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Abstract

Insertion and deletion (INDELs) mutations, the most common type of structural variation in the
human genome, has been implicated in numerous human traits and diseases including rare genetic dis-
orders and cancer. Next generation sequencing (NGS) technologies have drastically reduced the cost of
sequencing whole genomes, greatly contributing to the detection of structural variants. However, due
to large variations in INDEL sizes and presence of low complexity and repeat regions, their detection
remains a challenge. Here we present a hybrid approach, HyINDEL, for the detection of INDELs from
paired-end NGS data which integrates clustering, split-mapping and assembly-based approaches. The
method starts with identifying clusters of discordant and soft-clip reads which are validated by depth-
of-coverage and alignment of soft-clip reads to identify candidate INDELs, while the assembly-based
approach is used in identifying the insertion sequence. Performance of HyINDEL is evaluated on both
simulated and real datasets and compared with the state-of-the-art tools. A significant improvement in
recall and F-score metrics as well as in breakpoint support is observed on using soft-clip alignments.
HyINDEL detects INDELs of all sizes (from small to large) and also identifies the insertion sequences.
It is freely available at https://github.com/alok123t/HyINDEL.
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Chapter 1 Introduction 
 

The differences in genome between individuals are known as genome variations. They 

can vary in terms of size, type and the position of the variation. These can be broadly classified 

into three categories based on the number of bases affected by the variation as, Single 

Nucleotide Variations, Insertions and Deletions (small indels), Structural variations (variations 

> 50bp). Genome variations are known to cause cancer and are linked to various neurological 

diseases. Therefore, it is important to understand and study the variations. The different types 

of variations and mechanisms for their formation are discussed in brief.  

1.1. Types of variations 
1) Single Nucleotide Variations  

A point mutation that occurs at some location in the genome is called a single nucleotide 

variation (SNV). SNVs are the most frequently occurring type of genome variation. A human 

individual has approximately 3´106 SNVs. Variations can occur in protein coding or non-

coding regions of the genome. A sequence of triplets of nucleotides are called codons, and each 

codon determines a single amino acid. A single SNV can change the amino acid, which can 

significantly alter the structure and function of protein. While non-coding SNVs can affect the 

expression of genes if they occur on functional sites. SNVs are different types and can have 

different impact 

Example: SNVs in TP53, CTNNB1 genes have been shown to recurrently occur in 

hepatocellular carcinoma [1]. Small Indels 

A small indels is defined as an insertion/deletion of a short segment of at most 50bp from 

the genome. Small indels are the second most frequently occurring type of genome variations. 

Indels occurring in protein-coding regions, can lead to frameshift variations. If the size of indel 

is a multiple of 3, it will cause an insertion/deletion of few codons, which may or may not 

affect the property of the gene. In the case of when size of indels is not a multiple of 3, a 

frameshift variation occurs leading to change/destruction of the whole protein. While indels in 

non-coding regions can affect the gene expression if they are present in functional sites. 

Example: Deletion in intron 2 of BIM gene has been associated with resistance to tyrosine 

kinase inhibitors in CML patients.  
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2) Structural Variations  

Large scale variations in the genome affecting more than 50bp are known as structural 

variations (SVs). Based on the type of SV, they are classified as simple and complex SVs. 

Simple SVs include insertion, deletion, reversal, duplication, transposition and translocation. 

These can be grouped as balanced and unbalanced variations. Balanced variations involve 

reversal, transposition and translocation. Unbalanced variations change the number of copies 

of DNA segments and include insertion, deletion and duplication. The different types of SVs 

are shown in Figure 1.1. Complex SVs involve more than one SV. Each human individual is 

expected to have tens of thousands of SVs. The number of SVs is far lower than the number of 

SNVs and small indels. But, the number of bases in the genome affected by SV are more. SVs 

have been linked to various diseases and phenotypic variations. The different mechanisms 

which lead to formation of SVs are described in the next section.  

 

 

Figure 1.1: Various type of structural variations, unbalanced SVs (deletion, insertion, 
duplication) are shown in first two rows, balanced SVs (inversion, translocation) are shown 

in the third row (reproduced from [2]) 
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1.2. Mechanisms for formation of Structural Variations 
Variations which are observed to occur frequently across individuals are known as 

recurrent variations. SVs mainly occur due to inaccurate repair and errors during replication of 

DNA. The mechanisms are described below. Non allelic homologous recombination (NAHR) 

DNA damaging occurs when exposed to smoking, UV radiation, chemotherapy and also 

due to various environmental factors. The double stranded DNA is broken into two pieces, 

creating double strand breaks (DSBs). Homologous recombination is one of the major repairing 

pathway. In this process, an allelic homologous chromosome is used as a template to rejoin the 

DSBs. During the repair mechanisms the DSBs may be misaligned to other homologous 

regions, which leads to the formation of an SV. NAHR occurs in the majority of segmental 

duplications, repeat elements like SINEs, LINEs, LTRs. NAHR can generate translocation, 

deletion, duplication and inversions. Many SVs formed by NAHR are known to be recurrent.  

1) Non homologous end joining (NHEJ) 

Double strand breaks can also be repaired by non-homologous end joining and 

microhomology-mediated end joining (MMEJ) mechanisms. These mechanisms do not require 

a homologous region as template for rejoining the DSBs. First, the overhanging ends of the 

DSBs are joined. This joining process is guided by short homologous sequences known as 

microhomology. Next, the mismatched nucleotides are removed/modified and the gaps are 

filled by synthesis. After the ligation step, SV are formed. This mechanism is known to create 

non-recurrent SVs. 

2) Replication based 

SVs are also generated due to errors during replication process of DNA. During replication, 

the double stranded DNA is first separated and a replication fork is formed. The lagging strand 

is synthesized in a direction opposite to that of the growth direction. During the synthesis 

process, two types of mistakes can happen, described below.  

Polymerase slippage: The template forms a secondary structure and the synthesis of the lagging 

strand might skip the DNA segment. This process results in a deletion.  

Template switching: The lagging strand may disengage from the template and switch to another 

template in a nearby replication fork.  

SVs formed due to errors in replication are known to be non-recurrent.  

3) Mobile element insertion 
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Transposable elements (Alu, L1 sequences) change their positions in the genome leading 

to mobile element insertions. This movement is mediated by retrotransposons, DNA 

transposons and retroviruses.  

4) Chromothripsis 

The genome is shattered at multiple breakpoints, followed by an error prone DNA repair 

by NHEJ. This phenomenon is known as Chromothripsis. This results in complex genome 

rearrangements. It is observed in bone and liver cancers, and other type of cancers.  

The effects observed due to the presence of SVs are described in the next section. 

1.3. Effects of Structural variations 
SVs have been linked to various diseases and also drug resistance. The phenotypic changes 

due to SVs are described below. 

1) Loss/gain of gene 

Unbalanced SVs can lead to gain or loss of genes. This can also affect the dosage sensitive 

genes. 

Example: Variation in number of copies of 1.4 Mb in 17p12 leads to change in dosage of gene 

PMP22. A tandem duplication of this region, increases the copies of this gene from 2 to 3, 

causing Charcot-Marie-Tooth disease (CMT1A). While, a deletion reduces the gene copies 

from 2 to 1, causing hereditary neuropathy with liability to pressure palsies (HNPP).  

2) Loss/gain of part of gene 

Unbalanced SVs can duplicate or delete only a part of gene. This can lead to gain or loss 

of a functional part of gene or change expression levels.  

Example: Deletion of intron 2 of BIM is known to be associated with TKI resistance treatment 

in CML patients.  

3) Fusion of genes 

Balanced SVs can link two genes together, causing fusion genes.  

Example: Translocation of chr9, chr22 causes BCR-ABL1 gene fusion leading to chronic 

myelogenous leukemias (CMLs). Integration of foreign DNA 

Foreign DNA can also be integrated in the genomes by SVs. 

Example: Hepatitis B virus (HBV) integration into genome is observed in liver cancer.  
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Next, we discuss various approaches for detection of SVs. 

1.4. Approaches for detection 
Traditional approaches like qPCR, FISH, comparative genome hybridization (CGH) 

can be used to verify the presence of a single SV. Development of Array-CGH technology has 

led to the detection of unbalanced SVs. Array-CGH is based on the analysis of intensity ratios 

of hybridization of two differentially dyed DNAs against the same target oligonucleotides. 

Array-CGH methods are limited to detection of only unbalanced SVs and also cannot give the 

absolute copy number of the detected variants. Further, due to the resolution of array-CGH, 

small variants couldn’t be detected.  

The above-mentioned approaches are limited in detection of SVs.  With a rapid increase 

in throughput, a comprehensive detection of SVs can be achieved using second-generation 

sequencing systems. Initial methods involved short single-end reads for detection of SVs. 

Technological advancements have led to the development of paired-end reads, which can be 

more reliably aligned to the reference genome. This has led to the detection of variants of all 

types across the whole genome. The basic steps involved in second-generation sequencing 

methods are briefly summarized below. 

Second-generation sequencing methods involve a wet-lab phase and dry-lab phase. In 

the wet-lab phase, shotgun sequencing is done to obtain a set of paired-end reads covering the 

whole genome. The protocol for whole-genome sequencing involves three steps. First step 

involves randomly dividing the genome into smaller DNA fragments, known as sonication. In 

the second step, DNA fragments of a fixed size, called the insert size are selected. Single-end 

or paired-end reads are sequenced from the DNA fragments in the third step. In single-end 

sequencing, reads are sequenced from one end of each DNA fragment. The read is obtained 

from the 5′ end of the forward template of the DNA fragment. In case of paired-end sequencing, 

reads are sequenced from both ends of the DNA fragment. 5′ reads are obtained from both 

forward and reverse template of the DNA fragment in inward orientation. This process is 

illustrated in Figure 1.2.  
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Figure 1.2: Illustration of shotgun protocol for whole genome sequencing (reproduced from 
[3]) 

Using second-generation sequencing methods, we can detect both unbalanced and 

balanced SVs. In this thesis, we focus on the detection of Insertions and Deletions, which are 

the most commons type of SVs in the human genome. They have been implicated in numerous 

human traits and diseases including rare genetic disorders and cancer. However, due to large 

variations in size and presence of low complexity and repeat regions, their detection remains a 

challenge. We further discuss more about the detection of variations and challenges involved 

in Chapter-2.  

