Applications of Data-Driven Dependency Rules

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
m

Computer Science and Engineering by Research

by

VARUN KUCHIBHOTLA
200702052

varun.kQ@research.iiit.ac.in

i
INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY

HYDERABAD

International Institute of Information Technology Hyderabad
500 032, India

July 2024

Copyright © Varun Kuchibhotla, 2024
All Rights Reserved

To my family for their perpetual support.

Acknowledgments

I'm very grateful to my advisor Prof. Dipti Misra Sharma and Siva Reddy, whose guidance
was instrumental at all stages of this thesis. Thanks to Anil, my parter in crime and the primary
author of our research papers. Want to take this moment to thank my immediate and extended
family whose support and encouragement played a huge part in me not losing hope. Special
thanks to Dr. P. Kumaraguru for his efforts towards completion of the course for long-pending

dual degree students.

iv

International Institute of Information Technology Hyderabad
Hyderabad, India

CERTIFICATE

This is to certify that work presented in this thesis proposal titled Applications of Data-
Driven Dependency Rules by Varun Kuchibhotla has been carried out under my supervision

and is not submitted elsewhere for a degree.

Date Advisor: Prof. Dipti Misra Sharma

Abstract

In this paper, we present an approach to integrate unlexicalised grammatical features into
Malt dependency parser. Malt parser is a lexicalised parser, and like every lexicalised parser,
it is prone to data sparseness. We aim to address this problem by providing features from
an unlexicalised parser. Contrary to lexicalised parsers, unlexicalised parsers are known for
their robustness. We build a simple unlexicalised grammatical parser with POS tag sequences
as grammar rules. We use the features from the grammatical parser as additional features to
Malt. We achieved improvements of about 0.17-0.30 percent for UAS on both English and
Hindi state-of-the-art Malt results.

Word sketches are one-page automatic, corpus- based summaries of a word’s grammatical and
collocational behaviour. These are widely used for studying a language and in lexicography.
Sketch Engine is a leading corpus tool which takes as input a corpus and generates word
sketches for the words of that language. It also generates a thesaurus and ‘sketch differences’,
which specify similarities and differences between near-synonyms. In this paper, we present the
functionalities of Sketch Engine for Hindi. We collected HindiWaC, a web crawled corpus for
Hindi with 240 million words. We lemmatized, POS tagged the corpus and then loaded it into
Sketch Engine.

vi

Contents

Chapter Page
1 Introduction to Key Terms oo 1
1.1 Phrase Structure Parsing 1
1.2 Dependency Parsing 1
1.3 Focusof our Work 2
1.3.1 Grammar Driven Parsing 2

2 Journey and Motivation oL 4
3 Auto-extracted Grammar L0 6
3.1 Assigning Weights 6
3.2 Lexicalization and Generalization L. 7
3.3 Parsing Attempt 8

4 TImproving Malt Dependency Parser 9
4.1 Introduction e e 9
4.2 Simple Grammar-Driven Parser oo oL 10
4.2.1 Dependency Grammar 10

4.2.2 Weighted Dependency Grammar 11

4.2.3 Grammar-Driven Parsero 11

4.3 Integrating Grammatical Features with Malt 12
4.4 Experiments e 13
441 Dataand Tools 13

4.4.2 Final Feature Set and Malt Settings 13

4.5 Results. o e 14

5 Hindi Word Sketches 15
5.1 Introduction L 15
5.2 The Sketch Engine For Hindi 16
5.2.1 The Simple Concordance Query Function 16

5.2.2 The Frequency Functions 0. 16

5.2.3 The Word List function 18

5.2.4 The Word Sketch and Collocation Concordance functions 18

5.2.5 The Bilingual Word Sketch function 20

5.2.6 Distributional Thesaurus and Sketch Diff 20

5.3 Building and processing HindiWaC and loading it into the Sketch Engine 20
5.3.1 Sketch Grammar for Hindi 23

vii

viii CONTENTS

6 Conclusion 25

Bibliography L 26

List of Figures

Figure Page

4.1 Top 3 parents for each word. The format of each relation above is parent node
index : relation name : precision of the rule applied. For example, the 2nd best
relation on word index 3 i.e. autois 6:nn:0.1539535 indicating that word index 6 is
the parent with dependency relation nn with confidence 0.139535 (i.e. precision
of rule nn 2:NN NN JJ 1:NN. Note: These are not the features themselves.
Features are constructed from these relations, e.g. feature n-Rels of word index

4 (i.e. maker) are 1-nsubj, 2-nn, 3-amod 10
5.1 Word sketches for the verb @Y (do) Lo L 16
5.2 Concordance qUETY o vt i i e e e 16
5.3 Concordance results L Lo 17
5.4 Frequency of word forms Lo 17
5.5 Word list oL 18
5.6 Frequency list of the whole corpus for Words and Keywords extracted automat-

ically from Hindi Election Corpus by comparing it with Hindi Web Corpus . . . 19
5.7 Word Sketch results for @ (people) 19
5.8 Concordance for @l (people) in combination with its gramrel “nmod” 21

5.9 Adjective results of a bilingual word sketch for Hindi eTleT (red) and English red.
English translations of some of the Hindi words are: chilli, colour, fort, flower,

rose, cloth, Shastri o 22
5.10 Thesaurus search showing entries similar to @X (do) (left) and Sketch Diff com-

paring collocates of @X (do) and & (be) (right) 22
5.11 A sample of similar rules for different dependency relations 24

ix

List of Tables

Table

Page
4.1 Tmpact of new feature set on Malt baseline. McNemar’s test, ** = p < 0.01, *
=p<0.05
T - Unlexicalised 12
4.2 Distance wise accuracies with our improved feature set
1-5,6-10 and >10 represent the parent-child disntance 14

Related Publications

1. Anil Krishna Eragani, Varun Kuchibhotla: Improving malt dependency parser us-
ing a simple grammar-driven unlexicalised dependency parser. ALP 2014: 211-
214

2. Anil Krishna Eragani, Varun Kuchibhotla, Dipti Misra Sharma, Siva Reddy, Adam Kil-
garriff: Hindi Word Sketches. ICON 2014: 328-335

xi

Chapter 1

Introduction to Key Terms

Parsing is a fundamental task in natural language processing (NLP) that involves analyzing
the grammatical structure of sentences. It aims to assign a hierarchical structure to sentences
that reflects their syntactic relationships, enabling deeper understanding and facilitating sub-

sequent NLP tasks such as semantic analysis, machine translation, and information extraction.

1.1 Phrase Structure Parsing

Phrase structure parsing, also known as constituency parsing, focuses on decomposing sen-
tences into nested phrases according to a formal grammar. The grammar typically consists of
rules that define how smaller units (like words and phrases) can be combined to form larger
units (like sentences). One of the most widely used formalisms for phrase structure parsing
is context-free grammar (CFG). CFGs define syntactic rules using symbols (non-terminal and
terminal) and production rules. For example, a simple rule might state that a sentence (S)
consists of a noun phrase (NP) followed by a verb phrase (VP).

Phrase structure parsing typically employs algorithms such as top-down recursive descent
parsing, bottom-up shift-reduce parsing, and chart parsing. These algorithms traverse or build
parse trees according to the grammar rules, attempting to match the input sentence against pos-
sible parse structures. The output is a parse tree where nodes represent constituents (phrases)

and edges denote syntactic relationships (e.g., subject-object relationships).

