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Abstract

Sequence learning plays a central role in the acquisition of many daily life motor skills such as typing
or playing the piano. Several canonical experimental paradigms such as the serial reaction time task,
discrete sequence production task and m × n task have been proposed to study the typical behavioral
phenomenon in sequencing tasks. Such paradigms are externally-specified, where the environment
or the task paradigm extrinsically provides the sequence of stimuli that guides the motor actions. Such
paradigms differ from a class of more realistic motor tasks that are internally-guided, where the sequence
of motor actions is self-generated or internally-specified. Most previous studies on discrete sequencing
have employed externally-specified paradigms and therefore, the cognitive mechanisms underlying skill
learning in internally-guided sequencing paradigms remain largely unexplored.

This thesis presents an empirical and computational investigation of skill learning in internally-
guided sequencing. We employ the Grid-Sailing Task (GST) as a canonical paradigm to study internally-
guided sequence learning. The GST requires navigating by executing sequential keypresses, a n × n
grid from start to goal (SG) position while using a particular key-mapping (KM) among the three cursor-
movement directions and the three keyboard buttons.

In the first study, we investigate the learning processes involved in internally-guided sequencing. The
participants performed two behavioral experiments – Single-SG and Mixed-SG condition. The partici-
pants first completed the Single-SG condition, which required performing GST on a single SG position
repeatedly. By showing performance-related improvements in various behavioral measures such as the
execution time and reward score, we show that motor learning contributes to the trajectory-specific
learning in GST with the repeated execution of the same keypress sequences. The Mixed-SG condition
involved performing GST using the same KM (from Single-SG condition) on two novel SG positions
presented in a random, inter-mixed manner. Since the participants utilize the previously learned KM,
we anticipate a transfer of learning from the Single-SG condition. The acquisition and transfer of a
KM-specific internal model facilitate efficient trajectory planning on novel SG conditions. The acquisi-
tion of such a KM-specific internal model amounts to trajectory-independent cognitive learning in GST.
We provide evidence for the role of cognitive learning in GST by showing transfer-related performance
improvements in the Mixed-SG condition.

In a subsequent study, we probe the involvement of a particular motor learning process called motor
chunking. Motor chunking is a phenomenon which enables efficient execution of the motor sequences
by chaining several elementary actions into sub-sequences called motor chunks. The participants per-
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formed GST on a 10× 10 grid, executing the same trajectory repeatedly throughout the experiment. We
provide empirical evidence for motor chunking by showing the emergence of subject-specific, unique
temporal patterns in response times. Our findings show spontaneous chunking without pre-specified
or externally guided structures while replicating the earlier results with a less constrained, internally
guided sequencing paradigm.

In another study, we employ an inter-manual transfer task to examine the stage-wise transitions in
motor sequence learning. The participants performed GST on inter-leaved normal and transfer blocks.
The dominant hand was used on the normal block and the non-dominant hand was used on the transfer
block. The length of the first normal block varied across days. We found increasing differences in
execution time between the normal and transfer blocks across days as the effector-dependent learning
consolidated. Our findings confirm a switch from the effector-independent cognitive learning phase to
the effector-dependent motor learning phase after substantial practice.

We then situate internally-guided sequencing in a dual-process account of skill learning and propose
computational analogues for the goal-directed and the habitual controller. We propose two hybrid rein-
forcement learning frameworks that integrate model-based and model-free mechanisms to account for
the dual learning processes. Using simulations and model-fitting experiments, we compare the proposed
hybrid frameworks, namely, value-of-information based arbitration and weighted-hybrid arbitration. We
show that weighted-hybrid arbitration describes the empirical data better than other models. Our pro-
posed framework gives a computational account of the learning in internally-guided sequencing.
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Chapter 1

Introduction
1

Our everyday experiences are an excellent demonstration of the surprisingly adaptive and fluid learn-
ing behavior that is orchestrated by the human brain. Such a learning behavior is a hallmark of human
cognitive ability and spans a broad spectrum of tasks. Ranging from complex tasks such as cycling
and driving to seemingly simpler ones such as typing and grasping movements, all tasks involve the
acquisition of skillful behavior. Skill learning is a natural behavioral phenomenon concerned with the
acquisition of the ability to perform tasks proficiently. Motor skill learning refers to learning a specific
subclass of skills that involve sequential motor movements such that they are executed accurately and
quickly with practice (Clegg et al., 1998; Haibach et al., 2018; Newell, 1991; Schmidt et al., 2019).
Much of the early interest in motor sequencing focused on investigating the typical behavioral phe-
nomenon in sequence learning tasks (Fitts and Posner, 1967; Hebb, 1961; Lashley, 1951). This has led
to the formulation of many serial order canonical experimental tasks such as the m×n task (Bapi et al.,
2000, 2006; Hikosaka et al., 1995) and discrete sequence production (DSP) task (Abrahamse et al., 2013;
Verwey, 2001; Verwey et al., 2015) in the explicit domain and serial reaction time (SRT) task (Nissen
and Bullemer, 1987; Robertson, 2007; Willingham, 1999) in the implicit domain. While explicit learn-
ing involves conscious awareness of what is being learned, implicit learning occurs without conscious
awareness of learning. Subsequent research has extensively used these paradigms to understand the
brain processes involved in sequence learning, memory, attention, etc.

In SRT and DSP tasks (see Figure 1.1), the participants repeatedly respond to a fixed set of visual
stimuli organized in successive trials. Each trial involves presenting a sequence of visual cues that
prompt corresponding keypress responses on a visuospatially-compatible button-box. In the m×n task
(see Figure 1.2), each trial consists of n consecutive visual stimuli (called a hyperset). Each visual stim-
ulus consists of m illuminated squares on a 3 × 3 grid presented on a screen. The participants learn to
press m corresponding keys (called a set) successively in the correct order on a keypad in response to
the visual stimulus. The visual stimuli that guide the sequencing behavior in such paradigms are prede-
termined and fixed by experimental design. The sequence of motor actions to be performed is not con-

1This chapter is a slightly modified version of our publication Cognitive and Motor Learning in Internally-Guided
Motor Skills; Bera, K., Shukla, A., & Bapi, R. S. (2021) in Frontiers in Psychology.
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Figure 1.1 A schematic of the Serial Reaction Time (SRT) task (Fig. A; Robertson (2007)) and Discrete
Sequence Production (DSP) task (Fig. B; Abrahamse et al. (2013)).

tingent on the participant’s choice or plan. Therefore, these canonical tasks belong to a class of discrete
sequence learning tasks that involve externally-specified or externally-guided (visual) sequences. The
sequence of motor actions in such tasks is conditioned on fixed, externally-specified visual cues/stimuli.

While such simple canonical paradigms are useful for investigating skill learning in controlled ex-
perimental settings, they fail to account for a larger class of real-life motor tasks. Unlike SRT, DSP, or
m × n task, many real-life motor skills are internally-guided, i.e., the sequence of the motor actions
is triggered by self-choice or some internal model of the environment. Such tasks constitute a class of
internally-guided motor tasks. The sequence of actions is self-initiated or generated internally by the
participant and is not extrinsically prescribed or predetermined by the environment. Unlike externally-
specified sequencing, the sequential action in such tasks is not elicited as a chain of stimulus-response
pairs. While the visual cues might help the agent make sense of the environment in such tasks, it does
not specify the sequence of motor movements to be executed. The central point of difference between
externally-specified and internally-guided sequencing is that the latter involves volitional planning of
motor action sequences. A template tracing task on paper is an example of an externally-specified task.
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Figure 1.2 A schematic of the m× n task (Bapi et al. (2006)).

It employs external cues and visual feedback with a greater role of visuomotor associations for imitating
the given template. On the other hand, drawing is an internally-guided task that relies on internal cues
for guiding the pencil strokes to self-determined positions on paper. Such behavior is characterized by
greater demands on brain processes related to memory and planning as compared to the tracing task.
Other examples of such motor skills are composing music on a keyboard, creating a dance choreography,
or solving a Rubik’s cube. Such tasks involve planning as well as execution of a self-generated sequence
of motor actions. The performance in internally-guided sequencing tasks depends on the dexterity of
executing the motor actions and the ability to program the sequence of future actions.

Previous studies have investigated the motor behavior in externally-guided and internally-guided
tasks and determined the neural underpinnings of the underlying processes. The externally-guided
movements predominantly involve brain areas related to sensory guidance and optimization of move-
ments, perception, and salience, whereas internally-guided movements involve brain areas related to
muscle/movement selection, mental imagery, and planning complex behaviors (Drucker et al., 2019;
Gowen and Miall, 2007). Other investigations have confirmed the role of cerebellar and premotor cir-
cuits in externally-guided tasks and basal ganglia, pre-supplementary motor cortex and dorsolateral
prefrontal cortex in internally-guided tasks (Jueptner et al., 1996; Jueptner, 1998; van Donkelaar et al.,
1999).

In externally-specified sequencing, bindings between the presented stimuli and the corresponding
responses emerge with simple association rules between stimuli and response (S-R). Selecting an ac-
tion in response to a given stimulus binds the codes of the action-relevant stimulus attributes and the
corresponding action codes (Logan, 1988). Due to repeated execution of sequences, the activity of the
system controlling stimulus-based actions results in stimulus-response or sensorimotor learning (Her-
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Figure 1.3 Task comparison between externally-specified (SRT, DSP, m × n) and internally-guided
sequencing tasks.

wig and Waszak, 2009). Therefore, the sequencing in the externally-specified domain is exhibited as
a chain of stimulus-response-effect (S-R-E). On the other hand, the internally-guided or voluntary ac-
tions typically involve a goal-directed motivation to achieve an internally pre-specified outcome. The
studies have shown that such self-determined action goals play a role in the acquisition and planning
of internally-guided actions (Hommel, 2003; Hommel et al., 2001). The activity of the system guiding
intention-based actions results in action-effect or ideomotor learning due to the formation of associa-
tions between movements and their ensuing sensory effects (Herwig and Waszak, 2009). According
to the ideomotor framework of action control (Greenwald, 1970; Prinz, 1997), internally-guided ac-
tions primarily refer to anticipated action effects or, in other words, response-stimulus (R-S) bindings.
In internally-guided actions, the participants might only attend to response-effect (R-E) contingencies
(Herwig and Waszak, 2009). In light of these differences, none of the previous studies have explored
the nature of learning processes in such a class of discrete, self-guided sequential movement tasks.
Motivated by this apparent gap, this work investigates skill learning in internally-guided sequencing.

Sequence learning in simple grid-navigation tasks is an example of an internally-guided sequencing
paradigm. The tasks involve navigating (typically, using a cursor) on the grid from the start position to
the goal position. Each unique trajectory from the start to the goal position constitutes a novel sequence
of keypresses. The optimality of trajectory is conditioned on the task specifications such as the reward
scheme, possible agent movements, and time constraints. Participants are free to choose among many
possible optimal trajectories for a trial to be successful. The repeated execution of these trajectories
results in learning a self-generated, voluntary sequence of keypresses. The behaviors in grid-navigation
tasks give us rich insights into the learning processes involved in internally-guided sequencing. We
propose a novel usage of the simple grid-navigation task - Grid-sailing task (GST; Fermin et al. (2010,
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2016)) as a canonical paradigm to investigate the learning processes involved in internally-guided se-
quencing. The GST requires navigating a 5 × 5 grid from start to goal position (referred to as the SG
position) using a given key-mapping (KM). The KM associates possible movement directions of the
cursor with the corresponding keyboard buttons. The participants are instructed to reach the goal in an
optimal number of steps as quickly as possible. Figure 1.3 provides a concise summary of different
sequencing tasks—SRT, DSP, m× n, and GST—based on the experimental paradigm and the nature of
learning involved.

Using GST as our canonical paradigm, we present an empirical and computational investigation of
internally-guided sequencing. The most of the practical and everyday motor skills are internally-guided
and therefore, the significance of this work lies in the fact that it tries to systematically understand the
cognitive mechanisms underlying internally-guided skill learning.

Outline of the thesis: This thesis is organized into two sections. The first section presents empir-
ical investigation of the behavioral phenomenon in internally-guided sequencing. The second section
presents a computational account of learning in GST.

• In the first section, chapter 2 investigates the different learning processes involved in internally-
guided sequencing. The participants performed GST on two conditions - Single-SG and Mixed-
SG. We analyzed the sequence-specific performance improvements to test for motor learning in
the Single-SG condition. We further analyzed performance improvements due to the transfer of
KM-specific internal model in the Mixed-SG condition to show evidence for the role of cognitive
learning in internally-guided sequencing.

• Chapter 3 investigates the nature of motor learning in GST. Motor learning can can result from two
processes - motor adaptation or motor chunking. The study provides evidence for practice-driven
performance improvements in GST due to motor chunking.

• Chapter 4 probes inter-manual transfer of skills. The participants performed a transfer-task over
three sessions on different days. We analyzed the performance on normal and transfer blocks to
show evidence for the cognitive to motor ‘switch’.

• In the second section, chapter 5 describes a reinforcement-learning based computational account
of learning in GST. We describe a computational equivalence between the cognitive–motor and
the model-based–model-free dichotomies. We further show simulations and compare the model
fits of various reinforcement learning algorithms on the experimental data from chapter 2.

• The thesis ends by summarizing the main findings, highlighting its significance and outlining the
future directions.
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Chapter 2

Cognitive and Motor Learning in Internally-guided Sequencing
1

2.1 Introduction

We considered the involvement of two learning components—motor and cognitive. The cognitive
component involves learning the sequential order of movements, whereas the motor component con-
cerns the acquisition of fine-tuned movement dynamics and sensorimotor integration (Doya, 2000; Ghi-
lardi et al., 2009; Penhune and Steele, 2012). Using GST as our canonical paradigm, we employ two
behavioral experiments to identify the underlying learning processes in the internally-guided sequenc-
ing. In Experiment-1 (Single-SG condition), participants perform GST on a single SG-condition. We
show evidence for motor learning due to the repeated execution of sequences. In Experiment-2, the
participants use the learned KM from Experiment-1 to perform grid-navigation on the Mixed-SG con-
dition, which consists of randomized trial order of two previously unseen SG conditions. A successful
transfer of a KM-specific internal model would enable efficient trajectory planning on the novel SG con-
ditions and, thus, would point out the role of the cognitive learning in Experiment-2. We further make
a case for using GST-like grid-navigation tasks for investigating the typical behavioral phenomena in
internally-guided sequencing.

2.2 Experiment-1: Single-SG Condition

We hypothesize that sequence-specific motor learning contributes to the learning in GST. As the
participants repeatedly execute the same trajectory, the motor movements are optimized to facilitate
accurate and fast sequential keypresses. This can be empirically tested by examining the effect of trials
on the mean execution in Experiment-1 (also referred to as the Single-SG condition). The Single-SG
condition also involved a rotation trial to test whether the learning in GST occurs due to the acquisition
of a motor program or general motor improvements. The general motor improvements can result from
factors such as task familiarity or adaptation. The rotation was introduced such that the sequence of

1This chapter is a slightly modified version of our publication Cognitive and Motor Learning in Internally-Guided
Motor Skills; Bera, K., Shukla, A., & Bapi, R. S. (2021) in Frontiers in Psychology.
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keypresses required to navigate the cursor from the start position to the goal position remained the same
as in the normal trials. Consequently, the execution time on the rotation trials is expected to remain
unaffected if the performance improvements in GST occur only due to general motor improvements.

2.2.1 Methods

2.2.1.1 Participants

Forty-two healthy participants volunteered for the study. The participant pool consisted of 29 women
and 13 men between ages 17 and 27 years (mean = 21.02; SD = 2.46) years. All participants were non-
musicians with normal or corrected-to-normal vision. The study was approved by the Institute Review
Board, IIIT-Hyderabad, India. The participants gave informed written consent before the study. Addi-
tionally, permission for participation was obtained from the College Principal for participants below 18
years of age. The participants initially performed Experiment-1 (Single-SG condition with visuomotor
rotation trial) followed by Experiment-2 (Mixed-SG Condition).

