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Abstract

The digital age presents an overwhelming deluge of multimodal data, underscoring the imper-
ative need for effective text summarization techniques. Such techniques transform vast amounts
of textual and visual data into concise, comprehensible, and insightful summaries, facilitating
information retrieval, comprehension, and decision-making. This thesis pioneers innovative
strategies to enhance text summarization by employing various forms of contextual guidance
and multimodal data, contributing significantly to the evolution of the field and offering a
cohesive narrative that links these diverse yet interconnected areas of study.

The journey begins with an exploration of ”Popularity Forecasting” of sentences within news
articles. This novel approach surpasses traditional salience-based extractive summarization by
predicting the ’popularity’ or ’eye-catching’ potential of sentences. We create a popularity
dataset which contains news articles from CNN/DM[47] with their sentence-popularity score
mapping. We create this by comparing sentences with the search queries for the particular
article. Then we adapt trained extractive summarizers to perform regression tasks and predict
the popularity of a particular sentence within a news article. The result is a ranking of sentences
based on their popularity scores

Next, the research advances into the realm of ”Multimodal Summarization,” which synergizes
textual and visual elements to create a more holistic summary. By pairing concise textual
summaries with the most salient images from news articles, this technique delivers a richer
and more comprehensive understanding of the content. In this work we also show that we
can improve the accuracy of summarization models by using images to aid the summarization
process. To do this we utilize visuolinguistic transformers like CLIP[54], OSCAR[36] to help in
the interaction of the two modalities and we adapt general summarization models so that we
can incorporate both textual and visual information in the summarization model

Building on the foundation of extractive summarization, and using the core logic from the
multimodal summarization work the study then introduces ”Guided Summarization.” This in-
novative method uses salience scores of sentences, obtained from an extractive summarizer,
to guide an abstractive summarizer. This symbiotic relationship between the two forms of
summarization results in more contextually relevant and focused abstract summaries.

The research further pushes the boundaries of personalization with ”Persona-based Sum-
marization,” applied to SEBI legal case files. This technique generates tailored summaries
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based on the specific information needs of different personas such as investors, defense lawyers,
and judges. It underscores the potential of personalization in text summarization, making the
information more accessible and relevant to each user profile.

Finally, building on the insights gleaned from the exploration of multimodal summarization,
the study culminates with the creation of an ”Indic Multimodal Text-Image Pair Dataset.” This
unique resource is a rich assembly of text and image pairs of different Indian languages, serving
as a critical foundation for the development and evaluation of visuolinguistic transformers,
especially those focusing on data from the Indian subcontinent.

In summary, this thesis provides a comprehensive exploration of how contextual guidance
and multimodal data can significantly enhance text summarization. The innovative techniques
and resources proposed and developed in this research, connected through a cohesive narrative,
promise to significantly advance the field of text summarization, paving the way for more
engaging, comprehensive, and personalized summary generation.
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Chapter 1

Introduction

1.1 Overview

The primary aim of this thesis is to explore and enhance the methodologies of text sum-
marization. It seeks to achieve this by innovatively integrating various forms of contextual
guidance and multimodal data into the summarization process. By conducting a series of inter-
connected studies that address the appeal, comprehensibility, relevance, and personalization of
summaries, the thesis aims to contribute significantly to the evolution of text summarization
techniques. Furthermore, it intends to provide a unique resource for future research in mul-
timodal summarization through the creation of an Indic multimodal text-image pair dataset.
Ultimately, this work endeavors to advance the field of text summarization towards more en-
gaging, comprehensive, and personalized summary generation.

This thesis is divided into the multiple works that I have done on summarization. Each
chapter contains one research work that tries to enrich or adapt text summarization using
various methods and resources.

1.2 Popularity Forecasting

The digital landscape has transformed the way we consume and disseminate information,
particularly in the realm of online news. A critical aspect of this transformation is the ability
to predict the popularity of individual sentences within these news documents, a task that
forms the crux of our study. This task is not merely an academic exercise; it holds significant
implications for various sectors, including journalism, marketing, and social media, where the
popularity of information can influence public opinion, drive consumer behavior, and shape
societal trends.

The current research landscape on this topic is still developing. While there have been strides
in related areas such as text summarization and snippet generation, the task of sentence-specific
popularity forecasting is relatively uncharted territory. This task presents unique challenges,

1



as it requires a nuanced understanding of natural language content and the ability to predict
internet browsing behavior, both of which are complex and dynamic phenomena.

In the context of this thesis, this work contributes by introducing a new dimension to text
summarization. By predicting the popularity of individual sentences, we can enrich text sum-
marization models with an additional layer of contextual guidance. This can potentially lead
to more effective and relevant summaries, as the models can prioritize information that is likely
to be popular or impactful.

In this work, we aim to contribute to the research on this task by introducing a novel
dataset, InfoPop, which contains popularity labels for over 1.7 million sentences from over
50,000 online news documents. Leveraging this dataset, we propose a novel transfer learning
approach that uses sentence salience prediction as an auxiliary task and a BERT-based neural
model. Our approach aims to enhance the prediction of sentence popularity by learning from
salience prediction, thereby bridging the gap between what is important in a document (salience)
and what is likely to be popular among readers.

1.3 Text-Image Multimodal Summarization

This work explores the realm of multimodal summarization, a burgeoning field that aims
to condense information from multiple modalities, such as text and images, into a concise
and interpretable form. The task at hand is the development of a multimodal summarization
model, specifically designed for news articles, that leverages semantic reranking and cross-modal
knowledge distillation.

The importance of this task is underscored by the rapidly growing amount of multimodal
content available on the internet, particularly in news articles and blog posts. The ability to
transform such articles into concise and accessible formats, akin to social media posts, presents
several noteworthy advantages for information dissemination, including wider reach, better
retention, and easier access to content.

The current state of research in this area has seen efforts to solve the problem of condensing
such articles into summaries by using attention mechanisms to pool the modalities together.
However, these efforts have not been entirely successful in forming an effective representation.
Previous models, such as MSMO and UniMS[76], have utilized techniques like bidirectional
LSTM[51] and BERT’s encoder-decoder architecture, but they have not fully exploited the
potential of multimodal data.

In this work, we aim to address these shortcomings by proposing a knowledge-distillation
based approach that manages to separate textual content of higher quality through contrastive
learning utilizing pretrained multimodal models. Our model, MMSumm, uses BERT[18] for
generating contextual embeddings of the text and VGG-19[60] for the images, and it employs
a scoring mechanism to determine the semantic similarity of the image to the text.
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1.4 Salience Guided Summarization

The task of text summarization has seen significant advancements, yet there remains a
considerable scope for improvement. One such area of exploration is the use of intrinsic text-
based measures to enhance the performance of abstractive summarization. This forms the basis
of my current research, where I am investigating how these measures, such as an extractive
summarization or a set of keywords and key phrases extracted from the text, can be used to
guide the abstractive summarization process.

The motivation behind this work stems from the understanding that while abstractive sum-
marization has the potential to generate more coherent and concise summaries, it can often
miss out on key information or deviate from the original text’s meaning. By incorporating
intrinsic text-based measures as guidance, the aim is to create a balance between abstraction
and accuracy, thereby boosting the overall quality of the generated summaries.

Existing work in this area includes the GSUM[19] model, which incorporates different forms
of guidance to enhance abstractive summarization. While the initial goal of my research was to
create a model that could outperform GSUM, this has proven to be a challenging task. However,
the exploration of different ways to incorporate guidance into the summarization pipeline has
yielded valuable insights and has opened up new avenues for further research.

In the context of my thesis, ”Enriching Text Summarization: A Journey through Contextual
Guidance and Multimodal Data”, this work contributes significantly. It aligns with the central
theme of the thesis, which is to enrich text summarization through contextual guidance. The
exploration of intrinsic text-based measures as guidance is a form of contextual guidance, and
the insights gained from this research can inform and enhance the methodologies explored in
the thesis.

1.5 Personalised Summarization

Legal case files often present a significant challenge due to their complexity and volume of
information. Various stakeholders, such as investors, defense lawyers, and adjudicating officers,
often find it difficult to swiftly extract relevant information. This challenge serves as the
motivation behind the research paper titled ”Aspect-based Summarization of Legal Case Files
using Sentence Classification”.

Previous attempts to address this problem have employed machine learning and deep learn-
ing methods for multi-class classification of sentences in legal documents. Techniques such as
BERT[18] for sentence classification and hierarchical attention networks for document classifica-
tion have been explored. Furthermore, methods for abstractive and extractive summarization,
such as LexRank[21] for salience in text summarization and sequence-to-sequence RNNs for text
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summarization, have been utilized. However, these methods often do not consider the specific
needs of different stakeholders.

This research aims to fill this gap by developing a method for aspect-based summarization
of legal case files. The goal is to generate summaries tailored to the specific needs of different
stakeholders, thereby making the information in legal case files more accessible and useful.

The relevance of this research to my thesis, ”Enriching Text Summarization: A Journey
through Contextual Guidance and Multimodal Data”, is profound. It provides a practical
demonstration of how contextual guidance can be employed to enhance text summarization, a
central theme of my thesis. The aspect-based summarization approach presented in this paper
uses the context of the legal case and the specific needs of different stakeholders as a form of
contextual guidance to direct the summarization process. This approach aligns seamlessly with
the theme of my thesis and serves as a valuable reference for the methodologies explored in my
work.

1.6 Indic Multimodal Work

The richness and diversity of Indian languages present a unique opportunity and challenge
for the field of text summarization. As part of my ongoing research, I am currently working
on the creation of an Indic multimodal dataset. This dataset, comprising 50,000 sentences in
various Indian languages along with relevant photos extracted from Google, is a pioneering
effort in the field.

My motivation for this work is to further the development of an Indic visuolinguistic trans-
former akin to OpenAI’s CLIP[54]. This is a significant endeavor, as there is currently no
authentic Indic multimodal dataset available. Existing datasets are largely artificial, often
translated or transformed from English multimodal datasets, which do not fully capture the
nuances and richness of Indian languages.

The incorporation of this work into my thesis, ”Enriching Text Summarization: A Journey
through Contextual Guidance and Multimodal Data”, is a natural extension of the research.
Currently, my work in multimodal summarization is limited to English news articles. By
creating an Indic variant of CLIP, I aim to extend this work to Indic languages. This would
involve using the Indic variant of CLIP to rate sentence similarity with article photos and
training the rest of the summarization model on Indic text.

This endeavor contributes significantly to my thesis by expanding the scope of multimodal
summarization to include Indic languages. It also aligns with the central theme of my thesis,
which is to enrich text summarization through contextual guidance and multimodal data. By
creating a new dataset and developing an Indic visuolinguistic transformer, I am adding a new
dimension of context - that of language diversity - to the field of text summarization. This
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work serves as a valuable reference for the methodologies explored in my thesis and paves the
way for future research in this area.

1.7 Contributions of this Thesis

This section summarizes the key contributions of this thesis:

1. Proposing the novel task of sentence level popularity prediction for news articles, alongside
a dataset and a

2. Proposing a novel architecture for image-text summarization of English news articles
where both modalities guide each other in creating the best overall summary

3. An exploration in my attempts to incorporating text based guidance from within the text
to boost summarization performance

4. Proposing a method for generating personalised summaries for different class of people
based on their requirements in the legal domain

5. Creating and contributing a high quality multimodal dataset in Indic languages.

1.8 Thesis Workflow

This thesis is divided into seven chapters. The first chapter is the introduction of the thesis,
the second chapter contains an overview on the the existing work done on tasks that are relevant
to the work persented in this thesis. Chapters three to seven cover the different works done as
part of this thesis. Chapter eight concludes the thesis by summarizing the contributions and
discussing possible future works related to this thesis.

• Chapter 1 aims to provide a general overview of the thesis. It has introductory information
on text summarization, along with an overview of the different types of summarization
and ways to enhance text summarization

• Chapter 2 describes the existing literature that is relevant to the work presented in this
thesis.

• Chapter 3 covers SCATE, which is one of the first works in its domain. It includes the
overall work and its scope, along with the dataset extraction process and the technical
architectural details of the model that we propose for this task.

• Chapter 4 covers MMSumm, which is a text-image multimodal summarization model. We
discuss the motivation and the architecture of our model along with the results.
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• Chapter 5 covers my exploration of different forms of intrinsic text based guidance and
how to best incorporate them into the summarization model architecture to boost sum-
marization performance over vanilla text summarization

• Chapter 6 covers Finweb, which is an approach for persona based text summarization for
SEBI legal case files. We discuss the approach, and also discuss how this can be useful
for other domains.

• Chapter 7 covers the creation of our Indic Multimodal dataset. This is a text-image
dataset for Indic languages. We discuss the scope and motivation, along with the issues
we faced along the way and how we handle the issues.

• Chapter 8 concludes this thesis with a summary of our contributions along with potential
ideas that can be explored further.
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Chapter 2

Related Work

This chapter aims to give an overview on the major works done in the field of text summa-
rization along with the works that are related to the specific tasks that I have worked on for
this thesis

2.1 Text Summarization

Text summarization, a subfield of Natural Language Processing (NLP), aims to generate
a concise version of a text while preserving its key information and overall meaning. This
process can be broadly categorized into two types: extractive summarization and abstractive
summarization.

2.1.1 Extractive Summarization

Extractive summarization, one of the earliest approaches to text summarization, selects key
sentences or phrases from the source text to form the summary. The objective is to identify
and extract the most informative segments of the text without altering the original wording.

One of the first works in extractive summarization was way back in the 1950s with Luhn’s
algorithm[1], proposed by Hans Peter Luhn. This algorithm identifies the most frequent non-
stop words in a document and selects sentences with the highest frequency of these words.

In the subsequent years, the MEAD system[53] emerged, which uses cluster centroids for
multi-document summarization. It computes the centroid of a document cluster as the mean
word frequency vector of the documents and ranks sentences based on their similarity to the
centroid.

The number of works in extractive summarization increased a lot when machine learning
became popular. The TextRank algorithm[46], inspired by Google’s PageRank[8], uses a graph-
based ranking model to select sentences. One of the state-of-the-art models in extractive sum-
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marization is BERTSumm[41]. This model extends the powerful BERT[18] language model to
generate interval representations for sentences, thereby enhancing extractive summarization.

2.1.2 Abstractive Summarization

Abstractive summarization, is another type of summarization that generates new sentences
to encapsulate the main ideas of the source text. This approach can yield more coherent and
concise summaries but is generally more challenging due to the complexity of natural language
generation.

Early works in abstractive summarization usually used rule-based methods, such as the use
of semantic representations and sentence compression techniques. However, these methods were
limited by the complexity and variability of natural language.

More sophisticated models were introduced with the rise in deep learning. One of the first
such models was the sequence-to-sequence model with attention[59], which was used to generate
abstractive summaries of news articles.

