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Abstract

Brain decoding involves the reconstruction of stimuli from brain recordings. These recordings can
be obtained by presenting stimuli to a subject in various forms, such as text, image, and speech. De-
spite extensive research on brain decoding, important questions remain unanswered. Can we develop
multi-view decoders capable of decoding concepts from brain recordings of any view, including picture,
sentence, or word cloud? Can we build a system that can use brain recordings to automatically generate
descriptions of what a subject is viewing using keywords or sentences? How about a system that can
automatically extract important keywords from sentences that a subject is reading? Answering these
questions requires innovative approaches to brain decoding, as traditional methods have not yet been
proven adequate.

Previous brain decoding efforts have focused only on single-view analysis and hence cannot help
us build such systems. As a first step toward building such systems, inspired by Natural Language
Processing literature on multi-lingual and cross-lingual modelling, this thesis proposes novel brain de-
coding setups: (1) Multi-view Decoding (MVD), (2) Cross-view Decoding (CVD), and (3) Abstract v/s
Concrete Decoding. In MVD, the goal is to build an MV decoder that can take brain recordings for any
view as input and predict the concept. In CVD, the goal is to train a model which takes brain recordings
for one view as input and decodes a semantic vector representation of another view. Specifically, this
thesis studies practically useful CVD tasks like image captioning, image tagging, keyword extraction,
and sentence formation. In Abstract v/s Concrete Decoding, the goal is to build a decoder trained on
concrete concepts and test it on both abstract and concrete concepts and similarly build a decoder trained
on abstract concepts and test it in both types of concepts.

Extensive experiments lead to MVD models with ∼0.68 average pairwise accuracy across view
pairs and CVD models with ∼0.8 average pairwise accuracy across tasks. It was found that the decoder
trained on concrete concepts can decode both abstract and concrete objects with great and better accu-
racy than the model trained on abstract objects. Analysis of the contribution of different brain networks
reveals exciting cognitive insights: (1) Models trained on picture or sentence view of stimuli are bet-
ter MV decoders than a model trained on word cloud view. (2) Our extensive analysis across 9 broad
brain regions, 11 language sub-regions, and 16 visual sub-regions of the brain helped us localize, for
the first time, the parts of the brain involved in cross-view tasks like image captioning, image tagging,
sentence formation, and keyword extraction. (3) The visual brain network is very important for process-
ing Word+Picture stimuli for concrete concepts. Surprisingly, this is not the case for abstract concepts
where voxels from the language and DMN brain network are more activated.
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Chapter 1

Introduction

The human brain is a complex organ that plays a vital role in the functioning of the human body. It
is responsible for processing information received through various stimuli and generating appropriate
responses. For centuries, scientists and researchers have been trying to understand the mechanisms by
which the brain processes and responds to different stimuli, such as visual, text or auditory cues.

The process of mapping brain responses to different stimuli has been an area of active research for
many years. In recent years, this area of research has become even more critical as scientists seek to
understand how the brain responds to various external stimuli and how this response can be harnessed
to improve human health.

Language is a crucial component of human communication, and understanding how the brain pro-
cesses linguistic stimuli is of significant interest to researchers in the field of cognitive neuroscience.
The human brain has a remarkable ability to interpret and understand language, but the underlying
mechanisms by which this occurs are not yet fully understood.

Studying how the brain processes linguistic stimuli has been an area of active research for many
years. Various techniques have been used to investigate how different parts of the brain respond to
linguistic stimuli, including electroencephalography (EEG), functional magnetic resonance imaging
(fMRI), and magnetoencephalography (MEG) [33]. These techniques have enabled researchers to iden-
tify specific regions of the brain that are associated with language processing, such as Broca’s and
Wernicke’s areas [27].

Understanding how the brain processes linguistic stimuli has important implications for fields such
as linguistics, psychology, and neuroscience. It can provide insights into how we acquire language, how
we understand it, and how we use it to communicate. In addition, this research has practical applications
in areas such as speech therapy, language education, and artificial intelligence.

In recent years, a new approach called ”brain decoding” has emerged, which aims to decode the
neural activity patterns in the brain associated with linguistic stimuli to reconstruct insights about the
stimuli. The brain decoding approach uses machine learning algorithms to analyze the neural activity
patterns associated with stimuli. By identifying the neural patterns associated with specific linguistic
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features, such as syntax or semantics, researchers can develop models that can predict the stimuli from
brain activity patterns [56].

This approach has the potential to improve our understanding of how the brain processes linguistic
stimuli and can provide insights into how we acquire language and how we use it to communicate. For
example, recent studies have used brain decoding to investigate how the brain processes sentences with
different levels of syntactic complexity [30].

This thesis will examine the current state of research on how the brain processes stimuli, focusing
on the brain decoding approach. The thesis will explore the Cross-modal functioning of our brain,
finding how even visual stimuli can activate the linguistic processing of the brain and how we can
exploit that to perform Cross-View tasks like Image captioning and improve the accuracy of Abstract
concept decoding. Additionally, the thesis will discuss the challenges and limitations of brain decoding,
including the difficulty of interpreting the complex neural patterns associated with language processing
and the need for more data to train machine learning algorithms effectively. Finally, the thesis will
identify areas where further research is needed to advance our understanding of how the brain processes
linguistic stimuli and how brain decoding can be applied to other areas of cognitive neuroscience.

1.1 Motivation for current Thesis

The human brain’s ability to integrate information from different sensory modalities to form a coher-
ent perception of the world is a fascinating and complex process. Understanding how the brain achieves
this cross-modal processing is an important question in cognitive neuroscience with implications for
various fields, such as psychology, linguistics, and artificial intelligence. One intriguing example of
cross-modal processing is the way in which the brain integrates visual and linguistic information. When
we see an image, our brain automatically tries to caption it, and when we read text, we try to imagine
the narrative in our minds. Investigating how the brain achieves this integration of visual and linguistic
information can provide insights into the fundamental mechanisms of cross-modal processing.

Therefore, the motivation for this thesis is to explore the cross-modal functioning of the brain, focus-
ing specifically on the integration of visual and linguistic information. Using brain decoding techniques
to analyze the neural activity patterns associated with visual and linguistic stimuli, the thesis aims to
identify the neural mechanisms that enable the brain to integrate information from different sensory
modalities. This research can help shed light on the cognitive processes underlying cross-modal inte-
gration and may have implications for various fields, such as natural language processing, computer
vision, and assistive technologies for individuals with sensory disabilities. Ultimately, this thesis aims
to contribute to our understanding of the complex, fascinating processes of the human brain and how
language is represented and processed in the brain.
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1.2 Major Contributions

The major contribution of the thesis are as follows:

• We propose three novel brain decoding settings: Multi-view decoding, Cross-view decoding and
Abstract-Concrete brain decoding.

• We build decoder models using Transformer-based methods and analyze brain network contribu-
tions across multi-view and cross-view tasks.

• We augment the popular Pereira et al.’s dataset [72] with pairwise-view relationships and use it
to demonstrate the efficacy of our proposed methods. We make the code and augmented dataset
publicly available.1

1.3 Organisation of Thesis

This dissertation is organized in the following way:
Chapter 2 details how stimuli are processed in the brain, the brain imaging recording modalities,

different approaches to how language and vision-based stimuli are represented in AI and finally, how
the brain activations and stimuli representations can be bridged.

Chapter 3 introduces the concept of Brain Decoding and related works in this domain. It puts
forwards the dataset, the process of brain network and voxel selection, the model architecture to build
the decoder and the evaluation metrics to evaluate the results. All these are common across multiple
thesis chapters.

Chapter 4 supports the first hypothesis that a decoder unique for a particular view can be used to
decode fMRI corresponding to other views as well. It shows that the decoder trained on sentence view
or picture view can be used as a universal decoder to decode other views as well, putting forward the
fact that there is enough language processing in the brain, despite the view, to help decode other views.
This work is part of our paper titled ”Multi-view and Cross-view Brain Decoding” and was presented at
COLING 2022.

Chapter 5 takes motivation from the results of the previous chapter to explore Cross-view tasks like
Image Captioning, Sentence Formation etc. Great results in this study show that our brain works in a
Cross-view fashion, i.e. whenever we see a visual stimulus, we try to caption it automatically in our
brain and vice versa. When we read a text, our brain tries to form a possible image of it. This chapter
also puts forwards a new dataset appended to the previous publicly available data, specially constructed
for the study. This work is part of our paper titled “Multi-view and Cross-view Brain Decoding” and
was presented at COLING 2022.

Chapter 6 puts forward one of our exciting studies about how Brain activations differ when we
try to imagine a concrete object and an abstract object. The study also focused on identifying and

1https://tinyurl.com/MVCVBD
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constructing a single decoder that could decode abstract and concrete objects accurately. This work is
part of our paper titled “Brain Decoding for Abstract versus Concrete Concepts” and was presented at
ACCS9.

Chapter 7 discusses two of my additional works on Brain Encoding. The first one studies what
different NLP tasks are being performed by the brain while reading and listening. This work is part
of our paper titled “Neural Language Taskonomy: Which NLP Tasks are the most Predictive of fMRI
Brain Activity?.” [62] and was presented at NAACL 2022. Second, focuses on studying how well Image
and Multi-modal transformers perform Brain Decoding as compared to CNNs. This work is part of our
paper titled “Visio-Linguistic Brain Encoding” and was presented at COLING 2022.

Chapter 8 finally summarizes the main findings of the works described in the thesis and puts for-
wards the limitations and possible future directions of our work.

4



Chapter 2

Background and Literature

2.1 Stimuli in Brain

2.1.1 Processing of Stimuli in Brain

Figure 2.1: Langauge Processing induced in Brain due to different types of language stimuli.

Language is a systematic use of speech, text and gestures by humans to communicate ideas and
feelings. Language processing refers to how humans process and understands language. It involves the
ability to comprehend and produce spoken and written language. Language processing is a uniquely
human ability that our brain performs so easily that we do not even realize it. We, humans, evolved at
a much greater pace as compared to other living beings because of our ability to convey our thoughts,
teach and learn skills and acquire knowledge through language. Human language is unique among all
known systems of animal communication in a way that it has many modes of transmission (i.e. speech,

5



text, sight etc.), changes culturally, and geographically, and even diversifies over time. Thus, language
plays a vital role in the development of human beings.

Language processing in the brain is a complex process that involves several brain regions and cogni-
tive functions. The use of language for communication could be through audio stimuli (speech), wherein
the auditory cortex of our brain is responsible for processing sounds, or it could be through visual stimuli
(text or actions), wherein the primary visual cortex would be responsible for processing visual informa-
tion. These brain regions are connected to other regions involved in language processing. The areas of
the brain that work for different linguistic processes may vary. Some regions may be specific to lexical
tasks, while some regions might perform the grammatical or the syntactical tasks, while some may deal
with the semantic tasks during language processing at the same time. More specific details are listed
below.

Language processing in the brain involves a complex series of neural mechanisms. Language pro-
cessing involves several distinct stages or modules, each of which is responsible for a specific aspect of
language comprehension and production.

• Phonological processing: The first stage of language processing involves the analysis of sounds
and their combinations to form words. This involves the activation of regions in the left superior
temporal gyrus (STG) and the posterior superior temporal sulcus (pSTS) [41].

• Lexical and syntactic processing: After phonological processing, the brain extracts meaning
from the sounds and begins to build a syntactic structure for the sentence. This involves the acti-
vation of the inferior frontal gyrus (IFG) and the posterior middle temporal gyrus (pMTG) [37].

• Semantic processing: Once the sentence structure is built, the brain assigns meaning to the
words and constructs a representation of the sentence’s overall meaning. This involves the activa-
tion of the anterior temporal lobe(ATL) and the posterior cingulate cortex (PCC) [13].

• Pragmatic processing: Finally, the brain uses contextual information to interpret the meaning of
the sentence in the broader context of the discourse. This involves the activation of the medial
prefrontal cortex (mPFC) and the posterior superior temporal gyrus (pSTG) [103].

2.1.2 Brain Regions and Networks

Brain Regions and Brain Networks are intimately related to each other. Brain regions are collections
of neurons that are anatomically and functionally connected, and they can be defined based on criteria
such as location or functional specialization. Brain networks, on the other hand, are collections of brain
regions that are functionally connected and work together to perform specific cognitive or perceptual
functions [83].

The relationship between brain regions and brain networks can be thought of as a hierarchical orga-
nization, with brain regions forming the basic building blocks of brain function and brain networks rep-
resenting higher-order functional units that emerge from the interactions between brain regions [17, 83].
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Each brain network is composed of a set of brain regions that are functionally connected, and the prop-
erties of the network emerge from the interactions between these regions. Conversely, the properties of
individual brain regions are shaped by their connections to other regions in the brain, and their functional
role is influenced by the networks to which they belong.

