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Abstract

The rapid technological advancements have significantly impacted numerous industries, including the
automotive sector. Amid the pursuit of creating a better vehicle, Connected Vehicles (CV) emerged as a
candidate technology that promises safety and enhances the overall user experience. The initial trials
of realizing the CV technology involved the usage of Cloud Computing, but the idea was short-lived
due to high latency and bandwidth requirement issues. This deadlock scenario was then handled by
bringing the computation resources closer to the user through Mobile Edge Computing (MEC). MEC
involves localized computation units that are relatively less powerful than the cloud but can handle the
CV requirements. MEC technology was further enhanced by considering the CVs’ dynamic network
topology, which was then called Vehicular Edge Computing (VEC).

Realizing CV technology through the VEC approach involves a central cloud server with multiple
edge servers handling the requirements of the CVs. A general request from a CV can involve data
delivery or task offloading requirements via edge servers. Although VEC technology offers a nearly
assured solution to realize CV technology, it is often faced with challenges, such as mobility, resource
allocation, security, affordability, computation delay, scalability, power consumption, caching, etc.

Considering a few such critical challenges, this work aims to bridge the gap in realizing CV technology
through two contributions. The first work proposes a framework that incorporates MAC protocol
constraints in the data delivery optimization framework to ensure practicality and reliability in data
transmission. This work presents a data-frame collision-free optimization framework by adopting a
time-slot-based MAC layer strategy that uses slot assignment to ensure collision-free data delivery for
multiple vehicles across various transmission channels at each edge in different test conditions. The
second contribution incorporates security constraints along with the price incurred for task offloading
from vehicles to edges. This work presents a price optimization framework that minimizes the overall
price for realizing the network, making it affordable while considering various task-specific security
requirements. Further, both works consider various CV-specific constraints, such as vehicle flow, edge
resources, and overlaps, thereby ensuring practicality.
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Chapter 1

Introduction

Recent technological advancements, the implementation of sustainable policies, and shifts in consumer
preferences have significantly accelerated urbanization. According to a report by the United Nations
Department of Economic and Social Affairs, approximately 55% of the world’s population resided in
urban areas as of 2018, with projections indicating an increase to around 70% by 2050 [1]. This swift
urban development has profoundly impacted numerous industries, including the automotive sector. McK-
insey’s Automotive Software and Electronics 2030 report [2] forecasts that the global automotive software
and electronics market will reach $462 billion by 2030. The report discusses four significant trends:
autonomous driving, connected vehicles, electrifying the powertrain, and shared mobility, collectively
known as ACES, as the forces disrupting the automotive sector. These mutually reinforcing forces reflect
a significant shift in the future of mobility, propelled by the expansion of urban access restrictions like
bans on internal combustion engines, higher adoption of nonownership models, and efficient technologies
such as the Advanced Driving Assistance System (ADAS) [3] [4].

The COVID-19 pandemic and its aftermath have profoundly impacted customer preferences and
regulations, leading to an increased emphasis on road safety, security, and better connectivity [5]. The
growing concerns about safety requirements are consistent with the statistical report conducted by the
Indian parliament [6]. Based on the road accident data from the years 1970 to 2023, the report quotes that
annually, 1.5 lakh people die on Indian roads, which scales down to 18 people per hour. As per the report
by the World Health Organization (WHO), the number of deaths due to road accidents drastically reaches
11.9 lakh people annually on a global scale [7]. Further, road traffic crashes are estimated to cost most
countries 3% of their gross domestic product. The Five Trends Transforming the Automotive Industry
report by PWC spotlights the potential of Autonomous Vehicles (AV) and Connected Vehicles (CV) as a
key in creating safer, more efficient vehicles capable of covering extra miles with reduced maintenance
costs [8]. The inclination for electric AVs is increasing due to their potential to drastically improve
road safety, reduce traffic congestion, and offer significant environmental benefits. Furthermore, the
report forecasts an impending surge in CV demand, pushed by consumers’ growing interest in better
connectivity features such as infotainment, web surfing, payments, location-based services, and music
streaming [3].
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As we stand on the cusp of a revolution in urban mobility, the promising capabilities of AVs and CVs
beckon us toward a new era of transportation that is not only safer and more efficient but also seamlessly
integrated with the digital fabric of our lives [8].

1.1 Self-Driving and Autonomous Vehicles vs Connected Vehicles

AV, Self-Driving Vehicles (SDV), and CV are often mentioned in the same breath due to their
similarities in using technology and information to improve safety. Still, these technologies differ
significantly due to how they interconnect and handle information.

Figure 1.1: Comparision of AVs and CVs

Figure 1.1 [9] from the European Union road safety facts report compares SDVs, AVs, and CVs.
SDVs and AVs use the capabilities of onboard sensors and ADAS technologies within the vehicles to
independently/semi-independently make driving decisions, especially in dangerous situations, to ensure
the safety of the passengers [8] [10]. Both of these technologies act as prescriptive technologies to
avoid any impending hazards. On the other hand, CVs follow a preventive approach to handle potential
dangers by exchanging safety-critical information with other vehicles and infrastructure. Apart from
safety, the Intelligent Transportation System (ITS) white paper on CVs by the United States Department
of Transportation (US-DoT) [11] anticipates that adapting CVs can mitigate over 80 % of non-impaired
incidents as the CV technology warns of turnings, stopped vehicles, and other situations in advance,
thereby providing sufficient reaction time. They further highlight that a widespread deployment can enable
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cooperative cruise control vehicle platoons, avoiding unnecessary braking and stopping at intersections.
These benefits can significantly reduce overall fuel consumption and, thereby, emissions [12] [13].

1.2 Adopting Connected Vehicles

CVs utilize a short-range protocol called Dedicated Short Range Communication (DSRC) for data
exchange [14]. Owing to its capabilities over its counterpart, the C-V2X technology DSRC has been
adopted as the candidate protocol for CV applications [15]. DSRC uses a multi-channel approach to
facilitate seamless data exchange between network devices. Motivated by the capabilities of vehicular
communication technology, the United States Federal Communication Commission has allocated a 75
MHz spectrum in a 5.9GHz band for DSRC [16].

Figure 1.2: Typical Communication band in Vehicular Technology

Figure 1.2 [17] illustrates a typical channel division and bands for vehicular data communication.
1 Control Channel (CCH)and 6 Service Channel (SCH) are used for data exchange between network
entities. CCH and SCH intervals are together referred to as Service Interval, which repeats for every
100 ms. CCH handles the control and public information, whereas SCH handles data dissemination
depending on the application and mode of communication [17].

California Transportation Department (Caltrans) lists 4 communication modes and general use cases
in a CV scenario as mentioned in Table 1.1 [18]. Among the 4 scenarios, Vehicle to Vehicle (V2V),
Vehicle to Infrastructure (V2I), Vehicle to Pedestrian (V2P), and Vehicle to Everything (V2E), V2I and
V2V act as representative candidates (together called as Vehicular Ad-HOC Networks (VANETS)) for
vehicular technology communication [19]. V2V applications are mainly adapted for pre-crash sensing,
blind spot detection, and for building cooperative forward collision warning systems. V2I (Also called
Vehicle to Road Side Unit (V2R)) are adapted for communication-based applications such as curve-speed
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warning, traffic violation detection, data delivery applications, and task offloading applications [18]. The
current work has emphasized advancing the V2I scenario.

S.No. Mode Use Case

1 Vehicle-to-Vehicle (V2V) Speed, Location, and Heading Information.

2 Vehicle-to-Infrastructure (V2I)
Signal timing, Work zones, Crashes, Congestion, and

Weather conditions.

3 Vehicle-to-Pedestrian (V2P)
Information between vehicles, crosswalks, and

bicyclists presence.

4 Vehicle-to-Everything (V2E) Travel Times, incident response

Table 1.1: Different Modes of Communication in CVs from Caltrans

1.3 Need for V2I Communication

The article by Forbes on CVs highlights that a CV-enabled car would be a digital platform with
many sensors that continuously generate data. The article highlights that the data traffic from connected
vehicles can surpass 10 exabytes per month by 2025 [20]. Global X ETFs [21] and Automotive Edge
Computing Consortium (AECC) [22] estimates around 0.383 TB per hour for a minimally connected
car and up to 450 TB per day for a robo-taxi. The generated data breakdown is shown in Table 1.2.
Altogether, 1 CV can produce up to 5100 TB of data annually [23].

S.No. Sensor Count Data (Mbit/s/sensor)

1 RADAR 4-6 0.1-15

2 LiDAR 1-5 20-100

3 Camera 6-12 500-3,500

4 Ultrasonic 8-16 0.01

5 Others 1-each 0.1

Table 1.2: Data Generated in a CV

On the other hand, as of 2024, the global average mobile download speed is capped at 50 MB/s
and upload speed at 11 MB/s, which can potentially constrain the high-velocity data of the CVs [24].
Therefore, in this bleeding edge of bandwidth requirements, the AECC has presented a distributed
cloud computing approach involving localized computational and storage units closer to the vehicles for
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seamless and lower latency responses. These localized units, called edge servers (Road Side Unit (RSU)),
are adapted to facilitate automotive big-data requirements [22].

Figure 1.3: Distrubuted Cloud Computing Architecture by AECC

Figure 1.3 [22] illustrates the AECC’s distributed cloud computing approach for CVs. Here, a
cloud layer acts as a central unit to facilitate the requests from a CV. The cloud then allocates the
necessary localized computing unit for the CV. The report also mentions various CV applications, such
as Cooperative-Vehicle-to-Vehicle (V2C2V) Communication for road safety and Intelligent driving
assistance systems for HD map data dissemination for awareness of location-sensitive and volatile
information in maps.

