-trained models, i.e., models that are pre-trained on a dataset using
semi-supervised techniques, the performance of these models, after fine-tuning on another dataset (with
a linear head), was observed to be inconsistent.

We performed our experiments on the PACS and VLCS datasets using a ResNet-50 backbone. We ran
this model with two different pre-training settings: ImageNet pre-trained without MoCo v2 (i.e., using

49

vanilla ImageNet pre-trained weights without any self-supervised training techniques) and ImageNet
pre-trained with MoCo v2. All the experiments were run four times, and the average of these runs is
mentioned in 4.6 for PACS and 4.7 for VLCS. The training was conducted with 50 epochs, a batch size
of 32, and a learning rate of 0.001 for all these experiments.

Cartoon Art-Painting Photos Sketch Avg

ImageNet pre-trained w/o MoCo v2 83.87 84.57 94.97 83.81 86.81

ImageNet pre-trained w/ MoCo v2 79.11 77.17 96.26 81.64 83.55

Table 4.6 This table presents the results of a ResNet50 model on PACS dataset with ImageNet pre-

trained weights w/ and w/o MoCo v2 self-supervision.

CALTECH LABELME PASCAL SUN Avg

ImageNet pre-trained w/o MoCo v2 98.23 69.31 71.98 73.43 78.24

ImageNet pre-trained w/ MoCo v2 99.22 66.75 80.86 77.51 81.09

Table 4.7 This table presents the results of a ResNet50 model on VLCS dataset with ImageNet pre-

trained weights w/ and w/o MoCo v2 self-supervision.

It can be observed that the results of the model with and without MoCo pre-training are not con-
sistent. While ImageNet pre-training with MoCo v2 performs better for PACS, it performs worse for
VLCS. This results in an interesting observation where weights pre-trained with MoCo perform worse
compared to using pre-trained weights without any self-supervised techniques. This behavior of self-
supervised pre-training needs to be understood, and we urge the research community to explore this
further.

4.4 Conclusion

In conclusion, Chapter 4 delves into exploring various aspects that go beyond traditional domain
generalization. We investigated class-wise domain generalization and long-tailed domain generaliza-
tion, showcasing the robustness of CDCC in long-tailed distributions. The experiments also highlighted
that the order of performance across test domains remains agnostic to the order of training domains in a
long-tailed setting.

Furthermore, we conducted additional experiments on the PACS dataset, demonstrating that the per-
formance of ERMs remains unaffected by pre-training and that learning a smoother minima leads to
better performance in the presence of domain shifts. These findings provide valuable insights into the
complex nature of domain generalization and offer a foundation for future research in this area. Also,
the inconsistent behavior of models pre-trained with self-supervised methods was addressed.

50

For further exploration, researchers can investigate the extent to which the common ratio can be
reduced without compromising performance in a long-tailed setting. Another area worth examining is
the non-trivial change in the order of performances when the backbones are altered. By building on the
findings of this chapter, we hope to inspire and guide future work in the domain generalization field,
leading to more robust and versatile models capable of handling a variety of real-world scenarios.

51

Chapter 5

Conclusion

In conclusion, this thesis presents a comprehensive analysis of domain generalization (DG), a critical
challenge in machine learning that enables models to effectively generalize to new, previously unseen
domains. We delved into various aspects of DG, including distribution shift, shortcut learning, repre-
sentation learning, and data imbalances. Furthermore, we examined key datasets, such as DomainBed,
ImageNet Rendition, ImageNet Sketch, and WILDS, and engaged with relevant literature to provide a
solid understanding of the current state of the field.

The primary contribution of this thesis is the development of a novel algorithm to quantify the im-
plicit dimensionality of a learned representation and investigate the relationship of this implicit dimen-
sionality with the corresponding DG performance of the learned representation. Through multiple ex-
periments across various backbones, we discovered that models that learn latent representations with
lower implicit dimensionality tend to exhibit better DG performance.

