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Abstract

Brain decoding involves the reconstruction of stimuli from brain recordings. These recordings can

be obtained by presenting stimuli to a subject in various forms, such as text, image, and speech. De-

spite extensive research on brain decoding, important questions remain unanswered. Can we develop

multi-view decoders capable of decoding concepts from brain recordings of any view, including picture,

sentence, or word cloud? Can we build a system that can use brain recordings to automatically generate

descriptions of what a subject is viewing using keywords or sentences? How about a system that can

automatically extract important keywords from sentences that a subject is reading? Answering these

questions requires innovative approaches to brain decoding, as traditional methods have not yet been

proven adequate.
Previous brain decoding efforts have focused only on single-view analysis and hence cannot help

us build such systems. As a �rst step toward building such systems, inspired by Natural Language

Processing literature on multi-lingual and cross-lingual modelling, this thesis proposes novel brain de-

coding setups: (1) Multi-view Decoding (MVD), (2) Cross-view Decoding (CVD), and (3) Abstract v/s

Concrete Decoding. In MVD, the goal is to build an MV decoder that can take brain recordings for any

view as input and predict the concept. In CVD, the goal is to train a model which takes brain recordings

for one view as input and decodes a semantic vector representation of another view. Speci�cally, this

thesis studies practically useful CVD tasks like image captioning, image tagging, keyword extraction,

and sentence formation. In Abstract v/s Concrete Decoding, the goal is to build a decoder trained on

concrete concepts and test it on both abstract and concrete concepts and similarly build a decoder trained

on abstract concepts and test it in both types of concepts.
Extensive experiments lead to MVD models with� 0.68 average pairwise accuracy across view

pairs and CVD models with� 0.8 average pairwise accuracy across tasks. It was found that the decoder

trained on concrete concepts can decode both abstract and concrete objects with great and better accu-

racy than the model trained on abstract objects. Analysis of the contribution of different brain networks

reveals exciting cognitive insights: (1) Models trained on picture or sentence view of stimuli are bet-

ter MV decoders than a model trained on word cloud view. (2) Our extensive analysis across 9 broad

brain regions, 11 language sub-regions, and 16 visual sub-regions of the brain helped us localize, for

the �rst time, the parts of the brain involved in cross-view tasks like image captioning, image tagging,

sentence formation, and keyword extraction. (3) The visual brain network is very important for process-

ing Word+Picture stimuli for concrete concepts. Surprisingly, this is not the case for abstract concepts

where voxels from the language and DMN brain network are more activated.
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Chapter 1

Introduction

The human brain is a complex organ that plays a vital role in the functioning of the human body. It

is responsible for processing information received through various stimuli and generating appropriate

responses. For centuries, scientists and researchers have been trying to understand the mechanisms by

which the brain processes and responds to different stimuli, such as visual, text or auditory cues.

The process of mapping brain responses to different stimuli has been an area of active research for

many years. In recent years, this area of research has become even more critical as scientists seek to

understand how the brain responds to various external stimuli and how this response can be harnessed

to improve human health.

Language is a crucial component of human communication, and understanding how the brain pro-

cesses linguistic stimuli is of signi�cant interest to researchers in the �eld of cognitive neuroscience.

The human brain has a remarkable ability to interpret and understand language, but the underlying

mechanisms by which this occurs are not yet fully understood.

Studying how the brain processes linguistic stimuli has been an area of active research for many

years. Various techniques have been used to investigate how different parts of the brain respond to

linguistic stimuli, including electroencephalography (EEG), functional magnetic resonance imaging

(fMRI), and magnetoencephalography (MEG) [33]. These techniques have enabled researchers to iden-

tify speci�c regions of the brain that are associated with language processing, such as Broca's and

Wernicke's areas [27].