1.4 Vehicular Edge Computing (VEC)

Initially, Mobile Cloud Computing (MCC) is poised as a suitable candidate to handle CVs’ enormous
data and computing requirements. MCC offers various advantages, such as flexible storage capacity,
sophisticated services, and more extensive computation resources. However, MCC limited usage of these
resources due to more significant latencies. Mobile Edge Computing (MEC) (also referred to as FOG
Computing) handled this issue by bringing the computing resources closer to the users and CVs. MEC
was further transformed to handle various CV-specific concerns, such as computation resource sharing
through Virtual Machines (VMs), Software-Defined Networking, and Network Function Virtualization,
leading to the Vehicular Edge Computing (VEC) paradigm [25] [26].

VEC emerged as an enhanced version of MEC with vehicular networks and aims to move commu-
nication, computation, and caching resources much closer to the CVs. VECs differ from MECs in
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dynamic network topology due to fast-moving vehicles. Further, VECs can quickly adapt to localized
environmental conditions, enabling them to analyze and disseminate real-time location-specific traffic
and safety information. Figure 1.4 [27] illustrates a VEC-based approach where the RSU communicates
with the CVs through the V2I communication mode for various CV applications [27].

Figure 1.4: Idea of VEC for Connected Vehicles

1.4.1 VEC Architectures

Depending upon the resource management granularity, there are three main VEC architectures: two-
layered, three-layered, and four-layered. The increase in layers comes with the advantage of efficient
resource management but also increases the overall scheduling overhead. The description of these
approaches is as follows [28] [29]

Two-Layered: Two-layered architecture has a stationary edge and vehicle layers. Here, the CV
communicates directly with the stationary edges for services. This approach yields lower latency.
However, the absence of a control cloud layer leads to insufficient resources during a higher demand for
service [30].

Three-Layered: Unlike Two-Layered architecture, this approach has a control cloud, which helps
central resource management and efficient resource allocations to CVs. In this approach, the edge
layer must handle request flow from the vehicles, resource allocation, and processing, leading to higher
overhead [29].
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Four-Layered: The Four-Layered approach uses a Software Defined Network (SDN) layer along
with the stationary edges, control cloud, and vehicle layer. SDNs increase the system’s modularity and
help ensure the vehicle request processing stays isolated from edge processing, thereby increasing edge
efficiency. However, using SDNs induces higher network and processing overhead [31].

The current work adopts a three-layer VEC architecture. The advantages and disadvantages of each
approach are summarised in Table 1.3 [28].

S.No. Layers Advantages Disadvtanges

1 2 Less Commincation delay Overhead on Cloud

2 3 Reduced Cloud Overhead Absence of Flow-Control at Edge

3 4 Flexible applications due SDNs High network overhead

Table 1.3: Advantages and Disadvantages of various VEC architectures

1.4.2 Applications based on VECs

Apart from the VEC applications such as V2C2V and emergency warning systems, there are two
broad categories of VEC-based applications: Data Delivery and Task/Computation Offloading. Data
delivery involves disseminating HD Maps, Parking Lot Information, and multimedia file-sharing data
from the RSU to the vehicle. On the other hand, Task/Computation offloading involves processing
data sent by the CV at the RSU for applications such as total/partial autonomous driving, sign board
translation, etc. In both scenarios, the required service/data can be offered to the vehicle by the RSU
as long as the CV is in the coverage region of the RSU. Here, the coverage region corresponds to the
maximum distance from the RSU to the CV, where a CV can exchange information. Table 1.4 lists the
various applications of a CV system.

S.No. Application Description

1 HD Maps [22] Updating user on real-time information

2 Driver Health Monitoring [32] Analyzing driver health and behavior

3 Autonomous Driving [33] Handling vehicle maneuver and remote piloting

4 Traffic light Management [34] Dynamically controlling traffic lights

5 Vehicle Tracking and Platooning [35] Updating user about surroundings

6 Infotainment [36] File Sharing, Gaming and Collaboration

Table 1.4: Various VEC Applications
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1.4.3 Challenges of VEC

Adapting VEC involves various challenges, such as

• Vehicle Mobility: The high and variable mobility of the vehicles creates a dynamic network
topology, resulting in variable network traffic and delays. CV switches between multiple RSUs
based on allocation and requirements [37].

• Resource Allocation: VEC involves RSUs with finite computation and storage resources. There-
fore, it is crucial to maintain resource management for stable functionality [30].

• Job Completion & Computation Delay: Owing to higher mobility, the data delivery or the task
offloading needs to be completed while the vehicle is in the coverage of the RSU or within a
specific deadline [25].

• Security and Privacy: The varying network topology increases vulnerabilities. There is a crucial
requirement of security as the RSU/Edge can be accessed by various network components [28].

• Handling Multiple Requests: In a practical scenario, multiple CVs can arrive and request
services simultaneously. Therefore, the RSU should be capable of handling multiple requests
simultaneously [19].

• Affordability: Resource Allocation and RSU utilization incur a price depending upon the configu-
ration and vendor. Suitable RSUs should be utilized to ensure user affordability [38].

• Caching: CVs belonging to a localized group can have highly correlated services. Therefore,
effective caching can improve the overall resource utilization [39].

• Power Consumption: Like any other resource, power consumption is a crucial factor for ensuring
the practicality of the system [25].

1.5 Contribution of the Work

The current work focuses on CVs that need data delivery and task offloading services from an RSU.
The CV travels through various RSUs in the network from a specific point, and the current work ensures
that the required services are allocated to the CV before it reaches its destination. The current work can
be broadly divided into two major components as below

Data Frame Collision-Aware Data Delivery to CVs: In this work, an optimization framework is
presented to minimize the slot utilization cost at all the RSUs. A slot can be defined as a finite time
unit that is used for data delivery to a CV. The slot model ensures practical parallel data delivery to
vehicles, which can otherwise be impossible due to network collisions. The work also ensures that RSU’s
resources are utilized efficiently while ensuring data delivery to all the CVs in the network.
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Price Optimal Task Offloading with Security: A price optimization framework is proposed in this
work, which ensures suitable RSUs are utilized to safeguard the CVs’ affordability of the task offloaded
to the RSU. The work also provides appropriate security classes based on the task required by the vehicle
while ensuring the RSU’s resources are not over-utilized.

1.6 Thesis Organization

Chapter 2 discusses the current literature on VECs, data delivery to CVs, and task offloading to
RSUs. The chapter then elaborates on existing works dealing with simultaneous CV access, followed by
existing security and pricing approaches.

Chapter 3 presents a slot cost minimization framework that ensures that a minimal number of slots
are utilized at each RSU, inherently preventing potential data frame collision during data delivery to
multiple vehicles. The work also accounts for delays due to numerous CVs at an RSU. The work presents
the maximum number of CVs served with variation in total RSU count and also presents the variation in
slot utilization cost at the RSU followed by the effect of traffic density for data delivery

Chapter 4 presents a price optimization framework for task offloading to RSUs. This work minimizes
the overall operational and maintenance price incurred by the RSUs in the network while securely
serving and processing the task data given by the CVs. The work presents the capability of the proposed
framework by comparing it with two heuristics. Further, the work presents the total price incurred for
various security requirements and problem sizes.

Chapter 5 discussed an additional contribution: A Comprehensive evaluation of various GPS Spoofing
scenarios in a UAV which analyses 16 possible scenarios in indoor, outdoor, and different environmental
conditions.

Chapter 6 concludes this work and provides some improvements that can be incorporated to further
enhance the current work.
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Chapter 2

Related Works

This chapter presents the existing literature on VECs, followed by two CV services, namely data
delivery and task offloading. Further, it presents various works highlighting the adaptation of TDMA
MAC protocol for simultaneous data delivery, followed by a discussion on security in VECs. The last
section elaborates on computation cost in VECs.

2.1 Vehicular Edge Computing

Many works have emphasized and demonstrated the capabilities of VECs for data delivery to multiple
vehicles [28] [27] [40] [41]. The survey by Liu et al. [27] elaborates on the various capabilities of a VEC
system. The authors have highlighted the different aspects that can be considered for data delivery, such
as energy, mobility awareness, etc. Although the work significantly gives insights into a typical VEC
system, it has not evaluated the problem of data frame collisions due to simultaneous data delivery to
multiple vehicles. Jie et al. [40] have presented a VEC network with a load-balancing approach. The
work has demonstrated an efficient strategy to reduce processing delays across the network. However,
the work has not elaborated on the effects of bandwidth utilization at an RSU.

Akbar et al. [42] have presented an optimization approach based on an exponential particle swarm
algorithm to optimize energy and latency in the network. The work optimally chooses an edge for
efficient resource allocation. Further, the work considers various VEC environment conditions such
as mobility, bandwidth, and communication time. Although the work presents an optimal scenario for
resource allocation, it doesn’t account for security vulnerabilities as well as the practical problem of data
frame collisions for data exchange.

2.2 Data Delivery using VEC

The work by Ryangsoo et al. [43] describes two data pre-fetching approaches for data delivery from
edge to vehicles. The deterministic greedy algorithm converges to a suboptimal solution, whereas
the second approach uses an online learning approach to account for network failures and converges
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to an optimal solution. The experiments were conducted considering the limited edge resources and
vehicle route traces. Although the work was efficient, it doesn’t highlight the potential data losses due to
collisions at an RSU because of simultaneous access.

In the prior work [44] [37], we have presented an optimal approach considering an overlapping
window for vehicles arriving at an RSU in an equivalent time instant. Considering several constraints,
the method uses an optimization framework for data allocation at multiple RSUs. However, the work
presents a bandwidth division approach for data delivery to multiple vehicles, which, in real-time, can
lead to data frame collisions and result in unsuccessful data delivery.

2.3 Task Offloading

Several works have considered various objectives, such as energy, time delay, and reward/incentive-
based methods for building task-offloading approaches. For instance, Zhaolong et al. [45] have used
finite Markov chain models for resource allocation and task offloading. This work implements a two-
sided matchmaking policy using deep Q networks, considering execution delay and energy as a joint
objective problem, but the work has not considered the required constraints for data delivery in their
implementation. Jingyun et al. [46] have introduced the Autonomous Vehicular Edge (AVE) framework
based on ant colony optimization. They have used a task scheduling approach for resource management
and job caching in vehicular clouds. However, they have not considered a multi-RSU framework for task
offloading.