2.1.3 Identifying Brain Networks

Brain Atlases are one of the important tools in neuroscience that helps researchers understand the
complex structure and organization of the brain and identify specific regions involved in various func-
tions. Brain atlases divide the brain into distinct regions based on various criteria such as anatomical
location, function or connectivity.

The main purpose of brain atlases is to provide a standardized reference for researchers to use when
studying the brain, making it easy for them to compare results across different studies and investigate
the relationships between different brain regions.

For our work, we used the Automated Anatomical Labeling (AAL) Atlas [94] that is used to parcel-
late the human brain into regions of interest based on anatomical landmarks, as seen in MRI scans.

Some of the important Brain Networks [84] in AAL atlas are:

• Language Network: The Language Network is primarily composed of two regions in the left
hemisphere: Broca’s area and Wernicke’s area. Broca’s area, located in the left inferior frontal
gyrus, is responsible for language production and speech output, while Wernicke’s area, located
in the left superior temporal gyrus, is responsible for language comprehension. Other regions
involved in the language network include the middle and superior temporal gyri, the angular
gyrus, and the supramarginal gyrus. Tzourio-Mazoyer et al. [94] used the AAL atlas to map the
neural substrates of language processing in the brain.

• Visual Network: The Visual Network is primarily located in the occipital lobe and is responsible
for processing visual information. The primary visual cortex (V1) is responsible for processing
basic visual information, such as the orientation and location of visual stimuli. The secondary
visual cortex (V2) and the visual association cortex (V3-V5) are involved in processing more
complex visual information, such as object recognition and spatial awareness. Tzourio-Mazoyer
et al. [94] mapped the neural substrates of visual processing in the brain.

• Default Mode Network: The Default Mode Network (DMN) is a set of brain regions that are
active when an individual is at rest and not engaged in any particular task. The DMN includes the
medial prefrontal cortex, the posterior cingulate cortex, the precuneus, the inferior parietal lobule,
and the medial temporal lobe. This characterization is based on research by Raichle et al. [78],
which used the AAL atlas to map the neural substrates of the DMN. The DMN is thought to
be involved in a range of cognitive processes, including self-reflection, introspection, and mind-
wandering.
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• Task Positive Network: The Task Positive Network (TP) is a set of brain regions that are active
when an individual is engaged in a particular task, such as working memory, attention, or decision-
making. The TP Network includes the dorsolateral prefrontal cortex, the lateral parietal cortex,
and the anterior cingulate cortex. Fox et al. [32] used the AAL atlas to map the neural substrates
of the TP Network. The TP Network is thought to be involved in cognitive control and executive
functions, and is often anti-correlated with the DMN.

Other than the main brain networks that are important for this work and detailed above, the AAL
atlas has various other Brain Networks as well. Some of them are named below:

• Somatomotor Network: Involved in motor planning and execution.

• Limbic Network: Involved in emotion, motivation, and memory.

• Attentional Network: Involved in directing and maintaining attention.

• Auditory Network: Involved in processing auditory information, including speech and music.

• Sensory Network: Involved in processing tactile, thermal, and pain information.

• Salience Network: Involved in detecting and prioritizing relevant information in the environment.

• Frontoparietal Network: Involved in executive functions such as working memory and decision-
making.

2.1.4 Extracting Brain Representations

There have been several techniques to record brain activations. These methods serve as a window into
the inner workings of the brain. This thesis analyzes data collected mainly from functional magnetic
resonance imaging (fMRI) technique, however for completeness some of the popular techniques are
described as follows:

2.1.4.1 fMRI

fMRI [44] stands for Functional Magnetic Resonance Imaging (fMRI). It is a non-invasive imaging
technique that detects changes in blood flow to measure brain activity. The principle behind fMRI scans
is that there is higher blood flow and oxygen consumption in active brain regions than the inactive
regions. The reason for the popularity of fMRI in Brain Decoding tasks is its high spatial resolution that
helps us accurately identify brain activity in specific brain regions.
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2.1.4.2 EEG

EEG [59] stands for electroencephalography. It is also a non-invasive imaging technique that mea-
sures brain activity by detecting electrical activity on the scalp. It is based on the principle that the brain
generates electrical activity that can be measured on the scalp. EEG has low spatial resolution making
it less accurate at identifying brain activity in specific brain regions but has high temporal resolution
making it accurate at measuring brain activity in real time.

2.1.4.3 MEG

MEG [7] stands for Magnetoencephalography. It is also a non-invasive technique that measures brain
activity by detecting magnetic fields generated by brain activity. It is based on the principle that the brain
generates magnetic fields that can be measured outside the head. MEG has high temporal resolution and
can accurately measure brain activity in real-time, but it has lower spatial resolution than fMRI.

2.1.4.4 TMS

TMS [38] stands for Transcranial magnetic stimulation. TMS is a non-invasive technique that uses
magnetic fields to stimulate specific brain regions. It is based on the principle that brain activity can
be influenced by the application of magnetic fields. TMS is often used in combination with other
techniques, such as fMRI or EEG, to study the causal relationship between brain activity and behaviour.

2.2 Language in AI

Language in AI approaches is represented using two major techniques, symbolic and statistical ap-
proaches. Symbolic approaches use explicit rules and structures such as formal grammar to represent
language. Whereas, Statistical approaches use ML algorithms to automatically learn patterns and rela-
tionships in large text datasets.

Some of the most common statistical approaches are Word Embeddings, RNNs and Transformers.
These techniques are detailed below.

2.2.1 Word-level Representations

Word embeddings are low-dimensional, continuous-valued vector representations of words which are
large amounts of text data using unsupervised learning methods. These vector representations capture
the semantic and syntactic relationships between words, allowing AI systems to understand the meaning
of language and make predictions based on it. Some of the approaches to get the word embeddings are
described below:
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Figure 2.2: Training algorithms for word2vec (Adapted from a Blog titled “A Beginner’s Guide to Word

Embedding with Gensim Word2Vec Model”)

2.2.1.1 Word2vec

Word2vec [54] is a method of learning word embeddings that was developed by Google researchers
in 2013. The word vectors are learned through a neural network trained on a large amount of text data,
such as a collection of news articles or a web crawl.

There are two main training algorithms for word2vec:

• continuous bag-of-words (CBOW): This algorithm tries to predict a word given its context.

• skip-gram: This model tries to predict the context given the centre word.

Fig. 2.2 summarizes the above two training algorithms. These models are trained by minimizing the
negative log-likelihood of the training data, which effectively maximizes the probability of observing
the training data given the model parameters.

Word2vec word embeddings were successful at improving the performance of various NLP tasks.
However, there are several issues with the original Word2vec approach, such as:

• Limited context: Word2vec takes into account only a small window of words surrounding the
central word during training. This can result in suboptimal embeddings for words that have mul-
tiple meanings or are used in diverse contexts.
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• Lack of global information: Word2vec does not considers the global co-occurrence statistics of
words in the training data, which can lead to poor generalization of new tasks.

• Expensive Training: Word2vec requires multiple iterations over the training corpus, which can
be time-consuming and computationally expensive.

2.2.1.2 GloVe

To address the issues with Word2vec embeddings, Pennington et al. [68] introduced GloVe (Global
Vectors for Word Representation) with the idea of using a count-based method for generating word
embeddings that combines the advantages of global and local information.

The authors proposed constructing a co-occurrence matrix by counting the number of times each
word occurs within a fixed context window and normalizing it to get the probability of observing two
words together. The goal is to capture the ratio of co-occurrence probabilities, rather than the prob-
abilities themselves. This allows GloVe to capture both global and local information, and produce
embeddings that are more accurate and generalizable. GloVe has been shown to outperform word2vec
on a range of natural language processing tasks, including word similarity and analogy tasks, as well as
text classification and language modelling.

While GloVe have been an effective method for generating word embeddings, they have some limita-
tions, including capturing non-linear relationships between words and handling variable-length inputs.

Figure 2.3: Recurrent Neural Network (Reproduced from Colah’s Blog)

2.2.2 RNNs

Recurrent Neural Networks (RNNs) [55] are a type of neural network that is well suited for language
modelling as they are designed to capture sequential dependencies in data. In language, the meaning of
a word is often dependent on the context in which it appears. An RNN consists of a chain of repeating
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modules, called cells which allow the network to maintain a ”memory” of previous inputs and use that
information for future prediction. This makes RNNs useful for processing sequential data, such as text.
Fig: 2.3 describes how an RNN structure looks like.

RNNs can also be used for tasks where the length of the input and output sequences can vary. They
can handle variable-length sequences because they process each input one at a time and maintain a state
vector that summarizes the information seen so far. This allows them to produce output sequences of
varying lengths.

However, RNNs suffers from the problem of vanishing gradients, where the gradients that are back-
propagated through the network get smaller and smaller as they move backward. This makes it difficult
for hte network to learn long-term dependencies.

Figure 2.4: Architechture of RNN vs LSTM (Reproduced from Colah’s Blog)

2.2.2.1 LSTM

Long short-term memory (LSTM) [42] is a type of RNN architecture that was specially designed
to address the issue of vanishing gradients of RNNs. LSTMs use a special type of cell that can store
information in a ”memory” cell and control the flow of information using ”gates”, which makes it
possible to store information over a longer period of time and selectively forget or remember information
based on the input.

In addition to vanishing gradients, RNNs can also suffer from the problem of exploding gradients,
where the gradients become too large and cause the weights of the network to diverge. LSTMs address
this problem by introducing a gradient clipping mechanism that limits the size of the gradients during
training. Fig. 2.4 shows the difference between the architecture of a RNN to that of a LSTM.

Overall, LSTMs are a significant improvement over traditional RNNs and are widely used in a variety
of applications, including natural language processing, speech recognition, and time series prediction.

12

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


However, Both LSTMs and RNNs are computationally expensive to train, because the process se-
quences sequentially, which they cannot parallelize across multiple processors. This leads to a higher
training time.

2.2.3 Transformers

Vaswani et al. [95] came up with the Transformer architecture to address the limitations using self-
attention mechanisms and a parallelizable architecture.

The transformer model consists of an encoder and a decoder, each composed of multiple layers.
The model uses self-attention to compute a weighted sum of the input sequence, allowing the model to
attend to different parts of the sequence at different times. This makes it easier for the model to capture
long-term dependencies. Fig. 2.5 shows the architecture of the Transformer model.

The model also uses multi-head attention, which allows it to attend to different parts of the input
sequence at multiple levels of abstraction, improving its ability to capture complex patterns. Its ability to
capture long-term dependencies and its computational efficiency have made it a popular choice for many
applications. There are many transformer-based models currently available, like BERT, RoBERTa, GPT,
BART.

2.2.3.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) [25] is an encoder-only Trans-
former model developed by Google in 2018 for natural language processing tasks. BERT is pre-trained
using a large corpus of text, such as the entire Wikipedia or the BooksCorpus dataset [110]. During
pre-training, BERT is trained on two tasks:

• Masked Language Modelling: Given a sentence with some of the tokens randomly masked out
as input, the task for BERT is to predict the missing tokens based on the surrounding tokens. This
allows BERT to learn representations that capture contextual information.

• Next Sentence Prediction: Given a pair of sentences, the task for BERT is to predict whether
the second sentence follows the first sentence in the original text. This allows BERT to learn
relationships between sentences and improve its ability to handle tasks such as Natural Language
Inference (NLI).

After pre-training, BERT can be fine-tuned for specific NLP tasks. The task-specific output layer is
added to the encoder to generate task-specific outputs. Fine-tuning can be done with relatively small
amounts of task-specific data, as the pre-trained representations capture a large amount of information
about the structure of natural language.

The input format for BERT is a sequence of tokens. The input sequence is augmented with special
tokens, such as [CLS] and [SEP], which are used to indicate the beginning and end of the sequence and
to separate different segments of the input sequence. In the case of pre-trained BERT, we get the final
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Figure 2.5: Model Architecture of Transformer (Reproduced from Vaswani et al. [95])

embedding for each input token, including the [CLS] and [SEP] tokens. Fig. 2.6 shows the input and
output format for BERT.

There are two ways in which we can get the embedding that represents the whole of the sequence.
First, we can take the embedding corresponding to the [CLS] token, as it is assumed to capture infor-
mation of the whole sentence and is used to finetune BERT for classification tasks. Second, we can take
the average of the final embeddings corresponding to all the tokens, excluding [CLS] and [SEP] tokens.
We call this representation for the sequence ”Average polled embedding”.
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Figure 2.6: Input and Output format for BERT (Adapted from Devlin et al. [25])

2.3 Mapping Brain to AI

2.3.1 Brain Decoding

Brain decoding is the process of reconstructing stimuli presented to a person using machine learning
algorithms [72, 100].