More recent works have used transformer-based models, such as BERT and GPT[9], for
abstractive summarization. For instance, the PEGASUS model[73], developed by Google, uses a
transformer model pre-trained on a large corpus of text and fine-tuned for the task of abstractive
summarization.

One of the state-of-the-art models in abstractive summarization is BART[34] (Bidirectional
and Auto-Regressive Transformers), developed by Facebook. BART is trained to reconstruct
the original text by randomly masking out sentences from the text and then generating the
masked sentences.

2.2 Popularity forecasting of news article sentences

The task of predicting the popularity of online news sentences is a relatively new but rapidly
evolving field. Several notable studies have made significant contributions to this area.

Tatar et al. [64] was one of the first works that worked on the concept of ranking news articles
based on their predicted popularity. Their work laid the groundwork for future research in this
area by demonstrating the potential of popularity prediction as a tool for news article ranking.

Uddin et al. [65] expanded on this concept by exploring the use of content metadata for
predicting the popularity of online news. Their approach highlighted the value of metadata as
a rich source of information for popularity prediction.

Voronov et al. [67] took a different approach by focusing on the title of news articles. They
employed a BN-LSTM network to analyze titles and forecast the popularity of the articles. This
work underscored the importance of titles as a key factor in driving the popularity of online
news.
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Wang et al. [29] proposed a feature generalization framework for predicting social media
popularity. While their work focused on social media, the principles of feature generalization
they introduced are relevant to the broader field of online news popularity prediction.

Lastly, Wu et al. [69] introduced the concept of multi-scale temporal decomposition for pre-
dicting social media popularity. Their work emphasized the importance of considering temporal
dynamics in popularity prediction.

These studies collectively represent the current state of the art in online news popularity
prediction. They provide valuable insights and methodologies that inform and inspire our work
on sentence-specific information popularity prediction.

2.3 Multimodal Summarization

Multimodal summarization, particularly the integration of text and image data, has been a
burgeoning field of research in recent years. This section provides an overview of some of the
key contributions in this area.

Jiang et al.[27] proposed a contrastive learning strategy that refines cross-modal similarity
progressively. This strategy aims to optimize the mutual information between an image/text
anchor and its negative counterparts more accurately. Their work provides valuable insights
into the potential of contrastive learning in multimodal summarization.

Lu et al. introduced MTCA[45], a multimodal summarization model based on two-stream
cross attention. The model comprises a pre-trained feature extractor, a text encoder, an image
encoder, a two-stream cross attention fusion module, and a summary decoder. This compre-
hensive approach to multimodal summarization represents a significant advancement in the
field.

Zhang et al.[74] proposed a hierarchical cross-modality semantic correlation learning model
(HCSCL) to learn the intra- and inter-modal correlation existing in multimodal data. Their
model outperforms the baseline methods in automatic summarization metrics and fine-grained
diversity tests, demonstrating the potential of hierarchical learning models in multimodal sum-
marization.

Lastly, Zhang et al. proposed UniMS, a unified framework for multimodal summarization
grounded on BART[34]. UniMS[76] integrates extractive and abstractive objectives and includes
a visual guided decoder to better integrate textual and visual modalities in guiding abstractive
text generation. This work underscores the potential of unified frameworks in enhancing mul-
timodal summarization.

These works collectively highlight the ongoing research and development in the field of
text-image multimodal summarization. They underscore the potential of various approaches,
from recurrent neural networks and attention mechanisms to contrastive learning strategies and
unified frameworks, in advancing the field.
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Figure 2.1 Examples of extractive and abstractive summarization.

2.3.1 Multimodal summarization with multimodal output

The domain of abstractive summarization encompasses the task of multimodal summariza-
tion with multimodal output (MSMO)[77]. This task involves leveraging image content within
predominantly textual documents to enhance abstractive summarization. This concept was
initially put forth by Zhu et al. [77], who developed a dataset comprising CNN and Daily Mail
news articles and their associated images. Utilizing an attention-based sequence-to-sequence
model constructed with bidirectional Long Short-Term Memory (LSTM) networks[23], they
demonstrated remarkable performance for that period, as evaluated by human assessors. Their
research also revealed that presenting the most pertinent image alongside a text-only summary
significantly improved user satisfaction. In a subsequent study, Zhu et al. [28] further refined
their model by incorporating a multimodal ranking method to rank images. Currently, the
highest metrics on this task have been achieved by Zhang et al. [76], who employed BART[34]
in conjunction with CLIP[54] as a knowledge distillation module.

2.4 Persona based summarization of SEBI legal case files

The field of aspect-based summarization has seen significant contributions over the years.
This chapter provides an overview of the key works that have shaped this area of research.

Hu and Liu (2004)[25] pioneered the application of aspect-based summarization in the con-
text of unstructured product reviews. They employed association mining to identify frequent
word itemsets, which were then used to discern aspects and their associated sentiments. This
work laid the foundation for subsequent research in the field.

Building on this, Angelidis and Lapata (2018)[4] introduced a convolutional neural network-
based model for aspect-based summarization. Their approach involved a two-step process where
aspects were first identified, followed by the generation of a summary for each aspect. This
work demonstrated the potential of deep learning techniques in aspect-based summarization.

Kreimeyer et al. (2017)[32] applied aspect-based summarization to clinical study reports.
Their approach combined natural language processing and machine learning techniques to iden-
tify aspects and generate summaries. This work underscored the potential of aspect-based
summarization in the medical field.
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Lastly, Lerman et al. (2009)[33] focused on aspect-based summarization of business news.
They used a combination of natural language processing and machine learning techniques to
identify aspects and generate summaries. This work demonstrated the applicability of aspect-
based summarization in the business domain.

2.5 Guided text summarization

The field of guided summarization has seen significant contributions over the years. This
chapter provides an overview of the key works that have shaped this area of research.

One of the early works in this area is ”Topic-Focused Multi-Document Summarization Using
an Approximate Oracle Score” by Conroy and O’Leary (2001)[14]. They proposed a method for
guided summarization using Hidden Markov Models (HMMs). The HMMs were used to extract
salient sentences from the document, which were then used as guidance for the summarization
process.

Another notable work is ”Fast Abstractive Summarization with Reinforce-Selected Sentence
Rewriting” by Chen and Bansal (2018)[12]. They proposed a method for guided abstractive
summarization using extractive summaries. The process involved generating an extractive
summary first, which was then used as guidance for the generation of the abstractive summary.

A significant contribution to the field of guided summarization is ”Guided Abstractive Sum-
marization with Explicit Information Selection Modeling” by Zhao, Wang, and Neubig (2021).
They introduced a new framework, GSum[19], which uses a guidance signal to control the struc-
ture of the generated summaries. The guidance signal can be any form of structured input,
such as a set of extracted keywords, a list of entities, or an extractive summary. The authors
demonstrate its effectiveness through experiments, achieving state-of-the-art performance on
four popular summarization datasets when using highlighted sentences as guidance. The GSum
model not only generates more faithful summaries but also provides a degree of controllability,
demonstrating

Figure 2.2 Example of multimodal summarization with multimodal output.
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2.6 Multimodal Datasets

One of the early works in this area is the creation of the MSCOCO dataset[38] by Microsoft.
This dataset, which includes captions for each image, has been widely used for image recognition
tasks and has become a valuable resource for multimodal research.

Similarly, ImageNet[17], primarily an image recognition dataset, has been used in conjunc-
tion with other text datasets to train multimodal models.

Google’s Conceptual Captions[58] is another large-scale dataset that contains images paired
with captions, which are more descriptive and longer than those in MSCOCO.

In terms of visuolinguistic transformers, OpenAI’s CLIP (Contrastive Language-Image Pre-
training)[54] represents a significant advancement. CLIP jointly trains to understand images
and text from a large dataset of internet text paired with images.

ViLBERT (Vision-and-Language BERT)[44] and VisualBERT[35] are other notable models
that extend BERT to handle both images and text. They are trained on the Conceptual
Captions[58] and MSCOCO datasets, respectively.

In the context of Indian languages, the creation of the ”Hindi Visual Genome” dataset[49] is
a significant milestone. This dataset, which is the first of its kind for English-Hindi multimodal
machine translation, consists of short English segments (captions) from the Visual Genome,
along with associated images. These segments have been automatically translated into Hindi,
with manual post-editing that took the associated images into account.

In our attempt to get an Indic multimodal dataset, we make use of the samanantar dataset
from AI4Bharat [55], which is text-only. Samanantar dataset consists of 49.7 Million pairs of
sentences between English and 11 Indic languages spread across 2 language families - Indo-
aryan and Dravidian. These languages are - Hindi, Bengali, Tamil, Telugu, Odiya, Kannada,
Assamese, Marathi, Punjabi, Gujarati and Malayali.
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Chapter 3

Popularity Forecasting

In our study, we focused on predicting how popular individual sentences in online news
articles would be based on their content. We created a dataset named InfoPop, which includes
popularity scores for over 1.7 million sentences from more than 50,000 online news articles.

In our approach we used a technique called transfer learning, applying it to sentence salience
prediction as a side task. We built a neural network model using BERT, a well-known language
processing framework. This model has performed well, with nDCG scores over 0.8 in predicting
the popularity of sentences.

Our results show that applying transfer learning from sentence salience prediction improves
the accuracy of predicting sentence popularity.

3.1 Introduction

The digital revolution has reshaped how news is consumed, transitioning from traditional
print and television to diverse online platforms. This shift has led to a surge in content, with
news providers competing to engage readers in this information-saturated environment. In
such a scenario, discerning what resonates with readers is essential. A key aspect of this is
understanding the impact of individual sentences within a news article, as they significantly
contribute to the overall narrative. Analyzing sentence popularity can offer insights into reader
preferences and optimize content and ad placement. However, predicting sentence popularity
is a complex task, prompting our research to develop a model to forecast the popularity of
sentences in online news articles.

The primary objective of this work is to address the task of predicting the popularity of indi-
vidual sentences in online news articles. We aim to develop a model that can accurately predict
sentence popularity, providing valuable insights for news providers navigating the digital age.
This chapter delves into our research, offering an overview of our approach and its potential
implications. As the second author, my contributions were in the development and implemen-
tation of the model, as well as in creating the InfoPop dataset, which serves as the foundation
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of our research. This chapter aims to provide an account of our research, highlighting our
approach and its potential impact on news content analysis.

The major contributions of our paper are as follows:

• We introduce the task of proactively forecasting relative information popularities of sen-
tences within online news documents solely based on their natural language content,
without the use of any external features.

• We present InfoPop, the first labeled dataset containing over 50,000 online news doc-
uments from 26 news websites with over 1.7M sentences, each mapped to supervised
popularity scores.

• Through a novel STILTs-based transfer learning approach, we build high-performance
neural models reaching nDCG scores over 0.8 for sentence-specific popularity forecasting.

• These contributions not only advance the field of information popularity prediction but
also provide valuable resources for future research in this area.

Sentence Popularity Score

Local carriers and drivers will be able to book ... 0.1099

Uber Freight plans to expand to more Euro... 0.2046

The EU and U.S. freight markets have problem... 0.0092

They’re both huge —the EU truckload marke... 0.0067

“The European trucking market is experienc... 0.0110

Inefficiency of this scale results in shippers ... 0.0132

Uber Freight has been scaling up its business ... 0.1356

The company has offices in San Francisco and ... 0.0158

In August, Uber announced that it would ... 0.2703

It’s also made some key hires, one of which ... 0.0076

Table 3.1 Example of sentences extracted from a news article and their corresponding popu-

larity scores.

3.2 Background

This work is a combination of many problems that are related to the topic at hand
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Popularity Prediction at the Document Level: A significant portion of the existing research
in popularity prediction has been centered around treating an entire piece of content as a single
unit for which the future popularity is predicted[67, 5, 29]. This prediction often relies on two
main types of popularity indicators. The first is based on internet browsing habits, where the
popularity of online news articles is gauged by the number of page load requests they receive
over a certain period.[3] The second type of popularity prediction is focused on social media
engagement[63, 61]. This approach has been applied to a variety of content types, including
multimedia posts, images, movies[?, 2], and petitions. The popularity in this context is usually
measured using indicators of user behavior such as the number of comments or shares[65].
Some researchers have also explored the prediction of social media popularity over time, using
time-aware and time-series prediction models[69].

Automatic Text Summarization: Text summarization aims to identify and highlight the
central idea of one or more documents. There are two main approaches to this: abstractive and
extractive. Abstractive summarization generates a concise, coherent summary that encapsulates
the central idea of the text. Extractive summarization, on the other hand, selects and arranges
the most salient and diverse parts of the text to form a summary. Unlike these methods, our
task involves sequential regression, where we forecast numerical scores for each sentence.

Snippet Generation: Snippet generation[50] involves creating a brief excerpt from a docu-
ment that allows a user to understand the relevance of the document to their query without
having to access the entire document. While the problem formulation for snippet generation
is somewhat related to sentence popularity forecasting, our task is focused on query-insensitive
scoring of sentences.[6] In contrast, tasks like snippet generation and document retrieval are
query-sensitive and require a specific query to generate an appropriate snippet.

These works have provided valuable insights and methodologies that have informed our
approach to forecasting sentence-specific information popularity within online news documents.

3.3 Dataset

Our research relies on the InfoPop Dataset, comprising 51,770 news documents containing
1,711,890 annotated sentences. The dataset’s characteristics include variable document lengths,
averaging 33.07 sentences per article, with sentences containing an average of 18.23 word tokens.
It features contributions from 26 reputable news websites, averaging 1991.15 articles per site.
We observed a weak positive correlation (0.168) between popularity scores and sentence lengths.

We split the dataset into train, validation, and test sets in an 8:1:1 ratio. The dataset’s
creation involved scraping 82,540 news documents from 26 online news websites and addressing
noise issues in the text, implementing two dependency parsing-based heuristics.

The first heuristic eliminated sentences with non-tree dependency graphs. The second heuris-
tic removed sentences with xcomp branches leading to a single participle, linked to text rep-
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etition. These computationally intensive cleaning steps were conducted once, followed by the
removal of articles with fewer than three grammatical sentences.

To assign popularity scores, we considered document relevance to Bing Search queries, focus-
ing on documents in the top 10 search results. Each sentence received a base score, normalized
within each document to a [0, 1] range. This process resulted in a dataset offering a diverse
collection of news documents with sentence-level popularity annotations based on real-world
search engine queries.

3.4 Model

Given the dataset mentioned above we aim to create a model that can solve the following
problem statement

Given a document D with n sentences s1, s2, . . . , sn, our goal is to predict a sequence of
popularity scores p1, p2, . . . , pn where each pi represents the predicted popularity of sentence si.

The popularity score for each sentence is a real number in the range [0, 1], and the sum of
all popularity scores in a document equals 1, i.e.,

∑n
i=1 pi = 1. This is to ensure that the scores

represent a distribution of popularity across the sentences in the document.