2.2.1.2 Apparatus

The participants were seated on a chair facing a high-resolution 24-in computer screen placed ap-
proximately 2 ft away. A conventional desk keyboard was used to record responses. The participants
used the right index, middle, and ring fingers to press the number-pad buttons “4,” “5,” and “6,” respec-
tively. All the other keys on the number-pad were removed to prevent meddling in response selection.
The experiment program for stimulus presentation and data recording was written using Python3 and
PyGame (Python Game Development2).

2.2.1.3 Procedure

The participants were verbally instructed about the task procedure before the session started. A 5 × 5
grid with a red fixation cross at the center was displayed at the beginning of each trial. On pressing the
“space” button, after a random delay of 500–1,000 ms, the trial started with the start position marked
as a green tile and the goal position marked as a blue tile. The cursor, shown as a black triangle, was
initially placed in the starting position. The participants were given 6 s to solve each trial, and this
duration was not explicitly conveyed to them. During the trial response period, participants executed
sequential keypresses to navigate the cursor from the starting position to the goal position. The possible
cursor-movement directions were defined by the KM (see Figure 2.1 A). In the beginning, the task
required participants to explore the KM directions and its association with the corresponding keys by
trial and error.

The participants were explicitly instructed to achieve a maximum score (of 100 points) while ex-
ecuting each trial as quickly as possible. If an optimal path is traversed, a maximum of 100 points

2Retrieved from https://www.pygame.org
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Figure 2.1 (A) Key-mapping (KM) and start-goal (SG) position sets used in the experiment. Each
participant was randomly assigned either KM1 or KM2. The boxed numbers on KM figure show cor-
responding numeric keys associated with the movements. In SG figures, green and blue tiles represent
start and goal positions, respectively. (B) The 90° clockwise rotated KMs used in the rotation trials in
Experiment-1. (C) Task diagram: sequence of trial events (adapted from Fermin et al. (2010)). In this
illustration, the participant is assigned key-map KM1. An example optimal trajectory is shown on the
grid.

is awarded for that trial. A minimum steps trajectory from start to the goal is considered an optimal
trajectory. If the participant took a non-optimal path, a penalty of -5 points incurred for every excess
move. In case the participant tried to perform an invalid move, such as moving out of the grid, the cursor
position remained the same with an incremented move count. If the participant failed to reach the goal
in the given time duration, 0 points were awarded for that trial. At the end of each trial, the performance
feedback was displayed for 2 s, following which the fixation screen signaled the beginning of the next
trial. On the center of the feedback screen, the performance feedback was presented as two numbers.
The display showed the number of moves in the traversed trajectory and the reward score for that trial.
A trial outline is shown in Figure 2.1 C. The participants were given a rest block after every 20 trials
to minimize the effects of muscle fatigue on the performance. The participants were also advised to
maximally re-use the explored trajectories in order to execute the task quickly and accurately.

Two different KMs were used in the experiment to avoid any unwanted performance effects or bias
due to a particular KM. Moreover, each KM was associated with a unique set of SG pairs (see Figure 2.1
A). The participants were randomly assigned one of the two possible KMs. The participants used the
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same assigned KM throughout the experiment for both, Single-SG and Mixed-SG conditions. Twenty-
four participants used KM1, whereas eighteen participants used KM2 for the experiment.

In Experiment-1, the participants repeatedly performed GST on a single SG condition. The partici-
pants were presented with the same SG condition for trials 1–41. The rotation trial (trial 42) was intro-
duced after the completion of 41 successful trials. The rotation trial was followed by the re-introduction
of the learned single SG condition for the next five trials (trials 43–47). The post-rotation trials (tri-
als 43–47) were used only for a comparative analysis between the rotation and normal condition. The
rotation trial involved a 90° clockwise rotation of the grid. The start and goal positions also changed
accordingly with the grid rotation. The rotated cursor changed its color from black to red to indicate the
transformed KM associations (see Figure 2.1 B). Therefore, the sequence of keypresses required to reach
the goal position effectively remained the same. In the case of error trials in the rotation condition, the
participants were repeatedly presented with the rotation trial. The participants were already instructed
about the rotation trial beforehand. The participants took about 15 min to complete Experiment-1.

2.2.1.4 Behavioral Measures

The number of moves in the traversed trajectory, reward obtained, reaction time and execution time
were the performance measures recorded for each trial of the experiment. Reaction time is defined as the
time interval between the onset of stimuli and the first keypress. Execution time is the total time taken
for sequential keypresses in a particular trial. Execution time is computed as the difference between the
keypress time of the last and the first response. For analysis purposes, the trials were classified into three
categories (1) Successful trials—if the goal position is reached with a non-zero reward, (2) Optimally
successful trials—if the goal position is reached in an optimal number of moves and thereby scoring a
maximum reward, and (3) Error trials—if the goal position is not reached in the given time duration.

2.2.2 Results

The following behavioral measures were included for the analysis: reward score, reaction time,
execution time, number of moves, and error rate. The error rate is a computed measure that denotes
the average number of error trials attempted to complete one successful trial. The successful and error
trials were both included in the analysis to show the emergence of learning and skillful behavior in the
task. However, only successful trials were considered for other analysis purposes. A within-subjects
repeated-measures ANOVA was used to test for the effect of practice (trials) on different behavioral
measures. A series of Wilcoxon signed-rank tests was performed on various measures to compare the
performance on rotation and normal trials. Repeated-measures ANOVA was used to probe any KM-
specific effects on the performance. The statistical analysis was performed using Python (scipy and
statsmodels packages) and JASP software (JASP Team, 2020).

The learning in the task is evident from the performance improvements in various behavioral mea-
sures. With practice, we see an increasing and decreasing trend in reward and execution time, respec-
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tively, which suggests that within a few (10–15) trials, the participants progressively learned to perform
the task while optimizing for speed (execution time) and accuracy of navigation (reward; see Figure
2.2 A). We took reward, moves, execution time, and reaction time as dependent measures of learn-
ing for successful trials. To evaluate the learning behavior, we plotted the mean values of behavioral
measures in successful trials (see Figures 2.2 B,C). The mean reward increases to a maximum of 100
points as the number of moves reduces over the practice to reach the optimal/minimum number of steps.
A non-parametric Friedman test of differences among repeated measures (within-subjects) rendered a
significant effect of trials on average reward obtained (χ2(40) = 73.97, p < 0.001) and the average
number of moves required to reach the goal (χ2(40) = 73.97, p < 0.001).

Figure 2.2 Trial-by-trial course of performance improvement in Single-SG condition (rotation trial ex-
cluded). The bars on the plot data-points denote standard error in measurement. (A) Evolution of
learning behavior in the task. Mean execution time and mean reward across trials—averaged over both
successful and error trials. (B) Mean reaction time and normalized execution time in successful trials.
(C) Mean reward and average number of moves in successful trials. (D) Mean error rates in successful
trials.

The learning is also evident by comparing the mean execution time of the first successful trial (M
= 3,110 ms, SD = 1,062) with the last successful trial (M = 1,271 ms, SD = 380 ms). The mean
reaction time decreased from 1,232 ms (SD = 592) to 659 ms (SD = 380). The Friedman test indicated
significant improvements in execution time (χ2(40) = 485.90, p < 0.001) as well as reaction time
(χ2(40) = 300.55, p < 0.001). However, this decrease in execution time could have been a function of
the number of moves in the trajectory. Therefore, we computed normalized execution times or execution
time per keypress to account for the unequal lengths of trajectories in successful trials. The Friedman
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test indicated significant improvements in normalized execution time (χ2(40) = 499.93, p < 0.001).
The acquisition of learned sequences was examined by computing the error rates and plotting them
against trials. A steep decrease in error rates is observed over the first few trials (see Figure 2.2 D).
Additionally, sequence-specific motor learning was examined by controlling the number of keypresses
and the trajectories followed. For each participant, the most frequently used optimal trajectory was
determined. The trials that employed the most-frequented optimal trajectory were extracted. A decrease
in mean execution time from 2,473 ms (SD = 1,051) to 857 ms (SD = 157) in extracted trials suggests
sequence-specific learning. To evaluate the performance improvements across these trials, we performed
a Friedman test, which indicated a significant effect of trials (χ2(38) = 78.72, p < 0.001) on execution
time.

In order to examine whether the learning observed in the GST was particular to KM, we performed
2 (KM: 1 and 2) × 41 (Trials: 1–41) mixed repeated-measures analysis of variance (ANOVA) on nor-
malized execution time. The KM was used as a between-subject factor, and trials were a within-subject
factor. A Greenhouse-Geisser correction was applied when the ANOVA assumptions were violated.
The ANOVA results suggested a significant main effect of trials (F (11.16, 446.25) = 19.148, p <

0.001, η2p = 0.324) on the normalized execution times. Similarly, a significant main effect of KM
(F (1, 40) = 7.517, p = 0.009, η2p = 0.158) indicated that the normalized execution times are different
for the two KM. However, the Trial × KM interaction was not found to be significant (F (11.16, 446.25) =
1.347, p = 0.194, η2p = 0.033), suggesting that the variation in normalized execution time across the
trials is not dependent on KM.

On the visuomotor rotation trial (trial 42), we observed a spike in the execution time (see Figure
2.3 A). The execution time comes down with the re-introduction of the learned SG condition after the
rotation trial. To assess whether the mean execution time for the visuomotor rotation trial is signifi-
cantly higher than the normal condition, we took the average execution time of the preceding and the
succeeding optimally successful trials and compared it with the rotation trial (trial 42). The mean ex-
ecution time increased from 1,473 ms (SD = 496) in the normal trials to 2,906 ms (SD = 919) in the
rotation trial. A Wilcoxon signed-rank test was used as the normality assumptions were violated. It
suggested that the mean execution time for the rotation trials is significantly higher than the normal
trials (df = 29, Z = 0, p < 0.001). Similarly, the mean reaction time increased from 900 ms (SD =
420) in the normal trials to 1,176 ms (SD = 672) in the rotation trial (see Figure 2.3 B). The Wilcoxon
signed-rank test indicated that the difference in mean reaction time on the rotation trial and normal trials
was significant (df = 41, Z = 245.50, p = 0.010). On following a similar procedure, we found that the
mean reward obtained decreased from 99.702 (SD = 1.581) to 95.595 (SD = 9.513) on the rotation trials
(see Figure 2.3 C). The Wilcoxon signed-rank test suggested that the difference in mean reward score
obtained on normal and rotation trials is significant (df = 41, Z = 96.50, p = 0.006). Similarly, the
number of moves executed increased from 6.060 (SD = 0.316) in the normal trials to 6.881 (SD = 1.903)
in the rotation trials (see Figure 2.3 D). The Wilcoxon signed-rank test suggested that the increase in
the number of moves is significant (df = 41, Z = 8.50, p = 0.006). The error rates also increased
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Figure 2.3 Comparison of performance on normal and visuomotor rotation trials in Experiment-1.
The bars on the plot data-points denote standard error in measurement. (A) Mean execution time on
optimally-successful rotation trials is significantly higher than the average of preceding and succeeding
optimally-successful trials. (B) Mean reaction time on successful rotation trials is significantly higher
than the average of preceding and succeeding successful trials. On the rotation trial, the average reward
obtained (C) is significantly lesser while the average number of moves (D) is significantly higher. (E)
The mean error rate also increases in the rotation trials.
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from 0.024 (SD = 0.108) to 1.024 (SD = 1.828) in the rotation trials (see Figure 2.3 E). The Wilcoxon
signed-rank test also suggested a significant difference in error rates (df = 41, Z = 0, p < 0.001) in
both conditions.

2.2.3 Discussion

In line with previous GST studies and other skill learning tasks, the performance improvements in
terms of speed (execution time, reaction time) and accuracy (reward) suggest the acquisition of skillful
behavior (Abrahamse et al., 2013; Fermin et al., 2010; Hikosaka et al., 1995; Nissen and Bullemer, 1987;
Sakai et al., 2003; Willingham, 1999). The practice-driven performance improvements in various be-
havioral measures in Single-SG trials suggest overall learning in GST. The practice-driven performance
improvements in execution time provide evidence for motor learning that occurs due to the fine-tuning
of motor movements. The Single-SG condition also included a visuomotor rotation trial to probe if the
performance improvements in GST can be solely attributed to general motor improvements. The perfor-
mance degradation on execution time and other measures such as reward, reaction time, and error rate
suggests that the performance improvements in GST can be attributed to the sequence-specific learning
processes (specifically, the acquisition of the motor program).

2.3 Experiment-2: Mixed-SG Condition

In Experiment-1, the participants repeatedly performed GST on a single SG condition using the same
KM. The participants not only learned the motor program associated with the sequence of movements
to reach the goal position but also internalized the navigation strategies related to the specific KM.
The results of Experiment-1 established trajectory-specific motor learning. Further, to investigate KM-
specific cognitive learning, we designed Experiment-2 (also referred to as the Mixed-SG condition) to
test the transfer of KM-specific learning to novel SG conditions. We anticipate that the transfer of KM-
specific learning will lead to efficient trajectory planning on novel SG conditions. The account can be
empirically tested by comparing various performance measures during the initial trials of Experiment-1
and Experiment-2.

2.3.1 Methods

2.3.1.1 Participants

All the participants performed Experiment-2 after completing Experiment-1.

2.3.1.2 Apparatus

The experimental setup and apparatus were the same as in Experiment-1.
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2.3.1.3 Procedure

In the Mixed-SG condition, the general task paradigm was the same as in Experiment-1 except for
the SG-conditions. In the Mixed-SG condition, participants employed the previously learned KM (from
Experiment-1) to perform grid-navigation on two novel SG conditions. The optimal number of steps
in both the SG conditions were the same. During the experiment, each trial was randomly assigned to
one of the two possible SG conditions. The participants performed GST on the randomized and mixed
order of SG conditions. The experiment terminated when the participant performed 20 successful trials
of each SG condition. The participants took about 15 min to complete the Mixed-SG condition task.

2.3.1.4 Behavioral Measures

The behavioral measures logged and analyzed were the same as in Experiment-1.

2.3.2 Results

A within-subjects repeated-measures ANOVA was used to test for the effect of practice (trials) on
different behavioral measures. A series of Wilcoxon signed-rank tests was performed on various mea-
sures to test for the transfer of learning in Experiment-2. Repeated-measures ANOVA was used to
probe any KM-specific or SG-specific effects on the performance. The first 20 successful trials of each
SG condition were considered for analysis. Mean execution times and reaction times for a total of 40
successful trials were plotted against the trials. We observe that with practice, the participants become
more accurate and efficient in performing GST on the Mixed-SG condition (see Figure 2.4 A). Both
the execution time and reaction time, as dependent measures of performance, decrease with practice
(see Figure 2.4 B). The learning is evident by the decrease in the mean execution time from 2,854 ms
(SD = 971) in the first successful trial to 1,298 ms (SD = 428) in the last successful trial. And the
mean reaction time decreased from 1,278 ms (SD = 623) to 733 ms (SD = 403). To evaluate whether
the change across the trials is statistically different, we performed a non-parametric Friedman test of
differences among repeated measures (within-subjects) for trials 1 through 40. We observed a signif-
icant effect of trials on the mean execution time (χ2(39) = 423.35, p < 0.001) as well as the mean
reaction time (χ2(39) = 210.40, p < 0.001). A Friedman test also indicated a significant effect of
trials (χ2(39) = 469.06, p < 0.001) on normalized execution time. The mean reward scores improved
from 97.50 (SD = 5.325) in the first trial to 99.52 (SD = 1.851) in the last trial. The effect of trials was
significant on the mean reward obtained (χ2(39) = 61.96, p = 0.011; see Figure 2.4 C). The average
number of moves required to reach the goal position decreased from 6.50 (SD = 1.065) to 6.095 (SD
= 0.370) with practice. A Friedman test indicated a significant effect of trials on the average number
of moves (χ2(39) = 61.96, p = 0.011; see Figure 2.4 C). A Friedman test on mean execution time
in optimally successful trials rendered a significant effect (χ2(39) = 191.42, p < 0.001) of trials. The
mean error rates were computed by averaging the participant error rates while preserving the trial order.
A steady decrease in error rates is observed with practice (see Figure 2.4 D).
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Figure 2.4 Trial-by-trial course of performance improvement in Mixed-SG condition. The bars on the
plot data-points denote standard error in measurement. (A) Evolution of learning behavior in the task.
Mean execution time and mean reward across trials—averaged over both successful and error trials. (B)
Mean reaction time and normalized execution time in successful trials. (C) Mean reward and average
number of moves in successful trials. (D) Mean error rates in successful trials.

