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Abstract

Great strides have been made in Natural Language Processing (NLP) and Computer Vision (CV)
in recent years. Large Language Models (LLMs), especially those of the parameter sizes of GPT-3.5
and GPT-4 have revolutionized tasks ranging from summarization to question answering, while Vision
Transformers have enabled the development of highly efficient image segmentation, object detection,
image synthesis models. However, there is still much work to be done in Multimodal space, involving
the usage of both NLP and CV to process input/output involving both text and images.

In this dissertation, we work towards Multimodal Inference and Reasoning by LLMs and pursue
research questions related to Multimodal Question Answering by such LLMs through three distinct
problems: Multimodal Emotion-Cause Pair Extraction in Conversations, Question Answering using
LLMs for Unconventional Reasoning, and using Multimodal Large Language Models (MLLMs) to
perform Knowledge-aware Inference and Reasoning over Semi-Structured Multi-modal Tables.

We first explore Multimodality using one of the most fundamental NLP tasks – Emotion Analysis
through Multimodal Emotion-Cause Pair Extraction in Conversation. We model the task as both an
utterance-labelling and a sequence-labelling problem and experiment with different encoders to encode
the visual, audio and textual modalities in the conversations. We conducted a comparative study that
involved baselines using different encoders with an MLP, BiLSTMs, and those incorporating a BiL-
STM+CRF layer.

Going further, we explore the task of Unconventional Reasoning using LLMs on questions involving
lateral thinking, which requires looking at problems from an unconventional perspective and defying
existing conceptions and notions. We experiment on the BrainTeaser Dataset using few-shot prompts,
including explanations for reasoning in the examples for the model to understand the unconventional
reasoning tasks better, improving over the zero-shot LLM baseline results.

Building upon the areas of Multimodality and using LLMs for reasoning, we propose the task of
Knowledge-aware Question-Answering over Semi-structured Multi-modal tables and experiment with
SOTA LLM and MLLM for solving the task. We create the MultimodalTabQA dataset, which consists of
35,111 questions over 16,941 tables recast from three existing tabular question-answering datasets. The
dataset involves complex questions requiring handling multiple images as input, performing knowledge-
aware entity disambiguation, understanding the semi-structured information represented and under-
standing the entities in the context of the table. We experiment with three different approaches to
answering these questions and demonstrate the capabilities of SOTA LLMs on such new tasks.
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Chapter 1

Introduction

1.1 Preamble

In the quest to develop Artificial Intelligence (AI) systems that mimic human intelligence, the ability
to understand and process information from multiple modalities is paramount. Humans, since their birth,
have the ability to process multiple senses simultaneously to perceive the world around us, including
vision, audition, olfaction, gustation, and taction. It is the combination of these senses that enables us to
perform our day-to-day tasks as intelligent beings. Without any one of these senses, our understanding
and perception of the world become significantly impaired. Similarly, for AI systems to achieve human-
like intelligence, they must possess the capability to interpret and reason across different modalities.

In today’s information age, the prevalence of multimodal data is ubiquitous. Social media platforms
are teeming with posts that combine textual content with accompanying images or videos, while sci-
entific datasets often contain textual descriptions alongside graphical representations. Further, various
entertainment videos come with audio transcripts, and different knowledge sources have representative
images for the entities they describe. This multimodal nature of data further necessitates AI systems
that can effectively process and extract meaningful insights from heterogeneous sources.

To the end of creating intelligent models that can handle a large variety of reasoning/inference tasks,
Large Language Models (LLMs) have emerged as powerful tools, achieving state-of-the-art perfor-
mance for a wide range of natural language processing tasks [2], thanks to their ability to learn complex
patterns and relationships from vast amounts of text data [3]. These models have demonstrated re-
markable performance in tasks such as text generation, sentiment analysis, and machine translation.
Furthermore, the advent of Multimodal LLMs (MLLMs) has extended their capabilities to incorporate
information from diverse modalities, opening up new avenues for research in multimodal AI [4].

The integration of multimodal capabilities into LLMs enables these models to leverage not only
textual information but also visual and auditory cues present in multimodal data. By harnessing the
synergies between different modalities, multimodal LLMs offer a more comprehensive understanding
of the underlying semantics and context within the data. This holistic approach to information process-
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ing mirrors human cognition’s multimodal nature, bringing AI systems closer to achieving human-like
intelligence.

This thesis is a step towards Multimodal Reasoning and Inference involving text and images, leverag-
ing the capabilities of LLMs and Multimodal LLMs to perform emotion detection and reasoning/infer-
ence on Multimodal Data. We begin our probing towards Multimodal Semantic Understanding through
the simplest task in traditional NLP – Emotion Detection. We experiment with the data for the task
of Multimodal Emotion-Cause Pair Extraction in Conversation [5] on the Emotion Cause in Friends
(ECF) dataset [1], proposing various baselines involving different encoders for text, audio and images
and modelling it as both a sequence-level and an utterance-level task.

Next, we explore different prompting strategies to enhance the reasoning capabilities of large lan-
guage models for unconventional reasoning tasks. We describe the experimental methodology, results,
and insights gained from the experiments. This allows us to better understand how we can prompt LLMs
for reasoning and inference, albeit only on text data.

Building upon these two works, we propose the problem of Knowledge-aware Reasoning and Infer-
ence over Multimodal Tables. We define the problem and create a dataset for the problem by recasting
three different datasets for the task. We also make use of three different baselines involving Gemini-
Pro-1.0 [6], a family of SOTA LLM and MLLM, to benchmark the performance of existing models on
the new problem.

1.2 Background

1.2.1 Multimodal Image-Text Processing

Text and image processing have long been considered challenging areas in artificial intelligence,
where achieving even a fraction of human performance seemed far-fetched.

One of the key breakthroughs in Natural Language Processing (NLP) was the development of the
Transformer architecture [7]. The Transformer model relies on self-attention mechanisms to weigh the
importance of different words in a sentence, allowing it to capture long-range dependencies and improve
performance on tasks such as machine translation, text summarization, and question answering.

The Transformer architecture has been particularly successful in improving semantic understanding
tasks, with models like BERT (Bidirectional Encoder Representations from Transformers) [8] achieving
state-of-the-art results on a wide variety of NLP tasks. BERT is pre-trained on a large corpus of text
data and fine-tuned on specific tasks, allowing it to generalize well to new tasks and datasets.

In the field of computer vision, the Transformer architecture has also had a significant impact. Mod-
els like the Vision Transformer (ViT) [9] have shown impressive performance on tasks such as image
segmentation, object detection, and action recognition. ViT treats images as sequences of patches, which
are then processed by a transformer model to extract features and make predictions. This approach has
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proven to be highly effective, outperforming traditional convolutional neural networks (CNNs) [10] on
certain tasks.

The advancements in text and image processing have led to a growing interest in multimodal re-
search, where models are trained to understand and generate both text and images. One of the earliest
tasks in the multimodal domain is optical character recognition (OCR), which combines computer vi-
sion techniques with textual information. The MNIST dataset [11], which consists of handwritten digits,
is an example of a dataset that involves a multimodal problem, as it requires both image processing and
understanding of the textual information (the digits).

Even in the pre-transformer era, researchers were exploring Visual Question Answering [12], making
use of fusion-based methods for various tasks. Over time, a multitude of image-text tasks emerged, some
of the prominent ones outlined below: [4]:

1. Image Captioning: Generating a textual description of images.

2. Visual Question Answering: Answering questions based on the content of an image.

3. Image Retrieval: Finding images relevant to a text query, making use of joint image-text repre-
sentations.

4. Image-Text Sentiment Analysis: Understanding the emotional tone conveyed through both im-
age and text.

5. Multimodal Summarization: Generating summaries that incorporate both visual and textual
information.

Out of these popular tasks, we primarily make explorations related to Image-Text Sentiment Analysis
[13] and Visual Question Answering [14]. To some extent, we also involve Image Retrieval in one of
the problems tackled in this thesis.

1.2.2 Large Language Models

While LSTMs [15] and ELMo [16] previously held the status of state-of-the-art architectures in NLP,
the breakthrough of the Transformer architecture in 2017 [7] marked a significant advancement. Unlike
LSTMs and RNNs, which struggled with handling long-term dependencies and longer sequence lengths,
the Transformer architecture introduced self-attention mechanisms and achieved parallelization, greatly
enhancing its efficiency in processing long sequences. This architecture led to the creation of the first
generation of LLMs, including BERT [17], GPT [18], among many other models. Soon, there was
a rapid increase in the number of parameters and training data size, leading to models with hundreds
of billions of parameters, which pushed the boundaries of what was previously achievable in natural
language processing.
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Further, due to being trained on large-scale data, these models could perform even zero-shot tasks
and, given some few-shot examples, could even generalize to entirely new tasks. Such emergent abil-
ities of LLMs, including in-context learning [19], instruction following, and Chain of Thought (CoT)
reasoning [20] have brought significant attention to them. Several research areas make use of LLMs as
agents for performing various human-like tasks through few-shot prompts and CoT reasoning. Current
state-of-the-art LLMs include GPT-3.5 [21], GPT-4 [2], LLaMa 3 [22], Gemini [6] among various other
models.

However, until recently, the capabilities of these models were limited to text. Inspired by the success
of pre-trained NLP models, multimodal Transformers were developed that could process cross-modality
inputs like text, image, audio, and point cloud. Some of these Vision-Language Models include CLIP
[23], Visual BERT [24], BLIP [25], Flamingo [26], etc., which were large-parameter pre-trained models
trained on large-scale cross-modal datasets comprising images and text.

Recently, these models have further scaled to instruction-tuned and conversational models, leading
to the creation of MLLMs, which leverage the powers of LLMs like GPT-3.5, FLAN [27], etc. and
extend them to tasks across multiple modalities. Some of the recent MLLMs include GPT-4V [2],
Gemini-Vision [6], QwenVLM [28], CogAgent [29], etc.

In our work, we involve experiments with GPT-3.5 and the Gemini-1.0-Pro family of models due to
accessibility and resource constraints with other LLMs/MLLMs.

1.3 Scope of the thesis

This section briefly describes the three tasks mentioned earlier that are tackled as a part of this
dissertation. We then outline the specific directions explored in this thesis and our contributions to these
areas.

1.3.1 Multimodal Emotion-Cause Pair Extraction

Emotion analysis [30] in the field of Natural Language Processing (NLP) has undergone significant
development, transitioning from its initial focus on discerning emotions in news articles to its current
emphasis on recognizing emotions within conversational contexts [31]. Recently, there has been a
growing interest in analysing emotional causes, marking a notable advancement in this domain [32].

The Multimodal Emotion Cause Pair Extraction (MC-ECPE) task [5] is a step in this direction,
which involves multimodal utterances in a conversation (audio, video and text) and not only requires
identifying the emotions expressed within these utterances but also the utterances which are the cause for
those emotions. We use the Emotion-Cause-in-Friends dataset [1], derived from the popular television
series Friends, which provides annotated transcripts and video clips.

We experiment with different encoders for the individual modalities (text, audio, video) and various
architectures (BiLSTM, BiLSTM+CRF, MLP) to model the task.
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1.3.2 Unconventional Question Answering using LLMs

This thesis explores the task of solving brain teasers that require lateral thinking, known as the
BRAINTEASER task [33]. Lateral thinking involves solving problems through an indirect and cre-
ative approach, often diverging from traditional logical reasoning. The thesis focuses on leveraging
Large Language Models (LLMs) for this task, specifically through few-shot prompting, which allows
the model to perform well even with limited training examples. The BRAINTEASER [34] dataset con-
tains puzzles that challenge conventional thinking and require unique perspectives to solve. The dataset
includes Sentence Puzzles, which involve unconventional interpretations of sentences, and Word Puz-
zles, which require reimagining the meaning of words. This task aims to bridge the gap between vertical
(logical) and lateral (creative) thinking in NLP models, offering a new perspective on problem-solving
capabilities.

1.3.3 Knowlege-aware reasoning over multimodal semi-structured tables

This thesis proposes and explores the novel problem of Question Answering over Multimodal Tables,
a task that involves reasoning and inference over tables that contain both textual and visual information.
While Natural Language Processing (NLP) research has extensively studied reasoning over text-only
tables [35], the inclusion of images in real-world tables poses new challenges that have not been ade-
quately addressed. This study builds upon previous work on Multimodal Emotion-Cause Pair Extraction
and Prompting Large Language Models (LLMs) for Inference and Reasoning to propose the problem of
exploring Multimodality in Tables using Multimodal LLMs.

The task involves answering questions over tables from Wikipedia, where certain entities are repre-
sented using their images alongside textual information. This requires not only understanding the textual
content of the table but also identifying and linking the images to their corresponding entities. Addition-
ally, answering questions may involve reasoning over multiple images, understanding the entity in the
context of the table, and utilizing real-world factual knowledge apart from complex logical/numerical
reasoning.

The motivation behind this task stems from the need to enhance NLP models’ ability to reason over
real-world data, which often includes multimodal information. By addressing this task, we aim to im-
prove the understanding and utilization of multimodal data in NLP models, particularly focusing on
handling semi-structured table information, entity linking, reasoning over multiple images, and leverag-
ing real-world knowledge.

1.4 Research Questions Addressed

This thesis explores the following research questions:

RQ1 To develop methodologies for performing emotion-cause detection in Multimodal Conver-
sations and compare methodologies that model it on an utterance-level and sequence-level. Mul-
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timodal Conversations can be modelled at an utterance level, where each spoken dialogue is con-
sidered independent of the surrounding contextual utterances. On the other hand, we can also
take the utterances and even emotions in the surrounding dialogues into account while modelling
the Emotion Prediction task. Thus, we explore whether the latter leads to any benefit, using Bi-
LSTMs and CRFs for the exploration. We also experiment with different SOTA text, image and
audio encoders to determine the best-performing encoder combination for the task.

RQ2 To explore prompting strategies for LLMs such that they can perform unconventional rea-
soning. While LLMs have become very popular for various inference and reasoning tasks, they
still find it challenging to perform lateral reasoning, which involves puzzles needing out of the
box thinking. We prompt GPT-3.5 to reason over the questions through constructed prompts that
utilize few-shot examples, detailed task explanations and explanations of the reasoning behind the
few-shot answers. We also compare results with different number of provided few-shot examples
to understand the effectiveness of the approach.