To further substantiate this discovery, Cross-Domain Class-Contrastive Learning (CDCC) was pro-
posed as a method for learning sparser representations using supervised contrastive loss. Utilizing
CDCC for representation learning resulted in reduced implicit dimensionality and enhanced DG perfor-
mance, thereby validating our discovery and, moreover, resulting in a new method that exhibits a better
DG performance.

Additionally, we ventured beyond traditional DG, exploring emerging challenges such as class-wise
DG and long-tailed DG. In our examination of long-tailed DG, we demonstrated that CDCC’s per-
formance remains robust to long-tailed distributions. We also showed that the order of performances
across test domains is independent of the order of training domains in a long-tailed DG setting (across
domains). Furthermore, we conducted experiments using the PACS dataset, revealing that the perfor-
mance of Empirical Risk Minimizers (ERMs) is not affected by pre-training, and also demonstrated how
learning smoother minima using optimizers such as Sharpness Aware Minimization (SAM) can lead to
improved performance in a DG setting.

Our goal with these findings is to establish a strong foundation for future research in domain gen-
eralization. By illuminating emerging challenges and providing insights into the behavior of various

52

models and methods, we aim to inspire other researchers to explore novel directions and develop more
robust and effective machine learning algorithms for DG.

53

Publications

Thesis Publications

• Saransh Dave, Ritam Basu, and Vineet Gandhi; Cross-Domain Class-Contrastive Learn-

ing: Finding Lower Dimensional Representations for Improved Domain Generalization;

Thirteenth Indian Conference on Computer Vision, Graphics, and Image Process-

ing 2022 (ICVGIP’22).

54

Bibliography

[1] K. Ahuja, K. Shanmugam, K. Varshney, and A. Dhurandhar. Invariant risk minimization games. arXiv,

2020.

[2] K. Akuzawa, Y. Iwasawa, and Y. Matsuo. Adversarial invariant feature learning with accuracy constraint

for domain generalization. arXiv, 2019.

[3] I. Albuquerque, J. Monteiro, T. H. Falk, and I. Mitliagkas. Adversarial target-invariant representation

learning for domain generalization. arXiv, 2019.

[4] I. Albuquerque, N. Naik, J. Li, N. Keskar, and R. Socher. Improving out-of-distribution generalization via

multi-task self-supervised pretraining. arXiv, 2020.

[5] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization. arXiv:1907.02893,

2019.

[6] N. Asadi, M. Hosseinzadeh, and M. Eftekhari. Towards shape biased unsupervised representation learning

for domain generalization. arXiv, 2019.

[7] Y. Balaji, S. Sankaranarayanan, and R. Chellappa. Metareg: Towards domain generalization using meta-

regularization. In NIPS, 2018.

[8] P. Bandi, O. Geessink, Q. Manson, M. Van Dijk, M. Balkenhol, M. Hermsen, B. E. Bejnordi, B. Lee,

K. Paeng, A. Zhong, et al. From detection of individual metastases to classification of lymph node status

at the patient level: the camelyon17 challenge. IEEE Transactions on Medical Imaging, 2018.

[9] S. Beery, E. Cole, and A. Gjoka. The iwildcam 2020 competition dataset. arXiv preprint

arXiv:2004.10340, 2020.

[10] S. Beery, G. Van Horn, and P. Perona. Recognition in terra incognita. In Proceedings of the European

conference on computer vision (ECCV), pages 456–473, 2018.

[11] G. Blanchard, A. A. Deshmukh, U. Dogan, G. Lee, and C. Scott. Domain generalization by marginal

transfer learning. arXiv, 2017.

[12] G. Blanchard, G. Lee, and C. Scott. Generalizing from several related classification tasks to a new unla-

beled sample. Advances in neural information processing systems, 24:2178–2186, 2011.

[13] D. Borkan, L. Dixon, J. Sorensen, N. Thain, and L. Vasserman. Nuanced metrics for measuring unin-

tended bias with real data for text classification. In Companion Proceedings of The 2019 World Wide Web

Conference, 2019.

55

[14] F. C. Borlino, A. D’Innocente, and T. Tommasi. Rethinking domain generalization baselines. In ICPR,

2020, pages 9227–9233. IEEE, 2021.