3.4.1 BaseReg Model: Comprehensive Overview

The BaseReg model is tailored for sentence scoring in online news documents and takes
inspiration from the SummaRunner architecture[48].

3.4.1.1 Input Representation and CNN-based Vectorization

Sentences are initially represented using GloVe embeddings[51] and transformed into vec-
torized representations through a dual-layered CNN. This network employs convolution, batch
normalization, and Leaky ReLU activation to capture localized patterns. A multi-kernel strat-
egy with max-pooling is used to extract prominent features, yielding a comprehensive sentence
embedding.

3.4.1.2 Contextualization with Bi-GRUs

The CNN-generated sentence vectors are refined using bidirectional Gated Recurrent Units
(bi-GRUs)[13], ensuring that each sentence representation is influenced by its surrounding con-
text.
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3.4.1.3 Global Contextual Understanding

The bi-GRU-produced contextual embeddings are aggregated via max-pooling and processed
through a fully connected layer, resulting in a document embedding vector that encapsulates
the global context.

Figure 3.1 BaseReg Model

3.4.1.4 Sentence Scoring Mechanism

The culmination of the model’s operations is the computation of scores for each sentence.
These scores are derived based on various criteria, such as content richness, novelty, and other
intrinsic sentence attributes. The scoring mechanism is a function of both the contextual
sentence embedding and the global document embedding, ensuring a balanced consideration of
local and global contexts.

3.4.2 BERTReg Model: An In-depth Examination

The BERTReg model, as delineated in the paper, represents an adaptation of Transformer-
based architectures, specifically BERT[18], tailored for the task of sentence-specific popularity
forecasting within online news documents.

3.4.2.1 Architectural Inspiration

The BERTReg model harnesses the capabilities of BERT (Bidirectional Encoder Represen-
tations from Transformers) [18] to set new standards in multiple NLP benchmarks. This model
modifies the BertSumExt [41] design, initially meant for sentence classification, to fit the se-
quential regression setting of the current task.
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3.4.2.2 Sentence Embedding Generation

For contextual sentence embedding generation, the model marks sentence boundaries using
[SEP] tokens and begins sentences with unique [REG] tokens. The [REG] tokens’ contextual
embeddings serve as the basis for sequence regression. The model then crafts embeddings for
each input token, accounting for token, position, and segment. Notably, segment embeddings
distinguish between odd and even sentences in BERT before being refined within the BERT
framework. The sequence of BERT-informed sentence embeddings associated with [REG] to-
kens is merged with sinusoidal positional embeddings. Subsequently, they are passed through
a two-layer Transformer model [66]. This results in contextual sentence embeddings, aware of
the wider document context, emphasizing the model’s comprehension of inter-sentence relation-
ships.

Figure 3.2 BERTReg Model

3.5 Auxiliary Transfer Learning Subtasks

3.5.1 Conceptual Foundation

One of the primary innovations in our research approach is the incorporation of a STILTs-
based Transfer Learning (TL) setup[20], focusing on the task of sentence salience prediction. We
recognized that the domain of text summarization, which extensively studies sentence salience,
offers a wealth of data from the news domain. Based on this observation, we posited that
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leveraging STILTs-based transfer learning from an auxiliary task centered on salience prediction
could significantly enhance the capability of models to forecast popularity[22].

3.5.2 Salience Prediction

In the realm of document summarization, a sentence’s salience is gauged by its relevance to
the core semantics of the document, determining its suitability for inclusion in the document’
s summary. Given an article paired with its gold standard summary, We devised a method
to compute the salience of each sentence based on its ROUGE[37] overlap with the summary.
Traditional extractive summarization methods often assign binary summary-inclusion labels to
sentences in a manner that maximizes the ROUGE overlap between the constructed oracle and
the actual summary. However, for the purposes of my study, we aimed to capture the intrinsic
salience of sentences, ensuring that lexically similar sentences received analogous labels. This
approach led us to frame the auxiliary task as a sentence sequence regression problem, enabling
the adaptation of the STILTs methodology and facilitating empirical cross-task evaluations.

3.5.3 Data Source for Salience Prediction

Our research primarily focuses on the online news domain. To this end, we utilized the
well-known CNN-DailyMail news summarization dataset[47]. For each sentence, we computed
three weakly supervised salience scores based on its ROUGE 1, ROUGE 2, and ROUGE L
overlaps with the associated article’s summary. Similar to the methodology we employed for
InfoPop labels, we normalized the salience labels across documents by dividing them by the
cumulative score of individual sentences. This approach resulted in the formulation of three
distinct auxiliary subtasks, labeled as S1, S2, and SL.

3.6 Experimental Details

3.6.1 Baselines

The paper employs a diverse set of baselines to benchmark the performance of the pro-
posed models for sentence-specific popularity forecasting within online news documents. These
baselines encompass both unsupervised sentence ranking methods and neural models.

3.6.1.1 Position-Based Baseline

News articles often adhere to the pyramid structure of reporting, with primary information
predominantly contained within the initial sentences. Leveraging this structure, a position-
based baseline is introduced:
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• Sentences are scored in descending order based on their position from the start of the
article.

• Specifically, for an article with n sentences, the ith sentence is assigned a score of 1− i
n .

3.6.1.2 Graph-Based Algorithms

The study also evaluates the efficacy of renowned graph-based algorithms that exploit simi-
larities between sentence pairs:

• PageRank[8]: The underlying premise of PageRank is that the significance of a webpage
can be gauged by the webpages that link to it. The PageRank value for a page P is
defined recursively as:

PR(P ) =
1− d

N
+ d

n∑
i=1

PR(Pi)

L(Pi)

Where:

– PR(P ) is the PageRank of page P .

– d is a damping factor, usually set to 0.85.

– N is the total number of pages.

– Pi are the pages linking to page P .

– L(Pi) is the number of outbound links on page Pi.

The algorithm involves iteratively updating the PageRank values until convergence is
achieved.

• TextRank[46]: A popular graph-based ranking algorithm that operates on the principle
of the PageRank mechanism.

• LexRank[21]: Similar to TextRank, LexRank also uses the PageRank algorithm but
emphasizes lexical sentence similarity.

We use the position based ranking, TextRank and LexRank as our baselines

3.6.2 Evaluation Metrics

We utilized a comprehensive set of evaluation metrics to assess the performance of the
models. These metrics were chosen to offer a holistic perspective on the models’ capabilities,
spanning from ranking accuracy to regression precision.
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• Top K Overlap: This metric measures the models’ accuracy in identifying the most
salient sentences. Given the sets of actual and predicted top-K highest scored sentences,
denoted as AK and PK respectively, the top K overlap is defined as:

topK =
|AK ∩ PK|

K
Expressed as a percentage, it provides insights into the models’ ability to correctly identify
the highest scored sentences.

• Regression Errors: We computed the Mean Squared Error (MSE) and Mean Absolute
Error (MAE) between the arrays of actual and predicted sentence labels to gauge the
accuracy of the predicted scores.

• Rank Correlation Metrics: To understand the models’ capability to rank and order
the entire set of sentences in a document, We employed Spearman’s rank correlation (ρ)
and Kendall’s Tau (τ). Both ρ and τ lie in the range [-1, 1].

• nDCG[26]: The Normalized Discounted Cumulative Gain (nDCG) metric was utilized
to capture the normalized gain or usefulness of a sentence based on both its position in
the inferred rank list and its actual score. nDCG values range between [0, 1].

3.6.3 Training Details

3.6.3.1 BaseReg Model

The BaseReg model was trained using the Adam optimizer[31] with a batch size of 256
documents and an initial learning rate of 10−5. Default hyperparameters were employed, the
maximum sequence limit for the bi-GRU layer was set to 100 sentences, and the CNN-sentence
encoder had an input limit of 100 tokens per sentence.

3.6.3.2 BERTReg Model

The BERTReg model utilized the 6-layer bert-base-uncased variant with a maximum se-
quence length of 1536 tokens. The Adam optimizer was employed with a learning rate of
2.10−3, and other hyperparameters were set to their default values.

3.6.4 Handling Long Documents

For documents exceeding the maximum sequence length, both the BaseReg and BERTReg

models employed a sliding window mechanism. Specifically, documents were split into over-
lapping sliding windows with a maximum stride of 10 sentences. During inference, the same
splitting technique was adopted. For sentences within the stride of two consecutive windows,
the sentence score was computed as the mean of the scores from both windows.
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3.6.5 Hardware Details

All models were trained on NVIDIA RTX 2080Ti GPUs. The BaseReg models were trained
on a single GPU for a maximum of 4 epochs with early stopping. A single epoch on the transfer
learning task took over 6 hours, while one epoch for popularity forecasting training took close
to 45 minutes. The BERTReg models were trained on 4 GPUs for 50,000 optimizer steps with
early stopping turned off for both the popularity forecasting and the transfer learning tasks,
and the training time ranged between 10 to 12 hours.

3.7 Results and Discussion

Method TL Top1 Top2 Top3 MSE MAE τ ρ nDCG

Position – 6.92 10.81 16.46 0.0079 0.0530 0.0334 0.0424 0.5804

TextRank – 6.08 12.58 19.08 0.0316 0.1486 0.0345 0.0474 0.6313

LexRank – 18.76 29.95 37.84 0.0072 0.0503 0.0545 0.0705 0.7324

BaseReg X 9.12 15.49 20.93 0.0083 0.0452 0.0534 0.0746 0.6228

BaseReg S1 9.35 14.91 20.49 0.0075 0.0478 0.0428 0.0592 0.6323

BaseReg S2 10.08 16.63 22.83 0.0073 0.0468 0.0545 0.0751 0.6465

BaseReg SL 9.16 14.85 20.76 0.0075 0.0475 0.0465 0.0638 0.6307

BERTReg X 27.53 38.89 45.89 0.0055 0.0335 0.0704 0.0955 0.7921

BERTReg S1 27.54 38.73 45.86 0.0052 0.0342 0.0734 0.0988 0.8009

BERTReg S2 28.34 39.08 46.17 0.0053 0.0332 0.0646 0.0876 0.8009

BERTReg SL 27.54 38.73 45.86 0.0053 0.0331 0.0510 0.0674 0.8025

Table 3.2 Consolidated results from the experiments on sentence-specific popularity forecast-

ing. The methods are evaluated based on various metrics including Top1, Top2, Top3, Mean

Squared Error (MSE), Mean Absolute Error (MAE), Spearman’s rank correlation (ρ), and

Normalized Discounted Cumulative Gain (nDCG). The TL column indicates the specific Trans-

fer Learning setup used.

3.7.1 Evaluation of Sentence Ranking Techniques

Our exploration into unsupervised sentence ranking techniques revealed distinct performance
variations. LexRank[21], in particular, demonstrated superior efficacy in forecasting sentence-
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specific popularity, consistently outperforming other unsupervised methods such as Position
and TextRank[46] across all evaluation criteria.

3.7.2 Insights from Supervised Models

Our custom-designed supervised models, as detailed in Table 2 and 3, showcased promising
results. BERTReg, in particular, emerged as the most potent architecture for predicting sen-
tence popularity. The introduction of Transfer Learning (TL) techniques further amplified the
model’s performance. While each TL subtask exhibited its unique strengths, the overarching
trend was clear: the integration of transfer learning invariably led to enhanced results. For
instance, when BERTReg was augmented with the SL variant of TL, we observed a substantial
uptick in the average nDCG, surpassing the base BERTReg model and significantly outstrip-
ping the best unsupervised methods. Statistical analyses further corroborated these findings,
highlighting the robustness of BERTReg combined with TL = SL.

Interestingly, while BaseReg’s standalone performance for popularity forecasting was mod-
est, the positive influence of transfer learning was still discernible, underscoring the universal
benefits of this approach.

3.7.3 Underlying Factors for Model Enhancement

The pronounced improvements observed in our models, especially with the integration of
transfer learning, can be traced back to a couple of pivotal factors:

1. Domain Consistency: Both the popularity forecasting and salience prediction tasks
drew data from online news articles. This overlap in data sources meant that transfer
learning could immerse the model in a more expansive and domain-relevant dataset.

2. Shared Task Characteristics: Despite their distinct objectives, popularity forecasting
and salience prediction share underlying similarities. Both tasks, for instance, might
devalue sentences that are lexically thin or discern that certain phrases lack impactful
information. By leveraging transfer learning, our models were better equipped to recognize
and capitalize on these shared traits.

3.7.4 Popularity versus Salience: A Comparative Analysis

3.7.4.1 Defining Salience and Popularity

Salient sentences are those that encapsulate ideas central to the core semantics of an article,
often deemed worthy of inclusion in a summary. In contrast, a sentence can deviate significantly
from an article’s primary topic and still be considered popular. For instance, a sentence might
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not be central to an article’s main theme but could contain information that resonates with a
broad audience, making it popular.

3.7.4.2 Quantitative Insights

Task Method Top1 Top2 Top3 MSE MAE ρ τ nDCG

S1

Position 12.86 26.30 34.04 0.0010 0.0215 0.2030 0.2855 0.8682

TextRank 15.55 24.28 30.89 0.0243 0.1487 0.0771 0.1082 0.8999

LexRank 13.14 21.91 28.45 0.0007 0.0178 0.0561 0.0798 0.8740

BaseReg 17.01 26.60 34.00 0.0006 0.0167 0.1387 0.1967 0.8933

BERTReg 26.41 36.64 43.20 0.0004 0.0130 0.1372 0.1891 0.9274

S2

Position 11.24 25.03 32.77 0.0044 0.0418 0.1496 0.2101 0.7113

TextRank 9.29 17.59 23.43 0.0280 0.1541 0.0407 0.0578 0.6665

LexRank 11.74 20.68 26.88 0.0045 0.0422 0.0473 0.0669 0.6847

BaseReg 17.19 27.56 35.83 0.0041 0.0373 0.1391 0.1989 0.7382

BERTReg 23.32 36.26 43.68 0.0034 0.0332 0.1108 0.1559 0.7946

S1

Position 13.60 27.57 35.18 0.0009 0.0211 0.2050 0.2881 0.8760

TextRank 15.55 9.29 11.72 0.0243 0.1487 0.0771 0.1082 0.8999

LexRank 12.40 21.71 27.95 0.0007 0.0182 0.0546 0.0778 0.8657

BaseReg 15.13 24.75 32.36 0.0007 0.0175 0.1385 0.1966 0.8780

BERTReg 24.24 34.96 41.76 0.0005 0.0141 0.1329 0.1847 0.9152

Table 3.3 Performance of unsupervised sentence ranking baselines and proposed methods on

sentence-specific popularity forecasting.

A comparative evaluation of unsupervised baselines and supervised neural models on the
transfer learning subtasks revealed interesting patterns. While certain baselines, like the
position-based approach, exhibited strong performance in capturing the pyramid structure of
news reports, models like BERTReg excelled in metrics such as nDCG and in pinpointing the
most salient sentences.