RQ3 Whether existing models can parse the semi-structured information containing both images
and texts. We propose the problem of reasoning over semi-structured multimodal tables. One of
the most crucial aspects of the problem is that the model needs to parse the semi-structured nature
of the table and perform reasoning across rows and columns to answer complex questions.

RQ4 Whether models can disambiguate entities from their images in context of the table. Our
proposed task of reasoning and inference over tables comprises Wikipedia entity images. In order
to perform the task of reasoning and question answering, disambiguating these entities becomes
essential. While these entities can be challenging to disambiguate only through the image, the
context of the table might greatly help, and we explore this through our problem.

RQ5 How can models handle multiple images provided in the form of a table? While models like
Flamingo take arbitrary sequences of image and text as input, even they might find it extremely
difficult to reason over multiple images simultaneously. On the other hand, models like BLIP-2,
LLaVa, etc. process one image at a time. This makes the task of reasoning over multiple images
in a semi-structured format extremely hard.

1.5 Thesis Layout

C1 This chapter introduces the field of Multimodality and LLMs, where we define the scope of
the investigations and experiments conducted towards Multimodal Reasoning with LLMs. We
enlist the specific research problems addressed in this thesis, the motivation behind them, and a
quick summary of our approaches that will follow in later chapters.

C2 In this chapter, we introduce the problem of Multimodal Emotion-Cause Pair Detection and
then discuss the background of the task and dataset that we use. We describe the different
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encoders we experiment with, including BERT, RoBERTa-Large, EmotionRoBERTa, MViTv2-
small, WavLM and Wav2Vec2-Large. We also describe the different architectures we use, includ-
ing an MLP-based model, a stacked BiLSTM-based model and a stacked BiLSTM+CRF-based
model.

C3 In this chapter, we introduce the problem of Unconventional Question-Answering involving
Lateral reasoning and discuss the motivation and background of the task and the BrainTeaser
dataset that we use. We describe the experimental setup involving few-shot prompts for the task
and the structure of the prompts we use.

C4 In this chapter, we introduce the new problem of Reasoning over multimodal Semi-structured
Tables and discuss the work in different fields of Multimodality that the problem derives from.
We provide motivation for the problem by examining the complexities involved in the task and
give a formal definition for the task.

C5 In this chapter, we discuss the MultimodalTabQA dataset that we create for the problem of
reasoning over Multimodal Tables. We discuss the datasets we recast to create MultimodalTabQA
and describe our methodology for recasting these datasets. We also provide an analysis of the
created dataset.

C6 In this chapter, we describe three approaches to using LLMs/MLLMs for reasoning on our
created dataset. We use the publicly available Gemini-1.0 Pro family of models to evaluate these
baselines across the test set of our dataset.

C7 We conclude our thesis with this chapter, summarizing our analysis, experiments and the
insights gained. We also describe the directions in which this work can be further extended.

7



Chapter 2

Multimodal Emotion-Cause Pair Extraction

This chapter is adapted from the publication “LastResort at SemEval-2024 Task 3: Exploring Mul-
timodal Emotion Cause Pair Extraction as Sequence Labelling Task” accepted at the 18th International
Workshop on Semantic Evaluation (SemEval-2024). This work is a joint effort with: Akshett Rai Jindal
(IIIT Hyderabad), Hardik Mittal (IIIT Hyderabad) and Prof. Manish Shrivastava (Prof, IIIT Hyderabad).

As the first step towards exploring Reasoning over Multimodal Information, we explore the most
fundamental field of NLP in the context of Multimodal Information – Emotion Detection. In this chapter,
we describe the task of Multimodal Emotion-Cause Pair extraction and the architecture that we use for
performing the task, modelling it as an utterance-level as well as a sequence-level task.

2.1 Introduction

Emotion Analysis is one of the fundamental and earliest sub-fields of NLP that focus on identifying
and categorising emotions expressed in text. Earlier, research in this domain focused on Emotion De-
tection in news articles and headlines [36, 37]. However, later, Emotion Recognition in Conversation
gained popularity due to the widespread availability of public conversation data [31]. Recently, the task
of emotion cause analysis has gained traction, which tries to identify the causes behind certain emotions
[32]. This has widespread applications, such as building chatbots that can identify the user’s emotions
and even the cause behind the emotions to perform certain actions [38]. For instance, companies can
locate causes behind dissatisfaction in customer interactions and take appropriate measures [39], AI-
driven therapeutic insights can be gained using such models [40], social media content moderation can
be better done [41], work management and team management by companies can be improved [42].

In this work, we analyse the problem of Multimodal Emotion Cause Pair Extraction [5], where given
a set of utterances in a conversation, we must identify the following:

1. Emotion of every utterance (if any). These emotions can be one of Ekman’s six basic emotions
[43] – anger, disgust, happiness, sadness, fear, and surprise.

2. Cause of these emotions, which is considered as the utterance that explicitly expresses an event
or argument that is highly linked to the corresponding emotion.
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Figure 2.1: An example for the task (taken from [1])

Our proposed system tackles the task in a 3-step fashion – (a) First, we train a model to identify the
emotions expressed in individual utterances in a conversation. (b) Next, we train a model to identify
whether an utterance can be a cause of an emotion expressed in another/same utterance (candidate
causes). (c) Finally, we train a model to pair emotion-utterances with their causes among the possible
candidate causes. For both the (a) and (b) models we experiment with 3 basic architectures – (i) a simple
Neural Network to determine the class of emotion (N-class classifier) and another Neural Network
to identify whether the utterance is a candidate cause or not (binary classification). (ii) A BiLSTM
[44] architecture that accounts for the surrounding context of the conversation while doing the N-class
and binary-classification. (iii) A BiLSTM-CRF [45] architecture, which accounts for the surrounding
emotions as well while doing the N-class classification. We also experiment with different encoders for
the three modalities.

2.2 Background

2.2.1 Dataset

The dataset used for this problem is Emotion-Cause-in-Friends prepared by [1] specifically for this
task. It has been prepared using conversations from the famous 1994 sitcom Friends as the source.
This dataset contains 1,344 conversations made up of a total of 13,509 utterances, each conversation
containing an average of 10 utterances. For each utterance, the dataset has an annotated transcript
(covering text modality) and the corresponding video clip (covering visual and auditory modalities)
from the show.

Each utterance is annotated with the emotion depicted by it, which is one of: anger, disgust,
fear, joy, neutral, sadness and surprise. The dataset is highly skewed in terms of the
frequency of different emotions in the dataset (see Fig. 2.2). Further, the emotion-causes pairs for all
the non-neutral utterances are provided in the dataset in a separate list.
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Figure 2.2: Emotion frequency in the dataset

Two such conversations can be found in Listing 1. In these samples, we can see the conversa-
tion ID (conversation ID). It contains utterances under the key conversation. Each utterance has
its ID (utterance ID), its transcript (text), the speaker name (speaker), the emotion depicted and
the corresponding video clip name (video name) in dataset which corresponds to this utterance. We
can also find the emotion-cause pairs under the key emotion-cause pairs. For the 3rd utterance in
(conversation ID) 2, we can see that the emotion is surprise and it has two cause utterances - Ut-
terance 1 and 3. We can identify the emotion for the third utterance to be of surprise because of the
?! characters in the text, the surprised tone of the speaker’s voice in the audio and also their expression
in the video clearly showing surprise.

The task MC-ECPE expects the model to take a list of such conversations and predict the emotion
and emotion-cause pairs labels.

2.2.2 Related Work

A lot of work has been done in the field of emotion analysis in textual settings. However, for many
years, the main focus of researchers working in textual emotional analysis was only on emotion recog-
nition, and no work was done to also identify the cause of that emotion until recent years. The research
in the field of emotion cause analysis started with [36, 37], who worked on extracting potential causes
given the emotions. However, these studies were still being conducted on texts such as news articles or
micro-blogs. [46] extended this work to textual dialogues for the first time.
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{ "conversation_ID": 37,

"conversation": [ { "utterance_ID": 1,

"text": "So , you and Angela , huh ?",

"speaker": "Joey",

"emotion": "neutral",

"video_name": "dia37utt1.mp4" },

{ "utterance_ID": 2,

"text": "Yep . Pretty much .",

"speaker": "Bob",

"emotion": "joy",

"video_name": "dia37utt2.mp4" } ],

"emotion-cause_pairs": [

[ "2_joy", "1" ],

[ "2_joy", "2" ]

] }

{ "conversation_ID": 2,

"conversation": [ { "utterance_ID": 1,

"text": "I do not want to be single , okay ? I

just wanna be married again !",

"speaker": "Ross",

"emotion": "sadness",

"video_name": "dia42utt3.mp4"},

{ "utterance_ID": 2,

"text": "And I just want a million dollars !",

"speaker": "Chandler",

"emotion": "neutral",

"video_name": "dia42utt4.mp4"},

{ "utterance_ID": 3,

"text": "Rachel ? !",

"speaker": "Monica",

"emotion": "surprise",

"video_name": "dia42utt3.mp4"} ],

"emotion-cause_pairs": [

[ "1_sadness", "1" ],

[ "3_surprise", "3" ]

]}

Listing 1: Two sample conversations for the Multimodal Emotion-Cause Pairs task

Soon, work began on extracting not only the emotion but also the cause of that extracted emotion.
People employed mainly two approaches for emotion cause analysis:

1. Extracting the potential causes given an emotion [47, 48, 49]

2. Extracting the emotion-cause pairs jointly [50, 51, 52].

[46] was the first to introduce the task of extracting emotion-cause in conversations, but their focus
was also only on the textual dialogues. However, in our natural way of conversation, we rely on things
like facial expressions and voice intonations to determine the emotion of the speaker. We also rely on
auditory and visual scenes to determine the cause of the speaker’s emotions. Hence, it is clear that
identifying speaker’s emotions involves not just their utterances, but also their visual expressions and
intonations. Thus, the task of identifying Emotion-Cause Pairs is a multimodal task requiring visual
and audio modalities apart from just utterance information. [53, 54, 55, 56] worked in the field of
multimodal emotion analysis in conversations, but they did not consider the emotion causes.

The task of MC-ECPE was first worked on by [5].

2.3 Task Definition

As described above, the goal of the task is to jointly extract the emotions and corresponding causes
in pairs. Say, we are given a conversation D = [U1, ..., Ui, ..., U|D|], such that Ui = [ti, ai, vi] where
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ti represents the text modality, ai represents the audio modality and vi represents the video modality.
Then, the goal of the task is to extract a set of emotion-cause pairs as P = {..., (U e, U c), ...} where U e

denotes an emotion utterance while U c denotes a cause utterance.
An example utterance from the dataset is shown in Fig. 2.1

2.4 System Architecture

In order to perform the task of detecting all emotion-cause pairs in conversation, we perform the task
step-wise involving three steps. Given a conversation D as described in Section 2.2, the three tasks are:

1. Candidate Emotion Identification: This step involves finding a set of Candidate Emotion Utter-
ances Û e, which are utterances that exhibit an emotion (i.e. don’t belong to the Neutral class of
emotions). Û e

i comprises an utterance U e
j along with the emotion Ej predicted for it out of the 6

emotion classes (N-class classification step).

2. Candidate Cause Identification: This step involves finding a set of Candidate Emotion Cause
Utterances Û c, which are utterances that exhibit a reason for a particular emotion and so can be
paired with a different Candidate Emotion Û e identified in Step 1. Û c

i comprises an utterance U c
j

if it is predicted to possibly be a cause for another Candidate Emotion (binary classification step).

3. Emotion-Cause pairing: This stop comprises forming all pairs {..., (Û e
i , Û

c
j ), ...} such that Û c

j

is a cause-utterance behind the emotion-utterance Û e
i . This step involves forming all possible

pairs of Candidate Emotion Utterances (identified in Step 1) and Candidate Cause Utterances
(identified in Step 2). Thus, this is a binary classification step for all the pairs, classifying the pair
(Û e

i , Û
c
j ) as a valid or invalid pair.

We propose three baselines, which are illustrated in Fig. 2.3 and are detailed below:

2.4.1 Baseline I: Utterance labeling

Our baseline model treats the problem as a simple utterance labelling task. We use pre-trained text,
audio, and image encoders to encode the individual modalities and use these to train three models that
can identify the emotions in the utterances, the candidate cause utterances, and finally identify valid
emotion and cause utterance(s) pairs.

• Text Encoding: For encoding the transcription of each utterance, we use pre-trained BERT [57]
embeddings as the baseline embeddings. BERT’s effectiveness stems from its utilisation of the
transformer architecture, which incorporates self-attention mechanisms. This architecture enables
BERT to capture contextual information bidirectionally, facilitating a nuanced understanding of
language semantics. Consequently, BERT embeddings serve as a robust foundation for our anal-
ysis, enabling comprehensive representation of utterances in our NLP tasks.

12



Figure 2.3: Model Architecture

Additionally, we finetune DeBERTa-Base [58] on the training data for our experiments. DeBERTa
distinguishes itself through the incorporation of a disentangled attention mechanism, along with
an enhanced masked encoder, which collectively augments its performance across diverse NLP
tasks. Unlike BERT, DeBERTa’s disentangled attention mechanism enables attention heads to
focus independently on specific linguistic properties, enhancing its ability to capture intricate
language structures. Additionally, the enhanced masked encoder further refines DeBERTa’s con-
textual understanding, culminating in superior performance compared to BERT across a spectrum
of NLP benchmarks.

Finally, we also tried RoBERTa-Large and [59] pre-trained EmotionRoBERTa-Base1 which is
publicly available RoBERTa-base model finetuned on the Go Emotions dataset [60]. RoBERTa,
an improvement over BERT, implements dynamic masking during pre-training, increases train-
ing data and steps, and removes the next sentence prediction (NSP) task, resulting in enhanced
performance across various NLP tasks. EmotionRoBERTa-Base offers specialised pre-training
for emotion analysis tasks, thereby enriching our comparative analysis with a model tailored for
emotion detection. For every text encoder, we perform mean-pooling of the word embeddings to
get the textual representation of the utterance.

1https://huggingface.co/SamLowe/roberta-base-go_emotions
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• Video Encodings: For encoding the videos, we sampled 16 equally spaced frames from the
video and mean-pooled the embeddings for the 16 frames. For encoding these 16 images, we
used MViTv2-small [61] encoder, which achieves state-of-the-art performance on the Kinetics
video detection task [62], which makes it an obvious choice for recognising activities happening
in the conversations relevant for emotion/cause detection. Traditional vision transformers, limited
to processing images at a single resolution, might overlook crucial details for emotion recognition.