Next, we briefly discuss about DNA and the various methods for sequencing DNA.  

1.5. DNA Sequencing technologies 
Deoxyribonucleic acid (DNA) is a hereditary material present in all living organisms 

carrying genetic code essential for life. It was first isolated by Friedrich Miescher in 1869. The 

double helical molecular structure of DNA was identified by Francis Crick and James Watson 

in 1953. In 1977, Sanger had sequenced the first complete DNA sequence of a viral genome.  

Each DNA strand is composed of monomer units called nucleotides. Each nucleotide is 

composed of a nitrogen containing base, a sugar molecule and a phosphate group. There are 

four different nucleotides namely Adenine (A), Guanine (G), Cytosine (C) and Thymine (T). 
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The nucleotides in a DNA strand are linked by covalent bonds between the sugar of one 

nucleotide and phosphate of the next nucleotide. The other strand of DNA is antiparallel to the 

first strand. The two strands of DNA are linked by hydrogen bonds and two nucleotides from 

opposing strands obey the Watson-Crick rule of base pairing. The nucleotide A from one strand 

is paired with T from the other strand, while G is paired with C.  

Cell division is the process in which a single cell is divided into two daughter cells. In this 

process the double stranded DNA is separated into single strands and the DNA polymerase 

enzyme uses the single strand as a template to replicate into two identical double helixes. Due 

to this duplication process, all the cells within an individual have the same genome. Errors in 

copying, lead to variations in few cells which can lead to diseases. Genome variations among 

individuals lead to different phenotype attributes and diseases. For this it is important to 

determine the order of nucleotides in the DNA sequence. The various methods for sequencing 

of DNA is described next. 

First generation sequencing 

Based on distances from a radioactive label to positions occupied by each base along a 

DNA molecule, two methods were developed. 

a) Chain termination procedure by Sanger and Coulson 

b) Chemical cleavage procedure by Maxam and Gilbert 

The general steps involved in first generation sequencing methods are mentioned below. 

1) Amplification of DNA template 

In this step, the DNA template is amplified to produce multiple copies of the input DNA. 

First, the DNA template is inserted into a plasmid vector. Then the plasmid vector is inserted 

into host cells. These host cells are cloned to result in multiple copies of the original DNA 

template.  

2) Generating all possible prefixes of DNA template 

Two different approaches were used for generating prefixes.  

a) Maxam-Gilbert method 

Radioactive labelling at 5′ end of DNA fragment was performed by a kinase reaction 

using gamma 32P. Next, DNA strand is cleaved at specific positions using chemical 

reactions. Purines (A, G) are de-purinated using dimethyl sulphate, while pyrimidines (C, 

T) are hydrolysed using hydrazine. Chemical treatments cleave G, A+G, C, C+T. A+G 
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refers that both A and G can be cleaved by the same reaction. Four reactions are performed 

separately, corresponding to above cleave patterns. This results in differently sized DNA 

strands with radioactive labels and mixture separated by prefixes ending with the above 

cleavage patterns in different test tubes. An example is illustrating the different cleavage 

patterns is shown in Figure 1.3.  

 

Figure 1.3: Example of Maxam-Gilbert sequencing reaction (reproduced from [5]) 

b) Sanger method 

A synthetic oligonucleotide is annealed, which acts as a binding site for primer and to 

provide initiation for DNA synthesis. DNA polymerase synthesis is performed in presence 

of dNTP, ddNTPs (here, N refers to any of A, C, T, G). Four reaction vials, each containing 

all dNTPs, DNA polymerases, and each reaction vial containing one type of ddNTP are 

made. DNA synthesis occurs in each vial resulting in a set of single stranded DNA 
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molecules of different lengths with prefixes ending in N in vial corresponding to ddNTP. 

An example illustrating Sanger sequencing is shown in Figure 1.4.  

 

Figure 1.4: Example of Sanger sequencing reaction (reproduced from [6]) 

 

3) Separating by Electrophoresis 

The mixture of DNA fragments of varying length is separated using gel electrophoresis. 

An electric field is applied to the DNA mixture. DNA being negatively charged moves to the 

positive pole with shorter fragments moving faster due to friction. Gel electrophoresis separates 

the DNA mixture into DNA fragments by size with single base resolution.  

4) Readout with Fluorescent tags 

The gels are out on an X-ray film, resulting in a ladder image. The DNA fragment has a 

fluorescent tag attached to the terminal ddNTP. Based on the light emitted from different bands 

the DNA sequence can be read.  

Due to the usage of toxic chemicals in Maxam-Gilbert technique, the Sanger sequencing 

approach was more preferred. Using, Sanger sequencing reads of length about 800bp could be 

sequenced. One of the major drawbacks of first-generation sequencing methods was the cost 

involved and the time taken to sequence.  

Second generation sequencing  

Key changes from Sanger sequencing has led to the development of massively parallel 

DNA sequencing. Few of them are mentioned below. 

a) In vitro amplification 

b) Multiplexing 
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The general steps involved in second-generation sequencing are template preparation and 

base calling. They are explained in brief below. 

1) Template preparation 

In this step, for the given set of DNA fragments, DNA templates are generated by ligating 

adaptor sequences to the ends of each fragment. These templates are amplified using PCR. This 

can be done in two different techniques, summarized below. 

a) Emulsion PCR: Each DNA template is amplified using a bead. The surface of bead 

contains a primer corresponding to one adaptor. Then the DNA template hybridizes 

with one primer.  

b) Bridge PCR: Two types of primers corresponding to different adaptors are coated on a 

flat surface. Each DNA template is hybridized to one primer. One end of each bridge 

is tethered to the surface and the amplification is repeated in cycles.  

2) Base calling 

In this step, the DNA sequences are read from the amplified templates. There are different 

approaches for sequencing, sequencing by synthesis and sequencing by ligase. These 

sequencing methods are explained in brief along with a technology which is based on it. 

Various metrics are compared for each technology in Table 1.1.  

a) Polymerase mediated using reversible terminator nucleotides 

First, the primer is hybridized on the adaptor of template. Using DNA 

polymerase, a reversible terminator nucleotide is incorporated to the template. Using 

imaging, the signal corresponding to the dye of reversible terminator nucleotide can be 

scanned. Next, the termination is reversed by cleaving the dye-nucleotide and the above 

steps are repeated.  

Illumina: Using Bridge PCR, the DNA templates are amplified. Four color cyclic 

reversible termination is used for sequencing in parallel. One of the drawbacks is that 

the accuracy of sequence decreases with increase in number of nucleotides added.  

b) Polymerase mediated using unmodified nucleotides 

During the incorporation of dNTP into a growing DNA strand, a pyrophosphate 

and a positively charged hydrogen ion are released. By detecting the change in 

concentration of pyrophosphate, hydrogen ion, the template DNA is sequenced. This 

method is also known as pyrosequencing.  
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Example technology Roche 454: Emulsion PCR is used for amplification of templates. 

Each DNA template along with one bead is loaded into a well. In each iteration, a 

different dNTP flows across the well. Polymerase is extended by one base if the dNTP 

is complementary to the template and a pyrophosphate is released. Using enzymes, this 

pyrophosphate is converted into visual light and a CDC camera detects the light signal 

from the well. The intensity of light is recorded as a flowgram, which is interpreted to 

get the DNA sequence. A drawback of this approach is that, when long homopolymers 

present in template, a higher rate of errors in indels is observed.  

c) Ligase mediated 

Polymerase mediated methods extend the template base by base using 

polymerase. In contrast ligase mediated method used probes to identify the bases on 

the template.  

SOLiD: The template sequences are amplified using emulsion PCR. Next, these 

templates are placed on a plate and the bases of each templated are checked using 

probes. For a template, in each iteration SOLiD probes two adjacent bases, resulting in 

a two-base color encoding. The DNA sequence is decoded from the color encoding. As 

each base in the template is covered by two probes, the error rate in detection of single 

nucleotide variations is lower.  

Table 1.1: Comparison of second-generation sequencing systems (reproduced from [7]) 

Sequencer Roche 454 GS FLX Illumina HiSeq 
2000 

SOLiD v4 

Sequencing 

mechanism 

Pyrosequencing Sequencing by 

synthesis 

Ligase mediated, 

two-base coding 

Read length 700bp 101bp (paired-end) 50 + 50bp 

Accuracy 99.9% 98% 99.94% 

Number of reads 1 M 3 G 1200-1400 M 

Time/run 24 hours 3-10 days 14 days 

Advantage Read length, fast High throughput Accuracy 

Disadvantage Error rate for long 

homopolymers, cost 

Short read assembly Short read assembly 

Cost/million bases $10 $0.07 $0.13 
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Third generation sequencing 

First and second-generation sequencing methods involve template amplification, due to 

which copying errors and sequence biases arise. Third generation sequencing methods do not 

involve PCR, which reduces the preparation time. The signal for reading DNA sequence is 

captured in real time. The DNA sequences from third generation methods have longer read 

lengths as compared to first and second-generation sequencing methods. Two different 

approaches are described below.  

1) PacBio SMRT sequencing 

It is based on optically observing the polymerase mediated synthesis in real time. It utilizes 

a zero-mode waveguide, a nanophotonic structure consisting of a circular hole. Each of the 

DNA bases is attached to a different fluorescent dye. Inside the ZMW, a single active DNA 

polymerase with a single molecule of single stranded DNA template is immobilized. Light 

illuminated in this structure is monitored. When a nucleotide is incorporated by DNA 

polymerase, the fluorescent tag is cleaved off, which then emits signals for a sufficient time to 

be detected. Using this technology reads of length > 10kb are obtained. Further, sequence 

methylation status is also detected by this approach. A drawback of this approach is the error 

rate in sequencing is high (about 10%) and the errors in sequencing are randomly distributed 

across the read.  

