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Abstract

Global warming, changes in precipitation levels have led us to keep an eye on water resources and
to adopt new management strategies for their sustainability. Prediction of projected climatological vari-
ables accounting for greenhouse gases in the atmosphere, accurate projections of hydroclimatological
variables under climate change is crucial for making adaptive measures and mitigation policies. An
analysis of the changes in energy and water balance of a hydrologic system is required to establish these
strategies and check their efficiency. Also an analysis of extreme variations in climate will give us a
better picture as how a hydrologic system is interlinked with these events. Droughts are one such ex-
treme events which can cause huge damage to ecosystems and society, if sufficient steps are not taken
to assess and monitor them.

Various meteorological drought indices have evolved to characterize the drought at larger scales.
Meteorological drought indicators with precipitation and Potential Evapotranspiration (PET) can incor-
porate atmospheric water demand based on energy available in drought characterization, which are ideal
for energy-limited regions, however, for water-limited regions where Actual Evapotranspiration (AET)
is the major hydrological variable, therefore drought is defined by water availability rather than energy.
Furthermore, at river basin scales meteorological drought assessments may not be enough to understand
the water availability to the crops and other environmental aspects of the river systems. The present
thesis aimed to develop a hydrometeorological drought prediction index by considering precipitation,
evapotranspiration and runoff. The study mainly emphasized to understand the effect of various meteo-
rological and hydrological variables on drought and how the inclusion of AET can outperform a drought
index based solely on PET and P at a river basin scale. In this context, the study proposed hydrologically
calibrated Actual Evapotranspiration (AET) considering precipitation, potential evapotranspiration and
runoff. The hydrologically calibrated AET was further used in the formulation of Standardized Precip-
itation Evapotranspiration Index (SPEI) to develop hydrometeorological drought index, Standardized
Precipitation Actual Evapotranspiration Index (SPAEI). The proposed drought index SPAEI imposes
the effect of precipitation, Potential Evapotranspiration, Actual Evapotranspiration using operational
meteorological data sets of precipitation and temperatures and surface runoff.

The performance of PET and AET based drought indices was compared using historical droughts in
terms of severity, areal extent, frequency and duration. The proposed AET based drought indices have
effectively captured the historical drought years over the Krishna river basin. Inclusion of AET in the
drought characterization along with precipitation and PET can drive the highly intensified drought events
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determined by SPEI into moderate and less frequent droughts with short durations. As SPAEI is more
reasonable in reflecting surface water-energy balance it enables better characterization of meteorological
and hydrological droughts at regional scales.

Further, the study assessed the climate signals on drought assessment with Regional Circulation
Model (RCM) outputs and Global Circulation Model(GCM) outputs. Meteorological climate projec-
tions for the future were obtained using statistical downscaling which involves establishing a relation-
ship between predictands(local climate variables) and predictors(global coarse scale projections). This
relationship is established using a set of statistical and machine learning techniques such as Quantile
Bias Correction, K-means Clustering, Classification and Regression Trees(CART) and Support Vector
Regression. The study observed that compared to RCM climate projections, GCM based statistical
downscaling models have performed well in capturing the historical observations, indicating reliable
predictions based on GCM based observations at river basin scales.

Although, statistical downscaling models has proved to be reliable projections for climate change
impact assessment studies, the RCM data sets provides ease of quick implementation with less compu-
tational effort. Therefore, the study suggested the use of RCM projections for preliminary understand-
ing and GCM based projections for a detailed climate change impact assessment study. The projected
drought characteristics based on GCM analysis has observed that while the intensity and duration of the
drought has been found to be slightly increasing, the frequency and the drought areal extent have been
increasing alarmingly over the Krishna river basin. With the GCMs, it has been estimated that there is
a net increase of 25%-31% in the drought areal extent, an increase of 50%-90% in drought frequencies
in Krishna river basin from the current to future periods. The climate change impact assessment on
drought characteristics based on RCM and GCM outputs can provide insights for the river basin water
management and decision-making policies.
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Chapter 1

Introduction

1.1 Motivation

Climate change under anthropogenic global warming has aggravated the hydrological cycle and
spurred to changes in hydrological variables such as precipitation, evapotranspiration, runoff etc. Pre-
diction of the projected climatological variables accounting for green house gases in the atmosphere
[33], accurate projections of hydro-climatological variables under climate change is crucial for making
adaptive measures and mitigation policies [68, 67]. An analysis of changes in the water balance of a
hydrologic system is required to establish these strategies and check their efficiency. Also, an analysis
of extreme variations in climate will give us a better picture as how a hydrologic system is interlinked
with these events. Among these extreme events, droughts are the most widespread and slowly devel-
oping atmospheric hazards which remain for a long duration affecting natural resources, environment,
and millions of people globally every year [1, 18]. Furthermore, droughts corresponds to the failure of
spatial and temporal precipitation (meteorological drought), decrease in available water and inadequate
streamflows (hydrological drought), decrease in soil moisture and crop yields (agricultural drought),
therefore consequent impact on ecosystem and socioeconomic activities of the human being (socio-
economic drought) [104]. However, the river basin management and decision making can be based on
the first two categories, namely meteorological and hydrological droughts [110].

1.2 Literature Review

1.2.1 Drought Analysis

The global land surface in extreme drought is predicted to increase from 1-3% for the present day to
30% by the 2090s [83]. More intense droughts and increased precipitation variability lead to increased
stresses to water, agriculture and economic activities [64]. Due to the irregular summer monsoon and in-
crease in air temperature, the frequency of extreme and widespread multi-year droughts has increased in
India in recent decades, causing enormous damage to crops and society [61, 81]. India has experienced
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23 large-scale droughts starting from 1891 to 2009 and the frequency of droughts is increasing [47]. The
severity of droughts has been reported as increasing in many parts of the Indian sub-continental basins
under climate change [61]. Given this, drought management studies at river basin scale including the
variability of precipitation, evapotranspiration and runoff have gained much attention in the literature
over Indian river basins [61].

The major factors for the persistence of droughts at river basin scale are changes in water balance
due to the alterations in the water supply (precipitation), energy (potential evaporation) and land sur-
face characteristics (vegetation and topography). A region experiencing meteorological drought may
lead to lagged impact on the water availability shortages (hydrological drought) [97]. Here, a drought
assessment solely based on meteorological aspects (precipitation, P) without considering water balance
variable (Runoff, R) of hydrological cycle will not be sufficient for the regional water resources manage-
ment decisions [49]. However, hydrological drought assessment entirely based on estimation of below
normal streamflow may mislead due to the human influenced regulated flows, diversions, water transfers
and instream abstractions [96]. An effective composite drought monitoring tool incorporating multivari-
ate perspectives of hydrometeorology provides new directions to depict shortages of precipitation and
streamflows combinedly [41].

In this context, several drought indices have been developed, which evaluate the deviation of climate
variables in a given year from the normal conditions [18, 49]. These drought indices serve as monitoring
tools and operational indicators for regional water resources management. The most widely used and
tested worldwide drought index is Palmer Drought Severity Index (PDSI) developed by Palmer [67]
that considers precipitation, evapotranspiration and soil water holding capacity. The applicability of
PDSI is limited due to the computational complexity, requirement of significant meteorological data
and applicability on different time-scales. The Standardized Precipitation Index (SPI) developed by
McKee [55], which is considered as simple and most widely used universal drought index by the World
Meteorological Organization (WMO) is based on precipitation. SPI measures the drought index on
different time-scales and enable to detect different drought types and it is widely accepted in the research
community for drought monitoring and early warning [39] . Much effort has been devoted to developing
techniques for drought analysis considering precipitation as the prominent variable in the context of
Indian drought analysis [6, 69, 16, 75, 37, 36, 32, 66, 62, 46].

However, drought indices based on precipitation only can estimate the drought under lack of precipi-
tation but are not able to detect the drought conditions under higher than normal atmospheric evaporative
demand [101]. While, precipitation and temperatures are the main regional surface variables which are
affecting under climate change due to the emission of greenhouse gases in the atmosphere, the increase
in temperatures will directly have an impact on the severity of droughts [2]. Furthermore, to study the
climate change impacts on droughts for future scenarios, a drought indicator considering precipitation
may not be sufficient. A drought indicator which can include both precipitation and temperature into ac-
count will be more suitable, particularly under extreme heat waves[60] . The Standardized Precipitation-
Evapotranspiration Index (SPEI) has been proposed by Vicente-Serrano [99, 100], which considers the
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Potential Evapotranspiration (PET) in addition to precipitation and it can be used at several time scales.
Due to the consideration of PET, SPEI combines the sensitivity of the Palmer Drought Severity Index
(PDSI) and the probabilistic and multi-temporal nature of SPI. In the recent years SPEI has been widely
used to evaluate drought events worldwide [1, 3] as well as for Indian subcontinent [46, 52, 65].

To this end, the use of PET in the drought estimation can characterize the intensification of drying
areas where precipitation is already under stress and also tries to drive the areas into a drought that would
experience modest drying when the effect of precipitation is considered alone [17]. Although PET-based
drought indices consider the climatic water demand, it is limited towards the inclusion of the effects of
regional land surface changes and actual moisture availability in the drought estimation. The SPEI is
based on the climatic water demand as it considers the difference between P and PET which is estimated
based on empirical techniques such as Thornthwaite model [99]. However, the PET is the energy-
driven ET and underestimated by empirical techniques whereas the drought indices estimated based on
AET will consider both climatic water demand and actual available moisture. The efforts made in the
literature to include AET in the drought indices are Drought Severity Index (DSI) [63] and U.S. Drought
Monitor (USDM) [89]. However, these indices use AET estimated using remote sensing datasets and
vegetation information from normalized difference vegetation index (NDVI) and tries to account for land
surface changes implicitly. Recently, Kim and Rhee [45] developed the Standardized Evapotranspiration
Deficit Index (SEDI) using the Actual Evapotranspiration estimated from Bouchet hypothesis and the
structure of SPEI as a fully ET-based drought index without consideration of precipitation. Accurate
Estimation of ET at river basin scales is necessary for drought management. The next section 1.2.2
explains in more detail the importance of Evapotranspiration(ET) in drought analysis.

1.2.2 Evapotranspiration in Climate Analysis

At regional scales, the ET flux is a more complex process influenced by the regional climate, land use
changes due to human interventions in the landscape, water withdrawals from the rivers for agricultural
practices etc. [7, 77]. ET can be studied in terms of Potential Evapotranspiration (PET), Actual Evap-
otranspiration (AET), Reference Evapotranspiration and Pan Evaporation. Among these four variables,
PET and AET which represent the atmospheric evaporative demands based on energy and available
water supply, are commonly used regional hydrological variables. PET can be estimated based on em-
pirical techniques such as Thornthwaite model [99, 100]. Such empirical techniques used to estimate the
PET based on the concept that the climatic moisture demand may exceed available moisture. Therefore,
PET is the maximum possible moisture loss limited only by the energy endowment or it is the energy-
driven ET [84]. Further, the application of empirical equations for the estimation of ET may lead to
an underestimation of PET in humid and tropical regions [95]. Whereas, the Actual Evapotranspiration
(AET) represents the transfer of moisture from the surface to the atmosphere in response to both the
energy demand and available moisture supply.

Several parametric models have been developed for estimating Actual Evapotranspiration (AET)
flux, based on the assumption that AET is limited by the water availability in terms of Precipitation (P)

3



under very dry conditions and energy availability in terms of Potential Evapotranspiration (PET) under
very wet conditions ([9, 28, 94]). Such empirical models, serve as basis for deriving long-term mean
annual water balances and have evolved based on various climate, soil, vegetation conditions [87, 91].
These, parametric models are region-specific and are based on various hydro-climatic conditions which
necessitates calibration in the hydrological partitioning of water-energy variables [5]. Various catch-
ment processes can be conceptualised by introducing model parameters whose values can be determined
through calibration (Biswal, 2016). In this context, application of calibration factors accounting for var-
ious process of net radiation [16], plant-available water [107], vegetation dynamics [24], water balance
equation[42, 49] became widely applicable. Furthermore, the parametric ET formulations considering
precipitation and temperatures can represent purely climate-determined estimates of ET [21]. To study
the long-term hydro-climatic changes of ET, the basin averaged time-invariant calibration factors were
introduced with the consideration of closure of water-balance by [42, 5] . However, use of such time
invariant calibration factors estimated over a specified period in the hydrological partitioning of the river
basin may limit to acquire the temporal variability of water-energy balance variables. Also, given the
changes of global ET under increase of temperatures and changes in precipitation patterns under an-
thropogenic climate change [64, 44], implementation of such single constant calibration factors may
not include the hydro-climatological variability of water balances at catchment scales. Therefore, the
present study proposed data driven regional relationship relating annual P, ET and runoff (R) estimated
using hydrological modelling(Section 1.2.3) at catchment scale accounting for the water balances. The
obtained relationship can be further used with projected P, AET and R under climate change signals to
estimate water-energy balance variables and drought for future scenarios under climate change.

1.2.3 Hydrological Modelling

A hydrological model is a simplification of a real world system(hydrological cycle) that aids in
efficient estimation and management of water resources with the help of meteorological inputs like
precipitation and temperature and other inputs like soils,vegetation,terrain etc to calculate surface runoff,
evapotranspiration using the spatial variability of these inputs. It can be run in a sub daily,daily or
monthly scale and mostly applied to river basins. According to [22], a rainfall-runoff hydrological
model can be defined as a set of equations that helps in the estimation of runoff as a function of various
parameters such as meteorological inputs, basin characteristics.

There are three different types of hydrological models.

1. Empirical Models such as Unit Hydrograph model are observation-oriented models and calculate
surface runoff using a functional relationship from the existing meteorological data inputs and
outputs without considering any characteristics of the basin [14].

2. Conceptual Models such as Stanford Watershed Model IV derives surface runoff mainly on
physical properties of the basin, based on the observed or assumed empirical relationships among
different hydrological variables.
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3. Physically based Models such as VIC(Variable Infiltration Capacity) Model, SWAT(Soil Water
Assessment Tool) are based on deriving surface runoff solving differential equations describing
the physical laws of mass, energy, and momentum conservations. They are further divided into
two different models based on the entity assumption.

• Lumped hydrological Model in which the total study area is considered as a single hydro-
logical entity and estimations are done as a whole.

• Distributed hydrological model in which the basin is further divided into sub-basins where
each sub basins functions as a hydrological response unit(HRUs) that are comprised of
unique land cover, soil, and management combinations. To further simplify the analysis,
gridded hydrological models are used in which rather than an entire sub-basin, grids are
considered as HRUs. Here, runoff is individually calculated in each grid and then a routing
model is used to calculate the surface runoff at specified outlets of the basin.

The following are the key characteristics of Water Balance Model

1. The model should be transferable between geographical locations, and model parameters should
be physically relevant.

2. The model should be applied to Hydrologic response units (sub-basins) or a regular grid and

3. Runoff routing must be from the point of generation or the grid cell/sub-basin through the spatial
domain along the river network

1.2.4 Climate projections

Climate change impact assessment studies have been advanced due to the availability of General
Circulation Models (GCMs) as the most credible tools for investigating the physical processes of the
earth surface-atmosphere system. The GCMs can simulate the projections of climatological variables
for current as well as for future scenarios accounting for greenhouse gas emission scenarios. These
are the numerical models, which analyze the atmosphere on an hourly basis in all three-dimensions
based on the law of conservation of energy, mass, momentum and water vapor and ideal gas law [54].
These are complex computer simulations describing the circulation of air and ocean currents and how
the energy is transported within a climate system. GCMs are classified as Atmospheric General Circu-
lation Models (AGCM) or Oceanic General Circulation Models (OGCM) for modeling atmospheric and
oceanic circulations [54]. Most of the climate change impact assessment studies mainly focus on the use
of GCM outputs of various climatological variables and their integration with hydrological modelling
[78, 90, 15].

The Intergovernmental Panel on Climate Change (IPCC) has been established by World Meteo-
rological Organization (WMO) and the United Nations Environment Programme (UNEP) to provide
scientific, technical and socio-economic information for understanding the climate change process. The
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IPCC provides scientific information to the research community in terms of future possible climate
change scenarios for policy and decision making [103, 68] . The IPCC has developed long term emis-
sion scenarios based on the radiative forcing, demographic, technical and socio-economic information,
which are considered as a standard reference to be followed for the policymakers, scientists and other
experts. Such emission scenarios enabled the scientific community to carry out climate change analysis,
modelling, impact assessment, adaptation and mitigation studies. Based on the Assessment Report 4
(AR4), IPCC has defined Special Report on Emission Scenarios (SRES) of four storylines as A1, B1,
A2 and B2 determined by driving forces such as demographic development, socio-economic develop-
ment and technology change along with CO2 level changes [68] 1. Whereas, the IPCC Assessment
Report 5 (IPCC 2014) has replaced the SRES of AR4 with Representative Concentration Pathways
(RCPs) RCP8.5, RCP6, RCP4.5 and RCP2.6. Here, the RCPs refer to time-dependent projections of
atmospheric greenhouse gas concentrations2 and the numbers 8.5, 6, 4.5, and 2 represent the radiative
forcing, expressed as Watts/m2. For example, RCP 8.5 is high pathway for which the radiative forc-
ing reaches greater than 8.5 Watts/m2 by the year 2100 and continues to rise. The RCP 6 and 4.5 are
considered to be stabilization pathways, while for RCP 2 the radiative forcing peaks at approximately 3
Watts/m2 before the year 2100 and then declines. Integration of projected climatological variables un-
der climate change scenarios with water resources decision and management models to study the impact
assessment over water quantitative and qualitative availabilities and demands has been widely gaining
much attention in the research community [33, 73, 78, 61].