Understanding how the brain processes linguistic stimuli has important implications for �elds such

as linguistics, psychology, and neuroscience. It can provide insights into how we acquire language, how

we understand it, and how we use it to communicate. In addition, this research has practical applications

in areas such as speech therapy, language education, and arti�cial intelligence.

In recent years, a new approach called ”brain decoding” has emerged, which aims to decode the

neural activity patterns in the brain associated with linguistic stimuli to reconstruct insights about the

stimuli. The brain decoding approach uses machine learning algorithms to analyze the neural activity

patterns associated with stimuli. By identifying the neural patterns associated with speci�c linguistic
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features, such as syntax or semantics, researchers can develop models that can predict the stimuli from

brain activity patterns [56].

This approach has the potential to improve our understanding of how the brain processes linguistic

stimuli and can provide insights into how we acquire language and how we use it to communicate. For

example, recent studies have used brain decoding to investigate how the brain processes sentences with

different levels of syntactic complexity [30].

This thesis will examine the current state of research on how the brain processes stimuli, focusing

on the brain decoding approach. The thesis will explore the Cross-modal functioning of our brain,

�nding how even visual stimuli can activate the linguistic processing of the brain and how we can

exploit that to perform Cross-View tasks like Image captioning and improve the accuracy of Abstract

concept decoding. Additionally, the thesis will discuss the challenges and limitations of brain decoding,

including the dif�culty of interpreting the complex neural patterns associated with language processing

and the need for more data to train machine learning algorithms effectively. Finally, the thesis will

identify areas where further research is needed to advance our understanding of how the brain processes

linguistic stimuli and how brain decoding can be applied to other areas of cognitive neuroscience.

1.1 Motivation for current Thesis

The human brain's ability to integrate information from different sensory modalities to form a coher-

ent perception of the world is a fascinating and complex process. Understanding how the brain achieves

this cross-modal processing is an important question in cognitive neuroscience with implications for

various �elds, such as psychology, linguistics, and arti�cial intelligence. One intriguing example of

cross-modal processing is the way in which the brain integrates visual and linguistic information. When

we see an image, our brain automatically tries to caption it, and when we read text, we try to imagine

the narrative in our minds. Investigating how the brain achieves this integration of visual and linguistic

information can provide insights into the fundamental mechanisms of cross-modal processing.

Therefore, the motivation for this thesis is to explore the cross-modal functioning of the brain, focus-

ing speci�cally on the integration of visual and linguistic information. Using brain decoding techniques

to analyze the neural activity patterns associated with visual and linguistic stimuli, the thesis aims to

identify the neural mechanisms that enable the brain to integrate information from different sensory

modalities. This research can help shed light on the cognitive processes underlying cross-modal inte-

gration and may have implications for various �elds, such as natural language processing, computer

vision, and assistive technologies for individuals with sensory disabilities. Ultimately, this thesis aims

to contribute to our understanding of the complex, fascinating processes of the human brain and how

language is represented and processed in the brain.
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1.2 Major Contributions

The major contribution of the thesis are as follows:

• We propose three novel brain decoding settings: Multi-view decoding, Cross-view decoding and

Abstract-Concrete brain decoding.

• We build decoder models using Transformer-based methods and analyze brain network contribu-

tions across multi-view and cross-view tasks.

• We augment the popular Pereira et al.'s dataset [72] with pairwise-view relationships and use it

to demonstrate the ef�cacy of our proposed methods. We make the code and augmented dataset

publicly available.1

1.3 Organisation of Thesis

This dissertation is organized in the following way:

Chapter 2 details how stimuli are processed in the brain, the brain imaging recording modalities,

different approaches to how language and vision-based stimuli are represented in AI and �nally, how

the brain activations and stimuli representations can be bridged.

Chapter 3 introduces the concept of Brain Decoding and related works in this domain. It puts

forwards the dataset, the process of brain network and voxel selection, the model architecture to build

the decoder and the evaluation metrics to evaluate the results. All these are common across multiple

thesis chapters.