In this approach, researchers present a subject with a series of stimuli, such as text or image and the
brain activity of the subject is recorded using techniques such as functional magnetic resonance imaging
(fMRI). The brain activity is then used as input to a Machine learning based decoder, which is trained
to identify patterns in the brain activity that correspond to specific stimuli and predict/reconstruct the
stimuli presented earlier.

Once the decoder has been trained, it can be used to reconstruct the stimuli from the person’s brain
activity. This is done by presenting the person with a new stimulus and measuring their brain activity.
The decoder then processes the brain activity and attempts to reconstruct the presented stimulus.

This approach to brain decoding has a wide range of applications, including the development of
brain-machine interfaces (BMIs) and the study of brain function and development. It allows researchers
to gain insight into the mental processes and states of an individual and can be used to understand how
the brain processes and encodes information.
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Figure 2.7: Brain Decoding

2.3.2 Brain Encoding

Brain encoding is the process of using Machine Learning models to predict the patterns of neural
activity that are evoked by a specific stimulus presented to the subject [34, 80].

Figure 2.8: Brain Encoding
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The goal of brain encoding is to understand how the brain processes information by identifying the
neural code that underlies perception and cognition.

In this approach, researchers present a subject with a series of stimuli, such as text or image and the
brain activity of the subject is recorded using techniques such as fMRI. Once the neural activity has
been measured, ML models can be trained to decode the patterns in brain activity and relate them to the
presented stimulus. Now, these models can be used to predict Brain Activity for a subject corresponding
to a new stimulus presented to the subject.

Brain encoding has a wide range of applications, from understanding basic perceptual and cognitive
processes to developing brain-computer interfaces and neuroprosthetics. By identifying the neural code
that underlies perception and cognition, brain encoding can help us better understand how the brain
works and develop new technologies that interface directly with the brain.
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Chapter 3

Brain Decoding

3.1 Introduction

Brain decoding models aim to understand what a subject is thinking, seeing, and perceiving by
analyzing neural recordings. Thus, in the context of language, it may be beneficial to learn mappings
between linguistic representation and the associated brain activation, and how we compose the linguistic
meaning from different stimuli such as text [72, 100], images [29, 11], videos [46, 61], or speech [109]
by analyzing the evoked brain activity. Also, decoding the functional activity of the brain has numerous
applications in education and healthcare.

Brain recordings can be obtained by providing stimuli to a subject in various forms. For exam-
ple, a concept (like apartment) can be presented using: (1) Word Picture (WP) view: picture along
with the concept word, (2) Sentence (S) view: sentence containing the word, or (3) Word cloud (WC)
view: word cloud containing the word along with other semantically related words. Recent studies have
made much progress using functional magnetic resonance imaging (fMRI) brain activity to reconstruct
semantic vectors corresponding to linguistic items, including words [56, 72], phrases, sentences, and
paragraphs [100]. However, all such studies have been limited to single-view analysis. Separate models
are trained to process different views. Also, the decoding target is typically a semantic vector of the
concept word.

In the Natural Language Processing (NLP) community, researchers have recently started focusing on
building multi-lingual and cross-lingual systems [22, 21, 105]. Multi-lingual systems improve accuracy
for low-resource languages and enable applications even in the absence of training data for low-resource
languages. Cross-lingual systems take input in one language and produce output (e.g., summary) in
another language. Inspired by this multi-lingual/cross-lingual shift in NLP, we propose two novel brain
decoding setups: multi-view decoding (MVD) and cross-view decoding (CVD). Such setups are critical
to build MV decoders which can decode concepts from brain recordings corresponding to any view
(picture, sentence, word cloud) of stimuli or systems that can automatically describe using sentences or
keywords what a subject is watching or automatically extract important keywords from sentences that a
subject is reading.
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In Multi-View Decoding, the goal is to build a Multi-View decoder that can take brain recordings for
any view as input and predict the concept. Fig. 4.1 shows examples of using a Multi-View decoder. Such
a Multi-View decoder can be trained on data for any specific view. Multi-lingual models have shown
huge zero-shot accuracy improvements for inference on low-resource language inputs across many NLP
tasks [21]. Similarly, can we improve decoding accuracy using a Multi-View decoder model for some
views?

In Cross-View Decoding, the goal is to train a model which takes brain recordings for one view as
input and decodes a semantic vector representation of another view. Fig. 5.1 shows examples of four
such Cross-View Decoding tasks. Given an fMRI activation corresponding to a picture view of the
stimuli, how accurately can we decode a sentence representing the picture? Which parts of the brain are
involved in Cross-View Decoding tasks like image captioning, image tagging, keyword extraction, and
sentence formation?

Historically, the fMRI brain activity has been decoded to a semantic vector representation of a view
(word picture, sentence, word cloud) using a ridge-regression decoder [72, 85]. In particular, earlier
brain decoding works focused on hand-crafted features to train such decoder models [56, 100] , which
suffer from these drawbacks: (1) cannot address word sense disambiguation, (2) limited in terms of
vocabulary, (3) inability to extract signals for abstract stimuli, and (4) inability to capture the context
and sequential aspects of a sentence. Recently, many studies have shown accurate results in mapping
the brain activity using neural distributed word embeddings for linguistic stimuli [4, 72, 65, 60, 85]. To
represent meaning, these studies use either word or sentence level embeddings extracted from the models
trained on large corpora. Unfortunately, none of these addresses the open questions around multi-view
decoding and cross-view decoding. Recently, Transformer-based models have been explored for brain
encoding [43], which inspires us to harness Transformer-based models like BERT [25] for our brain
decoding tasks.

3.2 Related Works

Advances in functional neuroimaging tools such as fMRI have made it easier to study the relationship
between language/visual stimuli and functions of brain networks [23, 90, 31]. In the past two decades,
researchers have leveraged fMRIs to understand how the brain represents language and semantics.

Initial brain decoding experiments studied the recovery of simple concrete nouns and verbs from
fMRI brain activity [56, 67, 61, 70] where the subject watches either a picture or a word. Unlike the
earlier work,Wehbe et al. [100] and Huth et al. [46] built a model to decode the text passages instead
of individual words. However, these studies used either simple or constrained sets of stimuli, which
poses a question of generalization of these models. Recently, Pereira et al. [72] explicitly decoded both
words and sentences when subjects were shown both concrete and abstract stimuli. Affolter et al. [1]
reconstructed the sentences along with categorizing words or predicting the semantic vector representa-
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Figure 3.1: Stimuli example from Dataset [72]

tion from fMRI brain activity. Schwartz et al. [81] and Wang et al. [98] focused on understanding how
multiple tasks activate associated regions in the brain.

To train ridge regression decoder models, earlier works focused on hand-crafted features [56, 100],
which suffer from various drawbacks like inability to capture the context and sequential aspects of a
sentence, inability to extract signals for abstract stimuli, etc. With the success of deep learning-based
word representations, multiple researchers have used distributed word embeddings for brain decoding
models in place of carefully hand-crafted feature vectors [46, 4, 72, 65, 60, 85, 99]. Using the distributed
sentence representations, Wehbe et al. [102], Jain et al. [48], and Sun et al. [85] demonstrated that neural
sentence representations are better for decoding whole sentences from brain activity patterns.

Recently, the success of contextual and Transformer based language models has raised the question
of whether these models might be able to make an association between brain activation and language.
Beinborn et al. [10] showed the success of the ELMo language model [73] in predicting the fMRI brain
activation of several datasets. Also, Gauthier et al. [34] and Toneva et al. [92] tried to decode the fMRI
activations to improve the latent representations of language stimuli using BERT [25]. In contrast to
earlier works, Affolter et al. [1] described language generation with GPT-2 using brain activities. We
take inspiration from these pieces of work and experiment with BERT for various multi-view and cross-
view brain decoding tasks.

3.3 Dataset

We experiment with the popular dataset from Pereira et al. [72]. It is obtained from 11 subjects (P01,
M01, M02, M04, M07, M09, M10, M13, M15, M16, M17) where each subject read 180 concept words
(abstract + concrete) in three different paradigms or views while functional magnetic resonance images
(fMRI) were acquired. These contain 128 nouns, 22 verbs, 29 adjectives and adverbs, and 1 function
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word. In paradigm-1 (WP), participants were shown concept word along with picture with an aim to
observing brain activation when participants retrieved relevant meaning using visual information. In
paradigm-2 (S), the concept word presented in a sentence allows us to probe activity in the language
areas associated with contextual information and meaning of a sentence. In paradigm-3 (WC), the
concept word was presented in a word cloud format, surrounded by five semantically similar words.
These paradigms provide brain representation of 180 concepts in three different views.

For each of the 180 concepts, the dataset contains five pictures, six sentences each containing the
concept word, and a word cloud. For example, Fig. 3.1 shows all the three views for the concept word
‘bird’. The dataset has (1) a picture p showing a red bird sitting on a tree branch, (2) sentence s like “A
green bird flying in the sky”, and (3) word cloud c with words “bird, purple, flock, winged, nest, beak”.
The dataset also has fMRIs for each of these three views.

3.4 Extracting Brain Representations

Several techniques are used for recording brain activations, but we used the functional magnetic
resonance imaging (fMRI) dataset.

Functional magnetic resonance imaging (fMRI) [44] is a type of brain imaging that uses magnetic
fields and radio waves to measure blood flow in the brain. This technique can be used to map brain
activity by detecting changes in the amount of oxygenated blood flowing to different regions of the
brain.

fMRI data is typically collected by placing a person inside an MRI machine and having them perform
a specific task or simply lie still while the machine takes multiple images of the brain. The data is then
processed using specialized software to generate maps of brain activity, which can be used to study brain
function.

The extracted data is an image that indicates the brain activity at each time point, giving us the ability
to see which specific brain regions are active during a task. This brain activity is correlated to increased
blood flow, where active neurons will consume more oxygen and make the blood flow to this region
more prominent. The image that we get using this is called BOLD (blood-oxygen-level dependent )
images which is a contrast mechanism for MRI.

For each of the three views, the stimuli were shown to each subject, and fMRI was recorded. Specific
details about this can be found in a previous work by Pereira et al. [72].

3.5 Informative Voxel Selection

Inspired by the voxel selection method in Pereira et al. [72], we chose the informative voxels for
our linear regression models as follows. The regression models are trained on each voxel and its 26
neighbouring voxels to predict the semantic vector representation. For each voxel in the training part,
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the mean correlation was calculated between “true” (text-derived) and predicted representations, and the
voxels corresponding to the top 5000 mean correlation values were selected as informative voxels.

For each of the experiments, the informative voxels were chosen by the above method for the train
dataset and the exact same voxel loaction (or voxels) were taken for the test dataset.

3.6 Brain Network Selection

Inspired by Pereira et al. [72] and based on the resting-state functional networks, we focused on four
brain networks:

• Default Mode Network (DMN): linked to the functionality of semantic processing [16, 13].

• Language Network: related to language processing, understanding, word meaning, and sentence
comprehension [30].

• Task Positive Network: related to attention, salience information [13, 28, 75].

• Visual Network: related to the processing of visual objects, object recognition [16, 75].

We report the distribution of 5000 informative voxels across the four brain networks across various
experiments in Section 4.2.2. Across all participants, voxel distribution across networks is as follows:
4670 (Language), 6490 (DMN), 11630 (TP), and 8170 (Visual). Note that the reported distributions
in Section 4.2.2 do not add up to 1 because the contribution of the remaining brain networks is not
considered.

3.7 Extracting Language Representation

We used BERT for extracting semantic representations for the stimuli. BERT has been explained in
sec. 2.2.3. BERT-pooled output was taken as the stimuli embeddings in our experimentation.

3.8 Model Architecture

We trained a ridge regression based decoding model to predict the semantic vector representation
associated with the fMRI informative voxels for a type (view) of each language stimulus. Each dimen-
sion is predicted using a separate ridge regression model. Formally, we are given the informative voxel
matrix X ∈ RN×V and stimuli vector representation Y ∈ RN×D, where N denotes the number of
training examples, V denotes the number of informative voxels (we fix it to 5000), and D denotes the
embedding dimension of language stimuli. For BERT, D=768.
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The ridge regression objective function is:

f(Xi) = min
Wio

∥Yo −XiWio∥2F + λ∥Wio∥2F (3.1)

where, Xi denotes the input voxels for view i (out of {word+picture, sentence, wordcloud}), Yo denotes
the matrix with embeddings o (out of {word, sentence, word cloud}), Wio denotes the learned weight
coefficients for each input view i and output embedding o, ∥.∥F denotes the Frobenius norm, and λ > 0

is a tunable hyper-parameter representing the regularization weight. Besides ridge regression, of course,
various other models could be used. However, the goal of this thesis is to analyze novel decoding setups
using the most popular decoding model in neuro-science literature, namely, ridge regression. We leave
exploration of complex models as part of future work.