Additionally, we examined if the performance in the Mixed-SG condition was particular to KM. We
performed 2 (KM: 1 and 2) × 40 (Trials: 1–40) mixed repeated-measures analysis of variance (ANOVA)
on normalized execution time with KM as a between-subject factor and the trials as a within-subject
factor. A Greenhouse-Geisser correction was applied when the ANOVA assumptions were violated.
The ANOVA results suggested a significant main effect of trials (F (13.09, 523.48) = 17.326, p <

0.001, η2p = 0.302), indicating that the normalized execution time varies across the trials. A non-
significant main effect of KM (F (1, 40) = 0.782, p = 0.382, η2p = 0.019) indicated that the nor-
malized execution times are not different for the two KM. Moreover, a non-significant Trial × KM
(F (13.09, 523.48) = 1.325, p = 0.193, η2p = 0.032) interaction suggested that the variation in normal-
ized execution time across the trials is not dependent on KM.

Since the participants used the same KM assignment as that in the Single-SG condition, we anticipate
the transfer of learning to occur from the Single-SG condition to the Mixed-SG condition. We analyzed
behavioral measures such as error rate, reward, and execution time for the first trial in both conditions
to probe for transfer effects. The mean error rate improved from 2.857 (SD = 2.859) in the Single-SG
condition to 0.690 (SD = 1.473) in the Mixed-SG condition. A Wilcoxon signed-rank test comparing
the error rates during the first trials of both conditions reported significant differences (df = 41, Z =

508.00, p < 0.001). The mean reward score improved from 20.952 (SD = 40.714) in the Single-SG
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condition to 67.976 (SD = 46.224) in the Mixed-SG condition. A Wilcoxon signed-rank test revealed
that the mean reward obtained is significantly higher (df = 41, Z = 36.00, p < 0.001) for the initial
trial in the Mixed-SG condition as compared to the first trial in the Single-SG condition. Similarly,
the mean execution time improved from 3,743 (SD = 1,380) ms to 2,807 (SD = 1,083) ms due to the
transfer effects. A Wilcoxon signed-rank test suggested that the mean execution time for the first trial
in the Single-SG condition is significantly different (df = 41, Z = 743.00, p < 0.001) as compared to
the first trial of the Mixed-SG condition.

The Single-SG condition does not require participants to employ all three keys to reach the goal
position. In both the KM groups, the participants only needed keys 4 and 5 to build the trajectory
from the start to the goal position. Therefore, in both the KM groups, at the end of the Single-
SG condition, the participants are highly trained with the response effects for two (keys 4 and 5)
of the three keys. In the Mixed-SG condition, condition SG1 requires using keys 5 and 6 to build
an optimal trajectory, whereas condition SG2 requires keys 4 and 5 to navigate to the goal posi-
tion. Since the participants are highly trained on response-effect contingencies for keys 4 and 5 but
not for key 6, the differential amount of practice may benefit performance on condition SG2 (em-
ploying keys 4 and 5) but not condition SG1 (employing keys 5 and 6). Thus, one can argue that
performance will be influenced by a differential amount of practice based on SG conditions in the
Mixed-SG condition. To probe this, we analyzed the effect of SG on execution time in the Mixed-SG
condition. We performed 2 (SG: 1 and 2) × 20 (successful trials: 1–20) repeated-measures ANOVA
on the mean execution time for each KM. A Greenhouse-Geisser correction was applied when the
ANOVA assumptions were violated. For KM1, the ANOVA results reported a main effect of trials
(F (4.875, 112.123) = 27.583, p < 0.001, η2p = 0.402), suggesting practice-driven learning. The test
reported a non-significant main effect of SG (F (1, 23) = 3.915, p = 0.060, η2p = 0.006) and Trial
× SG interaction (F (6.983, 160.601) = 1.081, p = 0.378, η2p = 0.010). Similarly, for KM2, the
ANOVA results reported the main effect of trials (F (19, 323) = 13.192, p < 0.001, η2p = 0.263), sug-
gesting practice-driven performance improvements. It suggested a non-significant main effect of SG
(F (1, 17) = 0.035, p = 0.854, η2p = 0.0001) and Trial × SG interaction (F (19, 323) = 1.204, p =

0.252, η2p = 0.023). The results suggest that the execution time is not different for the two SGs in
the Mixed-SG condition in both the KM groups. Therefore, the performance is not influenced by the
differential amount of practice based on SG conditions in the Mixed-SG condition.

2.3.3 Discussion

The randomized and mixed order of SG conditions in Experiment-2 minimized the trajectory-specific
performance improvements that occur due to the repeated execution of the keypress sequences. Signif-
icant performance improvements were observed for normalized execution time in successful trials and
execution time in optimally-successful trials. Other performance measures such as reward and reaction
time also improved with practice. This efficient performance of GST on new and randomly-ordered
SG conditions can be attributed to the ability to use a previously learned KM-specific internal model
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for planning navigation strategies. As the learned KM relations can be successfully applied to new SG
conditions, the participants could generalize the learning from the Single-SG condition to the Mixed-SG
condition. The positive transfer effects support the idea of cognitive learning because the participants
cannot simply transfer a learned motor sequence in the Mixed-SG condition.

In both the KM groups, the Single-SG condition employed only two (keys 4 and 5) of the three
possible cursor movements to construct an optimal trajectory. One can raise the question that the transfer
of learning would be better on the novel SG condition that employed the same practiced keys (namely,
condition SG2) compared to the other novel SG condition (namely, condition SG1) in Experiment-2.
However, the analysis revealed no difference in performance in execution time in both the SG conditions.
This suggests that the transfer of the internal model related to the KM is not contingent on the specific
keys that are practiced in various SG conditions.

2.4 General Discussion

We investigated the nature of learning in internally-guided sequencing. We argued that GST-like
grid-navigation tasks are exemplars of such a paradigm and hypothesized the role of motor and cog-
nitive learning processes in learning in GST. We proposed a novel use of GST in two behavioral ex-
periments to this end. In Experiment-1 (Single-SG condition), we investigated the progressive nature
of learning, as evidenced by improvements in various behavioral measures. We provide evidence for
the role of trajectory-specific motor learning in GST by showing the effect of trials on execution time
in the Single-SG condition. The performance degradation on the introduction of a visuomotor rotation
trial suggests that the learning in GST involves the acquisition of a motor program and therefore, it
cannot be solely attributed to the general motor improvements. In Experiment-2 (Mixed-SG condition),
we provide evidence for the role of KM-specific, trajectory-independent learning in GST. The transfer-
related performance improvements in the Mixed-SG condition provide evidence for the acquisition of a
KM-specific internal model that translates as cognitive learning in GST.

2.4.1 General Stages of Learning in GST

Improvements in various behavioral measurements such as execution time, reaction time, and reward
score indicate learning in GST (see Figure 2.2). In the Single-SG condition, the participants initially
tried to learn the possible movement directions and the corresponding key-map (KM) by trial and error.
As the participants became familiar with the association between keypresses and corresponding cursor
movements, they learn the effects of their responses. In further attempts, using the learned KM, the
participants execute the keypresses to move the cursor in the direction of the target. Further practice
enables them to plan simple and optimal navigation strategies to reach the goal. In the late phase, the
repeated execution of the optimal trajectory drives performance improvements due to motor learning.
We anticipate the role of motor chunking, due to which the planned trajectory to the goal position

17



is segmented into sub-sequences of individual motor actions (keypresses). The late stage of practice
would be characterized by an “automatic” mode of execution with reduced cognitive and attentional
demands. Motor chunking would enable the participants to perform the sequence as a whole without
relying on individual response-effect contingencies. The practice-driven performance improvements in
GST due to chunking are investigated in another study (Bera et al., 2021b).

The trajectory planning was guided by feedback from the reward score and the number of moves (see
Figure 2.2 A). The reward feedback gives a measure of the optimality of the trajectory followed. A steep
decrease in the number of error trials (error rates) is observed after the first successful trial (see Figure
2.2 D). Further practice enabled planning of optimal trajectories, as evident from the increase in mean
reward. The participants quickly hit the reward ceiling (reward = 100) within 10–15 trials, implying
that they have learned to navigate optimally. After a substantial amount of practice, as the KM model
and SG trajectories are thoroughly learned, the (reward) feedback became less consequential for task
accuracy (see Figure 2.2 C). Nevertheless, we saw a further performance improvement in normalized
execution time (task speed) of successful trials (see Figure 2.2 B). To control the number of moves over
which the execution time is computed in successful trials, we performed the normalized execution time
analysis. A statistically significant improvement in normalized execution time shows growing expertise
in performing the sequence. While multiple optimal trajectories are possible for a given SG position, the
performance improvements due to repeated execution of the same trajectory can be attributed to motor
learning. Therefore, we also performed the execution time analysis with a control on the number of
moves and the sequential keypresses of the trajectory traversed. A statistically significant improvement
in execution time confirms the role of motor learning due to repeated execution of the same trajectories.

2.4.2 Cognitive Aspects of Internally-Guided Sequencing

In addition to motor learning, the performance in internally-guided paradigms is also contingent on
the ability to plan the sequence of actions efficiently. In GST, determining the sequence of keypress
execution corresponds to planning a trajectory from the start to the goal position. Such planning and
trajectory-generation are analogous to the goal-directed behavior in the knight’s tour on a chessboard.
To reach a given goal position on the chessboard, goal-directed planning is employed to generate an
optimal sequence of moves (analogous to a trajectory in GST) using an internal map based on possible
movement directions of a knight (similar to a KM in GST). In both cases, the conceived reach pattern
used for planning trajectories is KM-specific. The acquisition of such a KM-specific internal model
helps in planning trajectories and amounts to cognitive learning in GST.

Therefore, we hypothesized that cognitive learning processes contribute to the learning in GST. The
role of cognitive learning could be confirmed if the participants can generalize the learning from a
learned SG condition to other novel SG conditions. To test this, we performed Experiment-2, where
we asked the participants to perform GST on randomized and mixed order of novel SG positions us-
ing the learned KM from Experiment-1. The transfer-related performance improvements in various
behavioral measures confirm the role of cognitive learning. Since the participants cannot readily utilize
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the previously learned motor sequences on novel SG conditions, the transfer-related performance gains
occur due to a trajectory-independent learning component. The two experiments are not independent
because the same participants employed the same KM. Therefore, the improvements suggest that the
KM-specific internal model is acquired and transferred from the Single-SG condition to facilitate ef-
ficient trajectory planning in the Mixed-SG condition. The acquisition of an internal model involves
learning the KM relations between the possible cursor movements and the keypress buttons. This inter-
nal model is employed while planning the trajectories to generate a new sequence of keypresses that can
be executed to solve a novel SG condition. Therefore, the cognitive component in GST is a form of the
trajectory-independent learning process and it involves the acquisition of a KM-specific internal model.

The participants were able to employ the learned KM (from the Single-SG condition) to plan tra-
jectories to the goal position with minimal failed attempts, as evident from a significant decrease in
the error rate from 2.857 in the Single-SG condition to 0.690 in the Mixed-SG condition. The error
rates denote the average number of error trials attempted to complete each successful trial. The fraction
of participants who performed the first trial without any errors increased from 21% in the Single-SG
condition to 69% in the Mixed-SG condition. Moreover, a qualitative examination of the evolution of
trajectories in the early and late phases of the Mixed-SG condition suggests the role of a KM-specific
learning component in GST. It is apparent from Figure 2.5 that the participants employed the learned
KM-specific internal model to improvise on non-optimal trajectories in the early phase. Thus, the late
phase is characterized by optimal trajectory planning and increased trajectory density.

This account of transfer of learning is also corroborated by improvements in other behavioral mea-
sures such as the mean execution time and average reward score. The mean execution time decreased
from 3,743 to 2,807 ms as the participants were able to quickly plan trajectories using the acquired KM
on novel SG conditions. The mean reward score also improved from 20.952 in the Single-SG condition
to 67.976 in the Mixed-SG condition. In summary, these results suggest that the participants are faster,
more accurate, and quickly discover the optimal trajectory in the Mixed-SG condition as compared to
the Single-SG condition. It suggests a key contribution of transfer of the acquired key-map from the
Single-SG condition to the Mixed-SG condition.

In addition, we observed a significant effect of practice on the reaction time in Single-SG and Mixed-
SG conditions (see Figures 2.2 B, 2.4 B). This result is rather intriguing because no improvements in
reaction time were expected in line with the previous findings (Fermin et al., 2010). The reaction time
denotes the latency of the first keypress, reflecting the time cost of pre-planning the whole trajectory
from the start to the goal position. A steady decrease in reaction time implies that the participants
become more adept at using the previously acquired KM-specific internal model to plan trajectories
with practice. The reaction time trend provides additional evidence for the involvement of cognitive
learning in GST.

The Single-SG condition involved a rotation trial. One possible way to complete the rotation trial
efficiently, would be to execute the learned sequence of keypresses after performing a mental rotation
of the KM and SG positions to “undo” the rotation. If participants employed this strategy, we would
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Figure 2.5 Evolution of trajectories in Single-SG and Mixed-SG condition in two representative par-
ticipants—MD (A) and AS (B). Participants MD and AS are assigned key-maps KM1 and KM2, re-
spectively. The comparison of trajectories in early vs. late phase is shown. The early and late phase
correspond to the first and last five successful trials, respectively, in each condition. A darker trajectory
shade denotes more frequented trajectory.
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anticipate that the reaction times increase but not the execution times. However, we observed an increase
in execution time and reaction time even on multiple attempts on the rotation trial (see Figure 2.3).
This indicates that the participants may have attempted the rotation trial as a novel KM-SG condition.
Consequently, the execution time increased due to the additional time cost of planning trajectories using
a novel KM. The performance degradation is also evident from other behavioral measures such as reward
score and error rates. We further examined the differences in the trajectories traversed in the normal
and rotation condition (see Figure 2.6). We observed many qualitative differences between trajectories
traversed in normal and rotation conditions, irrespective of the number of attempts on the rotation trial.
Overall, the results in the rotation trials suggest that the trajectory-specific motor program learned in the
normal condition could not be transferred to the rotation condition successfully.

Figure 2.6 Comparison of trajectories traversed during normal and rotation trials in Experiment-1 for
four representative participants—JK (A), LM (B), RS (C), and CP (D). The trajectories for all the rota-
tion trials are plotted for each participant. The number of trajectories plotted for the normal condition
is matched with that from the rotation condition. The number of trajectories (or trials) plotted for par-
ticipants JK, LM, RS, and CP is 1, 3, 1, and 5, respectively. A darker trajectory shade denotes more
frequented trajectory.