Chapter 4 supports the �rst hypothesis that a decoder unique for a particular view can be used to

decode fMRI corresponding to other views as well. It shows that the decoder trained on sentence view

or picture view can be used as a universal decoder to decode other views as well, putting forward the

fact that there is enough language processing in the brain, despite the view, to help decode other views.

This work is part of our paper titled ”Multi-view and Cross-view Brain Decoding” and was presented at

COLING 2022.

Chapter 5 takes motivation from the results of the previous chapter to explore Cross-view tasks like

Image Captioning, Sentence Formation etc. Great results in this study show that our brain works in a

Cross-view fashion, i.e. whenever we see a visual stimulus, we try to caption it automatically in our

brain and vice versa. When we read a text, our brain tries to form a possible image of it. This chapter

also puts forwards a new dataset appended to the previous publicly available data, specially constructed

for the study. This work is part of our paper titled “Multi-view and Cross-view Brain Decoding” and

was presented at COLING 2022.

Chapter 6 puts forward one of our exciting studies about how Brain activations differ when we

try to imagine a concrete object and an abstract object. The study also focused on identifying and

1https://tinyurl.com/MVCVBD
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constructing a single decoder that could decode abstract and concrete objects accurately. This work is

part of our paper titled “Brain Decoding for Abstract versus Concrete Concepts” and was presented at

ACCS9.

Chapter 7 discusses two of my additional works on Brain Encoding. The �rst one studies what

different NLP tasks are being performed by the brain while reading and listening. This work is part

of our paper titled “Neural Language Taskonomy: Which NLP Tasks are the most Predictive of fMRI

Brain Activity?.” [62] and was presented at NAACL 2022. Second, focuses on studying how well Image

and Multi-modal transformers perform Brain Decoding as compared to CNNs. This work is part of our

paper titled “Visio-Linguistic Brain Encoding” and was presented at COLING 2022.

Chapter 8 �nally summarizes the main �ndings of the works described in the thesis and puts for-

wards the limitations and possible future directions of our work.
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Chapter 2

Background and Literature

2.1 Stimuli in Brain

2.1.1 Processing of Stimuli in Brain

Figure 2.1: Langauge Processing induced in Brain due to different types of language stimuli.

Language is a systematic use of speech, text and gestures by humans to communicate ideas and

feelings. Language processing refers to how humans process and understands language. It involves the

ability to comprehend and produce spoken and written language. Language processing is a uniquely

human ability that our brain performs so easily that we do not even realize it. We, humans, evolved at

a much greater pace as compared to other living beings because of our ability to convey our thoughts,

teach and learn skills and acquire knowledge through language. Human language is unique among all

known systems of animal communication in a way that it has many modes of transmission (i.e. speech,
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text, sight etc.), changes culturally, and geographically, and even diversi�es over time. Thus, language

plays a vital role in the development of human beings.

Language processing in the brain is a complex process that involves several brain regions and cogni-

tive functions. The use of language for communication could be through audio stimuli (speech), wherein

the auditory cortex of our brain is responsible for processing sounds, or it could be through visual stimuli

(text or actions), wherein the primary visual cortex would be responsible for processing visual informa-

tion. These brain regions are connected to other regions involved in language processing. The areas of

the brain that work for different linguistic processes may vary. Some regions may be speci�c to lexical

tasks, while some regions might perform the grammatical or the syntactical tasks, while some may deal

with the semantic tasks during language processing at the same time. More speci�c details are listed

below.

Language processing in the brain involves a complex series of neural mechanisms. Language pro-

cessing involves several distinct stages or modules, each of which is responsible for a speci�c aspect of

language comprehension and production.

• Phonological processing:The �rst stage of language processing involves the analysis of sounds

and their combinations to form words. This involves the activation of regions in the left superior

temporal gyrus (STG) and the posterior superior temporal sulcus (pSTS) [41].