MViT addresses this limitation through its powerful multi-stage architecture. Each stage meticu-
lously analyses the image at a dedicated resolution and channel capacity. High-resolution stages,
equipped with lower channel capacity, excel at capturing fine-grained details like facial expres-
sions, which are vital indicators of specific emotions (e.g., furrowed brows for anger, upturned
lips for happiness). Conversely, lower-resolution stages with higher channel capacity prioritise
capturing broader emotional cues conveyed through posture and body language within the image.

This multi-scale approach aligns perfectly with a scientific understanding of emotion recogni-
tion, where both subtle facial features and body language are paramount in conveying emotional
states. By effectively capturing information across these distinct scales through MViT, we aimed
to encode a richer representation of the image data within each video frame. This comprehen-
sive encoding, encompassing both high-resolution details and lower-resolution contextual cues,
can significantly contribute to the overall task of accurately detecting emotions and their causes
within the multimodal framework.

• Audio Encodings: We used WavLM [63] for generating audio embeddings, which is trained on
extensive audio data using masked speech representation and denoising in pre-training, making it
suitable for various downstream speech tasks. WavLM excels in this role due to its multifaceted
learning approach during pre-training on a massive speech dataset. It goes beyond just under-
standing the spoken content, also learning to identify the speaker and other characteristics em-
bedded in the audio, like emotional tone. This rich embedding tackles various speech-processing
tasks effectively.

We also try Wav2Vec2-Large [64], which is trained by masking speech input in latent space and
solving a contrastive task defined over a quantisation of the latent representations which are jointly
learned. Unlike traditional methods requiring vast amounts of labelled data, Wav2Vec2-Large ex-
cels at self-supervised learning. It leverages unlabeled speech data by masking speech input in
latent space and solving a contrastive task defined over a quantisation of the latent representations,
which are jointly learned. This allows the model to identify patterns and relationships within the
audio itself, building a strong understanding of speech even without explicit labels. Consequently,
Wav2Vec2-Large requires significantly less labelled training data compared to conventional meth-
ods, making it efficient and adaptable to various speech variations. This efficiency, combined with
its ability to achieve state-of-the-art performance in speech recognition tasks, even with less data,
makes Wav2Vec2-Large a compelling choice for our experiments.

14



The model architecture is a combination of three steps, each of which is described below:

Step 1 – Emotion Classification

First, we concatenate the text, audio and video embeddings from the respective encoders and pass
these concatenated embeddings into a dense layer, on which a Softmax function is applied to get the
probability distribution over 7 classes (6 emotions and one neutral class). Due to a skewed distribu-
tion of the emotion labels in the dataset, we make use of weighted Cross Entropy loss to train the
model, where the weights are taken as inverse of the frequency of the labels in the training dataset. It
assigns weights to different classes based on their frequency in the training data. Classes with fewer
examples (minority classes) are assigned higher weights, making their contribution to the overall loss
function more significant. This forces the model to pay greater attention to these classes during training,
improving its ability to learn and predict them accurately.

Step 2 – Candidate Cause Identification

For identifying the candidate cause, we similarly pass concatenated embeddings through a dense
layer with a Sigmoid function, which predicts the probability of whether the utterance is a candidate
cause or not. Binary Cross Entropy Loss is used to train the model.

Step 3 – Emotion-Cause pairing

For pairing the emotion utterances with the candidate causes, we concatenate the representations for
the emotion utterance and the cause utterance, with a distance embedding. This distance embedding
is generated by giving positional embedding to each utterance, sampled from a Normal Distribution.
This representation is passed through a dense layer with a Sigmoid function, which learns to predict the
probability of the emotion-cause utterance pair being a valid emotion-cause pair or not for the given
conversation, trained using Binary Cross Entropy Loss.

2.4.2 Baseline II: BiLSTM Architecture

The BiLSTM architecture is inspired by the work in [5]. Baseline I architecture ignores surround-
ing utterances when classifying emotions and their causes in an utterance. However, emotions in an
utterance are highly contextual (e.g., sarcasm, irony, subtle tone shifts) and require understanding the
broader conversation and speaker relationships. Therefore, in Baseline II we consider the surrounding
utterances while performing emotion and cause classification for a particular utterance.

Bidirectional Long Short-Term Memory networks (BiLSTMs) are a well-established approach for
dealing with sequential data, where the order of information holds significance. Their strength lies in
capturing long-term dependencies within sequences, making them ideal for tasks that require under-
standing context. BiLSTMs achieve this by processing data in both forward and backward directions.
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This allows them to analyse how past and future elements in a sequence relate to the present element,
providing a more comprehensive understanding of the context.

In the context of emotion and cause classification, this improved context awareness is crucial. The
emotional state and cause behind an utterance can be heavily influenced by the flow of conversation.
By considering both preceding and following utterances, BiLSTMs can more accurately identify the
emotions expressed and the factors triggering them.

However, a single layer of BiLSTM might not always be sufficient to capture complex contextual re-
lationships, especially in lengthy conversations. Therefore, we use stacked BiLSTMs, where each layer
builds upon the previous one to extract progressively more intricate features and relationships within the
conversation. This leads to a richer representation and improved learning of long-term dependencies,
which is crucial for understanding how distant utterances influence emotions. Additionally, stacked
BiLSTMs achieve gradual abstraction, with lower layers capturing low-level details and higher layers
learning more abstract emotional flows within the conversation. This combination of enhanced repre-
sentational power, improved dependency learning, and hierarchical abstraction allows stacked BiLSTMs
to outperform single BiLSTM layers in emotion and cause classification tasks.

Thus, the stacked-BiLSTM architecture models the problem as a Sequence Labeling task. We use
the best encoders in the Baseline I architecture to generate the embeddings in this architecture.

Step 1 – Emotion Classification

Similar to the Baseline Model, we concatenate the embeddings of the three modalities and pass them
to a stacked BiLSTM. On top of the BiLSTM outputs, we apply a 7-class classifier to obtain the emotion
category distribution. Similar to Baseline I, weighted cross-entropy loss is used.

Step 2 – Candidate Cause Identification

For Candidate Cause prediction, similarly, the concatenated embeddings are passed through a BiL-
STM, on top of which a binary classifier is applied.

Step 3 – Emotion-Cause Pairing

The Emotion-Cause pairing model remains the same in this architecture as the Baseline I model.

In this architecture, BiLSTM provides the advantages of bidirectional and longer contexts, which
should help better understand the emotions present in utterances. This is because, in a conversation, it is
possible that the emotions are not just dependent on the current utterance but on surrounding multimodal
utterances as well.
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2.4.3 Baseline III: BiLSTM-CRF Architecture

In the BiLSTM model, each classification decision was conditionally independent. Thus, it pre-
dicted labels for each element in the sequence without considering the labels of its neighbours. This
limitation can be overcome by employing Linear-chain Conditional Random Fields (CRFs). CRFs are
models specifically designed for structured data where one output influences its neighbouring outputs.
They excel at modelling these relationships by learning transition probabilities between labels. This is
particularly beneficial for sequence labelling tasks like emotion prediction in text, where the emotion of
an utterance is often influenced by the emotions in the preceding ones. For example, a happy utterance
is more likely to be followed by another happy utterance. By incorporating a CRF layer on top of the
BiLSTM, we can leverage the strengths of both models: the BiLSTM’s ability to capture sequential
features and the CRF’s capability to model label dependencies.

Linear-chain CRFs have been extensively used with BiLSTMs for sequence labelling [65]. This
could be useful for the emotion-cause prediction task as well because the emotion of one utterance is
generally influenced by the emotions in its previous utterances.

Step 1 – Emotion Classification

For this architecture, we add a CRF layer on top of the BiLSTM layers, and make use of the CRF-
loss to train the model instead of Cross-Entropy loss as in the previous architectures. This loss models
the transitions between the labels in the architecture, modelling the task as a more complex sequence
labelling task. Unlike Cross-Entropy loss, which focuses on the likelihood of individual labels, CRF
loss considers the entire sequence of labels and their dependencies. Thus, while the BiLSTM layer
learns more about the language and emotions expressed through the language, the CRF layer tries to
learn about the relations between the emotions.

Step 2 – Candidate Cause Identification

For Candidate Cause prediction, the architecture remains the same as in Baseline II. This is because
the transitions between cause labels (being the cause of an emotion in an utterance or not) do not make
intuitive sense, and using BiLSTMs to capture surrounding context from other utterances is what seems
more appropriate.

Step 3 – Emotion-Cause Pairing

The Emotion-Cause pairing model remains the same in this architecture as the Baseline I & II models.
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2.5 Experimental Setup

We perform a random shuffle and use a 90-10% split for the train-validation split. The test set was
provided by the authors, but its gold labels have not been made public.

The experiments involving Baseline II and III use EmotionRoBERTa + WavLM + MViTv2 configura-
tion. All the experiments involve applying a dropout of 0.3 on the audio, visual and textual embeddings
before they are passed on to the main architectures. The BiLSTM for emotion detection consists of
4 stacked layers, while the one for candidate cause identification contains three stacked layers. The
dropout between the stacked layers of the BiLSTM is kept at 0.3 as well. We use AdamW optimiser for
all three models and use a linear learning rate scheduler with warmup for training the models. The Emo-
tion Classification model is trained for 60 epochs, the Candidate Cause Identification model is trained
for 40 epochs, and the Emotion-Cause Pairing Model is trained for 40 epochs as well.

In order to train the Emotion-Cause pairing model, we create positive and negative pairs during
training. However, while the number of positive pairs is of the order N, the number of negative pairs
comes to the order of N2, and thus we perform a random sampling of the negative pairs to keep the
positive and negative samples in the ratio 1:5. This helps us to maintain balance between the positive
and negative classes.

Evaluation Metrics

We evaluate the three steps separately as well, apart from benchmarking the performance for the final
Emotion-Cause pairs:

Emotion Identification: We use Weighted Precision, Recall and F1-score for the distribution be-
tween the 7 classes (6 emotions and neutral class). These metrics are formally defined as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1-score = 2× Precision × Recall
Precision + Recall

where TP denotes true positives, FP denotes false positives, and FN denotes false negatives.
Candidate Cause Identification:Similarly, we utilize Weighted Precision, Recall, and F1-score to eval-
uate predictions between the binary classes: is candidate cause and not candidate cause. The formal
definitions of these metrics remain consistent with those mentioned above.
Emotion-Cause Pairing: In this stage, we generate positive and negative pairs and assess the classifi-
cation between the two classes using Weighted Precision, Recall, and F1-score. The formal definitions
of these metrics remain consistent with those mentioned above.
Emotion-Cause Pairs: The official metrics used for the final evaluation of this task are Weighted F1-
score and Macro F1-score. These scores are calculated as follows:

Weighted F1-score =

∑n
i=1wi × F1i∑n

i=1wi
, Macro F1-score =

∑n
i=1 F1i
n

where F1i denotes the F1-score for class i and wi denotes the weight for class i.
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2.6 Results and Analysis

Model Name
Emotion Candidate Cause Emotion-Cause Emotion-Cause

Leaderboard
Detection Detection Pairing Pairing (Eval.)

P R F1 P R F1 P R F1 wt.

F1

Macro

F1

wt.

F1

Macro

F1

Baseline I

BERT + WavLM +

MViTv2

0.61 0.52 0.55 0.71 0.71 0.71 0.93 0.87 0.89 0.26 0.20 0.182 0.165

EmotionRoBERTa +

WavLM + MViTv2

0.55 0.45 0.47 0.67 0.66 0.66 0.93 0.86 0.89 0.20 0.18 0.187 0.170

DeBERTa (finet.) +

WavLM + MViTv2

0.44 0.36 0.38 0.60 0.60 0.60 0.92 0.85 0.87 0.10 0.10 0.094 0.094

RoBERTa-L + WavLM +

MViTv2

0.59 0.47 0.49 0.66 0.65 0.66 0.93 0.86 0.88 0.21 0.19 0.180 0.165

EmotionRoBERTa +

Wav2Vec2 + MViTv2

0.55 0.47 0.48 0.67 0.67 0.67 0.93 0.87 0.89 0.21 0.20 0.172 0.170

BiLSTM (Baseline II) 0.55 0.51 0.52 0.67 0.67 0.67 0.93 0.86 0.89 0.22 0.21 0.184 0.179

BiLSTM +

CRF(Baseline III)

0.53 0.56 0.54 0.67 0.67 0.67 0.93 0.86 0.89 0.24 0.18 0.165 0.172

Table 2.1: Results for baselines on the ECAC dataset

The performance of the three Baselines can be seen in Table 2.1. During the Evaluation phase in
our participation in SemEval task 2024, our best-ranked submission of Baseline II had Wt. F1 score of
0.1836 and Macro F1 score of 0.1759, ranking 8th on the leaderboard.
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Baseline I

Among the encoders in Baseline I, BERT + WavLM + MViTv2 configuration performs the best on
the validation set, including the individual steps as well as the final emotion-cause pair predictions.
However, on the leaderboard, EmotionRoBERTa + WavLM + MViTv2 gives the best performance, al-
though the difference in the leaderboard scores is marginal among the encoders. This observation might
indicate that the test data is a bit different in nature from the training data.

The better performance of EmotionRoBERTa can be attributed to the fact that the model’s weights
have already been finetuned towards emotion-related tasks. Further, it seems that finetuning DeBERTa
on the training data caused it to overfit, leading to worse performance than vanilla BERT/RoBERTa
models. RoBERTa-L performed slightly worse than BERT and EmotionRoBERTa.

Finally, WavLM, being the newer architecture, as expected, performed better than Wav2Vec2. This
is because WavLM is more robust than Wav2Vec2, and it is trained in a combination of supervised and
self-supervised learning, making its performance much better.

Baseline II

In our experimental setup, we adopt the EmotionRoBERTa + WavLM + MViTv2 configuration as the
encoders for the Baseline II architecture. Surprisingly, despite expectations of potential performance
improvements, the weighted F1 score on the leaderboard experiences a slight decrease, while the Macro
F1 score shows a marginal increase. This discrepancy may be attributed to the unique characteristics
of the dataset, wherein the average length of a conversation is minimal, typically around ten utterances.
As a consequence, the contextual information available to the model within each utterance is severely
limited. Consequently, the inclusion of additional context from previous utterances may not provide
significant benefit and could potentially introduce noise into the model’s predictions. This contextual
mismatch could explain the observed results on the leaderboard.