Interestingly, sentence ranking baselines appeared more adept at capturing information
salience than forecasting information popularity. This distinction was evident when comparing
the performance of the position baseline for both tasks. The results indicated that while the
initial sentences in news articles are typically more salient, they might not always be the most
popular.
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3.7.4.3 Empirical Observations

Train Eval Top1 Top2 Top3 MSE MAE ρ nDCG

S1 PF 10.97 18.31 25.69 0.0068 0.0475 0.0430 0.6864

S2 PF 10.74 19.83 27.89 0.0077 0.0455 0.0380 0.6942

SL PF 11.44 19.09 27.02 0.0068 0.0476 0.0428 0.6937

PF S1 8.36 16.63 22.64 0.0020 0.0301 0.0600 0.8603

PF S2 8.51 16.34 22.53 0.0053 0.0430 0.0373 0.6579

PF SL 9.07 16.62 22.86 0.0020 0.0304 0.0563 0.8524

Table 3.4 Cross-task evaluation - performance of BERTReg trained for popularity forecasting

(PF) evaluated on salience prediction and vice-versa.

An empirical cross-task evaluation further underscored the distinction between information
popularity and salience. For instance, a sentence from an article might not be deemed salient
enough for summary inclusion due to its tangential relation to the article’s main topic. However,
it could still encompass one of the most popular information pieces within the document.

3.7.4.4 Concluding Remarks

The results and observations from this analysis highlight the nuanced differences between
popularity and salience. While both concepts are integral to understanding the dynamics of
online news content, they serve distinct roles and are influenced by different factors. The
ability to discern between the two can offer valuable insights for various applications, from
content promotion to targeted summarization.

3.8 Conclusion and Future Work

This research ventured into the novel domain of proactively forecasting sentence-specific
information popularity within online news articles. The introduction of the InfoPop dataset,
encompassing a vast collection of news articles labeled with normalized popularity scores, laid
the foundation for our experiments. Our exploration spanned both unsupervised and supervised
methodologies, with the latter benefiting significantly from a STILTs-based Transfer Learning
approach rooted in salience prediction.

A key takeaway from our findings is the intricate relationship between popularity forecasting
and salience prediction. While they address distinct challenges, the transfer of learning from
salience prediction markedly enhanced the proficiency of our models in forecasting popularity.
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This synergy underscores the potential of harnessing shared characteristics between seemingly
disparate tasks.

Looking ahead, there’s a rich avenue for potential applications of sentence popularity fore-
casting. This includes innovations in pull quote extraction and the development of popularity-
guided text summarization techniques. Furthermore, a multi-task learning approach that con-
currently addresses popularity forecasting and salience prediction offers an exciting direction
for future research.
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Chapter 4

Image-Text Multimodal Summarization

In the digital age, the vast expanse of content available on the internet has underscored the
importance of effective summarization techniques. As we navigate this sea of information, the
challenge is not just about condensing text but also about ensuring that the essence and context
of the original content are retained. This becomes even more pertinent when we consider the
inherently multimodal nature of many online articles, especially news pieces and blog posts,
which seamlessly blend text with visual elements.

Our motivation to embark on this research journey stemmed from a simple observation:
while textual content provides the narrative, images often capture the emotion, context, and
nuances that words might miss. Could the integration of these images into the summarization
process lead to richer, more comprehensive summaries?

To explore this hypothesis, we introduced ”MMSumm: Multimodal Summarization of News
Articles via Semantic Reranking and Cross-Modal Knowledge Distillation.” This work proposes
a novel knowledge-distillation based approach that aims to extract high-quality textual content.
By leveraging contrastive learning with pretrained multimodal models, we sought to bridge the
gap between textual and visual data, enhancing the quality and depth of generated summaries.

This chapter delves into the intricacies of our approach, shedding light on the methodologies
employed, the challenges faced, and the promising results that underscore the potential of
multimodal summarization in the modern information landscape.

4.1 Introduction

In the vast digital ecosystem, the art and science of summarization have become indispens-
able. As information continues to grow exponentially, the ability to distill this deluge into
concise, meaningful summaries is not just a luxury but a necessity. Summarization, in its
essence, serves as a bridge between vast information sources and the end-users, ensuring that
the core message is conveyed without overwhelming the reader.
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Text summarization is a pivotal computational technique designed to distill extensive textual
documents into concise, coherent versions that encapsulate the primary information of the
original content. The process can be bifurcated into two primary methodologies: extractive and
abstractive. Extractive summarization operates by pinpointing and selecting salient segments
from the source document, effectively ”extracting” these portions to construct the summary. In
contrast, abstractive summarization delves deeper, generating entirely new text. This approach
often harnesses sophisticated language models to produce sentences that capture the overarching
ideas, mirroring the synthesis one might expect from a human summarizer. As the digital realm
continues to be inundated with vast amounts of information, the significance of efficient and
accurate text summarization techniques becomes increasingly paramount, driving continuous
advancements and refinements in the field.

Extractive summarization is a distinct approach within text summarization. It operates by
selecting and ”extracting” pertinent sentences or segments directly from the source document
to compose the summary. This method is fundamentally data-driven, eschewing the generation
of new sentences in favor of using existing content from the original document. The direct
extraction offers several advantages. Firstly, it minimizes the risk of inaccuracies or misinter-
pretations, ensuring a high degree of accuracy. Secondly, compared to abstractive techniques,
extractive methods are often more straightforward to implement, sidestepping the complexities
of language generation. Lastly, the content, being directly lifted, ensures that the summary
remains aligned with the tone and style of the original document. However, this approach is
not without its limitations. There’s potential for repetitive information if the source document
contains overlapping data, leading to redundancy. Extracted sentences, when combined, might
lack a natural flow, potentially yielding a disjointed summary, indicating a lack of cohesiveness.
Moreover, being bound by the original text’s constraints, the method might overlook nuances
or broader themes that abstractive techniques could encapsulate, showcasing its limited flexi-
bility. In the dynamic domain of text summarization, the merits and limitations of extractive
methods must be judiciously weighed, especially when determining their suitability for specific
summarization tasks.

Abstractive summarization represents a more sophisticated approach within the realm of
text summarization. Unlike its extractive counterpart, which directly lifts segments from the
source, abstractive methods generate entirely new sentences to convey the core ideas of the
original content. This approach often leverages advanced language models and algorithms to
craft summaries that can provide fresh perspectives or rephrased insights, mirroring human-like
synthesis of information.

The primary advantage of abstractive summarization is its flexibility. It’s not bound by
the phrasing or structure of the source document, allowing for the generation of concise and
often more readable summaries. This flexibility also enables the method to capture overarching
themes or nuances that might be dispersed throughout the source, presenting them in a cohe-
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sive manner. Moreover, abstractive methods can reduce redundancy, as they can synthesize
information from multiple repetitive segments into a singular, coherent statement.

However, this approach comes with its set of challenges. The most notable disadvantage is the
potential for inaccuracies. Since the method generates new content, there’s a risk of introducing
errors or misinterpretations that weren’t present in the original document. Additionally, the
complexity of abstractive algorithms often means they require more computational resources
and fine-tuning, making them computationally intensive. Lastly, ensuring the generated content
remains faithful to the original’s tone and intent can be challenging, leading to potential issues
with consistency.

In the broader landscape of text summarization, abstractive methods offer a promising av-
enue for capturing the essence of content in novel ways. However, their implementation requires
careful consideration of their strengths and potential pitfalls.

In the realm of digital content, text-image multimodality—the integration of textual and vi-
sual data—has emerged as a powerful approach to convey and process information. Text, with
its narrative strength, provides detailed descriptions, while images capture context, emotion,
and intricate details that might be less effectively conveyed through words alone. The synergy
of these modalities offers a comprehensive understanding, making content both engaging and
memorable. This combined approach is especially beneficial in computational tasks, such as
image captioning or visual question answering[62], where dual-modal input can lead to more
nuanced and accurate results. Moreover, the pairing of text and images enhances accessibil-
ity, ensuring inclusivity for individuals with disabilities, and reduces potential ambiguities in
content interpretation. Whether in research papers enriched with diagrams or news articles
complemented by photographs, text-image multimodality offers versatility in content presen-
tation. As digital content consumption continues to evolve, the significance of this integrated
approach is set to grow, highlighting its transformative potential in both user experience and
computational applications.

Multimodal summarization is an emerging frontier in the domain of text summarization,
aiming to integrate multiple modalities, primarily text and visuals, to produce enriched sum-
maries. Recognizing that information can be conveyed through various channels, this approach
seeks to harness the complementary strengths of different data types to offer a more holistic
understanding of the original content.

The primary advantage of multimodal summarization is its ability to provide a richer context.
While text can convey detailed narratives, visuals often capture emotions, settings, and nuances
that might be challenging to express through words alone. By integrating both, summaries can
resonate more deeply with readers, offering a comprehensive insight. Additionally, in contexts
where visuals play a pivotal role, such as news articles or scientific reports with crucial diagrams,
multimodal summarization ensures that no critical information is lost, leading to enhanced
information retention.
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With the rise of multimodal content, especially in news articles and blogs, there’s an in-
creasing need to incorporate both text and visuals in summarization. Zhu et al.’s introduction
of the Multimodal Summarization with Multimodal Output (MSMO) dataset marked a signifi-
cant step in this direction. This dataset pairs text articles with associated images, providing a
foundation for multimodal summarization research. However, existing models, including those
based on the MSMO dataset, have limitations in effectively integrating text and visuals.

Our research is motivated by the potential benefits of multimodal content in enhancing
information retention and comprehension. Recent advancements in pretrained models, such as
OSCAR[36] and CLIP[54], which are trained on both text and images, offer new possibilities.
By leveraging these models and incorporating techniques like cross-attentions and contrastive
learning, we aim to develop a more effective multimodal summarization model. This model
seeks to bridge the gap between text and visuals, producing summaries that effectively capture
the essence of multimodal content.

4.2 Related Works

Text summarization, a very important task in natural language processing, aims to distill
extensive documents into concise summaries that retain the core information. Two primary
strategies have been prominent in this domain: extractive and abstractive summarization. Ex-
tractive methods select salient sentences or segments directly from the source [24]. On the
other hand, abstractive methods, leveraging models like BERT [18] and BART [34], generate
entirely new sentences to encapsulate the main ideas. BERT, introduced by Devlin et al.,
utilizes transformer architectures to understand deep bidirectional representations from unla-
beled text. BART, a variant of BERT, focuses on denoising sequence-to-sequence pre-training,
proving effective for both generation and comprehension tasks. Another notable model is Bert-
Summ[41], an extractive summarization method that extends BERT by using interval segment
embeddings. Dou et al.’s GSum [19] introduces a general framework for guided neural abstrac-
tive summarization, allowing external guidance in the form of keywords, questions, or other
cues to shape the generated summary.

The rise of multimedia content has expanded the horizons of summarization to integrate mul-
tiple modalities, primarily text and visuals. Zhu et al.’s MSMO dataset [77] marked a significant
step in this direction, pairing text articles with associated images. Further advancements in pre-
trained multimodal models, such as Oscar [36] and CLIP[54], have propelled the field. Oscar, or
Object-Semantics Aligned Pre-training, aligns images and their associated textual descriptions
during pre-training, enabling effective downstream vision-language tasks. CLIP (Contrastive
Language–Image Pre-training) learns visual concepts from natural language supervision and
has been influential in various visual tasks using the same model without task-specific tuning.
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The synergy between text and images in these models offers a comprehensive context, ensuring
summaries that are both detailed and engaging.

4.3 Problem Statement

Given an article A containing t tokens and a set of images I, the objective is to generate
a summary A′ containing t′ tokens and an image I ′ such that t′ < t and I ′ ∈ I is the most
relevant to both A and A′. The challenge is further compounded by the absence of ground
truth image labels for the training set.

The proposed model, as illustrated in Fig. 1 of the paper, comprises three primary modules:
an encoder, a multimodal scorer, and a decoder. The encoder is responsible for independently
encoding the input text and images. The multimodal scorer evaluates the relevance of the
images in relation to the text, and the decoder generates the final summary by integrating the
textual and visual information.

The overarching goal is to ensure that the generated summary not only captures the essence
of the article but also incorporates context derived from the most pertinent image, resulting in
a comprehensive and enriched summary.

4.4 Dataset Description

The primary dataset employed for this research is the MSMO (Multimodal Summarization
with Multimodal Output) dataset. Below are the key characteristics and details of this dataset:

• Origin: The MSMO dataset is curated from articles sourced from the CNN and Daily
Mail websites[77].

• Composition: Each article in the dataset is paired with multiple images. Specifically,
the median number of images associated with each article is 6.

• Size: The dataset encompasses a total of 314,581 articles, cumulatively containing over
1.5 million images.

• Selection for Study: Due to computational and space constraints, only the top 7 images
from each article were considered for this study. The selection was based on the images’
order of occurrence within the article.

• Reference Images: While ground truth images are not provided for the training phase,
a list of reference images is included for evaluation purposes.
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• Enhancements: Zhu et al. further refined the dataset by introducing a golden reference
image for each data point. This was achieved using ranking techniques, such as rouge-
based overlap and order of occurrence in the document.

This rich multimodal dataset serves as the foundation for training and evaluating the pro-
posed summarization model, allowing for a comprehensive assessment of the model’s ability to
generate summaries that integrate both textual and visual information.

4.5 Architecture

The problem statement we are trying to solve can be formally described as follows - Given
an article containing text T and a set of images I, we need to generate a textual summary t

such that length(t) < length(T ). Along with the summary we also need to return the most
relevant image i ∈ I that complements the generated summary. In the dataset, while we possess
ground truth summaries for training the textual part of the model, we do not have the access to
ground truth relevant images while training (however, these are present in the validation/testing
iterations).

In the sections that follow, we describe the modules within are architecture in detail. Fig.
6.1 shows an overview of the model.

Figure 4.1 Model Overview
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4.5.1 Sentence Simplification Module

The Sentence Simplification module is an integral part of the proposed architecture, designed
to preprocess and refine the input text to ensure compatibility with the subsequent stages of
the model, especially the OSCAR model.

4.5.1.1 Objective

The primary objective of this module is to simplify the sentences by removing specific named
entities and aligning the text with the characteristics of the pretrained models. This alignment
is crucial because the OSCAR mode;, which plays a significant role in the architecture, is
pretrained on the COCO dataset, known for its simple object annotations.

4.5.1.2 Named Entity Replacement

To achieve the desired simplification, named entities within the sentences are identified and
replaced. The replacement process leverages GloVe[51] word embeddings to find the closest
COCO class corresponding to each named entity. This ensures that the text is in a format that
resonates well with the OSCAR model’s training data.