Assessment of climate change impacts on water resources necessitates accurate projections of vari-
ous hydroclimate variables, which involves downscaling the projections of climate variables to hydro-
logical variables. It is of growing importance to create accurate projections of hydrometeorological
variables by employing climate model outputs with General Circulation Models (GCMs) and Regional
Circulation Models (RCMs) which can then be statistically or dynamically downscaled [26]. To obtain
the projections of hydro-meteorological variables (precipitation, runoff, temperature etc.) at regional
scales based on large-scale climate simulations (mean sea level pressure, wind speed, humidity etc.)
obtained from GCMs, downscaling models have been advanced [40, 103, 93, 4, 76]. Coarse resolution
of the Global Circulation Model(GCM) climate projections of the order of 2.5°-3.5 °(approximately
200km-500km) makes this data inefficient for meteorological and hydrological analysis. Downscaling is
a technique by which these coarse resolution inputs can be re-estimated to a finer resolution of 0.25°(or)
0.5°(25-50km)(Spatial Downscaling) in monthly or lesser(sub monthly,daily) time scales(Temporal
Downscaling).

The following are the important considerations and assumptions to keep in mind when performing
downscaling [93].

1https://www.ipcc.ch/assessment-report/ar4/
2https://www.skepticalscience.com/rcp.php
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• Local climate(predictand data) is a combination of large-scale climatic/atmospheric features(global,
hemispheric, continental, regional - predictors) and local conditions (topography, water bodies,
land surface).

• The downscaling technique should be based on a climate variable which does not exhibit large
sub-grid scale variations. Variables such as precipitation, elevation change dynamically for a few
kms, hence they can’t be reliable as predictors.

• The variables used in the downscaling process should be a direct model output (e.g. sea level
pressure) and not outputs based on parameters involving other model variables.

Broadly, the downscaling techniques are classified as dynamic and statistical downscaling models.
The statistical downscaling model involves deriving empirical relationships between large-scale climate
variable simulations (predictors) obtained from GCMs and regional scale hydro-climatological variables
(predictands- Precipitation and Temperature) [103], to predict future local climate variables. It is com-
putationally less intensive but relies heavily on historical climate observations and the assumption that
relationships currently observed will hold for the future. The spatial resolution of statistical downscal-
ing climate change projections depends on the scale of the regional hydrological variables and also the
spatial resolution of GCMs, which are generally coarse ranging from 2.8°X2.8°to 1.1°X1.1°.

Dynamical Downscaling takes help of additional data and physical processes in models at high res-
olutions such as Regional climate models (RCMs) and embedding into an existing GCM. A regional
climate model is a dynamic model similar to a GCM, but it can be thought of as being composed of
three layers. One layer is largely driven by the GCM itself, another layer builds on available specific
regional data, and the final layer based on its own physical processes to resolve the model using the data
from other two layers. The RCMs work at finer resolution and provides better dynamic downscaling cli-
mate change projections for a particular region [12] with region specific parameterization [86]. The use
of RCMs for impact assessment should be based on the evaluation of the climate projections with ob-
served data given the debate on the use of RCM projections directly [72, 25]. Due to the fine resolution
climate model projections of RCMs, which enables to synthesize the climate change projections and
hydrological models to study the regional impact assessment studies, RCMs became widely applicable
[19]. Further, RCMs provide dynamically downscaled GCM outputs at fine resolutions compared to
coarser statistical downscaled outputs, which can be directly used in the impact assessment studies [88]
by testing their performance with current climate [86]. Dynamic and Statistical downscaling can also be
used together as a hybrid downscaling model. Dynamical Statistical downscaling is used to downscale
GCM output with the help of an RCM and then use it to downscale RCMs to a finer resolution whereas
Statistical-Dynamical downscaling model categorizes GCM outputs into a few characteristic states that
are further used in RCM simulations.

The recent regional climate model outputs available through Coordinated Regional Climate Down-
scaling Experiment (CORDEX) are mainly associated with GCM projections from Coupled Model In-
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tercomparison Project (CMIP5) 3, were downscaled with the RCMs run by various research institutes
and are available for 14 domains covering the entire globe. The present study tried to incorporate
such General Circulation Models (GCMs) and Regional Circulation Models (RCMs) CORDEX climate
change projections of precipitation and temperatures for the assessment of regional hydrometeorological
induced evapotranspiration fluxes at river basin scales. In this context, the present study will emphasize
on the quantification of ET flux changes under hydro-climatological changes with respect to histori-
cal and future scenarios using GCM and RCM CORDEX outputs and attempts to analyze the regional
climate induced changes of precipitation and temperature as well as observed variability of regional
drought occurrence over Krishna River basin including precipitation, potential evapotranspiration and
actual evapotranspiration at the basin scale. The Krishna river basin, India, is described in more detail
in Section 1.3 whereas the various datasets used in the study are described in Section 1.4.

1.3 Study Area

The study was conducted on Krishna river basin, which is the fifth largest river system in India.
Krishna River basin occupies an area of 2, 58, 948 km2 which is 8% of the total geographical area of
the country. Nearly 44% of the basin lies in Karnataka, 26% of the basin falls in Maharashtra, about 15%
in Telangana and another 15% in Andhra Pradesh within the range 73°17′-81°9′E and 13°10′-19°22′ N
as shown in the figure 1.1.

Figure 1.1: Krishna river basin in the Indian Subcontinent

3http://cmip-pcmdi.llnl.gov/cmip5/
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The river originates in the Western Ghats and flows for about 1400 km before reaching to the Bay
of Bengal. The major tributaries of the river are Ghataprabha, Malaprabha, Tunga-Bhadra, Bhima,
Vedavathi, and Musi. There are two major cropping seasons: Kharif occurs from June to November and
Rabi from December to March [30, 31].

Most of the Krishna river basin is covered by arid climate (Figure 1.2) with annual average precipita-
tion in the basin as 784 mm, of which approximately 90% occurs during the South-West Monsoon from
June to October. Some parts of the Krishna River basin, especially the Rayalaseema area of Andhra
Pradesh, Bellary, Raichur, Dharwar, Chitradurga, Belgaum and Bijapur districts of Karnataka and Pune,
Sholapur, Osmanabad and Ahmednagar districts of Maharashtra are drought-prone (Source: 4.

Figure 1.2: Climate classification in Krishna river basin

Figure 1.3 shows the number of drought-affected districts in each state of Andhra Pradesh, Maharash-
tra, Karnataka, and Telangana for the period of 2000 to 2016 based on the Farmer’s portal, Department
of Agriculture & Cooperation and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Gov-
ernment of India5. The number of drought-affected districts is reported more in Maharashtra(which is
in the northern part of the basin) and few number of drought-affected districts in the undivided state of
Andhra Pradesh. Most number of drought-affected districts are observed for the years 2002, 2009, 2014
and 2015 (Figure 1.3) over Krishna River basin.

Recently, severe drought has been experienced in the Krishna river basin during 2001 to 2004 where
surface water resources were almost entirely committed to human consumptive uses, groundwater was

4http://india-wris.nrsc.gov.in/wrpinfo/index.php?title=Krishna
5http://farmer.gov.in/Drought/Droughtreport.aspx
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Figure 1.3: Drought affected districts by state from 2000 to 2016

over-abstracted and the discharge to the ocean almost nil [98]. A significant increase in the severity
of droughts was reported over Krishna river basin during the period of 1948-2012 based on the study
of Shah and Mishra [81]. Therefore, the present thesis has aimed to study the drought variability over
Krishna river basin under current and future projections under climate change.

The observed India Meteorological Department(IMD) data estimates for precipitation and temper-
ature are available for a common period of 1951 to 2014, whereas observed discharge estimates from
Central Water Commission(CWC) are available from mid 1965 to 2015. Hence, a period of 1966-2014
is chosen for the current period analysis. The RCM and GCM estimates are available from 2006-2100
for the future periods. To get a better picture of the impacts of climate change, the future period is
divided into three time slices of 2021-2040, 2041-2060 and 2061-2080. The detail description of the
data is presented in the Section 1.4

1.4 Datasets

1.4.1 Meteorological Data

1.4.1.1 Precipitation Dataset

The gridded daily precipitation data from the India Meteorological Department (IMD) available for
the period of 1901-2015 at 0.25°X 0.25°resolution was used as precipitation observational dataset [74].
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1.4.1.2 Temperature Dataset

The gridded daily mean temperature data from the India Meteorological Department (IMD) available
for the period of 1951-2014 at 1°X 1°resolution was used as temperature observational dataset. The
temperature was interpolated to 0.25°X 0.25°resolution using the inverse distance weighting method.

The daily precipitation and temperatures data sets obtained from IMD present in .grd format at 0.25°*
0.25°resolution available over the Indian land mass were cropped for Krishna River Basin. They were
aggregated over monthly time scale for a common time period of 1951-2014 to serve as primary inputs
to calculate surface runoff and drought indices at 0.25°X 0.25°resolution.

1.4.2 Hydrological Data

1.4.2.1 Discharge Dataset

The discharge data in m3/s was obtained from Central Water Commission (CWC) from Krishna
Godavari Board, India for about 25 discharge locations for the period of 1965 June to 2015 June on a
daily scale. This data after baseflow separation was also aggregated over monthly time scale in order to
compare with calculated surface runoff and for validation of the hydrological model developed.

1.4.2.2 Digital Elevation Model(DEM) Data

The Digital Elevation Model (DEM) data with a resolution of 30-arc second (approximately 1km)
was collected from Global 30 Arc-Second Elevation (GTOPO30) dataset provided by USGS (U.S Geo-
logical Survey). Using raster extraction in Quantum Geographic Information System (QGIS), the KRB
basin was delineated using the DEM data and a binary mask file was created(Appendix A). Elevation
varies from 50m to 900m in the basin.

1.4.3 Observational Data

1.4.3.1 ET Reference Data

The satellite-based land surface global ET product derived from the Numerical Terradynamic Simu-
lation Group was adopted to study the strength of the proposed ET models 6. This continuous satellite-
derived global land surface ET was developed based on Moderate Resolution Imaging Spectroradiome-
ter (MODIS) data, meteorological observations and satellite-based vegetation parameters. The ET data
accounts for the canopy transpiration and soil evaporation with modified Penman-Monteith approach,
biome-specific canopy conductance from Normalized Difference Vegetation Index (NDVI) and open
water evaporation from Priestley-Taylor approach [106], which was found in general agreement with
most of the global basins [50]. The ET data was extracted for KRB at 0.5°X0.5°resolution from 1983 to

6http://files.ntsg.umt.edu/data/ET global monthly ORIG/Global HalfDegResolution
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Figure 1.4: Various hydro-meteorological stations and elevation map superimposed on the Krishna river
basin

2006 monthly data in HDF5 format using the ‘hdf5read’ command in MATLAB. The original ET data
at 0.5 °X0.5°resolution was rescaled to 0.25°X0.25°resolution by bilinear spatial interpolation method.

Another satellite-based ET dataset, Global Land Evaporation Amsterdam Model (GLEAM) used in
the study has estimates of the different components of Evapotranspiration: Potential Evapotranspiration,
Actual Evapotranspiration, Soil evaporation etc. Potential Evapotranspiration (Ep) is estimated using
the Priestly-Taylor approach [106] using surface net radiation and near surface air temperature and then
converted into Actual Evapotranspiration by applying an evaporative stress factor S derived based on
observations of microwave Vegetation Optical Depth (VOD) and estimates of root-zone soil moisture
[53, 58]. This dataset at 0.25°X0.25°resolution updated for the time period 1980 to 2018 was interpo-
lated to the required grids. Daily estimates are accumulated at monthly and annual scales and compared
to model and water balance estimates of ET.

1.4.3.2 NCEP/NCAR Reanalysis Datasets

The NCEP/NCAR Reanalysis data set is a continually updated globally gridded dataset that repre-
sents the state of the Earth’s atmosphere, incorporating observations and numerical weather prediction
(NWP) model output from 1948 to the present time. It is a joint product from the National Centers for
Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) 7. This

7https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
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data is available at a spatial resolution of 2.5 °x 2.5 °in sub-daily,daily and monthly timescales. Monthly
data of Specific Humidity(shum), Air Temperature(air), Zonal Wind Velocity(uwnd), Meridional Wind
Velocity(vwnd) and Mean Sea Level Pressure(slp) are considered from the period of 1951 to 2014 for
calibration and validation of the statistical downscaling model.

1.4.4 Climate projections Data

1.4.4.1 RCM Cordex Data

CORDEX (Coordinated Regional Downscaling Experiment) is mainly associated with GCM projec-
tions from Coupled Model Intercomparison Project (CMIP5) 8 and were downscaled with the RCMs
run by various research institutes. CORDEX data sets are available for 14 domains covering entire
globe, and present study selected South-Asian domain of the CORDEX project from Centre for Climate
Change Research, Indian Institute of Tropical Meteorology, Pune, India 9.

Daily precipitation and temperature data simulated by 3 RCMs, driven by various GCMs, were
obtained from the CORDEX 10. The three CORDEX experiments considered are :

1. RegCM4(LMDZ), The Abdus Salam International Centre for Theoretical Physics (ICTP) Re-
gional Climatic Model version 4 (RegCM4; [35]), with deriving GCM as IPSL LMDZ4, from
Centre for Climate Change Research (CCCR), Indian Institute of Tropical Meteorology (IITM),
India;

2. CCLM4(MPI), Consortium for Small-scale MOdelling (COSMO) model in CLimate Mode ver-
sion 4.8 (CCLM; [23]) , with deriving GCM as Max Planck Institute for Meteorology, Germany,
Earth System Mode (MPI-ESM-LR; [34]), from Institute for Atmospheric and Environmental
Sciences (IAES), Goethe University, Frankfurt am Main (GUF), Germany;

3. REMO2009(MPI) Regional model, with deriving GCM as MPI-ESM-LR [34], from Climate
Service Center, Hamburg, Germany.

The projections for the period of 2006 to 2080 were analysed under the Representative Concentration
Pathway (RCP) 4.5 representing atmospheric radiation at 4.5 Wm−2 at the end of 2100.

1.4.4.2 GCM Data

GCM projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5, 11,
are considered to study climate change in the IPCC AR5 assessment process. The CMIP5 includes two
types of climate experiments such as the

8http://cmip-pcmdi.llnl.gov/cmip5/
9http://cccr.tropmet.res.in/home/index.jsp

10www.cordex.org
11http://cmip-pcmdi.llnl.gov/cmip5/
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1. long-term projections (century time scale and longer scenarios)

2. near-term predictions (10–30 yr), also called decadal prediction experiments.

Monthly data of Specific Humidity(shum), Air Temperature(ta), Zonal Wind Velocity(uwnd), Merid-
ional Wind Velocity(vwnd) and Mean Sea Level Pressure(slp) are extracted for the historical period of
1950 to 2005 and for the future period of 2006 to 2100 from the IPCC Data Archive.

The GCM experiments considered to assess the climate change in Krishna river basin are

1. CanESM2 (The Second Generation Earth Model) derived from the Canadian Centre for Climate
Modelling and Analysis, Canada

2. MIROC-ESM derived from the Atmosphere and Ocean Research Institute (The University of
Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science
and Technology Japan.

3. BCC-CSM1.1(m) (The First Generation fully coupled Climate System Model including atmo-
sphere, ocean, land, and sea-ice components and incorporating global carbon cycle and dynamic
vegetation cover) derived from the Beijing Climate Center,China

1.5 Data preprocessing

Most of the data preprocessing was done in MATLAB and QGIS. A meshgrid following the shape-
file of the basin was created in MATLAB. The precipitation and temperature datasets present in .grd
format were read using the ‘fopen’ and ‘fread’ commands in MATLAB. A common time period of
1951 to 2014 for the precipitation and temperature data was chosen to estimate the PET and AET. To
estimate the observed surface runoff, baseflow has been separated from the observed discharge using
the BaseflowSeparation function in CRAN EcoHydrology Package in R. Then taking into the account
the time period of observed discharge, hydrological analysis has been carried out from 1966 to 2014
and comparison with the ET dataset has been carried out from 1983 to 2006 as well as from 1980 to
2012 considering the other observational ET dataset. PCRaster was used to estimate the surface runoff
at each cell and for routing the runoff at Vijayawada. PCRaster clone maps were created based on the
shapefile. The overview of the different events in a drought prediction model including the software and
applications used is given in the Figure 1.5.