Baseline III

In analysing the results, we note a substantial decrease in the weighted F1 score and a slight decline
in the Macro F1 score compared to the Baseline I and II architectures. This observation aligns with
the findings of Baseline II, suggesting that sequence labelling may not be the optimal approach for
modelling the dataset. Moreover, given the limited number of utterances in conversations, it is probable
that the transitions between labels required for Conditional Random Field (CRF) modelling are not
adequately learned, resulting in diminished performance. This discrepancy underscores the challenges
inherent in effectively capturing the nuanced transitions between labels within the dataset’s context.
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2.7 Conclusion

In conclusion, we observe that the utterance labelling systems perform as well as sequence labelling
systems for this specific dataset. Further, we also see that encoders which are trained on other emotion-
related tasks tend to perform better on similar emotion-related tasks. However, we also observed that all
text encoders gave almost similar results, indicating that only fundamental language knowledge needs to
be integrated into the LLMs for emotion-related tasks, to the extent that BERT, RoBERTa and DeBERTa
all have similar performance.

We also clearly observe the improvements of WavLM over Wav2Vec2. This demonstrates that while
Wav2vec2 excels at deciphering the spoken words, WavLM goes further. It can analyse the speaker’s
voice itself, capturing paralinguistic cues that reveal emotions. By understanding both what is said and
how it’s said, WavLM becomes a powerful tool for extracting emotion-cause pairs in conversations.

We also understand the potential benefits LSTMs and CRFs could provide, modelling the problem
as a sequence labelling task rather than an utterance labelling task. However, we clearly observed the
unique nature of our dataset, which instead made the context information a source of noise rather than
helpful information. In future, it is possible to learn joint embeddings over the three modalities, which
should provide better representations for each utterance [66]. Further, it can be experimented to utilise
the speaker information for each utterance while creating utterance representations [67].

This task serves as an introduction to Multimodal tasks, primarily utilising classical methods like
BiLSTMs and BiLSTM-CRFs while only using basic Transformer-based encoders. However, in the
next chapter, we move towards using more modern generative LLMs for performing reasoning, and
finally build upon the concepts of Multimodality from this chapter to introduce the task of Reasoning
over Semi-structured Multimodal Tables using LLMs.

Through this work, we gain insights into various image, text, and audio encoders and explore combin-
ing embeddings from the three modalities to perform complex analysis tasks. This exploration provides
the basis for further investigation in the Multimodality domain later in this thesis.
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Chapter 3

Prompting GPT-3.5 for Unconventional Reasoning

This chapter is adapted from the publication “DaVinci at SemEval-2024 Task 9: Few-shot prompt-
ing GPT-3.5 for Unconventional Reasoning” accepted at the 18th International Workshop on Semantic
Evaluation (SemEval-2024). This work is a joint effort with: Akshett Rai Jindal (IIIT Hyderabad),
Hardik Mittal (IIIT Hyderabad) and Prof. Manish Shrivastava (Prof, IIIT Hyderabad).

While the previous chapter dealt with understanding Multimodal data, we made use of more tra-
ditional NLP techniques like LSTMs, CRFs and simple MLP on top of embeddings obtained from
different encoders to perform the task. However, given the impressive performance of LLMs, espe-
cially of the large parameter models like GPT-3.5 and GPT-4 in solving various complex NLP tasks,
we are highly interested in utilizing such models as a part of this thesis. In this chapter, we discuss
using few-shot prompting on GPT-3.5 and defining prompt-structures to perform Question Answering
and reasoning using LLMs, which forms the base for the work on prompting MLLMs for Multimodal
Question Answering later in the thesis.

3.1 Introduction

The human brain consists of two hemispheres - left and right. Both of them are responsible for
different kinds of thinking strategies. The left hemisphere is involved in vertical thinking, and the right
hemisphere is involved in lateral thinking [68]. Vertical (linear, convergent, logical) thinking is a more
sequential analytical process. In contrast, in Lateral (outside the box, divergent, creative) thinking, we
look at the problem from a new point of view, ignoring the expected associations with items.

In the field of NLP, much research has been done around vertical thinking and significant progress
has been made. The recent work around Large Language Models (LLMs) [57, 69] has achieved great
performance in solving complex reasoning tasks [70, 71, 72]. This performance is consistent in both
cases when no task examples have been provided to the model during inference (zero-shot) [73] and
when the model is introduced with the task during inference time (few-shot) [74].

However, lateral thinking has been overlooked when training NLP models like LLMs. When creating
datasets for various models, texts that involve lateral thinking are mostly considered noise and filtered
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out from the data because researchers want their models to perform better at traditional reasoning tasks
and not get confused by lateral thinking.

The task BRAINTEASER [34, 33]) tries to bridge this gap that exists between vertical and lateral
thinking for LLMs and other NLP models. They formulated a set of Multi-choice Question Answers
containing puzzles that can be solved only using lateral thinking. The benchmark dataset contains
two types of lateral thinking puzzles - Sentence Puzzles and Word Puzzles. This has been constructed
by designing a data collection procedure that crawled relevant puzzles from many websites that were
publicly available performing semi-automatic filtering of irrelevant questions.

3.2 Background

3.2.1 Dataset

The dataset being used in this task is BRAINTEASER [34]. It was prepared by scraping puzzles
from various publicly available websites and then semi-automatically filtering them out. Then semantic
reconstruction and context reconstruction techniques were used to create variants of each puzzle without
affecting its out-of-the-box thinking style. This helped in preventing possible memorization by LLMs
and the lack of consistency of the puzzles. Each puzzle comprises of a premise and a question based
upon it with four options. The task is to select the correct answer from the four options.

The puzzles in this dataset can be divided into two categories:

• Sentence Puzzles: These are brain teasers where the puzzle-defying commonsense is centered on
sentence snippets.

For example, Question: You are running so fast but you’re not getting closer. Where are you?
Answer: Treadmill. Explanation: This is because while running on a treadmill, we stay put
where we are. The key is understanding that running on a treadmill means you remain stationary
despite the motion.

• Word Puzzles: These are brain teasers where the answer violates the default meaning of the word
and focuses more on the letter composition.

For example, Question: How can you make ”ten” out of ”net”? Answer: Just flip it around.
Explanation: This is because if we consider the spelling of the word ”ten” and we flip the letters
of the word around, we get the word ”net” which is what we want to make out of ”ten”.

The training data contains 507 Sentence Puzzles and 396 Word Puzzles. Each of these puzzles has
4 options to choose from and only one option is the correct answer. Each puzzle further is of 3 different
types, depending upon how it was constructed:

• Original Questions are the questions that are scraped from various puzzle websites on the web.
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• Semantic Reconstruction Questions are created by rephrasing the Original Questions without
changing its answer, distractor or the premise.

• Context Reconstruction Questions keep the commonsense premise intact but changes both the
question and answer to new situational context.

3.2.2 Related Works

With the recent success of LLMs in various NLP tasks, researchers have also started exploring their
use for Multiple Choice Question Answering (MCQA) tasks [75, 76].

Researchers have also started employing the technique of few-shot prompting [77, 78, 79] for vari-
ous tasks and it has shown improvements when compared with zero-shot prompting.

LLMs like GPT-3.5 have been trained on vast amounts of human-generated text. The main fea-
tures around which such models are trained are Pattern Recognition, Creative Reasoning and Wide
Knowledge Range.

Thus, we decided to employ few-shot prompting on LLMs for this task.

3.3 System Overview

Our architecture uses GPT-3.5 ([21]) (specifically gpt-3.5-turbo) with few-shot prompting to answer
the question.

3.3.1 GPT-3.5

In NLP, the architecture of Generative Pre-trained Transformer (GPT) 3.5 (GPT-3.5) stands as a
significant advancement, which is the culmination of iterative improvement over its predecessors. The
architecture of the model is based upon the Transformer model [80], which uses self-attention to enhance
performance over the prior sequential models. GPT-3.5 scales this Transformer architecture to over
hundereds of billions of parameters, which have been trained by exposing and training the model on
hundreds of billions of tokens.

In particular, due to the autoregressive nature of GPT-3.5 and due to being trained on extremely large
data, it has enough knowledge about the language and the real world to perform tasks in a Zero-shot
setting [73]. This Zero-shot setting allows the model to understand and execute a task it hasn’t been
explicitly trained for. These capabilities have been reflected in GPT-3.5 being used in Summarization
[81], Question Answering [82], Natural Language Inference [83], etc.

3.3.2 Few-shot prompting

While zero-shot prompting works well for simple tasks, tasks like BrainTeaser are a bit more complex
in nature, and in such cases providing explicit instructions to the LLM about the nature of the task along
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with few examples of the task (few shots) becomes extremely helpful for the model [74]. Here, the
few-shot technique involves providing GPT-3.5 some examples, allowing GPT-3.5 to generalize from
the few examples, drawing on its large pre-trained knowledge about the language and the real-world.

Thus, 2 different sets of prompts are created for the task, one for the Sentence Puzzle Task and
another for the Word Puzzle task, since the 2 tasks are fundamentally different and need different in-
structions and examples.

3.3.3 Experimental Setup

We provide 2-shot prompts to GPT-3.5 for our leaderboard submission. We also try out 5-shot prompt
in the post evaluation phase to test if providing more examples helps the model perform better.

The prompt used for the Sentence Puzzle task is shown in Listing 2. As we can see, the prompt
first details the task, and IMPORTANT keyword is used to express to GPT-3.5 that commonsense must
not be used in the task, but instead it should look at meaning from an unconventional sense. Then, 2
examples are given, along with reasoning behind the answers too. This was important, as this gave the
model more knowledge to be able to generalize the task from the examples. Further, the output format
was clearly specified in the prompt so as to avoid getting extra information in the model output.

Similar prompt for Word Puzzle can be seen in Listing 3. The prompt clarifies that the structural
aspect of the words should be focused on, emphasizing that unconventional meaning should be looked
at. Then, 2 examples that exhibit structural aspect are given along with reasoning behind their answers
as well as constraints for the output format.

3.4 Results and Analysis

The results are detailed in Table 3.1. We report Instance-based accuracy, which considers each ques-
tion (original or reconstruction) separately, reporting accuracy on original puzzles and their semantic
and context reconstructions. On the other hand, Group-based accuracy considers each original puzzle
and its variants as a group, scoring 1 only when all three puzzles in the group are successfully solved;
otherwise, the score is 0.

For comparison, we also list the zero-shot prompting results reported in [34]. As we can see, the
two-shot performance on Word puzzle improved over the zero-shot setting for all the categories, while
the same worsened in case of the Sentence puzzle.

This is because of the very nature of the two problems. Sentence puzzle involves deeper non-
conventional semantic understanding of the question and the choices, which despite conveying reasoning
behind the answers in the few-shot examples, cannot be generalized as easily with just 2 examples. On
the other hand, the only tricky component of the Word Puzzle is that the structural aspect of certain
words needs to be taken instead of the actual surface meaning of the said words. This can be much more
easily generalized through just as few as two examples in the prompt. Further, adding the examples
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You are given a question with multiple choices that you need to answer. The answer would only be one index of the multiple

choices available. Such a question would involve brain teaser questions where the puzzle defying commonsense is

centered on sentence snippets.

↪→

↪→

IMPORTANT: It's crucial to analyze the question from an unconventional perspective, focusing on the literal or alternative

meanings of the words used, rather than relying on common sense. You must not use commonsense, but look at meaning from

a different perspective than what would commonly be done. For example,

↪→

↪→

Example 1:

Question: You are running so fast but you're not getting closer. Where are you?

Option 0: Country road.

Option 1: Treadmill.

Option 2: High way.

Option 3: None of above.

Answer: 1

Reason: This is because while running on a treadmill, we stay put where we are. The key is understanding that running on a

treadmill means you remain stationary despite the motion. This is not valid for Country road or High way. Thus, the

answer is 1 - Treadmill.

↪→

↪→

Example 2:

Question: From elementary school to collage, how many "first day of school" does the average person have in their lifetime?

Option 0: They technically only have one first day of school in their lifetime. That's the very first day they started

attending school as a child.↪→

Option 1: Average people have 4: elementary school, middle school, high school, and college.

Option 2: Average people have "first day of school" in each semester, so it will be more than 10!

Option 3: None of above.

Answer: 0

Reason: First day of school can only be one day in a person's lifetime. Here, it is important to understand that first day

of middle school, high school, college won't be first day of school. Similarly, each semester's first day is not

TECHNICALLY first day of school. This, the answer is 0 - They technically only have one first day of school in their

lifetime. That's the very first day they started attending school as a child. Thus, the key here is the term 'first day

of school' technically refers to the very first day a person attends school, making all subsequent 'first days' at

different educational levels irrelevant to the specific question.

↪→

↪→

↪→

↪→

↪→

Now, using these examples, answer the question below. It is IMPORTANT that you just provide the index of the answer in the

response. DO NOT output the reason behind choosing the answer:↪→

Question: In a small village, two farmers are working in their fields - a diligent farmer and a lazy farmer. The

hardworking farmer is the son of the lazy farmer, but the lazy farmer is not the father of the hardworking farmer. Can

you explain this unusual relationship?

↪→

↪→

Option 0: The lazy farmer is his mother.

Option 1: The lazy farmer is not a responsible father as he is lazy.

Option 2: The diligent farmer devoted himself to the farm and gradually forgot his father.

Option 3: None of above.

Answer:

Listing 2: Prompt for the Sentence Puzzle

in the Sentence puzzle that don’t generalize very well for other questions in the testing set might have
acted as noise for the model, which led to poorer performance.
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You are given a question with multiple choices that you need to answer. The answer would only be one index of the multiple

choices available. The question demands an unorthodox approach, focusing on the spellings or structural aspects of

words, rather than their standard meanings. Your task is to choose the correct answer from the given multiple-choice

options by analyzing the words in a literal or unconventional way.

↪→

↪→

↪→

IMPORTANT: It's crucial to analyze the question from an unconventional perspective, focusing on the spellings of certain

words, rather than relying on common sense. You must not use commonsense, but look at meaning from a different

perspective considering arrangement of the letters in certain words than what would commonly be done. For example,

↪→

↪→

Example 1:

Question: How can you make "ten" out of "net"?

Option 0: Just flip it around.

Option 1: Remove the letter "e".

Option 2: Move the letter "t" to the end.

Option 3: None of above.