4.5.1.3 Removal of Abstract Objects

Beyond named entities, the module also identifies and removes phrases containing abstract
objects, such as indications of time or place. The Spacy library[24], a popular tool for natural
language processing, aids in this removal process. By eliminating these abstract references,
the module further streamlines the text, ensuring clarity and compatibility with the model’s
subsequent stages.

4.5.1.4 Significance

The Sentence Simplification module plays a pivotal role in enhancing the model’s output
quality. By refining the input text, it ensures that the multimodal scorer can effectively evaluate
the relevance of images in relation to the text, leading to more coherent and contextually relevant
summaries.

4.5.2 Encoder

The encoder plays a pivotal role in the proposed model, serving as the initial step in pro-
cessing both textual and visual inputs. It comprises two distinct components, each tailored to
handle a specific modality:
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4.5.2.1 Text Encoder

The Text Encoder is responsible for transforming the input text from the article into a
suitable representation. This representation captures the semantic essence of the text, ensuring
that the core information is retained for subsequent processing. The encoder leverages deep
learning architectures, likely transformers or recurrent neural networks, to encode the sequence
of words into a fixed-size vector representation. This representation serves as the foundation
for the subsequent steps in the summarization process.

Specifically, the model employs BERT [18] to generate contextual embeddings of size N×D,
where N represents the number of tokens and D is the hidden dimension of the architecture.
Given that BERT has a maximum context size of 512 tokens, documents are truncated at this
limit to fit within the constraints.

4.5.2.2 Image Encoder

The Image Encoder, on the other hand, processes the associated images from the article.
Its primary objective is to encode the visual content into a format that can be seamlessly
integrated with the textual data. Given the complexity and richness of visual data, the encoder
employs convolutional neural networks (CNNs) or other advanced vision models to extract
salient features from the images. These features capture the visual semantics, ensuring that
the most pertinent visual information is retained for the summary generation.

The model utilizes VGG-19 [60] embeddings, generated from the ’fc2’ layer of the deep
convolutional network. A threshold θ is set, and embeddings of the top-θ images, as determined
by the multimodal scorer, are considered. The size of the returned embeddings is θ × D′.
If a document contains fewer than θ images, the embeddings are padded with zero vectors.
To ensure compatibility with the cross-attention mechanism within the architecture, a linear
transformation is applied to these embeddings.

In essence, the encoder architecture ensures that both textual and visual modalities are pro-
cessed optimally, setting the stage for the generation of comprehensive and enriched summaries
that seamlessly integrate information from both sources.

4.5.3 Multimodal Scorer

The Multimodal Scorer serves as a crucial component in the proposed architecture, designed
to assess the semantic similarity between text and images. This scoring mechanism ensures
that the most contextually relevant visual information is integrated with the textual content
for the generation of the summary.
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4.5.3.1 Objective

The primary aim of this module is to bridge the gap between the textual and visual modal-
ities. By evaluating the semantic similarity between text and images, the scorer aids in deter-
mining the relevance of each image to the associated text.

4.5.3.2 Scoring Mechanism

For each article, the scorer calculates the semantic similarity between every pair of text and
image. This is achieved by feeding the model with text and the corresponding image features
(extracted using faster-rcnn[56] for the OSCAR model). The output is a scalar value that
indicates the semantic similarity of the image to the text. Formally, for each article A with a
set S = {s1, s2, ..., sn} of sentences and a set I = {i1, i2, ..., im} of images, the score σ(s, i) is
defined for every pair of text s and image i.

σavg(s) =
1

m

m∑
j=1

σ(s, ij) (4.1)

σavg(i) =
1

n

n∑
j=1

σ(sj , i) (4.2)

Images are then ranked based on σavg(i). Those with a rank beyond a threshold are dis-
carded, ensuring only the top-ranked images are considered for the summary.

4.5.3.3 Utilized Models

Two state-of-the-art multimodal models, OSCAR[36] and CLIP[54], are employed within
this module. These models are adept at understanding visual-linguistic tasks, ensuring a robust
evaluation of text-image pairs.

4.5.3.4 Significance

The Multimodal Scorer is instrumental in ensuring that the generated summaries are both
coherent and contextually rich. By selecting the most relevant visual content, it adds depth
and context to the summaries, making them more comprehensive.

4.5.4 Image Selection Process

The image selection process is pivotal in the multimodal summarization model, aiming to
identify the most pertinent image that aligns with the textual content of the summary. The
selection is driven by a multimodal scorer, which computes a relevance score for each image in
relation to the textual content.
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The score for each sentence s and image i is defined as:

S(s) =

N∑
i=1

f(s, i)

S(i) =

M∑
s=1

f(s, i)

Where f represents the function that computes the relevance between a sentence and an image,
N is the total number of images, and M is the total number of sentences.

Images are then ranked based on their scores S(i). Images with a rank greater than a
predefined threshold τ are discarded. The top-τ images, based on their relevance scores, are
retained for the decoding process.

This selection mechanism ensures that the chosen image is not only congruent with the
textual content but also augments the overall understanding and appeal of the summary.

4.5.5 Cross-Attention and Decoder

The Cross-Attention and Decoder module is integral to the proposed architecture, ensuring
the effective fusion of textual and visual modalities during the summary generation process.

4.5.5.1 Cross-Attention Mechanism

The cross-attention mechanism is designed to facilitate the interaction between the encoded
textual and visual representations. This mechanism allows the model to weigh the importance
of different parts of the text and image, ensuring that the most relevant information from both
modalities is considered during the decoding process. Specifically, the model employs an extra
cross-attention layer in the decoder, which takes the transformed VGG-embeddings of images
and the BERT embeddings of text as input. This cross-attention allows the model to focus on
specific regions of the image and corresponding parts of the text, enhancing the coherence and
relevance of the generated summary.

4.5.5.2 Decoder Architecture

The decoder is responsible for generating the final summary based on the processed textual
and visual inputs. After the cross-attention layer, the remaining decoder layers adhere to the
standard transformer layout. The decoding strategy employed by the model is beam search
with multiple beams, ensuring a diverse set of candidate summaries and selecting the most
appropriate one.
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4.5.5.3 Significance

The Cross-Attention and Decoder module is instrumental in ensuring that the generated
summaries are both coherent and contextually rich. By effectively integrating information from
both textual and visual modalities, it produces summaries that are not only informative but
also engaging, capturing the essence of the original content.

4.5.6 Contrastive Learning in Multimodal Summarization

Contrastive learning, in the context of multimodal summarization, plays a pivotal role in
enhancing the quality of generated summaries by effectively leveraging both textual and vi-
sual information. The proposed model in the paper utilizes contrastive learning to guide text
generation with image inputs and vice versa.

4.5.6.1 Principle and Application

The model employs a contrastive objective to improve the Rouge[37] scores of the generated
summaries. By using contrastive loss, the model shifts its focus on including tokens that are
ranked highly by the multimodal scorer. This ensures that the tokens related to the images
and those in the gold summary are closely aligned, leading to summaries that are semantically
closer to the gold standard.

4.6 Training Methodology

The training process of the proposed multimodal summarization model is meticulously de-
signed to ensure the effective integration of both textual and visual information. The method-
ology encompasses various components, including the loss functions, optimization strategies,
and specific hyperparameters.

4.6.1 Loss Functions

The primary loss function employed during training is the Negative Log Likelihood (NLL)
loss, defined as:

LNLL = − 1

|T |

|T |∑
t=1

log p(t|C), (4.3)

where p(t|C) represents the probability of token t given the previous tokens and context C.
To induce an image correspondence to the loss, a contrastive objective based on the OSCAR

scores (S) and the parameter θ is introduced:
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Lcontrastive = − 1

|S|
∑
s∈S

log
(

1− S(s)

S(s) + |T |

)
(4.4)

where S represents the set of tokens for which S > θ and T represents the set of tokens for
which S ≤ θ.

The final loss is a combination of the NLL loss and the contrastive loss:

L = λLNLL + (1− λ)Lcontrastive, (4.5)

where λ is a hyperparameter.

4.6.2 Optimization and Hyperparameters

The model employs the Adam[31] optimizer for gradient updates. The encoder utilizes BERT
weights from a BertSum checkpoint, and these weights are frozen during training. The decoder
consists of 6 layers with 8 attention heads per layer. A learning rate decay of 0.02 is applied
after 8000 warmup steps. The decoding strategy is beam search with 5 beams. The base setup
of OSCAR[36] and the ViT-B-32 version of CLIP[54] are used for the multimodal scorers.

4.6.3 Implementation Details

The text is encoded using BERT-base, resulting in a hidden dimension of 768. For the
multimodal sentence scorer, the parameters are set as d = 3 and θ = 0.01. The value of λ in the
final loss is set to 0.7. The model is trained on an Nvidia GTX 1080 Ti, taking approximately
one day for the entire process.

4.7 Experiments

4.7.1 Baselines

To evaluate the effectiveness of our proposed model, we compare it against the following
baselines:

1. MSMO: This model employs a bidirectional LSTM[23] for text embedding and VGG-
19[60] for image embedding. An attention mechanism is utilized to integrate both modal-
ities, and the resultant output is decoded using a unidirectional LSTM layer.

2. BertSum[41]: This model leverages a fine-tuned BERT for text encoding and a conven-
tional transformer decoder for summary generation.

3. UniMS[76]: A multimodal summarization model that adopts BART’s[34] encoder-decoder
architecture to facilitate information transfer between modalities.
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These baselines offer a comprehensive comparison across diverse architectures and method-
ologies. While the MSMO model signifies a traditional approach using LSTMs and CNNs,
BertSum acts as a potent text-only baseline harnessing BERT’s capabilities, and UniMS repre-
sents a contemporary multimodal approach built on BART’s[34] architecture.

The code for MSMO and UniMS is not publically available, so we compare our findings with
their reported ROUGE scores only and Image Precision calculated over identical train-val-test
splits.

4.7.2 Evaluation Metrics

To rigorously assess the performance of the proposed model, the following evaluation metrics
were employed:

• ROUGE (R1, R2, RL)[37]: A standard metric in summarization tasks, ROUGE mea-
sures the overlap between the n-grams in the generated summary and the reference sum-
mary. The metric provides insights into the precision, recall, and F1 score of the sum-
maries. The ROUGE scores are given by:

ROUGE-N =

∑
s∈ref

∑
gramn∈s Countmatch(gramn)∑

s∈ref
∑

gramn∈s Count(gramn)

where Countmatch is the maximum number of times a gram appears in both the reference
and the candidate summary.

• BERTScore (BERT-F1)[75]: This metric leverages contextualized BERT embeddings
to calculate similarity. It offers an evaluation on a semantic level. BERTScore is com-
puted as the cosine similarity between BERT embeddings of the generated and reference
summaries.

• Image Precision (IP): Given the multimodal nature of the task, Image Precision was
introduced to evaluate the relevance of the selected images in the summaries. The IP is
given by:

IP =
refimg ∩ recimg

recimg

where refimg and recimg refer to the reference images and model-recommended images,
respectively.

• Human Scores: Apart from automated metrics, human evaluation was conducted on
the outputs of the model. Annotators were asked to rate randomly sampled predicted
summaries and associated images on a scale of 1-5, with 1 being incomprehensible and 5
being human-like.

These metrics collectively offer a comprehensive evaluation of the model’s performance,
considering both textual and visual aspects of the generated summaries.
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4.7.3 Results

The evaluation of our proposed model’s performance was conducted against several base-
lines using a diverse set of evaluation metrics. Our model demonstrated a significant improve-
ment in ROUGE scores when the contrastive objective was incorporated. This enhancement in
BERTScore[75] indicated that the summaries generated were semantically more aligned with
the gold standard. Additionally, the increase in Human scores suggested that the summaries
were more satisfactory to human evaluators. In terms of Image Precision (IP), the model’s
performance was commendable, showcasing that the images selected by the model were highly
relevant and closely matched the reference images. Notably, our model, especially the variant
employing the contrastive loss, surpassed the performance of a robust text-only baseline, Bert-
Sum[41]. This superiority underscores the benefits of integrating multimodal information into
the summarization process, leading to the generation of high-quality multimodal summaries
that are both semantically precise and visually pertinent.

Model R1 R2 RL BERT-F1

Scores

Human

Scores

Image

Precision

MSMO 40.86 18.27 37.75 - - 62.44

BertSum 42.13 19.60 39.18 0.810 2.80 -

UniMS 42.94 20.50 40.96 - - 69.38

OursCLIP 42.28 19.37 39.81 0.852 3.01 67.41

OursOSCAR 42.51 19.97 39.28 0.882 3.17 77.99

Table 4.1 Comparison of our models with the baselines.

4.8 Discussions

4.8.1 Discussion

The introduction of contrastive learning in our model emerged as a pivotal factor in enhanc-
ing the quality of generated summaries. This approach aimed to ensure that the model focuses
on tokens that are ranked highly by our multimodal scorer, thereby emphasizing the correlation
between tokens related to the images and those present in the gold summary.

The use of contrastive loss shifted the model’s attention towards creating summaries that
not only align with the textual content but also resonate with the visual context provided
by the images. This was evident from the significant improvement in ROUGE[37] scores and
BERTScore when the contrastive objective was utilized. The increase in these scores indicated
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that the generated summaries were more semantically aligned with the gold standard and
effectively incorporated visual cues.

Furthermore, our findings based on the results showcased that the model variant with the
contrastive loss outperformed other variants, solidifying the importance of this loss function in
the task of multimodal summarization. The contrastive loss ensured that the model’s focus was
directed towards tokens that were of higher relevance, leading to the generation of summaries
that were both semantically precise and visually congruent.

In conclusion, the incorporation of contrastive learning in our model has proven to be a
significant advancement in the realm of multimodal summarization, emphasizing the synergy
between textual and visual modalities to produce high-quality summaries.

4.9 Conclusion

4.9.1 Conclusion and Future Works

In this work, we explored the potential of leveraging multimodal information for the task
of summarization. Our proposed architecture effectively utilized both textual and visual cues
to produce high-quality summaries. The results underscored the viability of our approach,
especially when contrastive learning was incorporated, leading to summaries that were both
semantically aligned with the gold standard and visually congruent.

The societal implications of our work are profound. By increasing the accessibility of crucial
news through platforms like social media, we can potentially reduce the spread of misinforma-
tion. Summarization models, when guided by well-curated training data rather than personal
biases or agendas, inherently produce more neutral and less biased content. This is crucial in
today’s digital age, where the rapid dissemination of information is paramount.

