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Abstract

Automatic post-editing (APE) is a crucial technique for enhancing the quality of machine trans-
lations. In this thesis, we present an APE approach specifically for English-Hindi translation.
Our method employs a sequence-to-sequence neural machine translation model to generate
initial translations, followed by a combination of neural and data-augmentation post-editing
techniques to refine these translations. We evaluate our approach using a large-scale dataset of
English-Hindi translations and demonstrate significant improvements in the quality of the ini-
tial translations, as measured by standard automatic evaluation metrics such as BLEU, CHRF,
COMET, and TER. Our analysis further reveals that our approach effectively corrects specific
errors commonly made by machine translation systems in the English-Hindi language pair, such
as incorrect word order and grammatical agreement. We experiment with both neural models,
data augmentation, as well as a mix of both to derive an ensemble model that works best for
this problem statement. These results highlight the effectiveness of different APE approaches
and their potential to substantially improve the quality of machine translation outputs for this
language pair. Different evaluation metrics in the study show us various nuances of the func-
tioning of the MT and APE models. These nuances are not only observed but are also analyzed
and explained, providing deeper insights into the strengths and limitations of our approach(es).
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Chapter 1

Introduction

Automatic post-editing (APE) refers to the process of automatically correcting and improving
machine translation output to make it more fluent and accurate [3]. This tool is useful for
overcoming the limitations of machine translation, which often struggles with complex
grammar, idioms, and cultural references [4, 5]. As studied by Parton et al [6], human
evaluation shows that the APEs significantly improve adequacy, regardless of approach, MT
system or genre: 30-56% of the post-edited sentences have improved adequacy compared to
the original MT [7]. In this study, we will focus on the challenges and approaches to
developing APE systems for the Hindi language. While parallel data is fairly easy to come by,
even for more unfamiliar languages, the unavailability of triplet data for automatic
post-editing purposes has led us to stick with Hindi due to this limited availability of other
Indian languages.

Figure 1.1: Languages spoken around the world 1

1



Hindi is a widely spoken language in India and Nepal, with over 500 million speakers worldwide.
It is written in the Devanagari script and belongs to the Indo-Aryan language family. Despite
only being spoken by 53% of Indians, it still accounts to be the third most spoken language
in the world. Hindi has complex grammar with a large number of inflections, as well as a
rich literary tradition with a wide range of registers and styles [8]. The grammar placement
of subjects, predicates, verbs, and nouns is significantly different than in English. Languages
can be differentiated in terms of structural divergences and morphological manifestations. En-
glish is structurally classified as a Subject-Verb-Object (SVO) language with a poor morphol-
ogy whereas Hindi is a morphologically rich, Subject-Object-Verb (SOV) language. Largely,
these divergences are responsible for the difficulties in translation using a phrase-based/factored
model, which we summarize in this section [8]. These features make it a challenging language
for machine translation and APE systems.

One major challenge in developing APE systems for Hindi is the lack of parallel data, which
is necessary for training machine translation models. While there are a number of resources
available for machine translation of Hindi, such as the HindEnCorp dataset [9] and IIT-B Par-
allel Dataset [10] (which will be used later on in this study as the dataset for APE later on),
these datasets are often limited in size and quality and most importantly, are not in the triplet
format required to solve Post-Editing. This can make it difficult to train accurate machine
translation models and improve their output through post-editing.

To address these challenges, researchers have explored a number of approaches to developing
APE systems for Hindi. One approach is to use machine learning algorithms to automatically
correct errors in machine-translation output. These algorithms can be trained on large amounts
of parallel data to learn how to identify and correct errors in translation. Another approach
is to use dictionaries and grammar rules to identify and correct errors in machine-translation
output. This can be particularly useful for correcting errors in inflections and grammatical
constructions.

In conclusion, the development of APE systems for Hindi faces several challenges due to the
complexity of the language and the limited availability of parallel data. However, researchers
have made significant progress in developing APE systems for Hindi through the use of machine-
learning algorithms, augmented data, dictionaries, and grammar rules. Further research in this
area is necessary to continue improving the accuracy and fluency of machine translation for
Hindi.

1https://keywordtool.io/blog/most-spoken-languages-in-the-world/
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1.1 What is Machine Translation?

Machine Translation in Natural Language Processing (NLP) refers to the task of using
statistical, rule-based or neural methodologies to convert text from one language into another.
In the case of this study, we will focus only on English-Hindi Machine Translation.

Neural Machine Translation (NMT) systems have made significant strides in producing
translations that are contextually richer and sound more natural compared to older statistical
methods [11]. The improvements in Google Translate’s English-to-Hindi translations are a
testament to this progress, demonstrating proficiency in handling day-to-day sentences. This
advancement is largely due to the extensive parallel corpora that train these NMT models,
allowing them to better understand intricate grammatical structures and idiomatic phrases
[10]. Despite these advancements, several challenges remain. For instance, the complex
structure of Hindi, a fusional language where single affixes can express multiple grammatical
categories, continues to be a significant obstacle [12]. Misinterpretations of morpheme
boundaries can lead to erroneous translations. Furthermore, the presence of homophones and
words with multiple meanings (polysemy) can cause confusion for these models, leading to
ambiguous or semantically incorrect translations. Another major challenge is the translation
of domain-specific content, such as legal, medical, or technical texts [13]. These areas require
specialized knowledge that most general MT systems lack, which can result in dangerously
incorrect translations.

Figure 1.2: Example of Machine Translation2

2https://analyticsindiamag.com/sequence-to-sequence-modeling-using-lstm-for-language-translation/

.
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Current research efforts are addressing these challenges. The emerging field of multimodal
NMT, which combines visual or auditory information with text, is showing potential in
enhancing translation quality, especially for languages with limited resources like Hindi
[14, 15]. Pre-training models on extensive monolingual Hindi datasets also appears to be an
effective strategy for improving the models’ grasp of linguistic nuances [16]. However, despite
these technological advances, the role of human intervention, particularly through automatic
post-editing, remains critical. Human oversight is necessary to spot and correct errors related
to morphological complexity, ambiguities, and specialized terminology. The human touch is
also essential for preserving the intended meaning and stylistic elements in creative content.

Therefore, automatic post-editing tools are vital in the realm of English-to-Hindi machine
translation. By employing methods such as error detection, extraction of domain-specific
terminology, and style transfer, these tools can significantly enhance the quality and accuracy
of translations. This enables human translators to concentrate on the more subtle aspects of
language, thereby fostering better cross-cultural communication and understanding.

1.2 What is Automatic Post Editing?

Automatic post-editing (APE) in natural language processing (NLP) refers to the process of
using machine learning algorithms or rule-based systems to automatically correct errors or
improve the quality of machine-generated text output [17]. It is an area of research aiming at
exploring methods for learning from human post-edited data and applying the results to
produce better Machine Translation (MT) output [4]. When generating text using NLP
models, the resulting text may contain errors, such as grammar or spelling mistakes, or may
not sound natural. Machine Translation has been a well-explored area by researchers for over
5 decades [18] and while this problem tackles the problem of representing the semantics of
text in a given language to another, the problem of correction of translated linguistic content -
be it editing the style and syntax of the linguistic content or to better improve the quality of
translation given a specific domain - is a strong requirement.

The goal of APE is to improve the output of machine translation systems, based on the
knowledge extracted from datasets that include post-edited content [4]. This process can be
achieved through various methods, including statistical machine translation, neural machine
translation, or rule-based systems. The goal is to produce high-quality text that is
grammatically correct, semantically accurate, and sounds natural to a human reader [19].

Without APE as a problem statement, a lot of translated data would have to be manually
edited. Additionally, while correcting large pieces of text can take multiple humans multiple
hours to complete, a machine-run model can do the same at a cheaper and much more

4



time-efficient manner. Additionally, an APE model can be trained to be more accurate than a
human reader in identifying errors, ensuring that text is accurate and free of syntactic
mistakes [20]. Speaking of syntax, APE can help maintain consistency in grammar, spelling,
punctuation, and other style conventions. Not all post-editing is done to correct syntax,
multiple times - based on factors like domain and tense, APE can help correct the meaning of
a piece of text too.
Overall, automatic post-editing can help produce high-quality content quickly, efficiently, and
cost-effectively, which is essential for individuals and businesses who rely on content
marketing to grow their audience and reach their goals.

1.3 Critical Challenges in Automatic Post-Editing

NLP is a complex and challenging task - the automated system must have the ability to
analyze the text, identify the relevant parts of speech, and understand the meaning of words
in context. Additionally, the black-box nature of end-to-end machine translation systems
makes it difficult to understand how source language inputs are being mapped to the target
language [21, 22].

Similarly, a big reason for the language being a complex entity is due to its multiple moving
parts that need to be taken into consideration to learn or define said language.
Understandably, sentences with more complex structures are more difficult to understand,
translate, and edit for humans. They must understand the intended meaning of the writer
and the underlying nuances in language, idioms, sarcasm, or irony used in the post. It is
notoriously difficult to evaluate these systems and demonstrate that they are safe to be used
in a clinical setting [23]. The style and tone of a post are essential for conveying the writer’s
intended message. An automated post editor must be able to identify and adjust the tone and
style of the text to match the writer’s intended tone.

Automatic post-editing requires knowledge of the rules of grammar, syntax, and sentence
structure [24]. It must be able to identify and correct any errors in sentence structure, such as
run-on sentences, sentence fragments, or misplaced modifiers. It is notoriously difficult to
evaluate these systems and demonstrate that they are safe to use. This is required because it
must be able to identify and correct any errors in sentence structure, such as run-on
sentences, sentence fragments, or misplaced modifiers.

All in all, automatic post-editing is a challenging task that requires a deep understanding of
natural language processing, contextual understanding, sentence structure, style and tone,
and accuracy [5]. It is a complex task that requires a sophisticated algorithm and a large
amount of data to train the system.
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Generally, datasets containing pairs work as the standard data source for most NLP problems.
However, The training of APE models generally requires triplets including a source sentence
(src), machine translation sentence (mt), post-edited output (pe), and reference sentence
(ref/tgt). As considerable expert-level human labor is required in creating pe, APE researchers
have encountered difficulty in constructing suitable datasets for most language pairs [25].

In our case, the source is in English (src_en), the machine-translated text we generate will be
in Hindi (nmt_hi) and our reference/target Hindi sentence will be in Hindi as well (tgt_hi).

Triplet Corpus

src_en (English Source) nmt_hi (LTRC-NMT

Hindi Translation)

tgt_hi (Reference Hindi

Translation)

Browse the various methods

of the current accessible वतर्मान सुलभ के िविभन्न तरीकाें को ब्रा-
उज़ करें

इस समय िजसे प्राप्त िकया गया हो,
उसकी िविभन्न िविधयाें (मेथड) में िव-
चरण करें

Table 1.0: Example of Source English, Hindi Translation and Post-Edited data triplet (as taken

from the IIT-B parallel corpora.)

However, there is a considerable lack of data for this triplet. While there exists a vast vault of
English-Hindi translation data, it is a bit harder to find the triplet that is required for APE.
This is because, for each translated pair (English -> Hindi), we require a manually
post-edited Hindi sentence - which will require multiple human annotators to create the said
dataset. This in turn has resulted in the development of a specific problem statement that
deals with increasing the size of annotated data by using synthetically generated data [26].
The objectives include understanding the State-of-the-Art in Automatic Post Editing and how
these methodologies operate in Indian languages, specifically Hindi, and determining the
impact of the size, type, and quality of the dataset on the performance of the APE models.

1.4 Research Questions

Given the vast nature of this field and its nascent existence, here are the specific research
questions that we’re trying to answer in this thesis:

1. How can one leverage the advances in deep learning and neural networks to improve the
quality and efficiency of Automatic Post Editing in NLP, and what are the key technical
challenges that need to be addressed in this regard?
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2. What are the latest developments in the synthesis of artificial data? What effects does
artificially generated data have on Neural APE systems? What is its effect on the
quality of results?

3. How do the latest developments in the field of LLM and PLM models - alongside the
advances in one-shot and few-shot learning - affect the problem statement of Automatic
Post Editing?
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Chapter 2

Evolution of Automatic Post Editing

In Chapter 2, we delve into the rich history and progressive evolution of Automatic Post
Editing (APE), tracing its development from the early days of spell-checking and rule-based
corrections to today’s advanced, nuanced approaches that leverage statistical methods, neural
networks, and domain-specific innovations. This exploration covers the inception of APE with
tools like IBM’s ”Memo” system, transitions through the phases of statistical [27] and
rule-based methodologies [28] that addressed the limitations of machine translation outputs,
and culminates in the cutting-edge neural methodologies, including the transformative impact
of Transformers [29] and hybrid models. Special attention is given to the application of these
technologies in enhancing the translation quality from English to Hindi, showcasing both the
challenges encountered and the significant strides made in producing more accurate,
contextually relevant translations. Through this journey, we examine how APE has
continuously adapted to the evolving landscape of NLP, highlighting key academic
contributions and the shift towards increasingly sophisticated models that promise greater
efficiency and effectiveness in automatic text correction.