• Lexical and syntactic processing:After phonological processing, the brain extracts meaning

from the sounds and begins to build a syntactic structure for the sentence. This involves the acti-

vation of the inferior frontal gyrus (IFG) and the posterior middle temporal gyrus (pMTG) [37].

• Semantic processing:Once the sentence structure is built, the brain assigns meaning to the

words and constructs a representation of the sentence's overall meaning. This involves the activa-

tion of the anterior temporal lobe(ATL) and the posterior cingulate cortex (PCC) [13].

• Pragmatic processing:Finally, the brain uses contextual information to interpret the meaning of

the sentence in the broader context of the discourse. This involves the activation of the medial

prefrontal cortex (mPFC) and the posterior superior temporal gyrus (pSTG) [103].

2.1.2 Brain Regions and Networks

Brain Regions and Brain Networks are intimately related to each other. Brain regions are collections

of neurons that are anatomically and functionally connected, and they can be de�ned based on criteria

such as location or functional specialization. Brain networks, on the other hand, are collections of brain

regions that are functionally connected and work together to perform speci�c cognitive or perceptual

functions [83].

The relationship between brain regions and brain networks can be thought of as a hierarchical orga-

nization, with brain regions forming the basic building blocks of brain function and brain networks rep-

resenting higher-order functional units that emerge from the interactions between brain regions [17, 83].
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Each brain network is composed of a set of brain regions that are functionally connected, and the prop-

erties of the network emerge from the interactions between these regions. Conversely, the properties of

individual brain regions are shaped by their connections to other regions in the brain, and their functional

role is in�uenced by the networks to which they belong.

2.1.3 Identifying Brain Networks

Brain Atlases are one of the important tools in neuroscience that helps researchers understand the

complex structure and organization of the brain and identify speci�c regions involved in various func-

tions. Brain atlases divide the brain into distinct regions based on various criteria such as anatomical

location, function or connectivity.

The main purpose of brain atlases is to provide a standardized reference for researchers to use when

studying the brain, making it easy for them to compare results across different studies and investigate

the relationships between different brain regions.

For our work, we used the Automated Anatomical Labeling (AAL) Atlas [94] that is used to parcel-

late the human brain into regions of interest based on anatomical landmarks, as seen in MRI scans.

Some of the important Brain Networks [84] in AAL atlas are:

• Language Network: The Language Network is primarily composed of two regions in the left

hemisphere: Broca's area and Wernicke's area. Broca's area, located in the left inferior frontal

gyrus, is responsible for language production and speech output, while Wernicke's area, located

in the left superior temporal gyrus, is responsible for language comprehension. Other regions

involved in the language network include the middle and superior temporal gyri, the angular

gyrus, and the supramarginal gyrus. Tzourio-Mazoyer et al. [94] used the AAL atlas to map the

neural substrates of language processing in the brain.

• Visual Network: The Visual Network is primarily located in the occipital lobe and is responsible

for processing visual information. The primary visual cortex (V1) is responsible for processing

basic visual information, such as the orientation and location of visual stimuli. The secondary

visual cortex (V2) and the visual association cortex (V3-V5) are involved in processing more

complex visual information, such as object recognition and spatial awareness. Tzourio-Mazoyer

et al. [94] mapped the neural substrates of visual processing in the brain.

• Default Mode Network: The Default Mode Network (DMN) is a set of brain regions that are

active when an individual is at rest and not engaged in any particular task. The DMN includes the

medial prefrontal cortex, the posterior cingulate cortex, the precuneus, the inferior parietal lobule,

and the medial temporal lobe. This characterization is based on research by Raichle et al. [78],

which used the AAL atlas to map the neural substrates of the DMN. The DMN is thought to

be involved in a range of cognitive processes, including self-re�ection, introspection, and mind-

wandering.
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• Task Positive Network: The Task Positive Network (TP) is a set of brain regions that are active

when an individual is engaged in a particular task, such as working memory, attention, or decision-

making. The TP Network includes the dorsolateral prefrontal cortex, the lateral parietal cortex,

and the anterior cingulate cortex. Fox et al. [32] used the AAL atlas to map the neural substrates

of the TP Network. The TP Network is thought to be involved in cognitive control and executive

functions, and is often anti-correlated with the DMN.