2.4 Simultaneous CV Access using TDMA-MAC

Multiple MAC protocols have been proposed for vehicular scenarios based on the TDMA approach.
The survey by Hadded et al. [47] has discussed the features and benefits of TDMA-based MAC layers.
Xiaoming et al. [17] have elaborated on the usage of the Hybrid Coordination Function Controlled
Channel Access (HCCA) MAC protocol, which has cycles of Service Intervals (SI), where each SI
has two sub-components Control Channel (CCH) and Service Channel (SCH). All the vehicular nodes
contend for channel access and medium control in the CCH phase, and the allocated vehicles exchange
data in the SCH phase. Suchi et al. [48] have proposed a multi-channel TDMA MAC, which uses
six SCH channels and one CCH channel. The SCH channels are allocated based on the application
of the data, which considers access and merging collisions. The work by Hassan et al. [19] presents
the state-of-the-art multi-channel VeMAC protocol, which addresses the access collisions and merging
collisions for vehicles coming in opposite directions. All four works have stressed the need for a MAC
protocol for vehicular data exchange. However, the works have not considered collision-aware data
delivery to multiple vehicles from multiple RSUs.
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2.5 Security in VEC

CVs utilize VEC services for either data delivery or computation offloading, which involves data
exchange over an ever-changing network. The highly dynamic nature can make the VEC network prone
to security vulnerabilities and therefore, security becomes crucial to ensure reliable CV services.

The survey by Nayak et al. [49] explained the need for security and privacy in a VEC scenario and then
elaborated on various security attacks in a VEC scenario. The work then presents the various encryption
and hashing algorithms to handle the security and privacy requirements. Additionally, the work presents
a discussion on resource allocation considering security requirements. The survey by Fayi et al. [50]
presents the need for security from a task-offloading point of view. The work presents a taxonomic
overview of various domains within the VEC network and their security requirements, emphasizing
blockchain-based security. The work also discusses various components of security requirements, such as
confidentiality, integrity, availability, authenticity, and non-repudiation. Both surveys have summarised
the security requirements in a VEC scenario but have not considered the need for various security class
requirements regarding confidentiality, integrity, and availability. The current work considers five security
classes based on the VEC application, where the higher class corresponds to the maximum security level
and the lower class corresponds to the lesser security level.

The work by Chen et al. [51] has considered a VEC scenario with a trust-based security approach for
task offloading. Although efficient, they have not considered the price implications of adopting various
security algorithms across multiple RSUs. Several works [38] [52] [53] have also discussed the concept
of security strength and security requirements in MEC scenarios. Security strength is defined as a relative
measure of the security level of algorithms in terms of their computation requirement. These works have
adapted a task scheduling approach to handle security requirements. However, they have not considered
a multi-RSU scenario for security requirements with mobility constraints of the vehicular node.

2.6 Computation Cost in VEC

Computation cost is a crucial parameter to ensure the system’s affordability for the user. Luo et al. [54]
have adapted a multi-objective optimization of delay and computation cost. They have used the Particle
Swarm Optimization algorithm to solve the task offloading problem. Du et al. [55] have considered a
multi-objective problem that looks at non-orthogonal access of the CVs and cost-effectiveness. Both
works have emphasized the need to consider computation cost and another objective but have not
considered the implications of security vulnerabilities in their approach. Huang et al. [56] have built a
cost-aware computation approach with security using deep reinforcement learning. An optimal offloading
policy is built using deep Q-networks in a MEC environment. The approach presents an efficient way to
minimize security risks. However, it cannot be adapted to a VEC environment as CVs stay for a finite
duration in the coverage regions of RSUs.
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Chapter 3

Collision Aware Data Delivery Framework

3.1 Introduction

The rapid evolution in communications technologies has spurred a drastic rise in Intelligent Trans-
portation Systems such as Connected Vehicles. The theme of connected vehicles involves various
transportation elements such as RSU, commute/freight vehicles, transportation centers, etc., communicat-
ing over short-range or peer-to-peer networks. With a quick and seamless data transfer as the primary
objective, these systems use DSRC protocol to exchange safety messages, road congestion information,
and weather information, thus improving the users’ overall safety and travel experience [12]. Apart
from safety information, the AECC has mentioned one crucial application, highlighting the advantage of
dynamic delivery of HD maps with real-time traffic and pedestrian information from RSU to vehicles.
The report also highlights that the volume of data exchanged can reach 183.4 PB/day by 2032, making
the problem challenging. Further, the problem can be even more complex when the number of vehicles
requesting the dynamic maps information increases. [22].

Considering the low latency conditions, reusability, and high volume of map data, one practical
approach to meet the data delivery requirements is to adopt Vehicular Edge Computing (VEC). The
survey by Meneguette et al. [28] on VECs has compared several multi-tier VEC architectures based
on resource availability, computation capacity, etc., highlighting the capabilities of three-tier VEC
architecture, which uses a central cloud server with a global view of the vehicles with multiple RSUs for
efficient data delivery.

Figure 3.1 portrays a general three-tier architecture involving a central cloud server, RSUs, and
vehicles. Each vehicle initially sends the information on required data to the cloud server, after which the
cloud server allocates data to RSUs based on the vehicle’s route and other factors. In an ideal scenario,
the vehicle starts receiving the data as soon as it enters the coverage region of the RSU [44]. However, in
a real-time situation, multiple such vehicles can enter the coverage region of the RSU simultaneously,
leading to data frame collisions in the network due to parallel access, resulting in unsuccessful data
delivery. This access and merging collisions can worsen due to differences in vehicular mobility and
densities [19] [17].
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Figure 3.1: General Data Delivery Scenario

Therefore it is vital to adopt a Medium Access Layer (MAC) protocol, as the precision of data delivery
is directly related to the safety and comfort of the users. The state-of-the-art MAC protocol MAC for
VANETS (VeMAC) uses Time Division Multiple Access (TDMA), a time slot-based multi-channel
protocol where one or more than one slot is allocated to a specific vehicle in each channel for collision-
free data exchange. Given the resource availability at various edges and routes of vehicles, there are
many possibilities of how the data can be allocated at each edge. However, in a real-time situation, the
data frame collisions can increase with the number of parallel vehicles requesting the data. Therefore,
the current work uses a slot utilization cost based on a pricing policy to reduce these collisions. The
edge server with more utilized slots has more cost. Therefore, the data delivery happens from an edge
with a lesser cost, minimizing data frame collisions. Based on this notion, an optimization framework is
presented in the current chapter that minimizes the total slot utilization cost at all the edges considering
various edge, vehicle, and timing constraints.

The contributions of this work are as follows.

1. To the best of the knowledge, this is the first work that proposes a TDMA MAC-based data
collision-aware framework for data delivery from multiple edges to vehicles. This work has
integrated two state-of-the-art MAC protocols considering the vehicular flow model.
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2. This work presents the practical significance of the proposed framework by comparing it with an
existing optimal framework for VEC that does not consider a MAC layer. We demonstrate that
the existing work is optimistic with respect to the number of vehicles served, and our proposed
framework shows the realistic scenario where the number of vehicles served is lesser due to
collisions.

3. It also proposes an algorithm to calculate the worst-case delay for data delivery due to network
contention by other overlapping vehicles that are simultaneously entering the edge’s coverage
region.

4. This work then presents several experiments to demonstrate the significance of the proposed
framework using real-world traffic scenarios from the Luxembourg dataset.

3.2 System Model and Problem Definition

This section first presents our VEC system model consisting of a central cloud server, edges, and
vehicles. This section then elaborates on the problem of minimizing slot utilization cost across all the
edges.

Figure 3.2: VEC System Models

3.2.1 VEC System Model

The VEC model includes a central cloud C connected to M heterogeneous edge servers {E1, .., EM},
each having K uniform and independent network channels with L time slots per channel and N vehicles
{V1, V2, ..., VN} in the network. Each edge server has a finite coverage area for data delivery to vehicles
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passing through that edge. In the current work, we assume that the cloud maintains a route map from
which it can infer and map the total data requested by the vehicles into smaller data chunks for delivery
at the edges. We model our VEC system using Vehicle, Flow, Edge, Timing, Delay, Slot, and Resource
utilization models.

Vehicle Model: The vehicle model for vehicle Vi (1 ≤ i ≤ N) is described as a tuple Vi : {xi,j ,mi},
where xi,j contains the route information, and mi is the total memory requested by Vi. Considering a
two-lane scenario, if the vehicle Vi passes through edge Ej (1 ≤ j ≤ M) and moves in the rightward
direction, then xi,j is 1. If the vehicle Vi moves in the leftward direction, then the value of xi,j is -1. If
the vehicle Vi doesn’t pass through the edge, then the value of xi,j is 0.

Edge Model: The Edge Model for edge Ej (1 ≤ j ≤ M) is described as {Mj ,M
occ
j , Lcov

j , Bj , Bj,k},
where Mj is the total memory of the edge, Mocc

j is occupied memory for processing, Lcov
j is length of

coverage region, Bj is the total bandwidth of edge, Bj,k is the bandwidth of each channel of the edge.
The relation between Bj and Bj,k is given by Eq.(3.1).