The field of APE has been studied for the past 50 years [18, 30]. Automatic post-editing, also
known as automatic text correction or language processing, has a long history dating back to
the mid-20th century. The field of Automatic Post-Editing in NLP continues to evolve
rapidly, with new techniques and approaches being developed and refined on an ongoing basis.
The increasing use of machine-generated text in various applications and the growing demand
for accurate and high-quality translations make automatic post-editing an increasingly
important area of research in NLP.
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2.1 Spell Check and Rule-Based APE

One of the earliest efforts in this field was the development of spell-checking software. The
first spell-checker called the ”Memo” system was developed by a team at IBM in the 1950s
[31]. This was followed by the introduction of IMT - in which the target text under
construction serves as the medium of communication between an MT system and its user [32].
Another well-known Automatic Post-Editing tool, Microsoft Word’s ”grammar checker,” was
introduced in the early 1990s and was based on research by linguist Geoffrey Sampson [33].
The decade first started with Kevin et al. [34] writing about coping with article selection in
Japanese to English translation by using rudimentary statistical methods. In the later parts
of the 1990s, Machine Translation mostly followed a two-step methodology: a rule-based
Machine Translation which is then followed by a compulsory human evaluation to correct the
grammar [32]. These question problems were solved in a short time due to the unambiguous
nature of the problem statement.

2.2 Statistical Methods of APE

Post this, Automatic Post-Editing has evolved into a field of not just spell checking but
actually rephrasing and changing literature to make the content more relevant, suited,
grammatically correct, and best fit for the context. The earliest studies were those that were
developed before the maturation of deep learning. These initial studies explored the use of
rule-based and statistical machine translation techniques for Automatic Post-Editing [35]. As
early as 2005, Robert Frederking and Fei Xia continued work on the same lines by proposing a
more detailed rule-based methodology for APE [17]. This was also the time where researchers
started considering APE systems as being a necessary part of Machine Translation [36].

However, academia was quick to realize that Post Editing worked best when the context and
domain were picked a-priori [37]. As pointed out by Parton et al. [38], domain-specific APE
systems can improve MT output by exploiting information unavailable to the decoder, or by
performing deeper text analysis that is too expensive at the decoding stage [39]. Since a
majority of MT systems at the time were rule-based, it was guaranteed that any given input
would give a fixed translated output every time the model was run. Due to this, rule-based
and statistical APE methods worked to solve the problem with great efficiency [36].

By 2010, models by Nicola Bertoldi and Marcello Federico followed a statistical method for
domain adaptation of statistical machine translation systems, which can be applied to APE
[40]. The years 2011 and 2012 saw two versions of the DEPFIX system ([41], [42]) - a
statistical rule-based APE for Czech translations. It attempts to correct some of the frequent
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SMT system’s errors in English-to-Czech translations by analyzing the target Czech sentence
and using a morphological tagger and a dependency parser and attempts to correct it by
applying several rules which enforce consistency with the Czech grammar [34].

Types of Statistical APE: A statistical method could be individually or a mix of:

• Pattern-Based Editing

• Rule-Based Post Editing

These approaches are based on the idea that languages share many common patterns and
structures, which can be used to automatically correct errors in the text. These methods
would employ techniques similar to those used by statistical machine translation models, such
as Rule-Based Machine Translation (RBMT), to learn statistical rules specifically for
post-editing, as shown in Figure 2.1. As illustrated, the source text is first processed through
a rule-based machine translation system, which is then followed by a second rule-based system
for automatic post-editing. These two models are often combined for enhanced performance.

Figure 2.1: Architecture of a typical statistical post-editor [1]

However, this is also a case study on the limitations of rule-based methods where making the
model (post-collection of data) required an extensive amount of manual work and even
limitations on what dialects the model can work on [3]. The very same reasoning also extends
to most work done in the space of Pattern-based APE models. Notable examples of this
include the statistical approach proposed by Allen et al - ”Toward the development of a
post-editing module for raw machine translation output: A controlled language perspective”
(2000) [43], Isabelle et al. in ”Statistical Phrase-Based Post-Editing” [36], Dugast et al. in
”Statistical Post-Editing on SYSTRAN‘s Rule-Based Translation System” [44] and many
more.
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However, this field has not been deserted since the introduction of Neural methodologies.
More recently, in the paper ”Automatic Post-Editing of English-Hindi Machine Translation
Using a Rule-Based Approach” by Kaushik et al. (2019) [45], the authors propose a
rule-based approach for APE in the context of English-to-Hindi machine translation. They
use a set of pre-defined rules to correct common errors in machine-generated translations,
such as word order and agreement errors. They evaluate their approach on a small test set
and report promising results.

2.3 Neural Methodologies in APE

With the dawn of machine learning and neural nets, combined with the insurgence of
sequential models like the RNN and Transformers [29], researchers started experimenting by
combining the less time-and-data consuming statistical methods and the more accurate and
powerful MT models.

More recently, with the development of deep learning techniques, existing neural machine
translation (NMT) models have emerged as a popular approach to address Automatic
Post-Editing. NMT uses deep neural networks to learn the relationships between words and
their meanings and uses this knowledge to generate more accurate translations. In addition to
these approaches, there has been growing interest in the use of reinforcement learning and
other advanced machine learning techniques to further improve the accuracy and effectiveness
of Automatic Post-Editing in NLP [46]. Overall, the field of Automatic Post-Editing in NLP
continues to evolve rapidly, with new techniques and approaches being developed and refined
on an ongoing basis.

Any top-of-the-line neural methodology for APE includes 2 main components. The first is a
Sequence-to-Sequence model that acts similarly to an NMT model that takes in the translated
sentence as input and aims to give an output similar to reference Hindi (refer to 3.5). It is
noteworthy that all the sequential models referenced utilize one or more Transformers [29]
which operate collaboratively within their architecture.

2.4 How are Neural models compared?

To assess the efficacy of new artificial intelligence models in improving automatic post-editing
performance, it is essential to maintain consistency in the datasets used across all
experiments. This approach ensures that any observed differences in performance metrics can
be attributed solely to the model’s capabilities rather than variations in data. Consequently,

0https://pub.aimind.so/transformer-model-and-variants-of-transformer-chatgpt-3d423676e29c.
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the same dataset is employed for all models to provide a controlled environment for accurate
comparison [47].

The state-of-the-art in APE can be determined by comparing the quality metrics and scores
of texts processed by different models. A key challenge in APE is evaluating the quality of the
edited text. Several metrics have been developed to measure the quality of the output, such as
TER [48], BLEU [49], and HTER [50].

2.5 APE models for Hindi

While most of the work we’ve discussed has been for languages such as English, there are also
several academic papers that have explored this task for the Hindi language. Starting in 2016,
Agarwal et al. first studied the effectiveness of different machine-learning techniques for APE
in the context of English-to-Hindi machine translation [51]. They experiment with several mod-
els, including phrase-based and NMT models, and evaluate their performance on a small test set.

Throughout this period, in parallel, multiple studies focused on using hybrid methodologies
that involved portions of statistical as well as neural techniques [52]. A good example of the
same is the work done by Omkar et al. who devised a model that is the combination of
phrase-based Statistical Machine Translation (SMT), example-based MT (EBMT), and rule-
based MT (RBMT) [53]. Another example of this is a study from 2016, where Merve Nakir
and Kemal Oflazer propose a hybrid approach that combines Statistical and Neural (similar
to NMT) techniques for Automatic Post-Editing [54]. There also exists work that introduces
custom neural/statistical models that are supposed to be language-agnostic [55] but need solid
implementation with English-Hindi to confirm the claim. All these studies [56] demonstrate
the growing interest in APE for the Hindi language and highlight the potential of different ap-
proaches for improving the quality of machine-generated translations. Further research in this
area can help improve the accessibility of machine translation for Hindi speakers and facilitate
communication across language barriers.

This work introduces novel contributions to Automatic Post-Editing (APE) for the Hindi lan-
guage, addressing gaps in existing methodologies discussed in Chapter 2. Unlike previous studies
focusing on widely studied languages, this research targets Hindi’s unique morphological and
syntactic complexities. In this study, we implement advanced neural methodologies, includ-
ing Dual-Encoder Transformers, Transformer-to-Transformer models, and hybrid approaches
combining neural networks with rule-based systems, tailored specifically for Hindi to enhance
accuracy and contextual relevance. Additionally, innovative data augmentation techniques,
such as forward and backward generation, are employed to expand training datasets, address-
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ing the scarcity of triplet data. This comprehensive approach significantly advances APE for
Hindi, setting a new benchmark for low-resource language translation quality.
.
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Chapter 3

Experimental Insights: Automatic

Post Editing

In this chapter, we present the methodology employed to enhance the quality of automatic

post-editing (APE) systems. In this chapter, we explore the integration of neural

network-based approaches, showcasing how advancements in deep learning have significantly

improved APE model performance. The chapter further delves into the synthesis of artificial

data, discussing its role in training robust APE systems and addressing both the challenges

and benefits associated with synthetic datasets. In further chapters, we also analyze the

impact of large language models (LLMs) and pre-trained language models (PLMs) on APE,

with a focus on one-shot and few-shot learning methodologies. Key metrics and evaluation

criteria for assessing the effectiveness of various APE models are outlined, establishing a

framework for identifying state-of-the-art solutions. Finally, we provide a detailed description

of our experimental setup, including the datasets, tools, and techniques used, to ensure the

reproducibility and transparency of our research findings.

3.1 Overview of Experimental Setup

In the subsequent experiments, a consistent methodological approach was employed. All models

were trained using the IIT-Bombay parallel corpora [10]. This corpora, developed by the Indian

Institute of Technology Bombay, is a collection of bilingual text, specifically aligned at the

sentence or phrase level. It encompasses over 1.5 million English-Hindi sentence pairs, sourced
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from 20 distinct origins. For clarity, in our upcoming experiments, the English sentence from

each pair in the IIT-Bombay dataset will be denoted as src_en (source English), and its Hindi

counterpart as tgt_hi/tgt_hi (target Hindi).

3.2 Machine Translation and Post-Editing Framework

The Machine Translation (MT) process is initiated by feeding src_en as the input and tgt_hi

as the target, resulting in an output referred to as Machine Translated Hindi (nmt_hi). The

output from this Post-Editing model is termed pe_hi, and a snippet of the final triplet dataset

is exhibited in 3.1.

However, the nature of Automatic Post-Editing (APE) necessitates a triplet format. Con-

sequently, aside from the original English-Hindi pairs, an additional element—the translated

data—is integral. This data is derived from two sources: the LTRC Translation [57] and a

custom transformer-based MT model. The LTRC translator, being the better Text-to-Text

(T2T) model, is preferred for generating the new triplet, which comprises:

• src_en: English Source (English in the IIT-B pair)

• nmt_hi: Hindi output of the NMT model that took src_en as input

• tgt_hi: Reference Hindi Translation (Hindi in the IIT-B pair)

• pe_hi: Output of our APE model where src_en and nmt_hi are fed as parallel inputs.
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Triplet Corpus

src_en (English Source) nmt_hi (LTRC-NMT

Hindi Translation)

tgt_hi (Reference Hindi

Translation)

Browse the various methods

of the current accessible वतर्मान सुलभ के िविभन्न तरीकाें को ब्रा-
उज़ करें

इस समय िजसे प्राप्त िकया गया हो,
उसकी िविभन्न िविधयाें (मेथड) में िव-
चरण करें

Tests fundamental GUI appli-

cation accessibility मौिलक जीयूआई अनुप्रयोग पहँुच का
परीक्षण करता है

मूलभूत जीयूआई अनुप्रयोग पहंुचनीयता
का परीक्षण करता है

Browse the various methods

of the current accessible वतर्मान सुलभ के िविभन्न तरीकाें को ब्रा-
उज़ करें

इस समय िजसे प्राप्त िकया गया हो,
उसकी िविभन्न िविधयाें (मेथड) में िव-
चरण करें

Table 3.1: Examples of APE Training triplet (as taken from the IIT-B parallel corpora and

IIIT-H NMT system.)

3.3 Datasets and Model Selection

3.3.1 Overview

This study utilizes the IIT-Bombay (IIT-B) corpus [58], a comprehensive repository of bilingual

text, which includes a distinct testing corpus with a considerable volume of unique English-

Hindi sentence pairs. In addition to the primary corpus, supplementary datasets from external

sources have been integrated to enrich the diversity and complexity of the test data. These

augmentations are instrumental in evaluating the model’s efficacy in replicating real-world

translation scenarios and with heterogenus data. We will also discuss certain neural models

that could be used to tackle this problem, pick what is proven in the industry to be

3.3.2 Datasets

This corpus encompasses over 1.5 million English-Hindi sentence pairs, meticulously annotated

to ensure accuracy and relevance. The dataset is bifurcated into training and testing subsets,
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with the training set, referred to as HiEn-Train, comprising original sentence pairs, and the

independent testing set, denoted as HiEn-Test, containing 2500 unique sentence pairs. Testing

is performed over 3 test sets - the aformentioned HiEn-Test, FLORES200 with 997 pairs [59]

and the third dataset being the NTREX-128 [60] corpus with 1997 pairs of its own. This ap-

proach provides a comprehensive evaluation of how an MT or APE model performs with both

homogeneous and heterogeneous test datasets.

Train Data (After cleaning)

Dataset Source Data Size (in Millions)

IIT Bombay English-

Hindi Parallel Corpus

IIT-Bombay [58] 1.5

Table 3.2: Dataset Collection(s) used for Training

Test Data

Dataset Source Size Data

IIT-B English-Hindi

Parallel Test Corpus

IIT-Bombay 2500

FLORES200 Facebook Research 997

NTREX-128 [60] Microsoft Research 1997

Table 3.3: Dataset Collections used for Testing

Given that the IIT-B corpus provides only an English source and its corresponding Hindi

reference sentence per data point, it is necessary to generate machine-translated data to serve

as an intermediary for our model as Automatic Post-Editing (APE) models require a machine-

translated sentence as input and a parallel Hindi reference. Consequently, we must produce the

machine-translated Hindi text by processing our English source through a translation system.
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We experiment with two different models to perform this function and more will be discussed

about the same later in this section.