Looking ahead, there are several avenues for future research. We aim to further enhance
our architecture by employing more robust text and image encoders. These improvements,
although computationally intensive, hold the promise of pushing the boundaries of multimodal
summarization. Additionally, the exploration of other modalities and their integration into
the summarization process could pave the way for even more comprehensive and informative
summaries.
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Chapter 5

Salience Guided Summarization

This chapter delves into an innovative approach to text summarization by integrating a
nuanced sentence salience scaling technique, initially developed in a prior work, MMSUMM, into
the renowned GSum model. The exploration pivots on modulating sentence encodings based
on their salience scores, aiming to refine the abstractive summarization process by ensuring
that the most pertinent sentences predominantly influence the generated summaries. While
the model does not directly incorporate multimodal data, the conceptual framework derived
from MMSUMM provides a unique lens through which the summarization process is viewed
and manipulated. Despite the model not yielding the anticipated satisfactory results, this
exploration unveils critical insights and learning points, offering a valuable foundation upon
which future research can build, particularly in the realm of effectively utilizing sentence salience
in the text summarization process.

5.1 Introduction

Text summarization, a pivotal domain within Natural Language Processing (NLP), has wit-
nessed significant advancements, yet the journey towards generating succinct, coherent, and
contextually rich summaries continues to present intriguing challenges and opportunities. The
essence of summarization lies in its ability to distill voluminous textual data into concise repre-
sentations, thereby facilitating enhanced information retrieval, comprehension, and utility for
end-users.

The motivation behind the work presented in this chapter emanates from the desire to further
refine the summarization process, ensuring that generated summaries are not only succinct but
also deeply rooted in the most salient aspects of the original text. The GSum model[19],
renowned for its efficacy in extractive summarization, serves as a foundational pillar in our
exploration. GSum adeptly identifies and extracts the most salient sentences from a document,
which subsequently guide the abstractive summarization process. However, the model, while
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proficient, does not inherently modulate the influence of extracted sentences based on their
varying degrees of salience within the abstractive summarization phase.

In light of this, our work seeks to integrate a concept previously developed in a model named
MMSUMM, which employs a technique of scaling sentence encodings based on their salience
scores. The primary advantage of this approach lies in its potential to further refine the ab-
stractive summarization process, ensuring that sentences of higher salience exert proportionally
greater influence on the generated summary. This nuanced approach aims to enhance the rel-
evance and focus of the resultant summaries, ensuring they are tightly aligned with the most
critical aspects of the original text.

The objective of this chapter is twofold: firstly, to explore the viability and efficacy of
integrating salience-based encoding scaling into the GSum model; and secondly, to evaluate
the impact of this integration on the quality and relevance of the generated summaries. While
our model does not directly incorporate multimodal data, the conceptual underpinning derived
from MMSUMM, which was originally developed in a multimodal context, provides a unique
and innovative approach to enhancing unimodal text summarization.

As we navigate through the intricacies of this adaptation, we shall explore the challenges
encountered, the insights gleaned, and the potential pathways that future research might explore
in the continual pursuit of advancing the field of text summarization. Despite the results of
this exploration not aligning with initial expectations, the learnings derived therein provide a
valuable stepping stone for future endeavors in the realm of text summarization, particularly
in leveraging sentence salience to enhance summary generation.

5.2 Model Architecture

5.2.1 Extractive Summarizer

The Extractive Summarizer, denoted as E, is a pre-trained model that identifies salient
sentences S from the input document D. It assigns a salience score si to each sentence i in D.
For this work we use BertSumm_Ext[41] as our extractive summarizer

S = E(D)

5.2.2 Dual Encoder

The Dual Encoder consists of two separate encoders: the Document Encoder ED and the
Retrieved Sentences Encoder ES .
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5.2.2.1 Document Encoder

The Document Encoder ED processes D and scales the sentence encodings using the salience
scores si from E.

EDi = ED(Di) · si, ∀i ∈ D

5.2.2.2 Retrieved Sentences Encoder

The Retrieved Sentences Encoder ES processes the salient sentences S without scaling.

ESi = ES(Si), ∀i ∈ S

5.2.3 Decoder

The Decoder DC utilizes two cross attention layers to process the encodings from ED and
ES , generating the summary Y .

Y = DC(EDi , ESi), ∀i ∈ D,S

The first cross attention layer processes EDi , and the second processes ESi . The output
summary Y is generated by attending to both sets of encodings sequentially.

5.3 Experiments

5.3.1 Objective

The primary objective of our experiments is to outperform the GSum model[19] in text
summarization, exploring innovative adaptations and methodologies. We focus on enhancing
the summarization quality by integrating an encoding scaling layer, which modulates sentence
encodings based on their salience, into the GSum framework. Our experiments are bifurcated
into two primary settings: Oracle and non-Oracle, each providing unique insights into the
model’s performance and potential areas for improvement.

5.3.2 Dataset

For this experiment we utilise the CNN/DM dataset[47] for text summarization. The
CNN/Daily Mail (CNN/DM) dataset is one of the most widely used datasets for evaluating
text summarization models. It is derived from online news articles from CNN and the Daily
Mail. The dataset is known for its substantial size and has been utilized in numerous studies
as a benchmark for both extractive and abstractive summarization tasks.
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The CNN/DM dataset comprises over 280,000 training instances, 13,000 validation instances,
and 11,000 test instances, making it one of the largest summarization datasets available. Each
instance in the dataset consists of a news article and a summary. The summaries in the CNN
portion are derived from bullet points (highlights) that accompany the articles, providing a
succinct overview of the main news points. Meanwhile, the Daily Mail summaries are obtained
from labeled sentences within the associated articles. This dataset poses various challenges
for summarization models due to its real-world, noisy web text, and the diversity of topics
covered, making it a robust choice for evaluating the generalization and effectiveness of different
summarization approaches.

5.3.3 Experiment Setup

In the Oracle setting, we utilize pre-annotated gold summaries as the extractive summary
input for the abstractive summarization phase. The salience scores for sentences are binary,
determined by whether a sentence is present in the gold summary.

The GSum_adapted_Oracle model integrates an encoding scaling layer into the GSum
framework, aiming to enhance the abstractive summarization by scaling sentence encodings
with their respective binary salience scores.

The Oracle setting serves as an upper-bound performance benchmark, providing insights
into the best possible summarization outcomes when optimal extractive summaries are utilized.
Comparing GSum_Oracle and GSum_adapted_Oracle allows us to evaluate the efficacy of the
encoding scaling layer when the extractive summarization is optimal.

In the non-Oracle setting, we employ BertSumm[41], an extractive summarizer, to generate
the salient sentences and their respective salience scores, which are then used in the abstractive
summarization phase.

5.3.4 Model Variants: GSum+BertSumm and GSum_adapted+BertSumm

- GSum+BertSumm: Utilizes BertSumm for extractive summarization, feeding its output
into the original GSum model for abstractive summarization. - GSum_adapted+BertSumm:
Integrates the encoding scaling layer into GSum, modulating the sentence encodings with
salience scores derived from BertSumm during the abstractive summarization phase.

5.3.5 Metrics

For this experiment we employed ROUGE[37]. The ROUGE (Recall-Oriented Understudy
for Gisting Evaluation) framework is a standard evaluation metric for assessing the quality of
text summaries. It quantitatively measures the similarity between system-generated summaries
and reference summaries, typically crafted by humans, by analyzing their n-gram overlap.
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5.3.6 Key Variants

• ROUGE-N: Evaluates n-gram overlap, with common variants being ROUGE-1 (uni-
gram) and ROUGE-2 (bigram).

• ROUGE-L: Considers the longest common subsequence (LCS), capturing the largest
co-occurring sequence of words, irrespective of word order.

5.4 Results

Model R1 R2 RL

GSUM_Oracle 55.18 32.54 52.06

GSUM_adapted_Oracle 51.73 28.27 48.07

GSUM+BertSumm 43.78 20.66 40.66

GSUM_adapted+BertSumm 41.36 18.42 38.48

Table 5.1 Comparison of our models with the baselines.

The models were evaluated based on their ROUGE[37] scores (R1, R2, and RL), as presented
in Table 1. GSum_Oracle, utilizing pre-annotated gold summaries, achieved the highest scores
across all three ROUGE metrics, serving as a robust baseline. The adapted models, despite
their innovative encoding scaling layer, did not surpass the baseline, indicating potential areas
for further refinement and exploration in future work.

5.5 Conclusion

We conducted an experiment to adapt the GSum[19] work while utilising core principles
for our work on multimodal summarization shown in the previous chapter. Unfortunately a
direct adaption our work on guided summarization did not lead to improvements over the
GSum model. This indicates that either the concepts used in multimodal summarization does
not translate to improvements in guided summarization or that there is a need for further
refinement of the scaling layer for this task.
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Chapter 6

Persona Based Summarization

The challenge of distilling vast and intricate legal documents into concise summaries is a
pressing concern in the digital age, especially when catering to diverse stakeholders. ”Aspect-
based Summarization of Legal Case Files using Sentence Classification” addresses this very
challenge, focusing on the complexities inherent to SEBI case files. The study underscores the
criticality of providing stakeholders with streamlined access to essential information, eliminating
the need to navigate through dense legal jargon. By targeting the unique nuances of Indian legal
adjudicating orders, the research highlights the broader implications of effective summarization
in the legal domain. The overarching goal is to harness advanced computational techniques to
produce summaries that are not only concise but also tailored to the specific needs of varied
personas, such as Investors and Defense Lawyers. This endeavor epitomizes the broader am-
bition of the text summarization field: to transform voluminous data into actionable insights,
ensuring that vital information is both accessible and comprehensible to all.

6.1 Introduction

In today’s rapidly digitizing world, the legal sector stands at the crossroads of tradition and
innovation. With an ever-growing corpus of legal documents, there’s an increasing demand to
make this information more digestible and accessible to a broader audience. The paper titled
”Aspect-based Summarization of Legal Case Files using Sentence Classification” delves deep
into this challenge, specifically targeting the intricate and often convoluted SEBI case files.

The Securities and Exchange Board of India (SEBI) plays a pivotal role in regulating India’s
securities and commodity market. As a result, a plethora of legal documents, ranging from
regulations to adjudications, are generated under its purview. For stakeholders, ranging from
corporate entities to individual investors, navigating this maze of information can be daunting.
The need for concise, clear, and contextually relevant summaries has never been more pressing.

However, the task is far from straightforward. Legal documents are characterized by their
dense terminology, intricate structures, and domain-specific nuances. Moreover, different stake-
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holders require different facets of information. For instance, while an investor might be keen
on understanding the implications of a particular adjudication, a defense lawyer would be more
interested in the nuances of the arguments presented.

This research aims to bridge this gap. By harnessing the power of computational techniques
and diving deep into the realm of SEBI case files, the study seeks to develop methodologies
that can produce tailored summaries, catering to the unique needs of diverse stakeholders. In
doing so, it hopes to set a precedent for how legal document summarization can be approached
in the digital age, ensuring that vital legal information is not just available but also easily
comprehensible.

6.2 Related Works

The evolution of text summarization, particularly within the legal domain, has been marked
by a series of innovative methodologies and techniques aimed at condensing extensive informa-
tion into succinct and informative summaries.

Aspect-based summarization has emerged as a prominent approach, with early works focus-
ing on the summarization of product reviews by emphasizing specific product attributes, such
as a car’s durability. This methodology has been expanded to encapsulate specific topics within
expansive documents.

In the realm of legal text processing, the adaptation of BERT[18] for legal contexts, no-
tably LEGAL-BERT by Chalkidis et al. LegalBERT[10], has set a benchmark for the nuanced
processing of legal texts. This adaptation ensures contextually relevant interpretations and
processing of legal documents.

Another significant stride in the field is the LexRank algorithm by Erkan and Radev[21],
which employs graph-based lexical centrality. This approach is adept at pinpointing salient
information within texts, proving invaluable for gleaning key insights from verbose legal docu-
ments.

Furthermore, the application of Convolutional Neural Networks (CNN) for sentence classifi-
cation, as proposed by Yoon Kim, offers a robust mechanism for segmenting and categorizing
sentences within extensive texts. This technique has demonstrated efficacy in differentiating
diverse informational types within a document.

Building upon these foundational works, the present research endeavors to advance the
frontiers of legal text summarization, with a specific focus on SEBI case files.

6.3 Dataset

The pursuit of effective aspect-based summarization in the legal domain necessitates a
dataset that is both comprehensive and tailored to capture the nuances of legal language. To
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address this need, a dataset was curated by extracting over 7000 adjudication orders from the
SEBI website. Of these, 27 adjudication orders were meticulously annotated with the expertise
of a legal professional, yielding 2264 distinct sentence-label pairs that served as the foundation
for model training.

These adjudication orders were specifically centered around the Prohibitions of Insider Trad-
ing (PIT) regulations. This focus ensures a dataset that is deeply rooted in the complexities of
insider trading within the Indian legal context. This dataset stands out as a pioneering effort in
the realm of Indian legal adjudication orders on insider trading, providing a valuable resource
for future research.

The process of label conceptualization was grounded in a detailed preliminary study of a
random selection of case files. This rigorous analysis led to the identification of distinct classes
of sentences that are typically present in such legal documents. Based on this study, a set of
labels was conceptualized:

• Material Fact: Pertinent information that forms the crux of the case.

• Procedural Fact: Details about the procedural aspects of the case.

• Statutory Fact: Information related to specific statutes or laws.

• Related Fact: Information that provides context or background.

• Issue Framed: The primary issues or questions raised in the case.

• Subjective Observation: Observations made based on personal judgment.

• Defendant Claim: Statements highlighting the defendant’s stance.

• Allegation: Accusations or charges levied in the case.

• Penalty: Details about any penalties imposed or discussed.

• Violation: Statements discussing specific regulatory violations.

To ensure the reliability and consistency of the annotations, a subset of 10 documents (ap-
proximately 40% of the data) was re-annotated by a second legal expert. This step was crucial to
measure inter-rater reliability, ensuring that the labels were consistently applied and capturing
the inherent subjectivity of legal document annotation.

In essence, this dataset not only lays the groundwork for the current research but also offers
a structured approach for aspect-based summarization, enabling the extraction of specific facets
of information tailored to diverse stakeholder needs.
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6.4 Model Description

The task of aspect-based summarization of legal case files, especially those as intricate as
SEBI adjudication orders, demands a sophisticated model architecture that can capture the
nuances and intricacies of legal language. Our approach is a multi-step process, encompassing
several modules designed to work in tandem.

6.4.1 Sentence Classification Module

The foundation of our approach is the semantic segmentation of the legal text into sentences,
each associated with one of ten predefined legal labels. For this, we employed a fine-tuned ver-
sion of the uncased BERT-Base model, which underwent training for 70,000 steps on approxi-
mately 7000 SEBI adjudication orders. The tasks included Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP). To enhance the context-awareness of our model, we in-
corporated a window of context at the sentence level. Within this window, ten sentences were
chosen and processed using the hierarchical attention mechanism, as proposed by Yang et al.
[72]. This mechanism weighs the sentences based on their importance, producing a single con-
text vector for both the left and right context segments. This vector, when concatenated with
the target sentence’s embedding, is then passed through a multi-layer perceptron to generate
the final predictions.