2.4.3 Theoretical Perspectives on Internally-Guided Sequencing

Fermin et al. (2010) provide evidence for model-based action planning in GST by demonstrating that
the participants benefit from previously learned state transition models (or KM) if an additional delay is
given before the start of the movements. For learned KM, such a delay would favor model-based plan-
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ning using internal simulations of sequential action selection. In our case, such acquisition of the inter-
nal model is evidenced by the ability to efficiently navigate in a randomly-ordered mixed-SG condition
where trajectory/sequence-specific learning due to visuomotor associations is minimized. While Fermin
and colleagues established the progressive nature of learning in different stages based on model-based
and model-free action selection strategies, we examined the behavior in GST in terms of cognitive-motor
dichotomy in internally-guided sequencing. We provide evidence to establish the role of cognitive as
well as motor learning in GST. Numerous studies have tried to reconcile the computational (model-based
vs. model-free) and behavioral (cognitive vs. motor) perspectives in understanding the distinct, parallel
processes involved in motor learning (Dezfouli and Balleine, 2012; Keele et al., 2003; McDougle and
Taylor, 2019; Savalia et al., 2016; Wolpert et al., 2011; Wolpert and Landy, 2012). In line with Fermin
et al. (2010), we show evidence for the role of the cognitive learning process as part of goal-directed,
model-based action planning in GST. The implications of our findings are two-fold—while establishing
the role of cognitive and motor processes in the non-trivial planning and sequence execution in GST,
we call for a renewed interest in understanding a class of practical, internally-guided motor sequence
learning tasks. In sum, sequencing behavior in GST involves both general motor learning and acqui-
sition of an internal model. Learning the association between the movements and the corresponding
keypresses allows for the acquisition of sequence as participants learn to “react” appropriately and ef-
ficiently to the motor intention or plan as circumscribed by the KM-specific internal model. General
motor learning results in quick and efficient performance with repeated execution of finger movements
in response to visual cues. The performance improvements due to motor learning may be driven by
motor chunking. In GST-like internally-guided tasks, practice-driven motor learning is constrained by a
goal-directed internal plan of sequential actions. The internal model in GST involves the acquisition of
a general structure or organization which guides the sequential order of keypress execution. A salient
feature of such paradigms is that motor learning is influenced by the structure and organization of prac-
ticed sequences. It is guided internally and not externally imposed. Consequently, internally-guided
paradigms involve developing internal representations for both the response-effect mappings for KM
and the sequence of keypresses (trajectory) to reach the goal. These internal representations are subject-
specific even when the participants were using the same KM on a similar SG condition. Our account
is again in line with the previous studies on the ideomotor framework of voluntary action control. The
action-effect (or R-E) bindings emerge during action planning, integrating components of the forward
and inverse models of motor control (Nattkemper et al., 2010; Ziessler et al., 2004).

GST involves the role of interleaved cognitive and motor learning components. This parallel trajec-
tory planning and motor learning induce a natural duality in the task. We speculate the role of working
memory and visuospatial attention in GST. The task involves divided attention where information such
as KM and the current trajectory is actively maintained online in the working memory. In contrast, SG
information in the visual buffer helps in directing the cursor towards the goal position. The executive
control inhibits the natural tendency of executing a response to generate the appropriate sequence of
keypresses, given the constraints of the KM-specific internal plan. The early practice phase would be
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characterized by high attentional and cognitive demands as the participants learn response-effect map-
ping for the KM. With trial and error, as they learn to move the cursor towards the goal, the visuospatial
attention and working memory are actively engaged to strategize navigation to the goal position. Fur-
ther practice allows for optimizing the trajectories to reach the goal position in an optimal number of
moves. Once an optimal path is discovered in the late practice phase, the performance improvements
occur predominantly due to motor learning. We speculate that motor chunking characterizes automatic
and habitual control with reduced attention.

Grid-sailing task is a simple canonical paradigm that does not require any complicated experimental
setting, yet it offers rich insights into the planning and sequencing behavior. Unlike other discrete se-
quencing tasks such as SRT, DSP, orm×n task, GST involves learning self-generated motor sequences.
In GST, the sequential keypresses are not guided by an external series of stimuli but are instead self-
initiated by a KM-specific internal model. The behavior in GST can be organized into the “planning”
and “executing” phases. These distinct phases enable natural dissociation of cognitive and motor strate-
gies involved in internally-guided sequence learning. This is a unique and helpful characteristic of GST
that can be leveraged to investigate the role of different learning processes involved in internally-guided
sequencing. The cognitive phase in GST can be distinctly associated with acquisition of the trajectory-
independent and KM-specific internal model, which is employed while navigating the grid. The learned
KM could also enable a selective transfer of the learned model to other tasks where the KM is com-
patible. Therefore, GST can also be used to study skill transfer and related behavioral phenomena.
Moreover, the GST task paradigm affords variations in different aspects. The GST instances can differ
in various factors such as grid-size, start-goal (SG) positions used, KMs associated with the task, and the
number of cursor movement directions. Owing to many possible variations in the GST paradigm, the
instances cover a broad spectrum of grid-navigation tasks that vary across aspects such as the difficulty
of solving, execution time required, and cognitive effort demanded—providing reasonable experimental
control that is necessary to study different factors involved in sequence learning tasks.

In this chapter, we aimed to identify the learning processes involved in GST. Therefore, the results
largely involved analysis of cumulative behavioral measures such as execution time and reward. In the
next chapter, we aim to investigate the nature of motor learning to understand the underlying mecha-
nisms of dexterous sequential finger movements. To this end, we identify temporal patterns in individual
keypress times and understand how these patterns evolve to facilitate efficient sequence execution.
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Chapter 3

Chunking in Motor Skill Learning
1

3.1 Introduction

Motor learning is a function of two specific categories of skill acquisition–motor adaptation and
motor chunking. Motor adaptation is the context-specific, error-driven acquisition of locomotor patterns,
which involves adjusting to changes in sensory input or motor output characteristics (Izawa et al., 2008;
Shadmehr and Mussa-Ivaldi, 1994). A practical example of motor adaptation is learning to use a mouse
pointer with different sensitivities. With changes in mouse sensitivities, we adaptively learn to map our
hand movements to mouse pointer movement changes. Motor chunking involves the consolidation of
certain movement elements into clusters that allow efficient execution of the multi-element sequence
(Sakai et al., 2003; Verwey and Eikelboom, 2003). With repeated rehearsals, the individual elements
are consolidated into a sequence of quick motor actions. For example, motor chunking is observed when
we learn the swift execution of keypresses while playing a videogame. Complex action sequences in the
game are broken down into multiple simple components (e.g., “Jump-forward-and-Shoot” or “Move-
right-Duck-Jump-forward”).

Much of the early interest in motor chunking focused on how the repeated execution of visuomo-
tor sequences leads to overall performance improvement. Studies have shown that the inter-response
intervals within certain sub-sequences decrease with practice compared to those in-between these sub-
sequences (Bo and Seidler, 2009; Kennerley et al., 2004; Verwey et al., 2009). It leads to the emergence
of distinct clusters of motor movements (called motor chunks), which facilitates efficient sequence ex-
ecution (Lashley, 1951; Rosenbaum et al., 1983; Zeigler and Gallistel, 1981). The chunks segment the
motor sequences into smaller representational clusters, reflecting integrated sequence representations
(Kennerley et al., 2004; Verwey et al., 2009). With substantial practice, the temporal patterns become
more prominent and the chunks can be identified more distinctively (Sakai et al., 2003; Verwey and
Eikelboom, 2003; Wymbs et al., 2012). The benefit of such segmentation of the action sequences is
that it reduces memory load during sequence execution (Bo and Seidler, 2009; Logan, 2018; Ramkumar

1This chapter is a slightly modified version of our publication Motor Chunking in Internally Guided Sequencing; Bera,
K., Shukla, A., & Bapi, R. S. (2021) in Brain Sciences.
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et al., 2016; Thalmann et al., 2019; Yamaguchi and Logan, 2014). Each motor chunk is stored as a single
memory representation and the entire chunk is loaded at once into the motor buffer for execution. This
results in “automatic” control of sequential movements with reduced cognitive demand (Abrahamse
et al., 2013). Previous studies have also shown that motor chunking is not merely an effect of rhythm
consolidation in sequential motor tasks. The time or memory resource constraints can also inhibit motor
chunk loading, leading to performance degradation (Verwey, 1996; Verwey and Dronkert, 1996). In the
explicit domain, motor chunking has been shown in paradigms such as discrete sequence production
task (DSP) and m× n task (Abrahamse et al., 2013; Bapi et al., 2000; Povel and Collard, 1982; Restle
and Burnside, 1972; Robertson, 2007; Sakai et al., 2003; Verwey and Eikelboom, 2003). Moreover,
some studies employing the serial reaction task (SRT) have also provided evidence for cluster pattern
of motor sequence performance during implicit learning of visuomotor sequences (Curran and Keele,
1993; Koch and Hoffmann, 2000; Nissen and Bullemer, 1987; Stadler, 1993).

While the emergence of similar cluster patterns has been observed in a variety of motor sequence
learning tasks, not many studies have examined the role of motor chunking in internally-guided sequenc-
ing. Our present study investigates the role of chunking in practice-driven performance improvements in
internally-guided sequencing. We hypothesize the role of chunking in motor learning in GST. The task
required participants to discover an optimal path to the goal position (via a sub-goal) using the learned
KM. They executed the same trajectory in all the subsequent trials to consolidate the learning. First, we
show overall learning, as reflected in improved execution times in successful trials with practice. Then,
we examine the underlying temporal patterns of keypress response times to show that the sequential
keypresses are organized in subsequences or chunks, facilitating efficient behavior. We show how these
clusters consolidate into fewer, larger chunks with practice in internally-guided sequencing. The signifi-
cance of our study lies in probing the role of chunking during motor learning in real-life paradigms. The
externally-guided paradigms, such as SRT or DSP, involve “passive” motor learning behaviors, which
are guided by external stimuli and so findings from these studies cannot be generalized to most practi-
cal motor tasks. Using canonical paradigms, such as grid-navigation, our study highlights how motor
learning can be investigated in more practical tasks.

3.2 Methods

The repeated sequential execution of keypresses in grid-navigation tasks amounts to sequence learn-
ing in an internally-guided fashion. These tasks involve navigating a cursor from the start position to
the goal position on the grid. The possible cursor movements are associated with particular keyboard
buttons in a one-to-one correspondence. Each individual path or trajectory from start to goal position
constitutes a novel sequence of keypresses. The optimal trajectory to the goal is dependent on other
task specifications such as possible agent movements and reward schema. To complete the trial suc-
cessfully, the participants can choose to reach the goal position using any possible optimal trajectories.
The repeated execution of these trajectories results in learning a self-generated, voluntary sequence of
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keypresses. This behavior during the sequential execution of motor actions provides us with rich in-
sights into how we become increasingly proficient in internally-guided tasks. Therefore, we employ an
adapted version of grid-sailing task (Fermin et al., 2010) to investigate chunking behavior in internally-
guided sequencing. Moreover, GST is a simple task and so the dissociation of the sequence-specific
motor learning is relatively easier when controlling for the trajectories executed. It is also a flexible
canonical paradigm that can be altered on factors, such as key mapping, start-goal position, size of the
grid and reward schema, to facilitate this dissociation and flexibly generate multiple variations of the
task.

3.2.1 Participants

Fifteen right-handed participants (7 women and 8 men) between ages 18 to 27 years (mean = 21.53;
SD = 2.79) performed the experiment for partial course credits. All participants were healthy with
normal or corrected-to-normal vision. The experiment was approved by the Institute Review Board,
IIIT-Hyderabad, India. The participants gave informed consent before the study. Two participants did
not complete the experiment as they were unable to recall the first optimal trajectory that they traversed.
The data from their attempts were excluded for all purposes. The data from the remaining thirteen
participants were used for all analysis purposes.

3.2.2 Apparatus

The participants were seated on a chair facing a high-resolution 24-in computer screen placed ap-
proximately two feet away. The responses were recorded using a conventional computer keyboard. The
participants used the right index, middle and ring fingers to press the numpad buttons “4”, “5” and “6”,
respectively. Other keys were removed to prevent meddling in response selection. Custom-made pro-
grams were written using Python3 and PyGame (Python Game Development) for stimulus presentation
and data recording.

3.2.3 Procedure

The subjects were given verbal instructions about the task rules before the session started. Each trial
began with the presentation of a 10 × 10 grid with a red fixation on the center of the screen. On pressing
the space button, after a random delay of 500–1000 ms, the trial would begin with the start position
marked as a green tile, the sub-goal position marked as a red tile and the goal position marked as a blue
tile. The cursor was shown as a black triangle, initially placed in the starting position. The participants
were given 9 s to solve each trial, and this duration was not explicitly conveyed to them. We computed
this to be an ideal adjusted trial duration based on the average length of optimal trajectories and the mean
execution time in the original GST study (Fermin et al., 2010). During the trial duration, participants
executed sequential keypresses to navigate the cursor from the starting position to the goal position via
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the sub-goal. The sub-goal was introduced to help participants in navigating to the goal position. To
complete the trial, the participants must reach the goal position only after visiting the sub-goal position.
The possible cursor-movement directions were defined by the key mapping (KM) (see Figure 3.1 B).
Apart from the possible number of movement directions, no other information about the key mapping
was conveyed to the participants. The task required participants to explore the possible KM movement
directions and the corresponding key associations by trial-and-error.

Figure 3.1 (A) Numpad keys and the respective hand fingers. (B) Key mapping (KM) used in the
experiment. The marked arrows show possible movement directions. The boxed numbers indicate the
numeric keys associated with the movements. (C) Task diagram: sequence of trial events. The green,
red and blue tiles show the start, sub-goal and goal position, respectively. An example optimal trajectory
is shown on the grid while using the KM from Fig. B

The participants were instructed to achieve a maximum score (of 100 points) while executing each
trial as quickly as possible. A maximum of 100 points was awarded when the participants traversed
an optimal path to reach the goal position. A minimum-steps trajectory from start to goal via the sub-
goal position is considered an optimal path. Suppose a non-optimal path was traversed, a penalty of
-5 points incurred for every excess move. In case the participant tried to perform an infeasible move,
such as moving out of the grid, the cursor stayed there, but the action increased the move count. If
the participant failed to reach the goal position in the given time duration, 0 points were awarded for
that trial. At the end of each trial, the performance feedback was presented for 2 s, following which
the fixation screen signaled the beginning of a new trial. In the center of the feedback screen, the
performance feedback was presented as two numbers: the number of moves in the traversed trajectory
and the trial reward score. A trial illustration is shown in Figure 3.1 C.

The trajectory was controlled for all subsequent trials to investigate the practice-driven performance
improvements with the repeated execution of sequences. The pair of start-goal (SG) positions and
the sub-goal position remained constant throughout the experiment. The participants were asked to
remember the first optimal path (minimum-steps trajectory; reward score = 100) traversed on the grid.
Once they discover an optimal path, the trajectory traversed in that particular trial was locked in the
program. In all subsequent trials, the participant must repeatedly traverse the same path to reach the
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goal and complete the trial successfully (reward score = 100). Any deviation from the locked path
will award the participant zero points and the trial will be deemed unsuccessful. The experiment ran
until subjects successfully performed 60 trials while repeatedly traversing the optimal path that they
first discovered. The participants were given a rest block after every 20 trials to minimize the effects of
muscle fatigue on task performance.

3.2.4 Behavioral Measures

The number of moves in the traversed trajectory, reward obtained, reaction time and execution time
were the performance variables recorded for each trial. Individual keypress response times (RTs) were
also recorded for key-level analysis purposes. Reaction time is defined as the time interval between
the onset of stimuli and the first keypress. Execution time is computed as the difference between the
keypress time of the last and the first response. For analysis purposes, the trials were classified into
two categories (1) successful trials—trials with perfect reward score (equal to 100), and (2) error tri-
als—trials with an imperfect reward score (not equal to 100). Only successful trials were included for
all analysis purposes.

3.3 Results

3.3.1 Learning in GST

Participants performed the grid-navigation task and the behavioral measures on each trial were
recorded. On average, each participant attempted 87 trials to complete 60 successful trials. The er-
ror trials constituted 30.6% of all trials. To examine how the learning evolves with GST, we plotted
mean error rates across all participants. The error rate is computed as the number of error trials at-
tempted to complete each successful trial. In Figure 3.2 A, we observe that most of the error trials
occur during the initial trials of the task when the participants are learning to use the key map to find an
optimal path to the goal position. The error rates drastically decrease after participants discover the first
optimal trajectory.