[15] V. Bouvier, P. Very, C. Hudelot, and C. Chastagnol. Hidden covariate shift: A minimal assumption for

domain adaptation. arXiv, 2019.

[16] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi. Domain generalization by solving

jigsaw puzzles. In CVPR, 2019a.

[17] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual

representations. In International conference on machine learning, pages 1597–1607. PMLR, 2020.

[18] X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum contrastive learning. arXiv

preprint arXiv:2003.04297, 2020.

[19] G. Christie, N. Fendley, J. Wilson, and R. Mukherjee. Functional map of the world. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[20] E. David, S. Madec, P. Sadeghi-Tehran, H. Aasen, B. Zheng, S. Liu, N. Kirchgessner, G. Ishikawa, K. Na-

gasawa, M. A. Badhon, C. Pozniak, B. de Solan, A. Hund, S. C. Chapman, F. Baret, I. Stavness, and

W. Guo. Global wheat head detection (gwhd) dataset: a large and diverse dataset of high-resolution

rgb-labelled images to develop and benchmark wheat head detection methods. Plant Phenomics, 2020,

2020.

[21] E. David, M. Serouart, D. Smith, S. Madec, K. Velumani, S. Liu, X. Wang, F. P. Espinosa, S. Shafiee,

I. S. A. Tahir, H. Tsujimoto, S. Nasuda, B. Zheng, N. Kichgessner, H. Aasen, A. Hund, P. Sadhegi-Tehran,

K. Nagasawa, G. Ishikawa, S. Dandrifosse, A. Carlier, B. Mercatoris, K. Kuroki, H. Wang, M. Ishii, M. A.

Badhon, C. Pozniak, D. S. LeBauer, M. Lilimo, J. Poland, S. Chapman, B. de Solan, F. Baret, I. Stavness,

and W. Guo. Global wheat head dataset 2021: an update to improve the benchmarking wheat head

localization with more diversity, 2021.

[22] A. A. Deshmukh, Y. Lei, S. Sharma, U. Dogan, J. W. Cutler, and C. Scott. A generalization error bound

for multi-class domain generalization. arXiv, 2019.

[23] Z. Ding and Y. Fu. Deep domain generalization with structured low-rank constraint. IEEE Transactions

on Image Processing, 2017.

[24] A. DInnocente and B. Caputo. Domain generalization with domain-specific aggregation modules. In

German Conference on Pattern Recognition, 2018.

[25] Q. Dou, D. C. de Castro, K. Kamnitsas, and B. Glocker. Domain generalization via model-agnostic

learning of semantic features. In NIPS, 2019.

[26] C. Fang, Y. Xu, and D. N. Rockmore. Unbiased metric learning: On the utilization of multiple datasets

and web images for softening bias. In ICCV, 2013.

[27] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In

ICML, 2017.

56

[28] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for efficiently improv-

ing generalization. arXiv preprint arXiv:2010.01412, 2020.

[29] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML, pages 1180–

1189. PMLR, 2015.

[30] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempit-

sky. Domain-adversarial training of neural networks. JMLR, 2016.

[31] R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and F. A. Wichmann. Shortcut

learning in deep neural networks. Nature Machine Intelligence, 2(11):665–673, 2020.

[32] M. Ghifary, D. Balduzzi, W. B. Kleijn, and M. Zhang. Scatter component analysis: A unified framework

for domain adaptation and domain generalization. IEEE TPAMI, 2016.

[33] M. Ghifary, W. B. Kleijn, M. Zhang, and D. Balduzzi. Domain generalization for object recognition with

multi-task autoencoders. In ICCV, pages 2551–2559, 2015.

[34] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.

Generative adversarial nets. In NIPS, 2014.

[35] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Sch”olkopf, and A. Smola. A kernel two-sample test.

JMLR, 2012.

[36] I. Gulrajani and D. Lopez-Paz. In search of lost domain generalization. arXiv:2007.01434, 2020.