1.2 Dependency Parsing

Dependency parsing, on the other hand, focuses on identifying relationships between words
in a sentence based on directed links (dependencies) rather than hierarchical structures. A
dependency parser aims to generate a dependency tree where each word (except for a root
node) is directly linked to another word, indicating a syntactic relationship such as subject,
object, modifier, etc. Dependency parsing is particularly useful for languages with relatively

free word order or for applications requiring efficient syntactic analysis.

Dependency parsing algorithms can be broadly classified into transition-based and graph-
based approaches. Transition-based parsers operate by applying a sequence of actions (transi-
tions) to construct the dependency tree incrementally. These parsers are efficient and suited for
online processing but require careful design of transition rules. In contrast, graph-based parsers
formulate parsing as an optimization problem, where the goal is to find the best dependency
tree based on learned weights and features. The Maximum Spanning Tree (MST) algorithm is

a prominent example of a graph-based approach used in dependency parsing.

1.3 Focus of our Work

At the end of the day, both the methods above return a tree. i.e., the following properties
are upheld:

o Every node has a single parent
e All the nodes are connected

e There are no cycles present in the final structure

Owing to the tree structure where every node is a word and every edge is a dependency
relation, this parse very closely aligns with the semantic meaning of the sentence. One issue
here is that the tree is basically rooted at the finite verb, and looking at it does not make the
source sentence obvious - especially for free-word-order languages.

All our work is focused on the dependency parsers, which will be outlined in the sections to

come.

1.3.1 Grammar Driven Parsing

Grammar-driven parsing is a fundamental approach in natural language processing (NLP)
that involves analyzing sentences based on predefined grammatical rules and structures. At its
core, this method relies on formal grammatical frameworks like context-free grammar (CFG),
dependency grammar, or phrase structure grammar. These frameworks define syntactic rules
that dictate how words and phrases can be combined to form grammatically correct sentences.
During parsing, these rules are applied to analyze the syntactic structure of sentences, aiming
to generate hierarchical representations such as parse trees or dependency trees.

One of the key advantages of grammar-driven parsing is its ability to enforce linguistic
constraints and ensure that the parsed output adheres to grammatical rules. This systematic
approach provides a clear and structured representation of the relationships between words and
phrases within sentences, which is essential for many downstream NLP tasks such as machine
translation, information retrieval, and semantic analysis. By relying on formal grammatical
theories, grammar-driven parsers can handle a wide range of syntactic phenomena and linguistic

variations across different languages.

However, grammar-driven parsing also faces challenges, particularly in languages with flex-
ible word order or complex syntactic structures that may not be fully captured by a single
formal grammar. As a result, hybrid approaches that combine grammar-driven techniques with
statistical or machine learning methods have emerged to address these challenges effectively.
These hybrid models integrate the strengths of both approaches, leveraging grammatical rules
for structural integrity while incorporating statistical patterns to enhance parsing accuracy and

adaptability to diverse linguistic contexts.

Chapter 2

Journey and Motivation

We had started off comparing two of the most popular dependency parsers at the time, Malt
and MST.

MaltParser is a versatile and efficient dependency parser that excels in syntactic analysis
tasks within natural language processing (NLP). Developed by Johan Hall, Jens Nilsson, and
Joakim Nivre, MaltParser employs a transition-based parsing approach to construct dependency
trees from raw text. Unlike traditional graph-based parsers, MaltParser utilizes a deterministic
parsing algorithm that iteratively applies a set of parsing actions based on predefined transition
rules. These rules guide the parser through the decision-making process to systematically build
the syntactic structure of sentences. This method ensures both accuracy and computational
efficiency, making MaltParser a popular choice for parsing tasks ranging from part-of-speech

tagging to machine translation.

The Maximum Spanning Tree (MST) parser is a dependency parser that operates on the
principle of finding the maximum spanning tree over a graph representation of a sentence. De-
veloped primarily by Ryan McDonald and Fernando Pereira, the MST parser formulates the
parsing task as an optimization problem where the goal is to select a tree structure that maxi-
mizes a scoring function based on learned weights and features. This approach contrasts with
transition-based parsers by directly constructing a global structure rather than incrementally

building it through transitions.

On experimenting with 2 data sets with different relations and POS tag counts, we found
that Malt parser is very good for short distance dependencies, whereas the MST parser is
good for handling long distance dependencies (>9 words between parent and child). One other
finding is that MST outperformed Malt for JJP, VG, POF tags, whereas Malt performs better

on nouns and pronouns.

We then tried feeding the intermediate output of Malt parser into MST and vice-versa. The
majority of the errors were not in head-identification, but in labeling the relation, so we tried
to build a custom tree by combining the outputs of both the parsers based on sentence lenghts.
This lead to minor improvements, but there was a lot of manual intervention needed, and we

could not come up with a generic checklist of items to automate it.

So we started to think about how generic rules can be used to nudge lexical parsers in the
right direction when they encounter unseen patterns in the input sentence, or parent/child pairs

separated by long distances.

Chapter 3

Auto-extracted Grammar

We primarily worked on building a data driven grammar, like sketch grammar. We tried
building our own parser using this grammar, but after development, we found that the accuracies
were quite low, so we started to use the grammar in other ways like improving the performance
of Malt by feeding features obtained from this during training or building the Sketches for
Hindi. These are detailed in the further sections.

The grammar itself is a collection of regular expressions over part-of-speech tags, written in

Corpus Query Language (CQL). Example:
k1 (doer): 2:[tag="NN"] [tag="PSP:A"] [tag="JJ"]? 1:[tag="VM"]

where 1 is head, 2 is child.

Writing any grammar with a high coverage is a tough task due to the idiosyncracies of
languages or the word order they enforce. So following a general approach of what MST parser
does, we wanted to automatically extract a grammar purley based on POS-tag sequences from
an annotated corpus (HDT-v0.5). Based on the gold data, we extract a sequence of POS tags
starting and ending with the parent/child maintaining the order in which they appear in the
sentence. We do this for all dependency relations (parent-child pair and deprel combination)

for all sentences. We end up with a bunch of rules like so:
o k1 - 2:[tag="NNP”] [tag="PSP”] [tag="NN"] [tag="PSP”] 1:[tag="VM"]
o k2 - 2:[tag="NN"] 1:[tag="VM”]
o k7 - 2:[tag="NN"] [tag="PSP”] [tag="NN"] 1:[tag="VM”]

One contrast here when compared to MST’s non lexicalized rules is that MST maintains
context of what comes before and after the immediate context (elements not just in between
the parent and child).

3.1 Assigning Weights

Since we are extracting so many rules, when these are applied to a test sentence, they would

definitely result in a slightly dense graph of various parent-child dependency relationships. So

ITI (NN) o (PSP) IHENN) F@EAT(VM)
(child) (erg.) (mango) (eat.pst) (the child ate a mango)
2:[tag="NN"] [tag="PSP\:a"] [tag="NN"] 1:[tag="VM"] -----e- (D)

FTA (NN) & (PSP) BT (NN) &er (VM)
(paper) (acc.) (outside) (throw.pst) ([Someone] threw the paper outside)
2:[tag="NN"] [tag="PSP\:®I"] [tag="NN”] 1:[tag="VM"] ------- 2

we need a method to pick one over the other, so we apply back these rules on the annotated

data and compute

e how many times the sequence itself was found in the data - here, we only care about the

parent-child connection and not the dependency relation (label of the edge). Call this N.

e how many times the sequence was found in the data with the correct dependency relation.
Call this M.