On plotting mean execution times for successful trials across participants, we see a decreasing trend
in the plot (see Figure 3.2 B). The decrease in execution times over trials can be attributed to performance
improvements due to learning. With practice, the participants learned the KM and utilized it to plan an
optimal trajectory to the goal position. Further performance improvements followed as they learned to
execute the trajectory sequences swiftly. The law of practice effect on learning is evident by examining
the initial and last trials. In the beginning, the participants took a longer mean execution time of 6247 ms
(SD = 1303) to complete the first trial successfully. After substantial practice, the mean execution time
on the last trial was significantly lower at 3822 ms (SD = 766). The execution time improvements sug-
gest that the participants learned to navigate and execute sequential keypresses efficiently with practice.
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Figure 3.2 (A) Learning in grid-sailing task (GST): the error rates decrease as participants (N = 13)
discover the optimal trajectory. (B) Trial-by-trial course of performance improvement in execution time
across participants (N = 13) in successful trials. The bars on plot data-points denote standard error.

A non-parametric Friedman test of differences among repeated measures (within-subjects) rendered a
significant effect of trials on the execution time (χ2(59) = 291.198, p < 0.001).

3.3.2 Motor Chunking in GST

The decrease in execution time over trials is illustrative of the performance improvement due to skill
learning. The improvement in execution time was observed even when participants repeatedly executed
the locked optimal trajectory (i.e., reward = 100). While the reward certainly guided the planning of
motor actions during initial trials by providing feedback on the optimality of the trajectory, it becomes
inconsequential to motor performance once the optimal trajectory is discovered. At this point, the
reward only indicates whether the same optimal trajectory was followed in the subsequent trials. Such
binarized reward feedback incentivizes the participants to repeatedly execute the same internally-guided
trajectory throughout the remaining experiment. This enables us to probe how spontaneous grouping
structure emerges in sequence execution as the motor performance is fine-tuned and optimized. We
hypothesize the role of motor chunking in practice-driven performance improvements. We identify the
motor chunks based on changes in temporal patterns of keypress RTs.

3.3.2.1 Identifying Chunk Patterns from Keypress RTs

The chunks were identified using Wilcoxon signed-rank tests between successive keypress response
times (RTs). Studies have shown that the initial element in a chunk typically exhibits a slower behavior
because of the RT cost of initializing and loading the motor chunk (Barnhoorn et al., 2019; Izawa et al.,
2008; Newell, 1991). Therefore, the keypress RT for the first element of the chunk is significantly
different from the next element. In agreement with this argument, if the nth and (n+1)st keypress RTs
are significantly different and the (n + 1)st keypress RT is less than nth keypress RT, both will belong
to the same chunk. Additionally, in case the (n + 1)st keypress RT is significantly higher than the nth

keypress RT, both keypresses will not belong to the same chunk. All successive elements with non-
significant keypress RT differences belong to the same chunk. To be considered as a chunk, the segment
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should have at least two keypress elements. Therefore, the three operating rules to identify chunks are (i)
the initial element in a chunk is typically characterized by a significantly higher RT than the following
keypresses; (ii) only successive elements with a statistically insignificant difference or monotonically
decreasing keypress RTs are appended to the current chunk; (iii) a significant increase in keypress RT
denotes the beginning of a new chunk. Figure 3.3 shows motor chunks (marked by brackets) in four
representative subjects in early and late practice phases. The first ten trials (trials 1–10) belong to the
early practice phase, whereas the last ten trials (trials 50–60) belong to the late practice phase.

Figure 3.3 Re-organization of chunks with practice. Average keypress response time (RT) comparison
plots for early (trials 1–10) and late (trials 50–60) phase in four representative subjects (K.M., A.S.,
M.D. and N.J.). The early and late phase RTs are plotted in red and blue, respectively. The brackets in
red and blue on the top of each plot denote chunks in the early and late phases.

3.3.2.2 Re-Organization of Action Sequences with Practice

To corroborate our findings, we also examine the emergence and re-organization of motor chunks
from the early practice phase to the late practice phase. Previous studies have shown that the motor
chunking in sequence learning tasks evolves with practice-induced changes in temporal patterns of ex-
ecution (Newell, 1991; Willingham, 1998). To check if the performance in the early phase is different
from that in the late phase, we computed the mean keypress RTs in each phase by averaging all the
keypress RTs (1–16) in each phase (10 trials) across all the subjects (N = 13). A paired t-test between
mean keypress RTs for early (mean = 358 ms; SD = 68) and late (mean = 257 ms; SD = 49) phase
showed a significant difference (t(12) = 11.435, p < 0.001).
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As the temporal patterns of sequence execution dynamically evolve with practice, the chunks re-
organize with repeated concatenation and segmentation. Table 3.1 records changes in chunk features
such as the number of chunks formed and the average length of chunks over the course of practice in
four representative subjects. For example, subject N.J. executed the entire sequence in five segments
during the early phase (red) and three segments during the late phase (blue). The average chunk length
increased from 2.80 to 5.33. The area between the two lines (red and blue) in Figure 3.3 indicates
performance gains with the re-organization of the chunks. A general increasing and decreasing trend
were found across all participants from the early to late phase for the average length of the chunk and
the number of chunks, respectively (see Figure 3.4). The average number of chunks across subjects in
the early and late phase were 3.923 and 3.154, respectively. As normality assumptions were violated,
we used a Wilcoxon signed-rank test, which suggests that the decrease in the number of chunks was
significant (df = 12, Z = 2.5, p = 0.026). The average chunk length across subjects increased from
4.153 in the early phase to 5.263 in the late phase. A Wilcoxon signed-rank test suggests that the
increase in chunk length was also significant (df = 12, Z = 6.5, p = 0.018).

Figure 3.4 Evolution of chunking behavior with practice. The number of chunks significantly decreased,
whereas the length of the chunks significantly increased from the early phase to the late phase. The bars
denote standard error. * p < 0.05.

3.4 Discussion

Motor chunking has been extensively studied in externally-guided tasks in both implicit and ex-
plicit domains. Not many studies have investigated chunking in internally-guided sequencing tasks.
To the best of our knowledge, this is the first study investigating motor chunking in internally-guided
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Subject Early Phase Late Phase
No. of Chunks Avg. Length of Chunks No. of Chunks Avg. Length of Chunks

K.M. 4 3.75 3 5.33
A.S. 4 4.00 2 7.50
M.D. 5 3.20 4 4.00
N.J. 5 2.80 3 5.33

Table 3.1 Re-organization of chunks with practice. A comparison of the number of chunks and length
of chunks in the early and late phase for four representative subjects, K.M., A.S., M.D. and N.J.

Figure 3.5 Re-organization of chunks with practice. Chunks are overlayed the trajectories for early
(trials 1-10) and late (trials 50-60) phase in four representative subjects (K.M., A.S., M.D., N.J.). Each
color denotes individual chunks. The moves marked in black do not belong to any chunk.
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paradigms. Using grid-navigation as an exemplar paradigm, we hypothesized the role of motor chunk-
ing in practice-driven performance improvements in internally-guided sequencing. First, we analyzed
the effect of trials on execution time to show trajectory-specific motor learning in GST. Then, we ana-
lyzed the temporal patterns of keypress RTs to provide evidence for motor chunking. Distinct clusters
of swiftly executed successive elements emerge with practice. We found that the keypress RTs are dif-
ferent in the early and late practice phase. We observed a significant improvement in keypress RTs
in the late phase due to chunk consolidation. We further showed how the chunk characteristics, such
as chunk length and number, evolve to facilitate efficient execution. The number of chunks decreased
as the length of chunks increased from the early practice phase to the late practice phase (see Table
3.1 and Figure 3.4). With practice, smaller chunks coalesce to form bigger chunks to promote simpler
integrated sequence representations that can be executed efficiently. We also observed that the chunk
boundaries did not simply correspond to switching between the keys, reiterating that chunking is not
merely functional (see Figure 3.5). We also found that in the early phase, the participants were slower
on the sub-goal, and hence, the sub-goal marked a chunk boundary. As the chunks evolved with practice,
the sub-goal was consequently executed as a medial keypress within the chunk for most participants. It
is indicative of the re-organization of the chunks, which happens to facilitate efficient execution. The
chunking behavior was found universally across all subjects. The chunking pattern in the sequence was
individual or subject-specific.

Our study corroborates findings from other studies on chunking and internally-guided tasks. The
learning in GST is a function of both cognitive and motor components. While cognitive learning relates
to the ability to navigate the grid using the acquired key map, motor learning involves acquiring skillful
sequencing behavior. The motor learning in GST is characterized by the improving dexterity of execut-
ing the sequences repeatedly. In line with previous work in externally-guided tasks, we show that the
sequence learning in GST-like internally-guided tasks is facilitated by segmenting the sequence into mo-
tor chunks (Schmidt et al., 2019; Shadmehr and Mussa-Ivaldi, 1994). Our findings also corroborate with
the computational account of learning proposed in (Verwey and Dronkert, 1996). The chunking-driven
efficiency can be attributed to the model-free, memory-based strategy that the participants use to repro-
duce pre-learned action sequences after extensive practice. Previous studies have identified chunking
as a cost-effective learning strategy that reduces overall computational complexity while maintaining
efficiency (Haibach et al., 2018). Neuro-imaging studies investigating GST and cued-sequence produc-
tion tasks provide evidence for the shared neural underpinnings of motor-memory guided actions and
chunking (segmentation and concatenation) processes. The supplementary motor area, putamen and an-
terior cerebellum areas are involved in GST in the late phase when the actions are habitual, automatized
and driven by model-free learning (Fermin et al., 2016). The studies have shown the role of senso-
rimotor putamen, frontoparietal network and pre-supplementary motor area during chunking behavior
in sequencing tasks (Barnhoorn et al., 2019; Clegg et al., 1998). Given these complementary findings,
future work can investigate if a computational framework of chunking can be conceptualized with the
joint modeling of response times and decisions in internally-guided sequencing tasks.
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While our study replicates previous findings from the chunking literature on a less constrained,
internally-guided sequencing paradigm, it is important to situate the behavioral phenomena in chunk-
ing in the context of the learning processes involved in internally-guided paradigms. In contrast with
externally-guided actions, internally-guided or intention-based actions involve higher-order cognitive
processes such as planning, memory and decision-making. Therefore, it is crucial to understand whether
internally-guided and externally-guided sequence learning have similar underlying mechanisms in light
of this differentiation. The sequence learning in externally-guided paradigms has long been explained
with multiple single-level accounts (see Abrahamse et al. (2010) for a review) of response location
associations, perceptual and response effect learning. Subsequent studies can probe if similar learn-
ing mechanisms are at play during internally-guided sequencing. The internally-guided tasks will al-
low us to disentangle and understand the contributions of perceptual and response–effect learning. In
line with some previous results (Ziessler and Nattkemper, 2001), we speculate that serial learning in
internally-guided tasks involves voluntary action control mechanisms characterized by the acquisition
of response–effect contingencies. In the ideomotor framework of action and perception, voluntary ac-
tion goals have been shown to influence internally-guided sequencing (Hoffmann et al., 2001; Hommel,
2003; Hommel et al., 2001). Based on previous neuroimaging studies (Jueptner et al., 1996; Jueptner,
1998; van Donkelaar et al., 1999), we anticipate the role of basal ganglia, pre-supplementary motor
cortex and dorsolateral prefrontal cortex in chunking in internally-guided sequencing tasks.

In the previous chapters, we have identified the processes underlying learning in GST and further
established the role of motor chunking. However, these behavioral experiments did not inform us about
how the learning progresses in GST. In the next chapter, we examine the stage-wise progression of learn-
ing using an inter-manual transfer task. We discuss how early and late practice phases are characterized
by differential engagement of the two learning processes or representations.
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Chapter 4

Inter-manual Transfer of Motor Skills

4.1 Introduction

In our everyday experiences, skill learning and skill transfer seem to be related phenomena. The most
common of them is the case of inter-manual transfer of skills. For example, it is difficult to perform tasks
such as writing, drawing and chopping using the non-dominant hand compared to the dominant hand. It
is easy and efficient to perform certain tasks on the ‘trained’ dominant hand. This can be explained based
on a dichotomic framework of cognitive-motor and effector-dependent-effector-independent learning.

Studies on the Grid-Sailing Task (Bera et al., 2021a) and other paradigms (Doya, 2000; Ghilardi
et al., 2009; Penhune and Steele, 2012) have shown the role of cognitive and motor components in skill
learning. The cognitive component is concerned with the acquisition of spatial-temporal order of move-
ments in the sequence. The motor component involves optimization of the fine motor movements, which
facilitate efficient sequence execution. In addition to the cognitive-motor dichotomy, studies have shown
evidence that the sequence learning employs two independent representations and processing (Hikosaka
et al., 1999; Keele et al., 1995; Kumar et al., 2020; Verwey and Clegg, 2005; Verwey and Wright, 2004).
Neuro-imaging studies have suggested two different neural circuits underlying these two independent
processes that code the sequence representations (Bapi et al., 2006; Hikosaka et al., 2002; Perez et al.,
2007). The learning in visual-spatial coordinates is effector-independent, whereas the learning in motor
coordinates is effector-specific (Bapi et al., 2000). The effector-specific motor learning is usually pro-
cessed implicitly and, therefore, slowly acquired. It requires minimum attentional and working memory
demands (Hikosaka et al., 1999). On the other hand, the cognitive component is often linked to the ac-
quisition of abstract sequence mechanisms (van Mier and Petersen, 2006). It is fast developing, accurate
in space but slow. It is typically characterized by significant cognitive demands (Hikosaka et al., 1999).
While there has been evidence (Shea et al., 2011) to show that effector-independent representations in
visual-spatial coordinates encode movement sequences more effectively even after substantial practice,
Bapi et al. (2000) showed that the time courses of acquisition during learning are different for both the
processes. The reliance on visual-spatial representation gradually decreases with practice. Other stud-
ies have also confirmed the findings that the sequence becomes increasingly effector-dependent with
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practice (Kovacs et al., 2009; Park and Shea, 2003; Verwey and Wright, 2004). The practice induces
rapid motor skill improvements that are non-transferable irrespective of the number of acquisition trials
(Boutin et al., 2012). Moreover, studies have also shown that transfer is symmetric when visual-spatial
coordinates are reinstated after the acquisition of sequence (Kovacs et al., 2009; Panzer et al., 2009).
However, the transfer was not symmetric when the motor coordinates were reinstated.

While studies (Thomas et al., 2012) have investigated such accounts of learning in externally-guided
sequencing, not much is known about the progressive nature of learning in internally-guided sequenc-
ing. In this experiment, we employ a transfer task to probe the stage-wise transitions of the underlying
learning processes during the acquisition of motor sequences. We aim to understand what kind of se-
quence knowledge is acquired during different phases of learning. We hypothesize that learning in GST
involves a transition from a dominant role of the cognitive component (effector-independent represen-
tation) in the early phase to the motor component (effector-dependent representation) in the late phase.
The participants performed GST on the same SG position in three sessions on consecutive days. Each
session started with a normal block where the participants used the dominant hand to perform the task.
The normal block was followed by a transfer block where the participants used the non-dominant hand.
Across days, the transfer block was introduced after varying amounts of practice on the normal block.
To empirically test the cognitive to motor ‘switch’ hypothesis, we compare the performance measures
on normal and transfer blocks across days. We anticipate increasing differences in performance between
the normal and transfer blocks as a function of practice.

4.2 Methods

4.2.1 Participants

Fourteen participants (11 men and 3 women) between ages 19 to 25 years (mean = 22.36; SD = 1.84)
performed the experiment for partial course credits. All the participants were healthy, right-handed
individuals with normal or corrected-to-normal vision. The experiment was approved by the Institute
Review Board, IIIT-Hyderabad, India. The participants gave informed consent before the study. Not
all participants completed the experiments as a few of them dropped out of the sessions on Day-2 and
Day-3.