6.4.2 Aspect-Based Filtering Module

Post-classification, the next step is to filter sentences relevant to the respective stakeholders
based on the labels generated. The stakeholders and their interests are as follows:

• Investors: Primarily interested in Material Facts, which provide the core narrative of
the adjudication proceedings, details about company shareholdings, and the alleged vio-
lations. Penalties offer insights into the consequences of the determined violations.

• Defense Lawyers: In addition to Material Facts, they focus on Defendant Claims, which
shed light on the defendant’s perspective, and Issues Framed, which highlight the central
disputes within the case.

• Adjudicating Officers: Apart from Material Facts and Penalties, they value Related
Facts, which offer reasoning behind final orders and help in linking similar case files.

6.4.3 Summarization Module

For the actual summarization, we leveraged the BRIO abstractive summarization model[42],
which is trained on the CNN-Daily Mail dataset[47]. This model employs a transformer-based
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encoder-decoder framework, introducing noise to its inputs during training and learning to
reconstruct them. To ensure that the summaries retained most of the input information, the
stakeholder-specific input was divided into chunks of three sentences. These chunks were then
processed by the model, and the outputs were concatenated to produce the final aspect-based
summary.

In essence, our model architecture is a harmonious blend of classification, filtering, and
summarization, tailored to meet the unique demands of legal document summarization.

Figure 6.1 Aspect-Based Summarization Pipeline

6.5 Experiments

6.5.1 Sentence Classification

6.5.1.1 Baselines

The intricate nature of legal language and the precision required in classifying sentences
within legal documents necessitate a robust evaluation framework. To benchmark the perfor-
mance of our sentence classification approach, we compared it against a spectrum of models,
ranging from classical machine learning techniques to advanced neural architectures.

6.5.1.1.1 Classical Machine Learning Models In the realm of classical machine learn-
ing, several models were paired with diverse embedding techniques to capture the semantic
nuances of the sentences. Models such as Logistic Regression[16], Random Forest[7],
SVM[15], and XGBoost[11] were experimented with. These models were complemented
with embeddings derived from techniques like Word2Vec, tf-idf, Fine-tuned ELMO, and
GloVe[51]. The combination of these models and embeddings aimed to provide a holistic
evaluation of the sentence classification task.

6.5.1.1.2 Classical Neural Models Neural architectures, with their ability to discern in-
tricate patterns in data, were also explored. The CNNs with trainable Word2Vec embed-
dings model[30] was employed, harnessing the power of convolutional layers to process sentence
embeddings. Additionally, the BiLSTM with attention[39] model was utilized, leveraging

51



GloVe embeddings as input. This model’s attention mechanism ensures that the most salient
parts of the sentences are emphasized during classification.

6.5.1.1.3 Transformer-based Models The transformative capabilities of transformer ar-
chitectures in natural language processing are undeniable. In this context, models like XL-
Net[71], Uncased BERT-Base, and LEGAL-BERT[10] were considered. These transformer-
based classifiers, with their self-attention mechanisms, offer a nuanced approach to sentence
classification, especially in the domain of legal texts.

Together, these baselines provide a comprehensive landscape against which our sentence
classification approach was evaluated, ensuring a rigorous assessment of its capabilities.

6.5.1.2 Metrics

The F1 score is a harmonic mean of precision and recall, providing a balance between the
two. It is particularly useful when class distributions are imbalanced. The F1 score is defined
as:

F1 =
2× precision × recall

precision + recall

Where precision is the ratio of correctly predicted positive observations to the total predicted
positives, and recall is the ratio of correctly predicted positive observations to the all observa-
tions in actual class.

6.5.2 Results

The sentence classification task aimed to semantically segment legal case files into predefined
classes. To evaluate the performance of our approach, we utilized a dataset comprising 27
annotated documents, resulting in 2264 sentence-label pairs. The performance metrics for both
neural and classical machine learning methods were considered.

Our model, which incorporated context by considering sentences before and after the target
sentence, showcased promising results. A notable observation was the varying performance
across different labels. For instance, sentences labeled as ‘Procedural Facts’ and ‘Subjective
Observations’ frequently appeared as clusters within a document, leading to higher accuracy in
their classification. On the other hand, labels like ‘Penalty’ posed challenges, possibly due to
their sparse occurrence in the dataset.

A deeper dive into label-wise metrics revealed that ‘Penalty’ and ‘Procedural Fact’ labels
exhibited the lowest and highest performances, respectively. The inclusion of context signifi-
cantly improved the classification accuracy for sentences adjacent to those with the same label.
For example, sentences grouped under ‘Procedural Facts’ and ‘Subjective Observations’ pre-
dominantly appeared in clusters within documents, leading to more accurate classifications.
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Embeddings→ Word2Vec tf-idf Finetuned ELMO GloVe

Classifier↓ Acc F1m F1w Acc F1m F1w Acc F1m F1w Acc F1m F1w

LR 0.647 0.599 0.637 0.664 0.564 0.654 0.706 0.657 0.699 0.653 0.515 0.631

RF 0.660 0.622 0.660 0.671 0.671 0.671 0.656 0.595 0.648 0.578 0.550 0.577

SVM 0.675 0.607 0.665 0.679 0.613 0.669 0.648 0.593 0.635 0.653 0.555 0.643

XGBoost 0.651 0.619 0.651 0.678 0.659 0.678 0.649 0.605 0.639 0.571 0.547 0.571

Table 6.1 Classical ML Method Results for Sentence Classification

Table 1 in the paper provides a comprehensive breakdown of the performance metrics for
various machine learning methods and embeddings. Classical machine learning methods, when
paired with embeddings like Word2Vec, tf-idf, Fine-tuned ELMO[52], and GloVe[51], demon-
strated varying degrees of success. The results underscore the importance of choosing the right
combination of model and embeddings for optimal performance in sentence classification within
legal documents.

Model Accuracy F1macro F1weighted

Fine-tuned BERT + Context Window 83.56 0.795 0.830

Fine-tuned BERT + Two Sided Context 78.06 0.750 0.780

BERT 73.46 0.680 0.730

Legal BERT 70.91 0.670 0.710

XLNet 73.29 0.620 0.700

BiLSTM + Attention 64.12 0.570 0.630

CNN-non-static 68.00 0.650 0.680

Table 6.2 Neural Method Results for Sentence Classification
In conclusion, the sentence classification module effectively segments legal case files, acting

as a semantic layer that aids legal experts in quickly assimilating pertinent information.

6.5.3 Text Summarization

6.5.3.1 Baselines

The task of summarizing legal documents, with their inherent complexity and precision,
necessitates a rigorous evaluation framework. To this end, our approach was benchmarked
against a range of established methodologies, both extractive and abstractive in nature.

6.5.3.1.1 Unsupervised Extractive Models Extractive summarization techniques focus
on identifying and extracting pivotal sentences or segments directly from the source text.
Among the unsupervised extractive models employed, TextRank[46] stands out as an adapta-
tion of the PageRank algorithm, tailored for text, ranking sentences based on their significance.
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In a similar vein, LexRank[21] determines the importance of sentences using the concept of
eigenvector centrality in a graph representation. Additionally, the STAS approach [70] lever-
ages the self-attention weights of sentences, emphasizing the most salient ones in the summary.

6.5.3.1.2 Abstractive Models Diverging from extraction, abstractive summarization seeks
to generate novel sentences that encapsulate the essence of the original content. The BERT-
Sum[41]model, with its encoder-decoder architecture, utilizes BERT[18] as its encoder, making
it adept at crafting abstractive summaries. Another notable model is BART [34], a transformer-
based architecture trained to reconstruct texts by introducing noise during the training phase,
further enhancing its abstractive capabilities.

In sum, these baselines offer a comprehensive backdrop for evaluating the performance of our
summarization technique, ensuring its robust assessment within the domain of legal document
summarization.

6.5.3.2 Metrics

To ensure a comprehensive evaluation of our methodologies for both sentence classification
and summarization, a blend of intrinsic and extrinsic metrics was employed. These metrics pro-
vide insights into the quality, coherence, and relevance of the generated outputs in comparison
to the source documents.

6.5.3.2.1 Intrinsic Metrics for Summarization Intrinsic metrics offer a deep dive into
the inherent qualities of the generated outputs:

Semantic Similarity (SS): This metric measures the cosine similarity between the source
document (D) and the generated summary (S).

SS(D,S) =
D · S

∥D∥∥S∥

Compression (C): Representing the ratio of the number of tokens in the summary (nS) to
those in the input document (nD).

C = 1− nS

nD

Redundancy (R): By computing the average cosine similarity between all sentence pairs
within a generated summary.

R =
1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

cosine_similarity(Si, Sj)

Where N is the number of sentences in the summary.
Coherence (CH): Evaluating the fluency of the generated summary, coherence is deter-

mined by computing the likelihood of each sentence occurring after its predecessor.

54



6.5.3.2.2 Extrinsic Metrics for Summarization Extrinsic metrics provide an external
evaluation:

ROUGE Score[37]: A widely-used metric in the realm of text summarization, ROUGE
evaluates text similarity by calculating token overlaps between the generated summary and a
reference summary.

BERTScore[75]: Going beyond token overlaps, BERTScore evaluates similarity at a seman-
tic level.

In conclusion, the combination of these intrinsic and extrinsic metrics offers a holistic evalua-
tion framework, ensuring that our methodologies are both accurate and effective in the context
of legal document processing.

6.6 Results

Our summarization experiments were meticulously conducted on a dataset comprising 1000
adjudication orders, which were previously labeled by the sentence classification module. To
further refine the evaluation, a specialized chunking pipeline was integrated with the top-
performing method, facilitating its assessment on the gold summaries derived from 27 adjudi-
cation orders. Despite the inherent challenges posed by the scarcity of legal data, the primary
objective was to gauge the generalization capabilities of the models to our dataset.

6.6.1 Intrinsic Metrics Evaluation

Model Semantic Similarity Compression Redundancy Coherence

TextRank 0.765 0.583 0.257 0.125

LexRank 0.812 0.542 0.234 0.145

STAS 0.781 0.610 0.213 0.120

BERTSumExtAbs 0.776 0.878 0.193 0.327

BART 0.815 0.853 0.154 0.412

BRIO 0.827 0.894 0.178 0.481

Table 6.3 Intrinsic Metrics for Summarization

The intrinsic metrics, designed to delve into the inherent attributes of the generated sum-
maries, painted a vivid picture of each model’s performance. TextRank[46], for instance, ex-
hibited a commendable semantic similarity of 0.765, but its coherence at 0.125 indicated room
for improvement. On the other hand, LexRank[21] showcased a slightly superior semantic
similarity of 0.812, with its coherence also marginally better at 0.145.

STAS[70] demonstrated a balanced performance with a semantic similarity of 0.781 and
coherence of 0.120. Diving into the realm of abstractive methods, BERTSum[41] achieved a
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semantic similarity of 0.776 and an impressive compression of 0.878. BART[34] further elevated
the benchmarks with a semantic similarity of 0.815 and a coherence of 0.412. However, the
best performing model was BRIO[42], which outshone its counterparts with a stellar semantic
similarity of 0.827 and coherence of 0.481.

The overarching inference drawn was the relative ineffectiveness of extractive methods, which
often retained non-essential parts, leading to heightened redundancy. In stark contrast, abstrac-
tive techniques, epitomized by BRIO, emerged as the frontrunners, crafting summaries that were
both concise and coherent.

6.6.2 Extrinsic Metrics Evaluation

Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore

BART 0.416 0.261 0.352 0.792

BRIO 0.454 0.271 0.359 0.809

Table 6.4 Extrinsic Metrics for Summarization with Chunked Input
The extrinsic metrics, tailored to offer a comparative evaluation against established bench-

marks, further elucidated the prowess of the models. BART, for instance, secured ROUGE-
1, ROUGE-2, and ROUGE-L scores of 0.416, 0.261, and 0.352, respectively, complemented
by a BERTScore[75] of 0.792. Yet, it was BRIO that truly shined, registering ROUGE[37]
scores of 0.454, 0.271, and 0.359 for ROUGE-1, ROUGE-2, and ROUGE-L, respectively, and
a BERTScore of 0.809.

6.6.2.1 Aspect-based Summarization

A significant facet of our summarization experiments was the generation of persona-specific
summaries. The objective was to cater to the distinct informational needs of various stakehold-
ers, namely the Investor, Adjudicating Officer, and Defense Lawyer. The results, as presented
in Table 5 of the paper, highlighted the differential performance across these personas.

Aspect ROUGE-1 ROUGE-2 ROUGE-L BERTScore

Adjudicating Officer 0.455 0.262 0.330 0.803

Defence Lawyer 0.424 0.241 0.320 0.798

Investor 0.484 0.310 0.395 0.826

Table 6.5 Persona-based Metrics for Chunked Input using BRIO
For the Adjudicating Officer, the ROUGE-1, ROUGE-2, and ROUGE-L scores were

0.455, 0.262, and 0.330, respectively, with a BERTScore of 0.803. The Defense Lawyer
summaries yielded scores of 0.424, 0.241, and 0.320 for ROUGE-1, ROUGE-2, and ROUGE-L,
respectively, complemented by a BERTScore of 0.798. The Investor summaries emerged as the
best-performing, with ROUGE scores of 0.484, 0.310, and 0.395, and a BERTScore of 0.826.
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The superior performance of Investor summaries can be attributed to their relatively non-
technical nature. Investors primarily seek material facts and final penalties, devoid of intricate
legal nuances. In contrast, Defense Lawyers and Adjudicating Officers require a deeper dive
into the legal intricacies, encompassing issues framed and associated facts.

The intrinsic evaluation showcased the relative strengths and weaknesses of the employed
models. Abstractive methods, especially BRIO, emerged as the frontrunners, crafting sum-
maries that were both concise and coherent. The inability of certain models to adapt well
to the legal domain was attributed to their training on non-legal datasets. To mitigate this,
aspect-based filtering using sentence classification was employed, enhancing the relevance and
accuracy of the generated summaries.

In conclusion, the summarization experiments underscored the efficacy of our approach in
generating persona-specific summaries. The results highlight the potential of aspect-based
summarization in catering to the diverse informational needs of various stakeholders in the
legal domain.

6.7 Conclusion and Future Work

In our endeavor, we have introduced a robust system tailored to generate personalized sum-
maries of intricate legal case files, aligning with the unique requirements of different stakehold-
ers. This system not only facilitates the generation of summaries but also semantically segments
legal case files into well-defined categories. Such segmentation acts as a pivotal semantic layer,
empowering legal professionals to swiftly assimilate and comprehend crucial information.

The creation of a novel dataset, encompassing Indian legal documents, stands as a testament
to our commitment to advancing the domain of legal document analysis. This dataset, we
believe, will serve as a valuable resource for future explorations and analyses of Indian legal
documents.