3.3.3 Data Cleaning

In the initial phase of our data preparation, we commenced with a substantial dataset com-

prising 1,516,170 triplets. These triplets are critical for our study as they form the foundation

upon which our machine-learning models are trained. The initial dataset, however, required a

meticulous cleaning process to ensure the quality and relevance of the data used in the training

process. This cleaning process involved several strategic steps aimed at refining the dataset to

enhance the performance of our models.

The first step in our data-cleaning process was to address the issue of verbosity within the

triplets. Specifically, we identified and removed any triplets in which the number of words for

any component of the triplet exceeded 100 words. This threshold was established to eliminate

excessively lengthy data points, which could potentially introduce noise and dilute the model’s

ability to learn from more concise, informative examples. By imposing this limit, we aimed

to maintain a focus on data that was rich in information yet succinct enough to be effectively

processed by our algorithms.
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Figure 3.1: Flowchart detailing the data cleaning process.

Following the removal of verbose triplets, our next step targeted the presence of non-Latin

scripts within our dataset. We specifically identified and removed any data from the Machine

Translation (MT) or Post-Editing (PE) segments that contained script in a romanized form.

This step was essential for maintaining consistency in the data format and ensuring that the

training data was closely aligned with the input data expected during the model’s deployment.

It is advisable to either remove such foreign data or limit its use using a threshold for a num-

ber of foreign characters identified. The presence of romanized non-Latin scripts could lead to

ambiguities and inconsistencies in the model’s processing of textual information, thus adversely

affecting its performance. A visual representation of this process can be seen in figure 3.1.

As a result of these cleaning operations, our dataset was refined to 1,506,696 triplets, a slight

reduction from the original count but a necessary step towards ensuring the quality and consis-

tency of our training data. It is important to note that these cleaning procedures were applied

exclusively to our training dataset. We consciously chose not to apply these cleaning steps to

the test or validation datasets. This decision was made to preserve the integrity and variability
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of the test and validation data, ensuring that our model’s performance could be accurately

evaluated against real-world data that had not been preprocessed or altered.

To provide concrete examples of the types of data removed during our cleaning process, consider

the following texts that were deleted (Note: All the text mentioned below is MT output):

• यह प्रोग्राम फ्री सॉफ्टवेयर है। आप इसे पुनर्िव͆तिरत कर सकते हैं और/या इसे gnu जनरल पिब्लक लाइसेंस की शतार्ें
के तहत संशोिधत कर सकते हैं जैसा िक फ्री सॉफ्टवेयर फाउंडेशन द्वारा प्रकािशत िकया गया है। लाइसेंस के िकसी भी
संस्करण 2, या (अपने िवकल्प पर) िकसी भी बाद के संस्करण. यह प्रोग्राम इस उम्मीद में िवतिरत िकया जाता है िक यह
उपयोगी होगा, लेिकन िबना िकसी वारंटी के। यहां तक िक एक िवशेष उदे्दश्य के िलए व्यापारी या िफटनेस की िनिहत वारंटी
के िबना. अिधक जानकारी के िलए जीएनयू जनरल पिब्लक लाइसेंस देखें। आपको इस प्रोग्राम के साथ-साथ जीएनयू
जनरल पिब्लक लाइसेंस की कॉपी भी िमलनी चािहए थी। अगर नहीं तो http://www. ग्नू। ओआरजी/लाइसेंस /

In the sentence above, the substring ”http://www.” that is considered to be outside the

scope of Devanāgarī script and hence was omitted.

• "पाठ प्रिविष्ट में , अपनी नाव को िनयंित्रत करने के िलए, प्रित पंिक्त एक कमांड दजर् करें . समर्िथ͆त कमांड दो प्रवेश के्षत्राें के
बीच प्रदर्िश͆त हैं . बाएं और दाएं कमांड िडग्री में कोण के द्वारा पीछा िकया जाना चािहए. कोण मान को बाइर्ं या दाइर्ं कमान
के िलए एक पैरामीटर भी कहते हैं। िडफ़ॉल्ट रूप से 45 िडग्री का उपयोग िकया जाता है। फॉरवडर् कमांड एक दूरी पैरामीटर
स्वीकार करता है. िडफ़ॉल्ट 1 द्वारा उपयोग िकया जाता है. उदाहरण के िलए:-लेफ्ट 90:एक लंबवत लेफ्ट टनर्-फॉरवडर्
बनाएं 10:10 यूिनट के िलए आगे बढ़ें (जैसा िक शासक पर प्रदर्िश͆त होता है)। लक्ष्य है स्क्रीन के अिधकार (लाल रेखा)
तक पहंुचना। जब िकया जाता है, तो आप अपने कायर्क्रम में सुधार करने की कोिशश कर सकते हैं और रेट्री बटन का उपयोग
करके एक ही मौसम की िस्थित के साथ एक नई दौड़ शुरू कर सकते हैं . आप िक्लक करें और दूर और कोण में एक माप
प्राप्त करने के िलए नक्शे पर कहीं भी अपने माउस खींच सकते हैं . अगले स्तर पर जाने से आपको अिधक जिटल मौसम
की िस्थित िमलेगी।', "नावपर िनयंत्रण रखने के िलये हर सीमापर कमांड दजर् करे. एंटरी 'िवभाग में उिचत कमांड की सूची
िदखाई है.' बांयी 'और 'दािहनी' यह कमांड अंशात्मक कोणके साथ आती है. शुरूआत में अंशात्मक कोण की...."

The text above contains over 212 words, and since our filter removes all triplet pairs where any

of the triplet pairs may have over 100 words, this was pruned out as well.

3.3.3.1 Observations

Here are some noteworthy observations made about the triplet data after it was cleaned with

syntactic rules.

• 1/13th of the sentences with English text consisted of web url.
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• Despite the dataset being touted as a parallel corpus with a single English sentence

mapping to a single Hindi sentence, it has been found that there exist multiple data

points may be a collection of 1-3 sentences mapped to one sentence/one group of Hindi

sentences. Corpus segmentation doesn’t seem to be uniform across the data.

• The machine-translated Hindi (mt_hi) and the post-edited Hindi (ape_hi) show varia-

tions in terminology and phrasing. For example, ”Give your application an accessibility

workout” is translated to ”अपने एप्लीकेशन को एक्सेिसिबिलटी वकर् आउट दें” in mt and is post-edited

to ”अपने अनुप्रयोग को पहंुचनीयता व्यायाम का लाभ दें” in pe, indicating a refinement in language and

possibly an attempt to use more natural or accurate Hindi expressions. This is further

studied in the following chapters.

• Lexicon statistics: The average sentence length increases from the English source (src_en)

with 13.42 words to the machine-translated Hindi (mt_hi) with 14.9 words, and further to

the post-edited Hindi (tgt_hi) with 15.35 words. This suggests that translations tend to

be longer than the original English sentences, possibly due to the nature of Hindi syntax

or the addition of clarifying information. A cleaner look at this data can be seen in 3.6.

• The English source (src_en) has the largest vocabulary size with 186,738 unique words.

This is expected as source texts typically encompass a wide range of topics and expressions.

Interestingly, the vocabulary size decreases in the machine translation (mt_hi) to 131,474

and then increases again in the post-edited version (tgt_hi) to 157,086. The reduction

in vocabulary size from src_en to mt_hi could indicate a limitation in the translation

model’s ability to capture the full diversity of the source language. The increase in

tgt_hi suggests that post-editors are expected to reintroduce variety, possibly correcting

or diversifying the language used in translations.

Apart from the changes listed above, there are no other changes being made to any of the

datasets. It is to be noted once more that the test sets (IIT-B, FLORES, NTREX) are not

being edited in any way whatsoever. The size of the triplet dataset before cleaning was 1,516,170

triplets. After the cleaning process, the dataset was reduced to 1,506,696 triplets. Cleaning the

dataset resulted in a dataset reduction of approximately 9,474 triplets.
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Table 3.4: File Statistics Comparison for Source (English) data

Avg. Sentence Length Median Sentence Length Max Sentence Length No. of unique words

Raw 13.42 words 7 words 679 words 433,538

Cleaned 11.92 words 8 words 99 words 276,845

Table 3.5: File Statistics Comparison for MT (Hindi) data

Avg. Sentence Length Median Sentence Length Max Sentence Length No. of unique words

Raw 13.46 words 8 words 1407 words 340,215

Cleaned 12.74 words 8 words 99 words 331,587

Table 3.6: File Statistics Comparison for Reference/Target (Hindi, tgt_hi) data

Avg. Sentence Length Median Sentence Length Max Sentence Length No. of unique words

Raw 13.47 words 8 words 1380 words 519,122

Cleaned 12.93 words 8 words 99 words 510,859

3.3.4 Data Architecture

The exploration of Automatic Post-editing (APE) in Hindi language translation highlights the

shift from traditional Convolutional Neural Networks (CNN) [61] towards more sophisticated

Sequence-to-Sequence (Seq2Seq) models [62], specifically focusing on Transformers. Initial at-

tempts using CNNs revealed limitations due to data scale and bias, prompting a pivot to

Transformer-based models for their superior handling of Seq2Seq challenges. Further studies

went on to introduce novel Dual-Encoder Transformer models that incorporated dual encoders

to process both the source English (src_en) and machine-translated Hindi (nmt_hi), leading

to significantly improved translation accuracy [63] as evidenced by various metrics like BLEU

score, CHRF, and TER across different datasets (IIT-B, FLORES200, NTREX). This ap-

proach underscores the importance of integrating source and translated inputs for enhancing

post-editing efficiency.
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3.4 Machine Translation

Since we need to first translate ENglish to Hindi to create our triplets, let’s discuss Machine

Translation. This section focuses on the selection of an optimal base translation model for Neu-

ral Machine Translation (NMT). To ascertain the most suitable model, a comparative analysis

was conducted between the LocalNMT and LTRC NMT models, considering their performance

metrics and training data characteristics.

But before we discuss the neural methodologies used in this study to convert English to Hindi

text, it needs to be established that statistical methodologies dominated this field before the

neural. While we’ve explored existing work in <APE and its different types - including Sta-

tistical APE methodologies - let’s familiarise ourselves with the history of Statistical Machine

Translation for Indian languages.

3.4.1 Statistical Machine Translation

Incorporating statistical methods into APE, particularly for Indian languages, utilizes data-

driven models to predict and correct errors in machine-translated texts [64]. These methods

analyze large corpora of monolingual and bilingual data to identify patterns and discrepancies

in translation outputs [10]. This approach is crucial for Hindi and other Indian languages due

to their linguistic complexity and diversity. Statistical models, like the Dual-Encoder Trans-

former, adapt to nuances in grammar [65], syntax, and semantics, facilitating accurate and

contextually relevant translations. Adapting these models involves addressing challenges like

script diversity and morphological richness, highlighting the importance of sophisticated statis-

tical methods in refining APE processes.

Initial English-Hindi translation methods used rule-based approaches with linguistic rules and

dictionaries, covering the entire MT process, from pre-processing [66, 67] to integral linguistic

processes [68, 69]. Systems like AnglaHindi [70] combined statistics and example-based meth-

ods for more acceptable translations, especially in domain-specific cases [71]. Transfer-based

MT systems, built on rule-based systems [72], bridge rule-based and statistical approaches by

analyzing the source text, converting it to an intermediary representation, and generating the
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target text. These systems apply grammatical rules to parse the source language’s structure,

apply transformation rules, and synthesize the target text.

Hybrid methodologies combining statistical and rule-based MT have shown significant improve-

ments in BLEU scores [73, 74]. Combining statistical MT, example-based MT, and rule-based

MT potentially outperforms any subset [75], enhancing fluency, accuracy, and grammatical

precision. These methodologies have been tested for Indian languages, including Bengali [76],

Marathi [77], Telugu [78], and Malayalam [79]. Research continues to enhance both hybrid and

individual methodologies—Statistical NMT and Rule-based NMT [80, 81, 82].

3.4.2 Neural Machine Translation

We will first start out by examining the different neural methodologies involved in the machine

translation of English data to Hindi.

• Convolutional Neural Network

Convolutional Neural Networks [83] (CNNs) have been pivotal in MT systems, especially

before Transformers became widespread [84]. CNNs apply convolutional layers to in-

put text, capturing local dependencies and patterns. Filters slide across the input data,

extracting features at various levels of abstraction. Pooling layers then reduce dimension-

ality, retaining key features [85]. This makes CNNs suitable for tasks focusing on locality

and invariance. However, CNNs struggled with long-range dependencies, impacting their

effectiveness in complex sentence structures. These limitations led to the development of

more practical models like RNNs [86].

Figure 3.2: Different layers in a CNN model1

1https://www.upgrad.com/blog/basic-cnn-architecture/
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• RNN

RNNs excel in sequential learning due to their architecture, allowing the memory of pre-

vious inputs through self-connections [87]. This enables RNNs to process data sequences,

making them superior for language modeling and MT [88]. They maintain a ’state’ that

helps in understanding context and sequence, outperforming CNNs in handling time-series

tasks - including NMT [89, 90].

Figure 3.3: RNN architecture2

• LSTM

RNNs have a key limitation: capturing long-term dependencies due to the vanishing gra-

dient problem [91]. LSTMs, developed by Hochreiter & Schmidhuber in 1997 [92], address

this by introducing gates that regulate information flow. These gates—input, forget, and

output—enable LSTMs to maintain information over extended sequences effectively [92].

LSTMs significantly improve NMT systems by enhancing their ability to remember and

utilize contextual information from the source language.