Answer: 0

Reason: This is because if we consider the spelling of the word 'ten' and we flip the letters of the word 'ten' around, we

get the word 'net', which is what we want to make out of 'ten'. The answer focuses on the literal rearrangement of the

letters, disregarding the typical meanings of the words. Thus, the answer is 0 - Just flip it around.

↪→

↪→

Example 2:

Question: What is the most fast city?

Option 0: Urban city.

Option 1: Inner city.

Option 2: Velocity.

Option 3: None of above.

Answer: 2

Reason: The term 'fast' in the question prompts an unconventional interpretation. All options contain the word "city", but

"velocity" stands out as it directly relates to speed or 'fastness'. The question cleverly uses the term 'city' as a

red herring, while the actual focus is on the concept of speed.

↪→

↪→

Now, using these examples, answer the question below. It is IMPORTANT that you just provide the index of the answer in the

response. DO NOT output the reason behind choosing the answer:↪→

Question: What sort of cheese is made in reverse?

Option 0: Cheddar cheese..

Option 1: Edam cheese.

Option 2: Blue cheese.

Option 3: None of above.

Answer:

Listing 3: Prompt for the Word Puzzle

We also note that using five-shot prompt instead of two-shot prompt hugely increases the perfor-
mance. This is to be expected, as providing more examples would help the model generalize even better
towards solving the task. This is specially true for Word Puzzle questions, where adding more examples
allows the model to generalize the task much better.
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Table 3.1: Results of zero-shot and few-shot prompting on GPT-3.5 for the two BRAINTEASER sub-

tasks. Ori = Original, Sem = Semantic, Con = Context.

Model
Instance-based Group-based

Overall
Original Semantic Context Ori & Sem Ori & Sem & Con

Sentence puzzle

GPT-3.5 (zero-shot) 60.7 59.3 67.9 50.7 39.7 62.6

GPT-3.5 (two-shot) 57.5 55.0 42.5 50.0 30.0 51.7

GPT-3.5 (five-shot) 62.5 65.0 55.0 62.5 42.5 60.8

Word puzzle

GPT-3.5 (zero-shot) 56.1 52.4 51.8 43.90 29.3 53.5

GPT-3.5 (two-shot) 71.9 71.9 62.5 59.4 46.9 68.6

GPT-3.5 (five-shot) 78.1 90.6 84.4 78.1 68.8 84.4

However, in Sentence Puzzle we still notice a drop in the overall performance as compared to the
zero-shot model. This is because of a drop in the performance of the context reconstruction questions,
and a marginal increase in comparison to zero-shot in other types of questions. However, group based
accuracy increases in five-shot, which might indicate that with five examples, the model is able to handle
the variations in reconstructions better, albeit with performance of Contextual Reconstruction taking a
dip. These observations are in line with the drop observed in two-shot prompt in comparison to the
zero-shot prompt, highlighting the difficult nature of the task of Sentence Puzzle questions and the
inability of the model to generalize using few Sentence Puzzle examples. However, we do note that
the performance on Sentence Puzzle also does improve with additional examples between two-shot and
five-shot prompting.

3.5 Conclusion

In conclusion, we explored the effectiveness of few-shot prompting for LLMs for complex and un-
conventional tasks. Further, it demonstrates that few-shot prompting is helpful only in scenarios where
the examples convey enough information that can be better generalized, as the results worsened in the
Sentence Puzzle while improved in the Word Puzzle.

In future, better prompting strategies like Chain of Thought prompting [84] can be utilized to improve
the performance. Additionally, finetuning GPT-3.5 might also help in the task further. Also, increasing
the number of training examples might help in further improving the model performance, as observed
in the gains of performance in the five-shot prompt in comparison to the two-shot prompt.
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Through this work, we get a clearer idea about how defining the reason behind certain question
answers and even providing few-shot examples helps model in complex reasoning. We make use of
these insights later in the thesis while reasoning over complex multimodal tables by prompting LLMs
and MLLMs.
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Chapter 4

Reasoning over Multi-modal Semi-structured Tables

This chapter is adapted from the upcoming publication “Knowledge-Aware Reasoning over Multi-
modal Semi-structured Tables” under review at an NLP venue. This work is a joint effort with: Jainit
Sushil Bafna (IIIT Hyderabad), Kunal Kartik (IIT Guwahati), Harshita Khandelwal (UCLA), Prof. Man-
ish Shrivastava (Prof, IIIT Hyderabad), Vivek Gupta (Postdoc, University of Pennsylvania), Prof. Mohit
Bansal (Prof, University of North Carolina) and Prof. Dan Roth (Prof, University of Pennsylvania).
This chapter incorporates the methodology and experiments outlined in the version of the paper dated
6th May 2024.

This chapter introduces the problem of Question Answering over Multimodal Tables. We discuss the
prior work related to the problem, explore the motivation and challenges behind performing Multimodal
Table Question Answering, and provide a formal formulation of the problem.

4.1 Introduction

Tables are essential tools for summarizing and conveying information efficiently across numerous
fields. Although inference and reasoning over tables have been extensively explored within the realm of
Natural Language Processing (NLP) [35], prior research has predominantly focused on text-only tables.

However, real-world tables frequently incorporate images, such as logos or flags, representing vari-
ous entities like teams or countries. Additionally, in cases where the visual characteristics of entities are
crucial, tables may include images corresponding to these entities. This aspect is vital for the inference
and reasoning capabilities over such tables, yet it remains unexplored. In this thesis, we build upon the
tasks of Multimodal Emotion-Cause Pair Extraction and Prompting LLMs for Inference and Reasoning
to propose the task of exploring Multimodality in Tables, using Multimodal LLMs [85] to solve the task.

To this end, we introduce the task of Question-Answering over Multimodal Knowledge-aware Semi-
structured tables. Our work involves Question-Answering over tables from Wikipedia, where Wikipedia
entities belonging to various categories are represented using their images. Effectively, performing in-
ference on such tables requires understanding what entity is represented by said image in the context of
the table in addition to gaining simply a visual understanding of the image. Thus, Multimodal Entity
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Linking [86] of the image in the context of the table is a crucial aspect of our methodology. Addition-
ally, understanding the visual attributes of the entities is essential for answering queries that involve
visual characteristics. Since the tables feature multiple images, our approach also incorporates elements
of multi-image visual question-answering [87]. This also makes the problem interesting from the per-
spective of exploring and probing the capabilities of multimodal LLMs in the aspects of multimodal
entity linking, reasoning over multiple images, using real-world factual knowledge, and understanding
semi-structured information.

4.2 Related Work

Since the problem is novel, there is no prior work directly related to the problem in its entirety. How-
ever, the problem draws from various independent Multimodal problems and their aspects, combining
them into one bigger problem. In this Section we look at the background works for each aspect of our
problem independently, which provides a direction to how we approach it.

4.2.1 Tables with additional modality

While traditionally only homogeneous tables were considered for various NLP tasks, few recent
works have explored using extra modalities as additional context for tabular question answering. [88]
added additional context of paragraphs in addition to the information present in the table for reason-
ing and question answering. Similarly, [89, 90] created hybrid data by combining tabular and textual
data from real financial reports to build the benchmark. Likewise, [91] explored the task of numerical
reasoning over hybrid data comprising both textual and hierarchical table content.

Building upon hybrid data comprising tables and additional paragraph context, [92] adds the addi-
tional context of images over the paragraph and table information from the previous works. Similarly,
[93] involves conversational question answering over tables, images and texts. Both these works propose
models that involve combining the relevant extracted information from the individual three modalities
for question answering. [94] propose a unified language representation for combining the image, text
and table modalities for question answering. [95] propose an end-to-end prompting method and use
In-context learning for performing Question Answering on the hybrid datasets.

However, these works still don’t consider the table itself to be non-homogeneous. Instead, they
add some additional context to the homogeneous table, which still remains text-only.

4.2.2 Knowledge-Based Visual Question Answering

Recently, huge progress has been made towards Visual Question Answering [96], but entity-specific
knowledge-aware visual question answering is relatively unexplored. While datasets like [97] and [98]
require real-world knowledge for reasoning and performing Visual Question Answering, they don’t
require much entity-specific finegrained knowledge for the question answering task. [99] introduced
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the task of knowledge-aware visual question answering over named entities, making used of Wikipedi-
a/Wikidata entity images to create the dataset and the Knowledge Base over which retrieval-based ap-
proaches performed well for the task, which forms highly relevant to our task of performing tabular QA
over Wikipedia entities.

[100] and [101] tackle similar task, requiring fine-grained knowledge about the entities provided in
images for performing the task of Visual Question Answering. These also make use of Large Vision-
Language Models like BLIP-2 [102], PaLI [103] to answer such questions.

4.2.3 Multimodal Entity Linking

Multimodal Entity Linking is a process that combines information from different modalities, such
as text, images, or audio, to accurately identify and link entities mentioned in a given context to their
corresponding entries in a knowledge base or database. [86] introduced the task of Multimodal Entity
Linking under zero-shot setting using social media data. Several approaches were tried to Multimodal
Entity Linking, like determining relations between image and text and performing disambiguation [104],
combining text and image to perform the disambiguation [104], while others also implemented graph-
matching based models [105].

Recently, [106] introduced the WikiDiverse datset, which involved Multimodal Entity Disambigua-
tion for Wikipedia entities, which is very close to the entity linking/disambiguation aspect of our task,
albeit in the context of a table. The analysis in this dataset also emphasizes that both image and text
modalities are important in disambiguating the entity.

4.2.4 VQA involving multiple images

Visual Question Answering has made significant progress about understanding and responding about
single images. However, real-world scenarios, including such Multimodal Tables, involve multiple
related images that provide a richer context. [107] studies the task where answer needs to be mined
from a pool of images, and proposes retrieval-based methods for doing the question answering. [108]
proposes a dataset and model that focuses on question-answering over multiple images.

4.3 Potential Challenges/Complexities in the Problem

To provide some further motivation to the problem, we discuss some complexities and challenges
that are involved in performing knowledge-aware reasoning over Multimodal tables:

4.3.1 Entity Disambiguation Problem

Since the entities are represented via images in the table, disambiguating the entities forms a big part
of answering questions based on such tables. However, this entity disambiguation can be very complex
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in nature. Some cases below are illustrated to describe its intricacies:

Case 1: Using other columns entries from the entity’s row
Often, it is difficult to disambiguate entities from the image alone – entire table context is needed. For

Figure 4.1: Visually similar ships requiring more context for disambiguation

example, in Fig. 4.1, just given the images it would be difficult to figure out the Class of the ship in
question. However, given the context coming from Types and Origin, we can disambiguate it (assuming
the Class column was absent and needed to be predicted). Thus, we would require the information
provided about the entity in other columns to disambiguate the entity in question. This information in
other columns can be text or image, and so would ideally require modelling that can handle any input
type arbitrarily.

Case 2: Using information about the entity type from other rows

Context from other rows of the table is needed when the image used to represent the entity is one
constituent of it, a phenomenon called as Meronymy. For example, in Fig. 4.2 the Balliol College from
Oxford is being used as a representative of Oxford University rather than as an entity in itself. Thus,
looking at some University logos in other rows and the University table header is necessary to understand
that the Balliol College here is representing the Oxford University rather than just the college itself.
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Figure 4.2: Entities exhibiting meronymy leading to ambiguity

Case 3: Using entire table context to understand entity
In Fig. 4.3, when questioning about the nationality of a player, the answer should be English or Scottish
rather than England or Scotland or Flag of England or Flag of Scotland. Here, understanding that the
table is describing information about different players, and an image of a flag in the Nationality column
would represent England/Scotland as countries rather than their respective flags is necessary.

Case 4: Table context helps identifying celebrities/humans
In Fig. 4.3, disambiguating the person depicted in a particular image (i.e. the task of facial recognition)
from the image alone is not easy, especially when similar-looking people might exist. However, when
we incorporate the surrounding context of the table, then the information about which position the player
plays at, the nationality, their club and their tenure at the club provides significant extra context, which
becomes crucial to identifying the players.

4.3.2 Logical Reasoning Questions

In case of abstractive questions, the task can involve logical reasoning as well, including the follow-
ing types:

1. Numerical Reasoning: For example, in Fig. 4.4, we can ask a question like By many more states
does the lotus-symbol party rule compared to the book-symbol party? Such questions might
involve arithmetic operations, such as addition, subtraction, etc.
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Figure 4.3: Player images needing more context for disambiguation

2. Temporal Reasoning: For example, in Fig. 4.3, we can ask a question like How many days
passed between the start dates of Todd Kane and Tommy Elphick?. Such questions can even
extend to other temporal aspects.

3. Commonsense Reasoning: In Fig. 4.4, we can ask a question like Which political party symbol
is relevant to cleaning?, which would require commonsense reasoning that a broom is used for
cleaning, which corresponds to the AAP symbol in the table.

4. Entity Type: We may want to predict and reason over what are the entity types in each table,
based upon other column values. For example, in Fig. 4.3, the position and the football club
images reveal that the players are football players, which requires understanding that someone
joining a football club and playing on an RB position is a player.

5. Multi-row Reasoning: Questions can also involve multiple multimodal rows in the tables for
reasoning and answering. For example, in Fig. 4.3, one can ask for the longest difference in the
start date between two players who belonged to the same country but played for different clubs.

6. Entity Reasoning: The models should understand the textual part to the extent that it can un-
derstand that Oxford University implied that it is a kind of university. Further, abbreviations and
entity resolutions need to be handled too, like BJP and Bharatiya Janta Party.
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Figure 4.4: Wikipedia table for political parties in India
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7. Quantification: Reasoning based on Quantifications like many/less and comparison should also
be encoded. For example, the model should identify in Fig. 4.4 that BJP won in more states while
Congress won in fewer states.

4.4 Problem Definition

Let T be a multimodal table consisting of m rows and n columns. Each cell in the table, denoted
by Ti,j , can contain both textual and visual information. Formally, Ti,j can be represented as a tuple
(ti,j , Ii,j), where ti,j represents the textual content of the cell and Ii,j represents the image content of
the cell.

Let Q be a set of questions, where each question qk is associated with a specific table T . Each
question can be represented as a textual query.

The goal of Multimodal Table Question Answering is to find the correct answer Ak to each question
qk based on the information provided in the corresponding table T . The answer Ak can be either a
textual response or a numerical value, depending on the nature of the question.