The thesis aims to develop a hydrometeorological drought prediction model by considering precipi-
tation, evapotranspiration and surface runoff, the objectives of the thesis are explained in more detail in
Section 1.6.
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Figure 1.5: Events in a Drought Prediction Model
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Figure 1.6: Drought Estimation Methodology for Current and Future Scenarios
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1.6 Objective of the Thesis

• To develop hydrologically induced AET which can account for the precipitation, potential evapo-
transpiration and runoff into account

• To develop a hydrometeorological drought prediction index by considering the modelled hydro-
logically induced AET

• To study the climate change impact on hydrometeorological drought index using Regional Cli-
mate Models (RCMs) and General Circulation Model (GCM) outputs.

1.7 Thesis Organisation

This thesis is organised into 5 chapters as follows.

• Chapter 1 provides an introduction to the drought assessment problem and its motivation and
objective are discussed as well as a detailed literature review, and an introduction to the study
area and the datasets used are mentioned. A flowchart 1.6 containing the methodology is also
presented.

• Chapter 2 contains the different methods used to estimate the Potential and Actual Evapotranspi-
ration as well as the description of a regression model to calibrate the AET Hydrologically and an
analysis of surface water and energy balances.

• Chapter 3 contains the comparison of various meteorological drought indices SPEI, SPAEIBudyko,
SPAEITurc and hydrological drought index SRI, as well as the hydrometeorological drought in-
dex SPAEIHydro for the current period using IMD Data.

• Chapter 4 contains the development of a statistical downscaling model for the GCM and RCM
datasets and the analysis of water and energy balances and drought intensity, frequency and dura-
tion assessment in the future.

• Chapter 5 provides a summary of the concepts used and the findings of this study.
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Chapter 2

Modelling of Hydrological Induced Regional Evapotranspiration

Introduction

Evapotranspiration (ET) is the largest flux next to rainfall and it is the most complex variable of
the hydrological cycle affecting drought. ET can be studied in terms of Potential Evapotranspiration
(PET) and Actual Evapotranspiration (AET), which are most important in the water balance partition.
Also, the PET and AET represent the atmospheric evaporative demands based on energy and available
water supply and are commonly used regional hydrological variables. PET is estimated based on the
energy available for vaporization of water without considering the effect of moisture availability on
the landscape. Most of the models to estimate PET are empirical and are temperature dependent [92,
38]. Whereas, AET is a complex variable to quantify since it is influenced by climate, vegetation, soil
moisture and amount of water available on the landscape etc.

The conventional methods of estimation of AET include water balance, estimated as the difference
between precipitation and runoff at the basin outlet. In this context, empirical models are also developed
based on the assumption that AET is limited by the water availability in terms of precipitation under
very dry conditions and energy availability in terms of PET under very wet conditions. However, these
formulations are region specific and provide limitation over accounting for the effect of water balances
and represent purely climate-determined estimates of AET. Introduction of basin averaged calibration
factors considering the overall water-balance perspectives is valuable to study the long-term hydro-
climatic changes of AET at catchment scales. The study proposed a modelling framework to estimate
hydrologically calibrated AET at catchment scale. This chapter presents the analysis of hydrologically
calibrated AET and study of its predictability with remote sensing data and water balance based AET
data with Krishna river basin as a case study. The proposed hydrologically calibrated AET as presented
in this Chapter will be further used in the drought estimation in addition to precipitation to develop
hydrological drought monitoring tool at basin scale (Chapter 3).
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2.1 Modelling of Actual Evapotranspiration using Empirical Methods

Evapotranspiration is the sum of evaporation (movement of water from earth’s surface such as land,
water bodies to atmosphere) and transpiration (movement of water from plants into the atmosphere).
Methods to estimate the Potential Evapotranspiration (PET) are described in the subsection 2.1.1 and
climate induced Actual Evapotranspiration (AETClim) are described in the subsection 2.1.2.

2.1.1 Potential Evapotranspiration

Potential Evapotranspiration is referred to as the maximum amount of Evapotranspiration that can
occur when there is unlimited water supply. It is solely dependent on temperature and does not consider
the effect of precipitation.

1. Thornthwaite method

PET can be estimated based on Thornthwaite [92] model, which considers the monthly average
air temperature and geographical location of the region of interest as input variables as follows:

PET = 16k

(
10T

I

)a
(2.1)

where

• T is the mean monthly temperature (°C)

• I = Heat index

I =
12∑
j=1

[
Tj
5

]1.5

(2.2)

– Tj is the mean monthly temperature (°C) during the month ‘j’ for the location of interest

• a = Location dependent coefficient

a = 6.75 ∗ 10−7I3 − 7.7 ∗ 10−5I2 + 1.8 ∗ 10−2I + 0.49 (2.3)

I (heat Index) and a (Location dependent coefficient) have the same units as Temperature°C

• K is the correction coefficient depending on the latitude and month, given as follows:

k =

(
N

12

)(
NDM

30

)
(2.4)

– where NDM is the number of days of the month and N is the maximum number of sun
hours as follows

N =

(
24

φ

)
ws (2.5)

– ws is the hourly angle of sun rising, which can be calculated as follows

ws = arccos(−tanψtanδ) (2.6)
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– ψ is the latitude in radians. If δ is the solar declination, in radians and J is the average
Julian day of the month, then δ can be estimated as follows:

δ = 0.4093sen

(
2πJ

365
− 1.405

)
(2.7)

2. Hargreaves method

Hargreaves method is also one of the well accepted PET estimation methods in the literature and
considers the maximum, minimum and mean temperature data and the geographical location of
the region using the following equation

PET = 0.0023 ∗ (Tmax − Tmin)
1
2 ∗ (Tmean + 17.8) ∗Ra (2.8)

where Tmean, Tmin, Tmax are the mean, minimum and maximum temperature data respectively
and Ra is the extra-terrestrial radiation expressed in equivalent evaporation units calculated from
the latitude and time of the year.

Thornthwaite method is considered for the study based on the fact that it requires only average
temperature data and geographical location of the region. Wwhereas PET estimation methods such
as Penman-Monteith (PM) approach, which is generally considered as a standard method suggested
by Food and Agriculture Organization (FAO), requires additional information such as regarding wind
speed, maximum and minimum temperatures, relative humidity and solar radiation. Therefore, the study
used Thornthwaite model for the estimation of PET and whereas Langbein method does not account for
location based characteristics. Hargreaves method is is used to compare the estimates of PET based on
Thornthwaite model.

2.1.2 Actual Evapotranspiration

Actual Evapotranspiration is the amount of water that is actually removed from a surface due to
the processes of evaporation and transpiration [71]. Various empirical models have been developed for
estimating AET which is based on the assumption that AET is limited by the water availability in terms
of precipitation under very dry conditions and available energy under very wet conditions in terms of
potential evapotranspiration [9, 28, 57, 107].

1. Budyko method for estimating Actual Evapotranspiration(AETClim/AETBudyko)

One of the classical model to estimate AET relating long-term-average water and energy balances
at catchment scales using precipitation and PET is Budyko Equation [9]. Budyko has developed a
relationship between three hydro-climatic variables for a basin: Precipitation (P), Potential Evap-
otranspiration (PET), and Actual Evapotranspiration (AET). The Budyko hypothesis states that
the ratio of the AET over precipitation (AET/P) is fundamentally related to the ratio of the PET
over precipitation (PET/P) ([9, 28]) as follows:

AET

P
= 1 +

PET

P
−
(

1 +

(
PET

P

)w) 1
w

(2.9)
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The parameter ‘w’ accounts for the effects of climate variability, basin characteristics such as soil,
vegetation, terrain, etc [24]. The present study used Budyko equation as implemented by [107]
for estimating the AET, given as follows:

AETBudyko =

[
P

(
1− exp

(
−PET

P

))
PETtanh

(
P

PET

)]0.5

(2.10)

The original Budyko equation(2.9) has been developed for a long-time scale (e.g. [10, 109]).
However, the Budyko framework can be applied over short periods of monthly and annual scales
(e.g. [108, 13, 49]), if the parameter ‘w’, which represents the joint effect of climate and land
surface is estimated. For a reasonable application of the Budyko equation as developed by [107]
(Eq. 2.10), we used a 12-month scale for the estimation of annual AET and corresponding drought
indices at annual scale. Any timescale lower than 12 months might result in the accumulated
precipitation tending to zero, thus resulting (PET/P) value tending to infinity, which is not suitable
for the implementation of Budyko(Eq. 2.10). Therefore, the monthly precipitation and PET
estimated based on Thornthwaite model at monthly scale were aggregated as given as follows:

P ki =
i∑

i−k+1

Pi (2.11)

PET ki =
i∑

i−k+1

PETi (2.12)

Where P ki and PET ki are the accumulated precipitation(in mm) and PET(in mm) in month i.
Next, the accumulated AET(in mm) to a k-month scale is estimated as:

AET ki =
i∑

i−k+1

AETi (2.13)

where k=6,12,18,24

2. Turc method for estimating Actual Evapotranspiration(AETClim/AETTurc)

Another AET model which also considers precipitation and PET and accounting for the soil and
vegetative characteristics implicitly is Turc model [94]. It is also one of the widely used AET
model in the hydrological applications (e.g. [85, 5, 42]). The Turc model estimates the annual
AET (mm) by using accumulated precipitation 2.11 and accumulated PET 2.12 in mm as follows:

AETTurc =
P√

0.9 + P 2

PET 2

(2.14)

To understand hydrological induced AET accounting for the water balance of the river basin with
runoff, R, and precipitation, the AET estimated from 2.10 should be calibrated hydrologically.
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2.2 Hydrologically Calibrated ET flux at Catchment Scale using PCRas-

ter

The accumulated precipitation surplus (P-AET), which is considered as the amount of water available
is calculated. The amount of available water from each cell will be transported to the basin outlet from
the upstream cells by following the elevation and local drainage map. At a grid cell, i, which can be
considered as a basic hydrologic unit of a distributed hydrological model, the precipitation surplus or
Residual Available Water, RAWcalculated,i can be calculated using annual total Precipitation (Pi) and
climate induced AET (AETClim,i) (from Budyko or Turc empirical models) as follows:

RAWcalculated,i = Pi −AETClim,i (2.15)

Where the Pi and AETClim,i are at annual scale in mm/year.
The discharge at the basin outlet RCalculated,outlet was estimated by accumulating the flow at grid

cell, i, (RAWcalculated,i) and from all upstream grid cells (RAWcalculated,Ω) according to the flow
direction of the river and corresponding to the area of each grid cell (ACell) as follows:

RCalculated,outlet = (RAWcalculated,i +RAWcalculated,Ω) ∗ACell (2.16)

RCalculated,outlet is the uncalibrated total runoff from the basin outlet at steady state and it is generally
not consistent with observed runoff. Here, calibration factors can be introduced on AET, with considera-
tion of closure of water balance using the outputs from the hydrological model to represent the observed
runoff at the basin outlet [43, 5]. Basin averaged calibration factor XCal, was introduced to correct the
uncalibrated AET over the river basin. By introducing a calibration factor on AETClim,i, accounting
for the closure of water balance at the catchment outlet, a hydro-meteorological induced AET can be
estimated. Therefore, the precipitation surplus or RAW accounting for the calibration factor, XCal, can
be written as follows:

RAWactual,i) = Pi −XCal ∗AETClim,i (2.17)

RObserved,outlet = (RAWactual,i +RAWactual,Ω) ∗ACell (2.18)

The calibration factors [43] for the entire river basin for each annual time scale can be estimated
by comparing the observed and uncalibrated runoff estimated from the hydrological model at the basin
outlet as follows:

RCalculated,outlet
RObserved,outlet

=
P −AETClim

(P − (XCal ∗AETClim)
(2.19)

XCal =
RObserved,outlet
RCalculated,outlet

+ (1−
RObserved,outlet
RCalculated,outlet

)
ΣP

ΣAETClim
(2.20)

Where, RObserved,outlet and RCalculated,outlet, are the long-term annual average observed and simu-
lated runoff at the basin outlet in m3/s respectively and ΣP and ΣAETClim are the long-term accumu-
lated annual average observed precipitation and AET (Budyko or Turc empirical models) over the basin
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in mm/year. From the Equation 2.20, it is clear that calibration factor is a function of precipitation (P),
AET, observed runoff(RObserved,outlet) and simulated runoff (RCalculated,outlet). The annual scale basin
averaged calibration factors estimated based on Eq. 2.20 can be applied on the AETClim (Budyko or
turc models) to study the changes of AET under hydrometeorological or water-use over the river basin
as given as follows:

AETHydro = XCal ∗AETClim (2.21)

Therefore, the AETHydro represents the evaporative demand of the atmosphere accounting for en-
ergy available in terms of PET and water supply in terms of runoff. It can be noted that AETClim
is considered to be climatological AET which is region specific, while AETHydro is computed by the
water balance, in which the runoff was simulated by the distributed hydrological model, PCRaster. To
study the changes in AET, such calibration factors should not be a single factor for the entire basin as
followed by [43, 5]. However, the calibration factors should be function of P, AET and runoff at catch-
ment scale as given by the variability of precipitation and temperatures under the variability of climate
signals. Therefore, calibration factors are modelled by relating with the variation of P, AET and runoff
observed and simulated, using a data driven model which can be employed further to study the changes
in AET under climate and hydrological aspects corresponding to climate signals.

2.2.1 Ensemble Regression Model(ERM) for Modelling the Calibration Factors

To investigate the changes in the hydro-climatological induced AET (AETHydro under climate vari-
ability, the dependence between Precipitation (P),AETClim,R(Observed, outlet) andXCal for the en-
tire river basin for the present climate was estimated. The uncalibrated runoff (R(Calculated, outlet))
at the basin outlet will be used in the estimation of calibration factor XCal (Eq. 2.20) by comparing
with observed basin outlet runoff(R(Observed, outlet)). Here a data driven model based on Ensemble
Regression Model (ERM) algorithm [27, 11] was trained using P, AETClim,i and R(Observed, outlet)

as independent variables with calibration factorXCal as the response variable. The ERM is based on the
principle that a diverse set of models can make better decisions in comparison to an individual model
[27] and gained much attention in the hydrological assessments in recent years [79]. Ensemble regres-
sion models help to decrease variance between the predicted and observed values and will produce a
more reliable estimate than a single regression model.

The least squares gradient boosting ensemble regression used for predicting calibration factors was
used in the present study. Consider an input training dataset of ‘N’ points {X,Y} = (xi, yi)

N
i=1 . where xi

is the set of predictors and yi is the observed predictand value at the ith timestep. Initially, all the input
points(predictors) in the data set are given equal weighting coefficients(equal importance - αi = 1

n ) and
a base model(F0 (x)) to predict values of the form y=F(x) is trained on this dataset. At every iteration
m, errors/residuals(rim) are calculated between the observed predictand value yi and model predicted
value(Fm−1 (xi)) and a base-learner(hm) is fitted to these residuals(rim) using the Loss function ‘L’ in
the direction of steepest gradient i.e Weight αi of point ‘i’ is increased corresponding to a higher value
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of errors/residual (rim). The model is sequentially updated as shown in Equation

Fm (x) = Fm−1 (x) + argminh

n∑
i=1

L (yi, Fm−1 (x) + h (xi)) (2.22)

where the least squares loss functionL (y, F (x)) = 1
2 (y − F (x))2 is used to update the errors/residuals(rim).

This can be described in more detail using the following steps.
Initialize F0 (x) = ȳ. F0(x) or ȳ is the set of observed predictand values.
For m=1 to M where M is the number of iterations do:

• (rim) = −
[
d(

∑N
i=1[yi−Fm−1(xi)]

2)
d(Fm−1(xi))

]
for i=1..N

• Fit a base learner(hm) to these residuals using the training set (xi, rim)Ni=1

• (γm) = argminγ
∑N

i=1 [yi − (Fm−1 (xi) + γh (xi))]
2

• Fm (x) = Fm−1 (x) + γmhm (x)

Where h is base learner added to Fm−1 (x) to improvise the model, an ideal value of h after m iterations
would imply Fm (x)=y. γ is the multiplier that is applied to the base learner to get the updated model

The trained ensemble regression model will be further used to predict the calibration factors for the
future scenarios under projected changes of P,AETClim andRCalculated,outlet. Here, theRCalculated,outlet
will be the uncalibrated runoff from the hydrological model with projected P andAETClim for the future
scenarios. To quantify the changes in the dependence between calibration factors and hydrological vari-
ables, coefficient of determination (R2) was selected as performance measure. Finally, the hydrological
induced regional AET under climate change over the basin was estimated with projections of various
Regional Climate Model (RCM) outputs of precipitation and temperatures and estimated AETClim and
RCalculated,outlet. The changes of climatological AETClim and hydrometeorological AET, AEThydro
at river basin scale was analyzed under climate signals with regional climate change projections. The
estimated climatological induced AET (AETClim) and hydrological induced AET (AEThydro) can be
further used to develop a meteorological and hydrological drought index respectively (Chapter 3).