2) Nanopore sequencing 

It is based on observing the pattern in the flow of ions, when a single stranded DNA 

molecule passes through a narrow channel. A pore of size in nanoscale in a thin membrane is 

called a nanopore. When a constant electric field is applied, an electric current can be observed 

in the system. A positive charge draws the DNA strand across the two chambers flowing 

through the nanopore. The DNA sequence is decoded by detecting the difference in electrical 

conductivity. One of the major advantages of this approach is the portability of the sequencing 

device, due to the use of electrical signals as compared to optic signals. A drawback of this 

approach is the high error rate in sequencing.  

The cost of sequencing per genome has drastically reduced from first to second to third 

generation sequencing techniques. Further, the lengths of reads sequenced has drastically 

increased from first and second generation as compared to third generation sequencing. The 

three generations of sequencing methods are summarized in Table 1.2.  
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Table 1.2: Comparison of three generations sequencing systems (reproduced from [1]) 

 First generation Second generation Third generation 

Amplification In-vivo cloning and 

amplification 

In-vitro PCR Single molecule 

Sequencing Electrophoresis Cyclic array 

sequencing 

Real-time 

monitoring of PCR, 

Nanopore 

Starting material More Less (<1 µg) Very less 

Cost Expensive Cheap Very cheap 

Time Very slow Fast Very fast 

Read length About 800bp Short Very long 

Accuracy < 1% error < 1% error High error rate 

 

1.6. Organization of thesis 
In this thesis, we propose a pipeline for detection of Insertions and Deletions (HyINDEL) in 

second-generation sequencing data. In Chapter-2, Section-2.2 we describe the proposed 

approach based on clustering and assembly of reads. Chapter-3 describes the methods involved 

in construction of data sample, details about benchmarks used and metrics used for comparison. 

Our method is first evaluated on simulated data and compared to state-of-the-art tools in 

Chapter-3, Section-3.1. Next, we have compared the performance of our method on real data 

NA12878 sample using various benchmarks in Chapter-3, Section-3.2. 

 

  



 

 

 18 

Chapter 2 Materials and Methods 
 

Overview 

In this chapter, we first describe the classification of reads observed in the vicinity of 

INDELs, which help us identify candidate sites for variant detection. Next, we discuss the 

various approaches used for detection of INDELs. Finally, we present the algorithm developed 

by us, HyINDEL for detection of INDELs involving clustering of reads at a locus and 

identification of variants of different sizes in Section-2.2. And finally summarize the 

implementation details of HyINDEL in Section-2.3Chapter 0. 

2.1 Detection of INDELs using NGS 
A typical pipeline for detection of INDELs in NGS data first involves alignment of 

reads to the reference. Next, we estimate insert size and coverage parameters, which help us in 

the classification of reads. Each of these steps are briefly explained below. Based on the 

distribution of read signatures observed, we identify candidate sites for INDELs which are later 

used for variant detection. These steps are discussed in detail below. 

Read alignment 

The first step of INDEL detection is the alignment of reads to the reference genome. 

Read alignment algorithms can be classified based on their method into two types as hash table 

indexing and burrow-wheeler transform (BWT) based methods [8]. Hash table-based 

algorithms use seed and extend strategy. In the seed phase a small subset of possible locations 

for the alignment to the reference are identified by detecting common k-mers between the read 

and the reference using hash tables. In the extend phase, the exact location of the read alignment 

is identified using dynamic programming algorithm. Example of hash table methods are 

Novoalign [9]. BWT based methods align the entire read to the reference. Burrow wheeler 

transform is a reversible transformation of a string into runs of similar characters, which can 

be easily compressed. Using FM-index, one can efficiently identify the alignment locations. 

BWT based methods have lower memory requirements as compared to hash table methods. 

Example of BWT methods are Bowtie [10], BWA [11].  
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Insert size estimation 

During sequencing of Illumina paired-end reads, the size selection step involves 

extracting DNA fragments of a certain fixed length, Insert size. Insert size is defined as the 

outer distance between the two reads of a pair. It can be computationally calculated using insert 

size information from the alignment file. Reads of a pair that do not cross any breakpoint of a 

variation are expected to align to the same chromosome with inward orientation and insert size 

within a range (spanmin, spanmax).  

(spanmin, spanmax) = (Imedian - kd, Imedian + kd) 

d = !∑ ("!#	""#$!%&)'
&

&
'()  

Here, Imedian and d are the median and standard deviation of insert size respectively.  

The values of Imedian and d are calculated using the Picard [12] tool’s CollectInsertSizeMetric 

module. The input to Picard is an alignment file and the output is a text file containing various 

insert size metrics.  

Classification of reads in vicinity of INDELs 

Reads from regions without any variation are expected to align completely to the 

reference, except for reads from low complexity regions. While reads inside and around the 

variation region align differently based on the type of variation. First, we define types of read 

signatures based on which we can associate them to variants. Next, we describe the distribution 

of reads in deletion and insertion locus.  

Concordant read: A paired-end read that does not cross the INDEL breakpoint, for which both 

reads of the pair aligns to the same chromosome of the reference, with the same inward 

orientation and insert size within the range (spanmin, spanmax).  

Discordant read: Anomalous paired-end reads which cross one of the INDEL breakpoints, do 

not align concordantly. In case of deletions, the insert size > spanmax, while in case of insertions, 

the insert size < spanmin. In both cases of insertions and deletions the reads of the pair align to 

the same chromosome with the same inward orientation.  

Split read: Reads spanning the INDEL breakpoint, align partly at the 5′ breakpoint and other 

part aligns at the 3′ breakpoint. Due to the split nature of the alignment, these reads are known 

as split reads.  
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Softclip read: Reads spanning the INDEL breakpoint, for which only one part of the read is 

aligned, and the other part is unaligned and represented as soft-clip. These partially aligned 

reads are known as softclip reads.  

 

 

Figure 2.1: (a) A deletion event shown. Paired-end reads (1 and 8) shown in black, are the 
concordant reads that correctly align to the reference genome, while large insert size is 

observed in the case of discordant reads (marked in red). Partial ends of reads (shown in 
blue for reads 2 and 7) denote the aligned part, while the unaligned parts (shown in orange) 

are the soft-clipped part of the reads. The read showed in purple is a split read (3 and 6), 
wherein both the partial ends of the read are aligned to the reference  

(b) An insertion event shown. Here, black paired-end reads (1 and 8) are the concordant 
reads that correctly align to the reference genome, while small insert size is observed in the 
case of discordant reads (shown in red for reads 4 and 5). Partially aligned reads (reads 2 
and 7 shown in blue) have their soft-clipped part (shown in orange) unaligned. The reads 3 

and 6 marked in green denote the unaligned reads of one-end anchored (OEA) reads 
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Distribution of Reads at a Deletion locus 

A contiguous sequence of bases absent in the sample with respect to the reference is 

known as a deletion. It is represented by two breakpoints on the reference, referred to as 5′ and 

3′ breakpoints, the sequence between which is missing in the sample (Figure 2.1(a)). It may be 

noted that paired-end reads in the vicinity of a deletion event can be categorized into different 

types based on the orientation and insert size on mapping to the reference genome. A paired-

end read that does not cross the INDEL breakpoint, aligns to the same chromosome of the 

reference with the same inward orientation and insert size within the range (spanmin, spanmax) 

where spanmin = Imedian - kδ and spanmax = Imedian + kδ, Imedian and δ are median and standard 

deviation of the insert size, (default k=3). These are called concordant reads (reads 1 and 8 in 

Figure 2.1(a)). Anomalous paired-end reads are those that cross one of the deletion breakpoints. 

In this case two reads of a pair do not align concordantly (i.e., insert size > spanmax) and are 

called discordant reads (reads 3, 4, 5 and 6 in Figure 2.1(a)). When a part of the read aligns at 

5′ breakpoint and the other part aligns at 3′ breakpoint of the deletion (or vice-versa), because 

of the split nature of alignment these are called split reads (reads 3 and 6 in Figure 2.1(a)). If 

only one part of the read aligns to the reference while the other part is unmapped, then such 

reads are called soft-clip reads. Reads marked with soft-clip at 3′ end of the alignment (e.g., 

70M30S in CIGAR string) provide information of the 5′ breakpoint of the deletion (read 2 in 

Figure 2.1(a)), while those marked with a soft-clip at 5′ end of the alignment (e.g., 20S80M) 

provide information about the 3′ breakpoint (read 7 in Figure 2.1(a)). Thus, in the vicinity of a 

deletion event, cluster of discordant, soft-clipped and split reads are observed which are helpful 

in accurately detecting the breakpoints of the deletion region. 

Distribution of Reads at an Insertion locus 

A continuous sequence of bases present in the sample but missing in the reference as 

shown in Figure 2.1(b) corresponds to an insertion event. It is represented by a single 

breakpoint on the reference. As in the case of deletion, paired-end reads in the vicinity of an 

insertion event can be categorized into different types based on orientation and insert size when 

mapped to reference genome. Paired-end reads that do not cross the insertion breakpoint, aligns 

to the same chromosome of the reference with the same inward orientation and insert size are 

called concordant reads (reads 1 and 8 in Figure 2.1(b)). Paired-end reads with a short insert 

size (< spanmin) but with same inward orientation are called discordant reads (reads 4 and 5 in 

Figure 2.1(b)). When one of the read of a pair spans the insertion breakpoint (reads 2 and 7 in 
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Figure 2.1(b)), 5′ (3′) of the read is partially aligned, called soft-clip reads. These help in 

precisely detecting the breakpoint and the prefix (suffix) of the ‘insertion’ sequence. If the 

insertion sequence is larger than the read length, typically only one read of the pair is mapped 

to the reference genome (reads 3 and 6 in Figure 2.1(b)) and are called one-end anchored (OEA) 

reads. For identifying insertions larger than the insert size of the library, in addition to soft-clip 

and one-end anchor reads, orphan reads (i.e., none of the ends of a paired-end read map 

reference genome) are also considered (not shown in the figure). The proposed approach uses 

information from all these different types of reads to detect the location of insertion breakpoint 

and construct the insertion sequence. 