Mathematically, given a table T and a question qk, the Multimodal Table Question Answering task
can be formulated as follows:

Ak = f(T, qk)

where f is a function that maps the input table T and question qk to the corresponding answer Ak.

The function f can be implemented using various techniques, such as natural language processing
(NLP) models, computer vision models, and multimodal fusion techniques, to extract and integrate
information from both textual and visual modalities in the table to generate the answer.

This formulation provides a formal framework for defining and solving the Multimodal Table Ques-
tion Answering problem.

4.5 Conclusion

This chapter introduced the novel problem of Question Answering over Multimodal Tables, bridging
the gap between traditional text-based table inference and the rich, multimodal landscape of real-world
data. Drawing upon insights from various research domains, we highlighted the significance of in-
corporating images into tables and the unique challenges they pose for reasoning systems. Through
a collaborative effort, we delineated the task’s complexities, including entity disambiguation, logical
reasoning, and the integration of textual and visual cues.

Expanding on the complexities identified, we undertake the development of a complex and diverse
dataset specifically designed to address the multifaceted challenges of Multimodal Table Question An-
swering. This dataset, created by recasting diverse table question-answering datasets, incorporates nu-
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ances such as entity disambiguation, logical reasoning, and the fusion of textual and visual information.
Through meticulous curation, we aim to provide a comprehensive benchmark for evaluating and ad-
vancing multimodal reasoning models. The subsequent chapter will offer insights into the dataset’s
construction methodology, statistics, and detailed analysis.
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Chapter 5

MultiModalTabQA Dataset

This chapter is adapted from the upcoming publication “Knowledge-Aware Reasoning over Multi-
modal Semi-structured Tables” under review at an NLP venue. This work is a joint effort with: Jainit
Sushil Bafna (IIIT Hyderabad), Kunal Kartik (IIT Guwahati), Harshita Khandelwal (UCLA), Prof. Man-
ish Shrivastava (Prof, IIIT Hyderabad), Vivek Gupta (Postdoc, University of Pennsylvania), Prof. Mohit
Bansal (Prof, University of North Carolina) and Prof. Dan Roth (Prof, University of Pennsylvania).
This chapter incorporates the methodology and experiments outlined in the version of the paper dated
6th May 2024.

In this chapter, we outline the process used to construct the MultiModalTabQA dataset for our pro-
posed problem of Multimodal Tabular Question Answering. We also present a detailed analysis and
statistics about the dataset.

5.1 Introduction

As described in Chapter 4, we aim to create a dataset that incorporates the following challenges:

1. The entities should require the context of the table and external knowledge in addition to the
information provided through just the image to be disambiguated.

2. The table should contain sufficient images and text entries. For this dataset, we keep the number
of image-cells in a particular column between 30%-75% of the total number of cells.

3. The questions based on the table should require truly multimodal reasoning and should be hard to
answer solely based on the text component of the table.

4. The dataset should require advanced reasoning such as Numerical reasoning, Temporal Reason-
ing, Multi-row Reasoning, and Commonsense Reasoning. Thus, the questions should not just
require parsing and retrieving specific cells from the table but also complex reasoning over mul-
tiple cells.
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To fulfil the requirement of external knowledge and image context for entity disambiguation, a good
choice would be to recast textual tabular reasoning datasets containing many real-world entities as en-
tries within the table into multimodal format. A perfect fit for such a dataset would be Tabular Datasets
based on Wikipedia Data. To create a diverse dataset, we recast three existing Wikipedia Table Ques-
tion Answering datasets’ tables with images corresponding to some entities in the table.

5.2 Datasets Recast

5.2.1 WikiSQL Dataset

……… ……

Wilfrid Laurier

California

York

York

College

Frank Hoffman30 Toronto Argonauts DL

Calgary Stampeders

L.P. Ladouceur

28

Player

29 Ottawa Renegades

CFL Team

27 DB

DT

Connor HealyHamilton Tiger-Cats

Anthony Forgone

Pick #

OL

Position
Table: CFLDraft Question:

How many CFL teams are from York College?

SELECT COUNT CFL Team FROM 
CFLDraft WHERE College = “York”

SQL:

2
Result:

Figure 5.1: Example from WikiSQL dataset

The most basic requirement for a Multimodal Table Question-Answering model would be an ability
to parse the entities in the table correctly and answer SQL-query-based questions from the multimodal
table. To benchmark such abilities of Multimodal LLMs, we first recast the WikiSQL Dataset [109],
which is a large dataset of 80,654 hand-annotated examples of questions and SQL queries distributed
across 24,241 tables from Wikipedia. We can see an example from the dataset in Fig. 5.1

Figure 5.2: Distribution of Question Types in WikiSQL

Since this dataset involves SQL queries for answering each question, recasting this dataset provides
us with the means to evaluate whether the MLLMs can parse the basic table structure and its contained
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entities correctly – which are the core aspects of a Multimodal Table-QA model. Further, since it
involves Wikipedia tables belonging to various categories, it also captures entities in the images that are
hard to disambiguate without the context of the entire table. The types of questions in the dataset are
also diverse, as can be seen in Fig. 5.2, making the dataset suitable for recasting for testing the model’s
abilities to parse the fundamental semi-structured nature of the table and also disambiguate the
different entities in the dataset. Since the answers are obtained by executing specific SQL queries on
the table, this dataset is short-answer in nature.

5.2.2 WikiTableQuestions Dataset

Extending the complexity of our dataset beyond simple SQL-based question-answering, we recast the
WikiTableQuestions dataset [110], which involves more complex reasoning over the table than simple
SQL-based queries. We can see an example from the dataset in Fig. 5.3.

The dataset contains 22,033 questions on 2,108 tables. The dataset incorporates 3,929 unique column
headers among 13,396 columns, exhibiting a diverse range of relationships in the table. Additionally,
the dataset also requires complex reasoning, including temporal reasoning, numerical reasoning, count-
ing, etc. Since it involves tables scraped from Wikipedia, it also incorporates the problem of entity
disambiguation within the context of the table. This dataset is also short-answer in nature and is the
source of such questions in MultimodalTabQA dataset which require complex reasoning over the table.

5.2.3 FeTaQA

While all the above datasets involve short-form answers, the FeTaQA dataset [111] comprises 10,330
long-form answer questions over 8,551 tables grounded in Wikipedia tables sourced from the ToTTo
dataset. The dataset provides the cells used in reasoning for the answer. Additionally, it guarantees that
the reasoning spans more than a single row or column, ensuring that the questions are complex, with an
average of 6 cells used for reasoning in a question. We can see an example from the dataset in Fig. 5.5.

Further, the dataset contains tables from diverse sources, as seen in the dataset’s topic distribution
in Fig. 5.4. Using this dataset as one data source for recasting significantly improves the diversity and
complexity of our dataset by involving complex and abstract long-form answer questions.

5.3 Recasting the Datasets

The primary step in converting a table from textual to multimodal form involves establishing a link
between a textual mention of an entity and its corresponding image. Given that we are working pri-
marily with Wikipedia datasets, where an entity’s representative image can be obtained from either the
Wikipedia Infobox or the Wikidata entry of the entity using just the page link, this task simplifies to
finding the Wikipedia page link corresponding to the entity texts. Subsequently, we filter which entity
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Year City Country Nations

1896 Athens Greece 14

1900 Paris France 24

1904 St. Louis USA 12

. . . . . . . . . . . .

2004 Athens Greece 201

2008 Beijing China 204

2012 London UK 204

x1: “Greece held its last Summer Olympics in which year?”

y1: {2004}

x2: “In which city’s the first time with at least 20 nations?”

y2: {Paris}

x3: “Which years have the most participating countries?”

y3: {2008, 2012}

x4: “How many events were in Athens, Greece?”

y4: {2}

x5: “How many more participants were there in 1900 than in the first year?”

y5: {10}

Figure 5.3: Example questions from the WikiTableQuestions Dataset

texts should be converted to their representative images. The steps involved in recasting the datasets
from textual to multimodal form are outlined below:

5.3.1 Step 1: Getting raw HTML corresponding to the table

To get the Wikipedia links corresponding to various entity texts, we need the raw HTML of the
Wikipedia tables and parse the entity links using BeautifulSoup1. For the WikiTableQuestions data
source, the released dataset provided all the original raw HTML files corresponding to the tables. How-
ever, such raw HTML was absent in other data sources and had to be scraped separately for WikiSQL
and FeTaQA datasets.

In the case of both these datasets, the originally released dataset provides the Wikipedia page links
from where the table was originally taken. We scraped the Wikipedia page version of these pages
corresponding to their revision IDs from a date closest to the time when the respective datasets (ToTTo
in the case of FeTaQA) were released so that the table content from the HTML could be as close to the

1https://beautiful-soup-4.readthedocs.io
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Figure 5.4: Distribution of topics in FeTaQA

Figure 5.5: Example questions in FeTaQA dataset
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table given in the datasets. Next, among all the tables on a Wikipedia page, we choose the table with
the highest Jaccard Coefficient and the table in the dataset as the corresponding raw HTML table. This
computation is described below:

Let A be the set of bigrams extracted from the text of the candidate table scraped from the Wikipedia
URL, and B be the set of bigrams from the table array provided in the dataset. The Jaccard coefficient
for the similarity of these two sources based on overlapping bigrams is given by:

J(A,B) =
|A ∩B|
|A ∪B|

Where:

• |A| denotes the number of unique bigrams extracted from the text of the table scraped from the
Wikipedia URL.

• |B| denotes the number of unique bigrams in the table array provided in the dataset.

• |A ∩ B| denotes the number of overlapping bigrams between the table text scraped from the
Wikipedia URL and the table array provided in the dataset.

• |A ∪B| denotes the total number of unique bigrams from both sources.

This provides us with the raw HTML that we want corresponding to the tables provided in the WikiSQL
and FeTaQA datasets.

5.3.2 Step 2: Getting WikiData entry corresponding to Wikipedia Link(s)

We extract Wikipedia links from the raw HTML of the tables and use them to find the corresponding
WikiData IDs for the entities they represent. To accomplish this, we primarily utilize the Wikidata
SPARQL query system. In cases where the Wikidata ID cannot be obtained through SPARQL queries,
we resort to scraping the information from the corresponding Wikipedia pages.

5.3.3 Step 3: Getting image from the Wikidata ID

After retrieving the WikiData entry corresponding to the links, we proceed to fetch images using the
WikiData information and infoboxes on Wikipedia. The image retrieval follows the preference order
outlined in [99]: (i) Infobox image from the Wikipedia page; (ii) P18 “image” (roughly equivalent to
the infobox image in Wikipedia articles); (iii) P154 “logo image”; (iv) P41 “flag image”; (v) P94 “coat
of arms image”; (vi) P2425 “service ribbon image”;
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5.3.4 Step 4: Filtering out the entities to be replaced

Initially, we considered creating the dataset by replacing all entity mentions with images scraped
from their corresponding Wikipedia URLs. However, many images were too vague, depicting unrecog-
nizable municipalities or roads/streets. The predominance of such images would have made the problem
nearly unsolvable. To address this, we opted to scrape WikiData information, specifically the P31 “in-
stance of” property (referred to as category, herewith) and the corresponding Wikipedia pageviews, to
filter out entities that are replaced by images.

Our process involved manually annotating over 1,500 categories to determine which images should
be included or excluded from the dataset. For specific categories, we set a page view threshold, ensuring
that only those entities in such categories deemed “popular enough” to be recognizable from their images
to a great extent were included in the dataset (e.g., certain cities, tourist attractions, etc.). Additionally,
for categories like locations, we created collages from all images in the infobox of the entity’s Wikipedia
page since a single image is not a sufficient representation in such cases.

Furthermore, we re-scraped images for specific categories where logos, seals, or coats of arms were
available and were better representations than the previously scraped images (e.g., town seals, company
logos, tournament posters, etc.).

5.3.5 Step 5: Replacing the text with images

After finding the images that correspond to different links in the scraped HTML, we still need to
replace the text with images in the dataset array(s) we already have. Due to differences in the nature of
the dataset provided, we describe this step separately for each dataset:

• WikiTableQuestions: In this dataset, the raw HTMLs provided were used to create the final table
arrays. Thus, we didn’t need to map the links from HTML separately to the existing tables in the
dataset. We simply replaced the text corresponding to the filtered Wikipedia links in the provided
HTMLs with image IDs and generated the table arrays from them.

• WikiSQL and FeTaQA: Since the original raw HTMLs were not available in these two datasets,
we create a mapping of entity link → [entity texts] from the raw HTMLs where all the
entity link have an image linked to them. Now, we prune out the entity texts such that en-
tity replacement doesn’t happen for erratic strings, using heuristics like the percentage of non-
alphabetic characters in the string, its length, etc. Now, we pass through the table provided in
the dataset and replace all strings matching with entity texts with the image corresponding to
entity link, prioritising replacement for longer words in entity texts.

5.3.6 Step 6: Creating Explicit and Implicit Questions

We create the following types of questions in our dataset:

45



1. Explicit Questions: These are the questions in which an entity is explicitly mentioned in the
question that has been replaced by an image in the original table.

2. Answer-Mention Questions: These are the questions in which an entity is explicitly mentioned
in the answer that has been replaced by an image in the original table.

3. Implicit Questions: These are the questions in which the question or answer doesn’t have an
explicit mention of the entity, but the intermediate reasoning for the answer involves an entity that
has been replaced by an image in the original table.

We must filter out the explicit, answer-mention and implicit questions from the provided questions to
create the final dataset. For explicit and answer-mention questions, we include out all questions naively
where any image-replaced entity text in the table occurs exactly in the question.

For implicit questions, we use evidence cells provided in WikiSQL and FeTaQA datasets, which
provide the cells that have been used in the reasoning for getting the answer. However, these annotations
were missing for WikiTableQuestions, so we hand-annotated the evidence cells for pruned questions in
the dataset and, based on these annotations, chose implicit questions for our final dataset.

5.3.7 Step 7: Pruning Table Images

In order to make the problem interesting, we keep a lower limit of at least 30% images in at least one
column of a table and an upper limit of 75% images in all columns of the table. Thus, we first prune out
tables in which no column has at least 30% images. We also discard tables with more than 55 rows as
they were too large for processing with different models.

Next, we remove excess images in the tables. For this, we prioritize keeping cells which contain
explicit mention(s) for different questions/answer-mentions as images, keeping the priority order as
(i) One explicit mention (question/answer-mention) cell from each question of the table (ii) Explicit
mention cells (question/answer-mention) from all questions of the table (iii) At least one cell involving
implicit reasoning for every question based on the table (iv) All cells involving implicit reasoning for
any questions based on the table (v) Cells which are not involved in any reasoning/mention.