2.3 Results and Discussions

2.3.1 Variation of IMD Precipitation and Temperature: Current Scenario

The daily gridded precipitation dataset available from 1901 to 2015 and daily gridded temperature
dataset available from 1951 to 2014 over the Indian land mass were cropped for Krishna River Basin.
About 348 grid points at at 0.25°* 0.25°resolution encompassing the entire basin were considered in
the drought and hydrological analysis. A common data period of 1951 to 2014 was considered for the
drought analysis, which is further divided into three time slices of 1951-1971, 1972-1992 and 1993-
2014, over Krishna River basin to understand the climate variability over the basin whereas the period
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Figure 2.1: Average annual precipitation trend from 1951-2015

Figure 2.2: Annual Average Temperature trend from 1951-2014
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between 1966 to 2014 is considered for Hydrological analysis based on the availability of discharge
data(Runoff data). Further, to assess the period from where significant change has occurred in precipi-
tation and temperatures, Pettitt’s test [70] has been performed on the basin-averaged annual time series
data from 1966 to 2014. To illustrate the changes in spatial distribution and temporal variability of
regional water and energy variables over KRB, two-time intervals of 1965-2003 and 2004-2014 were
selected as before and after the change-point of precipitation year of 2003 (Figures 2.6, 2.7).

The spatially averaged annual precipitation over Krishna river basin was estimated as 778.35 mm and
varying between 499.1 to 1595.7 mm with Pettitt change point detection year as 2003 for the period of
1951 to 2014. The annual total precipitation has shown an increasing trend at a rate of 6.5 mm/decade
with a significance level of 0.05 (Figure 2.1). The basin-averaged annual average temperatures have
shown an increasing trend over Krishna river basin. Correspondingly, temperature also has shown an
increasing trend of 0.1°C/decade (Figure 2.2) with Pettitt change point detection year as 1992.

Figure 2.3: The spatial monthly average temperature and precipitation over Krishna River Basin for
1951-2014

The spatial averaged monthly variation of precipitation and Temperature for the period of 1951 to
2014 is shown in the figure 2.3, with rainfall contributing months as June to October, whereas, the dry
months as March, April and May.
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Figure 2.4: Spatial variation in annual total Precipitation in mm for 1951-1971, 1972-1992 and 1993-
2014

Figure 2.5: Spatial variation in annual average Temperature in °C for 1951-1971, 1972-1992 and 1993-
2014
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Figure 2.6: Spatial distribution of Average Precipitation changes between 1966-2003 and 2004-2014

Figure 2.7: Spatial distribution of Average Temperature changes between 1966-2003 and 2004-2014
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To examine the spatial pattern of precipitation and temperature changes, the annual total precipita-
tion(Figure 2.4) and Temperatures (Figure 2.5) were estimated for three periods of 1951-1972, 1973-
1992, and 1993-2014. The total annual precipitation amount was observed to be higher towards the
Western Ghats boundary of the Krishna river basin. The annual total precipitation has not shown much
spatial variation over the basin for the three time periods. Higher average temperatures were observed
towards the upper most portion of the basin covering few districts of Maharashtra and Telangana.

Also, differences in average precipitation (Figure 2.6) and temperature (Figure 2.7) after and before
the change point of 2003 have been plotted to understand the spatial variation. The upper and lower re-
gions of KRB including few districts of Maharashtra and Karnataka especially the Western Ghats region
has shown increase in precipitation from 1965-2003 to 2004-2014 (Figure 2.6), whereas the central and
north-east parts of the basin has shown a decrease in precipitation, where arid climate persists(Figure
1.2). Overall, the precipitation has been increased by 161 mm from 1965-2003 to 2004-2014 over KRB.
A positive change of annual average temperature from 1965-2003 to 2004-2014 was identified over the
entire KRB with highest increase of about 0.3°C over few districts of Telangana.

The precipitation and temperature data from 1966 to 2014 were used to estimate the water-energy
balance variables of PET and AETClim, AEThydro and R over KRB and studied as current climate
scenario.

2.3.2 Changes in surface water-energy balances over the basin: current scenario

Basin-averaged hydro-meteorological variables of precipitation, temperature, PET (estimated by
Thornthwaite equation 2.1), AET (estimated by Budyko model 2.10) and R (estimated by PCRaster
model 2.16) during periods of 1965-2003 and 2004-2014 were summarized in Table 2.1. The PCRaster
model was applied for 348 cells of the KRB basin at 0.25°X 0.25°resolution at annual scale to estimate
the uncalibrated basin outlet runoff at Vijayawada 2.16. The local drainage direction (ldd) was pro-
cessed from DEM using ‘lddcreate’ PCRaster function. The entities were given in format of raster maps
for spatio-temporal attributes, time-series for temporal non-spatial data, and look up tables (Figure 2.8).
The entire river basin was discretized with a basic hydrologic unit of 1 km X 1 Km rectangular cell
following the resolution of DEM and assigned rainfall and estimated AET (Eq. 2.10) for each cell.

The accuthresholdflux function 1 of PCRaster accumulates the precipitation surplus or flow in terms
climatological (P-AET) residual available water or precipitation surplus for each cell and transported
to the basin outlet from the upstream cells by following the elevation map (Figure 2.8(a)) and local
drainage map (Figure 2.8(b)).

Then this uncalibrated runoff RCalculated,outlet at the basin outlet estimated using the period of 1966
to 2003 was used to estimate the calibration factors (Eq. 2.20) for AETC lim by comparing with ob-
served runoff at annual scale. The ERM was trained with annual P, AET, RCalculated,outlet and XCal,
for a period from 1966 to 2003 (correlation coefficient as 0.95) and validated with 2004 to 2014 period
(correlation coefficient as 0.59).

1http://pcraster.geo.uu.nl/pcraster/4.2.0/documentation/pcraster manual/sphinx/op accuthreshold.html
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Figure 2.8: Example of entities: (a) digital elevation map (DEM) map, (b) local drainage direction (ldd)
map (c) rainfall time series, (d) discharge locations

Hydrological Variable Time period
1966-2003 2004-2014

Average Annual Precipitation(mm) 733.12 894.47
Annual Average Temperature (°C) 26.6 26.7

Total modelled PET - Thornthwaite(mm) 1803.74 1818.32
Total modelled AET - Budyko(mm) 644.21 724.35

Total hydrologically calibrated AET (mm) 669.81 788.54
Average observed runoff at Vijayawada (m3/s) 525.92 367.49
Average modelled runoff at Vijayawada (m3/s) 738.42 1036.71
Average calibrated runoff at Vijayawada (m3/s) 526.97 361.47

Table 2.1: Summary of spatial average annual water-energy variables for current (1966-2003, 2004-
2014) and future period (2021-2040, 2041-2060) for KRB
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Figure 2.9: Temporal variation of Annual Potential Evapotranspiration(PET) from 1951-2014

Figure 2.10: Spatial Variation of Potential Evapotranspiration for 1951-1971, 1972-1992 and 1993-2014
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Figure 2.11: Temporal Variation of Actual Evapotranspiration(AETClim) from 1951-2014

Figure 2.12: Spatial Variation of Actual Evapotranspiration(AETClim) for 1951-1971, 1972-1992 and
1993-2014
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Figure 2.13: Average Actual Evapotranspiration(Hydro) trend from 1966-2014

The Krishna river basin was identified as semi-arid with aridity index ( P
PET ) as 0.44, with annual

basin averaged precipitation (778 mm) and PET (1773 mm) estimated from 1951 to 2014. Increasing
trends were observed in the basin averaged annual simulated PET by 18.1mm/decade at a significance
level of 0.21 (Figure 2.9). Moreover, the spatial variation of average air temperature (Figure 2.5) was
found to follow the spatial variation of PET (Figure 2.10) for three time slices.

The AETClim estimated based on water available (P) and energy available (PET) has shown an
increasing trend for the entire basin at a rate of 2.1 mm/decade from 1951 to 2014 (Figure 2.11) is
presented for three time periods of 1951-1972, 1973-1992, and 1993-2014 in figure 2.12 whereas the
AETHydro estimated based on water available (P) and energy available (AET) has an increasing trend of
40.5 mm/decade (Figure 2.13) and is presented as the average annual AET before and after the change
point(Figure 2.14).

Highest annual PET estimates and positive changes from 1966-2003 to 2004-2014 were observed
over the north and north-east parts of KRB (Figure 2.15). The AETClim has shown positive changes
varying from 11 mm to 692 mm with few cells scattered with negative changes from 1965-2003 to
2004-2014. Similarly, the spatial variability of AETHydro which is hydrologically calibrated AET with
surface water and energy balances of P, PET and runoff (R) has also shown positive changes varying
from 21.5 mm to 910 mm (Figure 2.15).
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Figure 2.14: Spatial Variation of Actual Evapotranspiration(AETHydro) for 1966-2003 and 2004-2014

Figure 2.15: Spatial distribution of changes of average conditions for 1965-2003 and 2004-2014.
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Both AETClim and AETHydro has followed similar spatial and temporal patterns with higher mag-
nitudes for AETHydro as it accounted for the water-use from the river basin along with water (P) and
energy (PET) variability. This can also be observed in terms of spatial variation of modeled precipitation
surplus for two time periods of 1966-2003 and 2004-2014 in terms of (a) climatological residual avail-
able water (P-AETClim) and (b) hydrological residual available water (P-AETHydro) in figure 2.16
and (Figure 2.17 respectively. Overall, the KRB basin has suffered severe decrease in water availability
from 1966-2003 to 2004-2014 both in terms of climatological and hydrological (Figures 2.16. 2.17)
for the current climate scenario with increase in precipitation, temperature and ET flux over KRB. Par-
ticularly, the period 2004-2014 has suffered huge water shortages for the years 2002, 2003, 2009 and
2014 and also reported as drought years over KRB with significant increasing trends of droughts for the
period of 1948 to 2012 [81, 61].

Figure 2.16: Spatial distribution of modeled precipitation surplus in terms of climatological residual
available water (P −AET clim)

The monthly climatic water demand based on PET (P-PET) and AET (P-AET) (Figure 2.18) reaf-
firmed the acute unevenness in seasonal precipitation distribution over Krishna River basin. From Jan-
uary to May the amount of available precipitation is less thereby representing water deficiency months
and negative water balances. Starting from June, when the monsoon season begins the basin slowly get-
ting to accumulate the storages with positive values of (P-PET) and therefore high amounts of (P-AET)
till the end of monsoon season up to October. During post-monsoon and winter months (November, De-
cember, January, and February), pre-monsoon (March-May) season, acute water shortfall was observed,
due to inadequate precipitation occurrence, therefore, climatic water demand in terms of PET was no-
ticed to be more in these months. It should be noticed that the monthly climatic water balance based
on AET is following the monthly variations of precipitation over the Krishna river basin. In general, it
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Figure 2.17: Spatial distribution of modeled precipitation surplus in terms of hydrological residual
available water (P −AET hydro)

was noticed that for the KRB, the spatio-temporal variation of precipitation followed AET more than
PET. Further, climatic water balances based on PET has shown negative water balances and AET with
positive water balances over the basin.

The AETClim has shown less water availabilities over the basin compared to AETHydro as it ac-
counts for atmospheric water supply (P) and energy demand (PET) (Figure 2.16), (Figure 2.17). While,
higher precipitation surpluses were observed based on hydrologically calibrated AET due to the con-
sideration of closure of water balance of KRB accounting for water-use in terms of runoff. Further, to
validate such results, the observed discharge at the basin outlet was compared with the uncalibrated and
hydrologically calibrated discharges resulting water balances of (P-AET) and (P-XCal AET) respec-
tively for the observed period from 1966 to 2014. The comparison of observed runoff with uncalibrated
and calibrated runoff at annual scale resulted in RMSE (R-square) values as 444 (0.4) and 312 (0.6)
respectively. The use of hydrologically calibrated AET has significantly improved the runoff prediction
and can be considered as more reliable term in the long-term annual water-energy balance studies.

Also, there are various temperature-based approaches [92, 38] to estimate PET. Each empirical model
provides different model PET estimates, leading to model uncertainty which may be further pronounced
for future scenarios, if model predictions were made based on such single model outputs (Thomp-
son,1977). Therefore, to study the uncertainty in the PET estimation based on various temperature-based
models, the present study compared the PET estimated from Thornthwaite method with the Hargreaves
model PET estimates [38] as shown in figure 2.19. The basin averaged annual PET estimates of Thorn-
thwaite model (based on average temperature), which has followed the temporal variation of annual
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Figure 2.18: Monthly Variation of Precipitation, (P-PET) and (P-AET) over Krishna River Basin
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Figure 2.19: Basin averaged annual PET estimates with Thornthwaite and Hargreaves models.

Figure 2.20: Basin averaged annual AET estimates with Thornthwaite and Hargreaves models. The
observed annual AET is estimated from ET = P-R at catchment scale.
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average temperature, are slightly more than Hargreaves PET estimates (based on maximum and mini-
mum temperatures). Here, to compare the uncertainty level with both PET models, the basin averaged
annual PET estimate from 1951 to 2014 based on Thornthwaite and Hargreaves models were compared
as 1788 and 1773 mm respectively. Therefore, the uncertainty levels with various PET models can be
considered as less significant in the assessment of water-energy variables at river basin scales. Fur-
thermore, the uncertainty levels are also less significant at the level of AET estimates, based on both
the PET models of Thornthwaite and Hargreaves estimates with Budyko AET formulation as shown
in figure 2.20. Here, the study compared the uncertainty level at AET model estimates with both the
PET models of Thornthwaite and Hargreaves models, the basin averaged annual Budyko formulation
AET estimates from 1951 to 2014 were compared figure 2.20. The annual average AET from 1951 to
2014 based on Thornthwaite and Hargreaves models were noted as 668.4 and 668.3 mm respectively for
KRB. Therefore, the uncertainty levels with various PET models can be considered as less significant
in the assessment of AET estimates at river basin scale for KRB.

Further, the study used Budyko hypothesis to estimate evapotranspiration, (AETClim), which works
at annual scale with a reasonable assumption as storage changes can be considered as constant [29].
It should be noted that, if the water balances were estimated at monthly scale, then the assumption of
constant storage changes is no longer valid [102]. Further, as Budyko model adopted is parametric (w
= 0.5), it is essential to test the applicability of the model for the river basin. Therefore, to validate the
applicability of Budyko hypothesis at annual scale, the observed ET, which can be estimated with catch-
ment scale water-balance equation, ET = P-R, can be compared with the ET estimated with parametric
equation of Budyko hypothesis. For this, the present study compared the AET (Eq. 2.10) estimated
with Budyko hypothesis at annual scale with the ET estimated with water balance equation of ET =
P-R, where R is considered at the basin outlet, Vijayawada from 1965 to 2003 as shown in figure 2.20.

The annual basin averaged AET estimates from both Thornthwaite and Hargreaves PET estimates
were compared with the observed ET as shown in figure 2.20. It can be noted that up to 2003, the
observed, Thornthwaite and Hargreaves model AET estimates were comparable and after this consid-
erable variation between observed and modeled AET estimates were noted. It should be noted that, the
year 2003 has been identified as change point detection year with Pettit’s test for precipitation figure
2.1. Further, temporal variability of the basin averaged annual AET is mainly depending on precipi-
tation (Figure 2.1, 2.11 and 2.13). Because, the AET model formulation is based on the assumption
that AET is limited by the water availability in terms of precipitation under dry conditions and energy
availability under wet conditions [9, 107]. If the annual mean P is less than PET, then the zone is defined
as water-limited zone; whereas, if the annual mean P is greater than PET, then the region is defined as
energy-limited region [24]. Considering the annual mean P and PET over the basin is noted as 778.4 mm
and 1773.3 mm respectively, with this the river basin can be identified as water limited. Therefore, the
AET is limited by precipitation and thus the basin averaged AET is following the temporal variability
of P rather than PET over KRB. Therefore, the modelling approach of estimation of AET with Budyko
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with estimates of PET proposed in the present study works particularly for arid catchments and not for
humid catchments.

Figure 2.21: Temporal variation of annual AET over KRB from remote sensing-based data, Budyko
hypothesis Turc model , hydrologically calibrated and Observed AETP −RObs

Moreover, to validate and to assess the strength of the AET estimates provided in the present study
we compared the satellite-based ET data with the PET, AETClim and AETHydro estimates over KRB
(Figure 2.21). The 2002 year was considered to be all India drought year [59] and the study aimed at
to test the strength of the simulated ET at river basin scale for a water shortage year (Figure 2.22).

Further, to study the strength of predictability of modelled ET estimates of the present study, corre-
lation coefficients between remote sensing-based data and ET estimates of river basin were estimated
for the period of 1983-2006 (Figure 2.23). All over KRB, the PET estimated from Thornthwaite model
has been over predicted (Figure 2.23) with negative correlation coefficients most of the basin except for
lower portion of the basin (around 0.3), over few districts of Karnataka, where tropical climate persists.

The AET estimates based on Budyko hypothesis(AETClim) and hydrologically calibrated(AETHydro)
were observed to be reasonably comparable with remote sensing-based ET data with higher correlation
coefficients ranging from 0.3 to 0.7 for most of the KRB. Specifically, AETHydro estimates were ob-
served to be more comparable with the remote sensing-based ET estimates with higher correlation co-
efficients for most of the basin compared to uncalibrated AETClim estimates. Furthermore, AETHydro
estimates have shown better predictability for regions with higher temperatures and low to moderate
precipitation i.e regions where arid climate prevails. More than 80% of the basin has shown positive
correlations between remote sensing-based ET data and uncalibrated AETClim, whereas AETHydro
has shown 85% of the basin with positive correlations. Also, about 50% (42%) and 25% (21%) of
the basin has shown positive correlations of 0.3 and 0.4 between remote sensing-based ET data and
AETHydro (AETClim) respectively. Further, it should be noted that the correlation measures between

40



Figure 2.22: Spatial distribution of annual ET over KRB from remote sensing-based data, Thornthwaite
model (PET), Budyko hypothesis AET clim, hydrologically calibrated AET hydro for the year 2002

Figure 2.23: Correlation coefficients between Remote-sensing-based data and Thornthwaite model
(PET), Budyko hypothesis AETclim, hydrologically calibrated AEThydro for the period of 1983-2006
over KRB
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remote sensing-based ET data and modeled hydrological induced AET depends on the spatial variability
of land-cover type and temporal scales [105].