Approaches for detection of INDELs 

Based on the different types of read signal at an INDEL event, various tools have 

developed approaches for their identification. Earlier methods were based on discordant read 

signal as the sequencing read lengths were shorter (36-72bp). A drawback of using discordant 

signal is we cannot accurately detect the precise breakpoints. As the lengths of reads have 

increased (100-250bp), read alignment has become more sensitive. This has led to the 

development of methods based on split-read/softclip alignments, which can be used to 

accurately predict INDEL events. Further, INDEL events are in different sizes, making them 

even harder to detect. For example, in large deletions, one can expect discordant reads to be 

more prevalent, than in case of small deletions. Often methods incorporate more than one signal 

for better prediction of all size ranges. The different approaches used are described below. 

Clustering approach: In the vicinity of a variant region we observe a group of reads with 

improper orientation or insert size (discordant reads), which can be used as a signal to identify 

the candidate variant. This approach involves two steps, classification of a paired-end read into 

a discordant type. And, second clustering discordant paired-end reads of the same type in a 

region. The type of discordant reads observed for different type of variants is summarized in 

Table 2.1. 

Table 2.1: Type of discordant reads for each variant type 

Type Insert size Orientation 
Deletion > spanmax +/- 
Insertion < spanmin +/- 
Inversion  > spanmax +/+ or -/- 
Tandem 

Duplication 
Size of tandem 

copy 
-/+ 
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Inter-
chromosomal 
translocation 

N/A (Different 
chromosomes) 

N/A 

 

Clustering approach is dependent on the classification of paired-end reads into 

discordant reads. It cannot be used for detection of small variants, as the paired-end reads in 

the vicinity of the small indels can be classified as concordant reads. Further, the usage of 

discordant reads is limited in only giving the approximate breakpoints of a variant.  

Split-mapping approach: Anomalous paired-end reads with split-reads are observed when 

reads span the breakpoints of a variant region. Two scenarios are observed in this case. In the 

first case, a part of the read aligns at the 5′ breakpoint, while the other part of the read aligns at 

the 3′ breakpoint. Split-reads are a direct evidence of variants as the read partially spans both 

the breakpoints as expected. While in the second case, alignment of the split read on the 

reference genome is soft-clipped, i.e., only one part of the read is aligned and the unaligned 

portion is called soft-clip. Softclip occurs either due to sequencing errors, errors in reference 

genome or due to the read spanning a variant region. At the ends of a variant a region has both 

start and end, we observe a group of reads with softclip alignments. Reads at the 5′ (3′) 

breakpoint have an upstream (downstream) softclip in case of INDELs. A group of localized 

softclip reads of the same type can be grouped together as a single cluster. Since, the softclip 

region of the read is unaligned, during clustering we further have to realign the reads to verify 

if they are from the same region in the sample. Using the position of softclip, the breakpoints 

of a variant can be accurately detected.  

 

Assembly approach: Large and complex variants cannot be detected using short paired-end 

reads, as the read cannot completely span the variant region. The reads in the vicinity of the 

variant can be assembled to generate contigs, which are longer than the reads. The larger 

contigs can then be mapped back to the reference for the validation of a variant. This approach 

involves identification of partially aligned, one-end aligned reads in the vicinity of a variant 

and assembling them to build larger contigs. Typically, de-novo assemblers are used for the 

construction of contigs. This method is used to detect novel sequence insertions in the sample, 

which are not present in the reference. Assembly approaches typically align reads or shorter k-

mers to find overlapping pairs in order to construct a larger contig. This makes the approach 

computationally more intensive compared to other approaches.  
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Hybrid approach: A single signal cannot comprehensively detect all types and sizes of SVs, 

many methods use a combination of above signals for accurate detection. Few approaches 

combine the information from multiple SV callers, while others use a combination of SV 

signals for more reliable predictions. A drawback of integrating multiple SV callers for 

detection would be the repeated processing of the same input file, as it involves usage of lot of 

computing resources. Hence, SV callers that combine multiple signals are more popular.  

In Table 2.2, we have summarized the various approaches used by tools we have used 

in our comparison for detection of INDELs. 

Table 2.2: Different approaches used by methods for detection of INDELs 

Tool Input Variants 
detected 

Method Reference 

Lumpy BAM, filtered 
BAM files 

SVs Discordant, Split-read [13] 

TIDDIT BAM SVs Discordant, Split-read, 
Depth-of-coverage 

[14] 

SoftSV BAM SVs Discordant, Softclip [15] 
Pamir BAM, reference NSI Split-read, Assembly [16] 
Popins BAM, reference NSI Split-read, Assembly [17] 

  

2.2 HyINDEL Algorithm 
In this section, we discuss the proposed approach HyINDEL for the detection of 

INDELs.. And involves pre-processing, clustering of soft-clip and discordant reads, 

identification of INDELs and post-processing.  

2.2.1 Preprocessing 
Eukaryotic genomes are rich in repeat sequences and low-complexity regions, 

especially the centromeres and telomeres. Reads originating from these regions ambiguously 

align to multiple regions in the reference genome. Consequently, a number of discordant and 

soft-clip reads with abnormally high depth of coverage are observed in these regions. To avoid 

predicting spurious variants in these regions, read depth profile is constructed for the sample 

genome in non-overlapping bins of size 1000bp. The median coverage (cmedian) of the sample 

is computed and bins having read depth (> 3 ´ cmedian) are discarded to filter low complexity 

regions. This step is performed using Mosdepth [18] in our pipeline. Also, alignments with a 

low mapping quality (< 20) are not considered for variant detection by parsing the BAM file. 
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An example of region from NA12878 real dataset with abnormally high read depth is shown 

in Figure 2.2. The region spans from chr2:92,325,000-92,326,000 and is present in telomeric 

region of the chromosome. 

 

Figure 2.2: Example of region from chr2:92,325,000-92,326,000 (1000bp) with abnormally 
high coverage (16974) present in telomeric region of NA12878 real sample with 52x median 

coverage (Coverage of region is highlighted in red oval) 

2.2.2 Detection of deletions  
Clustering Discordant reads 

As seen in Figure 2.1(a), the discordant reads in this case exhibit larger insert size, but 

same inward orientation of the reads. Let (fsti, feni), (rsti, reni) denote the start and end of the 

alignment of forward and reverse reads of the ith discordant paired-end read on the reference. 

Two paired-end discordant reads are merged into a single cluster if the reciprocal overlap of 

the region between fst and ren is ³ 0.65 (i.e., if fst4 to ren3 region for the reads 4 and 5 in Figure 

2.1(a) is ³ 0.65, then the two reads are merged). Other paired-end reads satisfying this criterion 

with any of the reads of this cluster are merged into this cluster. This results in clusters of 

discordant paired-end reads, which indicate approximate location of the breakpoints of 

probable deletion events. We expect the 5′ breakpoint of the deletion to lie within the interval 
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(feni, feni + spanmax) and the 3′ breakpoint within (rstj - spanmax, rstj), where i and j correspond to 

the reads with the farthest 5′ and 3′ coordinates in the cluster, respectively. 

Clustering Soft-clip reads 

Two soft-clipped reads support the 5′ (3′) breakpoint of the same deletion event if the 

start (end) of soft-clipped part are within 5bp and exhibit high sequence similarity over the 

overlap region (≥ 90%), and belong to the same cluster . The sequence similarity is assessed 

by carrying out semi-global alignment using the scoring scheme (1, -1, -1) for match, mismatch 

and gap penalty respectively. Soft-clip cluster containing reads with soft-clip at the 5′ (3′) end 

is known as downstream (upstream) soft-clip cluster respectively. The soft-clip clusters thus 

constructed are used in the detection of the breakpoint. A split-read that has an overlap of ≥ 

90% with any read of the 5′ (3′) softclip cluster, is merged with the respective soft-clip cluster.  

By analyzing the discordant clusters, approximate location of a deletion region is 

obtained. On identifying the upstream and downstream soft-clip clusters that overlap with the 

discordant clusters, the precise locations of the breakpoints can be obtained. Any 

discordant/soft-clip cluster having less than cmedian/10 reads are discarded, where cmedian is the 

median depth-of-coverage of the sample. Below we briefly discuss our approach in the 

detection of small (50, 500) and large deletions (> 500). 

Detection of Large Deletions 

Each discordant cluster provides approximate location of the 5′ and 3′ breakpoints of a 

deletion event within the interval (feni, feni + spanmax) and (rstj - spanmax, rstj), where i and j 

correspond to the reads with the farthest 5′ and 3′ coordinates in the cluster, respectively. If a 

soft-clip cluster has its coordinates lying within the interval (feni, feni + spanmax), it defines the 

5′ breakpoint, and the soft-clip cluster with coordinates lying within the interval (rstj - spanmax, 

rstj) defines the 3′ breakpoint region. These two soft-clip clusters define the same deletion event 

if the alignment of reads from the two clusters exhibit high sequence similarity (as discussed 

below). If no soft-clip cluster pair is found to map the discordant cluster, the candidate deletion 

is reported as imprecise deletion event.  

An example of a large deletion detected using HyINDEL in real dataset is shown in Figure 2.3. 
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Figure 2.3: Large deletion identified using HyINDEL on NA12878, real dataset from chr1: 
63,705,366-63,708,146 (2781 bp). Red lines denote discordant reads, softclip part of read 

(unaligned bases) are highlighted at the breakpoints  

 

Detection of Small Deletions 

Small deletions (< Lsmall = kδ, k = 3 and δ corresponds to the standard deviation of the 

insert size) are missed by the above approach as in this case all the paired-end reads around the 

breakpoint get classified as concordant reads. Thus, only soft-clip clusters are available for the 

detection of small deletions. In this case for each upstream soft-clip cluster, a downstream soft-

clip cluster within a distance of Lsmall and exhibiting high sequence similarity between inter-

cluster reads is identified, indicating they represent the same deletion event (as discussed 

below). An example of a small deletion detected using HyINDEL in real dataset is shown in 

Figure 2.4. 
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Figure 2.4: Small deletion identified using HyINDEL on NA12878, real dataset from chr1: 
74,755,170- 74,755,289 (120 bp). Softclip part of read (unaligned bases) are highlighted at 

the breakpoints. 