Hyper-parameter Settings: We used sklearn’s ridge regression with default parameters, 18-fold cross-
validation, Stochastic-Average-Gradient Descent Optimizer, Huggingface for BERT, MSE loss function
and L2-decay (λ):1.0.

Figure 3.2: Pairwise Accuracy
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3.9 Evaluation Metric

We use the popular pairwise and rank accuracy metrics for evaluation.

3.9.0.1 Pairwise Accuracy

To measure the pairwise accuracy, the first step is to predict all the test stimulus vector representations
using a trained decoder model. Let S = [S0, S1,· · · ,Sn], Ŝ = [Ŝ0, Ŝ1,· · · ,Ŝn] denote the “true” (text-
derived) and predicted stimulus representations for n test instances resp. Given a pair (i, j) such that
0 ≤ i, j ≤ n, score is 1 if corr(Si,Ŝi) + corr(Sj ,Ŝj) > corr(Si,Ŝj) + corr(Sj ,Ŝi), else 0. Here, corr
denotes the Pearson correlation. Final pairwise matching accuracy per participant is the average of
scores across all pairs of test instances. Fig. 3.2 pictorially explains how to calculate the pairwise
accuracy.

3.9.0.2 Rank Accuracy

We compared each decoded vector to all the “true” text-derived semantic vectors and ranked them
by their correlation. The classification performance reflects the rank r of the text-derived vector for
the correct word: 1 − r−1

#instances−1 . The final accuracy value for each participant is the average rank
accuracy across all instances.
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Chapter 4

Multi-View Brain Decoding

4.1 Methodology

4.1.1 Task Description

We train the decoder regression models on 5000 informative voxels selected from fMRI brain acti-
vations and evaluate all the models using pair-wise accuracy and rank-based decoding. Details of the
informative voxel selection, the regression model, and metrics are discussed in the subsequent sections.

Test

The dishwasher 
can wash all the
dishes.

MV Decoder
BERT(Apartment)

Test
MV Decoder

BERT(Bird)

Test
MV Decoder

BERT(Wash)

Figure 4.1: A multi-view decoder can be used to decode concepts using brain recordings for any view.

Target is BERT representation of the concept word.

The main goal of each decoder model is to predict a semantic vector representation of the stimuli
in each experiment. The input view (word+picture, sentence, or word-cloud) and output representation
(word, sentence, or word-cloud) differ across experiments. We follow K-fold cross-validation, in which
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all the data samples from K-1 folds were used for training, and the model was tested on samples of the
left-out fold. We use the BERT-pooled output for obtaining output semantic representations. We also
experimented with RoBERTa, but the results were very similar to BERT, and hence we omit them for
lack of space.

For each subject in the dataset, for each of the three input views, we trained K=18 models (one
for each fold) where each model is trained on the brain activity of 170 concepts and tested on left-out
10 concepts to predict vector representation of the concept word. The 5000 informative voxels were
selected for 170 concepts in each fold, and the same voxel locations were chosen for test datasets. At
test time, the input to each model can belong to any of the three views. Thus, for each subject, for
each fold, we perform (1) three same-view train-test experiments and (2) six multi-view zero-shot train-
test experiments with different input views at train and test time. Target is always fixed as a vector
representation of the concept word. We use pairwise accuracy to report results.

4.1.2 Informative Voxel Selection

Informative Voxel selection has been explained in section 3.5. The target semantic representations
are word(concept) embeddings for multi-view zero-shot concept decoding experiments.

4.2 Results and Cognitive Insights

Since we are the first to propose multi-view and cross-view tasks, unfortunately, there are no base-
lines to compare with. For the sake of comparison, we design a “chance-level” BERT (Random) base-
line where models are trained using BERT embeddings of randomly chosen words as a target rather than
BERT embeddings of the actual target word. For same-view experiments, our results are in line with
that reported in Pereira et al. [72]. We also performed the experiments using the GloVe embeddings.
Comparison of results for BERT and GloVe embeddings are detailed in Appendix A.
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Figure 3: Model trained on (A) Word+Pictures (B) Sentences (C) Word-Cloud view. MVD Pairwise and Rank
accuracy when tested on Word+Picture/Sentence/Word-cloud views, averaged across all the subjects.
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Figure 4: Model trained on Word+Pictures view.
MVD Pairwise and Rank accuracy when tested on
Word+Picture/Sentence/Word-cloud views, averaged
across all the subjects.
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Figure 5: Model trained on Sentences view.
MVD Pairwise and Rank accuracy when tested on
Word+Picture/Sentence/Word-cloud views, averaged
across all the subjects.
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Figure 6: Model trained on Word-Cloud view.
MVD Pairwise and Rank accuracy when tested on
Word+Picture/Sentence/Word-cloud views, averaged
across all the subjects.
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Figure 4.2: Model trained on Word+Pictures (A and B), Sentences (C and D), and Word-Cloud (E and

F) view. MVD Pairwise and Rank accuracy when tested on Word+Picture/Sentence/Word-cloud views,

averaged across all subjects.
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Figure 4.3: Model trained on Word+Pictures view (left), Sentences view (middle), Word-Cloud view

(right). MVD Pairwise (PW) and Rank (R) accuracy when tested on Word+Picture (WP)/Sentence

(S)/Word-cloud (WC) views. Each colored dot represents a subject. The bar plot shows averages.

4.2.1 Pairwise and Rank Accuracy Results

Fig. 4.2 and Table 4.1 show detailed results for models trained on word+picture (WP), sentence (S),
and word-cloud (WC) views and tested on each of the three views. Specifically, Fig. 4.2(A) shows
pairwise accuracy results when we train using the WP view but infer using voxels corresponding to any
of the three views. Ground-truth is the BERT embedding vector. In comparison to the “chance-level”
BERT (Random) baseline with random target vectors, our proposed BERT embedding-based method is
much better. Fig. 4.3 shows subject wise results.

Test↓/Train→ WP S WC

WP 0.72/0.65 0.70/0.60 0.68/0.59

S 0.67/0.58 0.70/0.64 0.71/0.61

WC 0.63/0.56 0.69/0.61 0.62/0.57

Table 4.1: Multi-View Zero-shot Concept Decoder Results (Pairwise/Rank Accuracy)

4.2.1.1 Same view versus MV zero-shot

In most cases, same-view results are better than multi-view zero-shot results. However, this does
not hold for the WC view, where a model trained on sentence view performs better (Left green bars in
Fig. 4.2 (C and D) vs. Fig. 4.2 (E and F)).

4.2.1.2 Can we train MV decoders that can decode concepts from brain recordings for any view?

We experimented with three different MV decoders, each trained on one of the three views. Fig. 4.2
and the statistical significance test results in Table 4.2 show that either of the WP and sentence (S) views
can be used to train MV decoders. This means that if we train a model with WP or S view fMRIs, and
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test it using any of the three views, the results are better or equivalent to any other model. This does not
hold for the WC view. Thus, an MV decoder trained with a WC view is not very effective.

Setting 1 Setting 2 p-value

Train(WP)-Test(WP) Train(S)-Test(WP) 0.098

Train(WP)-Test(WP) Train(WC)-Test(WP) 0.026*

Train(S)-Test(WP) Train(WC)-Test(WP) 0.474

Train(WP)-Test(S) Train(S)-Test(S) 0.485

Train(WC)-Test(S) Train(S)-Test(S) 0.469

Train(WP)-Test(S) Train(WC)-Test(S) 0.420

Train(WP)-Test(WC) Train(WC)-Test(WC) 0.691

Train(WP)-Test(WC) Train(S)-Test(WC) 0.134

Train(S)-Test(WC) Train(WC)-Test(WC) 0.045*

Table 4.2: p-values for measuring if setting 1 is stat significantly better than setting 2. Only rows with *

mark denote statistically significant improvements.

4.2.2 Cognitive Insights based on Distribution of Informative Voxels

Table 4.3 and Fig. 4.4 show the distribution of informative voxels among four brain networks for var-
ious MV models. In this figure, (WP, D) means input view=WP (Word+picture), brain network=DMN
(D). The figure clearly shows that a lot of informative voxels belong to the visual brain region for the WP
view. Also, for sentence view, a large percentage of informative voxels are from the language region.

Figs. 4.5 to 4.7 show more distribution details by zooming further into language and visual regions.
When the model is trained on the WP view (unlike other views), Table 4.3 and Fig. 4.5 show that most
informative voxels (about 53%) lie in the visual brain network, which is expected for the predominantly
visual information-driven task.

Word+Picture Sentence Word-Cloud

DMN 0.162 0.222 0.137

Visual 0.534 0.202 0.161

Language 0.177 0.246 0.192

Task-Positive 0.064 0.135 0.145

Table 4.3: Distribution of informative voxels among four brain networks for various Multi-View models
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Figure 4.4: Distribution of informative voxels among four brain networks: DMN (D), Visual (V), Lan-

guage (L), Task Positive (T). Models trained on Word+Picture (WP), Sentence (S) or Word-Cloud (WC)

views.

We also observe that DMN and Language network voxels are higher in the sentence view than in the
word cloud view. Compared to the model trained on WP view, the distribution of voxels among the four
brain networks shows that the model trained on sentence view has a higher percentage of voxels among
the Language, DMN, and Task-positive networks and lower in the visual network. This is in line with our
understanding that linguistic and attention skills are essential for understanding sentence stimuli. As for
the model trained on the WC view compared to other views, we see that the informative voxels are spread
equally among all the networks. From Fig. 4.5, we observe that in all the views, the region corresponding
to language processing in the left hemisphere (Language LH) has higher informative voxels than that of
the right hemisphere (Language RH). This is in line with the left hemisphere dominance for language
processing [13]. When the visual network dominates as in the case of WP view, the majority of these
are located in the object processing area, followed by face and body processing areas. In the following,
we investigate these two regions in detail.

In the language network, the distribution of informative voxels in the sub regions (LPTG, LMTG,
LATG, LFus, LPar, LAngG, LIFGorb, LIFG, LaMFG, LpMFG, and LmMFG) are shown in Fig. 4.6. We
find that regions in the posterior (LPTG), middle (LMTG), and anterior (LATG) temporal gyrus share a
higher percentage of informative voxels than other regions in the language network, such as those in the
middle and inferior frontal areas. This indicates that the language functions sub-served by the temporal
cortex, such as comprehension and semantic processing, are critical for processing sentences as well
as multi-modal integration and thus are important for decoding across multiple views. Further, brain
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Figure 4.5: Distribution of informative voxels among nine brain regions for Multi-view Decoding

regions in the angular gyrus (LAngG) and parietal (LPar) each have >5% of informative voxels. These
areas may be involved in attention, self-processing, and visio-linguistic integration.
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Figure 4.6: Distribution of informative voxels among eleven sub regions of Language network for MVD

Similarly, we explored the distribution of informative voxels across sub regions of the visual network,
as shown in Fig. 4.7. In the visual sub regions, voxels in the bilateral occipital cortex (LLOC and
RLOC) have more informative voxels than in other sub regions. In particular, the scene regions in the
parahippocampal place area (such as RSC and PPA) display very few informative voxels, while the
bilateral body area (REBA and LEBA) captures more voxels in the WP view. Interestingly, activation
in the superior temporal sulcus (RSTS and LSTS) in all views point out its role in visio-linguistic
integration. Lastly, Fig. 4.8 shows the spatial distribution of informative voxels (plotted using nilearn
Python library) across models trained on different forms of stimuli (WP, S, and WC). The value of each
voxel is the fraction of 11 participants for whom that voxel was among the 5000 most informative.
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Figure 4.7: Distribution of informative voxels among sixteen sub regions of Visual network for MVD

(a) WP view (b) S view

(c) WC view

Figure 4.8: Brain Maps for Multi-View Decoding Tasks (plotted using nilearn Python library).
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4.2.3 Informative Voxel Overlap across Views

DMN Visual Language Task Positive

WP-S 0.24/0.17 0.11/0.29 0.25/0.17 0.09/0.05

WC-S 0.25/0.16 0.25/0.20 0.30/0.22 0.07/0.07

WP-WC 0.14/0.16 0.08/0.25 0.15/0.15 0.06/0.03

Table 4.4: For each pair of views and each brain network, we show coverage ratios (second task on

first/first task on second) of the voxels.

Given the distribution of informative voxels across four brain networks, we further examine how
these voxels from one view overlap with those from another view. Table 4.4 shows that:

• The language network has a very high overlap compared to other brain networks in the WC-S
pair.

• 29% (and 25%) of visual voxels for the S (and WC) view are shared with visual voxels of the WP
view. This makes sense since a large percentage of informative voxels for WP view are from the
visual network.