Conclusion

An ensemble regression model to hydrologically calibrate ET (AETHydro) accounting for water-
use (R) along with water supply (P) and energy (PET), has been developed. The study compared how
this hydrologically calibrated ET estimate accounting for various major long-term water-energy balance
variables is appropriate for predicting current water availabilities at regional (or catchment) scale by
comparing with satellite-based land surface ET estimates. The proposed modelling framework of AET
estimation can be implemented with any region specific empirical AET models to study the water bal-
ances at catchment scale. The climatological and hydrological modelled AET data will be used with
Standardized Precipitation Evapotranspiration Index (SPEI) to develop a new drought index of Stan-
dardized Precipitation Actual Evapotranspiration Index (SPAEI) which can represent the climate and
hydrological variability in the meteorological drought analysis as described in Chapter 3.
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Chapter 3

A Comparative Analysis of Hydrological and Meteorological Drought

Indices over Krishna river basin

Introduction

Potential Evapotranspiration (PET) based drought indices such as Standardized Precipitation Evapo-
transpiration index (SPEI) have gained much attention in the recent times given the ability to capture the
anomalies of both precipitation and PET in the drought estimation. Although PET-based drought indices
consider the climatic water demand, it is limited towards the inclusion of the effects of regional land
surface changes and actual moisture availability in the drought estimation. Given that Actual Evapo-
transpiration (AET) represents the transfer of moisture from the surface to the atmosphere in response to
both the energy demand and available moisture supply, the drought indices estimated based on AET will
consider both climatic water demand and actual available moisture. Here, the study proposed a water
balance-based drought indicator, Standardized Precipitation Actual Evapotranspiration Index (SPAEI),
which uses hydrologically calibrated AET estimated with empirical formulations . The study compared
the performance of the proposed hydrometeorological drought index with existing meteorological and
hydrological drought indicators of Standardized Precipitation Evapotranspiration Index (SPEI), Stan-
dardized Precipitation Index (SPI) and Standardized Runoff Index (SRI) as well as with drought index
calculated with remote sensing based AET estimates. The study investigated major droughts over the
Krishna river basin, for which most of the basin is in arid climate using the hydrologically calibrated
AET estimates as explained in Chapter 2. As SPAEI is more reasonable in reflecting the surface water-
energy balance it enables better characterization of meteorological and hydrological droughts at regional
scales. The different drought indices used along with the detailed methodology and formulations are
described in Section 3.1 followed by the comparison of drought indices at variable time scales and their
findings in Section 3.2.
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3.1 Modelling of Meteorological and Hydrological Drought Indices

The different drought indices Standardized Precipitation Evapotranspiration Index(SPEI), Standard-
ized Precipitation Actual Evapotranspiration Index(SPAEI), Standardized Precipitation Index(SPI) and
Standardized Runoff Index(SRI) are explained in the following sections along with the drought catego-
rization table.

3.1.1 Standardized Precipitation-Evapotranspiration Index(SPEI)

Following to the methodology proposed by [99], the SPEI is based on fitting a three-parameter log-
logistic probability distribution for the accumulated climatic water balance(D), the difference between
the accumulated precipitation(P) and Potential Evapotranspiration(PET) D = P −PET .The estimated
D values represents the water demand or surplus(P-PET), while the evapotranspiration is the result of
complex relationship between atmosphere and surface water available, vegetation and soil characteris-
tics [8]).

The probability density function (pdf) (f(x)) and cumulative distribution function (CDF) (F(x)) of
the three-parameter log-logistic distribution are given as follows:

f(x) =
β

α

(
x− γ
α

)β−1
[

1 +

(
x− γ
α

)β]−2

(3.1)

where α, β and γ are the scale,shape and origin parameters, respectively, for D and RAW values in
the range of (γ > D,RAW > ∞ ). The parameters of the log-logistic distribution are obtained by
following the L-moment procedure as follows:
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where Γ is the gamma function of β, andw0, w1 andw2 are the probability weighted moments calculated
based on Sheng and Hashino (2007), as in the Equation 3.5:

ws =
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n

(
n− 1

r

)−1 n−r∑
j=1

(
n− j
r

)
xj (3.5)

where r=0,1,2 and n is the sample size xj and is the ordered vector of observations in descending order.
Next, the cumulative distribution function F(x) of log-logistic distribution can be calculated with the
estimated parameters of Pearson-III distribution.

F (x) =

[
1 +

(
x− γ
α

)−β]−1

(3.6)
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With the values of F(x), the SPEI values were calculated in the Equation 3.7:

SPEI = W − C0 + C1W
1 + C2W

2

1 + d1W 1 + d2W 2 + d3W 3
(3.7)

where W = −2ln(P ) for P ≤ 0.5 where P is the probability of exceeding a determined D value, P =
1-F(x). If P > 0.5, P is replaced by 1-P and the sign of the resultant SPEI is reversed.

The constants are:

C0 = 2.515517, C1 = 0.802853, C2 = 0.010328

d1 = 1.432788, d2 = 0.189269, d3 = 0.001308.

By substituting theC0, C1 andC2 values in Eq. 3.7, the SPEI values at various time scales can be found.
Generally, SPEI can be expressed at different time scales as SPEI (6), SPEI (12), etc., where the number
in the bracket indicates the timescale in months for which the P-PET values are accumulated and the
estimated SPEI at these timescales.Table 3.1 gives the range of SPEI values to identify the extreme
weather as drought or wet conditions.

Moisture Category SPEI or SPAEI Value
Extremely wet (EW) 2.00 and above

Very wet (VW) 1.50 to 1.99
Moderately wet (MW) 1.00 to 1.49

Near Normal (NN) -0.99 to 0.99
Moderately dry (MD) -1.00 to -1.49

Severely dry (SD) -1.50 to -1.99
Extremely dry (ED) -2.00 and less

Table 3.1: Criteria for Identification of Drought and Wet Conditions

3.1.2 Standardized Precipitation Actual Evapotranspiration Index(SPAEI)

SPAEI is estimated similar to SPEI however the three parameter log-logistic probability distribution
to the accumulated residual water balance(RAW), the difference between the accumulated Precipita-
tion(P) and Actual Evapotranspiration(AET)

RAW = P −AET

Depending on the AET chosen we name the index as SPAEIBudyko for AETBuydko, SPAEITurc for
AETTurc and SPAEIHydro for AETHydro. Drought categorization for SPAEI is done similar to SPEI
categorization as mentioned in the Table 3.1. To assess the credibility of joint effect of meteorologi-
cal inputs, Precipitation and hydrological inputs, Runoff on drought, we also estimate drought indices
Standardized Precipitation Index(SPI) solely dependent on Precipitation and Standardized Runoff In-
dex(SRI) solely dependent on Runoff and compare it with the SPEI and SPAEI.
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3.1.3 Standardized Precipitation Index

SPI is based on fitting a probability distribution to the accumulated precipitation(3.8) similar to SPEI.

3.1.4 Standardized Runoff Index

To characterize hydrological drought (Shukla and Wood) developed SRI by considering monthly
stream flow data(Qi) and fitting a probability distribution to the accumulated streamflow data(Qki ) sim-
ilar to SPEI.

Qki =
i∑

i−k+1

Qi (3.8)

The categorization criteria for the SPI and SRI is similar to SPEI as described in the Table 3.1.
These drought indices are estimated at various time scales of 6-, 12-, 18, and 24-months and the drought
severity, frequency and duration are calculated for which the results are described in Section 3.2.

3.2 Results and Discussions – Analysis of Meteorological and Hydrologi-

cal Drought

The monthly D (P-PET) and RAW (P-AET) values described in 2.3.2 were used in the estimation of
drought indices of SPEI and SPAEI respectively at various time scales of 6-, 12-, 18, and 24-months for
the period of 1951 to 2014. The three-parameter log-logistic distribution was applied to model the time
series of (P-PET) and (P-AET) i.e for AETclim as well as AETHydro for various time scales.

Furthermore, the fitted three parameter log-logistic distribution is validated with the Kolmogorov-
Smirnov (K-S) goodness of fit test for both the climatic water balance time series of D and RAW. A
rejection frequency was defined as the ratio of number of grid points which did not fit the time series
of D and RAW for log-logistic distribution, to the total number of grid points in the river basin at a
given significance level. The K-S rejection frequencies for the overall basin including all valid grid
points were obtained as 6%, 8% and 7.7% for SPEI, SPAEIBudyko and SPAEITurc respectively at a
significance level of 0.01.

To assess SPEI and SPAEI, for meteorological drought detection, the years when the annual precip-
itation is less than 75 % of the annual average estimated over a period of 1951 to 2014 were considered
based on the IMD definition of drought year 1. Four drought years were identified based on the devi-
ation of annual precipitation from the normal precipitation of the period 1951-2014. Based on figure
3.1(a), these drought years have been identified as 1972, 1985, 2002 and 2003. These drought years are
among the major documented drought events over Indian monsoon region [20, 52]. Among these, the
year 2002 was one of the most severe drought year in India, which has affected 56% of its geographical

1http://imd.gov.in/section/nhac/wxfaq.pdf
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Year Drought Type SPEI SPAEIBudyko SPAEITurc SPAEIHydro SPAEIRS−ET

1972
Moderate 16.00 34.40 44.27 36.78 *

Severe 33.3 33.3 19.47 29.6 *
Extreme 28.53 6.67 2.40 0.86 *

1985
Moderate 28.80 39.73 45.87 53.10 27.01

Severe 15.73 14.13 7.20 12.93 13.22
Extreme 4.53 3.73 2.40 2.29 3.16

2002
Moderate 35.20 42.93 52.80 70.40 27.01

Severe 35.47 13.87 11.73 15.51 10.92
Extreme 11.47 2.40 1.87 2.01 2.30

2003
Moderate 13.60 31.20 36.53 53.73 25

Severe 16.27 28.80 21.60 12.64 17.82
Extreme 49.07 7.20 5.07 3.16 7.18

* - Data unavailable

Table 3.2: Percentage of Drought area in Krishna basin based on SPEI, SPAEIBudyko, SPAEITurc,
SPAEIHydro and SPAEIRS−ET

area, livelihoods of 300 million people 2. Therefore, various drought indices of SPEI and SPAEI based
on empirical models were studied for the drought affected years of 1972, 1985, 2002 and 2003 over the
Krishna river basin in terms of areal extent, severity, frequency and duration.

Furthermore, as the satellite-based ET data used in the estimation of drought indices considered
the surface energy balances, ET from vegetated areas, evaporation from water bodies, biome-specific
NDVI-derived canopy conductance in the ET estimation [106], the study considered the drought indices
estimated based on such data as a base for the comparison of empirical AET based drought indices [82].
The present study compared various drought characteristics estimated based on empirical AET models
with Remote Sensing-ET (RS-ET) data for the drought affected years of the basin.

To study the spatial drought characterization, the areal extent of droughts represented as percentage
of grids for moderate (-1 ≤ SPEI/SPAEIBudyko/SPAEITurc/SPAEIHydro/SPAEIRS−ET ≤
-1.49), severe (-1.5 ≤ SPEI/SPAEIBudyko/SPAEITurc/SPAEIHydro/SPAEIRS−ET ≤ -1.99)
and extreme (SPEI/SPAEIBudyko/SPAEITurc/SPAEIHydro/SPAEIRS−ET ≤ -2) were stud-
ied out of total number of 348 grid points over the basin at 12-month time window (Fig 3.1, Table 3.2).
The percentages of annual moderate and severe drought affected areas were observed to be increasing
over the Krishna river basin for the period of 1951-2014. The areal extents of moderate, severe and
extreme droughts were observed to be more for the drought years of 1972, 1985, 2002 and 2003 for
all these drought indices. The remote sensing-based drought index, SPAEIRS−ET , also has observed
the years 1985, 2002 and 2003 as highly affected drought years in terms of higher percentage of areal
extends for moderate, severe and extreme categories of droughts for the period of 1983 to 2006. The
percentage of drought areal extents with SPEI, SPAEIBudyko, SPAEITurc for various categories of
droughts were studied for the major drought years over the basin in the Table 3.2. The moderate

2https://public.wmo.int/en/bulletin/flood-and-drought-management-throughwater-resources-development-india
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Figure 3.1: Annual precipitation of Krishna river basin compared to long term average annual precipi-
tation (a), Areal extent of moderate (b), severe (c) and extreme (d) droughts represented as percentage
of grids with SPEI and SPAEI <-1, <-1.5 and <-2 respectively at 12-month time window
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drought areal extents with SPAEIBudyko and SPAEITurc were observed to be more compared to
SPEI for Krishna river basin (Figure 3.1(b), 3.2). However, the percentage of the severe and extreme
drought areas were noted to be higher with SPEI compared to both SPAEIBudyko and SPAEITurc
(Figure 3.1(c), 3.2). As SPEI consider the residual water available for evaporation based on energy
available, in terms of PET, higher severe and extreme drought areal extents were estimated. While,
AET based drought indices accounts for the residual available water for evaporation based on both en-
ergy and water, moderate drought percentage areal extents were noted compared to SPEI. For example,
for the recent consecutive drought years of 2002 and 2003, about 11.47%, 2.4%, 1.87%, 2.01%, 2.3%
and 49.07%, 7.2%, 5.07%, 3.16%, 7.2% of area has been identified under severe drought with SPEI,
SPAEIBudyko, SPAEITurc, SPAEIHydro, SPAEIRS−ET respectively as shown in 3.2. Further-
more, SPAEIBudyko and SPAEIHydro indices were identified as a more reliable measure in the
estimation of meteorological and hydrological drought areal extent by comparing with satellite-based
land surface ET data (SPAEIRS−ET ) . While, the Turc model has under predicted the extreme drought
areal extents compared to SPAEIBudyko and SPAEIRS−ET .

Furthermore, to support such research findings, the spatial drought characterizations for the major
drought years of 1972, 1985, 2002 and 2003 were presented in the figures 3.2, 3.3, 3.4, 3.5. The years
1972 and 2003 were noted as most severe historic droughts occurred over Krishna river basin as most of
the basin was classified under extreme drought. For the 1972 drought year, the upper portion of the basin,
particularly, Maharashtra (e.g. Ahmed nagar, Pune, Solapur, Satara, Sangi, Bijapur), North Karnataka
(e.g. Gulbarga, Raichur), Telangana (e.g. Rangareddy, Mahabubnagar, Nalgonda, NagarKarnool) were
classified under extreme drought regions with SPEI, whereas the AET based drought indices drive few
of those regions into moderate (Figures 3.2 and Figure 1.3). Such noticeable deviation in the drought
categorization from extreme/severe to moderate can also be seen for the drought years of 2002 and 2003
in the figures 3.4 and 3.5 respectively . Therefore, the driving of areal extents between SPEI and SPAEI
(both Budyko and Turc) for severe and extreme droughts is more evident, than the moderate drought
areal extents. For drought years of 1985, 2002 and 2003, the severe and extreme drought areal extents
with SPAEIBudyko and SPAEITurcwere found to be the more comparable with SPAEIRS−ET than
with SPEI (Table 3.2). Thus, PET based drought indices categorize more percentage of area as severe
or extreme, which were identified as moderate drought areas otherwise with AET based drought indices
(Table 3.2).

The PET and AET based drought indices were compared in terms of drought intensity for 6-, 12-
, 18-, and 24- months accumulation periods correspondingly (Figure 3.6). The SPEI,SPAEIBudyko,
SPAEITurc and SPAEIRS−ET values accumulated at 6 months represent the monsoon seasonal pre-
cipitation variations over the basin. The SPEI is able to reconstruct most of the drought years at 6
months scale as moderate and severe, whereas, both SPAEIBudyko and SPAEITurc has recognized
them as mild drought years.