Now, we compute the number of image-cells that must be changed back to text to reduce the per-
centage of image-cells to 75%, and choose the tentative cells that can be converted back to text while
prioritizing the cells described above. Now, out of the tentative cells which can be converted back to
text, we randomly pick the required number of cells and replace the image tags in those cells with the
original entity text.

After pruning the table images, we recheck the explicit/answer-mention and implicit questions for
their respective mention/evidence cells and create our final dataset of explicit, answer-mention and
implicit questions.

Lastly, we divide the recast dataset into training, development, and test sets using a split of 65%-
15%-20%. To create the split, we perform random sampling over the questions in the dataset.
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5.4 Dataset

After following the steps described previously, we create our MultimodalTabQA dataset v0.1 con-
sisting of 35,111 questions over 16,941 tables. The details of the tables and questions in the dataset
are described in table 5.1. All the data sources in our dataset have almost the same average number of
columns. In contrast, the average number of rows is slightly higher in WikiTableQuestions tables than
in the other data sources. WikiTableQuestions has the smallest number of tables, while WikiSQL and
FeTaQA have a much higher number. However, FeTaQA has very few questions per table, with almost
a single question being asked on most tables. We note that WikiSQL has much more questions than
FeTaQA and WikiTableQuestions.

Data Source No. of Tables No. of Questions Avg. Rows Avg. Columns

WikiSQL 9784 19645 13.95 6.25

WikiTableQuestions 1259 9175 18.23 6.30

FeTaQA 5898 6291 14.44 6.12

Table 5.1: Dataset Statistics

Table 5.2 details the statistics about the overall image replacements in the dataset. We notice that
FeTaQA has a considerably lesser number of images than the other two data sources per table. Wik-
iTableQuestions has a very high degree of multimodality in the tables despite the low number of tables.
This is possibly because the HTMLs of WikiTableQuestions were readily available, aiding more entities
in being replaced by images.

Data Source Unique Images
Avg. Unique Images

per Table

Avg. Images

per Table
WikiSQL 35202 13.65 21.19

WikiTableQuestions 15387 17.51 25.66

FeTaQA 35683 10.36 17.43

Table 5.2: Image Statistics in the dataset

In Table 5.3, we can see the distribution of the different questions in the three data sources. We expect
Answer-Mention Questions and Explicit Questions to be more challenging because in these questions,
the entities mentioned in the question/answer are definitely replaced by images and so are NECESSARY
to be disambiguated when performing the task. While WikiSQL and FeTaQA have a small number of
Implicit questions, WikiTableQuestions has many more, indicating the complex reasoning involved in
the dataset.
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Data Source Explicit Questions Answer-Mention Questions Implicit Questions

WikiSQL 12956 6374 315

WikiTableQuestions 3523 2773 2879

FeTaQA 2499 3180 612

Table 5.3: Question-Type in the dataset

Data Source Single-Column Multi-Column

WikiSQL 16192 3453

WikiTableQuestions 7737 971

FeTaQA 3933 2280

Table 5.4: No. of Multi/Single Multimodal column Reasoning Questions

Table 5.4 shows the number of questions requiring single/multi-column multimodal reasoning. Han-
dling multiple images of different categories (as they belong to different columns) and connecting them
might be much more complex than multimodal reasoning over a single column. The high percentage
of such questions in FeTaQA underscores the complexities of answering Free-form Questions. From
Table 5.5, we can see the diverse sets of images present in the dataset, emphasizing the complexity of
the problem.

5.5 Dataset Validation

Since we recast existing tables, we first need to verify whether the entity replacements are correct.
We sample 250 tables from each data source (total 750 tables) and have 3 annotators score all unique
(image, original text) pair per table, verifying the correctness of the image replacements.

• Label 0 indicates that the image used for the entity is incorrect (e.g., the 2001 Championship logo
for the 2004 Championship, an invalid image, or an incomprehensible image)

• Label 1 indicates the image represents the entity but is ambiguous for a human to identify (e.g.,
a generic stadium, an F1 racer with an obscured face, a current logo of a previously renamed
company, or an unrecognizable town/city collage with generic buildings/images)

• Label 2 indicates the image clearly represents the entity (e.g., a company logo, a country’s flag,
or a recognizable monument)

We report the annotation results in Table 5.6.
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Question What is the Song choice when The Beatles were the original artist, with an order #

of 4?

Answer if i fell

Figure 5.6: Example from the dataset
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Image Category
Data Source

WikiSQL WikiTableQuestions FeTaQA

Human 16,915 6,305 10,043

Location 4,518 3,082 3,779

Seals 738 356 478

Coat of Arms 703 460 779

Flags 1,149 831 1,158

Poster 751 455 5,446

Logo 4,572 2,380 5,628

Misc. 5,856 1,518 8,372

Table 5.5: Categories of the images in the dataset

Data Source No Agreement Label 0 Label 1 Label 2

FeTaQA 0.28% (14) 0.00% (0) 0.08% (4) 99.64% (5030)

WikiSQL 0.00% (0) 0.10% (6) 0.04% (2) 99.86% (5688)

WikiTableQuestions 0.43% (40) 0.26% (24) 0.13% (12) 99.19% (9282)

Table 5.6: Dataset Validation Statistics
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Chapter 6

Using MLLMs for Inference and Reasoning on MultiModalTabQA

This chapter is adapted from the upcoming publication “Knowledge-Aware Reasoning over Multi-
modal Semi-structured Tables” under review at an NLP venue. This work is a joint effort with: Jainit
Sushil Bafna (IIIT Hyderabad), Kunal Kartik (IIT Guwahati), Harshita Khandelwal (UCLA), Prof. Man-
ish Shrivastava (Prof, IIIT Hyderabad), Vivek Gupta (Postdoc, University of Pennsylvania), Prof. Mohit
Bansal (Prof, University of North Carolina) and Prof. Dan Roth (Prof, University of Pennsylvania).
This chapter incorporates the methodology and experiments outlined in the version of the paper dated
6th May 2024.

This chapter describes the different experiments we perform on the MultimodalTabQA dataset. First,
we detail various baselines we evaluate on the MultimodalTabQA dataset and explain the metrics we use
to assess the model performance. Subsequently, we report preliminary results on different question types
(explicit, answer-mention, and implicit) for the three data sources (WikiTableQuestions, WikiSQL, and
FeTaQA) and discuss the key insights gained from these experiments.

6.1 Introduction

After creating the dataset for the task, we now evaluate different Multimodal LLM-based baselines
on our dataset. Due to the lack of resources, we only explore zero-shot and few-shot approaches to
prompting the LLMs and MLLMs involved in the baselines. We perform preliminary experiments
with the following approaches:

1. Partial Input Approach: In this baseline, images are withheld, and only the table with replaced
image tags alongside the question is given to the model. The model is thus prompted to generate
an answer solely based on the textual input.

2. Captioning Approach: In this baseline, we replace each image tag with a caption/entity replace-
ment for the particular image obtained from a Vision Language Model. Then, we prompt another
LLM to answer the question based on the text-only table.
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3. Multimodal Approach: In this approach, we provide the model with the entire table represented
as a single image and prompt it to perform question-answering over the image itself.

6.2 Metrics Used for Evaluation

Since the answers involve real-world entities, we favor lexical matching metrics over semantic
matching metrics. LLMs typically predict entities of the same or similar class in our entity-centric
QA task, all of which would yield high score on semantic matching metrics (such as BertScore [112]),
making them ineffective for our purposes.

6.2.1 Short-Answer Data Sources

For the short-form answer questions recast from WikiTableQuestions and WikiSQL dataset, we use
the following metrics:

• Exact Match is used to report the percentage of predicted answers that were exactly matched
with the gold answers.

• Substring Match is used to report the percentage of predicted answers which contain the respec-
tive gold answer as a substring. This is very relevant since the entity texts are replaced by images,
which might lead to the answer being in a different form than what was written in the original
table/corresponding gold answer.

• F1-score is computed between the tokens of the predicted answer and the gold answer. Since
this is the Harmonic Mean of precision and recall on a token level, it also takes hallucination into
account as a metric.

6.2.2 Long-Answer Data Sources

For the long-answer questions in the FeTaQA dataset, we use the following metrics:

• SacreBLEU is used, which is the BLEU score computed with a fixed set of parameters. This
score uses a modified precision calculation over the n-grams in predicted and gold text, which
penalizes over-reliance on a single n-gram. It also incorporates a brevity penalty to discourage
overly short answers.

• ROUGE - (1,2,L) is used, which is a family of metrics which also uses N-grams for computation.
ROUGE-1 and ROUGE-2 compute the recall of unigram and bigram in the predicted text and
the reference texts, while ROUGE-L uses the Longest Common Sequence and is computed as
an F1-score that combines recall (ratio of LCS length to reference length) and precision (ratio of
LCS length to summary length).
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• BLEURT is used, which is computed between the predicted and reference text in the form of a
similarity score between encodings of predicted and reference text obtained through pre-trained
Transformer models.

6.3 Baseline I: Partial Input

In this baseline, we exclude the images from the input, and only provide the textual table and question
to the model for question answering. This baseline serves as a lower bound to other baselines involving
images, as ideally, such models should perform better than those provided with no image.

For this experimental setup, we make use of Gemini-1.0 Pro, providing it with few-shot examples
from the respective data source and asking it to answer the question. We don’t fine-tune the model,
opting instead to rely on few-shot examples and the task description for the model to generalize to new
samples. The results for the different data sources are in Table 6.1, 6.2, 6.3.

Question Type Exact Match Substring Match F1-score

Explicit 30.36% 35.80% 0.3656

Answer-Mention 19.06% 20.16% 0.3004

Implicit 61.90% 66.67% 0.6190

Table 6.1: Results of Text-only baseline on WikiSQL

Question Type Exact Match Substring Match F1-score

Explicit 32.48% 35.18% 0.3485

Answer-Mention 18.38% 19.10% 0.2682

Implicit 38.72% 39.58% 0.3955

Table 6.2: Results of Text-only baseline on WikiTableQuestions

Question Type sacreBLEU ROUGE1 ROUGE2 ROUGEL BLEURT

Explicit 25.85 0.5332 0.3433 0.4460 -0.3350

Answer-Mention 20.39 0.5226 0.3101 0.4304 -0.3539

Implicit 21.24 0.5122 0.3125 0.4301 -0.2095

Table 6.3: Results of Text-only baseline on FeTaQA
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Some insights from these results

1. The relatively impressive performance of this baseline on different datasets highlights the para-
metric real-world knowledge that is encoded in LLMs today. Even when the entity texts were
not provided, the entities could be guessed from the context of the table and the questions were
answered.

2. As expected, the accuracy in Answer-Mention questions is much lower than the corresponding
F1-score, as in these cases, the entire answer string is replaced by an image in the table, which
leads to different forms of the same entity (like M.K. Gandhi instead of Gandhi). Such incorrect
forms, despite being semantically correct, might get marked incorrect.

3. Answer-Mention questions seem more challenging than Explicit questions, probably because gen-
erating a correct answer is more complex than approximating it during intermediate steps and
providing an answer for an entity with a textual mention in the table during subsequent steps.

4. The Implicit questions appear to be easier than the Explicit and Answer-Mention questions. This
is perhaps because entity disambiguation, which is particularly hard, is not an integral part of
those questions, making the performance better for them.

6.4 Baseline II: Image Captioning

In this baseline, we break down the problem into two individual steps:

1. Entity Prediction: We first predict the entity corresponding to the different image occurrences.
In order to do this, we create an infobox-style table of the row in which the image to be captioned
occurs. Similarly, we create infobox-style tables for a few other rows where the cells correspond-
ing to the column of interest are textual only. Subsequently, we instruct MLLMs to use the context
of these infoboxes along with the provided image to predict the original text corresponding to the
image, using Chain of Thought prompting. We experiment with Gemini-1.0 Pro-Vision to run
these experiments in a few-shot setting (without fine-tuning) and these entity prediction results
are in Table 6.4.

2. Question Answering: Following the previous step, we have a Table T , question Q and a set of
predicted entities corresponding to image tags in the table E. We use Chain of Thought prompting
on the LLM to generate the answer to Q using T while considering separately provided E, which
might be accurate or inaccurate. We also provide few-shot examples in the prompt but don’t
include the reasoning in those examples as it seemed to hinder model performance by restricting
reasoning directions that the model explored. We use the Gemini-1.0 Pro model to run this step
of the experiment with the few-shot methodology described above.
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Data Source Exact Match Substring Match F1-score

WikiSQL 45.18% 57.52% 0.5666

WikiTableQuestions 43.86% 53.06% 0.5432

FeTaQA 46.61% 59.16% 0.6043

Table 6.4: Entity Prediction Results for Captioning Baseline

Question Type Exact Match Substring Match F1-score

Explicit 30.25% 35.42% 0.3530

Answer-Mention 22.20% 36.86% 0.3846

Implicit 52.38% 55.56% 0.5238

Table 6.5: Results of Captioning baseline on WikiSQL

Question Type Exact Match Substring Match F1-score

Explicit 35.04% 44.11% 0.4111

Answer-Mention 22.52% 38.20% 0.4222

Implicit 29.51% 44.44% 0.3922

Table 6.6: Results of Captioning baseline on WikiTableQuestions

Question Type sacreBLEU ROUGE1 ROUGE2 ROUGEL BLEURT

Explicit 20.10 0.4214 0.2552 0.3529 -0.7151

Answer-Mention 15.44 0.4175 0.2393 0.3469 -0.7811

Implicit 15.02 0.3457 0.1900 0.2918 -0.7422

Table 6.7: Results of Captioning baseline on FeTaQA

The results for this baseline are in Table 6.5, 6.6, 6.7. Some insights from these results are listed
below:

1. In the case of the short-answer metrics, there is a clear improvement from the Text-only baseline,
indicating that images form an integral part of the task.

2. The increase in Answer-Mention questions is much higher, which is expected since earlier, there
was minimal context about the entity which was to correspond to the answer. While the context
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about the entity is important for explicit questions too, it is much more important when the entity
corresponds to the answer. This further highlights the importance of image data for the task.