4.3 Conclusion

We studied brain decoding in the context of Multi-view decoding tasks. Our experiments lead us
to really interesting insights. Models trained on picture or sentence view are better MV decoders than
models trained on word cloud view. Surprisingly, the MV decoder trained on sentence view leads to a
zero-shot accuracy for word cloud stimuli, which is better than that obtained using the same-view word
cloud model.
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Chapter 5

Cross-View Brain Decoding

5.1 Dataset

This dataset described in section 3.3 was meant for single-view decoding and hence follows a star
schema (concept at the center and specific views like word+picture, sentence, and word cloud around
it). Clearly, we cannot use this dataset as is for cross-view decoding (CVD). For example, for the image
captioning CVD task, it is wrong to take an fMRI with the stimuli being a picture showing a red bird
sitting on a tree branch, and use it to decode a sentence “A green bird flying in the sky”.

To enable cross-view decoding tasks, it was critical to build direct pairwise-view relationships (picture-
sentence, picture-word cloud, sentence-word cloud, and word cloud-sentence). In other words, it was
necessary to have captions and tags for image-view, keywords for sentence-view, and 3-4 sentences cor-
responding to wordcloud-view. Hence, we augment the dataset in Pereira et al. [72] by obtaining target
annotations manually. For example, for the fMRI associated with picture p, we manually annotated it
with target sentence s′=“A red bird sitting on a tree branch”. Pairs like (p, s′) are then used to train
model for image captioning. Note that these manual annotations do not involve obtaining more fMRIs.

Task Input Output (View type)

Image captioning Word+Picture fMRI Caption (Sentence)

Image tagging Word+Picture fMRI Image tags (Word Cloud)

Keyword extraction Sentence fMRI Keywords (Word Cloud)

Sentence formation Word-cloud fMRI Sentence

Table 5.1: Cross-View Decoding Task Definitions

33



5.2 Methodology

5.2.1 Task Description

(A) Image Captioning (IC)                            (B) Image Tagging (IT)                           (C) Sentence Formation (SF)                   (D) Keyword Extraction (KE)

A colorful bird sitting on a tree 
branch.

A flock of red birds resting in 
their nest.

A small red bird
sitting on a snow-
covered ground.

Cross-View 
IC Decoder

Cross-View 
IT Decoder

Cross-View 
SF Decoder

Cross-View 
KE Decoder

Bird, Colorful, Branch, Sitting, 
Red, Tree

Bird, Snow, Ground, Red, 
Sitting, Small

BERT BERT BERT BERT

Figure 5.1: Cross-View Decoding Task (Input, output) Examples.

We train the decoder regression models on 5000 informative voxels selected from fMRI brain acti-
vations and evaluate all the models using pair-wise accuracy and rank-based decoding. Details of the
informative voxel selection, the regression model, and metrics are discussed in the subsequent sections.
The main goal of each decoder model is to predict a semantic vector representation of the stimuli in
each experiment. The input view (word+picture, sentence, or word-cloud) and output representation
(word, sentence, or word-cloud) differ across experiments. We follow K-fold cross-validation, in which
all the data samples from K-1 folds were used for training, and the model was tested on samples of the
left-out fold. We use the BERT-pooled output for obtaining output semantic representations. We also
experimented with RoBERTa, but the results were very similar to BERT, and hence we omit them for
lack of space.

For each subject in the dataset, we learn models for the four cross-view decoding tasks (IC, IT, KE,
SF) using 18 fold cross-validation. The input and output for each of these tasks is shown in Table 5.1.
Fig. 5.1 shows an example for each task. As before, we use 5000 informative voxels, computed sepa-
rately for each of the 11 subjects and each of the four tasks. The regression target is semantic vector
representation.

5.2.2 Informative Voxel Selection

Informative Voxel selection has been explained in section 3.5. Target semantic representations are
‘word or sentence or word-cloud’ embedding for cross-view decoding experiments depending on type
of task.
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Figure 5.2: Cross-View Decoding Pairwise and Rank accuracy for Image Captioning (IC), Image Tag-

ging (IT), Keyword Extraction (KE), and Sentence Formation (SF) averaged across all the subjects.

5.3 Results and Cognitive Insights

Since we are the first to propose multi-view and cross-view tasks, unfortunately, there are no base-
lines to compare with. For the sake of comparison, we design a “chance-level” BERT (Random) base-
line where models are trained using BERT embeddings of randomly chosen words as a target rather than
BERT embeddings of the actual target word. For same-view experiments, our results are in line with
that reported in Pereira et al. [72]. We also performed the experiments using the GloVe embeddings.
Comparison of results for BERT and GloVe embeddings are detailed in Appendix B.

5.3.0.1 Pairwise and Rank Accuracy Results

Fig. 5.2 illustrates pairwise and rank accuracy for Image Captioning (IC), Image Tagging (IT), Sen-
tence Formation (SF), and Keyword Extraction (KE). Subject wise results are reported in Fig. 5.3. We
observe that:

• Our proposed BERT embedding-based method is much better compared to the “chance-level”
baseline with random target vectors.

• For all the four tasks, pairwise accuracy is ∼80%, and rank-based accuracy is ∼70% (except for
SF), which shows that CVD is possible with good accuracy.

5.3.0.2 Cognitive Insights based on Distribution of Informative Voxels

Fig. 5.4 shows the distribution of informative voxels among nine brain regions across all four tasks.
As expected, a high percentage of visual voxels are involved in IC and IT tasks, and a high percentage
of language voxels are involved in the SF and KE tasks, especially in the left hemisphere. Further, from
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Figure 5.3: CVD Pairwise (PW) and Rank (R) accuracy for IC, IT, KE and SF tasks. Each colored dot

represents a subject. The bar plot shows averages.

IC IT SF KE

DMN 0.114 0.067 0.152 0.214

Visual 0.572 0.736 0.154 0.236

Language 0.116 0.081 0.182 0.275

Task Positive 0.045 0.007 0.141 0.118

Table 5.2: Distribution of informative voxels among four brain networks for all 4 CVD Tasks.
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Figure 5.4: Distribution of informative voxels among nine brain regions for CVD tasks.
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Figure 5.5: Distribution of informative voxels among 11 sub regions of Language network for CVD

tasks.

Table 5.2, and Fig. A.4, we observe that IC involves relatively higher language voxels compared to IT.
This could be because generating a caption involves a higher level of language (sequence) skills than
generating a set of keywords.

To further investigate the informative voxel distribution across Language and Visual networks, we
display the sub region voxels distribution for the Language network in Fig. 5.5, and for the Visual
network in Fig. 5.6. In all the tasks, the left hemisphere language network activation is dominated by
activity in the temporal gyrus (middle: LMTG and posterior: LPTG) but more in the KE task. This
clearly demonstrates the importance of language comprehension and semantic process common across
the cross-view tasks. Further, the common activation in the angular gyrus (LAngG) in all tasks points
out the role of visio-linguistic integration critical for all the tasks. The activation profile of the vision
network, in contrast, shows distinct activation differences across the tasks (IC & IT vs. KE & SF). IC
and IT tasks are related to a higher proportion of informative voxels in the primary visual regions in the
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Figure 5.6: Distribution of informative voxels among 16 sub regions of Visual network for CVD tasks.

lateral occipital areas (LLOC, RLOC) and bilateral extrastriate body-related areas (REBA and LEBA).
Domination of activation in the vision network in captioning and tagging tasks (IC and IT) as compared
to predominantly sentence processing based tasks (KE and SF) is along expected lines.

DMN Visual Language Task Positive

IC-IT 0.27/0.44 0.70/0.54 0.32/0.45 0.07/0.32

IC-KE 0.31/0.17 0.11/0.27 0.28/0.12 0.12/0.05

IC-SF 0.16/0.12 0.07/0.25 0.14/0.09 0.08/0.03

IT-KE 0.27/0.08 0.08/0.25 0.22/0.07 0.05/0.01

IT-SF 0.13/0.05 0.06/0.27 0.10/0.05 0.04/0.00

KE-SF 0.19/0.26 0.20/0.29 0.22/0.32 0.09/0.08

Table 5.3: For each pair of CVD tasks and each brain network, we show coverage ratios (second task

on first/first task on second) of the voxels.

The brain maps (see Fig. 5.7) corresponding to the IC and IT tasks clearly activate the visual cortex
and the temporal cortex, the areas known for visual processing and object identification. On the other
hand, the brain maps of KE and SF exhibit diffuse activation that includes the temporal and frontal
regions known to be related to the sentence semantics. None of the maps show a left-hemisphere bias,
which is often found in such semantic-related maps. Lack of frontal-lobe activation and the concen-
tration of informative voxels in the sensory cortex suggest that the cross-view embedding may rely on
some non-abstract domain-specific encoding rather than higher-level semantic concept encoding.
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(a) IC task (b) IT task

(c) KE task (d) SF task

Figure 5.7: Brain Maps for Cross-View Decoding Tasks (plotted using nilearn Python library).

5.3.0.3 Informative Voxel Overlap across Tasks

Given the distribution of informative voxels across four brain networks, we further examine how
these voxels from one task overlap with those from another task. Table 5.3 shows that:

• Many voxels overlap across different brain networks for IC and IT tasks. This is expected since
the two tasks are very related. Interestingly, 44% of DMN voxels needed for IT are shared with
IC. Similarly, as high as 70% of visual voxels needed for IC are shared with IT.

• Similarly, KE and SF share a very good overlap across different brain networks, which is expected
given the textual nature of the two tasks.

5.4 Conclusion

We studied brain decoding in the context of cross-view decoding tasks. We studied four cross-
view decoding tasks: image captioning, image tagging, sentence formation, and keyword extraction.
We show that cross-view decoding is feasible with good accuracy. Brain network distribution analysis
reveals insights about the importance of various parts of the brain for each of these tasks.
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Chapter 6

Abstract-Concrete Brain Decoding

6.1 Introduction

Neuroimaging techniques such as fMRI record brain activation while participants experience a stim-
ulus. The concreteness of concepts defines how well our brain is able to imagine them. We hypothesise
that brain activation would be distinctly different when participants view stimuli corresponding to con-
crete words versus abstract words. Specifically, we expect primary sensory areas to engage more in the
former. To study this, we used a multi-view dataset with each concept being displayed as a picture, as
a word in a sentence and also as a wordcloud [72]. We investigate how well a machine learning-based
decoder trained on concrete concepts can decode both concrete and abstract concepts and vice versa
for the model trained on abstract concepts. We find that a model trained on stimuli related to concrete
concepts yields better accuracy than the model trained on abstract concepts. We also explore the contri-
bution of voxels from different brain regions in this decoding process. Analysis of the contribution of
different brain networks reveals exciting cognitive insights.

The motivation for this experiment is to investigate how the brain perceives linguistic meaning only
from abstract or concrete concepts across different views. Experimentation with the same-paradigm
decoding, i.e., “abstract-train and abstract-test” or “concrete-train and concrete-test” has already been
done, but the work was limited to specific parts of speech and not the complete set of concepts [99].
Additionally, the experiments reported here also implement cross-paradigm decoding, i.e., “abstract-
train and concrete-test” and vice-versa for the complete set of concepts. Further, we experimented
with a balanced dataset with (randomly chosen) 64 concrete and 64 abstract concepts and found similar
results.
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6.2 Methodology

6.2.1 Task Description

We train the decoder regression models on 5000 informative voxels selected from fMRI brain acti-
vations and evaluate all the models using pair-wise accuracy and rank-based decoding. Details of the
informative voxel selection, the regression model, and metrics are discussed in the subsequent sections.

The main goal of each decoder model is to predict a semantic vector representation of the stimuli
in each experiment. The input view (word+picture, sentence, or word-cloud) and output representation
(word, sentence, or word-cloud) differ across experiments. We follow K-fold cross-validation, in which
all the data samples from K-1 folds were used for training, and the model was tested on samples of the
left-out fold. We use the BERT-pooled output for obtaining output semantic representations. We also
experimented with RoBERTa, but the results were very similar to BERT, and hence we omit them for
lack of space.

Out of 180 concepts in Dataset, 116 are concrete concepts, and others are abstract. For each subject
in Dataset, for each of the three views, we first train a regression model on fMRI activations of all
abstract concepts and test it on concrete concepts data. Similarly, we use all concrete concept fMRIs for
training and infer on the abstract concepts data.

The 5000 informative voxels were selected for abstract and concrete only concepts separately, and
the same voxel locations were chosen for train and test datasets. The regression target is vector represen-
tation of the concept word. The motivation for this experiment is to investigate how the brain perceives
linguistic meaning only from abstract or concrete concepts across different views.

6.2.2 Informative Voxel Selection

Informative Voxel selection has been explained in section 3.5. The target semantic representations
are word(concept) embeddings for Abstract-Concrete decoding experiments.