The drought severity for major droughts for various accumulated time periods were compared for
the four drought indices 3.3. Both SPAEI formulations of empirical and remote sensing-based drought
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Figure 3.2: Spatial drought categorizations based on SPEI, SPAEIBudyko, SPAEITurc,
SPAEIHydro and SPAEIRS−ET at 12-month scale over Krishna River basin for drought years of
1972
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Figure 3.3: Spatial drought categorizations based on SPEI, SPAEIBudyko, SPAEITurc,
SPAEIHydro and SPAEIRS−ET at 12-month scale over Krishna River basin for drought years of
1985
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Figure 3.4: Spatial drought categorizations based on SPEI, SPAEIBudyko, SPAEITurc,
SPAEIHydro and SPAEIRS−ET at 12-month scale over Krishna River basin for drought years of
2002
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Figure 3.5: Spatial drought categorizations based on SPEI, SPAEIBudyko, SPAEITurc,
SPAEIHydro and SPAEIRS−ET at 12-month scale over Krishna River basin for drought years of
2003
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6-Month scale
Year SPEI SPAEIBudyko SPAEITurc SPAEIRS−ET
1972 -1.42 -0.69 -0.77 *
1985 -1.40 -0.98 -0.74 -0.30
2002 -1.57 -0.85 -1.01 -0.42
2003 -2.00 -0.97 -0.81 -0.23

12-Month scale
Year SPEI SPAEIBudyko SPAEITurc SPAEIRS−ET
1972 -1.51 -1.24 -1.05 *
1985 -0.98 -1.03 -0.98 -0.86
2002 -1.43 -1.06 -1.10 -0.83
2003 -1.80 -1.15 -1.06 -0.88

18-Month scale
Year SPEI SPAEIBudyko SPAEITurc SPAEIRS−ET
1972 -2.07 -1.33 -1.20 *
1985 -1.46 -1.21 -1.19 -0.39
2002 -2.21 -1.40 -1.38 -0.18
2003 -1.76 -1.15 -1.15 -0.89

24-Month scale
Year SPEI SPAEIBudyko SPAEITurc SPAEIRS−ET
1972 -1.77 -1.40 -1.35 *
1985 -1.08 -1.14 -1.11 -0.89
2002 -1.26 -0.99 -1.03 -0.77
2003 -1.99 -1.42 -1.40 -1.09

* - Data unavailable

Table 3.3: Drought intensity for major drought years of 1972, 1985, 2002 and 2003 drought years as
estimated by SPEI, SPAEIBudyko, SPAEITurc and SPAEIRS−ET over Krishna river basin
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Figure 3.6: Time series of SPEI, SPAEIBudyko, SPAEITurc and SPAEIRS−ET for different accu-
mulated periods 6, 12, 18, and 24 months for the period of 1951 to 2014 over Krishna river basin over
Krishna River basin.

indices identified the major droughts as less intensified compared to SPEI. For example, the SPEI-12,
SPAEIBudyko-12, SPAEITurc-12 and SPAEIRS−ET -12 values for the drought years of 2002 and
2003 were obtained as -1.43, -1.06, -1.10, -0.83 and -1.80, -1.15, -1.06, -0.88 respectively. The SPEI-18,
SPAEIBudyko-18 Budyko and SPAEITurc-18 values for the drought years of 1972 were obtained as
-2.1, -1.33, -1.2 respectively. Over all, the severities of the drought indices at various time scales were
found to be more with SPEI compared to SPAEIBudyko, SPAEITurc and SPAEIRS−ET . As the
calibration factor was estimated at an annual scale, SPAEIHydro was estimated only at a 12-month
scale for which the results are presented in the following paragraphs.

Therefore, the present study revealed that inclusion of AET in the drought assessment characterize
the droughts as moderately intensified compared to severe droughts with PET based drought indices.
Further, drought severities were noted to be less with SPAEITurc compared to SPAEIBudyko due to
the lower estimates of AET with Turc model 3.3, representing the dependence of severity or intensity
of droughts on the quantification of AET estimates. Also, SPAEIRS−ET has identified less intensified
droughts years with all accumulation periods (Table 3.3),revealing lower estimates of remote sensing-
based ET values compared to empirical AET estimates. Overall, there exists a strong influence on
drought severities with the use of various formulations of ET estimates in drought characterization.

Coming to the comparison of number of drought events over the basin capturing over a partic-
ular period, SPEI has estimated higher number of severe and extreme drought events compared to
SPAEIBudyko, SPAEITurc and SPAEIRS−ET . Figure 3.7 shows the comparison of severe and
extreme drought frequencies (SPEI/ SPAEIBudyko/ SPAEITurc/ SPAEIRS−ET ¡ -1.50) over Kr-
ishna river basin for 1983-2006. The PET based drought index (SPEI) has resulted in higher drought
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Figure 3.7: Number of severe and extreme drought events (SPEI/ SPAEIBudyko/
SPAEITURC /SPAEIRS−ET > -1.50) in months over Krishna river basin for 1983-2006

frequencies for the period of 1983-2006 compared to both empirical based AET (SPAEIBudyko and
SPAEITurc) and remote sensing-based (SPAEIRS−ET ) drought indices over KRB. Further, lower
severe and extreme drought frequencies were observed with Turc model compared to Budyko model.
Whereas, remote sensing-based severe and extreme drought frequencies were more comparable with
Budyko model drought frequencies for the river basin for the period of 1983-2006.

The present study considered a threshold of -1 for both SPEI and SPAEI formulations in drought
duration estimation. Tthe drought duration was identified as the period of months which is continu-
ous negative, starting from where the SPEI/ SPAEIBudyko/ SPAEITurc/ SPAEIRS−ET values are
more negative then -1 and ends when the SPEI/ SPAEIBudyko/ SPAEITurc/ SPAEIRS−ET values
turns out to be greater than -1. The duration and intensities of droughts were studied for the recent
two consecutive drought years of 2002 and 2003 over the river basin for 6, 12, 18 and 24 months
scales (Figure 3.8). The SPEI at 6-month drought duration was noted as from May to August and
May to September for year 2002 and 2003 respectively with intensity as moderate. Whereas, the
SPAEIBudyko-6 and SPAEITurc-6 has identified 2002 and 2003 as normal conditions from March
to September and February to September respectively. Whereas, the SPAEIRS−ET at 6-month time
scale has identified the drought duration as April for 2002 and 2003 years. Similarly, for SPEI12 the
duration of moderate drought months were noted from September 2002 to December 2003, whereas,
SPAEIBudyko and SPAEITurc has identified May and June 2003 as major drought affected months
3.8. The SPAEIRS−ET at 12-month scale has estimated the drought duration as June 2003. Similarly,
such short and less intensified droughts were noted also with 18 and 24-month time scale of the drought
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Figure 3.8: Duration and intensities of drought in months for the drought years of 2002 and 2003 over
Krishna River basin for various time scales for SPEI and SPAEI

Figure 3.9: Time series of SPEI, SPAEIHydro and SRI from 1966 to 2014 over Krishna river basin
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indices. Further, the empirical based AET drought indices and remote sensing-based ET drought in-
dex has shown comparable drought durations at various accumulation periods. Overall, short drought
durations were noticed with both AET based drought indices compared to PET based drought index.

The study further compared the hydrologically calibrated AET(AETHydro) based drought index
(SPAEIHydro) with the SPEI and Standardised Runoff Index(SRI) (Figure 3.9) to show how the inclu-
sion of runoff can play a role while estimating drought.

While SPEI overpredicts the drought in case of low rainfall and SRI overpredicts in case of low
runoff even though there is high rainfall, SPAEIHydro considers both rainfall and runoff and reliably
estimates the drought.

Conclusion

The present study developed a drought index which can combine the structure of Standardized Pre-
cipitation and Evapotranspiration Index (SPEI) and actual evapotranspiration, the Standardized Actual
Precipitation Evapotranspiration Index (SPAEI). The formulation of SPAEI based on P-AET, accounts
for the water balance of the river basin representing the available water to fulfil the evaporation demands,
where long-term storage losses are neglected. The use of AET in the drought estimation conceptually
accounts for the soil water storage, water supply and energy available, therefore SPAEI can also char-
acterize the hydrological drought conditions implicitly. The drought characterization based on two cli-
matic water balances, one is with potential evapotranspiration and other with actual evapotranspiration
were compared for Krishna river basin, India. The drought indices developed in the present study has
revealed that inclusion of AET in the drought assessment will result in less intensified droughts com-
pared with PET based drought indices. The PET based drought index, SPEI, overestimates the drought
intensity as it is based on unlimited water supply and energy, whereas, the SPAEI is a reliable measure as
it agrees better with the natural water budget of a river basin. The AET based drought indices were able
to drive the areas into moderate, which or otherwise categorized under severe drought regions. These
indices can be reliable measure to estimate the future meteorological as well as hydrological drought
extent, severity and frequency. The next chapter provides a method to statistically downscale the me-
teorological inputs of precipitation and temperature using RCM and GCM projections and the drought
impact assessment for the future scenarios.
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Chapter 4

Climate Change Impact Assessment: Downscaling

Introduction

Climate change impact assessment studies are necessary in the context of changes in hydrological
cycle under increase of anthropogenic global greenhouse gases in the atmosphere. Regional Circulation
Models (RCMs) and General Circulation Models (GCMs) are two such climate models which simulates
historical and future projections of various climate variables accounting for the greenhouse gases in
the atmosphere which can be further used to assess the impacts of climate change. However, both the
RCMs and GCMs are generally associated with systematic biases, resulting from inadequate physics
and bias in GCM simulations. The present chapter demonstrates the use of RCM and GCM climate
change projections in the drought impact assessment over Krishna river basin.

In this chapter, a quantile bias correction technique developed by [48] is presented in Section 4.1.1,
followed by a statistical downscaling technique by [80] for downscaling the GCM outputs in Section
4.2.1. An analysis of the modelled meteorological and hydrological variables is carried out with the
corrected RCM and the downscaled GCM outputs and the best models with accurate predictions are
identified in Section 4.3. Then, the areal extent of drought along with the severity, frequency and
duration is analyzed for these models in Section 4.4.

4.1 Methodology

4.1.1 Regional Circulation Model (RCM) Projections

The RCM projections provided by Coordinated Regional Downscaling Experiment(CORDEX) model
outputs over South Asian domain can be used directly for the drought impact assessment after checking
the performance of RCM outputs with the observed climate data. Given the systematic bias existing
between the modeled and actual climate values, the RCM data sets can be used after correcting for bias
[86]. The present study adopted quantile-based mapping method developed by [48], with the compari-
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son of Cumulative Distribution Functions (CDFs) of observed and RCM simulated data of precipitation
and temperatures for the historical and future scenarios.

• Bias correction for Historical GCM,RCM data

Here, the CDFs of RCM and observed IMD data sets were compared to correct the bias present
in RCM historical and future data sets [48], where Gamma distribution is used to calculate the
CDFs of each time series as follows:

Xm−p.adjust = F−1
o−c (Fm−c (xm−p)) (4.1)

where Xm−p.adjst is the bias-corrected climate variable for current period(RCM-historical)
xm−p is the biased RCM variable
Fm−c is the CDF of RCM Historical data
Fo−c is the CDF of Observed data
F−1
o−c is the inverse CDF of observed data which gives the observed variable at the corresponding

equal CDF level.

• Bias Correction for Future GCM/RCM Data

For a given percentile, we assume that the difference between the model and observed value
during the training period also applies to the future period, which means the adjustment function
remains the same. However, the difference or shift between the CDFs for the future and historic
periods is also taken into account .

X
′
m−p.adjst = xm−p + F−1

o−c (Fm−c (xm−p))− F−1
m−c (Fm−p (xm−p)) (4.2)

where Xm−p.adjst is the bias corrected climate variable for future period(RCM-future)
xm−p is the biased RCM future variable
Fm−p is the CDF of RCM Future data
Fo−c is the CDF of IMD(Observed) data and F−1

o−c is the inverse CDF of IMD data which gives
the IMD variable at the corresponding equal CDF level.
Fm−c is the CDF of GCM/RCM Historical data and F−1

m−c is the inverse CDF of RCM data which
gives the RCM variable at the corresponding equal CDF level.

This ensures that the RCM data is standardized and can perform hydrological simulations with higher
accuracy for models trained with IMD data. The statistical downscaling procedure to predict the precip-
itation and temperature using the GCM outputs is described in the following section.

4.2 Global Circulation Model (GCM) Climate Projections

GCMs are climate models designed to simulate time series of climate variables globally, accounting
for the greenhouse gases in the atmosphere. Most of the climate change impact assessment studies
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mainly focus on the use of GCM outputs of various climatological variables and their integration with
hydrological modelling [78, 90, 15]. The statistical downscaling technique used to predict precipitation
and temperature from GCM projections for the assessment of climate change impact is explained in
Section 4.2.1.

4.2.1 Statistical Downscaling

The statistical techniques used to bridge the spatial and temporal resolution gaps between what
GCMs are currently able to provide and what impact assessment studies require are called as sta-
tistical downscaling methods. Downscaling is a technique by which the coarse resolution inputs of
GCM can be re-estimated to a finer resolution of 0.25°(or) 0.5°(25-50km)(Spatial Downscaling) in
monthly or lesser(sub monthly,daily) time scales(Temporal Downscaling). Statistical Downscaling used
in this study establishes statistical relationships between historical and current largescale climate fea-
tures (GCM predictor variables) and regional climate (Predictands - precipitation and temperature) to
predict future local climate variables using GCM projections.

Following to the methodology proposed by [80], the present study established a statistical relation-
ship between the predictor variables (the climatological variables - surface air temperature, wind speed,
humidity etc) and the predictand variables (the hydrological variables to be predicted - rainfall, temper-
ature). Based on the trained and tested statistical relationship established will be used with the GCM
future climatological variables to predict the future projections of hydrological variables.

• Data Preprocessing and Selection

– Predictor data

NCEP/NCAR reanalysis data for surface air temperature, mean sea level pressure, specific
humidity at 500 mb pressure level, zonal and meridional wind velocity at the surface level
is extracted for the latitudes in the range of 12.5°to 20°N and the longitudes in the range
of 72.5°to 82.5°E surrounding the entire Krishna basin. The data is extracted from ncfiles
using the ‘ncread’ command in MATLAB. This data is present as a 3-dimensional matrix
of longitude X latitude X timestep(monthly). As the observed discharge data is present
from 1966 to 2014, the period from 1966-2003 is considered as the training period and the
period from 2004-2014 as the validation period. The future period is divided into slices
of 20 years for analysis, and the periods considered are 2021-2040, 2041-2060, and 2061-
2080. The resolution and time period of the data used along with the number of latitudes
and longitudes encompassing the basin is presented in the Table 4.1.

– Standardization and bias correction

Bias exists between GCM simulations and observed data which needs to be corrected.
Hence, Bias Correction as mentioned in Section 4.1.1 is carried out using the NCEP pre-
dictors as the observed dataset and the GCM predictors in place of RCM data. This assumes

61



Figure 4.1: Statistical Downscaling of Rainfall

Dataset Spatial resolution Latitudes Longitudes Current period Future period
IMD 0.25*0.25 25 31 1951-2014

NCEP 2.5*2.5 4 5 1948-2017
RCM Variable(2.8*2.1) 5 6 1951-2005 2006-2100
GCM Variable(2.8*2.8) 5 6 1951-2005 2006-2100

Table 4.1: Description of the resolution and period of availability of meteorological datasets required
for downscaling
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that the climate distribution doesn’t change over time. Once the bias correction is done,
the data is converted from a 3-dimensional matrix from the format longitude X latitude X
time-step to a 2-dimensional matrix time-step X grid (each grid is taken as a column) for
further analysis.

– Incorporating Seasonality

In addition to the bias corrected predictor data, as the precipitation and temperature each are
distributed in a similar seasonal pattern across the months every year, the predictor data is
modified to include the effect of seasonality by introducing one more predictor based on the
month. This will ensure that the predictand variable (precipitation and temperature) across
all years in a particular month follow a similarity.

Principal Components are extracted from the final predictor data and a statistical relationship
is derived between observed high resolution (station level) variables and larger (NCEP/NCAR
Reanalysis data) scale low resolution predictor variables using a transfer function.

• Principal Component Analysis

The extracted reshaped data cannot be used directly for downscaling considering multicollinearity
(high correlation among two or more predictor variables which are spatially closer) as well as
multidimensionality (in case of high-resolution downscaling in large basins) problem which lead
to an increase in computational time as well as resources. Principal Component Analysis(PCA)
is a technique which will help to extract a reduced set of all features by a transformation of
features without much loss of information. In other words, it helps us to reduce the problem
of multidimensionality by considering the similar pattern of predictor data of a set of grids and
replace these multiple columns of predictor data with a single column(time series) following the
same pattern. This replacement does not majorly affect the classification or prediction models.
The PCA algorithm is explained in detail in Appendix C.1. The requirement and procedure to
establish this statistical relation from the extracted principal components is explained in more
detail in the following section.

• Rainfall State Estimation

One of the main assumptions in multisite downscaling is that all the stations in a region follow
a homogeneous pattern of rainfall i.e the magnitude of rainfall received between two closely
located stations or grids does not differ much in most of the cases. Excluding this assumption,
if individual site downscaling is used, the effect of rainfall occurring in the surrounding sites is
neglected which results in the model unable to capture this cross correlation. In order to rectify
this, [56] introduced the concept of weather state which says that all the stations on a single time
step follow the same categorization of rainfall. The three states considered are dry(nearly zero
rainfall), medium and heavy rainfall. As a definite criterion of the magnitude of rainfall associated
with each state is not categorized, and as it is entirely dependent on the basin characteristics and
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data, an unsupervised clustering algorithm needs to be adopted to identify the rainfall state for
each month. . K-means clustering explained in Appendix C.2 is adopted in this study.