3. However, for implicit questions, we observe some dip from Baseline I. This is possibly because
the information about entities was not very relevant to these questions, as the multimodal cells
are only used during intermediate reasoning in these questions. Thus, the additional image-entity
information instead acted as noise during inference.

4. For FeTaQA, the metrics don’t clearly outline the entity-retrieval challenges the previous baseline
would’ve faced, and their fall might correlate to extra noisy information about entity predictions
being provided. In future, we should evaluate this data source with better metrics that are more
relevant to the task.

6.5 Baseline III: Multimodal Table

In this baseline, we create an image of the table containing all entity images embedded within it.
This multimodal table-question input, comprising the table image and question, is directly provided to
the model. We also include few-shot question-answer examples to explain the answer format to the
model and evaluate it. For this baseline, we once more utilize pre-trained Gemini-1.0 Pro-Vision in our
experimentation. The results for this baseline are in Table 6.8, 6.9, 6.10.

Question Type Exact Match Substring Match F1-score

Explicit 20.10% 25.15% 0.2661

Answer-Mention 17.18% 21.02% 0.2840

Implicit 20.63% 36.50% 0.2222

Table 6.8: Results of Multimodal Table baseline on WikiSQL

Question Type Exact Match Substring Match F1-score

Explicit 19.14% 29.56% 0.2541

Answer-Mention 16.63% 20.63% 0.2540

Implicit 25.64% 41.03% 0.3162

Table 6.9: Results of Multimodal Table baseline on WikiTableQuestions

Some insights from these results:
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Question Type sacreBLEU ROUGE1 ROUGE2 ROUGEL BLEURT

Explicit 6.026 0.2633 0.1576 0.2330 -0.7857

Answer-Mention 4.634 0.2688 0.1402 0.2327 -0.7857

Implicit 4.131 0.2170 0.1163 0.1874 -0.7346

Table 6.10: Results of Multimodal Table baseline on FeTaQA

1. This baseline performs worse than Baseline I for implicit questions, which might indicate that
parsing semi-structured information directly from table images is still challenging for Multimodal
LLMs.

2. Further, the performance on explicit questions is worse, indicating that entity disambiguation for
multiple images contained within a single image is a hard problem for MLLMs. Further, since this
is even worse than the text-only model, it might indicate that the parametric real-world knowledge
of this model is not as good as the text-only model.

3. The performance on answer-mention questions seems similar to the Text-only baseline. This is
possibly because the poor understanding of the table structure in some questions might have been
countered by the availability of the precise answer-entity in visual form, helping the model.

6.6 Conclusion

These experiments demonstrate that the proposed task of Question-Answering over Multimodal Ta-
bles is a challenging task, with various aspects that make it hard. We also gain various insights about
the nature of the MultimodalTabQA dataset and the LLMs/MLLMs used in our experiments. Our best-
performing baseline was the Image Captioning Baseline, beating the other two by a huge margin. Its
significant improvement over the Text-only baseline shows that the task and dataset are truly multimodal
in nature, requiring images as an important component alongside the tabular information.

On the other hand, contrary to expectations, the Multimodal Table baseline performed the worst,
highlighting the complex nature of the task. It also showed how difficult it is for MLLMs to handle
multiple visual elements simultaneously in a semi-structured format and provides research direction
towards models that can handle such complex multimodal information.

We believe this task and dataset can be a strong benchmark for evaluating the visual parsing and
semantic understanding of Multimodal LLMs. In future, we plan to evaluate these baselines with a
wider variety of models, like GPT-4V [2], QwenVLM [28], CogAgent [29], etc. Further, we also plan
to create another baseline which uses models which accept arbitrary sequences of images and text like
IDEFICS-2 [113], Flamingo [26], Mantis [108] and benchmark their performance on our dataset. While

57



it is possible they won’t be able to process so many images well together, these experiments may provide
us newer insights into the ever-evolving Multimodal space.

58



Chapter 7

Conclusions

In this thesis, we make advancements towards the understanding of different problems in Multi-
modality and how we can exploit LLMs to tackle those problems. We first explored the field of Multi-
modal Emotion Analysis, and performed experiments on the task of Multimodal Emotion Cause Pair Ex-
traction. We made use of fusion-based techniques, concatenating the audio, video and text embeddings
and used architectures like BiLSTMs, CRFs and even a simple MLP to benchmark the performance of
the fused embedings on the task. We further explored prompting LLMs for complex and unconventional
reasoning, making use of few-shot and reasoning-based prompts to make the LLM better at performing
the task.

Building upon these works, we proposed the task of Knowledge-aware Question Answering over
Multimodal Semi-structured Tables and describe the motivation for exploring the problem. We con-
tribute a large-scale dataset with a diverse set of questions and tables for Multimodal Tabular Question
Answering, being the first dataset for the task. We also evaluated Gemini, a SOTA MLLM through three
different strategies for the task, and gain various insights from it.

7.1 Future Work

Creating the dataset and benchmarking MLLM through different stratagies led to some interesting
results on the task. However, our work has some shortcomings, which can be addressed as future work:

• More datasets based on Wikipedia tables can be recasted into the MultimodalTabQA dataset. For
example, HybridQA [88], which contains additional paragraphs apart from just the table context
might be interesting to benchmark as an additional-context multimodal table problem. Another
dataset, Open-WikiTable [114], which involves Open Domain Question Answering over Table
can be repurposed for the task, making the task more complex and interesting.

• While the questions in our dataset require multimodal reasoning, none of them require a visual
understanding of the images in the table. In future, we should explore augmenting some existing
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questions to create visual questions, which instead of explicitly mentioning an entity describe it
through its visual attributes in the question.

• We should conduct experiments with Multimodal Models that can take arbitrary sequences of
image and text as input, like IDEFICS-2 [113], Flamingo [26], Mantis [108] and benchmark their
performance on our dataset. While it is possible they won’t be able to process so many images
well together, the insights might be interesting.

• We could only use Gemini due to resource constraints for the different types of models. In future,
we would extend the experiments to include models like GPT-4V [2], QwenVLM [28], CogAgent
[29].

• While we do provide the results on FeTaQA using some Natural Language Generation metrics,
these metrics are not very insightful in context of our task. We should try out other metrics which
are more relevant to our task for free-form questions.
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[44] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory based re-
current neural network architectures for large vocabulary speech recognition. arXiv preprint
arXiv:1402.1128, 2014.

[45] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. 2001.

[46] Soujanya Poria, Navonil Majumder, Devamanyu Hazarika, Deepanway Ghosal, Rishabh Bhard-
waj, Samson Yu Bai Jian, Romila Ghosh, Niyati Chhaya, Alexander F. Gelbukh, and Rada Mi-
halcea. Recognizing emotion cause in conversations. CoRR, abs/2012.11820, 2020.

[47] Sophia Yat Mei Lee, Ying Chen, and Chu-Ren Huang. A text-driven rule-based system for emo-
tion cause detection. In Diana Inkpen and Carlo Strapparava, editors, Proceedings of the NAACL
HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in
Text, pages 45–53, Los Angeles, CA, June 2010. Association for Computational Linguistics.

[48] Ying Chen, Sophia Yat Mei Lee, Shoushan Li, and Chu-Ren Huang. Emotion cause detection
with linguistic constructions. In Chu-Ren Huang and Dan Jurafsky, editors, Proceedings of the
23rd International Conference on Computational Linguistics (Coling 2010), pages 179–187, Bei-
jing, China, August 2010. Coling 2010 Organizing Committee.

[49] Lin Gui, Ruifeng Xu, Qin Lu, Dongyin Wu, and Yu Zhou. Emotion cause extraction, a challeng-
ing task with corpus construction. In Yuming Li, Guoxiong Xiang, Hongfei Lin, and Mingwen
Wang, editors, Social Media Processing, pages 98–109, Singapore, 2016b. Springer Singapore.

[50] Rui Xia and Zixiang Ding. Emotion-cause pair extraction: A new task to emotion analysis in
texts. In Anna Korhonen, David Traum, and Lluı́s Màrquez, editors, Proceedings of the 57th
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Moreno, and Jesús Lovón Melgarejo. Viquae, a dataset for knowledge-based visual question
answering about named entities. In Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 3108–3120, 2022.

[100] T. Mensink, J. Uijlings, L. Castrejon, A. Goel, F. Cadar, H. Zhou, F. Sha, A. Araujo, and V. Fer-
rari. Encyclopedic vqa: Visual questions about detailed properties of fine-grained categories. In
2023 IEEE/CVF International Conference on Computer Vision (ICCV), pages 3090–3101, Los
Alamitos, CA, USA, oct 2023. IEEE Computer Society.

[101] Yang Chen, Hexiang Hu, Yi Luan, Haitian Sun, Soravit Changpinyo, Alan Ritter, and Ming-
Wei Chang. Can pre-trained vision and language models answer visual information-seeking
questions? ArXiv, abs/2302.11713, 2023.

[102] Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. In International
Conference on Machine Learning, 2023.

[103] Xi Chen, Xiao Wang, Soravit Changpinyo, A. J. Piergiovanni, Piotr Padlewski, Daniel M. Salz,
Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, Alexander Kolesnikov, Joan
Puigcerver, Nan Ding, Keran Rong, Hassan Akbari, Gaurav Mishra, Linting Xue, Ashish V.
Thapliyal, James Bradbury, Weicheng Kuo, Mojtaba Seyedhosseini, Chao Jia, Burcu Karagol
Ayan, Carlos Riquelme, Andreas Steiner, Anelia Angelova, Xiaohua Zhai, Neil Houlsby, and
Radu Soricut. Pali: A jointly-scaled multilingual language-image model. ArXiv, abs/2209.06794,
2022.

[104] Li Zhang, Zhixu Li, and Qiang Yang. Attention-based multimodal entity linking with high-quality
images. In Christian S. Jensen, Ee-Peng Lim, De-Nian Yang, Wang-Chien Lee, Vincent S. Tseng,
Vana Kalogeraki, Jen-Wei Huang, and Chih-Ya Shen, editors, Database Systems for Advanced
Applications, pages 533–548, Cham, 2021. Springer International Publishing.

[105] Jingru Gan, Jinchang Luo, Haiwei Wang, Shuhui Wang, Wei He, and Qingming Huang. Multi-
modal entity linking: A new dataset and a baseline. In Proceedings of the 29th ACM International
Conference on Multimedia, MM ’21, page 993–1001, New York, NY, USA, 2021. Association
for Computing Machinery.

[106] Xuwu Wang, Junfeng Tian, Min Gui, Zhixu Li, Rui Wang, Ming Yan, Lihan Chen, and Yanghua
Xiao. WikiDiverse: A multimodal entity linking dataset with diversified contextual topics and
entity types. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 4785–4797, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics.

72



[107] Abhirama Subramanyam Penamakuri, Manish Gupta, Mithun Das Gupta, and Anand Mishra.
Answer mining from a pool of images: towards retrieval-based visual question answering. In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI
’23, 2023.

[108] Tiger AI Lab. Mantis: A Platform for Accelerating Transformer-based Machine Learning Work-
flows. https://tiger-ai-lab.github.io/Blog/mantis, 2024. Accessed: April
30, 2024.

[109] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.

[110] Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables.
In Chengqing Zong and Michael Strube, editors, Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 1470–1480, Beijing, China, July 2015.
Association for Computational Linguistics.

[111] Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui Zhang, Wojciech
Kryściński, Hailey Schoelkopf, Riley Kong, Xiangru Tang, Mutethia Mutuma, Ben Rosand, Is-
abel Trindade, Renusree Bandaru, Jacob Cunningham, Caiming Xiong, Dragomir Radev, and
Dragomir Radev. FeTaQA: Free-form table question answering. Transactions of the Association
for Computational Linguistics, 10:35–49, 2022.

[112] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Eval-
uating text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

[113] Hugging Face. idefics: How hugging face’s new platform can help you train better language
models. https://huggingface.co/blog/idefics. Accessed: 2024-04-30.

[114] Sunjun Kweon, Yeonsu Kwon, Seonhee Cho, Yohan Jo, and Edward Choi. Open-WikiTable
: Dataset for open domain question answering with complex reasoning over table. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 8285–8297, Toronto, Canada, July 2023. Association
for Computational Linguistics.

73

https://tiger-ai-lab.github.io/Blog/mantis
https://huggingface.co/blog/idefics

	Introduction
	Preamble
	Background
	Multimodal Image-Text Processing
	Large Language Models

	Scope of the thesis
	Multimodal Emotion-Cause Pair Extraction
	Unconventional Question Answering using LLMs
	Knowlege-aware reasoning over multimodal semi-structured tables

	Research Questions Addressed
	Thesis Layout

	Multimodal Emotion-Cause Pair Extraction
	Introduction
	Background
	Dataset
	Related Work

	Task Definition
	System Architecture
	Baseline I: Utterance labeling
	Baseline II: BiLSTM Architecture
	Baseline III: BiLSTM-CRF Architecture

	Experimental Setup
	Results and Analysis
	Conclusion

	Prompting GPT-3.5 for Unconventional Reasoning
	Introduction
	Background
	Dataset
	Related Works

	System Overview
	GPT-3.5
	Few-shot prompting
	Experimental Setup

	Results and Analysis
	Conclusion

	Reasoning over Multi-modal Semi-structured Tables
	Introduction
	Related Work
	Tables with additional modality
	Knowledge-Based Visual Question Answering
	Multimodal Entity Linking
	VQA involving multiple images

	Potential Challenges/Complexities in the Problem
	Entity Disambiguation Problem
	Logical Reasoning Questions

	Problem Definition
	Conclusion

	MultiModalTabQA Dataset
	Introduction
	Datasets Recast
	WikiSQL Dataset
	WikiTableQuestions Dataset
	FeTaQA

	Recasting the Datasets
	Step 1: Getting raw HTML corresponding to the table
	Step 2: Getting WikiData entry corresponding to Wikipedia Link(s)
	Step 3: Getting image from the Wikidata ID
	Step 4: Filtering out the entities to be replaced
	Step 5: Replacing the text with images
	Step 6: Creating Explicit and Implicit Questions
	Step 7: Pruning Table Images

	Dataset
	Dataset Validation

	Using MLLMs for Inference and Reasoning on MultiModalTabQA
	Introduction
	Metrics Used for Evaluation
	Short-Answer Data Sources
	Long-Answer Data Sources

	Baseline I: Partial Input
	Baseline II: Image Captioning
	Baseline III: Multimodal Table
	Conclusion

	Conclusions
	Future Work

	Bibliography