We then compute a precision of each of these rules based on the source data they were
extracted from, as M/N.

During the time, large-scale annotated data was not available, so some of the more complex
rules did not result in many other matches than the sample sentence they were extraced from.

To rule out such outliers, we put in some basic constraints to include the rules in further steps.
e it should have a precision of at least 0.05.
« total matches (N) should be > 4

e max rule length is 7 tokens

3.2 Lexicalization and Generalization

Hindi, being a free word order language, with the subject/object being omitted in colloquial
speech, presents us with one challenge. Both k1 (doer) and k2 (object) have very similar
patterns in which they occur

As can be seen above, two very similar sentence structures give rise to different relations.
We found the only way to disambiguate PSPs (postpositions) and CCOFs (conjunctions) was
to incorporate some lexical element to those tags. As evident in the image above, using the
lexical items 7 and EbAfhelps with this issue.

One other issue stemming from the small annotated data sets is very low frequencies for

longer rules (where the parent and child are separated by 6-7 words). These relations were

automatically ignored by the constraints in the previous section. So we decided to include
regular expression patterns in the rules under reasonable conditions. This results in rules like
2:[tag="NNP”] []6,10 1:[tag="VM”"|
We then remove all the rules which are covered by this generic rule, and compute the precision

for this one in the source data.

3.3 Parsing Attempt

Using the above grammar rules, we tried our hand at parsing. The general approach is to
apply all the rules on the input sentence, and resolve the resultant graph into a tree using some

constraints.
¢ a node cannot have more than 1 parent.
o there cannot be any cycles in the result. It should be a proper tree.
e a parent cannot have two children with the same dependency relation.

— if the relation is a conjunction, there can be multiple children as long as all the

children are of the same type (all nouns; or all verbs)

— in any other case, a parent can only have 1 child of a type

Before lexicalising the PSP and CCOF tags, we achieved a meager 30% labeled and unlabeled
accuracy on test data. But after including the lexical features, it went up to around 70%. The
main challenge is still the relatively small sample from which these rules were extracted.

The accuracies we got were below the state-of-the art parsers at that time, which were
averaging at around mid-80%. We thought the generic nature of these would lend themselves
as prompts to a lexical parser to better pick its options. These efforts are detailed in the

upcoming chapters.

Chapter 4

Improving Malt Dependency Parser

4.1 Introduction

Dependency Parsing has gained popularity due to its ease of representation for any language
including free word order languages. With shared tasks like CoNLL [1,2] and others [3], de-
pendency treebanks for many languages came into existence, and thereby many dependency
parsing techniques. Among these, Malt parser [4] has become one of the popular dependency
parsers due to its ease of training, capability of handling various features, faster training and
parsing rates. We use Malt Parser in place of other higher-order graph-based parsers as we want
to improve greedy dependency parsing, which is still one of the most efficient parsing methods
available. Malt is a transition-based parser with greedy local search. Malt uses lexicalised
information i.e., the word itself, along with the features specified, to take a best local decision
while parsing. While lexicalised information is useful, the algorithm is prone to difficulties when
the words are unseen since the algorithm has to base its decision only on the features seen. The
features, in general, are unigram, bigram or trigram of various linguistic properties around a

fixed window from the current word.

There have been many attempts of improving a parser’s performance using features from
other parsers. [5] used features from [6] and [7] parsers which improved MSTParser’s UAS by
1.7%. [8] and [9] used a technique called blending where output of different parsers is used
to generate the final parse. [10] improved CCG parser using dependency features. They first
extracted n-best parsers for a sentence using a CCG parser. Then dependency features from a

dependency parser are provided to a re-ranker.

Unlexicalised grammar-driven parsers [11,12] are well known for their robustness in handling
unseen words, and are also competitive in performance with statistical data driven lexicalised
parsers. We aim to integrate information from a simple grammar-driven unlexicalised parser

into Malt, and thereby increase the robustness of Malt.
We define our unlexicalised grammar as a set of rules corresponding to each dependency

relation type. Each grammatical rule is a sequence of POS tags between (and including) the

head and child words. We extract these rules from the training data. To parse test data, we

index word POS tag 1st best relation 2nd best 3rd best

1 The DT 4:det:0.89159 3:det:0.870516 2:det:0.846192
2 luxury NN 3:nn:0.734832 4:1n:0.715789 4:amod:0.1166
3 auto NN 4:1n:0.734832 6:11n:0.139535

4 maker NN 7:nsubj:0.273 6:nn:0.169154 6:amod:0.1293
5 last JJ 6:amod:0.7330 4:amod:0.2280

6 year NN 7:nsubj:0.567 4:tmod:0.1268

7 sold VBD 0:ROOT:0.453

8 1,214 CD 9:num:0.96036 7:dobj:0.185424

9 cars NNS 7:dobj:0.6859

10 in IN 9:prep:0.6236 7:prep:0.479452

11 the DT 12:det:0.2726

12 U.S. NNP 10:pobj:0.228

Figure 4.1 Top 3 parents for each word. The format of each relation above is parent node
index : relation name : precision of the rule applied. For example, the 2nd best relation on word
index 3 i.e. auto is 6:nn:0.139535 indicating that word index 6 is the parent with dependency
relation nn with confidence 0.139535 (i.e. precision of rule nn 2:NN NN JJ 1:NN. Note: These
are not the features themselves. Features are constructed from these relations, e.g. feature
n-Rels of word index 4 (i.e. maker) are 1-nsubj, 2-nn, 3-amod

apply these rules on the test data, and assign the n-best dependency relations based on the
rules’ probabilities. These n-best relations are given to Malt as features.
In our experiments with English and Hindi on lexicalised data, we achieved state-of-the-art

results over the previous best known settings for Malt.

4.2 Simple Grammar-Driven Parser

The goal of our grammar-driven parser is to identify all possible dependency relations of a
word in a given sentence. We extract rules for each dependency relation type from the training
data. Each rule is defined as a sequence of POS tags surrounding the head and child words.

We describe these steps in detail below.

4.2.1 Dependency Grammar

Our dependency grammar differs from the commonly used grammars like CFGs and demand
frames. Inspired from RASP [13,14], we define a grammar rule as a POS tag sequence, also
called as Sketch Grammars [15,16]. Sketch Grammars are popular with lexicographic and
corpus linguistics community, and are used to identify collocations of a word with a given
grammatical relation [17]. We use Sketch Grammar to identify words in syntactic relations in a
given sentence. For example, a grammar rule for the relation "direct object” (dobj) is 1:”VBD”
"DT”? 7JJ”* 2:NN, which specifies that if a verb is followed by an optional determiner and

any number of adjectives and followed by a noun, then the noun is the object of the verb. The

10

head and child are identified by 1: and 2:. Each rule may often be matched by more than
one relation creating ambiguity. Yet they tend to capture the most common behaviour in the
language.

Given a training data with dependency annotations, we extract dependency grammar rules
(i.e. sketch grammar) automatically for each relation type, based on the POS tags appearing
in between the dependent words. For example, from the sentence, Rowling wrote the book on

Potter, we extract rules of type,
e nsubj- 2:’"NNP” 1:”’VBD”
e dobj- 1:”VBD” ”DT” 2:’"NN”

° prep _ 1., 77VBD77 77DT}7 77NN77 2: 77PP}7

In the above example, relation names are in bold, and the rules are italicised. Though sketch
grammars support regular expressions, generating a compact rule with regular expressions is
our future work, and in this paper we work only with plain tag sequences (our initial attempts of
using regular expressions bombarded the search space, and so we reverted to simple grammatical
rules). We only use the POS tags of words between head and child words including head and
child POS tags (In the camera ready we hope to extend the context to the left and right of the
target words).