• The Statistical Relationship

The bias-corrected predictors and the estimated rainfall states were considered as inputs for down-
scaling. A single multivariate regression model can’t be applied to predict rainfall due to the high
variance of rainfall data. Hence, observed rainfall has to be separated into categories or weather
states mentioned previously following which individual regression models are to be applied sep-
arately to rainfall of each category.

Classification and Regression Trees(CART)

Classification and Regression Trees(CART) is a decision tree learning technique is used in pre-
diction modelling. A decision tree is a machine learning model in which categorization of the
data is done with each feature partitioning the data based on conditions or range of the features
and works when the data has a finite set of values. In the case of continuous data, standard deci-
sion/classification trees will not be able to accurately capture the relationship between the predic-
tor and predictand variables [51]. Hence Classification and Regression Trees(CART) explained in
Appendix C.3 help in categorizing the rainfall into weather states by building a statistical relation
between the continuous principal components extracted from predictor data and the rainfall states
estimated using K-means clustering. The established relationship is assumed to be intact for the
future predictors which are then taken as input for CART model and for which the future rainfall
states are estimated. An advantage of Classification and Regression Trees over linear classifica-
tion models is that they can capture non-parametric and non-linear relationships as well as yield
simple models. Cross validation is carried in order to ensure there is no risk of overfitting the
data.

• Rainfall prediction using regression

Individual regression models are built on separating the predictor and observed data based on the
weather state category into individual datasets. Kernel regression should be applied to capture the
rainfall as it is a non-linear predictand variable. Kernel regression is a non-parametric technique
which usually projects the non-linear data into a higher dimensional space where it can be linearly
separated. This mapping is done using a function(Kernel). As the output expected is rainfall
amount which is a real number, Support Vector Regression(SVR) explained in Appendix C.4
has been used instead of Support Vector Machine(SVM) Kernel regression. The key difference
between linear regression and SVR is that in SVR, the model tries to fit the error within a certain
threshold(ε), identifying a single separating hyperplane which maximizes the margin rather than
solely minimizing the error which helps to find the best model.
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Linear SVR as used as the regression technique to predict the precipitation, temperature with-
out overfitting. The observed IMD and modelled observations of meteorological, hydrological
variables and drought with RCM and GCM outputs are presented in the following sections.

4.3 Results and Discussions

4.3.1 Climate Projections of Rainfall and Temperature with CORDEX RCM Data

For the assessment of precipitation and temperatures over KRB for the future scenarios, the CORDEX
simulations were used. The precipitation and temperature data extracted from RCM outputs from 1965
to 2080, after bias correction were used to estimate the precipitation and temperatures over KRB. Basin-
averaged precipitation and temperatures with the RCMs were studied for three future periods of 2021-
2040, 2041-2060 and 2061-2080 along with historical period of 1965-2003 and 2004-2014 as given in
Table 4.2. The study of the compatibility of RCM projections with observed data sets is a prominent
step in the climate change projections assessment [86]. Therefore, the study compared the RCM climate
projections with the observed data sets for historical period of 1965 to 2014 in reproducing the current
climate variability. The bias corrected monthly precipitation and temperatures from each CORDEX
RCM model were well compared with the observed IMD data for the period of 1965-2014 shown using
the correlation between the two datasets (Figure 4.3). The RMSE (R-square) values estimated between
observed precipitation and each RCM model outputs of COSMO, REMO, SMHI were estimated as 78.5
(0.2), 70 (0.23), 80 (0.15) respectively from 1966 to 2014. Whereas, the RMSE (R-square) values es-
timated between observed temperature and each RCM model outputs of COSMO, REMO, SMHI were
estimated as 1.9 (0.6), 1.6 (0.7), 1.95 (0.52) respectively from 1966 to 2014. The NS values estimated
between observed precipitation (temperature) and each RCM model outputs of COSMO, REMO, SMHI
were estimated as 0.05 (0.79), 0.35 (0.67) and -0.28 (0.50) respectively from 1966 to 2014 as shown in
figure 4.2.

Among the selected 3 RCMs the REMO model has shown best performance for simulating precipita-
tion and temperatures over KRB. The precipitation has been predicted to increase under climate change
signals with all 3 RCM models for the future periods of 2021 to 2080 over KRB. The increase in pro-
jections of annual average precipitation for the periods of 2021-2040 , 2041-2060 and 2061-2080 were
compared with the observed data periods of 1966-2003 and 2004-2014 over KRB (Table 4.2) (Figure
4.4). The SMHI model has predicted highest increase of precipitation as varying from 101.6 to 136.7
mm to 217.1 mm for the future periods of 2021-2040 to 2041-2060 and 2061-2080 respectively com-
pared to the current climate period of 1966-2003 over KRB. While, lowest precipitation projections,
varying about 29.7 mm, 74.4 mm and 127.3 mm of increase for the period of 2021-2040 and 2041-
2060 and 2061-2080 respectively compared to observed period of 1966-2003, were noted with COSMO
model outputs. Moderate precipitation increasing projections were predicted with REMO for the RCP
4.5 for the future periods of 2021 to 2080. Overall, the projected increase of precipitation under climate
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(a) precipitation

(b) temperatures

Figure 4.2: Comparison of Nash-Sutcliffe coefficients of observed and bias corrected RCM model out-
puts for period of 1966 to 2014
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Figure 4.3: Scatter plots of observed and bias corrected RCM model outputs of precipitation and tem-
peratures for period of 1966 to 2014

signals was predicted to be from 74.4 to 136.7 mm over KRB for the future period of 2041-2060 and
127.3 to 217.1 mm increase for the future period of 2061-2080 compared to the observed periods of
1966-2003.

About 1.11°C, 1.4°C to 1.85°C of increase in temperatures were predicted for the periods of 2021-
2040, 2041-2060 and 2061-2080 respectively compared to the observed period of 1966-2014 over KRB
(Figure 4.4) (Table 4.2).

The CORDEX RCM projections used for drought analysis were not able to give accurate results
due to the underprediction of Precipitation extremes. Also, the RCM projections have shown negative
NS coefficients with IMD precipitation data indicating that they are not able to capture the variation
of rainfall. Hence the GCM projections were used to statistically downscale the meteorological inputs
Precipitation and Temperature to obtain drought predictions from 1951 to 2080.

4.3.2 Climate Projections of Rainfall and Temperature with GCM Data

A rectangular region encompassing the entire basin is taken and it is assumed that rainfall follows
a homogeneous pattern in this region. Depending on the NCEP resolution, for the Krishna river basin,
the converted predictor matrix has around 100 columns(20 grids X 5 predictors). Considering that there
will be a homogeneous pattern among these predictor variables as well as keeping the computational
constraints in view, PCA is applied in order to reduce this problem of multidimensionality and multi-
collinearity. For capturing 98% of variability of predictor data [80] about 15 principal components have
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Figure 4.4: Basin averaged annual observed and projected precipitation and temperatures for the period
of 1966-2003, 2004-2014, 2021-2040, 2041-2060 and 2061-2080 over KRB with various RCM model
outputs
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Hydrological Variable RCM Name Current period Future period
1966-2003 2004-2014 2021-2040 2041-2060 2061-2080

Average Annual
Precipitation(mm)

Observed 733.12 894.47 – – –
COSMO 757.91 698.27 762.82 807.52 860.42
REMO 755.36 841.84 864.29 850.7 887.18
SMHI 773.33 834.73 834.73 869.82 950.2

Annual
Temperature (°C)

Observed 26.6 26.7 – – –
COSMO 26.53 27.05 27.71 28 28.25
REMO 26.54 26.71 27.81 28.09 28.29
SMHI 26.56 27.1 27.74 28.22 28.45

Table 4.2: Summary of spatial average annual water-energy variables for current (1966-2003, 2004-
2014) and future period (2021-2040, 2041-2060) for KRB

been selected instead of 100 predictors in the statistical downscaling model. Then the rainfall states
for the current period are obtained for the IMD-data using K-means clustering which are then given as
inputs to CART model to find the rainfall states for GCM future datasets. Then, individual regression
models are built for each grid for every state. Finally depending on the rainfall state of a month in the
future, for every grid the corresponding regression model is identified and applied to get the amount of
rainfall in that month. For temperature, a single regression model is built for each grid in contrast to
multiple models for rainfall which is applied to get the future temperature predictions.

Basin-averaged precipitation, temperatures and drought indices were studied for three future time
periods of 2021-2040, 2041-2060 and 2061-2080. The historical time period of 1951-1989 for training
the downscaling model and the period 1990-2005 used for validation have been used as given in Table
4.3. The NS efficiency values were calculated for the IMD observed precipitation and temperatures with
the downscaled GCM simulations. The average NS values for precipitation for the training (testing) data
were estimated to be 0.65 (0.44) for NCEP, 0.54 (0.32) for BCCCSM, 0.56 (0.39) for CanESM, 0.57
(0.32) for MIROC for the period of 1951-1989(1990-2005). Whereas, the temperature values were
estimated for training (testing) as 0.98 (0.93) for NCEP, 0.93 (0.87) for BCCCSM, 0.94 (0.85) for
CanESM, 0.94 (0.86) for MIROC with observed data for the period of 1951-1989 (1990-2005). The
mean values of estimated precipitation and temperatures for the considered time periods of training and
testing were compared as shown in Table 4.3(Figure 4.6).

The increase in precipitation and temperatures for the future scenarios were predicted and compared
with the observed time periods as given in Table 4.3. The BCCCSM, CanESM and MIROC GCMs have
shown lower precipitation averages compared to the observed IMD data but an increase of 16.13 mm to
108.1 mm compared to the historical projections and an increase of 0.55 °C to 0.94 °C in temperature
which is in comparison to various climate change reports 1.

1http://www.imd.gov.in/section/climate/StateLevelClimateChangeMonoFinal.pdf
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(a) precipitation

(b) temperatures

Figure 4.5: Comparison of Nash-Sutcliffe coefficients of the observed and modelled GCM simulations
for the Training and Validation period
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Figure 4.6: Basin averaged annual observed and projected (a) precipitation and (b) temperatures for the
period of 1951-1989, 1990-2005, 2021-2040, 2041-2060 and 2061-2080 over KRB with various GCM
model outputs
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Hydrological Variable GCM Name Current period Future period
1951-1989 1990-2005 2021-2040 2041-2060 2061-2080

Average Annual
Precipitation(mm)

Observed 763.06 812.04 – – –
NCEP 663.68 611.83 – – –

BCCCSM 652.39 665.97 668.52 666.65 741.15
CanESM 636.38 653.93 693.3 744.26 744.5
MIROC 650.57 648.26 646.13 695.67 735.91

Annual
Temperature (°C)

Observed 26.26 26.54 – – –
NCEP 26.25 26.42 – – –

BCCCSM 26.26 26.38 27.03 27.16 27.20
CanESM 26.17 26.29 26.72 26.93 27.08
MIROC 26.27 26.20 26.95 26.79 26.85

Table 4.3: Summary of spatial average annual water-energy variables for current (1966-2003, 2004-
2014) and future period (2021-2040, 2041-2060) for KRB

4.3.3 Comparison of Estimated PET and hydrological induced AET with RCM and

GCM projections

From the comparison of the performance of RCM and GCM (Figures 4.2, 4.5) simulations with
observed data, the GCM projections which are based on the statistical relationships developed based on
the observed climate have proven to be promising tools. The claim that GCM based statistical downscal-
ing models work better than RCMs for hydrological drought prediction is further validated comparing
the projected runoff, PET and hydrological induced AET estimated based on GCM projections with the
estimates based on observed data (Table 4.4). While all the models have shown an increase in PET,
RCM datasets have shown higher estimates of PET in the future with an increase of 300 mm to 500 mm
in the future period whereas the GCM estimates have shown an increase of 100 mm to 200 mm. There
is also an increase in the estimates of AETHydro where the increase is up to the range of 200 mm with
RCM data, however there is an enormous increase of 250 mm to 500 mm in the AETHydro estimates of
GCM data compared with the current period.

Modelled estimates of PET, AETHydro with GCM datasets are closer to the observed IMD estima-
tions than the estimates of PET, AETHydro RCM datasets. Hence, drought analysis is carried out with
the estimated meteorological and hydrological variables from the downscaled GCM Projections.

4.4 Comparison of drought estimations with GCM Projections

The standard structure of SPEI drought indices was compared with the proposed hydrometeorolog-
ical drought index of SPAEIHydro. To find the best GCM for drought prediction of Krishna river
basin, the drought areal extent for the historical drought years 1972, 1985, 2002 and 2003 is compared
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Hydrological Variable RCM/GCM Name Current period Future period
1966-2003 2004-2014 2021-2040 2041-2060 2061-2080

Annual Potential
Evapotranspiration (mm)

Observed 1801.38 1816.00 – – –
COSMO 1772.66 1911.00 2109.07 2197.44 2296.07
REMO 1778.28 1823.63 2142.09 2226.67 2313.07
SMHI 1782.09 1896.54 2093.22 2254.23 2329.27

1951-1989 1990-2005 2021-2040 2041-2060 2061-2080

Annual Potential
Evapotranspiration(mm)

Observed 1772.31 1831.13 – – –
BCCCSM 1716.91 1758.94 1917.32 1965.66 1970.01
CanESM 1712.73 1741.71 1871.67 1932.98 1971.68
MIROC 1717.49 1697.60 1909.87 1859.31 1868.61

1966-2003 2004-2014 2021-2040 2041-2060 2061-2080

Annual Calibrated Actual
Evapotranspiration(mm)

Observed 383.54 533.00 – – –
COSMO 356.02 430.69 383.95 428.82 481.38
REMO 414.97 362.17 470.97 537.77 593.02
SMHI 423.29 373.61 516.46 480.97 512.72

1951-1989 1990-2005 2021-2040 2041-2060 2061-2080

Annual Calibrated
Actual
Evapotranspiration(mm)

Observed 340.22 495.96 – – –
BCCCSM 571.62 611.81 611.43 621.58 674.76
CanESM 564.31 594.07 654.35 710.18 684.63
MIROC 575.09 592.16 580.63 613.75 648.49

1966-2003 2004-2014 2021-2040 2041-2060 2061-2080

Annual Runoff at
Vijayawada (m3/s)

Observed 509.73 307.59 – – –
COSMO 401.89 267.59 378.87 378.71 379.04
REMO 340.39 479.68 393.32 312.94 294.17
SMHI 350.04 461.12 265.99 388.86 437.49

1951-1989 1990-2005 2021-2040 2041-2060 2061-2080

Annual Runoff at
Vijayawada(m3/s)

Observed 586.56 362.63 – – –
BCCCSM 670.63 468.63 475.32 375.26 552.77
CanESM 599.94 498.43 377.8 291.98 530.01
MIROC 660.06 467.09 545.33 681.97 727.88

* Observed - IMD

Table 4.4: Summary of spatial average annual water-energy variables for current (1966-2003, 2004-
2014) and future period (2021-2040, 2041-2060) for KRB
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Figure 4.7: Comparison of moderate(upper), severe and extreme(lower) drought area estimated with
SPEI(left) and SPAEIHydro(right) indices of GCM projections for the current(left) and future(right)
periods.

with three GCM simulations in terms of drought areal extent. While BCCCSM was able to capture the
drought for almost all of the drought years, followed by MIROC which was also to capture most of the
drought events, the CanESM GCM was not able to capture the major drought events.

The estimated moderate and severe drought area has been increasing for the future periods compared
to the current period however the extreme area is not captured properly attributed to the fact that the
employed downscaling model do not model extreme data effectively. The drought area has increased
from 14.8% to 23%-44% for the 2021-2040 period, 14%-39% for the 2041-2060 period and 15.4%-
30.75% for the 2061-2080 period, there is a net increase of 25%-31% from the current to future periods.

Here, Drought is also analyzed in terms of average intensity estimated over the whole basin, fre-
quency of droughts for every time period considered as well as the average duration of drought in
the considered time period. Intensity(in terms of negative value) is highly negative for BCCCSM and
MIROC as well as more frequently less than ‘-1’ compared to the observed data. The time period after
2000 has a greater number of negative intensity values than the period before that indicating an increase
in the drought frequency in the future period. However, the drought intensity is not as high for the se-
vere and extreme drought years compared to the IMD data as the extremes are not captured accurately
in downscaling models.

The drought frequency (the number of droughts occurring in a time period), the drought duration and
the average extent of drought were analyzed for the three future time slices of 2021-2040, 2041-2060
and 2061-2080. The frequency of drought is more with SPEI compared to the drought frequency with
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Figure 4.8: Drought Intensity of basin averaged SPEI(left) and SPAEIHydro(right) for the GCM for
the time period 1951-2080

SPAEIHydro for most of the basin and higher for the northern regions of the basin. While the average
drought frequency for the current period 1951-2014 is 9.5 years with SPEI and around 9 years with
SPAEIHydro. The analysis showed that in the future the number of drought years are increasing to 5
to 6 years for every 20 years with SPEI and 4.5 years of drought for every 20 years with SPAEIHydro.
Comparing each GCM (Figure 4.9), the BCCCSM has shown higher drought frequencies in the 2041-
2060 period and a basin average of 5, 8 and 6 years of drought with SPEI and 4, 5 and 4 years of drought
with SPAEIHydro respectively for the three future time slices 2021-2040, 2041-2060 and 2061-2080.
MIROC has shown more droughts in the 2021-2040 period with SPEI in the central region of the basin
and for both 2021-2040 as well as the period 2061-2080 with SPAEIHydro in the north western region.
The average drought frequency of MIROC GCM in the basin with SPEI is 9, 3 and 3 years and with
SPAEIHydro it is about 4.5, 4 and 5 years for the three time slices. However, CanESM has shown
higher drought frequencies in the southern parts of the basin with SPAEIHydro for the period 2041-
2060. The average drought frequency of CanESM GCM in the basin with SPEI is about 4, 5.7 and
6.5 years and with SPAEIHydro is about 4, 6.7 and 5 years for the three time slices. Overall, highest
number of droughts were observed in the time period 2061-2080 with both SPEI and SPAEIHydro
drought indices, which directs for the proper water resources management of the river basin.