 

Breakpoint identification by alignment of soft-clipped reads 

Each deletion event is represented by an upstream and a downstream soft-clip cluster 

as mentioned above. For correctly paired upstream and downstream soft-clip clusters (i.e., 

defining the same deletion event), unaligned regions of soft-clip read from the upstream cluster 

would be similar to the mapped regions of soft-clip reads of the downstream cluster and vice-

versa, as shown in Figure 2.1(a). Hence, a semi-global alignment of the reads from the upstream 

soft-clip cluster and the corresponding downstream cluster is performed. The two clusters are 

considered to be associated to the same deletion event if the average inter-alignment score is ³ 

½ ´ rlen, where rlen denotes the read length. Three soft-clip reads (based on the size of the soft-

clipped regions) from each cluster are considered for the alignment since they are expected to 

have the highest overlapping regions. The above alignment step is skipped if the two clusters 

contain 3 or more split-reads with their 5¢ and 3¢ ends mapping respectively to the 5¢ and 3¢ 

soft-clip clusters. The deletion breakpoints are identified as the median start (end) location of 

the soft-clip position of the upstream (downstream) cluster respectively. 
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2.2.3 Insertions detection 
As is clear from Figure 2.1(b), each insertion event is characterized by a cluster of soft-

clip reads upstream and downstream of the breakpoint (e.g., reads 2 and 7). For correctly paired 

upstream and downstream soft-clip clusters that define the same insertion event, we expect the 

start of soft-clip position from upstream cluster to be the same as the end of soft-clip position 

from the downstream cluster and represent the site for candidate insertion breakpoint. For each 

candidate insertion site, OEA reads within ± spanmax of the breakpoint are extracted. To identify 

the insertion sequence, de novo assembly of partially aligned soft-clip reads, unaligned ends of 

OEAs and orphan reads is performed using Minia [19], a short-read assembler based on de-

Bruijn graph approach. This results in a set of contigs (in fasta format) corresponding to each 

insertion event. The contig is expected to span the entire insertion sequence and also partially 

contain region adjacent to the insertion breakpoint. When this contig is aligned to the reference, 

we expect a split alignment from which we can identify the insertion breakpoint and sequence 

as described below. Alignment to the reference is done using Minimap2 [20], a sequence 

alignment program for aligning long reads or assemblies to a reference genome. 

Identification of insertion breakpoint and sequence 

The assembled contig comprises of a prefix, insertion sequence and suffix, with both 

prefix and suffix ends mapping to the reference. Small insertions are directly represented in the 

CIGAR string of the alignment file with an insertion (e.g., 40M120I50M). The CIGAR string 

is parsed to obtain the position of insertion with respect to the alignment position of the read. 

Based on the position and length of insertion from the CIGAR string, the insertion sequence is 

reported. 

In case of large insertions, a split-alignment of the contig is observed. In one of the split 

alignment we have the prefix of contig aligned to the reference, and the remaining part of contig 

marked with a soft-clip. While in the other alignment, we have the suffix of the contig aligned 

to the reference or vice-versa. This is possible as the assembled contig is expected to contain 

the insertion sequence and is larger than the short reads, which only partially span the insertion. 

The position of softclip is reported as the insertion position. The softclip sequence excluding 

the other split-aligned portion of contig is reported as the insertion sequence. In case the split-

read is not available, the insertion event is reported as imprecise insertion event with a partial 

insertion sequence. This happens when we are unable to completely assemble the insertion 
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sequence into a single contig. An example of a small insertion detected using HyINDEL in real 

dataset is shown in Figure 2.5, and a large insertion detected is shown in Figure 2.6.  

 

Figure 2.5: Small insertion identified using HyINDEL on NA12878, real dataset at chr1: 
80,271,156 (65 bp). Softclip part of read (unaligned bases) are highlighted at the breakpoints 
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Figure 2.6: Small insertion identified using HyINDEL on NA12878, real dataset at chr2: 
26937337 (2388 bp). Softclip part of read (unaligned bases) are highlighted at the 

breakpoints, one end anchor reads are highlighted in red 

2.2.4 Postprocessing 
INDEL events that have low support are filtered. For large deletions identified using 

both discordant and soft-clip signal, minimum support of reads required is > threshold = 

cmedian/3, where cmedian defines the median depth-of-coverage of the sample. While for imprecise 

and small deletions identified using only soft-clip reads, a threshold of cmedian/6 is used. In the 

case of homozygous deletions, we do not expect any reads present in the deletion region, while 

in case of heterozygous deletions, approximately half of the reads are expected to be present. 

Hence, we compute the ratio of sequence coverage of the candidate deletion region to that of 

its upstream and downstream flanking regions of size 1000bp each. For a candidate deletion, 

if the ratio covevent/covflank < 0.2 (for both flanks), it is referred to as a homozygous deletion, 

and if it lies in the interval 0.2 ≤ covevent/covflank ³ 0.9, it is reported as a heterozygous deletion, 

remaining events are classified as complex variants. The variants predicted are reported in VCF 

output format (v4.2). 
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2.3 Implementation overview of HyINDEL 
HyINDEL is an open source method for detection of insertions and deletions from 

whole genome next generation sequencing data. It is designed for handling input alignment 

files generated from short read Illumina sequencing platforms. The input to the tool is a 

coordinate sorted alignment file (.bam) along with its index (.bam.bai). An output file with 

name “output.vcf” is generated in the output directory specified as a command line argument. 

HyINDEL has 3 modules namely (i) Pre-processing, (ii) Variant calling and (iii) Post-

processing. HyINDEL is freely available with open source MIT license at 

https://github.com/alok123t/HyINDEL. The workflow is shown in Figure 2.7.  

 

 

Figure 2.7: Workflow of HyINDEL for detection of INDELs (yellow: input/output files, 
purple: method, green: temporary files, orange: in-memory temporary files) 

 

 

 

https://github.com/alok123t/HyINDEL


 

 

 33 

Implementation details 

HyINDEL is a hybrid approach combining clustering, split-mapping and assembly 

approaches for detection of INDELs. The approach and design are based on SoftSV. HyINDEL 

is implemented in combination of C++ and bash. CMake, a popular tool for building and 

packing software is used for easier installation/setup by the end user. The input alignment files 

are quite often very large and in compressed format, one of the challenges is to use an external 

tool for reading. For this we have used Bamtools [21], an open source C++ api and toolkit 

designed for easier parsing of BAM data. Since, the files are very large, we have developed 

our method to process the input file in chunks of data. For this, we have used Transwarp [22], 

an open source library in C++ for task concurrency. For easier arguments parsing and proper 

error handling, we have used Args [23], another open source library in C++. The required 

version of Bamtools (v2.5.1), Transwarp and Args are present as external modules in the 

HyINDEL package and the setup instructions are part of the HyINDEL package. In summary, 

the setup of HyINDEL also handles the installation of dependencies.  

Apart from the above tools, HyINDEL also requires 3 major tools for variant detection. 

Mosdepth is used for faster calculation of depth of coverage across the input alignment file for 

identifying regions with high coverage to be excluded from analysis. Minia [19] is used for de 

novo assembly for construction of contigs used in the detection of insertions. Samtools [24] is 

used in the post-processing step. The end-user needs to ensure that the executables to 

Mosdepth, Minia and Samtools are present on the UNIX $PATH variable, so they can be used 

by HyINDEL. The detailed steps for installation are provided in the readme file of HyINDEL 

package. HyINDEL is implemented to be used as a command-line utility program. The various 

arguments are described in Table 2.3. The default values of various parameters are summarized 

in Table 2.4.  

Table 2.3: Description of command-line input arguments for HyINDEL 

Options 
short 

Options long Description Attributes Mandatory 

-i PATH --inp=PATH Path to input 
(input.bam) file 

(index input.bam.bai 
file also present in 

same directory) 

Absolute path Yes 

-o PATH --out=PATH Path to output folder 
(creates folder if it 

doesn’t exist) 

Absolute path Yes 
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-s VAL --insSz=VAL Median Insert size of 
library 

Integer Yes 

-d VAL --stdDev=VAL Standard deviation 
of insert size 

Integer Yes 

-l VAL --readLen=VAL Read length Integer Yes 
-c VAL --cov=VAL Sequencing 

coverage 
Integer Yes 

-t VAL --threads=VAL Threads Integer No 
 

Table 2.4: Default values of various parameters in each module of HyINDEL 

Step Description Default 
Value 

Preprocessing Window size considered for excluding 
regions 

1000 

Window size considered for splitting input 
region, during parallel processing 

10,000,000 
 

Overlap size between adjacent windows, 
during parallel processing 

20,000 

Multiplier for excluding high coverage 
regions (k*median coverage) 

3 

Threads used for Mosdepth 4 
Variant 
calling 

Minimum mapping quality of alignments 20 
Match, mismatch, gap penalty for semi-global 

alignment 
(1, -1, -1) 

Minimum alignment threshold (k*readlength) 0.9 
Minimum support for discordant or softclip 

cluster 
Median 

coverage/10 
Reciprocal overlap for two discordant reads 

to be in same cluster 
0.65 

Maximum distance, reciprocal overlap for 
merging two deletion events 

5, 0.95 

Maximum distance between paired-clusters 
for candidate insertion 

10 

Minimum length of softclip used during 
alignment of contigs and softclip reads 

20 

Assembly k-mer size used for Minia 31 
Post-

processing 
Flank size used for coverage calculation 1000 

Minimum mapping quality of alignments in 
flanking regions 

20 

 

 

Parallelization 
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A whole genome dataset from Illumina platform at 50x sequencing coverage would 

result in about 100GB of raw reads. The compressed alignment file (BAM) generated using 

BWA for the input reads, results in an alignment file of approximately 100GB. Processing 

large files consumes lot of computational resources. Therefore, it is important to analyze the 

steps which require immense resources and optimizing them. Modern servers with multiple 

cores are often used for running large computationally intensive jobs.  