Figure 3.4: LSTM architecture3

2https://images.datacamp.com/image/upload/v1647442110/image6_f6vds6.png
3https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c
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In the diagram 3.5, an English sentence is fed into LSTM cells within the encoder, and

the aggregated representation is relayed to a decoder LSTM. This produces a machine-

translated sentence. Although translations retain syntactic integrity, they may lack gram-

matical or semantic accuracy. Back-propagation, using the source/reference output as a

guide, improves translation quality.

Figure 3.5: LSTM architecture4

• Transformer

LSTMs are limited due to their sequential processing nature, which prevents paralleliza-

tion and have reduced efficiency when handling long sequences [29]. Transformers address

LSTM limitations by enabling parallel sequence processing with self-attention mecha-

nisms. This enhances efficiency and scalability in handling long sequences. Transformers

model long-range dependencies and variable-length sequences effectively without sequen-

tial data processing. Examples include the Levenshtein Transformer [93] and the multi-

source transformer by Tebbifakhr et al. [94]. These models show significant improvements

over LSTMs in NMT tasks, leveraging contextual information from the source text [29].

4https://towardsdatascience.com/english-to-hindi-neural-machine-translation-7cb3a426491f
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Figure 3.6: Single-Encoder Transformer5

Consequently, the architecture was modified to include a dual encoder that processes both

nmt_hi and src_en data. This model begins with the dual encoder to generate a unified

representation of both nmt_hi and src_en, which is then passed to a single Transformer-

based decoder. The dual encoder processes parallel sentences from two languages to create

a combined representation used to generate sequential output. This is visualized in 3.7

and later explored in depth.

5https://wikidocs.net/167224/.
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Figure 3.7: Dual-Encoder Transformer6

3.5 Comparing two NMT models

Before we analyze our model, let’s define our evaluation metrics.

3.5.1 Evaluation Metrics for Automatic Post Editing of English-Hindi Trans-
lations

Evaluating the quality of automatic post-editing (APE) systems involves using several metrics

that measure different aspects of translation quality. The following metrics are commonly used

for this purpose:

3.5.1.1 BLEU (Bilingual Evaluation Understudy)

Description: BLEU [49] is a precision-based metric that evaluates the overlap of n-grams

(contiguous sequences of words) between the machine-translated output and one or more ref-
6https://pub.aimind.so/transformer-model-and-variants-of-transformer-chatgpt-3d423676e29c.
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erence translations. The score ranges from 0 to 1, where 1 indicates a perfect match with the

reference translation.

Strengths for APE:

• Widely Accepted: BLEU is one of the most commonly used metrics in machine translation

(MT) and is well-understood in the research community.

• Precision Focused: It effectively measures how many n-grams in the machine translation

appear in the reference translation, providing a good indication of translation quality in

terms of word overlap.

Limitations:

• Lack of Recall: BLEU does not account for recall, meaning it might not penalize missing

translations.

• Insensitive to Meaning: It does not consider the semantic meaning or fluency, leading

to potentially high scores for translations that are syntactically correct but semantically

incorrect.

3.5.1.2 CHRF (Character n-gram F-score)

Description: CHRF [95] is based on the F-score of character n-grams. It evaluates the pre-

cision and recall of character n-grams of different lengths, making it more sensitive to small

variations in word forms and better at handling inflected languages.

Strengths for APE:

• Handles Morphological Variations: Particularly useful for languages with rich morphology

like Hindi, as it captures variations in word forms better than word-level metrics.

• Balance of Precision and Recall: By considering both precision and recall of character

n-grams, CHRF provides a more balanced evaluation of translation quality.

Limitations:

• Complexity: Interpretation of the score can be less intuitive than word-level metrics.

• Overweighting Small Changes: Minor edits at the character level might overly influence

the score, which may not reflect the overall translation quality.
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3.5.1.3 TER (Translation Edit Rate)

Description: TER [48] measures the number of edits (insertions, deletions, substitutions, and

shifts) required to change a system output into one of the references. It quantifies how much

post-editing effort is needed to achieve a correct translation.

Strengths for APE:

• Direct Measurement of Post-Editing Effort: TER is particularly relevant for APE as it

directly reflects the effort required to correct translations.

• Interpretability: The metric is straightforward and intuitive, as it directly counts the edits

needed.

Limitations:

• Simplicity: While TER measures effort, it might oversimplify the nature of the edits, not

distinguishing between minor and major changes.

• Insensitivity to Fluency: TER focuses on edit distance and may not fully capture im-

provements in fluency or readability.

3.5.1.4 COMET (Crosslingual Optimized Metric for Evaluation of Translation)

Description: COMET [96] is a neural network-based metric that uses pre-trained multilingual

embeddings to evaluate translation quality. It compares the similarity of the embeddings of

the machine-translated text and the reference translation, incorporating both source and target

language information.

Strengths for APE:

• Semantic Evaluation: By leveraging neural embeddings, COMET captures semantic sim-

ilarities and differences, providing a more meaningful evaluation of translation quality

beyond surface-level word matching.

• Contextual Understanding: It evaluates translations in a more context-aware manner,

making it suitable for assessing the improvements made by automatic post-editing sys-

tems.
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Limitations:

• Complexity and Computation: COMET requires significant computational resources and

understanding of neural network-based evaluations.

• Less Established: Being a relatively new metric, it might not be as widely adopted or

understood as traditional metrics like BLEU.

3.5.1.5 Why These Metrics are Good for Automatic Post Editing

Automatic post-editing (APE) aims to correct errors in machine-translated text to improve its

quality. Evaluating APE systems requires metrics that can accurately reflect the improvements

made by post-editing.

Each metric brings unique strengths, offering a comprehensive evaluation framework that cov-

ers precision, recall, edit effort, and semantic quality, making them collectively well-suited for

assessing automatic post-editing systems.

Let us now analyse the two NMT options evaluated for our study.

3.5.2 LTRC-NMT

The LTRC NMT model, designed for English-to-Hindi translation, uses a transformer architec-

ture for machine translation, however, operates mostly as a ’black box’.

Developed by the International Institute of Information Technology, Hyderabad, this model uti-

lizes a transformer-based sequence-to-sequence architecture, adept at processing English inputs

and producing corresponding Hindi translations [57].

The translator makes use of the transformer model, known for its efficiency and accuracy in

handling large sequences of data, is well-suited for the complexity of speech-to-speech transla-

tion.

The SSMT system is trained on extensive bilingual corpora from various Indian languages.

The training data includes parallel sentences in multiple language pairs, such as English-Hindi,

Hindi-Telugu, and Hindi-Gujarati. The dataset is collected from various sources, including

publicly available text corpora, domain-specific texts, and contributions from native speakers

to ensure high quality and diversity. It consists of over 25 Million pairs used for training.
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3.5.3 LocalNMT

A custom model trained on a local setup with a GTX 1070 GPU, leveraging PyTorch and

FairSeq [97] frameworks. This model primarily focuses on translating from Hindi to English,

offering an insightful contrast to the LTRC-NMT’s methodology. This model was trained on

the cleaned IIT-B parallel corpora consisting of 1̃.5M pairs of English-Hindi parallel sentences.

It’s important to note the disparity in training data volume: the LocalNMT model was trained

on approximately 1.5 Million English-Hindi pairs, while the LTRC-NMT had the advantage of

over 25 Million pairs.

3.5.3.1 Performance Comparison

Since it has been well established that Transformers are superior to LSTMs which are superior

to RNNs [29, 98, 99, 100, 101] for the task of machine translation, we stick with using the same

to train the LocalNMT model. The performance of both models was rigorously assessed across

three datasets: IIT-B, FLORES200, and NTREX. Key performance indicators include BLEU

[49], CHRF [95], TER [102], and COMET [96]. The results, as tabulated below, indicate a con-

sistently higher performance of the LTRC-NMT model over LocalNMT across all three datasets.

Scores for NMT output (IIT-B)

Model BLEU CHRF TER COMET

LocalNMT 16.31 0.41 77.48 0.59

LTRC-NMT 21.59 0.46 69.93 0.63

Scores for NMT output (FLORES200)

Model BLEU CHRF TER COMET

LocalNMT 19.71 0.43 71.10 0.61

LTRC-NMT 33.45 0.58 51.81 0.71

3.5.3.2 Results

There are two notable observations that we can make from the data in the tables.
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Scores for NMT output (NTREX)

Model BLEU CHRF TER COMET

LocalNMT 12.65 0.29 75.4 0.54

LTRC-NMT 25.69 0.51 60.0 0.61

Table 3.7: Comparing scores of the two machine translations models used in this study across

3 test datasets

• When comparing the two translation models, in the case of all three of the test datasets -

IIT-B Test set, NTREX as well as FLORES200, the LTRC-NMT gives significantly better

results than the LocalNMT. While both the NMT models are transformer-based, the local

model - made using a simple transformer architecture and trained on the synthetic IIT-B

dataset - is outdone by the transformer-based (but more complex) LTRC-NMT translation

system. In fact, it beats LocalNMT even when the test set is chosen to be IIT-B test set.

• For the second observation, lets compare the difference between the scores of LTRC-NMT

and LocalNMT on each dataset. The difference in BLEU scores for standard test datasets

like FLORES200 and NTREX are 10+ in both cases, showing that when using a well

researched organic open-source test dataset, the model is much superior. However, if we

were to compare the scores of the models used on the IIT-B test dataset, the difference

is marginal in comparison. This could be due to the IIT-B test set not being cleaned

and also being synthetically generated/unreviewed by humans. Additionaly, LTRC-NMT

appears to have a broader or more optimized training foundation, as evidenced by its

superior performance on FLORES200 and NTREX datasets.

• The most significant observation emerges when comparing the performance across the

three test sets. While the Automatic Post-Editing (APE) model indeed enhances the

quality of the English-Hindi translations from the IIT-B train dataset, this improvement

does not hold when the APE model is applied to heterogeneous datasets such as FLO-

RES200 and NTREX. This indicates that while a basic NMT model, like LocalNMT,

leaves substantial room for improvement through APE, the potential for quality enhance-

ment diminishes when dealing with translations from a more sophisticated and efficient
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NMT model. Thus, the effectiveness of APE is more pronounced with simpler NMT

models, whereas high-quality NMT systems present a challenge for further post-editing

improvements.

3.5.4 Dataset Specificity and Model Performance

The disparate nature of the FLORES200 and NTREX datasets plays a crucial role in influencing

NMT model accuracy. FLORES200, encompassing general-purpose and common domain data,

is particularly beneficial for research in low-resource languages. In contrast, NTREX focuses on

specific domain texts, which impacts the NMT model’s accuracy depending on the alignment

between the training and testing data domains.

3.5.5 Conclusion and Future Implementation

Following this comparative analysis, it is evident that the LTRC NMT system outperforms the

custom-built LocalNMT model. The effectiveness of the Automatic Post-Editing (APE) model

in enhancing English-Hindi translations is more pronounced with simpler NMT models like

LocalNMT, but diminishes with more sophisticated and efficient NMT systems, as evidenced

by varied performance across the IIT-B, FLORES200, and NTREX test sets. Henceforth, the

LTRC NMT system will be regarded as the gold standard for Neural Machine Translation. This

benchmark will guide the implementation of Automatic Post Editing, leveraging the strengths

of the LTRC NMT model for enhanced translation accuracy and efficiency. However, using the

LTRC Model does not imply it is state-of-the-art across all existing models. This choice was

based on convenience, stability, and the need to establish a baseline metric for comparison.
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Chapter 4

Neural Architectures for Automatic

Post Editing

This chapter explores the implementation of advanced neural architectures designed to en-

hance automatic post-editing (APE) in Hindi language translation. The chapter begins with

an overview of the Transformer-to-Transformer (T2T) model, detailing its architecture and

effectiveness in improving the quality of machine-translated text. This is followed by an ex-

amination of the Dual-Encoder Transformer (DET2T-PE) model, which integrates both source

and machine-translated inputs to produce refined translations. The chapter presents empirical

results demonstrating the superior performance of these models compared to baseline systems,

underscoring the potential of neural methodologies in APE. The analysis includes a compar-

ative assessment of these models against traditional approaches, highlighting significant im-

provements in translation accuracy and fluency. Overall, Chapter 4 provides a comprehensive

evaluation of state-of-the-art neural models, showcasing their capabilities in addressing the

complexities of Hindi APE and setting new benchmarks for translation quality.

4.1 Architecture of Automatic Post-editing in Hindi Language

Translation

APE is inherently a Sequence-to-Sequence (Seq2Seq) challenge, dealing predominantly with

monolingual data. In this context, our focus is on training the model using Hindi data (referred
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to as nmt_hi) to target the translated Hindi output (tgt_hi). This approach builds upon the

premise that the initial translation phase is already completed, as detailed in the preceding

chapter.

As Transformers work best for most tasks involving natural language due to their ability to

remember or maintain a context as well as the benefits lent by the attention mechanism [29, 98,

99], we will begin experimentation with a simple single-encoder transformer model for APE.

4.1.1 Transformer-to-Transformer Model (T2T)

While we explored T2T as a neural architecture for NMT in the previous chapter, we will now

define its use in our problem statement - along with the appropriate input and output. The

Transformer-to-Transformer model architecture uses an adaptation of the Transformer archi-

tecture to capture semantic and syntactic properties of the input text.

Architecture: The architecture consists of 2 transformers - one for encoding and the other

for decoding as shown in 4.1. In the case of Machine Translation, the encoder would first take

the source language as an input and encode the same while the decoder would be focused on

decoding the encoded representation by generating the appropriate target translation.
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Figure 4.1: Simple Transformer-to-Transformer architecture that can be used in Machine Trans-

lation as well as Automatic Post Editing.1

Input and Output: In the case of APE, the input to the encoder involves the translated Hindi

text (nmt_hi) while the input to the decoder/data for the decoder to train, we make use of

reference Hindi Post-Edited output (tgt_hi). The aim is such that the output (tgt_hi) retains

the meaning of the source text while correcting any errors present in the machine translation.