Finally, the drought duration for each GCM (Figure 4.10) was analyzed. While the average duration
with SPEI is 6 months and with SPAEIHydro is about 3 months for the current period, which is pre-
dicted to increasing for about 7 months with both SPEI and SPAEIHydro with the estimations from
GCM datasets. Indicating there will not be any considerable difference in the drought duration character-
istics with SPEI and SPAEIHydro for the current periods. The BCCCSM GCM has shown high basin
averaged drought duration increasing from 7-9 months with SPEI and 2-3 months with SPAEIHydro
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Figure 4.9: Frequency of Drought Occurrence (in years) for the GCMs with SPEI(left) and
SPAEIHydro(right) for the time period 2021-2080
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Figure 4.10: Drought duration (in months) in the basin with SPEI(left) and SPAEIHydro(right) for the
GCM for the time period 2021-2080.
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respectively over the 2021-2080 period. MIROC has shown more drought duration in the 2021-2040
period (10 months) with SPEI and 5 months for the other periods 2041-2060 and 2061-2080 but an
increase in duration from 1.5-3.5 months with SPAEIHydro. CanESM has shown higher drought in
the southern parts of the basin for the time period 2041-2060 with SPAEIHydro. The drought dura-
tion has been increasing from 6-9 months for the CanESM over the three time periods with SPEI and
increasing from 4-5 months with SPAEIHydro until 2060 and then decreasing back to 4 months for the
period 2061-2080. High drought durations were observed over the basin for the time period of 2061-
2080 with both the drought indices predominantly in the northern parts of the basin following to the
projected increase of temperatures (Figure 2.7). Some of the regions have also shown drought durations
of more than 20 months indicating up to 2 years of continuous drought which can directly affect the
crop productivity and food security.

Conclusions

Droughts have been increasing alarmingly in the future. There is an increase in the average drought
area, drought frequency and drought duration as well as the frequent increase in intensity over Krishna
River basin. While the RCMs are not able to capture the increasing drought conditions exactly due
to the inaccurate precipitation and temperature variability with IMD data, the statistical downscaling
projections based on BCCCSM and MIROC GCMs are able to capture these increases accurately in
terms of spatial variability in correlation with precipitation and temperature changes. Out of the 3
GCMs, it is recommended to use the BCCCSM GCMs as it has shown the continuous increase in
drought over the time period as expected. Overall, highest number of droughts were observed in the
time period 2061-2080 with both SPEI and SPAEIHydro drought indices, which directs for the proper
water resources management of the river basin. High drought durations were observed over the basin
for the time period of 2061-2080 with both the drought indices predominantly in the northern parts of
the basin following to the projected increase of temperatures.
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Chapter 5

Conclusions

With the increasing intensity, frequency and duration of droughts worldwide under climate change,
evaluation of variability associated with retrospective drought events will be valuable for the water and
food security at river basin scales. Various meteorological drought indices have evolved to characterize
the drought at larger scales. However, at river basin scales meteorological drought assessments may
not be enough to understand the hydrological droughts which define the water availability of the crops.
The present thesis aimed to develop a hydrometeorological drought prediction index by considering
precipitation, evapotranspiration and runoff which is derived from hydrological inputs estimated from
hydrological modelling. For this, the study aimed to estimate the Actual Evapotranspiration (AET)
which is calibrated with precipitation, potential evapotranspiration and runoff to represent hydrologi-
cally calibrated AET, which is further used in the drought index Standardized Precipitation Evapotran-
spiration (SPEI) index to develop a new hydrometeorological drought index, Standardized Precipitation
Actual Evapotranspiration Index (SPAEI). Further, the study used Regional Climate Models (RCMs)
and General Circulation Model (GCM) outputs to study the climate change impact on hydrometeoro-
logical drought index. The proposed methodology was demonstrated on Krishna River Basin, India.
The following paragraphs give the summary and conclusions of the study presented in the thesis.

• The study proposed hydrologically calibrated AET considering precipitation, Potential Evapo-
transpiration (PET) and runoff simulated by hydrological model. The hydrologically calibrated
AET was observed to be comparable with remote sensing-based ET estimates and water balance
approach of AET estimation.

• The hydrologically calibrated AET was then forced in the SPEI formulation to develop hydrom-
eteorological drought index Standardized Actual Evapotranspiration Index (SPAEI). The study
assessed the drought characteristics over Krishna river basin using SPEI and SPAEI and identified
the years 1972, 1985, 2002 and 2003 as major drought years over Krishna river basin, which is
also considered as major drought events all over India.

• The study compared various drought characteristics of intensity, severity, frequency and duration
using both SPEI and SPAEI over Krishna river basin. The results of the study revealed that SPEI
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overestimates the drought intensity as it is based on unlimited water supply, whereas, the SPAEI
is a reliable measure as it agrees better with the natural water budget of a river basin.

• The research findings of the present thesis reveal that use of AET may not have a major effect on
the drought duration assessment. However, the drought severity, areal extent and frequency will
have more pronounced effect by the inclusion of AET compared to PET in the drought character-
ization.

• The study used RCM and GCM climate change projections of precipitation and temperature to
study the climate change impacts on drought characteristics using SPEI and SPAEI over Krishna
River basin. The mean conditions of both the bias corrected RCM outputs, and statistically down-
scaled GCM outputs have been found to be well comparable with the observed IMD precipitation
and temperature data.

• The study observed that compared to RCM climate projections, GCM based statistical down-
scaling models have performed well in capturing the historical observations, indicating reliable
predictions based on GCM based observations at river basin scales. Although, statistical down-
scaling models has proved to be reliable projections for climate change impact assessment studies,
the RCM data sets provides ease of quick implementation with less computational effort. There-
fore, the study suggests the use of RCM projections for a preliminary understanding and GCM
based projections for a detailed climate change impact assessment study.

• The projected drought characteristics based on GCM analysis has observed that while the intensity
and duration of the drought has been found to be slightly increasing, the frequency and the drought
areal extent have been increasing alarmingly over the Krishna river basin.
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Appendix A

Data Preprocessing for running a distributed Hydrological Model

For running any hydrological model, we need to know some of the basin properties such as extent,
topography and boundary. A watershed/basin is an area of land that drains all the streams and rainfall
to a common outlet such as the outflow of a reservoir,sea etc. Here we explain the process of creating
a mask file and fraction file using QGIS which is to be used for preparing other inputs for distributed
hydrological models. A mask file is a binary grid file and contains information which shows whether the
grid cell of a particular resolution and extent is present in the basin(indicated with 1) or not (indicated
with 0) whereas the fraction file represents the area of the grid falling inside the basin. These files in
turn can be used to perform various hydrologic estimations.

• Load the basin shapefile into QGIS using the Layer −→ Add vector Layer option.

Figure A.1: Adding a vector layer in QGIS
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• Now create a vector grid overlapping the basin shapefile using the Vector−→ Research Tools−→
Vector Grid. Fill the extent and resolution details as shown in the window in Figure A.3. This will
be dependent on the selected basin. We are doing the analysis at 0.25°resolution. In the bottom
right section set projection to EPSG:4326. This is the standard WGS84 projection.

Figure A.2: Creating a vector grid

Figure A.3: Setting options for vector grid

• The vector grid is created as shown in Figure A.4.

• Now find the intersecting portion of the grid and shape file as shown in Figure A.5. This is used
to calculate the fraction of the grid present in the basin.

92



Figure A.4: Vector grid at 0.25°for Krishna basin

Figure A.5: Intersecting two vector layers(shapefiles)
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Figure A.6: Intersecting two vector layers(shapefiles)

• Open the attribute table for this intersecting layer and add a new field which contains the fraction
of grid cell present in basin. Enter the field values as shown in Figure A.9. $area function in
geometry section gives the area of the grid cell in sq.deg(depends on the projection used). As we
want the fraction of the cell present in a 0.25°* 0.25°grid, we need to divide this cell area by a
single grid area.

• The final fraction of grid cell appears as a column in the attribute table as shown in Figure A.10.
We need to rasterize the basin vector shapefile using this column.

• The steps to convert a vector file into a raster based on an attribute is shown in the Figures A.11
and A.12.

• This can be converted into an ascii fraction file to view the fraction values at each grid and create
a mask file using the steps shown in the Figure A.14 and the Figure A.15.
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Figure A.7: View attribute table

Figure A.8: Create field in attribute table
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Figure A.9: Create field in attribute table

Figure A.10: Create field in attribute table
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Figure A.11: Rasterize a vector shapefile

Figure A.12: Rasterize a vector shapefile - Options
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Figure A.13: Rasterized Fraction file for Krishna basin

Figure A.14: Rasterized Fraction file for Krishna basin
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Figure A.15: Raster format conversion to ascii - Options

• Open the fraction file and observe the values. The first 6 lines contain the extent information
whereas the fraction values are present from the next lines as shown in Figure A.16.

Figure A.16: Fraction file in ascii format

• Now to create a mask file read this fraction file in MATLAB using import data or dlmread option
and pick grids whose fraction is greater than 0.25(25%) or 0.5(50%) depending on the criteria
required. Script to create a mask file from ascii file is shown in the Figure A.17.
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Figure A.17: Script to create mask file from ascii file
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Appendix B

PCRaster Hydrological Modelling - Code

Model for simulation of runoff at Outlet using Water Balance Equation

64 timesteps of 1 year each i.e modelling time (64 years)

#!--matrixtable

#!--lddin

#binding

RainStations=rainstationsGrids.map; #map with location of rainstations

RainTimeSeries=RainfallAnnualKrishna1951-2014.tss; #timeseries with

rain at rainstations

RainZones=rainzoneGrids.map; #Grids map

SurfaceWater=rain; #reported stack of maps with rain (mm/year)

AETTimeSeries=AETAnnualKrishna1951-2014.tss;

AETClimate=AET; #reported stack of maps with AET Budyko (mm/year)

Dem=kbDem.map; #digital elevation map

Ldd=ldd.map; #reported local drain direction map

ConvConst= 1; #conversion mm/year

SamplePlaces=samples.map; #map with runoff sampling locations

RunoffTimeSeries=runoffAccufluxBudyko.tss; #reported timeseries with runoff

at sampling locations

timer
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1 64 1; #1951-2014

initial

# coverage of meteorological stations for the whole area

RainZones=spreadzone(RainStations,0,1);

# generate the local drain direction map on basis of the elevation map

report Ldd=lddcreate(Dem,1e31,1e31,1e31,1e31); ˜

dynamic

#calculate maps with rainfall and AET at each timestep (mm/day)

SurfaceWater=timeinputscalar(RainTimeSeries,RainZones);

AETClimate=timeinputscalar(AETTimeSeries,RainZones);

#Calculate Runoff at each grid using the Water Balance Equation

RunoffVal=(SurfaceWater-AETClimate);

#Calculate the net runoff at each grid after accumulation

RunoffPerGrid=accuthresholdflux(Ldd,RunoffVal,0);

report RunoffTimeSeries=timeoutput(SamplePlaces,RunoffPerGrid) ˜

Variables are bound to the files using the binding option and initialised using the initial option. The
dynamic option is used for the variables which have to be calculated in a loop using the iterations
mentioned in the timer option.
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Appendix C

Machine Learning Algorithms used in Statistical Downscaling

C.1 Principal Component Analysis(PCA)

PCA is applied to the standardized and bias corrected data in order to reduce the computational
problems of multidimensionality as well as multicollinearity. The following paragraph contains the
PCA algorithm explained in detail.

• Considering X as the predictor variables, the mean(µ) of the 2-dimensional data matrix ‘X’ is
calculated and subtracted from each time-step across all the predictors.

µ = mean(X);

t = X − µ; (C.1)

The GCM data used is already standardized and bias corrected, hence this step might not be
required for this data.

• Calculate co-variance matrix ‘S’ from the standardized data.

S = t ∗ t′; (C.2)

Where t is the standardized data from C.1 and tT is the transpose of t.

• The Eigen vectors and Eigen values of the co-variance matrix ’S’ are estimated and the first ‘k’
components preserving atleast 98% of the information along the direction of maximum variance
are picked.

[V D] = eig(S); (C.3)

v1 = V (:, 1); v2 = V (:, 2)−−−−−−vk = V (:, k);

where v1, v2 −−− vk are the ‘k’ principal components.
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C.2 K-means Clustering

K-means clustering is a clustering technique that divides the ‘n’ observations into K clusters for
which each observation belongs to the cluster with the closest mean. This technique reads the observed
rainfall values for all grids in the basin in a month, clusters them, and provides a single representative
value that is referred to as the state of rainfall for that particular month. The step is important in the
sense that it provides the rainfall category for a particular month, and can be linked to the predictors for
establishing the statistical relationship.

K-means Algorithm

• Consider X = x1, x2, x3, ...., xn as the set of data points and V = µ1, µ2, µ3 as the set of cluster
means.

• Initialize k(3) cluster means µ1, µ2, µ3 based on 25th, 50th and 75th percentile value of rainfall
dara.

• For each data point, the nearest mean is identified and the point is assigned to the corresponding
cluster. The cluster mean is recalculated using the equation C.4

µi =
1

ci

ci∑
j=1

xi (C.4)

where ‘c′i represents the number of data points in ith cluster.

• The procedure is repeated until the cluster means are no longer changing by a threshold or on
reaching the maximum number of iterations.

C.3 Classification and Regression Trees(CART)

In Classification and Regression Trees(CART), each principal component is given a weight which
when applied collectively to the principal components in a month, gives the rainfall state for that month.
The weight for each principal component is obtained by passing an observation with a missing split
attribute value down every level, where the weight is proportional to the number of observations non-
missing that attribute in the level.

• For every iteration, the Gini’s impurity/ diversity Index [51] of the data is calculated using the
formula given in the equation C.5

E =
∑
i 6=j

P (wi)P (wj) = 1−
∑
j

P (wj)
2 (C.5)

where P (wj) represents the probability of data being in jth class for each value of the attribute.
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• An attribute splitting that minimizes the decrease in this impurity(E) as much as possible is cho-
sen. Ideally, E is 0 when all the patterns at node have the same class label.

• Continue until impurity(E) is less than a certain threshold(η) or on reaching the maximum number
of iterations.

E < η

C.4 Support Vector Regression(SVR)

SVR tries to minimize the error of misclassification calculated using the formula C.6 in addition
to maximizing the margin ‘b’ between the separating hyperplane and the support vectors. SVR using
different formulations and kernels is explained in detail.

Linear SVR
Linear SVR finds a model w such that wTx + a constant ‘b’ is close to the target value ‘y’. In

mathematical terms, the objective can be written as

• Primal Formula

Minimize
1

2
||w||2 + C

N∑
i=1

(ξi + ξ∗i ) (C.6)

satisfying the set of constraints mentioned in the equation C.7

yi − wxi + b ≤ ε+ ξi

wxi + b− yi ≤ ε+ ξ∗i (C.7)

ξi, ξ
∗
i ≥ 0

where x is the predictor data, w the set of weights and b is the bias of data, the amount of predic-
tand(y) can be written as y=wx+b, i is the ith data point and ξi, ξ∗i are slack variables.

• Dual Formula

y =

N∑
i=1

(αi − α∗i )〈xi, x〉+ b (C.8)

where 〈xi, x〉 stands for the inner product of xi and x.

Non-linear SVR - Kernel
Some regression problems cannot adequately be described using a linear model. In such cases, Ker-

nel transformation is applied to transform the data into a higher dimensional space where it can be lin-
early separated. Here Linear kernel, Radial Basis Function(RBF) (or) Gaussian Kernel and Polynomial
Kernel have been compared. It has been observed that RBF and Polynomial kernels were overfitting the
data, whereas Linear kernel obtaining a good balance for the training and validation data, was selected
for regression analysis.
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• Primal Formula

y =
N∑
i=1

(αi − α∗i )(ϕxi, ϕx) + b

where ϕ(x) is the transformation that maps x to a high-dimensional space.

Kernel Functions

– Linear Kernel
K(xi, xj) = (xi.xj) + c

where x1.x2 stands for the inner product of x1 and x2, c is a constant

– Polynomial Kernel
K(xi, xj) = (xi.xj)

d

where d is a power constant applied to inner product.

– RBF Kernel

K(xi, xj) = exp

(
− ||xi − xj ||

2

2σ2

)
• Dual Formula

y =

N∑
i=1

(αi − α∗i )K(xi, x) + b
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