Since Hindi follows the SOV (Subject-Object-Verb) word order, some inter-chunk relations
can only be represented by long, and hence, less frequent and less statistically significant rules.
So, we generalised the rules for inter-chunk relations by only including the chunk head (the

parent in each local word group).

4.2.2 Weighted Dependency Grammar

After extracting all the dependency rules, we apply each rule on training data, and compute
its precision. For example, if the rule dobj: 1:”VBD” ”DT” 2:”NN” is applied on training
data, we get all the (1:VBD, 2:NN) pairs where the rule holds, say N pairs. Out of these N
pairs, if M of them are seen correctly with dobj relation in the training data, then precision of
the rule is % We use precision scores as weights for disambiguation when rules are applied on
test data.

For Hindi, whenever possible, we take the average of the weights from both the type of rules

(inter-chunk and plain tag sequences)

4.2.3 Grammar-Driven Parser

For each sentence in the test data, we apply all the rules extracted in the above steps. If we
define a sentence as a set of nodes in a graph, each rule is like an edge connecting two nodes

in the graph, with relation name as the edge label. For each child node (i.e. indicated by 2:

11

Language ‘ Experiment/FEATS ‘ LAS \ UAS ‘

Stanford Baseline (BL) 87.71 90.17
Stanford BL + {5-posTags, 5-ScoreRanges} 87.90*%* | 90.34**
T Stanford Baseline (BL) 79.45 83.39
English T Stanford BL + {3-posTags, 3-ScoreRanges} 79.90*%* | 83.85**
CoNLL Baseline (BL) 88.73 90.00
CoNLL BL + {2-Rels, 2-posTags} 88.88* | 90.20**
T CoNLL Baseline (BL) 83.31 85.68
T CoNLL BL + {4-Rels, 4-posTags, 4-ScoreRanges} | 84.01** | 86.29*%*
Baseline (BL) 87.97 93.40
Hindi BL + {5-Rels, 5-posTags} 88.25** | 93.70**
T Baseline (BL) 83.33 91.79
T BL + {3-Rels, 3-posTags} 84.16** | 92.65**

Table 4.1 Impact of new feature set on Malt baseline. McNemar’s test, ** = p < 0.01, * =
p < 0.05
1 - Unlexicalised

in an applied rule), we select its n-best parent nodes (i.e. indicated by 1: in an applied rule)
by sorting the rules based on their weights (in descending order). In Figure 4.1, for each word,
we show its 3 best parent nodes. One can apply algorithms like MST (or ILP) to retrieve a
dependency tree from the graph [18]. Since we aim to use n-best relations of each child node
as features to Malt, we do not perform MST or ILP. Though the parser is noisy, we hope that

the features from grammar could still help Malt.

4.3 Integrating Grammatical Features with Malt

As mentioned in section 4.2, we use the intermediate output of our parser, namely, the n-best
relations for each word, to generate features which we integrate with Malt. For each word in
the sentence, we specify its possible parents, relations and the scores derived from our parser.
As far as we know, the only way to encode the predicted head of a word in a feature is through
InputArc and InputArcDir constructors, but we chose not to use them as they only work on
1-best predictions. Instead, we specify the features of parent word as parent indicating features
to the child word. Similarly, it is not possible to specify scores from our parser as numerical
features to Malt. Instead we convert score to a range based on the magnitude of the score. Our

feature set from the grammar-driven parser is as follows.

1. n-Rels: Relations between the current word and the nth-best parents specified by the

grammar-driven parser.

2. n-posTags: POS tags of the n-best parents.

12

3. n-ScoreRanges: The range in which score of the n-best parents falls in. We define the
ranges as follows. 1 for 90-100%, 2 for 80-90% and {3,4,5,6} for 80-0% in splits of 20.

If n is 3, then we have one feature each for the 1st, 2nd and 3rd best feature value.

In our experiments, we add the above features from grammar-driven parser to the existing
state-of-the-art Malt feature set (refer next section) to form a new feature set, and tune over
the complete feature set using development data to get the best settings.

We also experiment with Malt by disabling the lexical features. Since our grammar rules
are purely syntactic, this would serve as a control experiment indicating whether we better the

non-lexical part of Malt Parser with the aforementioned features.

4.4 Experiments

In this section we describe the datasets we used for English and Hindi and our experimental

settings.

4.4.1 Data and Tools

For English, we experimented with two different dependency annotation schemes, namely,
CoNLL which has a label set of 11 labels, and Stanford which has a much larger label set of 48
labels, both of which are widely popular. We used Penn Treebank [19] with standard splits -
sections 02-21 for training, section 22 for development and section 23 for testing. We extracted
Stanford dependencies and CoNLL dependencies from Penn Treebank using Stanford Parser
built-in converter with basic projective option and Penn2Malt! respectively.

For Hindi, we used the Hindi Dependency Treebank (HDT-v0.5) which was released for the
Coling2012 shared task on dependency parsing [3]. This treebank contains 12,041 training,
1,233 development and 1,828 testing sentences with an average of 22 words per sentence.

We use predicted POS tags for English, and the gold POS tags for Hindi.

4.4.2 Final Feature Set and Malt Settings

We use state-of-the-art English and Hindi feature sets of Malt as our baselines [3,20]. The
state-of-the-art Malt features for English are based on word and POS. For Hindi, apart from
word, lemma and POS, the features also include morphological properties such as case markers
for nouns; tense, aspect and modality markers for verbs; and chunk properties such as chunk
label and chunk type (indicates if the word is head or non-head of the chunk).

In our models, in addition to the baseline feature set, we also include the features from our

grammar-driven parser as described in Section 4.3. These features are provided in the FEATS

"mttp://w3.msi.vxu.se/nivre/research/Penn2Malt.html

13

http://w3.msi.vxu.se/nivre/research/Penn2Malt.html

LAS UAS
1-5 | 6-10 | >10 1-5 [6-10 | >10

Language | Experiment

Stanford Baseline (BL) | 89.76 | 70.69 | 72.17 91.89 | 73.54 | 74.17

Stanford BL+BestFeat | 89.88 | 70.46 | 73.52 91.98 | 73.22 | 75.72
English

CoNLL Baseline (BL) | 90.61 | 72.64 | 73.18 91.86 | 73.34 | 73.43

CoNLL BL+BestFeat | 90.69 | 73.00 | 73.82 91.98 | 73.70 | 74.17

Baseline (BL) 91.33 | 73.59 | 71.42 96.21 | 82.82 | 78.14
Hindi BL+BestFeat 91.57 | 73.86 | 72.10 96.44 | 83.24 | 78.99

Table 4.2 Distance wise accuracies with our improved feature set
1-5,6-10 and >10 represent the parent-child disntance

column of CONLL format?. We tried various combinations of features: baseline features +
combinations of n-Rels, n-posTags, n-ScoreRanges.

All the experiments are carried out using Malt Parser version 1.7.23. We use nivrestandard
as the parsing algorithm and liblinear as the learner in our experiments. The rest of the settings

are set to default.