Experiment: The experiment was conducted with ~1.5M triplets and trained only on the IIT-

B training set from the parallel corpora. The model was trained on a Google Colab notebook

with access to a Nvidia A100 GPU with 40 GB of available VRAM. Of this, we consumed ~26

GB of VRAM and close to ~13 GB of RAM. The model was trained for exactly 25 spochs and

took close to 26 hours.

The parameters as well as hyper-parameters for the encoder-decoder architecture (written in

Fairseq) can be found in table 4.1.

1https://pub.aimind.so/transformer-model-and-variants-of-transformer-chatgpt-3d423676e29c
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Result: The results for the use of the T2T model are outlined in table 4.3. While the metrics

of this model are impressive, they make most sense when compared with the next suggested

architecture. We shall return to discussing the results of this model later in the chapter.

Parameter Value

Encoder Architecture Transformer

Decoder Architecture Transformer

Dropout 0.3

Batch Size 64

Attention Dropout 0.1

Activation Dropout 0.1

Encoder Embed dimensions 320

Decoder Embed dimensions 320

Number of Encoder layers 5

Number of Decoder layers 5

Number of max epochs 20

Optimizer Adam

Learning Rate 0.0005

Criterion Smoothed Cross Entropy

Learning Rate Scheduler Inverse_sqrt

Table 4.1: Key Parameters for Fairseq Training Command

4.1.2 Dual-Encoder Transformer (DET2T-PE)

The model typically comprises two encoder components, each leveraging transformer-based

neural networks to process and transform input sequences into high-dimensional vectors. These

vectors are then compared, often via a dot product or a learned metric, to determine the in-

herent similarity or relationship between the two inputs. This approach proves particularly

effective in tasks demanding an understanding of the inter-connectivity between two pieces of

text or between text and image modalities, capitalizing on the transformer’s strength in cap-

turing contextual information within each sequence.
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Architecture: This novel model architecture incorporates two parallel encoders [103], desig-

nated as DET2T-PE1 and DET2T-PE2. These encoders independently process their respective

inputs, generating contextual representations. These representations are then fused and fed into

a decoder to produce the post-edited output. However, the method to combine representations

of the two encoders are explored in 2 ways in this study.

In a dual encoder transformer model for automatic post-editing (APE), there are four commonly

used distinct methods for integrating information from source and machine-translated texts:

• Concatenation: This method combines the representations from both encoders by con-

catenating them along the feature dimension, which allows the decoder to access the com-

plete information from both the source and the machine-translated text simultaneously.

This method is straightforward but may not effectively highlight the interdependencies

between the texts. [104].

• Cross-attention: This method leverages cross-attention mechanisms where the decoder

attends to both the source and the machine-translated representations separately, allowing

the decoder to dynamically integrate information from both encoders during decoding.

Thus it potentially leads to more nuanced and contextually appropriate edits. [29].

• Feature Fusion: This technique merges the encoder representations using a learned

linear transformation or a neural network to create a unified representation that incor-

porates features from both source and machine-translated text, enhancing the model’s

ability to generate accurate post-edits [105].

• Cross-Modal Alignment: This method aligns and combines information from dif-

ferent modalities (source and machine-translated text) using attention-based alignment

techniques, enabling the model to effectively integrate and utilize the complementary

information from both encoders [106].

While feature fusion and cross-modal alignment can be useful, they add complexity because

they require advanced integration strategies and the alignment of different types of information
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[107]. This complexity can make it harder to isolate the impact of each method on the post-

editing results [108].

By focusing on concatenation and cross-attention, I aimed to provide a clear and focused

evaluation without the extra variables introduced by more complex methods. This approach

ensures that the results are easy to interpret and directly linked to the methods being tested,

giving more precise insights into their strengths and weaknesses.

While concatenation merges information in a fixed manner, cross-attention offers a flexible,

interaction-focused approach to combining textual representations. Literature also suggests

that CrossAttention allows for dynamic interactions between the source and machine-translated

texts, enhancing the model’s ability to capture relevant context and dependencies, which is cru-

cial for automatic post-editing[107]. Conversely, concatenation lacks this dynamic interplay,

leading to less effective integration of information[108].

The parameters as well as hyper-parameters for the encoder-decoder architecture (written in

Fairseq) can be found in table 4.2.

Figure 4.2: Dual Encoder model incorporating Source and Machine Translation as inputs, with

tgt_hi as the target [2]
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Input and Output: The two parallel encoders independently encode src_en (source English)

and nmt_hi (machine-translated Hindi), respectively. Their outputs are then fed into a unified

encoder, which combines DET2T-PE1 and DET2T-PE2, culminating in an amalgamated out-

put (DET2T-PE3), which subsequently directs the neural network toward generating the final

tgt_hi (target Hindi).

Experiment: The experiment was conducted with ~1.5M triplets and trained only on the

IIT-B training set from the parallel corpora. The model was trained on a Google Colab note-

book with access to a Nvidia A100 GPU with 40 GB of available VRAM. Of this, we consumed

~36 GB of VRAM and close to ~20 GB of RAM. The model was trained for exactly 25 spochs

and took close to 38 hours.
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Parameter Value

Source Language src

Target Language pe

Architecture Dual Encoder Transformer

Dropout 0.3

Batch Size 64

Attention Dropout 0.1

Activation Dropout 0.1

Encoder1 Embed Dimensions 320

Encoder1 Layers 5

Encoder1 Attention Heads 8

Encoder2 Embed Dimensions 320

Encoder2 Layers 5

Encoder2 Attention Heads 8

Decoder Embed Dimensions 320

Decoder Layers 5

Decoder Attention Heads 8

Number of Max Epochs 20

Max Tokens 3000

Optimizer Adam

Learning Rate 0.0005

Criterion Label Smoothed Cross Entropy

Learning Rate Scheduler Inverse_sqrt

FP16 Enabled

Table 4.2: Key Parameters for New Fairseq Training Command

4.1.3 Results

The tables comparing the performance of Single Transformer (T2T) and Dual Encoder Trans-

former (DET2T-PE) models for Automatic Post Editing (APE) of English to Hindi transla-
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tions across three datasets - IIT-B (4.3), FLORES200 (4.7), and NTREX (4.5) reveal insightful

trends.

Scores for Neural Post-Editing models (IIT-B)

APE Ar-

chitecture

Encoder

Input

Decoder

Output

BLEU

score

CHRF TER COMET

T2T nmt_hi tgt_hi 21.00 0.42 70.23 0.61

DET2T-PE

(Concate-

nation)

src_en +

nmt_hi

tgt_hi 11.01 0.21 83.71 0.53

DET2T-PE

(Cross-

Attention)

src_en +

nmt_hi

tgt_hi 27.26 0.53 54.60 0.73

Table 4.3: Neural Post-Editing models performance on IIT-B dataset.

Comparing APE with NMT/Baseline results (IIT-B)

Model BLEU score CHRF TER COMET

LTRC-NMT

(NMT)

21.59 0.46 69.93 0.63

DET2T-PE

(APE, Cross

Attention)

27.26 0.53 54.60 0.73

Table 4.4: Comparing the NMT baseline to the best performing APE model (IIT-B).
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Scores for Neural Post-Editing models (NTREX)

APE Ar-

chitecture

Encoder

Input

Decoder

Output

BLEU

score

CHRF TER COMET

T2T nmt_hi tgt_hi 14.71 0.366 72.79 0.51

DET2T-PE

(Concate-

nation)

src_en +

nmt_hi

tgt_hi 6.57 0.27 89.12 0.42

DET2T-PE

(Cross-

Attention)

src_en +

nmt_hi

tgt_hi 20.87 0.477 65.03 0.67

Table 4.5: Neural Post-Editing models performance on NTREX dataset.

Comparing APE with NMT/Baseline results (NTREX)

Model BLEU score CHRF TER COMET

LTRC-NMT

(NMT)

25.69 0.51 60.00 0.61

DET2T-PE

(APE, Cross

Attention)

20.87 0.47 65.03 0.61

Table 4.6: Comparing the NMT baseline to the best performing APE model (NTREX)
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Scores for Neural Post-Editing models (FLORES200)

APE Ar-

chitecture

Encoder

Input

Decoder

Output

BLEU

score

CHRF TER COMET

T2T nmt_hi tgt_hi 16.96 0.421 69.65 0.64

DET2T-PE

(Concate-

nation)

src_en +

nmt_hi

tgt_hi 7.21 0.21 86.94 0.57

DET2T-PE

(Cross-

Attention)

src_en +

nmt_hi

tgt_hi 23.91 0.53 49.77 0.68

Table 4.7: Neural Post-Editing models performance on FLORES200 dataset.

Comparing APE with NMT/Baseline results (FLORES200)

Model BLEU score CHRF TER COMET

LTRC-NMT

(NMT)

33.45 0.58 0.52 0.71

DET2T-PE

(APE, Cross

Attention)

23.91 0.53 0.49 0.68

Table 4.8: Comparing the NMT baseline to the best performing APE model (FLORES200)
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Notably, the DET2T-PE model with Cross-Attention consistently outperforms the other config-

urations across all metrics and datasets. For instance, on the IIT-B dataset, the Cross-Attention

DET2T-PE model achieves a BLEU score of 27.26, a significant improvement over the T2T

model’s score of 21.00 and the Concatenation DET2T-PE model’s 11.01. This pattern is echoed

in the FLORES200 and NTREX datasets, where the Cross-Attention DET2T-PE model scores

higher in BLEU and CHRF and lower in TER, indicating better translation quality and fewer

errors.

The Concatenation DET2T-PE model consistently underperforms, suggesting that simply com-

bining the source and machine-translated text representations is less effective than dynamically

focusing on the relevant parts of each through Cross-Attention. This observation underscores

the importance of sophisticated interaction between the dual encoders’ outputs to capture the

nuanced discrepancies between the machine-translated text and the source text, enabling more

accurate and context-aware corrections.

These results demonstrate the efficacy of Cross-Attention mechanisms in leveraging the comple-

mentary strengths of dual encoders, significantly enhancing the quality of post-edited transla-

tions by providing a more nuanced understanding and integration of both the source and target

texts. The consistent pattern across different datasets highlights the robustness and versatility

of the Cross-Attention DET2T-PE model in improving APE outcomes.

4.1.4 Comparing performance with baseline

Another notable observation from the above is that while there is a 28% jump in BLEU scores

for the IIT-B test set, where the post-edited output does score higher for all metrics, the same

is not true for when comparisons are made of the results pertaining to the FLORES200 and

NTREX datasets. So while APE seems to be improving quality of translation when tested with

the test set that comes alongside the train dataset (which is also from the same IIT-B dataset),

introducing a 3rd party dataset doesn’t seem to improve the quality of machine translation.

This is in tandem with the results and observations found in other studies. Katriin in [109] pro-

poses that while APE systems can better sentences that are poorly translated, they often fail to
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beat the baseline for the majority. For the WMT’22 APE shared task [110] as well as WMT’23

APE shared task [111], almost 50% of the solutions using an architecture similar to DET2T-PE

are able to beat the baseline results (plain machine translation, before any form of post-editing).

This only seems to reinforce the previously laid argument that domain and context signifi-

cantly influence APE tasks. The heterogeneity and varying characteristics of different datasets

can lead to divergent model performance, emphasizing the necessity of training APE models

on diverse datasets to enhance generalizability or focusing on domain specific datasets only to

train models used on text of that domain.

While discussed in detail in a later chapter, results from LLMs like ChatGPT - which are

relatively dataset agnostic seem to perform equally well on all 3 test sets but again fail to show

any significant improvement in terms of scores when compared to the baseline.

At this stage, we realize that the lack of sufficient training data is another major point of

discussion that affects the efficacy of our model. The scarcity of resources necessitates the

use of data augmentation techniques, such as forward and backward generation, to expand the

dataset and improve model performance. This discussion transitions into Chapter 5, which

explores advanced data augmentation methods to enhance model efficacy despite data limita-

tions.
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Chapter 5

Enhancing Model Efficacy through

Data Augmentation

Chapter 5 delves into enhancing the efficacy of our automatic post-editing (APE) models

through various data augmentation techniques. Given the scarcity of high-quality triplet data

essential for training robust APE systems, especially for low-resource languages like Hindi,

this chapter explores innovative methods to expand our training datasets. Initially, we discuss

statistical models for data augmentation, such as random noising, which introduces controlled

errors to simulate a more extensive dataset. We then transition to neural network-based

augmentation techniques, including forward and backward generation, which leverage the

power of neural models to generate synthetic data. The comprehensive analysis of these

techniques demonstrates their impact on improving model performance. The chapter

concludes with a detailed discussion of the results and implications of data augmentation.

5.1 Introduction to Data Augmentation

In the complex field of neural architectures, one effective approach to improve the quality of

Post-Edited data is to keep the existing architecture but expand the training dataset. This

can be done by generating synthetic data and adding it to the existing dataset. By expanding

the training corpus in this way, we attempt to pad the dataset with additional data that has

some resemblance to the original. This augmentation involves generating synthetic data,
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subsequently amalgamated into the existing dataset, thereby expanding the training corpus.

Such expansion inherently elevates the likelihood of enhancing model performance [112].

Data augmentation can be achieved through two distinct methodologies: statistical and

neural models. Our exploration begins with statistical models.

5.2 Statistical Models for Data Augmentation

• Random Noising

In random noising [113], errors can be introduced via 3 operations: add, remove or replace.