4.2.2 Apparatus

The participants were seated on a chair facing a high-resolution 24-in computer screen placed ap-
proximately two feet away. The responses were recorded using a conventional computer keyboard. The
participants used the numpad buttons “4”, “5” and “6” to execute the movements. Other keys were re-
moved to prevent meddling in response selection. Custom-made programs were written using Python3
and PyGame (Python Game Development) for stimulus presentation and data recording.
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4.2.3 Procedure

The subjects were given verbal instructions about the task rules before the session started. Each trial
began with the presentation of a 10 × 10 grid with a red fixation on the center of the screen. On pressing
the space button, after a random delay of 500–1000 ms, the trial would begin with the start position
marked as a green tile, the sub-goal position marked as a red tile and the goal position marked as a blue
tile. The cursor was shown as a black triangle, initially placed in the starting position. The participants
were given 9 s to solve each trial, and this duration was not explicitly conveyed to them. During the trial
duration, participants executed sequential keypresses to navigate the cursor from the starting position
to the goal position via the sub-goal. The sub-goal was introduced to help participants in navigating to
the goal position. To complete the trial, the participants must reach the goal position only after visiting
the sub-goal position. The possible cursor-movement directions were defined by the key mapping (KM)
(see Figure 4.1 A). Apart from the possible number of movement directions, no other information about
the key mapping was conveyed to the participants. The task required participants to explore the possible
KM movement directions and the corresponding key associations by trial-and-error. The participants
were randomly assigned one of the two possible SG conditions used in the experiment (see Figure 4.1
B). Thus, 5 participants performed GST on SG1 and 9 participants performed GST on SG2.

Figure 4.1 (A) Key mapping (KM) used in the experiment. The marked arrows show possible movement
directions. The boxed numbers indicate the numeric keys associated with the movements. (B) The start-
goal (SG) conditions used in the experiment. The green, red and blue tiles show the start, sub-goal and
goal position, respectively. (C) Task diagram: sequence of trial events. An example optimal trajectory
is shown on the grid while using the KM from Fig. A
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The participants were instructed to achieve a maximum score (of 100 points) while executing each
trial as quickly as possible. A maximum of 100 points was awarded when the participants traversed
an optimal path to reach the goal position. A minimum-steps trajectory from start to goal via the sub-
goal position is considered an optimal path. If the participant traversed a non-optimal path or failed to
reach the goal position, 0 points were awarded for that trial. In case the participant tried to perform
an infeasible move, such as moving out of the grid, the cursor stayed there, but the action increased
the move count. At the end of each trial, the performance feedback was presented for 2 s, following
which the fixation screen signaled the beginning of a new trial. In the center of the feedback screen, the
performance feedback was presented as two numbers: the number of moves in the traversed trajectory
and the trial reward score. A trial illustration is shown in Figure 4.1 C.

Figure 4.2 Transfer task experiment design. The normal blocks (black) are performed with the dominant
hand whereas the transfer block (brown) are performed with the non-dominant hand. On all the three
days, the participants first performed GST on normal block followed by the transfer block. The transfer
block is introduced after varying amount of practice on the normal block.

The transfer experiment involved three task sessions conducted on consecutive days. The task in-
volved dominant to non-dominant transfer to probe the progressive nature of learning in GST. The
session involved performing GST on the normal block and then on a transfer block on all three days.
The normal block was performed using the dominant hand, whereas the transfer block was performed
using the non-dominant hand. The task design had interleaved normal and transfer blocks. The length
of the first normal block on the three days varied (5 successful trials on Day-1, 10 successful trials on
Day-2 and 20 successful trials on Day-3). The first normal block was followed by the transfer block
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(5 successful trials). The transfer block was followed by the second normal block (5 successful trials).
Figure 4.2 shows the transfer experiment design.

4.2.4 Behavioral Measures

The number of moves in the traversed trajectory, reward obtained, reaction time and execution time
were the performance variables recorded for each trial. Individual keypress response times (RTs) were
also recorded for key-level analysis purposes. Reaction time is defined as the time interval between
the onset of stimuli and the first keypress. Execution time is computed as the difference between the
keypress time of the last and the first response. For analysis purposes, the trials were classified into
two categories (1) successful trials—trials with perfect reward score (equal to 100), and (2) error tri-
als—trials with an imperfect reward score (not equal to 100). Only successful trials were included for
all analysis purposes.

4.3 Results

The execution time on the successful trials was plotted for all three days (see Figure 4.3). As the
participants learn to execute the sequence efficiently, we see a decreasing trend in the execution time on
all three days. On Day-1, the execution time improved from 5166 ms (SD = 1299) in the first successful
trial to 3558 ms (SD = 1318) in the last successful trial of the first normal block. A non-parametric
Friedman test of differences among repeated measures (within-subjects) rendered a significant effect of
trials on the execution time on Day-1 (χ2(4) = 18.80, p < 0.001). Similarly, on Day-2, the execution
time improved from 3039 ms (SD = 571) in the first successful trial to 2703 ms (SD = 824) in the last
successful trial of the first normal block. A Friedman test on execution time indicated a significant effect
of trials on Day-2 (χ2(9) = 20.821, p = 0.013). On Day-3, the execution time improved from 2817 ms
(SD = 493) in the first successful trial to 2399 ms (SD = 327) in the 20th successful trial. However, a
Friedman test on execution suggested a non-significant effect of trials on Day-3 (χ2(19) = 26.704, p =

0.112).

To probe performance improvements over the span of days, we compared the execution time on the
initial trials of all three days. The execution time decreased from 5166 ms (SD = 1299) in the initial
trial of Day-1 to 3039 ms (SD = 571) in the initial trial of Day-2. A Wilcoxon signed-rank test revealed
that this decrease in execution time was significant (df = 12, Z = 91, p < 0.001). The execution
time further decreased to 2817 ms (SD = 493) in the initial trial of Day-3. A Wilcoxon signed-rank test
suggested that this decrease was non-significant (df = 6, Z = 24, p < 0.109).

We also observed practice-related performance improvements in the transfer block across days. The
execution time for the first transfer trial improved from 3538 ms (SD = 737) on Day-1 to 3115 ms (SD =
926) on Day-2 and further to 2778 ms (SD = 670) on Day-3. A Wilcoxon signed-rank test suggested that
the difference in execution time on Day-1 and Day-2 was non-significant (df = 12, Z = 73, p < 0.057).
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Figure 4.3 Mean execution time in the transfer task across three days. The brown dotted lines denote
transfer block start/end and the brown datapoints denote execution time on transfer block.
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Similarly, the difference in execution time on Day-2 and Day-3 was also non-significant (df = 6, Z =

16, p = 0.813).

4.3.1 Performance comparison between the normal and transfer block

We compared the mean execution time on the transfer block and the second normal block. On Day-
1, the execution time increased from 3001 ms (SD = 658) on the normal block to 3221 ms (SD = 683)
on the transfer block. A Wilcoxon signed-rank test indicated that the difference was non-significant
(df = 13, Z = 83, p = 0.058). On Day-2, the execution time in the normal block was 2693 ms (SD =
706). The execution time increased to 2867 ms (SD = 550) on the transfer block. A Wilcoxon signed-
rank test indicated that the difference was non-significant (df = 12, Z = 65, p = 0.191). Similarly, on
Day-3, the execution time increased from 2350 ms (SD = 301) on the normal block to 2730 ms (SD =
533) on the transfer block. A Wilcoxon signed-rank test suggested that the difference was significant
(df = 6, Z = 28, p = 0.016).

Figure 4.4 Comparison of performance on the normal and transfer blocks. Mean execution time is
plotted for the transfer block and the (second) normal block for each day. ns non-significant; ∗ p < 0.05

4.4 Discussion

We performed an inter-manual transfer experiment to gain insights into the nature of representations
acquired with learning progression. The experiment design involved introducing a transfer block after
varying amounts of practice on the normal block across the three days. Thus, the experiment involved a
switch from the dominant hand to the non-dominant hand. The rationale for employing dominant to non-
dominant switch was to minimize practice-related transfer effects. Studies have shown that sequence
learning is asymmetrically transferred during inter-manual transfer tasks - the transfer is better from the
non-dominant to the dominant hand (Hicks, 1974; Parlow and Kinsbourne, 1990; Sakai et al., 2003;
Taylor and Heilman, 1980).
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In our transfer experiment, the SG condition remained the same across all three days on both con-
ditions. The optimal trajectory to the goal position (the sequence of keypresses) remained the same
in both conditions. However, in the transfer condition, the sequence of motor responses (finger move-
ments) differed from the normal condition because participants were using different hands in both con-
ditions. Since the untrained, non-dominant hand is used on the transfer block, the sequence execution
is facilitated solely by the learning in the abstract, visual-spatial domain. Therefore, the performance in
the transfer block is only a function of the effector-independent learning. While we observed practice-
related performance improvements in transfer blocks across days, the decrease in execution time was
non-significant.

A trend in performance differences between the normal and transfer block would suggest the extent
to which the sequence learning is restricted to effector-independent learning. The effector-independent
learning occurs at a more abstract level, such as response selection or response locations (Keele et al.,
1995; Willingham et al., 2000). If learning relies predominantly on the effector-independent knowledge,
then we do not anticipate significant differences in performances while using either hand. On the other
hand, if the learning is primarily effector-dependent, then the performance on the trained hand would be
better than that on the untrained hand.

Our findings suggest that the participants become progressively better at performing the task in nor-
mal conditions. With substantial practice, an optimized motor program is learned that facilitates quick
and efficient execution of the sequence. Given that the acquisition of such a motor program is effector-
specific, the performance on the transfer block does not benefit from this motor learning. Therefore,
we observed increasing differences in performance on the normal and transfer block across the days.
During the early practice phase, the learning is primarily effector-independent, and therefore, we did
not observe significant differences on Day-1 and Day-2. The late practice phase involves the dominant
role of effector-dependent representation, and therefore, we observed that the trained, dominant hand
is efficient at performing the task than the untrained, non-dominant hand. In short, sequence learn-
ing relies on effector-independent representations in the early practice phase and on effector-dependent
representations in the late practice phase.

In line with previous studies, we show a transition from effector-independent learning to effector-
dependent learning during sequencing behavior (Bapi et al., 2000; Hikosaka et al., 2002). Our findings
validate a phase-wise switch from the cognitive to the motor learning processes. Moreover, our findings
corroborate with Fermin et al. (2010)’s account of learning. They hypothesized the role of multiple
controllers in sequential action selection in GST. They show how these controllers take a dominant role
in sequencing based on the progress of learning. Once the participants map the actions (keypresses) to
their results (movements), action selection likely involves a dominant role of planning for successful
goal-reaching. The later practice phase is characterized by quick and efficient execution of motor re-
sponses. Therefore, the learning transitions from relying on abstract, response-based representations to
more effector-dependent representations with practice. This is evidenced by the increasing differences
in performances on normal and transfer blocks across the three days in our experiment. The follow-
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ing chapter presents a computational equivalence of cognitive and motor learning and discusses how it
might relate to effector-independent and effector-dependent representations in learning.

The current and previous chapters presented an empirical investigation of the typical behavioral
phenomenon in GST. In the next section of the thesis, we examine internally-guided sequencing from a
computational perspective. We first situate the behavioral phenomenon in GST in a dual process account
of learning. Then we investigate if a reinforcement learning based computational account of sequence
learning gives additional insights into internally-guided sequencing.
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Chapter 5

A Computational Account of Learning
1

5.1 Reinforcement Learning

Reinforcement Learning (RL) is an unsupervised way of training an agent to take actions in the
environment while maximizing some reward objective (see Figure 5.1). Using RL, the agent learns
from the environment on its own. There is no involvement of a supervisor that guides the learning.
Unlike other classes of machine learning algorithms, RL does not involve any training over data. The
only input to the RL agent is the dynamic feedback it receives while interacting with the environment.
Using this feedback, the agent iteratively learns to make sequential decisions that maximize its reward
function. RL can be used as a general computational framework for solving numerous real-world tasks.
The applications range from training an artificial agent to play chess, operating a robot in a factory, to
building an autonomous driving vehicle.

To use RL in the problem at hand, we must re-structure the problem in a particular mathematical
formulation called a Markov Decision Process (MDP). The MDP is based on the fundamental assump-
tion of Markov property. The Markov assumption states that given the present, the future is independent
of the past. It means that the future course of action is only dependent on the current state of the
environment. The actions taken in the past do not matter. Brownian motion is an example of a ran-
dom process that follows Markov property. The MDP can be mathematically formalized in a tuple
as < S;A;T ;R; γ >. Here, S is the set of states in the environment; A is the finite set of possible
actions that the agent can take in the environment; T is the transition probabilities matrix; R is the
reward function defined over the states and γ is the discount factor that denotes discounting for the
temporally-distant rewards. The transition probabilities matrix, or simply the transition table, is of the
form T (s; a; s′) which denotes the probability of transitioning from state s to state s′ on taking action
a. The reward function takes the form R(s; a; s′) which indicates the immediate reward received by the

1This chapter is a modified version of our publication Value-of-Information based Arbitration between Model-based
and Model-free Control (Oral); Bera, K., Mandilwar, Y., & Raju, B. (2019) in Sixth Annual Conference of the Cognitive
Science Society, Goa, IN.
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agent on taking action a in state s while leading to a transition to state s′. The transition probabilities
and the reward function together are referred to as the ‘model’ of the environment.

The mathematical objective in RL is to solve for optimal policy or optimal values. The policy (π(s) :
S → A) is analogous to a look-up table that maps a state to an action. The optimal policy is the best
policy yielding highest expected cumulative rewards for the agent. The optimal policy can be determined
from the state values (V (s)). The state values denote the ‘good-ness’ or utility of being in a particular
state. The state value is the expected cumulative reward for the agent in a given state. Mathematically,
∀s ∈ S it is expressed as

V (s) = E[
T∑
i=1

γi−1ri],

where T is the length of the episode. The state-action value or the Q-value (Q : S × A → R) denotes
the expected cumulative reward while taking a particular action in the given state. An optimal policy
implicitly implies knowledge of optimal state values and optimal state action values. In other words,
∀s ∈ S,

V ∗(s) = max
π

V π(s) = max
a

Q∗(s, a),

where V π(s) denotes value function for a given policy π, V ∗(s) denotes the optimal state value and
Q∗(s, a) denotes optimal state-action value.

The fundamental principle underlying RL is learning by trial-and-error. As the agent interacts with
the world, it receives feedback. This feedback is used to learn and determine the next best action that
needs to be taken. For example, if the agent receives a very large positive reward for taking a particular
action in the given state, it will consider it as a beneficial one. The agent will try to execute the same
action when it is in that state to maximize the rewards. On the other hand, a negative reward or penalty
will refrain the agent from taking the chosen action again.

Figure 5.1 Reinforcement learning: learning by trial-and-error (Sutton and Barto, 2018).
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5.1.1 Model-free RL

As the name suggests, model-free RL does not require the use of transition probabilities or the
reward function. Model-free RL estimates the value functions directly based on the interactions with
the environment. It involves an iterative update of the state-action values by trial and error from the
agent’s experiences. It is a suitable RL solution when the model of the environment is unknown or
the environment is too complex. Model-free RL is commonly implemented using temporal difference
(TD) learning. In TD learning, the agent’s value estimates are updated at each decision step once the
reward is obtained on taking some action. It can learn from incomplete episodes or sequences. The new
value estimate is obtained by updating the older estimates with a scaled target error. The target error is
computed as the difference between target utility of the state and the older estimate. The scaling factor
is called the learning rate (denoted by α). Here we consider two types of TD learning methods that
estimate the optimal state-action values (see Figure 5.2). Model-free RL is computationally inexpensive
but sample inefficient as compared to the Model-based RL.

Figure 5.2 (A) SARSA and (B) Q-Learning backup diagram (Sutton and Barto, 2018).