[37] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[38] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European conference

on computer vision, pages 630–645. Springer, 2016.

[39] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, R. Desai, T. Zhu, S. Parajuli, M. Guo,

et al. The many faces of robustness: A critical analysis of out-of-distribution generalization. In Proceed-

ings of the IEEE/CVF International Conference on Computer Vision, pages 8340–8349, 2021.

[40] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corruptions and

perturbations. arXiv:1903.12261, 2019.

[41] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan. Augmix: A simple

data processing method to improve robustness and uncertainty. arXiv:1912.02781, 2019.

[42] S. Hu, K. Zhang, Z. Chen, and L. Chan. Domain generalization via multidomain discriminant analysis.

In UAI, 2019.

[43] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open graph bench-

mark: Datasets for machine learning on graphs. In Advances in Neural Information Processing Systems

(NeurIPS), 2020.

[44] W. Hu, G. Niu, I. Sato, and M. Sugiyama. Does distributionally robust supervised learning give robust

classifiers? arXiv, 2016.

57

[45] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708,

2017.

[46] Z. Huang, H. Wang, E. P. Xing, and D. Huang. Self-challenging improves cross-domain generalization.

ECCV, 2020.

[47] M. Ilse, J. M. Tomczak, C. Louizos, and M. Welling. Diva: Domain invariant variational autoencoders.

arXiv preprint arXiv:1905.10427, 2019.

[48] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal

covariate shift. arXiv, 2015.

[49] F. D. Johansson, D. Sontag, and R. Ranganath. Support and invertibility in domain-invariant representa-

tions. arXiv, 2019.

[50] A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Torralba. Undoing the damage of dataset bias. In

ECCV, 2012.

[51] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan.

Supervised contrastive learning. NIPS, 33:18661–18673, 2020.

[52] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.

[53] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M. Yasunaga, R. L.

Phillips, I. Gao, et al. Wilds: A benchmark of in-the-wild distribution shifts. In International Conference

on Machine Learning, pages 5637–5664. PMLR, 2021.

[54] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. Advances in neural information processing systems, 25:1097–1105, 2012.

[55] D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, R. Le Priol, and A. Courville. Out-of-

distribution generalization via risk extrapolation (rex). arXiv, 2020.

[56] D. Li, Y. Yang, Y.-Z. Song, and T. Hospedales. Sequential learning for domain generalization. arXiv,

2020.

[57] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales. Deeper, broader and artier domain generalization. In

ICCV, pages 5542–5550, 2017.

[58] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales. Learning to generalize: Meta-learning for domain

generalization. In AAAI, 2018.

[59] D. Li, J. Zhang, Y. Yang, C. Liu, Y.-Z. Song, and T. M. Hospedales. Episodic training for domain

generalization. In ICCV, 2019a.

[60] H. Li, S. J. Pan, S. Wang, and A. C. Kot. Domain generalization with adversarial feature learning. In

CVPR, pages 5400–5409, 2018.

[61] Y. Li, M. Gong, X. Tian, T. Liu, and D. Tao. Domain generalization via conditional invariant representa-

tions. In AAAI, 2018c.

58

[62] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao. Deep domain generalization via conditional

invariant adversarial networks. In ECCV, pages 624–639, 2018.

[63] Y. Li, Y. Yang, W. Zhou, and T. M. Hospedales. Feature-critic networks for heterogeneous domain gener-

alization. arXiv, 2019b.

[64] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D. Drain, D. Jiang, D. Tang,

et al. Codexglue: A machine learning benchmark dataset for code understanding and generation. arXiv

preprint arXiv:2102.04664, 2021.

[65] M. Mancini, S. R. Bulo, B. Caputo, and E. Ricci. Best sources forward: domain generalization through

source-specific nets. In ICIP, pages 1353–1357. IEEE, 2018.

[66] M. Mancini, S. Rota Bulo, B. Caputo, and E. Ricci. Robust place categorization with deep domain

generalization. IEEE Robotics and Automation Letters, 2018b.