Bj =
K∑
k=1

Bj,k (3.1)

Flow Model: The velocity vi,j of vehicle Vi (1 ≤ i ≤ N) at edge Ej (1 ≤ j ≤ M) is calculated
using the Greenshields equation [44]. vi,j depends on free flow velocity vfj , vehicle density kj , and jam
density of vehicles kjamj at edge Ej . These three quantities are related as shown in Eq.( 3.2).

vi,j = vfj ∗ (1− kj

kjamj

) (3.2)

Timing Model: The timing model describes the various timing components of the current work. ttravi,j

is earliest travel time for vehicle Vi (1 ≤ i ≤ N) to reach edge Ej (1 ≤ j ≤ M). tcomm
i,j is the time

central cloud C takes to send data of vehicle Vi to edge Ej . tslot is the period of each slot in a channel k
(1 ≤ k ≤ K). tcovi,j is the coverage time of vehicle Vi at edge Ej . The relation between tcovi,j , lcovj , vi,j is
given by Eq.( 3.3).

tcovi,j =
lcovj

vi,j
(3.3)

Delay Model: In a TDMA MAC-based protocol system, as soon as the vehicle Vi (1 ≤ i ≤ N)

enters the coverage region of an edge Ej (1 ≤ j ≤ M), the vehicle senses the channel for a beacon
frame [46] for a time interval of tbeacon. After receiving the beacon frame, the vehicle starts contending
for a time slot by sending requests at random intervals. tslot delayi,j denotes the worst-case contention delay
to transmit and receive the acknowledgment from the edge successfully. tslot unavi,j is the time unavailable
due to MAC protocol constraints. If tslot avi,j is the available time for the vehicle to receive data after the
contention phase, then the relation between tcovi,j , tslot unavi,j , tslot delayi,j , tbeacon, and tslot avi,j is given by
Eq.(3.4).
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tslot avi,j = tcovi,j − tslot unavi,j − tslot delayi,j − tbeacon (3.4)

Slot Model: In the current work, each channel k (1 ≤ k ≤ K) of an edge Ej is partitioned into
uniform and independent time units called time slots. Each slot is of finite time unit tslot and is described
as a tuple lj,k: {ρ, τ, γ} where ρ is a binary variable which indicates if a slot is available for data delivery,
τ indicates the road lane to which the slot belongs, τ ∈ {−1, 0, 1}. The element γ denotes the allocated
vehicle id, γ ∈ [1, N ].

For a vehicle Vi (1 ≤ i ≤ N) at edge Ej (1 ≤ j ≤ M), n slotmax
i,j is the total number of time slots

based on the coverage time of vehicle Vi at edge Ej and can be calculated using Eq.(3.5). n slotmax alloc
i,j

refers to the maximum number of time slots that can be allocated considering the tslot delayi,j , tbeacon, and
tslot unavi,j , which is calculated using tslot avi,j , as mentioned in Eq.(3.6). The floor Function is used to make
sure there are no partial slots. The relation between n slotmax alloc

i,j and n slotmax
i,j is given by Eq.(3.7).

n slotmax
i,j =

⌊
tcovi,j

tslot

⌋
(3.5)

n slotmax alloc
i,j =

⌊
tslot avi,j

tslot

⌋
(3.6)

n slotmax alloc
i,j ≤ n slotmax

i,j (3.7)

Resource Utilization Model: The resources of an edge are utilized for storage and data delivery
to vehicles. Therefore at any instant, the memory usage and the slot usage should not exceed the total
memory capacity and the slots available at an edge. In the current work, we adopt the Earliest Time
of Arrival (ETA) and Latest Time of Departure (LTD) from [37] for calculating the overlapping set of
vehicles to determine the total slots and memory utilized. ETA refers to the time spent by a vehicle to
reach an edge when it travels with minimum velocity. Similarly, LTD refers to the time spent to reach an
edge when the vehicle travels with maximum velocity. For a vehicle, Vi (1 ≤ i ≤ N), the maximum
and minimum velocities at edge Ej (1 ≤ j ≤ M) based on Eq.(3.2) are given by Eq.(3.8) and Eq.(3.9),
where kmin and kmax refer to minimum and maximum densities at edge Ej . Using these equations, the
ETA and LTD are computed using Eq.(3.10) and Eq.(3.11), as mentioned in [37], where Q is the set of
edges the vehicle has passed through and Rm,n is the road segment between the edges m and n.

vmax
i,j = vfj ∗ (1− kmin

kjamj

) (3.8)

vmin
i,j = vfj ∗ (1− kmax

kjamj

) (3.9)

tetai,j =
Ai

vmax
i,j

+
∑

m,n∈Q

Rm,n

vmax
i,j

+
∑

o∈{Q−Ej}

Lcov
o

vi,o
(3.10)
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tltdi,j =
Ai

vmin
i,j

+
∑

m,n∈Q

Rm,n

vmin
i,j

+
∑
o∈Q

Lcov
o

vi,o
(3.11)

In Eq.(3.10) and Eq.(3.11), the first term signifies the time taken by the vehicle to reach the first edge
from its starting point, where Ai is the distance between the starting point of the vehicle and the first edge.
The second term computes the time the vehicle travels between the consecutive edges. If m,n are two
consecutive edges in the set of edges Q of vehicle Vi, then Rm,n is the distance between the edges. The
last term accounts for the time spent passing through coverage regions of the edges Q of vehicle Vi; here,
Lcov
o is the coverage region of an edge o belonging to edge set Q of vehicle Vi. The overlapping vehicle

sets Sj of an edge are computed using the ETA and LTD values based on algorithm 1 in [37]. If Sj,ov is
an overlapping set of edge Ej such that {1 ≤ ov ≤ OVj}, OVj is the maximum number of overlapping
sets of Ej , then the overlapping time is calculated as the maximum difference between LTD and ETA
of the vehicles in the set Sj,ov, as shown in Eq.(3.12). Similar to Eq.(3.4) and Eq.(3.6), the overlapping
slots n slotoverlapj,ov for an overlapping set Sj,ov for data delivery can be calculated using Eq.(3.13), where
toverlap unav
j,ov is the the unavailable time for data delivery for set Sj,ov. n slotoverlap max

j,ov is the maximum
overlapping slots among all the overlapping sets of edge Ej as shown in Eq.(3.14)

toverlapj,ov = tltdov − tetaov (3.12)

n slotoverlapj,ov =

⌊
toverlapj,ov − toverlap unav

j,ov

tslot

⌋
(3.13)

n slotoverlap max
j = max(n slotoverlapj,1 , .., n slotoverlapj,OVj

)

ov ∈ {1 ≤ ov ≤ OVj}
(3.14)

Decision Variable n slotalloci,j,k : In the current work, the number of slots allocated for a vehicle Vi

(1 ≤ i ≤ N) at edge Ej (1 ≤ j ≤ M) in channel k (1 ≤ k ≤ K) by the cloud server as the decision
variable. n slotalloci,j,k takes a non-negative value if Vi is in the path of Ej . If Vi is not in the path of Ej ,
then n slotalloci,j,k = 0.

3.2.2 Problem Formulation

The current work builds a data collision-aware optimization framework for data delivery from edges
to vehicles in a scenario where multiple vehicles enter the coverage region of the edge simultaneously
while considering various data delivery and resource availability constraints. The frameworks run in
the cloud layer to optimize the number of slots a vehicle utilizes at an edge in an overlapping time with
multiple simultaneous vehicles.
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3.3 Optimization Framework

This section first discusses worst-case timing delay values for various timing components involved
in calculating the n slotmax alloc

i,j , the maximum slots available for data delivery. We then elaborate on
various constraints necessary for data delivery from edges to vehicles. Finally, we present the objective
function for optimizing the number of slots utilized for each overlapping set at an edge.

Figure 3.3: Various timing delays in a TDMA MAC Channel

3.3.1 Worst Case Slot Calculation

Figure 3.3 illustrates the various timing components in a general TDMA MAC-based channel when
one vehicle enters and leaves the coverage region. The calculations for tslot unavi,j , tslot delayi,j , tbeacon are
as follows.

Delay due to unavailable and beacon time: tbeacon is the maximum time delay to receive a beacon
frame. The beacon signal is broadcasted at the end of the service interval cycle, where the service
interval tSI is a cycle of the control and service phases with a defined number of slots. In the worst-
case scenario, the vehicle will wait for the entire service interval cycle to receive the beacon frame.
tslot unavi,j is unavailable time windows which are MAC protocol dependent. In the case of the VeMAC
protocol, each service interval cycle is partitioned equally for vehicles moving in leftward and rightward
directions. Similarly, the service channel slots are unavailable during the control channel phase in Hybrid
Coordination Function Controlled Channel Access (HCCA). Therefore depending upon the arrival time
and departure time of a vehicle at an edge, the relationship between tcovi,j and tslot unavi,j can be given by
Eq.(3.15). funav is a positive real number between 0 and 1.

19



tbeacon = tSI

tslot unavi,j = funav ∗ tcovi,j , funav ∈ [0, 1]
(3.15)

Delay due to contention: tslot delayi,j is the worst-case time for a vehicle to send a control message
and receive an acknowledgment from the edge. If novc

i,j is the total number of contenting vehicles in the
overlapping vehicle set, then in the worst-case scenario, a vehicle would receive the acknowledgment
after all the other contending vehicles. Algorithm 1 illustrates the method to calculate the worst-case
overlapping set for a vehicle based on LTD and ETA at an edge. In line 2, the loop iterates over all
the vehicles passing through the edge Ej leaving the current vehicle. Now in lines 3 to 6, the novc

i,j is
incremented if the current vehicle Vk has the ETA between the ETA and LTD of the vehicle Vi and
returns the total count in line 7. Therefore, if each contenting vehicle takes a service interval to send
and receive an acknowledgment from the edge, then the total delay due to contention can be given by
Eq.(3.16), where tSI is the time interval of the service interval.

tslot delayi,j = novc
i,j ∗ tSI (3.16)

Algorithm 1 Algorithm to calculate overlapping vehicle count for a vehicle Vi passing through an edge

Ej

Require: Current vehicle Vi, ETA, and LTD of the vehicles passing through the edge Ej .

Ensure: novc
i,j , the number of overlapping vehicles.

Process:

1: novc
i,j = 0

2: for Vk ∈ Ej do

3: if (ETA[i] ≤ ETA[k]) and

(ETA[k] ≤ LTD[i]) then

4: novc
i,j += 1

5: end if

6: end for

7: return novc
i,j

3.3.2 Optimization Constraints

Figure 3.4 illustrates the optimization constraints for collision-aware data delivery from edges to
multiple vehicles. The constraints are detailed below.
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Range Constraints: This constraint sets the lower and upper bound for memory mi,j,k allocated
in a channel k of edge Ej for a vehicle Vi and the product of n slotalloci,j,k and Bj,k is equal to memory
allocated for vehicle Vi. The constraints are as follows.

mi,j,k = 0, xi,j = 0

mi,j,k ≥ 0, |xi,j | = 1

mi,j,k ≤ mi, |xi,j | = 1

mi,j,k = n slotalloci,j,k ∗Bj,k

i = 1..N, j = 1..M, k = 1..K

(3.17)

Accumulation Constraints: This constraint ensures that the summation of mi,j,k over all the channels
of all the edges equals mi, the memory requested by the vehicle Vi. The constraint is as follows.