5.1.1.1 SARSA

SARSA stands for State-Action-Reward-State-Action. It is an on-policy temporal-difference learn-
ing algorithm, that is, it learns the same policy which is used to decide what actions to take. The target
policy and the behavior policy is the same. The update rule for SARSA is

Q(st, at) = Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]
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5.1.1.2 Q-Learning

Q-Learning is an off-policy temporal-difference learning algorithm (Watkins and Dayan, 1992) al-
most similar to SARSA. The only difference is that the learned policy is different from the policy which
is used to guide actions. The update rule for Q-Learning is

Q(st, at) = Q(st, at) + α[rt+1 + γmax
a′

Q(st+1, a
′)−Q(st, at)]

5.1.2 Model-based RL

Model-based RL is used when the internal model of the environment is known. It aims to construct
a model of the environment based on the actual interactions. Using the acquired model, it involves
planning to learn the optimal policy. Thus, Model-based RL involves learning the optimal state values
with reduced interactions with the environment. It leverages the functional and structural representation
of the environment to quickly learn the optimal course of actions (see Figure 5.3). The acquired model
is used to simulate plans and estimate expected cumulative rewards for a given state. Model-based RL is
very sample efficient as compared to the Model-free RL but the planning is computationally expensive.

Figure 5.3 Model-based Reinforcement Learning (Sutton and Barto, 2018).

5.1.2.1 Depth-Limited Search

We implemented model-based RL using depth-limited search algorithm. The value function for a
state represents discounted cumulative reward that the agent is expected to obtain in that state. It can be
computed using the Bellman update equations (Sutton, 1991; Sutton and Barto, 2018). Therefore, the
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optimal state values are computed as

V ∗(s) = max
a

Q∗(s, a)

Q∗(s, a) =
∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

V ∗(s) = max
a

∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

The state value V (s) denotes average cumulative discounted reward, weighted by the probability
of transitioning to the next state s′ on taking action a in state s. In order to compute the state values
V (s′), the depth-limited search unrolls the model-based tree of state, action and resulting state to a
pre-specified depth (see Figure 5.4). The value of V (s′) is obtained by adding the expected returns of
actions up to roll-out depth and the cached state value at the deepest level of the tree. The updates are
then propagated to the root node of the search tree.

At each step, as the agent interacts with the environment, the transition table is updated to reflect the
probability of transitioning from state s to another state s′ on taking action a. The state prediction error
(SPE) is computed as

δSPE = 1− T (s, a, s′)

The transition probability is updated as

T (s, a, s′) = T (s, a, s′) + ηδSPE ,

where η is a free parameter controlling the learning rate (Gläscher et al., 2010). The state transition
probabilities for all the other states s′′ other than s′ are updated as

T (s, a, s′′) = T (s, a, s′′)(1− η)

While depth-limited search is not as computationally efficient as a value iteration or policy, the
studies have shown that such a model is a more biologically plausible mechanism of forward planning
(Keramati et al., 2016; Mushiake et al., 2006).

5.2 Dual Process Account of Skill Learning

The sequence learning has been explained in a dual-process framework of two parallel learning
processes. The typical behavioral phenomenon in skill learning has long been explained based on a
functional dichotomy of the involved processes. For example, while some studies (Bapi et al., 2000;
Hikosaka et al., 1999) situate the parallel learning in visual-spatial and motor coordinates, other studies
(Fermin et al., 2010; Huang et al., 2011; Lee and Schweighofer, 2009; Smith et al., 2006; Wolpert
et al., 2011; Wolpert and Landy, 2012) provide an account of learning based on the complementary
roles of slow and fast learning processes. Other studies have investigated the role of procedural versus

48



Figure 5.4 Model-based tree as internal representation of the environment

declarative memory and implicit versus explicit learning (Keele et al., 2003). Theoretical frameworks
have also been proposed to provide a unifying account of these dichotomies (Savalia et al., 2016).

Skill learning involves learning a sequence of actions, the performance on which typically improves
when executed multiple times. In this context, the skill learning problem, when formulated as an MDP,
can be solved using reinforcement learning. Studies have show that motor skill learning involves se-
quential decision making (Chen et al., 2017; Huang et al., 2011; Wolpert and Landy, 2012). Haith and
Krakauer (2013) argued that motor learning involves both model-based and model-free mechanisms of
control. They describe that the brain implements a forward model, which is updated using sensory pre-
diction errors. The forward model consists of an internal representation used to predict future states of
the motor system (Shadmehr and Krakauer, 2008). The indirect updates to the forward model enable
the control policy to adapt to perturbations and plan movements. On the other hand, model-free learning
leads to the acquisition of optimal control policy with repeated error-driven adjustments. Other studies
have also suggested complementary roles of dual learning processes and associated neuronal pathways
in motor control (Doya, 1999, 2000; Galea et al., 2011; Shadmehr and Krakauer, 2008).

5.2.1 Habitual Learning as Model-free RL

Habitual learning results from experience-dependent repetitive behaviors (Graybiel, 2008). Habit-
ual learning is exhibited through the reinforcement of the associations between the stimuli and the re-
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sponses. Such instrumental learning is computationally inexpensive but insensitive to situations where
the learned actions result in undesired outcomes (Adams and Dickinson, 1981). The habitual control
is characterized by computational efficiency and automaticity of execution with reduced cognitive de-
mands (Dayan, 2009). Studies have identified the neural underpinnings of habitual learning. It is shown
that dorsolateral striatum is involved in instrumental learning (Yin and Knowlton, 2006; Yin et al., 2004).
The habitual control is, therefore, computationally modeled using model-free RL (Daw et al., 2005).

5.2.2 Goal-directed Learning as Model-based RL

Studies have shown empirical evidence for goal-directed planning behaviors in action control (Balleine
and Dickinson, 1998; Balleine and O’Doherty, 2010; Tolman, 1948). Goal-directed learning involves
multi-step planning to achieve the desired goal. The planning in goal-directed learning involves the
acquisition of an internal representation (called a ‘model’) that captures the environmental dynamics.
The model is used to simulate and evaluate the consequences of actions to estimate the expected out-
comes of a sequence of actions. Neuro-imaging studies have confirmed the role of prefrontal cortex and
anterior striatum in goal-directed action selection (Balleine and O’Doherty, 2010; O’Doherty, 2011).
Using such a model, the agent learns the optimal plan of action that can be executed to achieve the
objective at hand. In other words, goal-directed learning is acquired through the knowledge of the ac-
tions and the corresponding outcomes. Therefore, goal-directed learning demonstrates adaptive and
flexible behavior when a change (for example, reward devaluation) is introduced in the environment.
It also involves substantial computation costs with the engagement of higher-order cognitive processes
(Dayan, 2009). Given the analogous properties, goal-directed control is computationally described by
model-based reinforcement learning (Khamassi and Humphries, 2012).

5.3 Arbitration between Model-free and Model-based RL

Multiple behavioral and neuro-imaging studies provide support for a dual-process account of motor
skill learning. From a computational perspective, the dual processes can be modeled using the princi-
ples of reinforcement learning. As described in the previous sub-sections, the habitual control can be
modeled using model-free RL, whereas the goal-directed control can be modeled using model-based
RL. However, an open question to investigate is how the brain arbitrates between multiple controllers.
How does the behavior arise from the interactions between the dual processors? The evidence sug-
gests that the arbitration is dependent on factors such as task complexity (McDougle and Taylor, 2019),
time constraints for planning (Fermin et al., 2010) and uncertainty (Daw et al., 2005) among others.
Here we outline some of the previous attempts at reconciling the complementary roles of habitual and
goal-directed processes.

The study in Daw et al. (2005) proposed an arbitration scheme that selects the output of the domi-
nant processor, which predicts the optimal action with the least uncertainty. Lee et al. (2014) proposed
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a similar arbitration scheme where the degree of control exhibited by each processor is a function of the
reliability of their respective predictions. Gläscher et al. (2010) represented the action values of the hy-
brid learner as a weighted sum of action values of model-free (SARSA) and model-based (FORWARD)
learners. In another study, Keramati et al. (2016) present a ‘plan-until-habit’ strategy in order to balance
the speed and accuracy tradeoffs with an intermediate form of control. Their model simulates the tree
of future states and actions up to a certain depth and then adds the cached habitual assessment of the re-
maining states at the deepest level of the tree to estimate the state values for decision-making. The study
in Pezzulo et al. (2013) proposes a value-of-information based arbitration in order to flexibly combine
the use of model-free (Q-learning) and model-based (sequential Monte-Carlo) methods for solving a
double T-maze environment.

In this work, we propose two hybrid schemes - Value-of-Information based arbitration and weighted-
hybrid arbitration. Using simulations, we compare the performance of both these models to the other
agents such as Q-Learning, SARSA and random. We further perform model-fits to the experimental
data and identify the best-fit model.

5.3.1 Value-of-Information(VoI) based arbitration

Based on the model put forward in Pezzulo et al. (2013), we propose a VoI based arbitration that
balances the speed-accuracy trade-off. The advantage of such arbitration is that the model exhibits the
comparative advantage of model-based and model-free mechanisms at different stages of the learning.
The model-based RL is implemented as a forward tree-based search using a depth-limited search algo-
rithm. For all simulation and model-fitting purposes, we have set the maximum depth as 2. When the
max depth is set as zero, it acts like a normal off-policy algorithm with a one-step look-ahead. If the max
depth is set to some arbitrarily high value (infinity), the model behaves like a sampled value-iteration
algorithm. The model-free RL is implemented using the Q-Learning algorithm.

A cost-benefit meta-control involves computation of the VoI. The VoI represents the advantage of
using goal-directed planning in terms of improving the state-action estimates. The expensive goal-
directed planning is only invoked if the benefits of such a computation outweigh its costs. In case the
benefits are non-substantial as compared to the costs, computationally inexpensive habitual behavior is
preferred.

The VoI is computed as

V oI(s, a) =
C(s,a)

σ(s) + ε
,

where C(s,a) is the uncertainty, defined as the variance of the state-action values and σ(s) is the std.
deviation in state-action values Q(s, .). We add some quantity ε to ensure that the denominator is non-
zero. The cost of the model-based tree search in the tth trial is given by

V oIthreshold = a.eb×t,

where a and b are free parameters denoting the offset and slope of the function, respectively.
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Figure 5.5 A schematic diagram of the VoI based arbitration (Adapted from Pezzulo et al. (2013)).
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Therefore, the interaction with the environment occurs in either of the two stages: ‘planning’ and
‘acting’ (see Figure 5.5). If the VoI (benefit) is greater than the threshold (cost), it implies a greater
uncertainty about the estimates of the state values and thus, model-based planning is employed to im-
prove the estimates. On the other hand, if the VoI is less than the threshold, the agent is certain about
the outcome of its actions in the given state and therefore, the model-free behavior is executed. The
model employs a stochastic action selection using a softmax function on the state-action values. The
probability of choosing action a in the state s is given by

P (a|s) = eβ×Q(s,a)∑n
b=1 e

β×Q(s,b)
,

where β is the inverse-temperature parameter, which modulates the ‘greediness’ in action selection. As
β → 0, the selection is random and if the β →∞, the selection is focused on the highest-valued action.

We tested the computational model by simulating the Mixed-SG condition from Chapter 2. Figure
5.6 shows a simulation run using the VoI based arbitration. We observed an increase in reward over
the trials, suggesting that the agent was able to navigate to the goal position in an optimal number of
moves. We also plotted the arbitration between the dual controllers. We counted the number of model-
based evaluations and the number of model-free evaluations in each trial for all the simulation runs. The
fraction of total evaluations was computed for both the controllers. We observed that model-based RL
dominates the initial phase of learning. Almost 70% of the evaluations were model-based in the initial
trial. This is because in the early training, the agent has not explored the environment. Thus, VoI is high
and the agent invokes goal-directed planning. The model-based state-space search enables the agent to
update the uncertain or unknown estimates of the state-action values. The updated estimates can then
be employed to follow an optimal course of action. We observed that the model-free controller executes
a smaller fraction of the total evaluations since the agent is not certain about the consequences of its
actions in the environment. With practice, the fraction of model-based evaluations decreased to almost
zero, whereas the fraction of model-free evaluations increased. As the agent explores the environment
and learns the state-action values, the agent becomes more certain of its actions, and consequently, VoI
decreases. This results in decreasing reliance on the model-based controller. The model-free controller
dominates the late training phase.

5.3.2 Weighted-hybrid arbitration

Based on the proposal in Gläscher et al. (2010), we implemented a weighted-hybrid model which
combines the state-action value estimates from the model-based and model-free learner. The model-
free updates are implemented using the Q-Learning algorithm, whereas the model-based updates are
implemented using the depth-limited search. The model-based and model-free RL maintain separate
estimates of the state-action values. The values are integrated by taking a weighted sum of estimates
from both the controllers. The state-action values for the weighted-hybrid learner are computed as

Qweighted−hybrid(s, a) = w ×Qmodel−based(s, a) + (1− w)×Qmodel−free(s, a),
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Figure 5.6 (A) A simulation run using the VoI based arbitration. The reward obtained is plotted across
trials. The plot is generated by simulating the model for 20 runs. The mean and SEM are plotted. (B)
The dual process arbitration across trials. The fraction of total evaluations are plotted for both - MB and
MF controller.
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Figure 5.7 Simulations of VoI-based arbitration with different model parameters. The parameters a
and b vary across simulations. Each reward plot is generated by simulating the model with the given
parameters for 10 runs. The mean and SEM are plotted.
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where w is the trial-specific weight term. The weight term wt for the trial t is computed as

wt = k × e−lt,

where k and l are free parameters describing the offset and slope of the function, respectively. The
probabilistic action selection is implemented using a softmax function (as described earlier). Figure 5.9
shows a simulation run using the weighted-hybrid arbitration.

Figure 5.8 A schematic diagram of the weighted-hybrid arbitration (Adapted from Gläscher et al.
(2010)).

On simulating the model, we observed that the agent is quickly able to learn the environment. The
reward obtained increased with the trials, implying that the agent learned to navigate to the goal position
while maximizing the reward score. We also plotted the dual-process arbitration. We observed that the
trial-specific weight parameter w decreases over the practice. This suggests that the weight of the
model-based estimates decreased over time. In the early training phase, the weighted-hybrid estimates
were predominantly governed by the model-based controller. With practice, we observed that the w
decreased and 1 − w increased. In the late training phase, the weighted-hybrid estimates were largely
determined by the model-free controller. Once the agent learned the environment dynamics, it employed
this knowledge to figure out the optimal course of action.
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Figure 5.9 (A) A simulation run using the weighted-hybrid arbitration. The reward obtained is plotted
across trials. The plot is generated by simulating the model for 20 runs. The mean and SEM are plotted.
(B) The dual process arbitration across trials. The relative weights (w and 1− w) are plotted for both -
MB and MF controller.
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Figure 5.10 Simulations of weighted-hybrid arbitration with different model parameters. The param-
eters k and l vary across simulations. Each reward plot is generated by simulating the model with the
given parameters for 10 runs. The mean and SEM are plotted.
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5.4 Simulation

To compare the performance, we simulated VoI based arbitration, weighted-hybrid arbitration, SARSA
and random models on the Mixed-SG condition (see Figure 5.11). We observed that VoI based arbitra-
tion, weighted-hybrid arbitration and SARSA perform much better than the random baseline. Moreover,
VoI based arbitration performs better than SARSA in the early training phase because of the advantage
of model-based planning. However, in the late training phase, the performance of SARSA matches that
of the VoI based arbitration. We observed that weighted-hybrid arbitration outperforms all the other
models. In the initial trials, its performance matches that of VoI based arbitration because both models
predominantly rely on model-based planning. In the late phase, weighted-hybrid arbitration returns a
greater mean reward as compared to VoI based arbitration.

The simulation experiments assume that the agent has already learned the transition table from the
Single-SG condition (see Chapter 2, Experiment-1). We introduced the trial time limit in the environ-
ment by capping the maximum number of moves in each trial at 10. A penalty of -1 point was introduced
for each move so that the agent learns the optimal trajectory to the goal position.

Figure 5.11 Performance comparison. The plot is generated by simulating each model with the given
parameters for 50 runs. The mean and SEM are plotted.