4.5 Results

Table 4.1 displays the results of our experiments with English and Hindi on test data. We
chose the best performing feature set based on the results on development data. As mentioned
before, we also ran Malt by disabling lexical features - these results are marked by . All the
improvements on this data are statistically significant (McNemar’s significance: p < 0.01).

On lexicalised data for English, we obtained an improvement of 0.19% LAS and 0.17% UAS
on Stanford dependencies, and 0.15% LAS and 0.20% UAS on CoNLL scheme. For Hindi, we
achieved an improvement of 0.28% LAS and 0.30% UAS. All these improvements are statistically
significant (p < 0.01 for all except CoNLL-LAS with p < 0.05 using McNemar’s test).

In Table 4.2, we also present the distance wise improvements of dependency relations. We
observed improvements on all distance ranges (except 6-10 on Stanford), which shows that our

grammar is effective even for long distance relations.

2http://nextens.uvt.nl/depparse-wiki/DataFormat
3Malt Parser v1.7.2 can be downloaded at http://www.maltparser.org/download.html

14

http://nextens.uvt.nl/depparse-wiki/DataFormat
http://www.maltparser.org/download.html

Chapter 5

Hindi Word Sketches

5.1 Introduction

A language corpus is simply a collection of texts, so-called when it is used for language
research. Corpora can be used for all sorts of purposes: from literature to language learning;
from discourse analysis to grammar to language change to sociolinguistic or regional variation;

from translation to technology.

Corpora are becoming more and more important, because of computers. On a computer,
a corpus can be searched and explored in all sorts of ways. Of course that requires the right
app. One leading app for corpus querying is the Sketch Engine (Kilgarriff et al., 2004). The
Sketch Engine has been in daily use for writing dictionary entries since 2004, first at Oxford
University Press, more recently at Cambridge University Press, Collins, Macmillan, and in
National Language Institutes for Czech, Dutch, Estonian, Irish, Slovak and Slovene. It is also
in use for all the other purposes listed above. On logging in to the Sketch Engine, the user
can explore corpora for sixty languages. In many cases the corpora are the largest and best
available for the language. For Indian languages, there are the corpora for Bengali, Gujarati,
Hindi, Malayalam, Tamil and Telugu. The largest is for Hindi with 240 million words — we
would be referring to it as HindiWaC in the rest of the paper.

The function that gives the Sketch Engine its name is the 'word sketch’, a one-page,
automatically-derived summary of a word’s grammatical and collocational behaviour, as in
Figure 5.1. Since the images in this paper are screen shots taken from Sketch Engine, transla-

tions and gloss have not been provided for the Hindi words in the images.

In this paper we first introduce the main functions of the Sketch Engine, with Hindi examples.

We then describe how we built and processed HindiWaC, and set it up in the Sketch Engine.

15

{verb)
EI ; I HindiWaC Sketches - Grammar_70% freq = 4955783 (18,246.1 per million)

pof 1345592 6.6 ||lwe cont 1.027.372 5.2 ||k2 283,996 3.6 ||kZ 161837 5.7 ||kl 114164 2.7
e 50479 10.16 || & 620115 11.08 || 41424 0.96 ||k 4268 9.01 || @ 3437 7.23
%= 3516 96| 151263 10.6||®Wr 4837 743 ||mER 3600 8.93||®WER 2592 7.91
GRS 33,110 9.58||@w 61,025 10.13||=F 239 7.63||%@ 3.250 7.44 || IfE 1,869 8.03
wEd 25295 9.23||%® 54,961 9.1 || @ 2192 6.61||®R 2517 8.24||TE 1254 7.21
dar 24767 9.93||@ 22.890 6.65|| = 1581 6.98||Fww 1804 7.79|| % 955 5.94
w0 4715 9.1 ||aww 22153 8.66 ||®m 1370 6.74||wm 1.697 7.53 ||k %26 6.75
= 23,029 9.45||a 19.041 7.93||heT 1277 641||Fm rest 7.27||fwmr 672 677
Bifd 23403 9.92 || 9w 17318 86||FH 1110 6.87||7® 1610 7.79 || w597 6.47
ey 23322 9.09|| 7% 6.716 7.36 || WA 1064 6.25|| @ 1,338 7.63 || Fw=ht 588 6.46
ar 2064 9.1 ||wE 5268 7.8 ||@=m 1050 6.18||®WA 1243 6.37||a%® 537 6.44
Figure 5.1 Word sketches for the verb @ (do)
Simple query: & Make Concordance

Query types Context Text types

Figure 5.2 Concordance query

5.2 The Sketch Engine For Hindi

5.2.1 The Simple Concordance Query Function

A Simple concordance query shows the word as it is used in different texts. Figure 5.2.1
shows the query box, while Figure 5.2.1 shows its output. A simple search query for a word
such as @Y (do) searches for the lemma as well as the words which have @X (do) as the lemma,
so @R (do), BAT (did), IR (to do), PR ([they] will do), etc. are all retrieved. Figure 5.2.1

shows the first 20 results out of the retrieved 5 million results.

5.2.2 The Frequency Functions

The Sketch Engine interface provides easy access to tools for visualizing different aspects of
the word frequency (see Figure 5.2.2). The Frequency Node forms function on the left hand
menu in Figure 4 shows which of the returned forms are most frequent.

Thus we have immediately discovered that the commonest forms of the lemma @ (do) are

@R (do), PAT (did) and B (to do).

16

Query FT 4,959,057 (18,258.1 per million)

Page |1 of 247,953 | Go | Mext | Last

#31 et & o w8, SR Oy s w0 T € 3N o eartoRs svule o e
#121 wA a1S & 38e afa SIS Feve Tav 2@ T @0 §| WH deh 38 38 o =61 1641 Aid
#200 | 7, 76, 3t A 5T A Ww T AN F Hwcw a waftaa wer 8,
#219 T & A A5y &l FAL A A E FT AYAT T HIH TANS, Blel HH ah

#406 U9 F1 HRCA W7 G1dT 5| 39 59 W faER #4019 fwe arer Tt & @ ST
#506 & HIT gl =l ST §1 59 i1 T30 FIaT § 7 96 #7012 #77d iy §

#561 81 Ry dg Ararse, $IE 4 o 96 F |, T6 T S 61 A ST 3 FT
#765 TIGICH §| S FTAT 3 A W IH FeAlel F3d & o7 off aga 1 AT ¥ FgeX
#777 dga 1 ATCTeE T STYER WA IR dg FE 97 faeT HX S arend el gl &1 A
#803 BIC T e SifSter g1ax iaT 7, 1 F= W Taot o AT ST §1 ST FfereT

#808 TofaT %, T el T TaoAt 1 AT FIa1 §1 ST ST § ol 3eTahT 3TYSE Taed e
#824 3Tl YT TAXY €A AT B, T MR F3 € o 96 981 Sl o AT Y| Teot 1
#871 TOHN A1 F T T A 61 INABR FL |, Al Fodl A1 UG giea F1d e

#929 TraRe A=A S8 Clielsn & &9 # GCda FTd §| agd 61 U=l el ¥ Ig YR el
#1129 sﬂ?wﬁamw%ﬂﬁﬁwwmmﬁwmﬁmﬁmmmqﬁwﬁ

#1197 AEATEITeR: YT || G TOAl T 53 FIA g Ao A1 38eh ATl [UaT S Hgur
#1212 TUST & SEET § GAT-UIG % T SHHN o9 Fa e | [FAtHd §9 F 3¢/ % & qeAw
#1238 ST W §1 T 41 fael 71 578 3c9ee S aTel Td HIgpse Tl &l e iead qetoia