6.3 Results and Cognitive Insights

BERT (Bidirectional Encoder Representations from Transformers) is a popular Transformer based
natural language processing model which has been shown to perform extremely well across many NLP
tasks [4]. Hence, we use BERT for generating our word representations. The results for all four experi-
ments are presented per view using BERT word embeddings in Table 6.1. We report average pairwise
accuracy across all participants. We also performed the experiments using the GloVe embeddings.
Comparison of results for BERT and GloVe embeddings are detailed in Appendix C.

We observe that the model trained on concrete concepts (the last two columns of Table 6.1) provides
better accuracy than the model trained on abstract concepts (the first two columns of Table 6.1) while
decoding both abstract and concrete concepts. Interestingly, the model trained on concrete concepts
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Abs2Abs Abs2Conc Conc2Conc Conc2Abs

Word+Picture 0.647 0.648 0.764 0.697

Sentence 0.570 0.604 0.735 0.642

WordCloud 0.520 0.522 0.581 0.587

Table 6.1: Pairwise Accuracy for the following models: Abs2Abs: Model trained on abstract concepts

and tested on abstract concepts. Abs2Conc: Model trained on abstract concepts and tested on concrete

concepts. Conc2Conc: Model trained on concrete concepts and tested on concrete concepts. Conc2Abs:

Model trained on concrete concepts and tested on abstract concepts.

DMN Visual Language Task Positive

Word+Picture 0.14 0.15 0.12 0.17

Sentence 0.16 0.10 0.15 0.17

WordCloud 0.10 0.10 0.09 0.17

Table 6.2: Distribution of informative voxels among four brain networks for model trained on abstract

concepts

DMN Visual Language Task Positive

Word+Picture 0.08 0.45 0.08 0.1

Sentence 0.15 0.14 0.14 0.16

WordCloud 0.12 0.10 0.10 0.19

Table 6.3: Distribution of informative voxels among four brain networks for model trained on concrete

concepts

outperformed the model trained on abstract concepts for decoding abstract concepts. The distribution of
informative voxels among the four brain networks for both the decoder models are presented in Tables
6.2 and 6.3, leading to the following cognitive insights.

1. As expected, the visual brain network is very important for processing Word+Picture stimuli for
concrete concepts. Surprisingly, this is not the case for abstract concepts.

2. For both Word+Picture and Sentence views, language and DMN brain networks are more impor-
tant for processing abstract concepts than concrete concepts.

3. For the WordCloud view, the contribution of the task network is relatively larger compared to
other networks, possibly because processing a word cloud recruits more attentional resources.
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6.4 Conclusion

We studied brain decoding in the context of concreteness of concepts being visualised using three
different types of view. We investigate the accuracy of brain decoding models for abstract versus con-
crete concepts with respect to different views. We find that models trained on concrete concept stimuli
lead to better decoding results than models trained on abstract concept stimuli. We also report the con-
tribution of voxels from different brain areas while processing these views and compare them based on
the abstractness or concreteness of the concepts.
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Chapter 7

Brain Encoding

7.1 Language Taskonomy1

7.1.1 Introduction

Brain encoding aims at constructing neural brain activity given an input stimulus. Since the dis-
covery of the relationship between language stimuli and functions of brain networks using fMRI [for
ex., Constabel et al.[23]], researchers have been interested in understanding how the neural encoding
models predict the fMRI brain activity. Several brain encoding models have been developed to (i) un-
derstand the ventral stream in biological vision [108, 50, 9], and (ii) to study the higher-level cognition
like language processing [34, 80, 81].

Recently, Transformer [95] based models like BERT [25] have been found to be very effective across
a large number of natural language processing (NLP) tasks. These Transformer based models have been
pretrained on millions of text instances in an unsupervised manner and further finetuned to specialize
for various NLP tasks. Natural language understanding requires integrating several cognitive skills like
syntactic parsing of the language structure, identifying the named entities, capturing the word meaning
in the context, coreference resolution, etc. Learning from massive corpora enables these models to
excel at cognitive skills required for language understanding. Interestingly, such Transformer-based
neural representations have been found to be very effective for brain encoding as well [80].

Recently, a study using multiple computer vision tasks has shown that 3D vision task models predict
better fMRI brain activity than 2D vision task models [96] for visual stimuli. Inspired by the success
of correlations in the vision field [96], and brain encoding study of a variety of language Transformer
models [80, 19, 18], we build neural language taskonomy models for brain encoding and aim to find
NLP tasks that are most explanatory of brain activations for reading and listening tasks.

1This is part of the additional work and not the main focus of the thesis
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7.1.2 Related Works

Older methods for text-based stimulus representation include text corpus co-occurrence counts [56,
69, 45], syntactic and discourse features [101]. In recent times, both semantic and experiential attribute
models have been explored for text-based stimuli. Semantic representation models include distributed
word embeddings [71, 4, 72, 92, 43, 99], sentence representation models [85, 92, 86], recurrent neural
networks [48, 66], and Transformer-based language models [34, 92, 81, 63, 64]. Experiential attribute
models represent words in terms of human ratings of their degree of association with different attributes
of experience, typically on a scale of 0-6 [2, 5, 12, 49, 18, 6] or binary [39, 97]. Fine-grained details
such as lexical, compositional, syntactic, and semantic representations of narratives are factorized from
Transformer-based models and utilized for training encoding models. The resulting models are better
able to disentangle the corresponding brain responses in fMRI [18].

7.1.3 Task Description

To explore how and where contextual language features are represented in the brain when reading
sentences and listening to stories, we extract different features spaces describing each stimulus sentence
and use them in an encoding model to predict brain responses. Our reasoning is as follows. If a feature
is a good predictor of a specific brain region, information about that feature is likely encoded in that
region. In this work, for both datasets(Pereira [72] and Narratives-Pieman [58]), we train fMRI encoding
models using Ridge regression on stimuli representations obtained using a variety of NLP tasks. The
main goal of each fMRI encoder model is to predict brain responses associated with each brain region
given a stimuli. In all cases, we train a model per subject separately. Following literature on brain
encoding [19, 91], we choose to use a ridge regression model instead of more complicated models. We
plan to explore more such models as part of future work.

We follow K-fold (K=10) cross-validation. All the data samples from K-1 folds were used for train-
ing, and the model was tested on samples of the left-out fold.

7.1.4 Findings

For Pereira Dataset(Reading sentences), we observe that tasks such as Coreference Resolution(CR),
Named Entity Resolution(NER), Semantic Role Labelling(SRL), and Shallow Syntax(SS) appear to
have a better correlation to the brain responses compared to the other tasks. These results demonstrate
that when reading a sentence, information processing operations related to recognizing named entities,
labeling semantic roles to the constituents of a sentence, identifying the references from a sentence to
the given topic (concept), and syntactic processing may be engaged.

Further, we observe that the ROI corresponding to language processing in the left hemisphere (Lan-
guage LH) has higher encoding performance than that of the right hemisphere (Language RH). This
is in line with the left hemisphere dominance for language processing [13]. Also, lateral visual ROIs
such as Vision Object, Vision Body, Vision Face, and Vision ROIs display higher correlation with the
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language tasks associated with named entities (NER), relating the entities (CR), and syntax processing
(SS). Higher correlations with all the visual brain regions point to the possible alignment of visual and
language regions for semantic understanding [74] in a reading task.

For Narratives-Pieman Dataset (Listening Stories), Tasks such as Paraphrase Detection(PD), Sum-
marization(Sum), and Natural Language Inference(NLI) seem to yield better performance in predicting
the brain responses than the other NLP tasks across all the ROIs. We observe that the profiles of perfor-
mance show low scores in the early auditory cortex (EAC), auditory association cortex (AAC); average
scores in TPOJ and DFL; and superior scores in PMC. This aligns with the known language hierarchy
for spoken language understanding [57].

Further, we see that the bilateral posterior medial cortex (PMC) associated with higher language
function exhibits a higher correlation among all the brain ROIs. ROIs, including bilateral TPOJ and
bilateral DFL, yield higher correlations with the five NLP tasks, which is in line with the language
processing hierarchy in the human brain.

In summary, different and distinct language Taskonomy features seem to be related to the encoding
performance in reading versus listening tasks. CR, NER, SRL, and SS perform better for reading. PD,
Sum, and NLI perform better for listening. While listening the subject is cognitively more involved in
the activity compared to reading [15]. Thus, it makes sense that shallow tasks like NER and SS are
useful for reading while more complex NLP tasks like PD, Sum and NLI are effective for encoding
listening stimuli.

7.1.5 Conclusion

In this work, we studied the effectiveness of task-specific NLP models for brain encoding. We
observe that building individual encoding models and exploiting existing relationships among models
can provide a more in-depth understanding of the neural representation of language information. Our
experiments on Pereira and Narrative datasets lead to interesting cognitive insights.

7.2 Visio-Linguisitic Brain Encoding2

7.2.1 Introduction

Brain encoding aims at constructing neural brain activity recordings given an input stimulus. The
two most studied forms of stimuli include vision and language. Since discovering of the relationship
between language/visual stimuli and functions of brain networks [23, 90], researchers have been inter-
ested in understanding how the neural encoding models predict the fMRI (functional magnetic resonance
imaging) brain activity. Recently, several brain encoding models were developed to (i) understand the
ventral stream in biological vision [108, 50, 9] and (ii) study higher-level cognition like language pro-

2This is part of the additional work and not the main focus of the thesis
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cessing [34, 80, 81]. Previous work has mainly focused on independently understanding vision and
text stimuli. However, the biological systems perceive the world by simultaneously processing high-
dimensional inputs from diverse modalities such as vision, auditory, touch, and proprioception [47].
In particular, how the brain effectively processes and provides its visual understanding through natural
language and vice versa is still an open question in neuroscience.

Earlier studies mainly were related to neural encoding models that predict brain activity using rep-
resentations of single-mode stimuli: visual or text. Convolutional neural networks (CNNs) were known
to encode semantics from visual stimuli effectively. Interestingly, intermediate layers in deep CNNs
trained on the ImageNet [24] categorization task can partially account for how neurons in intermediate
layers of the visual system respond to any given image [106, 108, 36, 107, 96]. Similar to CNN based
visual encoding models, various studies leveraged neural models like deep recurrent neural networks
(RNNs), Transformer [95] based language models such as BERT [25], RoBERTa [53], and GPT-2 [77]
to predict the brain activity corresponding to semantic vectors of linguistic items, including words,
phrases, sentences, and paragraphs [34, 80].
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Figure 7.1: Logical architecture of the proposed approach: We use features from image/multi-modal

Transformers (like ViT, VisualBERT, and LXMERT) as input to the regression model to predict the

fMRI activations for different brain regions. We evaluate the brain encoding results by computing 2V2

accuracy and Pearson correlation between actual and predicted activations. We also perform layer-wise

correlation analysis between transformer layers and brain regions.

Unlike previous studies, which focus on single-modality (visual or language stimuli), some authors
demonstrated that multi-modal models formed by combining text-based distributional information with
visual representations provide a better proxy for human-like intelligence [3, 66]. However, these meth-
ods extract representations from each mode separately (image features from CNNs and text features
from pretrained embeddings) and then perform a simple late-fusion. Thus, they cannot effectively ex-
ploit semantic correspondence across the two modes at different levels. Such late-fusion-based multi-
modal models are the closest to our work, and our experiments show that our models outperform them.
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Recently, Transformer-based models were found to be very effective than CNNs, in all language
and image-related tasks [25]. Image-based transformer models like ViT [26], DEiT [93], and BEiT [8]
have been shown to provide excellent results compared to traditional CNNs on image classification
tasks. Also, multi-modal Transformers like VisualBERT [52], LXMERT [88], and CLIP [76] have
shown excellent results on visio-linguistic tasks like visual question answering, visual common-sense
reasoning. Inspired by the success of language, image, and multi-modal Transformers, we build multi-
modal transformer models to learn the joint representations of image content and natural language and
use them for brain encoding. Overall, in this work, we investigate whether image-based and multi-
modal Transformers can accurately perform fMRI encoding on the whole brain. Fig. 7.1 illustrates our
method for brain encoding.

7.2.2 Task Description

We train fMRI encoding models using Ridge regression on stimuli representations obtained using
various models for both datasets (Pereira [72] and BOLD5000 [20] ), as shown in Fig. 7.1. The main
goal of each fMRI encoder model is to predict fMRI voxel values for each brain region given stimuli.
In all cases, we train a model per subject separately. Different brain regions are involved in processing
stimuli involving objects and scenes. Similarly, some regions specialize in understanding vision inputs
while others interpret linguistic stimuli better.