At any point - for any given sentence - only one operation (out of the 3) was carried out

at any given point in time. Multiple operations can be performed on the same sentence,

however, doing so would reduce the semantic quality of the sentence and likely not help

increase the BLEU score for grammatically correct translated sentences. The first step

here is to use a randomizer in order to pick one of the 3 aforementioned operations. For

add and replace, we are required to also pick random words - which in turn requires us

to tokenize all sentences in HPT and nmt_hi. Once this dataset of tokens is created, all

stop words can then be removed from this list (adding stop words like ’a’, ’the’, ’an’ is not

likely to change the semantics of a sentence for the better). For a similar reason, all terms

with a frequency of greater than 5 have also been removed. If the operation chosen is

’deletion’, a random word is picked from the sentence and deleted. If the operation picked

is ’addition’, a random token is chosen, after which a random index is chosen (where the

index stands for which position this newly added word is supposed to fill, for example,

an index of ’3’ would mean that we’re adding the randomly chosen word to become the

3rd word) from the newly generated sentence. If the operation chosen is ’replace’, firstly

a random number is generated to decide the index of the word that has been chosen to

be replaced. For example, if the random number chosen is 3, we’ll replace the 3rd word

of the sentence with the new randomly chosen word.

Once all these operations have been applied at random to each sentence in the corpus,

the resultant dataset has over 3,000,000 data points/triplets. The next step would be to

shuffle the entire dataset and prepare train and validation sets with an 80:20 split. Post
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this, the Dual-Encoder Transformer is trained from scratch on a combination of the old

dataset and the newly generated dataset.

APE (IIT-B) + Random Noising

Test

Dataset

Random

Noising

combined

to train-

ing data?

APE Ar-

chitecture

Test set

size

BLEU CHRF TER COMET

IIT-B Yes DET2T-PE

(Cross-

Attention)

2507 28.13 0.59 51.90 0.66

IIT-B No DET2T-PE 2507 27.26 0.53 54.60 0.73

FLORES200 Yes DET2T-PE

(Cross-

Attention)

997 17.01 0.47 68.22 0.52

FLORES200 No DET2T-PE

(Cross-

Attention)

997 23.91 0.53 49.77 0.68

NTREX-

128

Yes DET2T-PE

(Cross-

Attention)

1997 14.17 0.33 69.91 0.56

NTREX-

128

No DET2T-PE

(Cross-

Attention)

1997 20.87 0.47 65.03 0.61

Table 5.1: Scores when training data has been supplemented with augmented data using random

noising
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The final results are conclusive. While every metric involving the IIT-B test set has

improved with regards to using only the existing 1.5M pairs, with an improvement of

around 5-10% for each metric, using a model trained on Random Noising does not do

anything to improve the performance of the model on FLORES200 and NTREX-128

scores. The very same reasoning given in the past - about the homogeneity of test and

train data - can be applied to explain the trends captured in this study as well.

• MLM Noising

MLM Noising is an advanced form of Random Noising that uses parallel corpora to

generate synthetic machine translations (MT) with controlled error distributions similar

to standard MT outputs. This method involves tokenizing sentences, assigning part-of-

speech (POS) tags, and constructing a wordnet based on frequency and adjacency.

The process includes analyzing frequently altered POS tags, creating a confusion matrix

to understand these changes, and developing a dictionary from all tokens (excluding stop

words and high-frequency terms). Sentences in nmt_hi are then represented as lists of

tokens with their respective POS tags. Tokens are selected based on probability, and

their addition direction (before or after the existing token) is randomized. The token is

matched with a POS tag from the confusion matrix and a corresponding word from the

dictionary is selected for inclusion or replacement.

For example, editing probabilities based on POS tags might be:

– 54% of verbs are replaced.

– 30% of nouns are added.

– 16% of verbs are transformed into adjectives.

While MLM Noising is effective, given its heavy overhead for implementation, it was not

employed or replicated in this study as the focus was more on neural methodologies rather

than statistical approaches.

5.3 Neural Network-Based Data Augmentation

Following exploring statistical models, the focus shifts to neural network-based data augmen-

tation methods.
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5.3.1 Forward Generation

Forward Generation hinges on the premise that existing nmt_hi data closely approximates the

target Hindi sentence (tgt_hi) [114]. For each src_en-nmt_hi pair, the model uses src_en

and nmt_hi as inputs to generate the Automatic Post Edited output of the model - with the

target being tgt_hi and the actual model output being referred to as pe_hi. Subsequently, for

each src_en-nmt_hi pair, a corresponding src_en-pe_hi pair is created, effectively doubling

the dataset to approximately 3M pairs[112].

During training, the APE model is provided with both src_en-nmt_hi and src_en-pe_hi pairs,

with tgt_hi as the target output. These additional 1.5M synthetic triplets are designated as

FWG (Forward-Generated).

In the figure below, <—> represents the output of the APE/MT Model on the left hand side

and the target being used to train on the right-hand side. The new datasets being created in

the figure 5.1 are (src_en, nmt_hi) concatenated with (src_en, pe_hi) for encoder input and

tgt_hi being the appropriate reference.

Figure 5.1: Forward Generation being used to create a synthetic dataset which is combined

with the original dataset
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Experiments with Synthetically Generated Data (IIT-B)

Training

Data

APE Ar-

chitecture

Train

Dataset

Size

(Num-

ber of

Triplets)

BLEU

score

CHRF TER COMET

HiEn-Train

+ FWG

DET2T-PE

(Cross-

Attention)

3013392 29.23 0.55 0.53 0.55

Table 5.2: Scores when training data is increased in size by using data augmented using Forward

Generation

5.3.2 Backward Generation

Backward Generation capitalizes on the idea of introducing errors into tgt_hi by learning from

nmt_hi patterns. Initially, nmt_hi is produced from src_en using a preferred MT model. The

src_en-tgt_hi pair is then fed as input into the dual encoder with the generated nmt_hi as

the target. This process facilitates the model in learning the necessary modifications to convert

tgt_hi data into nmt_hi format [114].

This technique also doubles the dataset size. The output of this process, labeled HSPE (Hindi

Simulated Post-Edited English), is utilized in place of nmt_hi in new training triplets, creating

a unique set of synthetic data referred to as BWG (Backward-Generated) [112]. In figure 5.2, the

new triplet created is (src_en, HSPE, tgt_hi) which is then concatenated with the previously

existing (src_en, nmt_hi, tgt_hi)
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Figure 5.2: Backward Generation being used to create a synthetic dataset which is combined

with the original dataset

Experiments with Synthetically Generated Data (IIT-B)

Training

Data

APE Ar-

chitecture

Train

Dataset

Size

(Num-

ber of

Triplets)

BLEU

score

CHRF TER COMET

HiEn-Train

+ BWG

DET2T-PE

(Cross-

Attention)

3013392 27.59 0.55 0.53 0.52

Table 5.3: Scores when training data is increased in size by using data augmented using Forward

Generation

5.3.3 Backward Translation

Backward Translation addresses data augmentation by altering the initial stage of the trans-

lation process, src_en. Here, src_en is translated into nmt_hi, which is then back-translated
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into English, termed ’mt_en’. This process results in a version of the text that has undergone

two translation cycles.

For each src_en-nmt_hi-tgt_hi triplet, a new mt_en-nmt_hi-tgt_hi triplet is generated, con-

tributing an additional 1.5M synthetic triplets, collectively known as BWT (Backward-Translated)

[114].

Backward translation - in both studies Hindi as well as Marathi (as will be presented later) -

returns significantly detrimental results and hence can be seen as worsening performance, even

when used alongside other methodologies that help improve performance. For this purpose, we

will leave out Backward Translation from the final train dataset [47]. Below, you can see the

results obtained when data augmented using BWT is included in the final train dataset. The

new triplet being generated is (mt_en, nmt_hi, tgt_hi) which is concatenated with (src_en,

nmt_hi, tgt_hi).

Figure 5.3: Backward Translation being used to create a synthetic dataset which is combined

with the original dataset

Experiments with Synthetically Generated Data (IIT-B)

Training

Data

APE Ar-

chitecture

Train

Dataset

Size

(Num-

ber of

Triplets)

BLEU

score

CHRF TER COMET

HiEn-Train

+ BWT

DET2T-PE

(Cross-

Attention)

3013392 10.97 0.33 0.63 0.33
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Table 5.4: Scores when training data is increased in size by using data augmented using Back-

ward Translation

5.3.4 Final Result

Combining all three well-performing datasets - HiEn-Train (IIT-B Train data), FWG (Forward

Generation Augmented Data), and BWG (Backward Generation Augmented Data). We are

excluding the BWT (Backward Translation Generated) dataset as it only decreases the efficacy

of the translation+APE model.

Experiments with Synthetically Generated Data (IIT-B)

Training

Data

Architecture Train

Dataset

Size

(Num-

ber of

Triplets)

BLEU

score

CHRF TER COMET

HiEn-Train DET2T-PE

(Cross-Attention)

1,500,000 27.26 0.53 0.55 0.73

HiEn-Train

+ Random

Noising

DET2T-PE

(Cross-Attention)

3,013,392 28.13 0.59 0.52 0.66

HiEn-Train

+ FWG

DET2T-PE

(Cross-Attention)

3,013,392 29.23 0.55 0.53 0.55

HiEn-Train

+ BWG

DET2T-PE

(Cross-Attention)

3,013,392 27.59 0.55 0.53 0.52
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HiEn-Train

+ FWG +

BWG

DET2T-PE

(Cross-Attention)

4,520,088 26.91 0.47 0.76 0.50

Table 5.5: Comparing scores where training data was augmented using different neural

methadologies

5.4 Results and Discussion

The integration of the synthetically generated data, amounting to 1.5M triplets per method

(comprising forward generation and backward generation), with the original dataset of 1.5M

triplets, has been instrumental in expanding the training corpus. The impact of this augmenta-

tion on the model’s performance is presented in the following section, highlighting the efficacy

of each methodology in enhancing computational linguistic applications. While Forward Gen-

eration adds a decent score increase to the original dataset, backward generation seems to hover

more or less at a similar score as experiments that worked with HiEn-Train.

The table presents a comparison of the performance of an Automatic Post Editing (APE) model

under different training scenarios, utilizing synthetic data generation techniques to augment the

training dataset. The methodologies examined include Forward Generation (FWG), Backward

Generation (BWG), and Backward Translation (BWT), with the performance metrics being

BLEU score, CHRF, and TER.

A notable observation is a substantial improvement in BLEU score when FWG is employed

alongside the base HiEn-Train dataset, indicating a significant enhancement in the model’s

ability to generate text closely aligning with the reference translations. This method not only

increases the dataset size but also seems to enrich the model’s training with diverse linguistic

constructions, leading to more accurate translations as evidenced by a BLEU score increase
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from 27.26 to 29.23, alongside improvements in CHRF and a reduction in TER.

Conversely, the addition of BWG alone does not appear to significantly alter the model’s per-

formance in terms of BLEU score, suggesting that backward-generated texts might not provide

the same level of beneficial diversity or complexity as forward-generated ones. This is further

evidenced by the slight decrease in BLEU score compared to the base dataset. Interestingly,

the use of BWT dramatically reduces the BLEU score, highlighting a potential mismatch be-

tween the back-translated texts and the model’s target output. This could indicate that the

nuances introduced by back translation do not align well with the model’s learning objectives

or possibly introduce noise rather than useful variance.

Combining the original dataset and two of the three discussed methodologies (FWG, BWG, IIT-

B train) results in a dataset that, while still substantial in size, yields a lower BLEU score than

the FWG-augmented set alone. This composite approach seems to dilute the positive impact

seen with FWG, possibly due to the conflicting or less coherent linguistic patterns introduced

by BWG. The increase in TER and decrease in CHRF compared to the base dataset and

FWG-augmented set further support this, suggesting that while augmentation can significantly

benefit APE models, the type of augmentation and its integration into the training process need

careful consideration to avoid diminishing returns or adverse effects on model performance. The

architecture used in all the above experiments was DET2T-PE (Cross-Attention).

5.4.1 Reduction in COMET Scores

Despite the promising scores of the BLEU, CHRF, and TER metrics showing improvement or

sustained levels of quality, in all three cases, the calculation of the COMET score has shown a

significant decrease. In fact, every augmentation technique shows a decrease of 25-28% when

compared to COMET scores of experiments that did not utilize any neural data augmentation

methods. COMET is a neural-based evaluation metric that considers semantic and contextual

accuracy. The substantial drop in COMET scores for augmented data experiments indicates

that while FWG and BWG improve surface-level matching, they may introduce noise affecting

deeper semantic alignment. Synthetic data might not capture nuanced meanings and contextual
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appropriateness as effectively as real data, leading to translations that are lexically close but

semantically misaligned with the reference.

At the same time, this does not necessarily mean that the new post-edited data is particularly

bad at its job. A myriad of reasons - right from the quality of data to the purpose of the

experiment could weigh in to create this effect. Later on in this chapter, we manually study

and annotate a large chunk of this Post-Edited data and several observations from the same

can explain this trend of COMET scores.

5.4.2 Strategies to Overcome the Discrepancy

Quality Control for Synthetic Data: Implementing stricter quality checks on generated

synthetic data can ensure high semantic fidelity. Advanced models and filtering techniques can

help maintain the quality of synthetic sentences.

Fine-Tuning with Real Data: After initial training on augmented data, a fine-tuning phase

using high-quality real data can align translations more closely with human-like semantic un-

derstanding, improving COMET scores.

Hybrid Approaches: Using a balanced combination of multiple data augmentation tech-

niques and real data in a hybrid training approach can harness the benefits of augmentation

while mitigating noise introduction.