Other than the main brain networks that are important for this work and detailed above, the AAL

atlas has various other Brain Networks as well. Some of them are named below:

• Somatomotor Network: Involved in motor planning and execution.

• Limbic Network: Involved in emotion, motivation, and memory.

• Attentional Network: Involved in directing and maintaining attention.

• Auditory Network: Involved in processing auditory information, including speech and music.

• Sensory Network: Involved in processing tactile, thermal, and pain information.

• Salience Network:Involved in detecting and prioritizing relevant information in the environment.

• Frontoparietal Network: Involved in executive functions such as working memory and decision-

making.

2.1.4 Extracting Brain Representations

There have been several techniques to record brain activations. These methods serve as a window into

the inner workings of the brain. This thesis analyzes data collected mainly from functional magnetic

resonance imaging (fMRI) technique, however for completeness some of the popular techniques are

described as follows:

2.1.4.1 fMRI

fMRI [44] stands for Functional Magnetic Resonance Imaging (fMRI). It is a non-invasive imaging

technique that detects changes in blood �ow to measure brain activity. The principle behind fMRI scans

is that there is higher blood �ow and oxygen consumption in active brain regions than the inactive

regions. The reason for the popularity of fMRI in Brain Decoding tasks is its high spatial resolution that

helps us accurately identify brain activity in speci�c brain regions.
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2.1.4.2 EEG

EEG [59] stands for electroencephalography. It is also a non-invasive imaging technique that mea-

sures brain activity by detecting electrical activity on the scalp. It is based on the principle that the brain

generates electrical activity that can be measured on the scalp. EEG has low spatial resolution making

it less accurate at identifying brain activity in speci�c brain regions but has high temporal resolution

making it accurate at measuring brain activity in real time.

2.1.4.3 MEG

MEG [7] stands for Magnetoencephalography. It is also a non-invasive technique that measures brain

activity by detecting magnetic �elds generated by brain activity. It is based on the principle that the brain

generates magnetic �elds that can be measured outside the head. MEG has high temporal resolution and

can accurately measure brain activity in real-time, but it has lower spatial resolution than fMRI.

2.1.4.4 TMS

TMS [38] stands for Transcranial magnetic stimulation. TMS is a non-invasive technique that uses

magnetic �elds to stimulate speci�c brain regions. It is based on the principle that brain activity can

be in�uenced by the application of magnetic �elds. TMS is often used in combination with other

techniques, such as fMRI or EEG, to study the causal relationship between brain activity and behaviour.

2.2 Language in AI

Language in AI approaches is represented using two major techniques, symbolic and statistical ap-

proaches. Symbolic approaches use explicit rules and structures such as formal grammar to represent

language. Whereas, Statistical approaches use ML algorithms to automatically learn patterns and rela-

tionships in large text datasets.

Some of the most common statistical approaches are Word Embeddings, RNNs and Transformers.

These techniques are detailed below.

2.2.1 Word-level Representations

Word embeddings are low-dimensional, continuous-valued vector representations of words which are

large amounts of text data using unsupervised learning methods. These vector representations capture

the semantic and syntactic relationships between words, allowing AI systems to understand the meaning

of language and make predictions based on it. Some of the approaches to get the word embeddings are

described below:
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Figure 2.2: Training algorithms for word2vec (Adapted from a Blog titled “A Beginner's Guide to Word

Embedding with Gensim Word2Vec Model”)

2.2.1.1 Word2vec

Word2vec [54] is a method of learning word embeddings that was developed by Google researchers

in 2013. The word vectors are learned through a neural network trained on a large amount of text data,

such as a collection of news articles or a web crawl.