#1268 SNGTCHT T TSR Glel ofeTcl &1 AW dg & oIl adel arel sl Sacii3il ot 37ehie ar AT
#1270 ST HTEAT G1eT ool 6| 3T a9 &4 ol 4=t arel o Sacmsil &7 3PTa 7 T ot

Page 1 of 247,953 Go | Mext | Last

Figure 5.3 Concordance results

2 word Freg
PIN ST 1,343,789
Save PN TRT 831,705
< Concordance BIN R 735,310 EE—
Sample PN T 393,560
Filter PN @ 320,619 I
Overlaps PN T 206,256
1st hit in doc P I N @3d 222,327 I
Frequency PIN®X 145,887
Node tags PN PG 125784 NEEE
Node forms PN BF 116,604 NN
Collocations PN fU 90,408 W
ConcDesc PN &R 59,137 M
Visualize PIN®X 57,381 W
iz PN T 56,398 W
PIN R 43,371 m
PN B 34,849 W
PN A 33,808 W
PN =0 17,217 1
PIN@E 5,862 |
PN w0 5,347 |
P | N & 5,285 |
P | N It 4,940 |
PN @& 4,386 |
Menu position PIN ﬁ‘ﬂ 4,049 |
P | N @l 3,234 |

Figure 5.4 Frequency of word forms

17

Word list
Corpus: HindiWaC Sketches - Grammar_70%
Page |1 Go | Next>

word Freg

BBV JAFBATA ARG BT

Figure 5.5 Word list

The p/n links are for positive and negative examples. Clicking on p gives a concordance for

the word form, while clicking on n gives the whole concordance except for the word form.

5.2.3 The Word List function

The Word List function allows the user to make frequency lists of many types (words,
lemmas, tags). Figure 5.2.3 shows the most frequent words in the corpus. In addition to most
frequent words, keywords of any target corpus can be extracted. This is done by comparing
frequent words from the target corpus with the frequent words from a general purpose corpus.
Figure 5.2.3 displays the keywords of a Hindi Election corpus, where this is the target corpus,
and the general purpose corpus is the HindiWaC.

Almost every keyword closely relates to the trend of news articles in the 2014 Indian Par-
liament elections. Since the Hindi Election Corpus is of small size, the frequency-per-million
column contains projected values. These are significantly higher than the same words in the

HindiWaC since the Election Corpus is domain specific.

5.2.4 The Word Sketch and Collocation Concordance functions

The Word Sketch function is invaluable for finding collocations. The word sketches of the
word (people) for three dependency relations are shown in Figure 5.2.4.
The dependency relations that we use are based on the Paninian framework (Begum et al.,

2008). Three of the most common dependency relations given by this model are as follows:

18

Hindi Election Corpus HindiWaC

word Freq Freq/mill Freq Freq/mill Score
i 234 7801.8 2,097 319 85
o 209 69683 17338 2636 6.3
il 161 5367.9 4,884 743 59
WER 222 74017 59774 90838 44
Eauce 130 43343 18838 2864 41
T 15 38342 11435 1739 41
] 105 3500.8 8324 1266 40
TR 84 2800.7 4,003 62.2 36
TR 83 2767.3 5,203 79.1 35
C 285 9502.2 136695 20783 34
o 8 27340 9501 1445 33
et 88 29340 15291 2325 32
Rl 107 35675 30665 466.2 31
Lieiceoit 5 25006 12890 1960 2.9
Lol 74 24672 17495 2660 2.7
IR 54 1800.4 1499 28 27
T 130 43343 65402 9944 27
T 4 1467.0 1,502 28 24
il 53 17671 10822 1645 24
ferren 4 1461.0 3764 57.2 23

Figure 5.6 Frequency list of the whole corpus for Words and Keywords extracted automatically
from Hindi Election Corpus by comparing it with Hindi Web Corpus

m-;T {noun)
HindiWaC Sketches - Grammar_70% freq = 568946 (2,094.7 per million,

nmod adj 240,145 4.3 ||kl inv 22,290 6.4 ||nmod 12,337 9.8
75 24,854 1033 |7 159 7.05|| =R 104 7.01
3 11,08 10.12 || 7w L1M7 6.42 || SUETER 52 6.04
w 10530 9.98 || F§ 2,606 6.0 || ZeEE 73 6.04
T 11,367 9.66 || 7R 265 5.83 || yfawaT 40 5.83
Tt 7.664 9.28||= 152 5.77||¥ 8 58
Lt 5960 9.21 (|7 76 573 || W@ 21 5.73
¥ 5412 9.16 || @ 277 572 || € 65 5.51
= 4453 91|z 57 5.56 || 3ma 37 549
1S 4871 o1 || @ 141 5.53 || = 8 5.45
= 7.082 9.0 || =@ 616 5.53||v@ 550 5.36
¥ 4844 876 ||wE 3% 55||TR 57 5.29
BT Jd44d4 872(|TE 172 548 | vgua 352
Tw 11.814 8.67||® 48 5.42(|=m 30 5.11
I 3329 s846||ew 27 54| 81 5.03
GEC 2322 8.22|| e 49 5.08 || FamRERT 29 5.03
En 2851 82||3er 166 5.02 || Ba 24 499
ST 1,958 7.98||== 68 4.99 || IR 15 4.8
e 2581 7.97||%m 183 4,99 (| & 49 4.8
EEed 2215 7.93||% 142 4.95(|5R 25 4.8
=t 2257 7.87||=aw 42 4.95|| %= 31 4.78

Figure 5.7 Word Sketch results for el (people)

19

o kl: agent and/or doer
o k2: object and/or theme
e k3: instrument

These relations are syntactico-semantic in nature, and differ slightly from the equivalent
thematic roles mentioned above. More about how we get the word sketches shown in Figure
5.2.4 is explained in Section 5.3.

In figure 5.2.4, the three dependency relations shown are:

e nmod_ adj: nounmodifier adjective
e k1 inv: doer inverse

« nmod: nounmodifier

The word sketch function assigns weights to each of the collocates and also to the dependency
relations.

Clicking on the number after the collocate gives a concordance of the combination (Figure
5.2.4).

5.2.5 The Bilingual Word Sketch function

A new function has been added recently to the Word Sketch, which is the Bilingual Word
Sketch. This allows the user to see word sketches for two words side by side in different
languages. Figure 5.2.5 shows a comparison between oflel (red) and red. Interestingly, the
usage of word red in Hindi and English are very diverse. The only common noun which is
modified by red in both languages is JeTld (rose).

5.2.6 Distributional Thesaurus and Sketch Diff

The Sketch Engine also offers a distributional thesaurus, where, for the input word, the
words ’sharing’ most collocates are presented. Figure 5.2.6 shows the top entries in similarity
to @R (do). The top result is & (be). Clicking on it takes us to a ’sketch diff’, a report that
shows the similarities and differences between the two words - the right half of the image.

The red results occur most frequently with &l (be), the green ones with @X (do). The ones

on white occur equally with both.