To evaluate the generalizability of our models across objects vs. scenes understanding, we also
perform cross-data experiments where the train images belong to one sub-dataset, and the test images
belong to the other sub-dataset. Thus, for each subject, we perform (1) three same-sub-dataset train-test
experiments and (2) six cross-sub-dataset train-test experiments.
Full dataset fMRI Encoding: Whenever we train and test on the same dataset, we follow K-fold
(K=10) cross-validation. All the data samples from K-1 folds were used for training, and the model was
tested on samples of the left-out fold.
Cross-data fMRI Encoding: In the BOLD5000 dataset, we have three sub-datasets: COCO, ImageNet,
and Scenes. ImageNet images mainly contain objects. Scenes images are about natural scenes, while
COCO images relate to both objects and scenes. For each of the three sub-datasets, we perform K-fold
(K=10) cross-validation within the sub-dataset.

We used the following models to extract stimuli features:
Pretrained CNNs: We extract the layer-wise features from different pretrained CNN models such as
VGGNet19 [82], ResNet50 [40], InceptionV2ResNet [87], and EfficientNetB5 [89], and use them for
predicting fMRI brain activity. We use adaptive average pooling on each layer to get features for each
image.
Pretrained text Transformers: RoBERTa [53] builds on BERT’s language masking strategy and has
been shown to outperform several other text models on the popular GLUE NLP benchmark. We use the
average-pooled representation3 from RoBERTa to encode text stimuli.

3Average-pooled representation gave us better results compared to using the CLS representation.
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Image Transformers: We used three image Transformers: Vision Transformer (ViT), Data Efficient
Image Transformer (DEiT), and Bidirectional Encoder representation from Image Transformer (BEiT).
Given an image, image Transformers output two representations: pooled and patches. We experiment
with both representations.

Late-fusion models: In these models, the stimuli representation is obtained as a concatenation of im-
age stimuli encoding obtained from pretrained CNNs and text stimuli encoding obtained from pre-
trained text Transformers. Thus, we experiment with these late-fusion models: VGGNet19+RoBERTa,
ResNet50+RoBERTa, InceptionV2ResNet+RoBERTa and EfficientNetB5+RoBERTa. These models do
not incorporate real information fusion but do concatenation across modalities.

Multi-modal Transformers: We experiment with these multi-modal Transformer models: Contrastive
Language-Image Pre-training (CLIP), Learning Cross-Modality Encoder Representations from Trans-
formers (LXMERT), and VisualBERT. These Transformers take both image and text stimuli as input and
output a joint visio-linguistic representation. Specifically, the image input for these models comprises
region proposals as well as bounding box regression features extracted from Faster R-CNN [79] as input
features. These models incorporate information fusion across modalities at different levels of processing
using co-attention and hence are expected to result in high-quality visio-linguistic representations.

7.2.3 Findings

We calculate the 2V2 accuracy and Pearson correlation results for models trained with different input
representations (extracted from the best-performing layer of every pretrained CNN model and the last
output layer of the Transformer model) on the two datasets: BOLD5000 and Pereira .

BOLD5000: We make the following observations:

• On both 2V2 accuracy and Pearson correlation, VisualBERT is better across all the models.

• Other multi-modal Transformers such as LXMERT and CLIP perform as good as pretrained
CNNs. We observed that image Transformers perform worse than pretrained CNNs. Late fu-
sion models and RoBERTa has the least performance.

• Late visual areas such as OPA (scene-related) and LOC (object-related) display a higher Pearson
correlation with multi-modal Transformers, which is in line with the visual processing hierarchy.
A higher correlation with all the visual brain ROIs with multi-modal Transformers demonstrates
the power of jointly encoding visual and language information.

• The patch representation of image Transformers shows an improved 2V2 accuracy and Pearson
correlation compared to the Pooled representation.

• Both InceptionV2ResNet and ResNet-50 have better performance among uni-modality models.

Pereira: We make the following observations:
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• Similar to BOLD5000, multi-modal Transformers such as VisualBERT and LXMERT perform
better.

• Lateral visual areas such as Vision Object, Vision Body, Vision Face, and Vision areas display
higher correlation with multi-modal Transformers. A higher correlation with all the visual brain
regions, language regions, DMN, and TP with multi-modal Transformers, demonstrates that the
alignment of visual-language understanding helps.

7.2.4 Conclusion

We studied the effectiveness of multi-modal modeling for brain encoding. We found that Visu-
alBERT, which jointly encodes text and visual input using cross-modal attention at multiple levels,
performs the best. Our experiments on BOLD5000 and Pereira datasets lead to interesting cognitive in-
sights. These insights indicate that fMRIs reveal reliable responses in scenes and object selection visual
brain areas, which shows that cross-view decoding tasks like image captioning or image tagging are
practically possible with reasonable accuracy. We plan to explore this as part of future work. We also
plan to explore correlations between brain voxel space and representational feature space in the future.
Finally, the combined strength of joint (audio, vision, and text) modalities remains to be investigated.
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Chapter 8

Conclusion and Future Directions

8.1 Summary of the Main Findings

Brain decoding is a fascinating area of research that involves analyzing brain activity data to decode
the information encoded in it. Previous efforts have mostly focused on single-view analysis, which limits
their ability to build complex brain decoding systems. Inspired by the multi-lingual and cross-lingual
modelling techniques used in natural language processing, this thesis proposes novel brain decoding
setups for multi-view decoding, cross-view decoding, and abstract versus concrete decoding. These
setups aim to take a step forward in building complex brain decoding systems that can recognize and
decode concepts across different views.

The experiments conducted in this study led to some interesting and exciting findings. Firstly, the
multi-view decoding (MVD) models achieved an average pairwise accuracy of ∼0.68 across view pairs.
In comparison, the cross-view decoding (CVD) models achieved an average pairwise accuracy of ∼0.8
across tasks. The results indicate that cross-view decoding is feasible with good accuracy and is a
promising area for further research.

The analysis of the contribution of different brain networks revealed exciting cognitive insights.
Models trained on picture or sentence view were found to be better multi-view decoders than models
trained on word cloud view. In addition, the MV decoder trained on sentence view achieved accuracy
for word cloud stimuli, which was better than that obtained using the same-view word cloud model.
This finding suggests that the semantic information in the sentence view is more generalized and can be
used to decode other views, even when the model is not explicitly trained on them.

Moreover, the study of cross-view decoding for image captioning, image tagging, sentence forma-
tion, and keyword extraction revealed insights into the importance of various parts of the brain for each
of these tasks. By analyzing the contribution of voxels from different brain areas, this study localized,
for the first time, the parts of the brain involved in these cross-view tasks. This finding could pave the
way for building more accurate and effective brain decoding models for these tasks.

Finally, the analysis of abstract versus concrete decoding for three different types of views showed
that models trained on concrete stimuli led to better decoding results than models trained on abstract
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stimuli. The study also reported the contribution of voxels from different brain areas while process-
ing these views and compared them based on the abstractness or concreteness of the concepts. These
findings provide insights into how the brain processes and decodes different types of concepts.

In conclusion, this thesis proposes novel brain decoding setups for multi-view decoding, cross-view
decoding, and abstract versus concrete decoding. The findings of this study show that these setups are
promising for building complex brain decoding systems that can recognize and decode concepts across
different views. The study also provides insights into the importance of different brain areas for these
tasks, which could be useful for building more accurate and effective brain decoding models in the
future.

8.2 Limitations

Brain decoding techniques, which use neural activity to decode the content of mental representations,
have gained popularity in recent years as a powerful tool for investigating the neural basis of cognitive
processes. However, like any methodology, Brain Decoding has its limitations, which must be taken
into account when interpreting results.

Here are some possible limitations of Brain Decoding techniques:

• Generalization across individuals: One potential limitation of brain decoding is that neural
activity patterns can vary across individuals. This means that a decoding model trained on one
individual’s brain may not generalize well to other individuals, which could limit the applicability
of the results to the broader population.

• Decoding the Actual Stimuli: Brain Decoding techniques are still limited to decoding the rep-
resentation of the stimuli rather than the stimuli themselves. For example, in this thesis, all the
experiments aimed to produce text embeddings rather than the actual text. One of the possible
reasons for this is the limited availability of datasets which is discussed in the next point.

• Limited Dataset: One of the major challenges in brain decoding is the limited amount of data
available for analysis. Collecting brain activity data is an expensive and time-consuming process
that often requires specialized equipment and trained personnel. This limits the amount of data
that can be collected for a given study and, in turn, limits the ability to train accurate and robust
machine learning models for brain decoding tasks.

• Interpretation of decoding results: Another limitation of Brain decoding is the difficulty of
interpreting decoding results. One of the primary issues with interpreting decoding results is
the question of what features of the brain activity data are being used to make the predictions.
Decoding models can be highly accurate, but it is often unclear which specific brain regions or
patterns of activity are driving the predictions. This can make it difficult to draw conclusions
about the underlying neural mechanisms and cognitive processes.
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• Limited spatial and temporal resolution: The spatial and temporal resolution of brain imaging
techniques like fMRI, EEG, and MEG is limited, which means that it can be challenging to pin-
point the exact location and timing of neural activity accurately. This can impact the accuracy of
decoding models and limit the conclusions that can be drawn from the results.

In summary, Brain Decoding techniques have limitations that must be taken into account when in-
terpreting results. These limitations include generalization across individuals, limited datasets, the dif-
ficulty of interpreting decoding results, and limited spatial and temporal resolution of brain imaging
techniques. Despite these limitations, Brain Decoding remains a valuable tool for investigating the
neural basis of cognitive processes.

8.2.1 Possible solution to the Limitations

To address some of the limitations of Brain Decoding, researchers can employ several strategies:

• Generalization across individuals: To ensure that decoding models generalize across individu-
als, researchers can use a larger sample size when collecting data and apply statistical methods that
account for individual variability. Additionally, it may be useful to use transfer learning, which
involves training a decoding model on data from one or more participants and then fine-tuning it
on data from another participant.

• Decoding the Actual Stimuli: One solution is to collect larger and more diverse datasets. This
could involve combining data from multiple studies or sources to increase the size and diversity
of the dataset or collecting new data using more efficient or cost-effective methods. Advances in
natural language processing and computer vision can potentially allow decoding the actual stimuli
rather than just their representation. Could techniques for data augmentation, like using GAN [35]
or VAE [51] to generate fake data, be useful to increase the amount of dataset to train the models
that could decode/reconstruct the stimuli?

• Limited Dataset: Collecting more brain activity data can help increase the amount of data avail-
able for analysis and improve the accuracy of decoding models. Additionally, sharing and creating
open-source datasets can enable researchers to train more robust and accurate models.

• Interpretation of decoding results: To improve the interpretability of decoding models, re-
searchers can use methods such as feature selection and visualization to identify which specific
brain regions or patterns of activity are driving the predictions. Additionally, combining brain
decoding with other techniques, such as neurophysiology, neuroimaging, and behavioural testing,
can provide additional insights into the underlying neural mechanisms and cognitive processes.

• Limited spatial and temporal resolution: Advances in brain imaging techniques, such as high-
density EEG [59] and functional near-infrared spectroscopy (fNIRS) [14], can provide higher
spatial and temporal resolution than traditional techniques like fMRI. Additionally, combining
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multiple imaging techniques can allow for more accurate localization and timing of neural activity
patterns.

In summary, while Brain Decoding has several limitations, these can be mitigated by employing
various strategies, such as collecting larger and more diverse datasets, employing transfer learning using
data augmentation techniques, improving interpretability through feature selection and visualization,
combining brain decoding with other techniques, and using advances in brain imaging techniques with
higher spatial and temporal resolution. By using these strategies, researchers can gain a more detailed
understanding of the neural mechanisms in the brain.

8.3 Future Works

Certainly, there are many exciting avenues for future research in the area of Brain Decoding. Here
are a few possibilities:

• Multilingual brain decoding: Most current decoding studies have been conducted in a single
language, typically English. However, Multilingual brain decoding studies [104] could help re-
searchers gain insights into the neural mechanisms underlying multilingualism, such as the degree
to which different languages are represented in the brain and the cognitive processes involved in
switching between languages. Multilingual brain decoding has the potential to improve our un-
derstanding of language processing and cognition in general and could have applications in areas
such as second language learning and bilingual education.

• Reconstructing Imagination: Current Brain Decoding techniques are focussed on decoding the
stimuli that the subject has seen or heard, but could it be possible to decode what the subject has
just imagined?

• Clinical applications: Brain Decoding could have important clinical applications, such as devel-
oping brain-computer interfaces for people with motor disabilities or developing new diagnostic
tools for neurological disorders. For example, decoding neural activity associated with language
comprehension could provide new insights into language disorders such as aphasia.

• Deep Learning Approaches: Future research could investigate the use of more advanced ma-
chine learning techniques, such as deep learning and reinforcement learning, to improve the ac-
curacy and robustness of decoding models.