The human genome is about 3 billion bases long and is made up of 23 chromosomes. 

One approach for faster processing, is to divide the input file by chromosome and process each 

chromosome using a different thread. A drawback of this approach is that, as the lengths of 

chromosomes are different, resulting in a sub-optimal resource utilization. Instead, we divide 

each chromosome into regions of 10mb with adjacent regions having an overlap of 20kb. These 

parameters can be changed by the user. This results in 382 regions (human assembly, 

GRCh37). Each region can now be processed for variant detection independently on a different 

thread and the output be merged finally.  
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Chapter 3 Results and Discussion 
 

In this chapter, we first show the efficacy of our method on simulated data. Briefly we 

discuss about generation of diploid sample for simulated data containing small and large 

insertions and deletions. And, we compare the performance of our method HyINDEL at 

varying sequence coverage and for homozygous, heterozygous variants on the simulated 

dataset. For comparison on real data, we have used the publicly available high coverage 

NA12878 sample obtained from Illumina Platinum genomes [25]. Using this real dataset, we 

evaluate the performance of our algorithm HyINDEL on 3 benchmarks. Our INDEL 

predictions on both simulated and real data are also compared with state-of-the-art tools, 

namely, Lumpy [13], TIDDIT [14], SoftSV [15] for deletions, and Pamir [16] and Popins [17] 

for insertions. Results obtained are discussed in terms of metrics such as F-score, breakpoint 

accuracy and are compared with 5 state of the art tools for INDEL detection.  

3.1. Experiments on Simulated data 
Humans are diploid organisms i.e., they contain two sets of 23 chromosomes with each 

set obtained from their parents. At a variant locus, if both the alleles are the same then it is 

known as a homozygous variation while if it is present in only one allele then it is called as a 

heterozygous variation. Detection of heterozygous variations is difficult as compared to 

homozygous variants due to the presence of a smaller number of supporting reads coming only 

from one allele. To incorporate this behavior in our simulated sample, we generate a human 

diploid sample with homozygous and heterozygous variants. 

3.1.1. Generation of simulated data 
To evaluate the performance of HyINDEL on simulated data, a diploid sample is 

constructed by inserting variants into the human genome (assembly GRCh37). The location of 

insertions and deletions are identified randomly using SVSim [26] and respectively saved in 

two lists. Each list consists of 750 entries with 375 each from the two size ranges: small (50, 

500) and large (500, 10000). First haploid sample is constructed by inserting 375 insertions 

and 375 deletions in the reference genome. The second haploid sample is constructed by 

inserting all the 750 insertions and 750 deletions in the reference genome. The two haploid 

samples are then merged to obtain a diploid sample containing homozygous (375 insertions, 

375 deletions) and heterozygous (375 insertions, 375 deletions) variants. Paired-end reads of 
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length 100bp are generated using ART simulator [27] to simulate reads from Illumina HiSeq 

2500. Mean and standard deviation of the insert size for the paired-end reads is set to 350bp 

and 20bp respectively. Three diploid samples corresponding to sequencing coverage 10´, 20´ 

and 30´ are generated. The reads are aligned using BWA-MEM [11] to the human genome 

(assembly GRCh37). The resulting BAM files are sorted by coordinate and then indexed using 

Samtools [24]. 

3.1.2. Performance of HyINDEL 
The performance of our method HyINDEL is evaluated using the following metrics. 

Precision (Positive predictive value, PPV): Ratio of true positive indel events to the total events 

detected. 

Precision= 
True positives events	predicted

Total events predicted
 

Recall (True positive rate, TPR): Ratio of true positive events to the total events present. 

Recall= 
True positives	events predicted

Total events present
  

F-score: Harmonic mean of precision and recall. 

F-score= 
2 * Recall * Precision

Recall + Precision
	

A deletion prediction is considered to be a true positive if the reciprocal overlap of the 

predicted and true deletion is at least 50%. An insertion prediction is considered a true positive 

if the distance between the predicted and actual insertion site is within 10bp. Performance of 

HyINDEL is evaluated on two parameters: sequencing coverage and accuracy of length of 

insertions predicted. 

Effect of sequence coverage 

INDELs are classified based on their length into two size ranges: small (50bp-500bp) 

and large (>500bp). Homozygous INDELS are easier to detect as compared to heterozygous 

due to higher number of reads supporting the homozygous event. Also, detection of large 

deletions is easier as compared to that of small deletions, mainly due to the presence of both 

discordant and softclip signals. Precision and recall metrics are compared for small and large 
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deletions in Table 3.1 at varying sequence coverages. Further, recall values for homozygous 

and heterozygous deletions are also shown in Figure 3.1.  

Recall and F-score values are higher for deletions compared to insertions and improve 

with increase in sequencing coverage. As expected, recall values are higher for detection of 

homozygous compared to heterozygous INDEL events.  A high precision value of ~1 observed 

for all cases indicate the reliability of our predictions. The majority of indel events missed are 

due to fewer reads supporting the variant even at 30´ coverage.  

Table 3.1: Precision, Recall and F-score metrics for predicting deletions using HyINDEL on 
simulated data at varying sequence coverages 

HyINDEL 
Deletions 

Homozygous 
recall 

Heterozygous 
recall Overall 

Precision 
Overall 
Recall 

Overall 
F-score Small Large Small Large 

10x 96.25 98.40 90.95 94.11 99.72 95.06 97.33 
20x 97.32 98.40 97.87 94.65 99.59 97.20 98.38 
30x 97.86 98.40 96.27 95.18 100.0 96.93 98.44 

 

 

Figure 3.1: Recall values for homozygous and heterozygous deletions for varying sequence coverage 
on simulated data  

 Detection of insertions involve de-novo assembly of one end anchored reads and orphan 

reads for construction of contigs. Precision and recall metrics are compared for small and large 

insertions in Table 3.2 at varying sequence coverages. Recall values for homozygous and 

heterozygous insertions are shown in Figure 3.2.  
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Again, similar to deletions, we observe that the overall F-score increases with increase 

in sequence coverage due to a greater number of supporting reads. It can be observed from 

Table 3.2 that the recall values are significantly higher for homozygous as compared to 

heterozygous insertions for all sequence coverages. In case of low sequence coverage, we 

observe a low recall as the contig construction fails with low number of supporting reads. Also, 

for heterozygous insertions due to the same reason of lower number of supporting reads, a low 

recall is observed. While the recall is significantly higher for coverage > 10x, this indicates 20x 

as a good sequencing coverage for detection of insertions. A high precision value was also 

observed in all cases, indicating no false positives being detected. 

Table 3.2: Precision, Recall and F-score metrics for predicting insertions using HyINDEL, on 
simulated data at varying sequence coverage 

HyINDEL 
Insertions 

Homozygous 
recall 

Heterozygous 
recall Overall 

Precision 
Overall 
Recall 

Overall 
F-score Small Large Small Large 

10x 80.74 79.14 43.61 38.83 99.12 60.66 75.26 
20x 85.56 87.16 78.72 79.78 99.67 82.93 90.53 
30x 85.56 85.02 79.78 84.04 99.52 83.73 90.94 

 

Figure 3.2: Recall values for homozygous and heterozygous insertions for varying sequence 
coverage on simulated data  

Accuracy of Insertion sequences predicted 

 To evaluate performance of HyINDEL in the detection of insertions, we also compare 

the length of insertion sequence predicted with the actual insertion size in the simulated sample. 



 

 

 40 

For all the insertions identified precisely, i.e., which could be successfully assembled using de 

novo assembly, we compare the error in insertion length prediction, defined as the absolute 

difference between the length of predicted insertion and length of actual insertion present at 

that position. The variation in error for 30x sample is shown as a boxplot, excluding outliers, 

in Figure 3.3. The median error in insertion length is observed to be 1bp. It can be observed 

that the insertion sequences are detected very accurately.  

 

Figure 3.3: Error in insertion length for simulated sample at 30x using HyINDEL. 

3.1.3. Comparison of HyINDEL with other tools 
In this section we compare the INDEL predictions of our method HyINDEL with other 

tools viz., namely Lumpy (version: 0.2.14a) [13], TIDDIT (version: 2.6.0) [14], SoftSV 

(version: 1.4.2) [15] for deletions and Popins [17], Pamir [16] for insertion detection. The 

comparison is evaluated on parameters (i) Accuracy in terms of Precision, Recall, F-score 

metrics (ii) Breakpoint error, and (iii) Breakpoint support. 

Accuracy 

 The Precision (P), Recall (R) and F-score (F) metrics are calculated for comparing the 

accuracy of each tool on the simulated data for different sequence coverage. The overall P, R, 

F values for deletions are summarized in Table 3.3 and for insertions in Table 3.4. F-score 

values for comparison of HyINDEL with other tools is shown in Figure 3.4 for deletions and 

Figure 3.5 for insertions. 

 With an increase in sequence coverage, the F-score value is observed to increase for all 

tools as expected. This is due to the increase in number of reads supporting an INDEL event. 

In case of deletions, the precision of all the tools (except SoftSV) was observed to be > 99% 

indicating no false positives being detected in the simulated data. A slightly lower precision 
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was observed in case of SoftSV due to deletions events being reported twice, once as a large 

deletion and again as a small deletion in the output files. It may be noted that recall and F-score 

values of HyINDEL are highest or comparable to other state-of-the-art tools, with precision 

values ~ 100%, clearly indicating the reliability of our predictions in detecting deletions. 