5.3 Building and processing HindiWaC and loading it into the
Sketch Engine

HindiWaC was built using the Corpus Factory procedure (Kilgarriff et al., 2010). A first

tranche was built in 2009, with the crawling process repeated and more data added in 2011, and

20

Word sketch item 12,337 (45.4 per million)

Page |1 of617|Go| Next | Last

#19929 & FTEOT S B TEA H {F Aol A N FH T
#27749 TUA & I STIAC W SHIATA Fe+ ot il & & 91 9
#41844 Tl GRMGRT & WA HGFTHA $e=F dled @il & 8¢ e 6 ¢

#46724 SAIGT FCH TEATHAT Hal # {F= ool @l S AGEE §UI
#65638 T 39 @57 Tg ol 8] HdoE Fee ale arl A o A T
#128970 e ol &, T 8 98 &8 39 Sgc are @il & an F s e
#133700 B 5T & TOEE A WA sy A an 39§ oRsT @
#148608 AT &, ST T8 & TE 39T HY=7ale Tl ST HI6T 5T W
#149334 WHY & 34 4R 1 HT goig Hee are Al i qrar # a
#163854 Tl & Tenale SHaR] 1 FGg e dlcd @il & 71F FHEE
#233242 TR STiaT AT 1 SEOEE FY I @l @ O g
#137487 W ooitd ¢l FFH & O6d 08 Fv= dlel @l T HUAl & W
#238735 B154 & T F5e 9 # A7 ale A $E A F A
#311386 3¢ T o T T80 Flod 7= Gl @R &1 3R] &1 ©

#313981 949 9 38 00T #1 Heg & &0 HE 7= are @ 9itgal & &
#379140 TAOTHT FIAT &1 ATEF IR Agad = dred il & HAmEas |
#414958 FAId & Th SEEA I MATAT S99 FY7 aled Al S HEL 8l ®
#452814 WY 91 T TET Ted HE e arel @l & &, @
#497144 T & TBEET U1 8 % 3T g atel dl & Siae @ i
#559618 3FTEIS & FHa & 1S S |9THE & FArfaw 54 @ A U o1 9rg

Page\‘l |of617|Gu| Next | Last

Figure 5.8 Concordance for il (people) in combination with its gramrel “nmod”

21

fadiectivad &l barnativ
m“m&m-ﬁ redfm'.my ik Wal frec

modifier of 6082 78 | modifies 76712 3.1
ik 579 1095 squirel 1549 9.12
kil 938 10.64 || tape 2781 911
fr 337 1053 || wine 2668 BB3
firm 303 9.83 || heming 853 8.4
ki 168 9.6/ deer 952 8.26
L) 160 9.51 brick 1070 814
w 112 912 || sandstone 753 8.00
Lo 148 9.08 || pepper 818 8.04
= 136 864 || flag 1087 79
o 62 8.15| cell 2590 781
o 54 8.01 | meat 938 7.62
eI 54 801 | carpet 639 7.59
L 64 7.67 || kite 434 7.37
Eiti 45 7.86 || onion 528 7.36
Coerd 76 7.6 | light 2350 734
Lo 47 768 | rose 375 7.03

Figure 5.9 Adjective results of a bilingual word sketch for Hindi @Tel (red) and English red.
English translations of some of the Hindi words are: chilli, colour, fort, flower, rose, cloth,
Shastri

fverb)
HindiWac Sketches - (

Lemma Score Freg

0.653 4,452,572
0.5% 1,714,785
0.52 1,020,412
0.491 2,086,780
0435 316,613
0476 978,040
0.468 9,658,560
0467 440,902
0444 527,703
0.411 2,460,144
0403 355,35
0.389 506,661
0372 914,047
0344 431473
0317 483,869
0335 233,821

ERENE N RN - o R - R A

Figure 5.10 Thesaurus search showing entries similar to @ (do) (left) and Sketch Diff com-
paring collocates of @X (do) and & (be) (right)

22

again in 2014. Corpus Factory method can be briefly described as follows: several thousands of
target language search queries are generated from Wikipedia, and are submitted to Microsoft
Bing search engine. The corresponding hit pages for each query are downloaded. The pages
are filtered using a language model. Boilerplate text is removed using body text extraction,
deduplication to create clean corpus. We use jusText and Onion tools (Pomikalek, 2011) for
body-text extraction and deduplication tools respectively.

The text is then tokenized, lemmatized and POS-tagged using the tools downloaded from
http://sivareddy.in/downloads (Reddy and Sharoff, 2011). The tokenizer found here is installed
in the Sketch Engine.

5.3.1 Sketch Grammar for Hindi

A sketch grammar is a grammar for the language, based on regular expressions over part-
ofspeech tags. It underlies the word sketches and is written in the Corpus Query Language
(CQL). Sketch grammar is designed particularly to identify head-and-dependent pairs of words
(e.g., @I [eat] and Y™ [Ram)]) in specified grammatical relations (here, k1 [doer]), in order that
the dependent can be entered into the head’s word sketch and vice versa.

Sketch Grammars are popular with lexicographic and corpus linguistics community, and are
used to identify collocations of a word with a given grammatical relation (Kilgarriff and Rundell,
2002). We use Sketch Grammar to identify words in syntactic relations in a given sentence. For
example, a grammar rule for the relation "k1” (doer) is 2:”"NN” "PSP J7 7] J77 1:”VM?”, which
specifies that if a noun is followed by a PSP and an optional adjective and followed by a verb,
then the noun is the kartha/subject of the verb. The head and child are identified by 1: and 2:
respectively. Each rule may often be matched by more than one relation creating ambiguity.
Yet they tend to capture the most common behavior in the language.

Writing a full-fledged sketch grammar with high coverage is a difficult task even for language
experts, as it would involve capturing all the idiosyncrasies of a language. Even though such
hand-written rules tend to be more accurate, the recall of the rules is very low. In this paper, the
grammar we use is a collection of POS tag sequences (rules) which are automatically extracted
from an annotated Treebank, Hindi Dependency Treebank (HDT-v0.5), which was released for
the Coling2012 shared task on dependency parsing (Sharma et al., 2012). This treebank uses
ITIT tagset described in (Bharati et al., 2006). This method gives us a lot of rules based on the
syntactic ordering of the words. Though these rules do not have all the lexical cues of a language,
the hope is that, when applied on a large-scale web corpus, the correct matches (sketches) of
the rules automatically become statistically more frequent, and hence more significant.

From the above mentioned treebank (HDT) we extract dependency grammar rules (i.e.
sketch grammar) automatically for each dependency relation, based on the POS tags appearing
in between the dependent words (inclusive). For example, from the sentence,

T (Ram) F(erg.) @R(room) H (inside) 3 (mango) T (eat)

23

http://sivareddy.in/downloads

FTa (NN) o (PSP) HHENN) @ET (VM)
(child) (erg.) (mango) (eat.pst) (the child ate a mango)
2:[tag="NN"] [tag="PSP\:§T"] [tag="NN”] 1:[tag="VM"] ------- (1)

FETA (NN) &l (PSP) FET(NN) et (VM)
(paper) (acc.) (outside) (throw.pst) ([Someone] threw the paper outside)
2:[tag="NN"] [tag:"PSP\:ﬁ"] [tag="NN"] 1:[tag="VM"] ----- 2)

Figure 5.11 A sample of similar rules for different dependency relations

Ram ate [a] mango in [the] room
we extract rules of the type: (kl[doer], k2 [object], k7[location])

e k1 - 2:[tag="NNP”] [tag="PSP 7"] [tag="NN"] [tag="PSP #"] 1:[tag="VM"]
e k2 - 2:[tag="NN"] 1:[tag="VM"]

e k7 - 2:[tag="NN"] [tag="PSP #"] [tag="NN"] 1:[tag="VM”]

In the above example, relation names are in bold with one of the corresponding rules for
each of them.