M∑
j=1

K∑
k=1

n slotalloci,j,k ∗Bj,k = mi,

i = 1..N, j = 1..M, k = 1..K

(3.18)

Time to Edge Constraints: The timing constraints ensure that the cloud has already transferred the
data to the edge before the vehicle arrives at an edge. The constraint is as follows.

mi,j,k ∗ tcomm
i,j ≤ mi,j,k ∗ ttravi,j

i = 1..N, j = 1..M, k = 1..K
(3.19)

Edge resource Constraints: The Edge resource constraints ensure that the memory utilized at an
edge at any instant is less than the total memory of the edge. In the current work, we consider the
overlapping sets of vehicles to calculate the resources utilized at an edge by different vehicles. Using this
constraint, we can ensure that the memory used for data delivery plus the memory occupied for internal
processing is always less than the total memory of the edge at any given instant. The constraint is given
below.

max(
∑

i1∈Sj,1

K∑
k=1

mi1,j,k, ..,
∑

iOVj
∈Sj,OVj

K∑
k=1

miOvj
,j,k) +Mocc

j

≤ Mj , j = 1..M, i1, . . . , iOVj

(3.20)

Slot Schedulability Constraints: This constraint ensures that the total slots utilized by a vehicle at
an edge in a channel are less than the total available slots for data delivery for that vehicle, considering
the various time delays. This constraint further ensures that the total slots utilized by all the vehicles in
an overlapping set are less than the max overlapping slots n slotoverlap max

j of edge Ej .
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Figure 3.4: Three Tier Architecture with MAC Protocol and Data Delivery Constraints

K∑
k=1

n slotalloci,j,k ≤ n slotmax alloc
i,j

∑
i∈Sj,ov

K∑
k=1

n slotalloci,j,k ≤ n slotoverlap max
j

i = 1..N, j = 1..M, k = 1..K

(3.21)

3.3.3 Objective Function

Eq.(3.22) portrays the slots utilized for data delivery by vehicles in one overlapping set at an edge
across all the channels for unique vehicles which belong to set Sj,ov and Sov

j is a set such that it doesn’t
contain Sj,ov. Eq.( 3.23) calculates the slots used at an edge considering data delivery and those utilized
for MAC protocol-specific metadata such as CF-Poll-frame and Acknowledgment frame for all the
overlapping sets. In the current work, the objective of the optimization is to minimize the global slot
utilization cost, which is computed based on a pricing mechanism used in [44]. This mechanism helps
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balance the slots utilized across all the edges for data delivery. The global slot utilization cost uses a
non-linear pricing policy, as mentioned in Eq.(3.24), where β is the cost factor.

slotutil datai,ov =
∑

i/∈{i∈Sj,ov∩Sov
j }

K∑
k=1

n slotalloci,j,k

n slotoverlap max
j

(3.22)

slotutilj =

OVj∑
ov=1

(slotutil datai,jov + slotutil meta
i,jov ) (3.23)

slotutil costj = β ∗ (1 + slotutilj )2 (3.24)

Finally, the objective function for the current work is given by Eq.(3.25)

minimize

M∑
j=1

slotutil costj (3.25)

3.4 Experiments and Results

This section presents the practicality of the proposed collision-aware data delivery framework using
two MAC protocols, VeMAC and HCCA, and compares it with a bandwidth optimal (OPT-NoMAC)
case from [37] which does not consider a MAC layer. This section compares the three frameworks in
terms of the maximum number of vehicles serviced and bandwidth cost. This work then presents the
variations in global slot utilization cost by differing the traffic densities, edge counts, and vehicle counts
by using a real-world traffic scenario from the Luxembourg dataset [57].

In the current work, Kj is set to 15, and values of Kjam
j ,mi, L

cov
j ,Mj , Bj , v

f
j are obtained from [44],

the values for MAC-Header, Acknowledgment frame, and CF-Poll frame are obtained from [17]. The
current experiments have been conducted on Intel(R) Xeon(R) CPU E5-2640-based server with 20 cores,
each running at 2.6GHz. The results are as follows.

3.4.1 Maximum Vehicles Served

Figure 3.5 illustrates the maximum number of vehicles served for OPT-NoMAC, HCCA, and VeMAC
approaches for various edge counts. The increased availability of extra computation and memory
resources of the newer edges can explain the trend of serving more vehicles with an increasing edge count.
It can be observed that HCCA has fewer vehicles served than the other two approaches, as the available
time for data delivery is less due to the absence of the service channel slots during the control channel
phase [58]. Due to this, the total available slots for data delivery are less numerous than those for VeMAC.
At a lower edge count, VeMAC approaches OPT-NoMAC as the number of data frame collisions is
lesser due to smaller overlapping vehicle sets. With the increasing edge count and vehicles, data frame
collisions increase due to the larger number of overlapping vehicles contenting for data simultaneously.

23



40 50 60 70 80

200

250

300

350

Number of Edges

N
um

be
r

of
V

eh
ic

le
s

Se
rv

ic
ed

OPT-NoMAC
VeMAC
HCCA

Figure 3.5: Maximum Vehicles Served

This can explain the decrease in the number of vehicles served by VeMAC compared to OPT-NoMAC at
a higher edge count scenario.

3.4.2 Analysis of Slot Utilization Cost for various Densities

Figure 3.6a and 3.6b illustrate the variations in slot utilization cost for different vehicle densities,
number of vehicles, and edge counts for HCCA and VeMAC protocols. Each plot corresponds to
variations in global slot utilization cost for 70 and 80 edges scenarios. It can be observed that with
increasing vehicle density values, there is decreasing trend in slot utilization cost. This can be explained
by the increased coverage time tcovi,j due to a decrease in the velocity of the vehicle at an edge, as
mentioned in Eq(3.3). This increased coverage time increases the number of time slots for data delivery,
allowing the vehicle to choose edges with lesser slot utilization costs.

It can be observed that HCCA has more slot utilization costs than VeMAC for various vehicle sizes.
This is due to the differences in slot utilization cost for metadata which is MAC protocol dependent.
HCCA data frame is associated with a CF-Poll frame and an Acknowledgment frame for each data
slot [58], whereas the VeMAC data frame has an Acknowledgment frame only [19], thereby increasing
the slot utilization cost for HCCA.

3.4.3 Analysis of Variation in Bandwidth Cost

Figure 3.7a and 3.7b illustrate the variation in bandwidth cost for OPT-NoMAC, VeMAC, and HCCA
for 120 vehicles. The bandwidth cost equation is obtained from [37]. The MAC approaches have higher
bandwidth costs due to the presence of metadata for collision avoidance, which involves transmitting extra
information along with the vehicle’s data. HCCA uses a CF-Poll frame and an Acknowledgment frame
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for collision avoidance and thus incurs more bandwidth cost than VeMAC as it uses an Acknowledgment
frame, which explains the higher bandwidth cost for HCCA than VeMAC. With the increasing edge
count, the average bandwidth cost per edge decreases due to data distribution across more edges. The
total bandwidth cost for all three approaches increases with the increase in edge count, as a minimum
bandwidth cost is incurred due to the presence of an edge and also due to data distribution across edges.

3.4.4 Analysis of Variation in Slot Utilization Cost

Figures 3.8a and 3.8b illustrate the variation in global slot utilization cost using VeMAC and HCCA
for 120 vehicles. For VeMAC, the distribution in total slots utilized changed from a mean of 1.67e4
and peak value of 1.34e5 for 50 edges to a mean of 1.22e4 and a peak of 1.24e5 slots per edge for 80
edges case, which explains the decrease in mean slot utilization cost per edge. The increase in total slot
utilization cost with edges can be explained due to the minimum cost incurred due to the addition of
newer edges. Similarly, for the HCCA protocol, the distribution in slots utilized changed from a mean of
2.95e4 and peak value of 2.35e5 slots for 50 edges to a mean of 1.84e4 and a peak of 1.89e5 slots per
edge for 80 edge cases. This considerable variation in slot utilization explains the decrease in average and
total slot utilization costs for the HCCA protocol. VeMAC has a lower slot utilization cost than HCCA
due to the presence of CF-Poll in metadata associated with the vehicle’s data when compared to VeMAC.

3.5 Conclusion and Future Scope

The current chapter has proposed a collision-aware data delivery framework for connected vehicles
via edges. This considers the practical scenario of multiple vehicles requesting data simultaneously from
the edges which can result in data frame collisions due to parallel access. To prevent these collisions,
this work has proposed an optimization framework that considers a TDMA MAC-based approach to
handle data delivery to multiple vehicles simultaneously. The work has presented the practicality of
the proposed work through several experiments by using two state-of-the-art MAC protocols VeMAC
and HCCA against an optimal approach that doesn’t consider the MAC layer. This work can be further
extended by considering data delivery time, security, etc. in the objective function.
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Figure 3.6: Variation in slot utilization costs for 70 and 80 edges
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Chapter 4

Price Optimal Secure Task Offloading Framework

4.1 Introduction

The advent of Connected Vehicles (CV) has revolutionized the concept of safety, travel, and user
experience in a vehicle. The idea of CV involves intelligent vehicles exchanging data and services with
network components such as Roadside units (RSUs), transportation hubs, and other vehicles over a short
communication range. These systems typically use DSRC protocol in a Vehicular Edge Computing
(VEC) environment for seamless data and service exchange [16]. A general VEC approach involves a
Cloud, an Edge, and a Vehicular layer, where the vehicles receive the data and services from the edge
layer to ensure low latency and bandwidth requirements. Initially, the concept of CV was proposed to
exchange safety messages, road congestion information, and weather information to build an efficient
and safer vehicle [12]. However, the promising capabilities of low latency and the capacity to handle
bandwidth requirements have attracted various stakeholders to innovate CV-specific applications that
involve task offloading from vehicles to suitable RSUs. Applications such as Driver Health Monitoring,
Autonomous Driving, Vehicle Platooning, and infotainment services are a few such scenarios that can be
potentially adopted through task offloading from vehicles to edges [32] [36].