 It is observed from Table 3.4 that in case of insertions, precision of HyINDEL is > 99% 

even at 10´ coverage, indicating the reliability of predictions. recall is observed to be low for 

HyINDEL and Pamir at 10´ sequence coverage. The slightly lower values of precision of Pamir 

and Popins are observed to be due to multiple predictions of the same event. The recall and F-

score values are comparable or higher compared to Pamir and Popins for ≥ 20´ sequence 

coverage. It is observed that majority of insertions missed by all the three tools correspond to 

heterozygous insertions due to low read support.  

Table 3.3: Precision, Recall and F-score metrics for predicting deletions using HyINDEL 
with other tools on simulated data at varying sequence coverag 

Deletions 10x 20x 30x 
P R F P R F P R F 

HyINDEL 99.72 95.06 97.33 99.59 97.20 98.38 100.0 96.93 98.44 
Lumpy 100.0 89.06 94.21 100.0 95.33 97.61 100.0 96.13 98.02 
TIDDIT 100.0 84.93 91.85 100.0 88.66 93.99 100.0 90.00 94.73 
SoftSV 97.30 86.53 91.60 96.41 96.93 96.67 94.99 98.66 96.79 

 

Table 3.4: Precision, Recall and F-score metrics for predicting insertions using HyINDEL 
with other tools on simulated data at varying sequence coverage 

Insertions 10x 20x 30x 
P R F P R F P R F 

HyINDEL 99.12 60.67 75.26 99.67 82.93 90.53 99.52 83.73 90.94 
Pamir 96.88 37.33 53.89 97.64 71.86 82.79 95.73 86.80 91.04 
Popins 88.12 66.26 75.64 98.98 78.00 87.24 99.68 83.60 90.93 
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Figure 3.4: Comparison of F-scores for Deletions of our tool HyINDEL with other tools on 
simulated data at varying sequence coverage 

 

Figure 3.5: Comparison of F-scores for Insertions of our tool HyINDEL with other tools on 
simulated data at varying sequence coverage 

Breakpoint error 

To measure the accuracy in breakpoint predictions, we define the breakpoint error as 

the absolute difference between the predicted breakpoint positions and the actual breakpoint 

coordinates for each detected event. In case of deletions, the breakpoint error is calculated as 

the sum of breakpoint errors at the 5¢ and 3¢ breakpoints. The breakpoint errors for the detection 
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are depicted in Figure 3.6 and in Figure 3.7 for insertions for 30x sequence coverage excluding 

outliers. The median breakpoint error is observed to be 1 for deletions and 0 for insertions, 

indicating the accuracy of HyINDEL predictions because of using softclip/split reads.  

 

Figure 3.6: Breakpoint error in detection of deletions using (a) HyINDEL, (b) Lumpy, (c) 
TIDDIT and (d) SoftSV is shown on simulated data at 30x sequencing coverage  

 

Figure 3.7: Breakpoint error for insertions using (a) HyINDEL (b) Pamir (c) Popins is 
shown on simulated data at 30x sequencing coverage  

Breakpoint support 
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 The softclip/split reads provide information about the exact breakpoint information, 

while the discordant reads provide additional supporting information for the INDEL event. 

Each tool reports the number and type of reads supporting the predicted event. In Figure 3.8 

the distribution of number of softclip/split reads for all deletion events observed in the case of 

30x sequence coverage sample is shown. It may be noted that the median number of reads 

supporting the breakpoint is ~ 21 for HyINDEL, much higher than the other tools, Lumpy (7), 

TIDDIT (7) and SoftSV (8). This is due to the usage of softclip reads by our method.  

 

Figure 3.8: Breakpoint support for deletions (without discordant reads) for (a) HyINDEL, (b) 
Lumpy, (c) TIDDIT and (d) SoftSV is shown on simulated data at 30x sequencing coverage.  

Time and Memory usage 

 We have run HyINDEL on a single node of a cluster, to analyze the performance. The 

configuration of node is a HP SL230 compute nodes with two Intel E5-2640 processors having 

12 cores each, that is a total number of 24 cores. The maximum memory assigned to each CPU 

is 2048 MB, with the node having a total memory of 48GB. The time and peak memory usage 

for varying sequence coverage are summarized in Table 3.5. Peak memory usage is taken to 

be the Maximum resident set size value estimated using time command.  
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Table 3.5: Comparison of time and memory utilization for varying sequence coverage  

(h: hours, m: minutes, s: seconds) 

Coverage Wall clock 
Time 

User 
Time 

System 
Time 

Peak 
memory 

10x 42m18s 5h41m 11m13s 1.07GB 
20x 1h10m 9h7m 20m28s 1.06GB 
30x 1h16m 6h33m 21m43s 1.07GB 

 

3.2. Comparison on Real data 
Next we analyzed the performance our method on real dataset. For this the widely studied 

NA12878 sample of a Caucasian female of UTAH/MORMON ethnicity from Illumina 

Platinum Genomes repository (ENA accession: PRJEB3381) [25]. We have used the PCR-free 

high coverage reads for our analysis. The reads are aligned using BWA-MEM [11] to the 

human reference (assembly GRCh37). The resulting BAM files are sorted by coordinate and 

then indexed using Samtools [24]. The sorted BAM file and its index are given as input for all 

tools. The reason for considering NA12878 sample is that annotations for INDELs are available 

from three resources, viz., Genome in a bottle (GIAB) [29], Database of Genomic Variants 

(DGV) [30] and PacBio SV annotations [31]. The data contains paired-end reads of length 

101bp sequenced using Illumina HiSeq 2000. The median insert size was estimated to be 318 

and standard deviation in insert size as 78 using Picard tools [12]. The average genome 

coverage was estimated to be 52x using Mosdepth [18]. The reads (fastq files) were given as 

input to Fastqc [32]  and the final BAM file as input to Bamqc [33]. Output files generated 

represented the files passing all quality filters (represented as green tick marks).  

3.2.1. Benchmarking Dataset 
For evaluation, INDELs of size ≥ 50bp are only considered. For insertions, a prediction 

is considered true positive if it lies within 200bp of an actual event. 

Genome in a bottle (GIAB) 

For the NA12878 sample, SVClassify [29] has generated a high-quality benchmark for 

structural variations by combining multiple forms of evidence using multiple reads from 

multiple sources and involving multiple sequencing technologies. Briefly, features/annotations 

are constructed inside and around candidate SVs and unsupervised machine learning is used to 

determine characteristics of various SV types using one-class model to classify candidate SVs. 

39/40 calls were validated using PCR for which primer design was possible. Further, deletions 
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were validated using trio analysis of her father (NA12891) and mother (NA12892) and 

verifying if the calls were Mendelian consistent i.e., also present in parents. This was done 

using MetaSV, which incorporates multiple SV detection algorithms. The validation rate was 

99.7% for the calls in the benchmark, indicating a very high quality. The benchmark was 

deposited in Genome in a bottle consortium. The set contains 2676 (1854 small, 822 large) 

deletions and 68 insertions. The annotation set was downloaded from https://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Personal

is_1000_Genomes_deduplicated_deletions.bed and https://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Spiral_

Genetics_insertions.bed .The precision recall and F-score metrics for predictions are computed 

for all the tools using GIAB annotations as reference and the results are summarized in Table 

3.6 for deletions. For insertions the results are given in terms of number of true predictions in 

Table 3.10 and Table 3.10, based on the distance criteria of true positive being 10bp and 200bp 

respectively.  

Database of Genomic Variants (DGV) 

Database of Genomic Variants contains a curated catalog of SVs identified in healthy 

control samples from various studies. We have used the latest version (Release Data: 2016-05-

15) corresponding to GRCh37. It contains 108 novel sequence insertions reported from the 

1000 genomes project.  We use this set for benchmarking insertions predictions. Other novel 

sequence insertions reported are not considered for our evaluation as they are using array CGH 

methods. The annotation set was downloaded from 

http://dgv.tcag.ca/dgv/docs/GRCh37_hg19_variants_2016-05-15.txt and variants for the NA12878 

sample with “novel sequence insertion” are considered. The results for deletions are 

summarized in Table 3.7 and insertions are discussed in terms of number of true predictions in 

Table 3.10 and Table 3.10, based on the distance criteria of true positive being 10bp and 200bp 

respectively. 

PacBio SV annotations 

For the NA12878 sample, SVs were identified using PacBio long reads. The 

annotations from PacBio were merged with variants from DGV and GIAB  , the resulting set 

was used in a comprehensive evaluation of 69 SV callers [31]. Small deletions and insertions 

from DGV were not considered as they were already represented in the PacBio annotations. 

Deletions with a high reciprocal overlap (> 90%) with PacBio deletions were also removed. 

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Personalis_1000_Genomes_deduplicated_deletions.bed
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Personalis_1000_Genomes_deduplicated_deletions.bed
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Personalis_1000_Genomes_deduplicated_deletions.bed
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Spiral_Genetics_insertions.bed
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Spiral_Genetics_insertions.bed
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Spiral_Genetics_insertions.bed
http://dgv.tcag.ca/dgv/docs/GRCh37_hg19_variants_2016-05-15.txt
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This merged benchmark dataset contains 9241 (6062 small, 3179 large) deletions and 13669 

(12538 small, 1131 large) insertions. In total there were 7322 deletions and 12686 insertions 

reported from PacBio in the merged benchmark. The annotations were downloaded from 

https://raw.githubusercontent.com/stat-lab/EvalSVcallers/master/Ref_SV/NA12878_DGV-2016_LR-

assembly.vcf .The precision recall and F-score metrics for the tools computed using PacBio-

merged benchmark dataset are summarized in Table 3.8 for deletions.  

For insertions, there is no subclass information (Novel sequence insertions) available. 

It has been previously reported [16] that the predictions made using long reads were located in 

repeat regions, GC biased regions and only 488 of the total 12998 insertions could be identified 

using Pamir tool in a study using CHM1 cell line. The major reason being short Illumina reads 

could not be assembled in those regions.  