We do include a few lexical features associated with the POS tags PSP (post-position)
and CC (conjunction) in order to disambiguate between different dependency relations. For
example, in both the relations k1 (doer) and k2 (object) we have the rules (1) and (2) given
below respectively in Figure 5.3.1:

In (1), the ergative marker indicates that the noun (NN) is the doer of the verb (VM). In
(2), the accusative marker indicates that the noun (NN) is the object of the verb (VM). Also,
(2) is not a complete sentence — the doer has not been mentioned, and only the part of the
sentence that the rule is applied to is shown.

If in the rules, the PSP POS tags didn’t contain the lexical features, both the rules would
have been the same, and hence both the rules have been applied on both the sentences, making
the word sketches erroneous.

By lexicalizing the PSP POS tag, the rule(s) formed are now less ambiguous, and more

accurate.

24

Chapter 6

Conclusion

We presented an easy-to-extract non lexical grammar using POS tag sequences, and some
ways of disambiguating the rules and making them more generic for increased coverage. This
is useful for languages which do not have large annotated corpora.

Using the above grammar, we have shown that the performance of lexical parsers (in this
case, Malt) can be improved significantly - whilst also increasing the recall. The grammar can
be made more concise/precise/generic depending on the need, and can most likely be used to
improve parsing performance on languages with sparse annotated data.

We prepared and used HindiWac, a large corpus for Hindi in Sketch Engine. Thich offers
us valuable insights not only into the behaviour of words and relations in Hindi, but also how

similar words are used across different languages.

25

1]

Bibliography

S. Buchholz and E. Marsi, “Conll-x shared task on multilingual dependency parsing,”
in Proceedings of the Tenth Conference on Computational Natural Language Learning.

Association for Computational Linguistics, 2006, pp. 149-164.

J. Nilsson, S. Riedel, and D. Yuret, “The conll 2007 shared task on dependency parsing,”
in Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL. sn, 2007, pp.
915-932.

A. Bharati, P. Mannem, and D. M. Sharma, “Hindi Parsing Shared Task,” in Proceedings
of Coling Workshop on Machine Translation and Parsing in Indian Languages, Kharagpur,
India, 2012.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kiibler, S. Marinov, and E. Marsi,
“Maltparser: A language-independent system for data-driven dependency parsing,” Natu-

ral Language Engineering, vol. 13, no. 2, pp. 95-135, 2007.

R. McDonald, “Discriminative learning and spanning tree algorithms for dependency pars-
ing,” Ph.D. dissertation, Philadelphia, PA, USA, 2006.

M. Collins, “Head-driven statistical models for natural language parsing,” Computational
linguistics, vol. 29, no. 4, pp. 589-637, 2003.

E. Charniak, “A maximum-entropy-inspired parser,” in Proceedings of the 1st North Amer-
ican chapter of the Association for Computational Linguistics conference. Association for
Computational Linguistics, 2000, pp. 132-139.

" in Proceedings of the Human

K. Sagae and A. Lavie, “Parser combination by reparsing,’
Language Technology Conference of the NAACL, Companion Volume: Short Papers. New
York City, USA: Association for Computational Linguistics, June 2006, pp. 129-132.

[Online]. Available: http://www.aclweb.org/anthology/N/N06/N06-2033

J. Hall, J. Nilsson, J. Nivre, G. Eryigit, B. Megyesi, M. Nilsson, and M. Saers, “Single malt
or blended? a study in multilingual parser optimization,” in Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, Prague, Czech Republic, June 2007, pp.
933-939. [Online|. Available: http://www.aclweb.org/anthology/D/D07/D07-1097

26

http://www.aclweb.org/anthology/N/N06/N06-2033
http://www.aclweb.org/anthology/D/D07/D07-1097

[10]

[11]

[12]

[19]

[20]

27

S. M. Kim, D. Ng, M. Johnson, and J. Curran, “Improving combinatory categorial
grammar parse reranking with dependency grammar features,” in Proceedings of COLING
2012. Mumbai, India: The COLING 2012 Organizing Committee, December 2012, pp.
1441-1458. [Online]. Available: http://www.aclweb.org/anthology /C12-1088

D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in Proceedings of the 41st
Annual Meeting on Association for Computational Linguistics-Volume 1. Association for
Computational Linguistics, 2003, pp. 423-430.

T. Briscoe and J. Carroll, “Evaluating the accuracy of an unlexicalized statistical parser
on the parc depbank,” in Proceedings of the COLING/ACL on Main conference poster

sessions. Association for Computational Linguistics, 2006, pp. 41-48.

T. Briscoe, “An introduction to tag sequence grammars and the rasp system parser,”
Computer Laboratory Technical Report, vol. 662, 2006.

"in Pro-

T. Briscoe, J. Carroll, and R. Watson, “The second release of the rasp system,’
ceedings of the COLING/ACL on Interactive presentation sessions. Association for Com-

putational Linguistics, 2006, pp. 77-80.

A. Kilgarriff, P. Rychly, P. Smrz, and D. Tugwell, “Itri-04-08 the sketch engine,” Informa-
tion Technology, vol. 105, p. 116, 2004.

K. Ivanova, U. Heid, S. S. Im Walde, A. Kilgarriff, and J. Pomikalek, “Evaluating a german

sketch grammar: A case study on noun phrase case.” in LREC, 2008.

A. Kilgarriff and D. Tugwell, “Sketching words,” Lexicography and Natural Language Pro-
cessing: A Festschrift in Honour of BTS Atkins, pp. 125-137, 2002.

R. McDonald, F. Pereira, K. Ribarov, and J. Haji¢, “Non-projective dependency parsing
using spanning tree algorithms,” in Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Language Processing. Association for Com-
putational Linguistics, 2005, pp. 523-530.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a large annotated corpus
of english: The penn treebank,” Computational linguistics, vol. 19, no. 2, pp. 313-330,
1993.

Y. Zhang and J. Nivre, “Analyzing the effect of global learning and beam-search
on transition-based dependency parsing,” in Proceedings of COLING 2012: Posters.
Mumbai, India: The COLING 2012 Organizing Committee, December 2012, pp.
1391-1400. [Online]. Available: http://www.aclweb.org/anthology/C12-2136

http://www.aclweb.org/anthology/C12-1088
http://www.aclweb.org/anthology/C12-2136

	Introduction to Key Terms
	Phrase Structure Parsing
	Dependency Parsing
	Focus of our Work
	Grammar Driven Parsing

	Journey and Motivation
	Auto-extracted Grammar
	Assigning Weights
	Lexicalization and Generalization
	Parsing Attempt

	Improving Malt Dependency Parser
	Introduction
	Simple Grammar-Driven Parser
	Dependency Grammar
	Weighted Dependency Grammar
	Grammar-Driven Parser

	Integrating Grammatical Features with Malt
	Experiments
	Data and Tools
	Final Feature Set and Malt Settings

	Results

	Hindi Word Sketches
	Introduction
	The Sketch Engine For Hindi
	The Simple Concordance Query Function
	The Frequency Functions
	The Word List function
	The Word Sketch and Collocation Concordance functions
	The Bilingual Word Sketch function
	Distributional Thesaurus and Sketch Diff

	Building and processing HindiWaC and loading it into the Sketch Engine
	Sketch Grammar for Hindi

	Conclusion
	Bibliography