Task offloading involves sending raw data to nearly RSUs, which process this data and return the
results to the vehicles. Task offloading helps reduce the computational load on individual vehicles [45].
However, this data transfer can become vulnerable in a network-compromised scenario, compromising
sensitive information to unauthorized users. Apart from the security concerns, task offloading also
requires RSU resource management, as incorrect allocations can result in non-optimal utilization or
increase the computation price, rendering the network financially infeasible [38].

Therefore, minimizing the total price incurred while considering the security requirements in the
network is vital to ensure the affordability and safety of task offloading from vehicles to edges. In a
realistic scenario, there can be many ways in which tasks can be offloaded to increase the total price
and also over-utilize RSUs. Therefore, the current work minimizes the total price by using a pricing
policy to reduce these non-optimal allocations in the network. The edge server, which handles more tasks,
contributes more to the total price; based on this notion, a price-optimization framework is proposed,
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which minimizes the total price incurred in the network while ensuring security, edge, and vehicle
constraints vehicles.

The contributions of this work are as follows.

1. To the best of the knowledge, this is the first work that proposes a price-optimal framework for task
offloading considering multiple vehicles, multiple edges, vehicular flow, resource requirements,
and security.

2. This work presents the practical significance of the proposed framework by comparing it with two
greedy approaches in terms of the total price factor.

3. This work considers five security classes that differ in confidentiality, integrity, and availability.
This work presents the effect of price factor variations due to the security requirements for task
offloading for various problem sizes.

4. This work presents the experiments considering real-world traffic scenarios from the Luxembourg
dataset and evaluates the effects of security classes on a real-time edge device.

4.2 System Model and Problem Definition

This section presents the VEC system model, which consists of a central cloud server, edges, and
vehicles, followed by the price optimization problem with security across all the edges.

4.2.1 VEC System Model

The VEC model includes a central cloud C connected to M heterogeneous edge servers {E1, .., EM}
and N vehicles {V1, V2, ..., VN} in the network. Each edge server has a finite coverage area for task
offloading to vehicles passing through that edge. The current work assumes that the CV offloads the task
to one edge server only. This work models the VEC system using Vehicle, Edge, Flow, Timing, Security,
Cloud, and Resource Utilization models.

Vehicle Model: The vehicle model for vehicle Vi (1 ≤ i ≤ N) is described as a tuple Vi :
{xi,j , di, tsi}, where xi,j contains the route information, and di is the input memory of the task tsi re-
quested by Vi. Considering a single-lane scenario, if the vehicle Vi passes through edge Ej (1 ≤ j ≤ M),
then xi,j is 1. If the vehicle Vi doesn’t pass through the edge, then the value of xi,j is 0.

Edge Model: The Edge Model for edge Ej is described as {Mj ,M
occ
j , Lcov

j , Pj , Bj , P
occ
j , Cj , C

main
j },

where (1 ≤ j ≤ M). Here Mj is the total memory of the edge, Mocc
j is occupied memory for processing,

Lcov
j is the length of coverage region, Bj is the total bandwidth of the edge, Pj is the total number of

Virtual Machines (VMs), P occ
j is the total number of VMs used for maintenance and Cj is the price

incurred in cents per VM per second for processing a task and Cmain
j is the price incurred cents per VM

per second for maintaining the RSU.
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Flow Model: The velocity vi,j of vehicle Vi (1 ≤ i ≤ N) at edge Ej (1 ≤ j ≤ M) is calculated
using the Greenshields Eq.( [44]). vi,j depends on free flow velocity vfj , vehicle density kj , and jam
density of vehicles kjamj at edge Ej . These three quantities are related as shown in Eq.(4.1).

vi,j = vfj ∗ (1− kj

kjamj

) (4.1)

Timing Model: The timing model describes the various timing components of the current work. ttravi,j

is earliest travel time for vehicle Vi (1 ≤ i ≤ N) to reach edge Ej (1 ≤ j ≤ M). tcomm
i,j is the time

central cloud C takes to send vehicle data Vi to edge Ej . tslot is the period of each slot in a channel k
(1 ≤ k ≤ K). tcovi,j is the coverage time of vehicle Vi at edge Ej . The relation between tcovi,j , lcovj , vi,j is
given by Eq.(4.2). tservicei is the time taken to process the task tsi of Vi, and tsecurityi is the time taken to
process the security requirements of task tsi.

tcovi,j =
lcovj

vi,j
(4.2)

Security Model: In the current work, a security class si is assigned to a vehicle Vi depending upon
the nature of the task. Here, security class refers to a specific level of the security triads: confidentiality,
integrity, and availability. A higher security class is highly resilient to attacks but can incur more
computation costs. The current work adopts the analysis by Architecture Reference for Cooperative and
Intelligent Transportation (ARC-IT) [59] for security classes. Each security triad has three levels: low,
medium, and high. Thereby, there are potentially 27 different device security classes, of which 5 security
classes, as mentioned in Table 4.1, are chosen as candidates for assigning to the CV tasks as presented
in [60].

Security Class Confidentiality Integrity Availability

1 Low Moderate Moderate

2 Moderate Moderate Moderate

3 Moderate High Moderate

4 High High Moderate

5 High High High

Table 4.1: Security Classes from ARC-IT

The data di of a vehicle Vi is initially secured with a class 1 security before sending it to the RSU for
processing. The received data is first decrypted and verified before processing. The processed memory
ri is secured with the security class depending on task tsi before returning it to the Vi. The variable qi

refers to the memory required for processing the security requirements of the task tsi.
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Cloud Model: The Central Cloud C processes the information about the task tsi and di of vehicle Vi

and assigns the necessary security class si class. Further, the cloud calculates the required VMs pi, the
time to process the task tservicei , and the time to process the security requirements tsecurityi .

Resource Utilization Model: The resources of an edge are utilized for storage and computation of
tasks offloaded by the vehicles. Therefore, at any instant, the memory usage and the total VM usage
should not exceed the total memory capacity and the VMs Pj available at an edge. In the current work, we
adopt the Earliest Time of Arrival (ETA) and Latest Time of Departure (LTD) from [37] for calculating
the overlapping set of vehicles to determine the total VMs and memory utilized. ETA refers to the time
spent by a vehicle to reach an edge when it travels with minimum velocity. Similarly, LTD refers to
the time spent to reach an edge when the vehicle travels with maximum velocity. For a vehicle, Vi

(1 ≤ i ≤ N), the maximum and minimum velocities at edge Ej (1 ≤ j ≤ M) based on Eq.(3.2) are
given by Eq.(4.3) and Eq.(4.4), where kmin and kmax refer to minimum and maximum densities at edge
Ej . Using these equations, the ETA and LTD are computed using equations 4.5 and 4.6, as mentioned
in [37], where Q is the set of edges the vehicle has passed through and Rm,n is the road segment between
the edges m and n.

vmax
i,j = vfj ∗ (1− kmin

kjamj

) (4.3)

vmin
i,j = vfj ∗ (1− kmax

kjamj

) (4.4)

tetai,j =
Ai

vmax
i,j

+
∑

m,n∈Q

Rm,n

vmax
i,j

+
∑

o∈{Q−Ej}

Lcov
o

vi,o
(4.5)

tltdi,j =
Ai

vmin
i,j

+
∑

m,n∈Q

Rm,n

vmin
i,j

+
∑
o∈Q

Lcov
o

vi,o
(4.6)

In equations 4.5 and 4.6, the first term signifies the time the vehicle takes to reach the first edge from
its starting point, where Ai is the distance between the vehicle’s starting point and the first edge. The
second term computes the time the vehicle travels between the edges, and the last term accounts for the
time spent passing through coverage regions of the edges. The overlapping vehicle sets Sj of an edge are
computed using the ETA and LTD values based on algorithm 1 in [37].

4.2.2 Decision Variable

In the current work, a binary decision variable servi,j indicates if a vehicle Vi offloads a task to edge
Ej . If Vi is not in the path of Ej then servi,j = 0
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4.2.3 Problem Formulation

The current work builds a price optimization framework for task offloading from vehicles to edges,
considering security and resource availability constraints. The frameworks run in the cloud layer to
allocate a suitable RSU to the vehicle to minimize the total price incurred while ensuring security.

4.3 Optimization Framework

This section first discusses the constraints necessary for task offloading from vehicles to edges,
followed by the objective function for optimizing the total price incurred in the network.

4.3.1 Optimization Constraints

The various constraints for the price optimal framework are detailed below.

Service Accumulation Constraint: This constraint ensures that the summation of servi,j over all the
edges equals 1. This ensures the vehicle offloads the task to one edge. The constraint is as mentioned in
Eq.(4.7).

M∑
j=1

servi,j ∗ xi,j = 1, i = 1..N, j = 1..M (4.7)

Edge resource Constraints: The Edge resource constraints ensure that the memory and total VMs
utilized at an edge at any instant are less than the total available resources of the edge. In the current work,
we consider the overlapping sets of vehicles to calculate the resources utilized at an edge by different
vehicles. Using this constraint, we can ensure that the memory and the VMs used for task-offloading
plus the resources used for maintenance are always less than the total resources of the edge at any given
instant. if {Sj,1, ..., Sj,ovj} are overlapping sets of edge Ej , then the edge resource constraint can be
given as Eq.(4.8) for memory and Eq (4.9) and for VMs.

max(
∑
i∈Sj,1

(servi,j ∗ (di + qi + ri)), ...,
∑

i∈Sj,ovj

(servi,j ∗ (di + qi + ri))) +Mocc
j ≤ Mj ,

i = 1..N, j = 1..M

(4.8)

max(
∑
i∈Sj,1

(servi,j ∗ pi), ...,
∑

i∈Sj,ovj

(servi,j ∗ pi)) + P occ
j ≤ Pj , i = 1..N, j = 1..M (4.9)

Bandwidth Schedulability Constraints: The bandwidth schedulability constraint from [44] is
modified to handle the security computation time for ensuring the security of the task offloaded by vehicle
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Vi to edge Ej . The term Dmin,serv
i,j is the minimum number of bytes that can transferred during the transit

to a vehicle and is given by Eq.(4.10). Eq.(4.11) gives the bandwidth schedulability constraint.