[67] T. Matsuura and T. Harada. Domain generalization using a mixture of multiple latent domains. arXiv,

2019.

[68] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodrı́guez, N. V. Chawla, and F. Herrera. A unifying view on

dataset shift in classification. Pattern recognition, 2012.

[69] S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto. Unified deep supervised domain adaptation and

generalization. In ICCV, 2017.

[70] K. Muandet, D. Balduzzi, and B. Schölkopf. Domain generalization via invariant feature representation.

In ICML, pages 10–18. PMLR, 2013.

[71] K. Muandet, K. Fukumizu, B. Sriperumbudur, B. Scholkopf, et al. Kernel mean embedding of distribu-

tions: A review and beyond. Foundations and Trends in Machine Learning, 2017.

[72] H. Nam, H. Lee, J. Park, W. Yoon, and D. Yoo. Reducing domain gap via style-agnostic networks. arXiv,

2019.

[73] J. Ni, J. Li, and J. McAuley. Justifying recommendations using distantly-labeled reviews and fine-grained

aspects. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019.

[74] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang. Moment matching for multi-source domain

adaptation. In ICCV, 2019.

[75] J. Peters, P. Buhlmann, and N. Meinshausen. Causal inference by using invariant prediction: identification

and confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

2016.

[76] V. Piratla, P. Netrapalli, and S. Sarawagi. Efficient domain generalization via common-specific low-rank

decomposition. In ICML, 2020.

[77] F. Qiao, L. Zhao, and X. Peng. Learning to learn single domain generalization. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12556–12565, 2020.

59

[78] M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Sridharan. Correlation-aware adversarial domain

adaptation and generalization. Pattern Recognition, 2019a.

[79] M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Sridharan. Multi-component image translation for

deep domain generalization. In WACV, 2019b.

[80] V. Raychev, P. Bielik, and M. Vechev. Probabilistic model for code with decision trees. ACM SIGPLAN

Notices, 2016.

[81] M. Rojas-Carulla, B. Scholkopf, R. Turner, and J. Peters. Invariant models for causal transfer learning.

JMLR, 2018.

[82] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang. Distributionally robust neural networks for group

shifts: On the importance of regularization for worst-case generalization. ICLR, 2020.

[83] S. Shankar, V. Piratla, S. Chakrabarti, S. Chaudhuri, P. Jyothi, and S. Sarawagi. Generalizing across

domains via cross-gradient training. arXiv, 2018.

[84] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.

arXiv, 2014.

[85] S. Sivaprasad, A. Goindani, V. Garg, and V. Gandhi. Reappraising domain generalization in neural net-

works. arXiv:2110.07981, 2021.

[86] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. In AAAI, 2016.

[87] B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain adaptation. In ECCV, 2016.

[88] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-v4, inception-resnet and the impact of resid-

ual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,

2017.

[89] J. Taylor, B. Earnshaw, B. Mabey, M. Victors, and J. Yosinski. Rxrx1: An image set for cellular morpho-

logical variation across many experimental batches. In International Conference on Learning Represen-

tations (ICLR), 2019.

[90] D. Teney, E. Abbasnejad, and A. van den Hengel. Unshuffling data for improved generalization. arxiv,

2020.

[91] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan. Deep hashing network for unsuper-

vised domain adaptation. In CVPR, pages 5018–5027, 2017.

[92] R. Volpi, H. Namkoong, O. Sener, J. C. Duchi, V. Murino, and S. Savarese. Generalizing to unseen

domains via adversarial data augmentation. In NIPS, 2018.

[93] H. Wang, S. Ge, Z. Lipton, and E. P. Xing. Learning robust global representations by penalizing local

predictive power. Advances in Neural Information Processing Systems, 32, 2019.

[94] H. Wang, Z. He, Z. C. Lipton, and E. P. Xing. Learning robust representations by projecting superficial

statistics out. arXiv, 2019.

[95] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng, and P. Yu. Generalizing to unseen

domains: A survey on domain generalization. IEEE Transactions on Knowledge and Data Engineering,

2022.