Table 3.6: Precision, Recall and F-score metrics for predicting deletions using HyINDEL 
with other tools on real data (NA12878) using GIAB benchmark (n=2676) 

Deletions Overall 
Precision 

Recall Overall 
F-score Small  Large Overall  

HyINDEL 65.86 86.40 90.63 87.74 75.24 
Lumpy 53.82 83.76 95.13 87.29 66.59 
TIDDIT 76.51 58.14 79.19 64.64 70.08 
SoftSV 37.65 77.07 74.33 76.27 50.41 

 

Table 3.7: Precision, Recall and F-score metrics for predicting deletions using HyINDEL 
with other tools on real data (NA12878) using DGV benchmark (n=973) 

Deletions Overall 
Precision 

Recall Overall 
F-score Small  Large Overall  

HyINDEL 19.86 85.81 70.43 72.76 31.20 
Lumpy 17.16 80.85 75.72 76.56 28.04 
TIDDIT 31.44 66.67 74.03 73.07 43.97 
SoftSV 10.79 71.63 58.05 60.12 18.29 

 

Table 3.8: Precision, Recall and F-score metrics for predicting deletions using HyINDEL 
with other tools on real data (NA12878) using Pacbio-merged benchmark (n=9241) 

Deletions Overall 
Precision 

Recall Overall 
F-score Small Large Overall 

HyINDEL 79.57 31.70 28.75 30.7 44.30 
Lumpy 66.22 30.07 33.02 31.10 42.32 
TIDDIT 87.74 19.20 25.76 21.47 34.49 
SoftSV 47.31 29.28 24.81 27.75 34.98 

 

https://raw.githubusercontent.com/stat-lab/EvalSVcallers/master/Ref_SV/NA12878_DGV-2016_LR-assembly.vcf
https://raw.githubusercontent.com/stat-lab/EvalSVcallers/master/Ref_SV/NA12878_DGV-2016_LR-assembly.vcf
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Table 3.9: Comparison of number of true insertions on real data (NA12878) by HyINDEL 
with other tools. The results are summarized for annotations on DGV (n=108), GIAB (n=68) 

and PacBio (n=13669) benchmarks 

Insertions DGV  GIAB  PacBio 
HyINDEL 
(n=896) 52 19 42 

Pamir 
(n=5820) 58 11 39 

Popins 
(n=3204) 18 26 96 

 

Table 3.10: Comparison of number of true insertion on real data (NA12878) by HyINDEL 
with other tools. The results are summarized for annotations on DGV (n=108), GIAB (n=68) 

and PacBio (n=13669) benchmarks 

Insertions DGV  GIAB  PacBio 
HyINDEL 
(n=896) 60 42 611 

Pamir 
(n=5820) 66 20 1409 

Popins 
(n=3204) 22 53 861 

 

3.2.2. Performance of HyINDEL 
In total HyINDEL identified 3672 (2684 small, 988 large) deletions and 896 (220 small, 

15 large, 661 imprecise) insertions on the NA12878 sample. The size of largest deletion 

identified was 49025bp, the mean deletion size was 1076.32 and median size 308. While the 

largest insertion was 4135bp, the mean insertion size was 174.73 and median 75. The 

distribution of the size of deletions and insertion predicted are shown in Figure 3.9 and Figure 

3.10 respectively.  
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Figure 3.9: Size distribution of deletions identified on real data, NA12878 using our tool, 
HyINDEL 

 
Figure 3.10: Size distribution of insertions identified on real data, NA12878 using our tool, 

HyINDEL 

 For deletions, we compare our predictions on two benchmarks GIAB and PacBio-

merged. On the GIAB benchmark, we observe a high recall of 87.74%. The recall for large 

deletions is slightly higher than small deletions, this is expected since large deletions are easier 

to identify compared to smaller ones. True deletion events missed were mainly due to low 
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number of supporting reads.  From the PacBio-merged benchmark, we observe a high precision 

of 79.6%, indicating a high number of true deletion calls.  

 In case of insertions, we compared our predictions on three benchmarks DGV, GIAB 

and PacBio-merged in Table 3.9 and Table 3.10. We identified 60/108 is using 200bp error 

novel sequence insertions reported in the DGV benchmark. The GIAB and PacBio-merged 

benchmark do not have subclass information for insertions. 19 and 42 insertions were identified 

in the GIAB and PacBio-merged benchmark respectively. Changing the true positive criterion 

for insertions, the maximum distance between prediction and actual event from 10bp to 200bp, 

increased the number of true positives identified on each of the benchmark. It may be noted 

that the true predictions increase to 611 on the PacBio-merged benchmark, while 60 and 42 

insertions were detected on the DGV and GIAB benchmark respectively.  

 

Time and memory usage 

 HyINDEL was run on a single compute node with 24 cores, 48 GB memory (same node 

used in simulated experiments). It took 2 hours 49 minutes for running on real data sample.  

3.2.3. Comparison of HyINDEL with other tools 
It may be noted from Table 3.6 that the performance of HyINDEL in detecting deletions 

is better than the other tools on GIAB benchmark dataset, as indicated by F-score values. Recall 

values of HyINDEL in detecting deletions is comparable with Lumpy and much higher than 

TIDDIT and SoftSV. Though TIDDIT exhibits higher precision (~ 76.5) compared to other 

tools, however low recall values suggest that large number of deletion events are missed by it. 

Precision of HyINDEL is much higher than Lumpy resulting is a higher F-score. For the DGV 

dataset (Table 3.7), HyINDEL exhibits higher recall for small deletions, while it is higher for 

Lumpy in case of detection of large deletions. TIDDIT exhibits highest precision and recall 

values comparable with other tools, resulting in better F-score on DGV dataset. Against the 

PacBio-merged benchmark (Table 3.8), we observe HyINDEL exhibiting higher recall for 

small deletions and the best F-score.  

In the case of insertions (Table 3.10), relatively fewer predictions (870) are observed 

with HyINDEL compared with other tools Pamir (5820) and Popins (3204), indicating much 

lower false positives. On the DGV dataset, the number of true predictions by HyINDEL 

(65/108) is comparable with Pamir (66/108), while on the DGV dataset, HyINDEL exhibited 
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43/68 insertions, higher than Pamir (20/68) and comparable to Popins (53/68) on GIAB dataset, 

but with a significantly higher true positive rate.  

Further, we also calculated the number of common insertions between each tool. 

Between HyINDEL and Pamir, there are 278 common insertions, while between HyINDEL 

and Popins there are 401. Number of common insertions between all 3 tools were 108.  
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Chapter 4 Conclusion 
 

Here we proposed a hybrid approach for the detection of both insertions and deletions on a 

single platform from next generation sequencing data. Using soft-clip reads, HyINDEL is able 

to provide good support in accurately detecting the INDEL breakpoints compared to other 

methods, indicating the reliability of our predictions. HyINDEL is able to handle detection of 

both small and large indels and also identify the novel insertion sequence. Our analysis 

indicates that the performance of HyINDEL is comparable with other state-of-the-art tools on 

both simulated and real data. In future we propose to incorporate detection of INDELs in paired 

case-control data (e.g., tumour-normal) and multiple genomic sequencing data for the detection 

of population specific INDELs. The results of experiments on simulated data and real data are 

summarized below.  

4.1 Simulated data 
For simulated data, we have inserted 750 homozygous and heterozygous indels each, of 

varying lengths into the human genome (assembly GRCh37). Paired-end reads were generated 

corresponding to 3 different sequencing coverages (10x, 20x, 30x). Alignment and index files 

were generated for each sample. Performance of our method is evaluated in terms of accuracy 

(Precision, Recall and F-score), breakpoint error, breakpoint support. The effect of sequencing 

coverage with respect to size (small/large) and type (deletions/insertions) is also discussed. We 

show that F-score increase with an increase in sequencing coverage. In case of deletions, we 

observe that it is easier to detect large deletions as compared to smaller ones, due to the 

presence of both discordant and softclip signals. While, in case of insertions we observe that it 

is easier to detect small insertions than larger ones, as large insertions additionally need an 

orphan contig to be successfully assembled. The median breakpoint error was calculated to be 

1 and 0 at 30x sequencing coverage for deletions and insertions respectively, indicating very 

accurate breakpoint predictions due to the usage of soft-clipped reads. We have also compared 

and benchmarked the accuracy of our predictions with state-of-the-art tools for indel detection. 

We have shown that our method has the highest F-score at all sequencing coverages for 

deletions and comparable F-score at 20x and 30x coverage for insertions. We also observe that 

detection of heterozygous indels is difficult as compared to homozygous indels, mainly due to 

the lower number of supporting reads.  
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4.2 Real data 
We have used the widely studied NA12878 sample from the Illumina Platinum genomes 

repository. Paired-end reads were aligned to the human genome (assembly GRCh37) and the 

resulting alignment file is given as input to our tool. A total of 3672 deletions and 896 insertions 

were predicted. Annotations from Genome-in-a-bottle, Database of genomic variants and 

PacBio SV were used to benchmark indel predictions. We observe a high recall for both small 

and large deletions on the GIAB benchmark. While we observe a high precision for deletions 

on the PacBio benchmark and lower recall as a majority of annotations are from third 

generation sequencing technologies which are located in repeat and GC biased regions. In case 

of insertions, we identified 60 novel sequence insertions from the DGV benchmark and 397 on 

the PacBio benchmark. In comparison to other tools, our method has the highest recall and F-

score for deletions on the GIAB and PacBio benchmarks. In case of insertions, the number of 

predictions by our method are lower as compared to other tools, we observe a significantly 

high true positive rate.  

 A major addition in our tool as compared to others is the use of Soft-clip reads for 

enhancing variation detection. This has resulted in significant increase in recall in case of 

deletions as seen on multiple real data benchmarks. In case of insertions, we perform 

comparably to the state-of-the-art tools on DGV and GIAB benchmarks, while observing a 

significant increase in precision.  

It is observed that only a subset of variants is identified using second-generation 

methods when compared to variations identified from Pacbio-merged benchmark (containing 

variations from third-generation sequencing methods), as many of the variants reported are 

from biased regions which cannot be accurately detected.  
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