Therefore, it is crucial to consider multiple evaluation metrics and adopt a balanced approach

to data augmentation and validation to achieve comprehensive improvements in translation

quality.

5.4.3 Conclusion

In summary, data augmentation methods are essential for improving the performance of APE

models. However, the trade-off between surface-level accuracy and deep semantic understanding

necessitates a careful and balanced approach. By implementing quality control measures, fine-

tuning with real data, and adopting hybrid training approaches, it is possible to achieve balanced

improvements across all evaluation metrics.
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5.5 Manual Analysis of APE Data Generated

While evaluation metrics provide a clear picture of the differences in quality between Machine

Translated (MT) and Automatic Post Edited (APE) data, a deeper understanding was sought

through manual analysis. We manually annotated and compared 100 triplets (Source English -

Machine Translated Hindi - Automatic Post Edited Hindi) in accordance with Multidimensional

Quality Metrics (MQM) [115]. Each of the 24 different types of errors was assigned a unique

ID for reference.

A random sample of 100 triplets was taken from the IIT-B test set, along with the correspond-

ing APE sentence. Each triplet consisted of the English source (’src’ from the IIT-B dataset),

the Machine Translated Hindi sentence (’mt’ generated using the IIIT-H translation model),

the reference Hindi sentence (’ref’ from the IIT-B test set), and the APE Hindi sentence (’ape’

generated by passing ’src’ and ’mt’ through our best-performing locally trained APE model,

HiEn-Train + FWG).

For each record, we studied mt_hi and pe_hi individually and annotated them with errors

we found in the same. In order to be fair and utilize the privilege of not having to stick to

a pre-determined target string for translation, we analyzed these manually and in detail, but

not in comparison with tgt_hin. By studying these comparisons and identifying the different

MQM tags [115] in each, we aimed to understand:

1. How the machine-translated data compares to the reference Hindi sentence. This analysis

helps identify the strengths and weaknesses of our machine translation model, which can

be particularly insightful given the model’s ”black box” nature.

2. How Automatic Post Editing modifies the machine-translated sentence. This study exam-

ines whether and how APE improves or diminishes the quality of the translated sentence.

3. Whether there are discernible patterns in the APE model’s corrections, or if the post-

editing process is consistent across different sentences.

So, MT as well as APE were both studied and assigned tags corresponding to the appropriate

MQM error. Alongside the error ID and the text associated with it, each tag was also assigned
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a severity score between 0 and 3, in ascending order of severity of the error. So an error with

severity 3 would be considered a major error and more disruptive than an error with a severity

of 2. A severity of 1 would attribute to an error that can be overlooked without any loss in

translation quality.
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ID Type Subtype Explained

1 Terminology Inconsistent with

terminology resource

Use of a term that differs from term

usage required by a specified termbase or

other resource.

2 Terminology Inconsistent use of

terminology

Use of multiple terms for the same

concept in cases where consistency is

desirable.

3 Terminology Inconsistent case of

terminology

Use of multiple terms for the same

concept in cases where consistency is

desirable.

4 Terminology Wrong term Use of term that it is not the term a

domain expert would use or because it

gives rise to a conceptual mismatch.

5 Accuracy Mistranslation Error occurring when the target content

does not accurately represent the source

content.

6 Accuracy Overtranslation Error occurring in the target content

that is inappropriately more specific than

the source content.

7 Accuracy Undertranslation Error occurring in the target content

that is inappropriately less specific than

the source content.

8 Accuracy Addition Error occurring in the target content

that includes content not present in the

source.

9 Accuracy Omission Error where content present in the source

is missing in the target.

10 Accuracy Do not translate Error occurs when a text segment

marked ”Do not translate!” is translated

in the target text.
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11 Accuracy Untranslated Error occurring when a text segment

that was intended for translation is

omitted in the target content.

12 Linguistics

Conventions

Grammar Error that occurs when a text string

(sentence, phrase, other) in the

translation violates the grammatical

rules of the target language.

13 Linguistics

Conventions

Punctuation Punctuation incorrect according to target

language conventions.

14 Linguistics

Conventions

Spelling Error occurring when a word is

misspelled.

15 Linguistics

Conventions

Unintelligible Text garbled or incomprehensible.

16 Linguistics

Conventions

Character encoding Error occurring when characters garbled

due to incorrect application of an

encoding.

17 Linguistics

Conventions

Textual Conventions Error that occurs when a text string

(word, phrase, sentence, phrase, other)

violates the text-building (discourse)

norms of the target language.

18 Style Organisational Style Errors occurring where text violates

third-party style guidelines.

19 Style Third party style Errors occurring where text violates

third-party style guidelines.

20 Style Inconsistent with

external reference

Errors occurring when text fails to

conform with a declared external style

reference.
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21 Style Language Register Characteristic of text that uses a level of

formality higher or lower than required

by the specifications or general language

conventions.

22 Style Awkward Style Style involving excessive wordiness or

overly embedded clauses, often due to

inappropriate retention of source text

style in the target text.

23 Style Unidiomatic style Style that is grammatical, but unnatural.

24 Style Inconsistent Style Style that varies inconsistently

throughout the text.
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5.5.1 Detailed Analysis of Three Triplets

Example 1

Triplet:

• Source: ”As a result, the seatbacks fail to comply with federal auto safety standards on

head restraints.”

• MT: "नतीजतन, सीटबैक सर पर संयम से संघीय ऑटो सुरक्षा मानक का पालन करने में िवफल रहता है।"

• APE: "पिरणामस्वरूप सीटबैक, हेड रेस्ट के बारे में संघीय ऑटो सुरक्षा मानक का अनुपालन करने में िवफल रहा।"

Errors and Tags:

• Terminology: Wrong Term (ID 4)

– MT Error: "सर पर संयम" for ”head restraints.”

– APE Error: "हेड रेस्ट" is a direct transliteration, not an appropriate translation.

• Accuracy: Mistranslation (ID 5)

– MT Error: "सर पर संयम" does not accurately represent ”head restraints.”

– APE Error: While it corrected the term, it introduced a transliteration issue.

• Accuracy: Untranslated (ID 11)

– MT Error: ”seatbacks” is transliterated to "सीटबैक."

– APE Improvement: No such error present.

• Style: Unidiomatic Style (ID 23)

– APE Error: Use of "हेड रेस्ट" remains unidiomatic.

Conclusion: MT had significant terminology and mistranslation issues. APE improved accu-

racy but introduced an unidiomatic style, showing a need for better contextual adaptations.
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Example 2

Triplet:

• Source: ”Director, Dr. S.K. Garg, said that the institution’s annual function is celebrated

as the foundation day.”

• MT: "िनदेशक डॉ. एस. के. गगर् ने कहा िक संस्थान का वार्िष͆क समारोह स्थापना िदवस के रूप में मनाया जाता है।"

• APE: "िनदेशक डॉ. एस.के. गगर् ने कहा िक संस्थान का वार्िष͆कोत्सव स्थापना िदवस के रूप में मनाया जाता है।"

Errors and Tags:

• Terminology: Inconsistent Use of Terminology (ID 2)

– APE Error: Changed "वार्िष͆क समारोह" to "वार्िष͆कोत्सव," causing inconsistency.

Conclusion: MT was accurate, but APE introduced a terminology inconsistency. The focus

should be on maintaining consistent terminology in APE.

66



Example 3

Triplet:

• Source: ”At around 2.15pm on Wednesday, an eagle-eyed dog walker spotted Ruby on

the ledge in the quarry, stranded 50ft up.”

• MT: "बुधवार को लगभग 2.15 बजे, एक ईगल-आइड डॉग वॉकर ने खदान में लेज पर रूबी को देखा, 50 फुट ऊपर
फंसी।"

• APE: "बुधवार को दोपहर 2.15 बजे, एक तेज़ नज़र वाले डॉग वॉकर ने रूबी को, जमीन से 50 फुट की ऊंचाई पर
खदान में पहाड़ पर देखा।"

Errors and Tags:

• Terminology: Wrong Term (ID 4)

– MT Error: "ईगल-आइड" is a transliteration.

– APE Improvement: Corrected to "तेज़ नज़र वाले."

• Accuracy: Mistranslation (ID 5)

– MT Error: "लेज पर" does not convey the full sense of danger.

– APE Error: "पहाड़" exaggerates the scenario.

• Style: Unidiomatic Style (ID 23)

– APE Error: "डॉग वॉकर" is unidiomatic.

Conclusion:

• The analysis shows that while APE can correct certain types of errors, it may introduce

new ones, especially in the style category.

Conclusion: MT had terminology and mistranslation issues. APE corrected terminology but

introduced exaggeration and unidiomatic style, indicating a need for balancing accuracy and

idiomatic expression.
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5.5.2 Results

Having done qualitative analysis by manually studying each triplet, some quantitative evalua-

tion can also shine a light on different aspects of the study.

For example, when counting the number of individual errors across the entire study (each

sentence with multiple errors will count as multiple errors and not just one), we observe that

the difference between the number of errors in MT and APE is relatively small, with 124 and

96 respectively.

Figure 5.4: Total Number of errors

However, regardless of the proximity of these two counts, when calculating the total severity

across all errors, there is a difference of almost 2x between MT and APE. That is, if we add

the severity of all 124 errors in MT vs the same sum across all 96 errors in APE, the difference
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in those scores is now 163 to 92 respectively. So while there is only a ∼22% difference in the

number of errors between MT and APE, the difference in the sum of severities is ∼43%.

Here, while it would be correct to not associate severity with errors, the equal distribution of

errors and yet decrease in severity does lend credibility to the fact that MT has more severe

errors, which very much need post-editing while PE data has errors of less magnitude, most

which can be passed on without changing.

Figure 5.5: Total severity sum across all errors

This could be reasoned to the fact that post-APE, despite the persistence of errors, the average

severity of each error is significantly lower for APE, showing higher quality sentence construction

than that of an average sentence from MT.

This conclusion is further confirmed when we compare the frequency of severity levels across

the two comparisons:
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Figure 5.6: Counts of each severity level

As the diagram shows, while MT and APE have almost equal numbers of errors with a severity

of 0 or 1, APE has nearly 2.5x the number of errors with severity 2 and 2x the number of errors

with severity 3. This clearly indicates that the quality of text has indeed increased post-APE

as errors with high severity in MT are removed, and new errors introduced or sustained from

MT to APE are mostly of low severity. The ratio of average severities in MT and APE rounds

up to 1.3:0.96 respectively.

Let’s now move on to discussing the types of errors identified and what they represent. The

most common error type in MT was ID 5, attributed to simple mistranslation. This caters

only to those errors where the translation is completely wrong and in no way resembles the

required/expected reference translation. On the other hand, the most common ID in PE is

’-1’. This was a label assigned to MT-PE or SRC-MT pairs where there were no identifiable

errors. If a pair had -1, it did not possess any other error, basically implying they were majorly

error-free and not requiring post-editing. This shows that the largest portion of PE sentences

did not require Post Editing of any extent. To further study this comparison, let’s plot a graph

comparing the frequencies of types of errors in MT as opposed to those in APE.
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Figure 5.7: Counts of each error type in MQM

In the above figure 5.7, Dataset 1 represents SRC-MT and Dataset 2 represents MT-APE.

Here are the most tagged MQM IDs/errors found across all MT sentences, in descending order

of frequency: 5, -1, 4, 23, 1.

Here are the most tagged MQM IDs/errors found across all APE sentences, in descending order

of frequency: -1, 5, 2, 21, 23.

Here is some basic analysis done on the same:

5.5.3 Overall Error Counts

• MT (Dataset 1): High error counts are observed in IDs -1, 5, and 7.

• APE (Dataset 2): There is a notable reduction in errors for IDs -1, 5, and 11 but an

increase in IDs 2, 21, and 23.

5.5.4 Key Error Types

Terminology Errors (IDs 1-4)

• Significant improvements are seen in ID 1 (Inconsistent with terminology resource), where

APE eliminated the errors present in MT.

• IDs 2 and 4 show a moderate reduction in errors post-APE.
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Accuracy Errors (IDs 5-11)

• ID 5 (Mistranslation) is significantly reduced by APE.

• IDs 6 and 7 (Overtranslation and Undertranslation) show slight reductions.

• ID 11 (Untranslated) errors are completely eliminated by APE.

Linguistics Conventions (IDs 12-17)

• ID 12 (Grammar) shows a notable reduction post-APE.

• IDs 13, 14, and 15 remain low in both datasets.

Style Errors (IDs 18-24)

• ID 21 (Language Register) and ID 23 (Unidiomatic Style) show increases in APE, indi-

cating new style-related issues introduced post-editing.

5.5.5 Effectiveness of APE

• APE significantly reduces mistranslation errors and completely resolves untranslated con-

tent issues.

• Grammatical improvements are notable, showing APE’s ability to handle syntactic cor-

rections effectively.

5.5.6 Persistent Issues

• Certain errors like under translation, terminology inconsistencies, and omission remain

persistent, indicating areas where APE needs further refinement.

• The increase in errors related to language register and unidiomatic style suggests that

while APE improves certain aspects, it may sometimes introduce new stylistic issues,

making sentences sound unnatural or inconsistent.
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5.5.7 Potential Improvements

• Focus on refining APE models to handle under translation and omission errors more

effectively.

• Enhance terminology consistency handling within the APE system to reduce inconsistent

use and wrong term errors.

• Incorporate advanced stylistic and register-consistency checks within APE to minimize

the introduction of new stylistic errors.