60

[96] P. Wang, K. Han, X.-S. Wei, L. Zhang, and L. Wang. Contrastive learning based hybrid networks for

long-tailed image classification. In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 943–952, 2021.

[97] R. Wang, Z. Wu, Z. Weng, J. Chen, G. Qi, and Y. Jiang. Cross-domain contrastive learning for unsuper-

vised domain adaptation. CoRR, abs/2106.05528, 2021.

[98] Y. Wang, H. Li, and A. C. Kot. Heterogeneous domain generalization via domain mixup. In ICASSP,

2020.

[99] M. Xu, J. Zhang, B. Ni, T. Li, C. Wang, Q. Tian, and W. Zhang. Adversarial domain adaptation with

domain mixup. In AAAI, volume 34, pages 6502–6509, 2020.

[100] S. Yan, H. Song, N. Li, L. Zou, and L. Ren. Improve unsupervised domain adaptation with mixup training.

arXiv, 2020.

[101] C. Yeh, A. Perez, A. Driscoll, G. Azzari, Z. Tang, D. Lobell, S. Ermon, and M. Burke. Using pub-

licly available satellite imagery and deep learning to understand economic well-being in africa. Nature

Communications, 2020.

[102] Y. Yoshida and T. Miyato. Spectral norm regularization for improving the generalizability of deep learn-

ing. arXiv preprint arXiv:1705.10941, 2017.

[103] X. Yue, Y. Zhang, S. Zhao, A. Sangiovanni-Vincentelli, K. Keutzer, and B. Gong. Domain randomization

and pyramid consistency: Simulation-to-real generalization without accessing target domain data. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2100–2110, 2019.

[104] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. In

ICLR, 2018.

[105] L. Zhang, X. Wang, D. Yang, T. Sanford, S. Harmon, B. Turkbey, H. Roth, A. Myronenko, D. Xu, and

Z. Xu. When unseen domain generalization is unnecessary? rethinking data augmentation. arXiv, 2019.

[106] H. Zhao, R. Tachet des Combes, K. Zhang, and G. J. Gordon. On learning invariant representation for

domain adaptation. arXiv, 2019.

[107] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy. Domain generalization: A survey. arXiv e-prints,

2021.

[108] K. Zhou, Y. Yang, T. Hospedales, and T. Xiang. Deep domain-adversarial image generation for domain

generalisation. arXiv preprint arXiv:2003.06054, 2020.

[109] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang. Domain generalization with mixstyle. ICLR, 2021.

61

	Introduction
	Domain Generalization
	Several Aspects of Domain Generalization
	Distribution Shift
	Shortcut Learning
	Representation Learning
	Data Imbalances

	Datasets for Studying Distribution Shift
	DomainBed
	ImageNet Rendition
	ImageNet Sketch
	WILDS

	Thesis Contributions
	Conclusion

	Related Literature
	Learning Invariant Features
	Parameter Sharing Techniques
	Meta-Learning Techniques
	Data Augmentation Approaches
	Conclusion

	Cross-Domain Class-Contrastive Learning: Finding Lower Dimensional Representations for Improved Domain Generalization
	Introduction
	Related Work
	Method
	Computing the dimensionality
	Cross-Domain Class-Contrastive Learning

	Experiments and Results
	Improving generalisation by hard constraining low dimensionality
	Computing dimensionalities across different backbones
	Dimensionality with CDCC
	DG benchmarks with CDCC

	Conclusion

	Going beyond Traditional Domain Generalization
	Class Wise Domain Generalization
	Long-Tailed Domain Generalization
	Experiments showing that the performance of CDCC is more robust to Long-Tailed Distributions
	Experiments showing that the order of performances across test domains is agnostic to the order of training domains in the long-tailed setting.

	Additional experiments on PACS
	Experiments showing that the performance of ERMs is agnostic to pre-training
	Experiments showing that learning a smoother minima results in a better performance for domain shifts
	Experiments showing that the performance of models pre-trained with self-supervised techniques is inconsistent

	Conclusion

	Conclusion
	Bibliography