Dmin,serv
i,j =

Bj ×
(

Lj

vu,j
− tservicei − tsecurityi

)
kjamj × Lj

(4.10)

servi,j ∗ (di + ri) ≤ Dmin,serv
i,j (4.11)

4.3.2 Objective Function

Eq.(4.12) portrays the total price incurred at edge Ej due to task offloading. Eq.(4.13) is the total
price incurred over a time window twindow. The summation of pricetaskj and pricemaintenance

j gives the
total price incurred priceincurredj at Ej as given in Eq.(4.14).

In the current work, the objective of the optimization is to minimize the total price factor, which is
computed based on a computation mechanism used in [44]. This approach helps balance the price utilized
across all the edges for task offloading. The Price Factor (PF) calculation uses a non-linear pricing policy,
as mentioned in Eq.(4.15), where β is the cost factor.

pricetaskj =
N∑
i=1

(servi,j ∗ Pi ∗ Cj ∗ (tservicei + tsecurityi )) (4.12)

pricemaintenance
j = P occ

j ∗ Cmain
j ∗ twindow (4.13)

priceincurredj = pricetaskj + pricemaintenance
j (4.14)

pfj = β ∗ (1 + priceincurredj )2 (4.15)

Finally, the objective function for the current work is given by Eq.(4.16)

minimize
M∑
j=1

pfj (4.16)

Eq.(4.16) ensures that all the vehicles can offload the task with suitable security requirements to the
RSUs before they reach the destination.

4.4 Experimental Setup

This section presents the hardware and software components used in the current work. The description
is as follows
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Figure 4.1: Qualcomm Snapdragon 8 Gen 2 Mobile Hardware Development Kit

4.4.1 Hardware Components

In the current work, the Qualcomm Snapdragon 8 Gen 2 mobile hardware development kit as shown
in Figure 4.1 is used as an edge device to simulate the computation time needed for processing security
algorithms. The device runs on the Android 13 operating system with 6 GB RAM, a 2.8GHz processor,
and with dedicated GPU and DSP processor [61]

4.4.2 Software Components

Optimizer: In the current work, CVX programming in Matlab for convex programming. CVX allows
constraints and objectives to be specified using standard Matlab expression syntax.

Solver: In the current work, Gurobi optimization is used to solve the binary optimization problem of
minimizing the total price for task offloading with security [62].

Cryptography: The cryptography python module is used as a baseline reference to simulate the
necessary encryption and hashing algorithm in the current work. Python cryptography module includes
general recipes such as symmetric ciphers, message digests, and derivation functions [63].

4.4.3 Translating Security Classes to Algorithms

The United States National Institute of Standard and Technology (NIST) [64] presents 13 hashing
algorithms and 4 encryption algorithms that can ensure security. The current works adopt the best 3
encryption algorithms and hashing each as a suitable candidate to address the security requirements for

35



task offloading. Table 4.2 presents the mapping for low, moderate, and high levels of confidentiality,
integrity, and availability to their algorithmic equivalents. In the current work, high availability refers to
a scenario where the entire bandwidth is available for data exchange, and a moderate level refers to a
scenario with 90 % of bandwidth and a low level refers to 50 % of bandwidth being available for data
exchange. Further, the table also presents the data processing rate of the algorithms in KB/ms on the
Qualcomm Snapdragon 8 Gen 2 Mobile Hardware Development Kit.

S.No Security Triad
Security

Level
Algorithm

Run Time

(KB/ms)

1 Confidentiality

Low AES-128 1306.471

Moderate AES-192 1030.301

High AES-256 808.574

2 Integrity

Low SHA3-256 606.32

Moderate SHA3-384 530.411

High SHA3-512 347.119

3 Availability

Low 0.5*BW N/A

Moderate 0.9*BW N/A

High 1.0*BW N/A

Table 4.2: Algorithmic Equivalents of Security Triad levels

Considering the algorithms from Table 4.2, Table 4.1 translates to Table 4.3

Security Class Confidentiality Integrity Availability

1 AES-128 SHA3-384 0.9*BW

2 AES-192 SHA3-384 0.9*BW

3 AES-192 SHA3-512 0.9*BW

4 AES-256 SHA3-512 0.9*BW

5 AES-256 SHA3-512 1.0*BW

Table 4.3: Security Classes and their Algorithms
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4.5 Experiments and Results

This section evaluates the proposed price optimization framework for various security classes. The
first section presents the capability of the proposed framework to minimize the total price factor in
comparison with two greedy approaches followed by an evaluation of the variation in total price factor for
variation in security classes and problem sizes by using a real-world traffic scenario from the Luxembourg
dataset [57].

In the current work, β is set to 1000, The values of Pj and Cj are as shown in Table 4.4, P occ
j

takes a value between 1 and 3 VMs, pi takes a value between 3 and 4. VMs, di takes a value be-
tween 4 and 9, tservicei takes a value between 1 and 5. Cmain

j is set to 0.001 times Cj , the values of
Kj ,K

jam
j , Lcov

j ,Mj ,M
occ
j , Bj , v

f
j are obtained from [44].

S.No Total Number of VMs (Pj) Price/VM/sec (Cj)

1 8 0.014

2 16 0.029

3 32 0.058

Table 4.4: VM configurations and the price in cents
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Figure 4.2: Capability of Proposed Optimization framework
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4.5.1 Capability of Proposed Framework

Figure 4.2 presents the variations of the total price factor for an increasing number of vehicles in the
network for 80 edges. The figure presents the efficiency of the proposed framework in comparison to
two greedy algorithms namely greedy price and greedy security. It can be observed that the proposed
framework has a lower total price factor in comparison to the two algorithms.

Greedy price algorithms allocate resources to vehicles with the highest resource requirements first.
The algorithm always chooses an edge that has the least increase in total price factor, Whereas the greedy
security algorithm allocates to vehicles with the highest security requirement first while choosing a
random edge for allocation. It can be observed that the greedy price algorithm follows a closer total price
for a lower vehicle count which can explained by similarity in the objective of allocation, which later
deviates due to its heuristic nature resulting in sub-optimal allocations. On the other hand, the greedy
security algorithm has an overall higher total security price due to random allocations. Further, it is
unable to serve 200 vehicles due to its non-optimal nature in terms of the total price factor.

S.No Security Class Additional Vehicles Total Price Factor

1 Class 1

50 960642.91

100 1106319.36

150 1405257.09

2 Class 2

50 960662.09

100 1106452.66

150 1405524.96

3 Class 3

50 960832.52

100 1107068.30

150 1407035.76

4 Class 4

50 960890.87

100 1107230.16

150 1407446.65

Table 4.5: Variation in Price for various class and problem sizes

4.5.2 Analysis of Price Factor vs Security Class and Vehicle Count

Table 4.5 presents the variation in the total price for 4 security classes (as class 5 uses the same
security algorithms as class 4) and problem sizes for 80 edges. In this experiment, 10 vehicles from each
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class were chosen as a base scenario (In total 50 vehicles for all five security classes). Keeping the base
scenario constant; the total price factor is tabulated for various security classes and problem sizes.

It can be observed that there is a non-linear increase in the total price for every addition of 50 new
vehicles, which can be explained by the load-balancing effect of the quadratic policy on the total price
factor. Across the security classes, the total price factor increases for the corresponding problem sizes
due to the usage of better security algorithms, which incurs more computation resources.

4.6 Conclusion and Future Scope

In the current work, a price-optimal task offloading framework with security is proposed for affordable
and safer task offloading. This scenario considers 5 security classes in terms of the security triads:
confidentiality, integrity, and availability, which can be applied to various applications to ensure security
in task offloading. Apart from security, the framework minimizes the total price incurred in the network
to ensure affordability for task offloading. The work presents the capability of the proposed framework
by comparing it with two greedy algorithms in terms of the total price factor. Further, the work evaluates
the variation in the total price factor for various security classes and problem sizes. This work can be
further extended by considering power implications and task deadlines as a multi-objective function in
the future.
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Chapter 5

Other Research Contribution

This chapter describes an additional research contribution conducted in parallel with mainstream
research. The work A Comprehensive Evaluation on the Impact of Various Spoofing Scenarios on GPS
Sensors in a Low-Cost UAV identifies 16 GPS spoofing scenarios on a low-cost UAV. This work considers
various settings where a UAV can be deceived with an incorrect GPS location during normal operation.
The work is elaborated further.

5.1 Introduction

Unmanned Aerial Vehicles (UAVs), particularly low-cost UAVs, have become increasingly important
due to their wide range of applications and ease of use. However, with the rapid growth of the UAV
market, the rising security concerns pose a greater risk. One such primary concern is GPS location
spoofing attacks, which can compromise a UAV’s navigation system, making it crucial to analyze
these attacks [65]. GPS signals are vulnerable to various forms of interference and attacks, which can
compromise the accuracy and reliability of the signals. Two of the most effective cyber security attacks
are spoofing and jamming [66]. Spoofing attacks involve the transmission of artificial GPS signals by
unauthorized personnel that can deceive the UAV’s GPS receiver, blocking factual information on its
location and movement. In contrast, jamming attacks involve the transmission of noise signals that can
interfere with authentic GPS signals, rendering them unavailable or unreliable. A Software Defined
Radio (SDR) can generate various artificial GPS signals, potentially compromising the UAV system [67].