59



5.5 Model-fitting

5.5.1 Experimental Data

The computational models were fit to the data from Chapter 2, Experiment-2 (Mixed-SG condition).
Forty-two participants performed Experiment-2 after completing Experiment-1. Experiment-2 involved
performing GST on a randomized order of two SG conditions.

In Experiment-1, the participants performed GST on the same SG condition for 41 successful trials
(excluding the rotation condition). In Experiment-1, the participants learned the KM by trial-and-error to
associate the keypress buttons with the movement directions. In the computational model, the possible
movement directions are explicitly known to the RL agent as the action tuple. Experiment-1 can be
treated as a free-choice session (without rewards), wherein the transition structure of the environment
is learned. Therefore, the model-based RL in our computational model assumes the knowledge of the
transition structure (from Experiment-1). Unlike in the actual experiment, the environment penalized
each move with -1 so that the agent learns to reach the goal position in a minimum number of steps.

5.5.2 Procedure

In order to assess if the computational model is able to explain the behavioral data, we performed
model fitting using the maximum likelihood estimation (MLE). It involves finding the best-fit parameters
θ̂m for model m. The best-fit parameters are found by maximizing the likelihood p(d1:T |θm,m) of
the data d1:T , given the model parameters. For reasons of numerical stability, we maximize the log-
likelihood

LL = log p(d1:T |θm,m)

The log-likelihood can be re-written as

LL = log p(d1:T |θm,m) = log(

T∏
t=1

p(at|d1:t−1, st, θm,m)),

where p(at|d1:t−1, st, θm,m) is the probability of choosing each action a in a given state st, given the
parameters of the model θm. The equation can be written as

log p(d1:T |θm,m) =

T∑
t=1

log p(at|d1:t−1, st, θm,m)

The best-fit parameters θ̂ for the model can be found by maximizing the log-likelihood LL or minimiz-
ing the negative log-likelihood NegLL = −LL. The best-fit parameters were obtained by minimizing
the sum of negative log-likelihood of the actions, across all the trials and participants. In line with pre-
vious studies (Gershman et al., 2009; Gläscher et al., 2010, 2009), we fitted the computational models
to estimate a single set of parameter values across all the participants because it introduces a simple
regularization that facilitates stable estimation of the model parameters.
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The goodness-of-fit was measured by Bayesian Information Criterion (BIC), which takes into ac-
count the maximum likelihood as well as the number of the model parameters.

BIC = −2 log(L̂L) + km log(n),

where L̂L is the maximum log-likelihood value obtained after model fitting, k is the number of free
parameters in model m and n is the total number of observations or data samples.

5.5.3 Results

We performed model-fit using four computational models - Random, SARSA, VoI based arbitration
and weighted-hybrid arbitration. The model-fitting procedure was performed using the minimize

function from scipy.optimize package (Virtanen et al., 2020). We performed the model fitting procedure
for each model 10 times while sampling the initial parameters from a uniform distribution at the start of
every run. The mean negative log-likelihood and BIC values are reported. We found that the weighted-
hybrid arbitration model explained the behavioral data better than other models (see Table 5.1).

(A) Model Neg LL BIC
Random 18342.96 36685.91
SARSA 12802.81 25634.24
Weighted-hybrid arbit. 7074.122 14195.94
VoI based arbit. 8200.875 16449.45

(B) Parameter Value
Learning rate (α) 0.73
Inv. temp. parameter (β) 0.11
Discount factor (γ) 0.94
Offset parameter (k) 0.75
Slope parameter (l) 0.01

Table 5.1 (A) Model-fit results using different models on the behavioral data. The negative log-
likelihood (Neg LL) and Bayesian Information Criterion (BIC) values are reported. Lower BIC values
indicate a better fit. (B) Best-fit parameters for the weighted-hybrid arbitration.

5.6 Discussion

The hybrid RL arbitration combines the learning from model-based and model-free controllers to
give rise to the behaviors that lie on the spectrum of habitual and goal-directed behaviors. It provides
a normative computational framework that can be used to model the role of dual learning processes in
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sequence learning. We propose and compare the two hybrid-RL frameworks to provide a computational
account of learning in internally-guided sequence learning. The proposed VoI arbitration introduces a
cost-benefit analysis for the meta-choice. Model-based planning is only engaged if the benefits of ac-
quiring new knowledge of the environment outweigh the time-varying costs of cognitive efforts required.
The simulations show that VoI computation denotes the need for accurately estimating the existing state-
action values. For instance, the VoI is high if, in a given state, there is no clear best action. The need
for model-based planning subsides as the VoI decreases with substantial experience and knowledge of
the environment. In case the rewards are devalued, the arbitration mechanism can engage model-based
planning to adapt to the change in the environment. The weighted-hybrid arbitration combines the es-
timates from the model-based and model-free learner. The values are integrated using a time-varying
parameter which denotes the relative weights of each controller. We observed that weighted-hybrid ar-
bitration performs better in simulation than other models (see Figure 5.11). This can be attributed to the
greater involvement of model-based planning (See Appendix [6.2] for arbitration plots). The learned
state transition table and keymap are employed when planning trajectory sequences from the start to the
goal position. Therefore, the agent is able to learn the optimal trajectories to the goal position quickly.
We also observed that the weighted-hybrid model describes the empirical data better than other models
(see Table 5.1).

The skill learning has been explained in the sequential phase-wise acquisition of motor behaviors
(Ackerman, 1988; Fitts and Posner, 1967; Haibach et al., 2018). For example, Fitts and Posner (1967)
theorize a three-stage account of skill learning. The three sequential stages are cognitive, associative
and autonomous. The initial phase involves the dominant role of cognitive learning processes. The
cognitive learning phase involves greater demands on the working memory and attentional resources.
In internally-guided sequencing, the initial phase would involve the acquisition of the KM, which can
be further employed to plan the optimal sequence of movements. Such planning would be akin to
model-based learning, which is sample efficient and adaptive but incurs substantial computational costs.
The intermediate associative phase is characterized by a gradual decrease in reliance on the cognitive
processes. Concurrently, the role of motor processes steadily increase. The associative phase involves
a switch from the dominant role of model-based planning to the model-free behavior. The late au-
tonomous phase is dominated by the motor learning processes. With the acquisition of the environment
model, the agent is certain about the consequences of its actions and, therefore, relies on the inexpensive
model-free behavior. The simulation results show that the dual-process arbitration matches Fitts’ three
phases account of learning. In the VoI based arbitration (see Figure 5.6 B) and the weighted-hybrid
arbitration (see Figure 5.9 B), we observe that the model-based processor is dominant in the initial cog-
nitive phase. In the late motor phase, we observe a dominant role of the model-free controller as the
reliance on model-based planning declines. The computational account of arbitration indicates a tran-
sition from goal-directed to habitual learning. The cognitive phase of skill learning is characterized by
goal-directed planning, whereas the motor phase involves habitual learning. This is in line with the find-
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ings from our inter-manual transfer task (see Chapter 4), where we showed that the learning transition
from effector-independent cognitive learning to effector-dependent motor learning with practice.

Moreover, our results confirm the findings from Fermin et al. (2010) in internally-guided sequencing.
In line with their account, once the action space is explored, the early learning phase involves a dominant
role of the model-based controller, whereas the late phase involves a dominant role of the model-free
controller. We show that each controller takes a dominant role in the stage-wise transitions in learning
based on the extent of practice and the knowledge of the environment.
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Chapter 6

Conclusion and Future Directions

6.1 Summary of the Main Findings

We outline the premise of our investigation in the fundamental difference between externally-specified
sequencing and internally-guided sequencing. We argue that sequential finger movements while per-
forming grid-navigation tasks amounts to learning internally-guided sequence. Using Grid-Sailing Task
as our canonical paradigm, we present an empirical and computational investigation of skill learning in
internally-guided sequencing.

In the first study, we aimed to investigate the learning processes involved in internally-guided se-
quencing. We provide evidence for cognitive and motor learning in internally-guided sequencing. We
show increasing dexterity on repeated execution of the same trajectories as evidence for motor learning.
Using a visuomotor rotation, we show that the performance improvements cannot be solely attributed to
general motor improvements. We further hypothesize the role of cognitive learning in GST. The role of
such a cognitive learning process is confirmed by showing transfer-related performance improvements
on the randomized and mixed order of previously unseen SG conditions. We show that the participants
were able to generalize and transfer a KM-specific internal model that facilitated performance.

In the second study, we provide evidence for the practice-driven performance improvements in GST
due to motor chunking. In contrast with previous studies, we show chunking in a more realistic and prac-
tical motor paradigm which is internally-guided. Our findings show evidence for spontaneous chunking
without pre-specified or externally-guided structures while replicating the earlier results with a less con-
strained experimental paradigm. We show how the chunks evolve and re-organize during various phases
of the practice.

In the third study, we employ an inter-manual transfer task to investigate the stage-wise progression
of learning in GST. We show that the early practice phase involves the dominant role of the effector-
independent cognitive learning process, whereas the late practice phase involves the dominant role of
the effector-dependent motor learning process. We confirm the cognitive-to-motor transition of learning
in internally-guided sequencing.
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In the last chapter, we propose a computational account of skill learning in internally-guided se-
quencing. We situate the typical behavioral phenomenon in GST in the dual-process account of skill
learning and discuss the computational analogues of goal-directed and habitual learning processes. We
proposed two reinforcement learning schemes that describe the arbitration between the goal-directed
model-based controller and the habitual model-free controller. Using simulations and computational
model fitting, we show that the hybrid-weighted model describes the behavioral data better than other
models.

6.2 Limitations and Future Work

Future work can attempt to investigate the nature of cognitive learning in internally-guided sequenc-
ing. For instance, the experiment in Chapter 2 can be modified to statistically examine the differences
in trajectory traversals in different conditions. A hypothetical measure of trajectory density can be used
to understand the evolution of trajectories as the sequence is learned. A categorical comparison of the
trajectory features can reveal further evidence for the “transfer” of KM-specific learning. Moreover,
the role of KM-specific learning can be further validated by introducing a new KM on the same SG
conditions. Future studies can also employ a retention task by extending the experimental task over a
period of days to dissociate the cognitive and motor learning in GST. We anticipate that the KM-specific
internal model will be retained longer than the fine-tuned motor movements specific to the trajectory.
Consequently, we can expect to see that the participants quickly recall the learned KM and perform
better than they had initially performed at the beginning of the task.

Previous studies (Bapi et al., 2005; Rosenbaum et al., 1983) have shown that chunking occurs as a
hierarchical organization of motor action sequences in externally-guided visuomotor sequencing. Future
work in internally-guided sequencing can experimentally probe theoretical questions about hierarchical
re-organization—i.e., how chunks are formed and integrated into a multi-level structure. Subsequent
studies can also benefit from other methods of identifying and segmenting chunks in internally guided
sequencing. For example, Acuna et al. (2014) proposes a Bayesian algorithm that identifies chunks
based on response times, errors and their correlations. Wymbs et al. (2012) used a multi-trial community
detection approach after constructing the sequence network.

While reinforcement learning is used to model the choice data in sequencing tasks, the response time
data is largely overlooked in the existing models. Sequential sampling models provide a normative way
of formalizing the decision processes (Ratcliff et al., 2016). The reinforcement learning and sequen-
tial sampling models can be integrated into a unified framework for the joint modeling of choice and
response time data (Miletić et al., 2020). Such models would prove very useful in understanding the
trial-wise dynamics of choice decisions and response times underlying sequencing in internally-guided
paradigms.
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Gläscher, J., Daw, N., Dayan, P., and O’Doherty, J. P. (2010). States versus rewards: dissociable neural
prediction error signals underlying model-based and model-free reinforcement learning. Neuron,
66(4):585–595.
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Hoffmann, J., Sebald, A., and Stöcker, C. (2001). Irrelevant response effects improve serial learning in
serial reaction time tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition,
27(2):470–482.

Hommel, B. (2003). Acquisition and control of voluntary action. In Voluntary action: Brains, minds,
and sociality., pages 34–48. Oxford University Press, New York, NY, US.

Hommel, B., Müsseler, J., Aschersleben, G., and Prinz, W. (2001). The Theory of Event Coding (TEC):
A framework for perception and action planning. Behavioral and Brain Sciences, 24(5):849–878.

Huang, V. S., Haith, A., Mazzoni, P., and Krakauer, J. W. (2011). Rethinking motor learning and savings
in adaptation paradigms: model-free memory for successful actions combines with internal models.
Neuron, 70(4):787–801.

Izawa, J., Rane, T., Donchin, O., and Shadmehr, R. (2008). Motor Adaptation as a Process of Reopti-
mization. Journal of Neuroscience, 28(11):2883–2891.

JASP Team (2020). JASP (Version 0.14.1)[Computer software].

Jueptner, J., Jueptner, M., Jenkins, I., Brooks, D., Frackowiak, R., and Passingham, R. (1996). The
sensory guidance of movement: a comparison of the cerebellum and basal ganglia. Experimental
Brain Research, 112(3).

70



Jueptner, M. (1998). A review of differences between basal ganglia and cerebellar control of movements
as revealed by functional imaging studies. Brain, 121(8):1437–1449.

Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., and Heuer, H. (2003). The cognitive and neural archi-
tecture of sequence representation. Psychological Review, 110(2):316–339.

Keele, S. W., Jennings, P., Jones, S., Caulton, D., and Cohen, A. (1995). On the Modularity of Sequence
Representation. Journal of Motor Behavior, 27(1):17–30.

Kennerley, S. W., Sakai, K., and Rushworth, M. (2004). Organization of Action Sequences and the Role
of the Pre-SMA. Journal of Neurophysiology, 91(2):978–993.

Keramati, M., Smittenaar, P., Dolan, R. J., and Dayan, P. (2016). Adaptive integration of habits
into depth-limited planning defines a habitual-goal–directed spectrum. Proceedings of the National
Academy of Sciences, 113(45):12868–12873. Publisher: National Academy of Sciences Section:
Biological Sciences.

Khamassi, M. and Humphries, M. D. (2012). Integrating cortico-limbic-basal ganglia architectures for
learning model-based and model-free navigation strategies. Frontiers in Behavioral Neuroscience, 6.

Koch, I. and Hoffmann, J. (2000). Patterns, chunks, and hierarchies in serial reaction-time tasks. Psy-
chological Research Psychologische Forschung, 63(1):22–35.
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Appendix

Chapter 5: Additional Results

Model-fitting

Figure 6.1 Finding the best-fit parameters: The Neg. LL for VoI based arbitration is plotted across
optimizer iterations. The mean of all the 10 model-fit runs is plotted.

Figure 6.2 Finding the best-fit parameters: The Neg. LL for weighted-hybrid arbitration is plotted
across optimizer iterations. The mean of all the 10 model-fit runs is plotted.
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Arbitration between Model-based and Model-free Reinforcement Learning

Using the best-fit parameter identified after the model-fitting procedure, we simulated VoI based
arbitration and weighted-hybrid arbitration. The arbitration plots for both are plotted.

Figure 6.3 The dual process arbitration across trials for VoI based arbitration. The fraction of total
evaluations are plotted for both - MB and MF controller.

Figure 6.4 The dual process arbitration across trials for weighted-hybrid arbitration. The relative
weights (w and 1− w) are plotted for both - MB and MF controller.

Simulation using best-fit parameters

The VoI based arbitration, weighted-hybrid arbitration, SARSA and random agents were simulated
using the best-fit parameters. The simulations results are plotted.
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Figure 6.5 Performance comparison. The plot is generated by simulating each model with the best-fit
parameters for 50 runs. The mean and SEM are plotted.

Data and Code Availability

The experimental code, analysis scripts and preprocessed data for the empirical and computational
studies presented in the thesis is made available online at https://gitlab.com/berakrishn/
skill-learning-in-internally-guided-sequencing.

79

https://gitlab.com/berakrishn/skill-learning-in-internally-guided-sequencing
https://gitlab.com/berakrishn/skill-learning-in-internally-guided-sequencing


From darkness, lead me to light.
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