While our system has showcased promising results, the realm of legal document summariza-
tion is vast and ever-evolving. Future endeavors could delve into length-controlled abstractive
summarization techniques[57, 40], which possess the potential to adapt the encoding of input
based on the desired summary length. Such advancements could further refine the quality and
relevance of generated summaries, ensuring they cater even more effectively to the diverse needs
of legal stakeholders.
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Chapter 7

Indic Multimodal Data Creation

In the rapidly evolving landscape of machine learning, multimodal models, exemplified by
innovations like DALL-E, have emerged as versatile tools with applications extending beyond
academia. However, a significant challenge remains: the scarcity of clean, large-scale data,
especially for languages other than English. Recognizing this gap, this chapter underscores
the pressing need for multimodal datasets tailored for the rich tapestry of Indian languages.
Motivated by the goal of democratizing multimodal machine learning in the Indian context, the
research proposes the creation of a comprehensive Image-text pair multimodal dataset encom-
passing 11 Indian languages. This ambitious endeavor seeks to prune the existing Samanantar
dataset[55] to yield high-quality caption-like sentences, setting the stage for a transformative
shift in multimodal research in India. The ultimate vision is not just to curate a dataset but to
pave the way for future innovations, fostering a more inclusive and diverse multimodal research
landscape.

7.1 Introduction

Machine learning models, particularly multimodal ones such as DALL-E and ImaGen, require
extensive datasets for effective training and application. While there’s an abundance of data in
English, there’s a noticeable gap when it comes to Indian languages. This research addresses
this gap by focusing on the development of a multimodal dataset for 11 Indian languages. Using
the Samanantar dataset as a starting point, the goal is to extract and refine data to produce
a comprehensive Image-text pair dataset tailored for these languages. This effort is not just
about data accumulation; it’s a strategic move to enhance the quality and scope of multimodal
research specific to the Indian linguistic context.
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7.1.1 Related Works

7.1.1.1 Multimodal Models

• DALL-E: Developed by OpenAI, this model is designed to generate images from textual
descriptions, showcasing the potential of integrating vision and language.

• StableDiffusion: Another notable model in the multimodal domain.

• ImaGen: A testament to the versatility of multimodal models.

• OSCAR and CLIP: These are vision-language pre-trained models. CLIP[54] (Con-
trastive Language-Image Pretraining) by OpenAI is particularly significant for its capa-
bility to jointly understand images and text, trained on a vast dataset of internet text
paired with images.

7.1.1.2 Multimodal Datasets in English

• MS-COCO: A dataset by Microsoft, it features over 300,000 images, each accompanied
by 5 captions, focusing on common objects within 81 categories.

• Flickr8k: Comprises 8,000 images from Flickr, each with 5 captions, chosen for their
depiction of diverse scenes and situations.

• Conceptual Captions[58]: Introduced by Google, this dataset pairs images with more
descriptive captions, offering a richer context compared to MS-COCO.

7.1.1.3 Indic Multimodal Datasets

• Hindi Visual Genome Dataset: A pioneering dataset for English-Hindi multimodal
machine translation. It consists of English segments from the Visual Genome, paired with
images. These segments are translated into Hindi, with manual post-editing considering
the associated images.

• Samanantar Dataset[55]: A text-only dataset from AI4Bharat, it contains 49.7 Million
pairs of sentences between English and 11 Indic languages, spanning the Indo-Aryan and
Dravidian language families. The dataset serves as a foundation for creating a compre-
hensive Image-text pair multimodal dataset for these languages.

7.1.2 Motivation

A predominant challenge is the absence of multimodal models tailored for non-English text.
The majority of advanced multimodal models have been designed and trained with a focus
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on English-centric datasets. This approach has inadvertently led to an underrepresentation
of non-English languages, especially those from linguistically diverse regions like India. The
implications of this oversight are manifold, limiting the potential applications and benefits of
multimodal research in non-English speaking regions.

Further compounding this challenge is the lack of authentic multimodal datasets. While
there are datasets available, such as the ”Hindi Visual Genome”, they are primarily constructed
from translated content. These translated datasets, albeit valuable, often lack the authenticity
and nuances inherent to native language data. The consequence is models that may overlook
the rich cultural and contextual subtleties, which are pivotal for accurate representation and
understanding.

Lastly, there’s a pressing need to expand the horizons of multimodal summarization to en-
compass non-English languages. The capabilities of multimodal summarization hold immense
promise, with the potential to redefine content consumption patterns in non-English languages.
Through this research, by developing genuine multimodal datasets and models for languages like
Hindi and other Indic languages, there’s an aspiration to extend our work on multimodal sum-
marization to a broader demographic. This endeavor is not just about technological advance-
ment; it’s about ensuring that content is both contextually relevant and culturally resonant,
democratizing access to cutting-edge machine learning models.

7.2 Goal

The main aim of this work is to create a text-image pair dataset encompassing 11 Indian
Languages. Since text captions and images are the most related pairs of text and image we try
to build a dataset of images and captions. Unfortunately such a dataset does not exist and to
create such a dataset a lot of annotation effort is required along with the requirement of a large
number of annotators as our dataset contains text from 11 languages. So we come up with a
solution that requires very little manual intervention to build such a dataset. The main use
of this dataset is to use this dataset to train CLIP[54] like visuolinguistic transformer models
that can be used for various tasks like caption generation, multimodal summarization for non
English languages

7.3 Dataset Creation Methodology

The foundation for our dataset creation in Indic languages is the Samanantar dataset, which
boasts 42 million sentence pairs spanning English and various Indic languages.
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1. Rule-based Pruning: The process commences with a rule-based approach, filtering out
sentences with structures that are not apt for captions, such as those containing abstract
nouns.

2. Caption Classifier: A dedicated classifier is trained to pinpoint potential English cap-
tions. This step is further enhanced using the text-davinci-003 model from the GPT-3[?]
family for refinement.

3. Image Retrieval: For each shortlisted caption, the top three corresponding images are
sourced using Google Image Search. The CLIP[54] model is then employed to ascertain
the semantic congruence between the image and the text.

4. Post-processing: The final phase involves refining captions. This includes simplifying
certain named entities and excising temporal or locative details.

This streamlined methodology is geared towards curating an authentic Indic dataset, setting
the stage for a more granular exploration in the ensuing sections.

7.4 Grammatical Rule-Based Pruning

In the endeavor to curate high-quality captions, it’s imperative to ensure that the textual de-
scriptions adhere to certain grammatical standards. These standards not only ensure the clarity
and coherence of the captions but also facilitate better learning for visuolinguistic transformers.
The following are the defined features for a potential caption:

1. No Imperatives: Captions should be descriptive and not instructive. Hence, imperative
forms of verbs, which often indicate commands or requests, are avoided.

2. Action Verbs: A good caption often describes an action. Therefore, the presence of
action verbs is encouraged. However, the tense of these verbs is restricted to either the
present or past participle to maintain consistency and clarity.

3. Third Person Perspective: Captions should maintain an objective tone, and thus,
they are written in the third person. This ensures that the description remains neutral
and universally applicable.

4. Single Clause: To maintain simplicity and directness, captions are restricted to a single
clause. This ensures that the description is concise and directly related to the image.

5. Simple Noun Phrases: For captions that primarily describe objects, simple noun
phrases are preferred. This ensures that the focus remains on the object without in-
troducing unnecessary complexity.
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6. Statements Over Questions: Captions should provide information and not seek it.
Therefore, they are framed as statements rather than questions.

In the dataset creation process, the initial step involves rule-based pruning, where sentences
are filtered based on the aforementioned grammatical features. We do this using Spacy’s NLP
parsers[24] that allow us to prune out sentences based on grammatical features that dont ad-
here to our idea of a caption. This approach ensures that the curated captions are not only
grammatically sound but also contextually relevant to the images they describe. By adhering to
these rules, the dataset aims to maintain a high standard of quality, ensuring that the captions
are both informative and aligned with the visual content.

7.5 Caption Classifier

The objective of creating a caption classifier is to accurately and efficiently identify sen-
tences that can serve as potential captions for images. Given the vastness of the Samanantar
dataset[55], an automated approach is essential to sift through the data and pinpoint relevant
captions.

7.5.1 Aims

The classifier is designed to:

• Distinguish between generic sentences and those that can act as descriptive captions for
images.

• Ensure high precision, focusing on minimizing false positives to maintain the quality of
the dataset.

7.5.2 Training Dataset Creation

To train the caption classifier, a balanced dataset is curated:

• Positive Samples: These are sourced from established English image-text datasets,
ensuring that they are genuine captions. Datasets like MSCOCO, Flickr8k, and Concep-
tualCaptions contribute to these samples.

• Negative Samples: These are derived from generic text datasets, such as CNN-DM[47]
and Books. The aim is to include sentences that are structurally or semantically unfit to
be captions.

The training set is deliberately skewed to contain a higher number of negative samples (400k)
compared to positive samples (50k) to build a high precision classifier.
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7.5.3 Classifier Models and Results

Various models were explored to achieve the desired precision. Traditional machine learning
classifiers like CatBoost[68] and XGBoost[11] were tested alongside transformer-based classifiers
such as DistilBERT and RoBERTa[43]. Some models were also fed with sentences augmented
with parts-of-speech tags, considering the structural importance in determining captions.

The evaluation was conducted on a manually labeled test set of 200 sentences, categorized as
either captions or non-captions. Among the tested models, certain transformer-based classifiers
demonstrated promising precision, indicating their potential in accurately identifying captions.

7.5.4 Refinement with GPT-3

To further enhance the classifier’s performance, the text-davinci-003 model from the GPT-
3 family[?] was integrated. Preliminary tests on a subset of sentences showcased promising
results, suggesting its efficacy in refining the caption selection process.

In conclusion, the caption classifier is a pivotal component in the dataset creation pipeline.
Through rigorous training and refinement, it ensures that the curated dataset is of high quality,
containing genuine and contextually relevant captions.

7.6 Image Retrieval

The image retrieval process is a crucial step in the dataset creation pipeline, ensuring that
each caption is paired with a relevant image. This process is multi-faceted, involving both
automated image search and subsequent validation using advanced models.

7.6.1 Automated Image Search

For the set of sentences filtered through the caption classifier, images are sourced using an
automated Google Images scraper. This scraper fetches images based on the content of each
sentence, aiming to retrieve visuals that best represent the described scenario or object.

7.6.2 Image-Text Relevance Validation

Given the vast and varied nature of the internet, not all retrieved images may be contextually
aligned with their corresponding captions. To address this, the CLIP (Contrastive Language–
Image Pre-training) model is employed. CLIP[54] is designed to understand images paired with
natural language, making it apt for this validation task.

Each image-text pair is passed through the CLIP model to gauge their semantic similarity.
Pairs that don’t meet a predefined similarity threshold are pruned, ensuring that the dataset
contains only coherent and contextually relevant image-text combinations.
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7.6.3 Mapping to Indic Translations

Once the English captions and their corresponding images are finalized, the next step is
to map these captions to their Indic translations. Leveraging the Samanantar dataset, each
English caption is paired with its translation in the target Indic language. This results in
a multimodal dataset that not only represents the visual content but also caters to multiple
Indian languages.

7.7 Post-Processing

After the meticulous process of image retrieval and mapping captions to their Indic trans-
lations, further refinement of the dataset is undertaken through post-processing. This step
ensures that the Indic language sentences are simplified and standardized, making them more
suitable for training multimodal models.

7.7.1 Simplification of Sentences

Complex sentences, especially those with multiple clauses, can introduce ambiguity and make
it challenging for models to draw clear correlations between text and image. To address this,
additional clauses are pruned, and sentences are streamlined to convey a singular, clear idea.

7.7.2 Named Entity Replacement

Named entities, while informative, can be overly specific and may not always align with the
generic nature of the associated image. For instance, a specific person’s name might be replaced
with a more generic term like ”man” or ”woman”. This step ensures that the captions remain
general and can be effectively used to train models that aim for broader applicability.

7.8 Conclusion

This work successfully curated a multimodal dataset for 11 Indic languages. Through a
series of systematic steps, including rule-based pruning, caption classification, image retrieval,
and post-processing, a reliable dataset was constructed. The primary outcome is a dataset that
pairs visual content with corresponding textual descriptions in multiple Indian languages. The
next objective is to utilize this dataset to train effective multimodal models, further advancing
the capabilities of machine learning models in the context of Indic languages.
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Chapter 8

Conclusion and Future Work

This thesis journeyed through various facets of text summarization, emphasizing the en-
hancement of the domain through multifarious approaches.

8.1 Sentence Popularity Forecasting

Diving into the domain of sentence-specific information popularity within online news arti-
cles, our research introduced the pivotal InfoPop dataset. Our foray into both unsupervised
and supervised techniques, particularly the STILTs-based Transfer Learning approach, revealed
the intertwined nature of popularity forecasting and salience prediction. Harnessing the shared
characteristics between these tasks showcased vast potential. Future directions encompass inno-
vations such as pull quote extraction, popularity-guided text summarization, and an integrative
multi-task learning approach targeting both popularity forecasting and salience prediction.

8.2 Multimodal Summarization

Our exploration into multimodal information for summarization led to a promising architec-
ture that harmoniously integrated textual and visual cues. By leveraging contrastive learning,
we achieved summaries that demonstrated both semantic and visual alignment. The profound
societal implications of this work, especially in mitigating misinformation spread, underscore
its significance. As we move forward, our vision includes refining our architecture with robust
encoders and exploring other modalities to further enrich multimodal summarization.

8.3 Guided Summarization

Our efforts to adapt concepts from our multimodal summarization into the realm of guided
summarization, specifically building upon the GSum model, unfortunately, didn’t yield the
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expected enhancements. This underscores the intricacies of translating improvements across
different summarization tasks and paves the way for future investigations into refining the
scaling layer or other integral components for optimal results.

8.4 Legal Document Summarization

Legal document summarization presented a unique challenge, catering to diverse stakeholder
needs. We introduced a comprehensive system that goes beyond mere summarization by seman-
tically segmenting legal case files. The creation of a novel dataset for Indian legal documents
further solidified our contributions. The world of legal document summarization is vast, and
future endeavors could explore length-controlled abstractive summarization techniques to cater
more effectively to varied legal needs.

8.5 Multimodal Dataset for Indic Languages

Lastly, our dedicated efforts resulted in the curation of a unique multimodal dataset for 11
Indic languages. This dataset, a blend of visual content and textual descriptions, promises to
be an invaluable resource. With this dataset in hand, our next steps will focus on leveraging it
to train advanced multimodal models, thus further enhancing machine learning capabilities for
Indic languages.

8.6 Final Remarks

In summation, this thesis has journeyed through enriching text summarization from various
angles - from predicting sentence popularity to delving into multimodal approaches and catering
to niche domains like legal document summarization. Each stride has contributed to the broader
goal of enhancing the utility, relevance, and accessibility of summaries in our ever-evolving
digital age.
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