There are two main training algorithms for word2vec:

• continuous bag-of-words (CBOW):This algorithm tries to predict a word given its context.

• skip-gram: This model tries to predict the context given the centre word.

Fig. 2.2 summarizes the above two training algorithms. These models are trained by minimizing the

negative log-likelihood of the training data, which effectively maximizes the probability of observing

the training data given the model parameters.

Word2vec word embeddings were successful at improving the performance of various NLP tasks.

However, there are several issues with the original Word2vec approach, such as:

• Limited context: Word2vec takes into account only a small window of words surrounding the

central word during training. This can result in suboptimal embeddings for words that have mul-

tiple meanings or are used in diverse contexts.
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• Lack of global information: Word2vec does not considers the global co-occurrence statistics of

words in the training data, which can lead to poor generalization of new tasks.

• Expensive Training: Word2vec requires multiple iterations over the training corpus, which can

be time-consuming and computationally expensive.

2.2.1.2 GloVe

To address the issues with Word2vec embeddings, Pennington et al. [68] introduced GloVe (Global

Vectors for Word Representation) with the idea of using a count-based method for generating word

embeddings that combines the advantages of global and local information.

The authors proposed constructing a co-occurrence matrix by counting the number of times each

word occurs within a �xed context window and normalizing it to get the probability of observing two

words together. The goal is to capture the ratio of co-occurrence probabilities, rather than the prob-

abilities themselves. This allows GloVe to capture both global and local information, and produce

embeddings that are more accurate and generalizable. GloVe has been shown to outperform word2vec

on a range of natural language processing tasks, including word similarity and analogy tasks, as well as

text classi�cation and language modelling.

While GloVe have been an effective method for generating word embeddings, they have some limita-

tions, including capturing non-linear relationships between words and handling variable-length inputs.

Figure 2.3: Recurrent Neural Network (Reproduced from Colah's Blog)

2.2.2 RNNs

Recurrent Neural Networks (RNNs) [55] are a type of neural network that is well suited for language

modelling as they are designed to capture sequential dependencies in data. In language, the meaning of

a word is often dependent on the context in which it appears. An RNN consists of a chain of repeating

11



modules, called cells which allow the network to maintain a ”memory” of previous inputs and use that

information for future prediction. This makes RNNs useful for processing sequential data, such as text.

Fig: 2.3 describes how an RNN structure looks like.

RNNs can also be used for tasks where the length of the input and output sequences can vary. They

can handle variable-length sequences because they process each input one at a time and maintain a state

vector that summarizes the information seen so far. This allows them to produce output sequences of

varying lengths.

However, RNNs suffers from the problem of vanishing gradients, where the gradients that are back-

propagated through the network get smaller and smaller as they move backward. This makes it dif�cult

for hte network to learn long-term dependencies.

Figure 2.4: Architechture of RNN vs LSTM (Reproduced from Colah's Blog)

2.2.2.1 LSTM

Long short-term memory (LSTM) [42] is a type of RNN architecture that was specially designed

to address the issue of vanishing gradients of RNNs. LSTMs use a special type of cell that can store

information in a ”memory” cell and control the �ow of information using ”gates”, which makes it

possible to store information over a longer period of time and selectively forget or remember information

based on the input.

In addition to vanishing gradients, RNNs can also suffer from the problem of exploding gradients,

where the gradients become too large and cause the weights of the network to diverge. LSTMs address

this problem by introducing a gradient clipping mechanism that limits the size of the gradients during

training. Fig. 2.4 shows the difference between the architecture of a RNN to that of a LSTM.

Overall, LSTMs are a signi�cant improvement over traditional RNNs and are widely used in a variety

of applications, including natural language processing, speech recognition, and time series prediction.
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However, Both LSTMs and RNNs are computationally expensive to train, because the process se-

quences sequentially, which they cannot parallelize across multiple processors. This leads to a higher

training time.