Considering a UAV’s dynamic and varying operational conditions, it is crucial to identify and study
the spoof signal characteristics and other GPS parameters, such as the number of satellites in view and
the precision of measurements in various scenarios [68]. This exploration can significantly contribute to
understanding the effects of GPS spoofing on a low-cost UAV in diverse operational settings, which can
help in designing efficient anti-spoofing algorithms [69].

The research contributions of this work are as follows.

• Identified and evaluated 16 potential spoofing scenarios considering various environmental con-
ditions such as indoor/outdoor, spoofing methods such as static/dynamic, and the spoof signal’s
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propagation paths such as Line of Sight (LOS) and Non-Line of Sight (NLOS) for low-cost UAVs
using the multi-SDR-based spoofing technique.

• Conducted trials to capture and visualize the variations in several GPS-related parameters such
as Horizontal Dilution Of Precision (HDOP), Vertical Dilution Of Precision (VDOP), and the
changes in GPS satellites in view under normal conditions, jamming conditions, and jamming with
spoofing conditions.

• Presented the real-time characteristics of the signal-to-noise power density of the spoof signal over
distance for each operational condition.

• Analyzed the relation between maximum spoofable distance (deviation that can be induced in a
UAV’s location) to satellite count

5.2 Spoofing Approach and Scenarios

In the current work, multi-SDR-based GPS spoofing combines spoofing and jamming techniques to
examine various spoofing scenarios. The overall system architecture and the different spoofing scenarios
are elaborated below.

Figure 5.1: System Architecture for GPS Spoofing

Figure 5.1 illustrates the overall system architecture with various UAV operational conditions and
spoof signal scenarios considered in the current work. The location spoofing process involves a multi-
SDR-based approach to simultaneously distort the authentic GPS signals through jamming and generate
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spoof signals for location manipulation through generative spoofing. Generative spoofing involves spoof
signal generation with the same structure as authentic GPS signals [70].

Figure 5.2: Location spoofing scenarios of a UAV

Figure 5.2 illustrates the various spoofing scenarios identified and analyzed in the current work.
These scenarios can be categorized based on spoof location information, environmental conditions, and
propagation path.

5.3 Experimental Setup

(a) Custom Built UAV System with Neo M8N GPS

(b) HackRF One

SDR

(c) Adalm Pluto

SDR

Figure 5.3: Hardware Components in the Experimental Setup
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The UAV platform considered in this work is a custom-built quadcopter and can perform autonomous
and other operation modes. Figure 5.3a displays the different onboard components of the UAV system.
PixHawk 2.4.8 [71] is used as the flight controller. QGround-Control, an open-source ground control
system, is adapted for analyzing the UAV state and for control. The onboard components include a Radio
Telemetry module that uses the 433MHz band for control information exchange with the ground station.
PixHawk provides various sensors capable of sensing positional information through the integrated IMU
and magnetometer. The additional onboard sensors include a UBlox Neo M8N GPS Receiver [72] [73]
for location reliability. Neo M8N has a navigation update rate of 18Hz with a position accuracy of 2
meters. This sensor uses the L1 GPS band for the location with a center frequency of 1575.42 MHz.

The current spoofing architecture involves the generation of spoof signals and jamming using an SDR.
An accurate internal crystal oscillator needs to be used to generate a spoof signal. On the other hand, the
jamming signal’s primary purpose is to corrupt the entire L1 band with a high-energy noise. As shown
in Figure 5.3b, and 5.3c, HACKRF One SDR with a nearly accurate temperature-controlled oscillator
(TCXO) with a crystal error of less than 0.5 ppm is used as the source for the spoof signal and Adalm
Pluto, a general-purpose SDR without any TCXO is being used. GPS-SDR-SIM [74], an open-source
signal generation tool, is used for spoofing and jamming signal generation.

5.4 Experiments and Results

5.4.1 Indoor and Outdoor Static Spoofing Experiments

Figures 5.4a, 5.4b, 5.4c, and 5.4d portray the variation of GPS parameters for four static indoor
spoofing scenarios, namely open corridor LOS (OC-LOS), NLOS (OC-NLOS), obstacles in between
LOS (OB-LOS), and NLOS (OB-NLOS). These scenarios are analyzed under normal, jamming, and
jamming with spoofing conditions. Similarly, Figures 5.4e, 5.4f, 5.4g, and 5.4h portray four static outdoor
conditions, namely open air LOS (OA-LOS), NLOS (OA-NLOS), and forest cover LOS (FC-LOS),
NLOS (FC-NLOS), under different scenarios.

In the figures 5.4a, 5.4b, 5.4e, and 5.4f, the decrease in precision can be explained by increased HDOP
and VDOP values due to jamming which later improves in jamming with spoofing case due to GPS fix
on spoofing signals. The considerable increase in GPS count and CN0 values in figures 5.4c, 5.4g, 5.4d,
and 5.4h can be explained by the replacement of weaker GPS signal by jamming and spoofing signals in
indoor scenarios, unlike outdoor scenarios.

Figures 5.4c and 5.4g illustrate the nature of LOS and NLOS scenarios. The decreasing trend is due to
the blocking of weak energy signalsSpoofing signals are replaced by spoofing signals, thereby increasing
the GPS count. However, in the outdoor scenario, The decrement in GPS count can be explained by the
non-availability of weaker signals in NLOS conditions.

Figures 5.4k and 5.4l illustrate normalized deviations spread in GPS parameters of jamming with
the spoofing setting concerning the normal setting. The deviation in each parameter can be calculated
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using (5.1), where paramjs is a parameter observed in jamming with spoofing setting and paramn is
the corresponding parameter value observed in the normal setting. The difference between these values is
divided by the maximum observed value to get the normalized parameter deviation. The high deviation in
GPS count and average CN0 can explain the observed deviations in the indoor scenario. The deviation in
the outdoor scenario can be explained by the considerable deviation in HDOP and VDOP values. It can
be observed that each scenario has unique variations in deviations, thereby indicating that each scenario
differs considerably.

paramdeviation =
paramjs − paramn

max(param)
(5.1)

5.4.2 Analysis of CN0 Variation

Figure 5.4i illustrates the variation in CN0 with the distance for indoor conditions. It has been
observed that indoor OB-LOS has a lesser drop in CN0 with distance followed by OC-LOS, OB-NLOS,
and OC-NLOS. This can happen due to signal propagation and reflections. The increase in CN0 in
scenarios with obstacles can be possible due to multi-path reflections of the signals.

5.4.3 Analysis of Effective Spoofable Distance

Figure 5.4j shows the relation between the effective spoofable distance and absolute satellite count
observed across all experiments. The deviation in location is observed to be resilient as long as the
satellite count is below 10. This behavior can be explained by the number of satellites needed for a
stable GPS fix. The effective spoofable distance decreases with an increase in GPS count due to the high
possibility of attaining a lock on original signals.

5.5 Conclusion and Future Scope

Low-cost UAVs have opened up a wide range of possibilities for civilian and commercial applications
due to their affordability and ease of use. However, as low-cost UAVs become more prevalent, the need
for security becomes vital due to the prevalence of cyber security attacks. GPS spoofing is a type of
attack in which a malicious actor transmits false GPS signals to a UAV, causing it to believe it is in a
different location than it is, thereby potentially crashing or even being commandeered by the attacker.
Therefore, it is crucial to analyze various spoofing scenarios to understand the nature of these attacks. In
the current work, we have identified 16 such scenarios and analyzed them in terms of GPS parameters
such as Horizontal Dilution Of Precision (HDOP), Vertical Dilution Of Precision (VDOP), GPS count in
view, and average signal-to-noise power density (CN0). Further, we have also analyzed the variation of
spoofing distance with satellite count. and the variation of CN0 with distance. This work can be further
extended to identify the critical zones to build an efficient anti-gps spoofing algorithm.
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(a) Variations in HDOP (b) Variations in VDOP (c) Variation in GPS count (d) Variation in CNO

(e) Variations in HDOP (f) Variations in VDOP (g) Variation in GPS count (h) Variation in CNO

(i) Variations in CN0 (j) Variation in Spoof Dis-

tance

(k) Indoor Conditions (l) Outdoor Conditions

Figure 5.4: Analysis of various indoor and outdoor scenarios
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Chapter 6

Conclusion and Future Work

With rapid technological advancement, the Connected Vehicles (CV) paradigm is drastically trans-
forming the automotive industry, enabling efficient data and service delivery to vehicles via edges.
Realizing CV technology involves Vehicular Edge Computing (VEC), where the computation resources
are brought much closer to the users to tackle latency and bandwidth requirements. However, VEC
technology faces challenges, such as mobility, resource allocation, security, affordability, computation
delay, scalability, power consumption, caching, etc. Considering a few such critical challenges, this work
bridges the gap in realizing CV technology through two contributions.

The first contribution presents a data-frame collision-free optimization framework by adopting a
time-slot-based MAC layer strategy that uses slot assignment to ensure collision-free data delivery
for multiple vehicles across various transmission channels at each edge in different test conditions.
The second contribution presents a price optimization framework for task offloading from CVs. This
framework reduces the overall price for realizing the network, making it affordable while considering
various task-specific security requirements.

As the integration of CV evolves, it becomes crucial to continuously enhance the VEC-based ap-
proaches for CV services. The current work can be extended in a multitude of directions considering
various VEC challenges for data delivery and task offloading. One such problem can improve resource
utilization through optimized caching. For, instance vehicles moving in a platoon or groups can poten-
tially have similar data or task requirements. These requirements can be potentially analyzed and grouped
in suitable RSUs to reduce data redundancy. Apart from caching one critical aspect that can also be con-
sidered is the power efficiency of RSUs as energy is the critical driving force in a battery/solar-powered
RSU environment. Apart from these practical challenges, the near practical efficiency of the current work
can be evaluated by simulation through digital twins. This approach can involve building a virtual VEC
and CV environment to understand and identify the potential deployment issues thereby minimizing the
chances of in-field failures of the systems.
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