These are just a few examples of the many possible future directions for research in this area. As
technology and methods continue to advance, we can expect to see exciting new developments in Brain
Decoding in the coming years.
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Appendix A

Multi-View Brain Decoding

In this technical appendix, results are compared for both GloVe and BERT for all the experiments in
the main chapter for Multi-View Brain Decoding (chapter 4).

We present the pairwise and rank accuracy for models trained on word+picture (WP), sentence (S)
and word-cloud (WC) views in Figs. A.1, A.2 and A.3 respectively. Specifically, Fig. A.1 shows re-
sults when we infer using voxels corresponding to each of the three views. Ground-truth is GloVe
(G) or BERT (B) embedding vector. Thus, WP B R means input view=WP (Word+picture), embed-
ding=BERT, and metric=Rank (R) accuracy. Overall averaged (across subjects) accuracy results are
summarized in Table A.1. Table A.2 shows distribution of informative voxels across the four brain net-
works. In this figure, WP G D means input view=WP (Word+picture), embedding=GloVe, and brain
network=DMN (D). Individual level statistics can be found in Fig. A.4.

Train→ WP S WC

Test↓ GloVe BERT GloVe BERT GloVe BERT

WP .74/.65 .72/.65 .71/.60 .70/.60 .66/.58 .68/.59

S .65/.57 .67/.58 .69/.63 .70/.64 .67/.59 .71/.61

WC .62/.55 .63/.56 .67/.60 .69/.61 .61/.56 .62/.57

Table A.1: Multi-View Decoder Summary Results (Pairwise/Rank Accuracy)

A.1 Train on WP view

We make the following observations from Fig. A.1 and Tables A.1&A.2:

• For test on WP view, wrt pairwise accuracy, GloVe model (0.74) is better than BERT (0.72) (one-
sample t-test, 0.05 significance level, p=0.024).
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Figure A.1: Model trained on Word+Pictures view. Multi-View Decoding Pairwise (PW) and Rank (R)

accuracy when tested on Word+Picture (WP)/Sentence (S)/Word-cloud (WC) views using GloVe (G)

and BERT (B). Each colored dot represents a subject. The bar plot shows averages.

• For the test on S or WC views, BERT shows better performance than GloVe across both metrics.
This can be explained by analyzing the brain network distribution differences in the following
points.

• We observe that BERT captures a higher percentage of language informative voxels (18%) and
DMN voxels (16%) compared to GloVe (12%, 13%), demonstrating the better language under-
standing with transformer based representations. This result has p=0.003 for language voxels and
p=0.021 for DMN using a t-test with 0.05 significance.

• When the model is trained on WP view (unlike other views), for both embeddings, most informa-
tive voxels (about 53%) lie in the visual brain network, which is expected. Also, the location of
these voxels was consistent across participants.

A.2 Train on S view

We make the following observations from Fig. A.2 and Tables A.1&A.2:

• For zero-shot test on WP view, wrt pairwise accuracy, GloVe model (0.71) is better than BERT
(0.70) but we observed that the improvements are not significant (p=0.608).

• Accuracy of the model trained on S view and tested on WC view is better than same-view accu-
racy of the model trained and tested on WC view. This matches our observation that DMN and
Language network voxels are higher in the S view than the WC view.
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Figure A.2: Model trained on Sentences view. Multi-View Decoding Pairwise (PW) and Rank (R)

accuracy when tested on Word+Picture (WP)/Sentence (S)/Word-cloud (WC) views using GloVe (G)

and BERT (B) embeddings. Each colored dot represents a subject. The bar plot shows averages.
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Figure A.3: Model trained on Word-Cloud view. Multi-View Decoding Pairwise (PW) and Rank (R)

accuracy when tested on Word+Picture (WP)/Sentence (S)/Word-cloud (WC) views using GloVe (G)

and BERT (B). Each colored dot represents a subject. The bar plot shows averages.

• For the test on S or WC views, BERT shows slightly better zero-shot performance than GloVe
across both metrics. Results are not significant (p=0.251) for the S view, but they are significant
for the WC view (p=0.021).
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WP S WC

G B G B G B

D .125 .162 .191 .222 .115 .137

V .537 .534 .160 .202 .115 .161

L .119 .177 .203 .246 .123 .192

T .055 .064 .145 .135 .165 .145

Table A.2: Distribution of informative voxels among four brain networks: DMN (D), Visual (V), Lan-

guage (L), Task Positive (T). Embeddings: GloVe (G), BERT (B). Input views: Word+Picture (WP),

Sentence (S), Word-Cloud (WC)

• Compared to the model trained on WP view, distribution of voxels among the four brain networks
shows that the model trained on S view has a higher percentage of voxels among the Language
and DMN networks and lower in the visual network. Further, for the model trained on S view,
BERT captures more informative voxels among the four brain networks compared to GloVe.

• Compared to the WP view, for the model trained on S view, informative voxels in the language
and task brain network are much higher. This is in line with our understanding that linguistic and
attention skills are important to understand sentence stimuli.

DMN Visual Language Task Positive

WP-S .24/.17 .11/.29 .25/.17 .09/.05

WC-S .25/.16 .25/.20 .30/.22 .07/.07

WP-WC .14/.16 .08/.25 .15/.15 .06/.03

Table A.3: For each pair of views and each brain network, we show coverage ratios (second task on

first/first task on second) of the voxels.

A.3 Train on WC view

We make the following observations from Fig. A.3 and Tables A.1&A.2:

• BERT performs better than GloVe. Results are not significant with p=0.401 for test on WC view.
Results for test on WP and S views are significant with p=0.002, 0.014 using t-test, and 0.05
significance level.

58



WP_G
_D

WP_G
_V

WP_G
_L

WP_G
_T

WP_B
_D

WP_B
_V

WP_B
_L

WP_B
_T

S_G
_D

S_G
_V

S_G
_L

S_G
_T

S_B
_D

S_B
_V

S_B
_L

S_B
_T

WC_G
_D

WC_G
_V

WC_G
_L

WC_G
_T

WC_B_D

WC_B_V

WC_B_L

WC_B_T
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65 P01

M01
M02
M04

M07 M09 M10 M13 M15 M16 M17

Figure A.4: Distribution of informative voxels among four brain networks: DMN (D), Visual (V),

Language (L), Task Positive (T). Embeddings: GloVe (G), BERT (B). Input views: Word+Picture (WP),

Sentence (S), Word-Cloud (WC)

• The supremacy of BERT can be explained by observing that BERT captures a higher percentage
of informative voxels from the DMN (14%), Language (19%), and Visual (16%) networks when
compared to GloVe (DMN - 11.5%, Language - 12%, Visual - 11.5%) when trained on WC view.
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Appendix B

Cross-View Brain Decoding

In this technical appendix, results are compared for GloVe and BERT for all the Cross-View Brain
Decoding tasks discussed in the main chapter for Cross-View Brain Decoding (chapter 5).
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Figure B.1: Cross-View Decoding Pairwise (PW) and Rank (R) accuracy for Image Captioning (IC),

Image Tagging (IT), Sentence Formation (SF) and Keyword Extraction (KE) using GloVe (G) and BERT

(B) embeddings. Each colored dot represents a subject. The bar plot shows averages.
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Appendix C

Abstract-Concrete Brain Decoding

In this technical appendix, results are compared for GloVe and BERT for all the experiments dis-
cussed in the main chapter for Abstract-Concrete Brain Decoding (chapter 6). Individual level statistics
are also presented in this appendix.

The results for the abstract-train-concrete-test and concrete-train-abstract-test decoder models are
presented per view using two embeddings in Table C.1. Detailed subject-level results are in Figs. C.1
and C.2. Fig. C.3 shows distribution of informative voxels among four brain networks using BERT
embeddings for both the decoder models.

Abs2Conc Conc2Abs

PW R PW R

G B G B G B G B

WP .648 .648 .574 .575 .698 .697 .591 .591

S .598 .604 .548 .550 .641 .642 .560 .560

WC .522 .519 .506 .505 .577 .587 .534 .528

Table C.1: Abs2Conc: Model trained on abstract concepts and tested on concrete concepts.

Conc2Abs: Model trained on concrete concepts and tested on abstract concepts. Views: Word+Picture

(WP)/Sentence(S)/Word-cloud (WC). Pairwise (PW) and Rank (R) accuracy when using GloVe (G) and

BERT (B) embeddings.
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Figure C.1: Model trained on abstract concepts and tested on concrete concepts for Word+Picture

(WP)/Sentence(S)/Word-cloud (WC) views. Pairwise (PW) and Rank (R) accuracy when using GloVe

(G) and BERT (B) embeddings. Each colored dot represents a subject. Bar plot shows averages.
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Figure C.2: Model trained on concrete concepts and tested on abstract concepts for Word+Picture (WP)

/ Sentence(S) / Word-cloud (WC) views. Pairwise (PW) and Rank (R) accuracy when using GloVe (G)

and BERT (B) embeddings. Each colored dot represents a subject. Bar plot shows averages.
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Figure C.3: Distribution of informative voxels among four brain networks: DMN (D), Visual (V),

Language (L), Task Positive (T). Using BERT Embeddings. Input views: Word+Picture (WP), Sentence

(S), Word-Cloud (WC). Decoders: abstract-train-concrete-test (A) and concrete-train-abstract-test (C).
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tical network responses map onto data-driven features that capture visual semantics of movie fragments.

Scientific reports, 10(1):1–21, 2020. 45

[13] J. R. Binder, R. H. Desai, W. W. Graves, and L. L. Conant. Where is the semantic system? a critical review

and meta-analysis of 120 functional neuroimaging studies. Cerebral cortex, 19(12):2767–2796, 2009. 6,

22, 29, 45

[14] D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga. Twenty years of functional near-infrared spectroscopy:

introduction for the special issue. NeuroImage, 85:1–5, 2014. Celebrating 20 Years of Functional Near

Infrared Spectroscopy (fNIRS). 53

[15] A. Buchweitz, R. A. Mason, L. Tomitch, and M. A. Just. Brain activation for reading and listening

comprehension: An fmri study of modality effects and individual differences in language comprehension.

Psychology & neuroscience, 2(2):111–123, 2009. 46

[16] R. Buckner, J. Andrews-Hanna, and D. Schacter. The brain’s default network: anatomy, function, and

relevance to disease. Annals of the New York Academy of Sciences, 1124:1–38, 2008. 22

[17] E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis of structural and func-

tional systems. Nature Reviews Neuroscience, 10(3):186–198, 2009. 6

[18] C. Caucheteux, A. Gramfort, and J.-R. King. Disentangling syntax and semantics in the brain with deep

networks. In International Conference on Machine Learning, pages 1336–1348. PMLR, 2021. 44, 45

[19] C. Caucheteux, A. Gramfort, and J.-R. King. Model-based analysis of brain activity reveals the hierarchy

of language in 305 subjects. arXiv preprint arXiv:2110.06078, 2021. 44, 45

[20] N. Chang, J. A. Pyles, A. Marcus, A. Gupta, M. J. Tarr, and E. M. Aminoff. Bold5000, a public fmri

dataset while viewing 5000 visual images. Scientific data, 6(1):1–18, 2019. 48

[21] A. Conneau and G. Lample. Cross-lingual language model pretraining. Advances in neural information

processing systems, 32, 2019. 18, 19

[22] A. Conneau, R. Rinott, G. Lample, A. Williams, S. Bowman, H. Schwenk, and V. Stoyanov. Xnli: Evaluat-

ing cross-lingual sentence representations. In Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing, pages 2475–2485, 2018. 18

[23] R. T. Constable, K. R. Pugh, E. Berroya, W. E. Mencl, M. Westerveld, W. Ni, and D. Shankweiler. Sentence

complexity and input modality effects in sentence comprehension: an fmri study. NeuroImage, 22(1):11–

21, 2004. 19, 44, 46

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee,

2009. 47

[25] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers

for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the

66



Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 4171–4186, 2019. x, 13, 15, 19, 20, 44, 47, 48

[26] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-

derer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at

scale. In International Conference on Learning Representations, 2020. 48

[27] N. F. Dronkers, D. P. Wilkins, R. D. Van Valin Jr, B. B. Redfern, and J. J. Jaeger. Lesion analysis of the

brain areas involved in language comprehension. Cognition, 92(1-2):145–177, 2004. 1

[28] J. Duncan. The multiple-demand (md) system of the primate brain: mental programs for intelligent be-

haviour. Trends in cognitive sciences, 14(4):172–179, 2010. 22

[29] M. Eickenberg, A. Gramfort, G. Varoquaux, and B. Thirion. Seeing it all: Convolutional network layers

map the function of the human visual system. NeuroImage, 152:184–194, 2017. 18

[30] E. Fedorenko, M. K. Behr, and N. Kanwisher. Functional specificity for high-level linguistic processing in

the human brain. Proceedings of the National Academy of Sciences, 108(39):16428–16433, 2011. 2, 22
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