2.2.3 Transformers

Vaswani et al. [95] came up with the Transformer architecture to address the limitations using self-

attention mechanisms and a parallelizable architecture.

The transformer model consists of an encoder and a decoder, each composed of multiple layers.

The model uses self-attention to compute a weighted sum of the input sequence, allowing the model to

attend to different parts of the sequence at different times. This makes it easier for the model to capture

long-term dependencies. Fig. 2.5 shows the architecture of the Transformer model.

The model also uses multi-head attention, which allows it to attend to different parts of the input

sequence at multiple levels of abstraction, improving its ability to capture complex patterns. Its ability to

capture long-term dependencies and its computational ef�ciency have made it a popular choice for many

applications. There are many transformer-based models currently available, like BERT, RoBERTa, GPT,

BART.

2.2.3.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) [25] is an encoder-only Trans-

former model developed by Google in 2018 for natural language processing tasks. BERT is pre-trained

using a large corpus of text, such as the entire Wikipedia or the BooksCorpus dataset [110]. During

pre-training, BERT is trained on two tasks:

• Masked Language Modelling:Given a sentence with some of the tokens randomly masked out

as input, the task for BERT is to predict the missing tokens based on the surrounding tokens. This

allows BERT to learn representations that capture contextual information.

• Next Sentence Prediction:Given a pair of sentences, the task for BERT is to predict whether

the second sentence follows the �rst sentence in the original text. This allows BERT to learn

relationships between sentences and improve its ability to handle tasks such as Natural Language

Inference (NLI).

After pre-training, BERT can be �ne-tuned for speci�c NLP tasks. The task-speci�c output layer is

added to the encoder to generate task-speci�c outputs. Fine-tuning can be done with relatively small

amounts of task-speci�c data, as the pre-trained representations capture a large amount of information

about the structure of natural language.

The input format for BERT is a sequence of tokens. The input sequence is augmented with special

tokens, such as [CLS] and [SEP], which are used to indicate the beginning and end of the sequence and

to separate different segments of the input sequence. In the case of pre-trained BERT, we get the �nal
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Figure 2.5: Model Architecture of Transformer (Reproduced from Vaswani et al. [95])

embedding for each input token, including the [CLS] and [SEP] tokens. Fig. 2.6 shows the input and

output format for BERT.

There are two ways in which we can get the embedding that represents the whole of the sequence.

First, we can take the embedding corresponding to the [CLS] token, as it is assumed to capture infor-

mation of the whole sentence and is used to �netune BERT for classi�cation tasks. Second, we can take

the average of the �nal embeddings corresponding to all the tokens, excluding [CLS] and [SEP] tokens.

We call this representation for the sequence ”Average polled embedding”.
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Figure 2.6: Input and Output format for BERT (Adapted from Devlin et al. [25])

2.3 Mapping Brain to AI

2.3.1 Brain Decoding

Brain decoding is the process of reconstructing stimuli presented to a person using machine learning

algorithms [72, 100].

In this approach, researchers present a subject with a series of stimuli, such as text or image and the

brain activity of the subject is recorded using techniques such as functional magnetic resonance imaging

(fMRI). The brain activity is then used as input to a Machine learning based decoder, which is trained

to identify patterns in the brain activity that correspond to speci�c stimuli and predict/reconstruct the

stimuli presented earlier.

Once the decoder has been trained, it can be used to reconstruct the stimuli from the person's brain

activity. This is done by presenting the person with a new stimulus and measuring their brain activity.

The decoder then processes the brain activity and attempts to reconstruct the presented stimulus.

This approach to brain decoding has a wide range of applications, including the development of

brain-machine interfaces (BMIs) and the study of brain function and development. It allows researchers

to gain insight into the mental processes and states of an individual and can be used to understand how

the brain processes and encodes information.
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