5.6 Experiments for WMT Marathi Shared Task

Having experimented with neural architectures and data augmentation, I decided to participate

in the WMT ’23 Marathi Automatic Post-Editing Shared Task, which was focused on advancing

the quality of machine-generated translations in Marathi through automated post-editing tech-

niques. Building upon their shared task of 2022, this initiative aimed to address the nuanced

challenges inherent in Marathi translation, including syntax, semantics, and cultural nuances.

Participants were provided with machine-translated text and tasked with developing algorithms

and systems to automatically refine and improve these translations. The previous study and

the rigorous evaluation of its submissions and results were benchmarked against established

metrics.

5.6.1 Dataset

The dataset is composed of 18,000 triplets of source (English), target (Hindi), and Post-Edited

(Hindi) data. The data is created by taking a parallel corpus, where the source data is translated

using an MT system, and the references are considered post-edits. Its a combination of 18

independent datasets over 8 different domains - Entertainment, Business, General, Medical,

Legal, News, Sports, and Tech.

5.6.2 Experiments

Having performed this study post the Hindi post-editing efforts that are mentioned earlier in

this chapter, the same neural data augmentation methodologies were reproduced for this study.
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WMT ’23 Marathi APE Shared Task

Data BLEU score CHRF TER

Baseline Transla-

tion [116]

70.66 79.78 26.6

Table 5.7: Baseline score for the WMT ’23 Marathi APE Shared Task

Experiments with Synthetically Generated Data (IIT-B)

Training

Data

Architecture Train

Dataset

Size

(Num-

ber of

Triplets)

BLEU

score

TER CHRF

HiEn-Train DET2T-PE

(Cross-Attention)

18,000 60.85 0.26 79.78

HiEn-Train

+ FWG

DET2T-PE

(Cross-Attention)

36,000 67.86 0.12 84.45

HiEn-Train

+ BWG

DET2T-PE

(Cross-Attention)

36,000 64.48 0.21 81.21

HiEn-Train

+ BWT

DET2T-PE

(Cross-Attention)

36,000 37.71 0.56 63.00

Table 5.8: Scores when training data is augmented using various neural methodologies, on

WMT Marathi data

The results found are interesting but not out of place when compared to other submissions

made to this shared task. As observed in the study with Hindi data, augmenting and adding
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FWG to the original data brings us the highest performance. The highest scores amongst all the

best-performing submissions (excluding late submission) range maxes out at 69.03 - which im-

plies (and is stated in the paper as being true) that none of the submissions outdid the baseline.

This difference in scores could be attributed to a slew of reasons. For once, the study allowed

participants to use pre-trained language models as well as use any external dataset available.

When implementing it ourselves, we stuck to using only the provided text and trained the

language model from scratch.

As mentioned, none of the on-time accepted solutions were able to improve on this score either.

The highest BLEU score of all submissions was 69.03 while the lowest was 31.63 [116]. Unfor-

tunately, even though we scored 67 BLEU using my model, due to a logistics issue, we were

unable to submit the final data on time.
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Chapter 6

The Role of Large Language Models

in Automatic Post-Editing

Chapter 6 delves into the significant impact of large language models (LLMs) on the domain

of automatic post-editing (APE). It begins with an introduction to LLMs, highlighting their

advancements in natural language processing (NLP) and artificial intelligence (AI). The chapter

explores how these models, through their deep learning algorithms and extensive training on

vast datasets, have revolutionized text generation, translation, summarization, and question-

answering tasks. It further examines the integration of LLMs into APE, emphasizing the

transformative shift from rule-based and statistical approaches to sophisticated deep learning

techniques. The experiments conducted with LLMs in APE are detailed, showcasing their

enhanced capabilities in refining machine-translated texts. Finally, the chapter concludes with

insights and future directions, setting the stage for the continued evolution of APE powered by

LLMs.

6.1 Introduction to Large Language Models (LLMs)

Large Language Models (LLMs) have become central to Automatic Post-Editing (APE) in Nat-

ural Language Processing (NLP), marking a significant evolution from rule-based and statistical

approaches to leveraging deep learning models for refining machine-translated texts, thereby

improving their quality, fluency, and accuracy.
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The journey was arguably kick-started with ”Attention Is All You Need” [29], which intro-

duced the Transformer architecture, a novel approach that eschews the recurrent layers used

in previous models for an attention mechanism, enabling significantly improved efficiency and

scalability in processing language data. Subsequent influential works include the seminal paper

that introduced BERT [117], a model that leverages the Transformer to understand language

context in a deeper and more nuanced manner than was previously possible. BERT’s method-

ology of pre-training on a large corpus and fine-tuning for specific tasks revolutionized how

models are developed and deployed in NLP applications.

Furthermore, the GPT series [118] showcased the potential of generative pre-trained models

in producing coherent and diverse text, pushing the boundaries of what’s possible in text gen-

eration, translation, and more. For example, GPT-3 [119], with its 175 billion parameters,

can compose essays, translate languages, and even generate code, given appropriate prompts.

BERT [117], specializing in understanding context, significantly improves search results by un-

derstanding the intent behind queries. These models serve various purposes, from powering

chatbots and virtual assistants to enhancing search engines and automating content creation.

Model Parameters (In Millions) Training Data

GPT-3 175,000 Diverse web text

T5 11,000 C4

ELECTRA 335 Wikipedia, BooksCorpus

RoBERTa 355 Larger subset of web text

GPT-2 1500 Diverse web text

Table 6.1: Comparison of some common Large Language Models and Pre-trained Language

Models

6.2 Zero-shot Prompting

Automatic post-editing focuses on refining the output of machine translation systems or other

generative models to correct errors or improve fluency, often employing models like BERT or
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GPT-3 to automatically revise text towards a target style or higher quality [117, 119] . APE

benefits from zero-shot prompting by using prompts to guide the correction process, effectively

merging the understanding encapsulated within LLMs with specific correction goals, without

the need for task-specific model retraining.

The synergy between zero-shot prompting and APE in the context of LLMs illustrates a pow-

erful method for enhancing text quality and accuracy in a wide range of applications, from

content creation to translation. This integrated approach highlights the evolving landscape

of NLP, where adaptable, pre-trained models like GPT-3 and BERT can be dynamically ap-

plied to both understand and improve human language in real-time, marking a significant step

forward in achieving more natural and efficient human-computer interaction.

6.3 LLMs in Automatic Post-Editing

Large Language Models (LLMs) have increasingly become central to the field of Automatic

Post-Editing (APE), a niche yet vital area within Natural Language Processing (NLP) that

focuses on refining machine-translated texts to improve their quality, fluency, and accuracy. The

integration of LLMs into APE processes marks a significant evolution from earlier rule-based

and statistical approaches to leveraging deep learning models for understanding and improving

translations. This transition has been facilitated by seminal works and the development of

advanced LLMs that have progressively enhanced the capabilities of APE systems.

LLMs boost the field of APE by enabling context-aware editing of texts. BERT [117] and its

successors, like RoBERTa [120], showcased the power of bidirectional context understanding in

text, laying the groundwork for more sophisticated APE systems. These models, pre-trained

on vast amounts of text data, could be fine-tuned for APE tasks, significantly improving the

post-editing process by understanding the nuances of language better than ever before. The

introduction of GPT-2 [118] and GPT-3 [119] by OpenAI further revolutionized the field by

demonstrating how generative models could be applied to a wide range of language tasks,

including APE. Their ability to generate human-like text and adapt to various language styles

and formats opened new avenues for automatic post-editing, making it possible to correct and

enhance translated texts more efficiently.
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The application of LLMs in APE has also been explored in academic studies focusing on specific

aspects of post-editing, such as grammatical error correction [121] and style adaptation [122].

These studies have highlighted the versatility of LLMs in addressing the multifaceted challenges

of APE, from correcting simple typographical errors to adjusting the tone and style of translated

texts to match target audience preferences. Exploring APE as an overarching topic, this work

by Vikas et al. [123].

Moreover, the emergence of domain-specific LLMs has further refined the APE process. For in-

stance, models trained on specialized corpora, such as legal or medical texts, have demonstrated

improved performance in post-editing tasks within these domains [124]. This specialization un-

derscores the adaptability of LLMs to the nuanced requirements of different fields, enhancing

the quality of machine-translated texts across various industries.

The evolution of LLMs in APE is not just limited to improving individual aspects of the post-

editing process but also encompasses the integration of these models into end-to-end translation

workflows [125]. This holistic approach leverages LLMs for both initial translation and subse-

quent editing, streamlining the translation process and ensuring a higher quality of the final

text.

Additionally, the versatility of LLMs and their understanding of knowledge can now enable a

series of supplementary tasks associated with Automatic Post Editing. For example, executing

the task of checking if a text warrants the time and computational power/effort to post-edit is

an aspect that can be checked by LLMs [126]. Most popular LLMs are also language agnostic.

Given that they are trained on data across the internet rather than data classified by language,

most modern LLMs like ChatGPT-4 are multi-lingual and hence can use both the source as

well as target data in an APE task to assess the quality of the APE system [127].

79



Figure 6.1: Use of LLMs to estimate quality of translation, checking if APE is warranted 1

6.4 Experiments

LLMs - in our context, specifically ChatGPT-3.5, have been studied thoroughly in the context of

Machine Translation [128]. While there has been work done in leveraging LLMs for Automatic

Post Editing [123], no work has explored using FLORES200 and NTREX datasets to study

Automatic POst Editing of Hindi sentences translated from English. By conducting experiments

with FLORES and NTREX test datasets, this study aims to uncover insights into how GPT-

3.5.0 can be utilized to improve the quality of MT outputs significantly.

6.4.1 Setup

For our choice of LLM, we picked GPT-3.5, the latest language model published by OpenAI.

For the purpose of this experiment, we use the ChatGPT-3.5 API. In specific, we use the Text

Completions endpoint, which paired with our API key, is fed in as a request in the call. As the

first step, we use the src_en and nmt_hi datasets, alongside the prompt template in order to
1https://www.rws.com/blog/the-evolution-of-translation/.
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get the model to perform post editing. I iterate through the entire dataset and for each pair of

src_en-nmt_hi data points, I give the following prompt as an input to the GPT-3.5 Model:

”Here is my English source sentence: ” + <insert src_en> + ”, here is my Hindi machine translated

sentence of this English sentence: ” + <insert nmt_hi> + ”. With these 2 inputs, give me a

post-edited hindi sentence (where you are post-editing the machine translated Hindi text I provided)”

6.4.2 Results

Scores for APE output (FLORES200)

APE Model BLEU score CHRF TER COMET

Baseline Trans-

lation (LTRC-

NMT)

33.45 0.58 51.81 0.71

GPT-3.5 25.45 0.54 0.42 0.77

DET2T-PE

(Cross-Attention)

23.91 0.53 0.49 0.68

Table 6.2: Comparing machine translation scores from ChatGPT against our State-of-the-Art

model

The difference in quality of metrics over the FLORES200 is conclusive but by a very narrow

margin. The initial thesis was the GPT-3.5 would be able to perform substantially better

than the locally trained DET2T-PE (Cross Attention) model. The results are in line with

these expected observations, however, the GPT-3.5 model beats the locally trained model by

a very small amount - with ChatGPT presenting a BLEU score that is better by 6%, a 1%

improvement in the CHRF score and a 21% difference in the respective TER scores. While the

difference is almost insignificant for BLEU and CHRF, there is an unusually large difference

between the TER scores of both the studies. A similar difference in scores can be seen between

the COMET scores of the two experiments, however, this time the COMET score for GPT-3.5

takes a 13% lead over the COMET score for DET2T-P2 - marking an improved performance by

81



GPT-3.5 over DET2T-P2 across all metrics. However, with the two studies being almost neck

and neck, this result cannot be used conclusively to prove the semantic, syntactic, or pragmatic

superiority of the GPT-3.5 model over the DET2T-PE Model.

Here is an example of the different post-editing outputs:

DET2T-PE model (src_en + ape_output + tgt_hi):

• src_en: Hsieh implied during the election that Ma might flee the country during a time

of crisis.

• nmt_hi: हसीह ने चुनाव के दौरान आरोप लगाया िक मा संकट के समय देश से भाग सकता है।

• tgt_hi: चुनाव के दौरान साइह ने जताया िक संकट के दौर में मा देश छोड़कर भाग सकते हैं .

• ape_hi: हसीह ने चुनाव के दौरान आरोप लगाया िक मा संकट के समय देश से भाग सकता है।

GPT-3.5 model (src_en + ape_output + tgt_hi):

• src_en: Hsieh implied during the election that Ma might flee the country during a time

of crisis.

• nmt_hi: हसीह ने चुनाव के दौरान आरोप लगाया िक मा संकट के समय देश से भाग सकता है।

• tgt_hi: चुनाव के दौरान साइह ने जताया िक संकट के दौर में मा देश छोड़कर भाग सकते हैं .

• ape_hi: चुनाव के दौरान हसीह ने संकेत िदया िक संकट के समय मा देश छोड़ सकते हैं।

The difference in metric scores for NTREX dataset narrates a different story. In every metric

- apart from COMET - DET2T-PE is shown to perform better. However, the margin of im-

provement seen in the NTREX study very closely mirrors the margin of improvement of scores

seen in the corresponding study involving the FLORES200 dataset. However, unlike the large

difference seen in the TER scores of the FLORES200 screen, all metrics in the NTREX study

seem to have a uniform difference in scores of <=5%.

Here is an example of the different post-editing outputs:

DET2T-PE model (src_en + ape_output + tgt_hi):
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Scores for APE output (NTREX200)

APE Model BLEU score CHRF TER COMET

Baseline Trans-

lation (LTRC-

NMT)

25.69 0.51 60.00 0.61

GPT-3.5 18.89 46.27 67.73 0.73

DET2T-PE

(Cross-Attention)

20.87 0.477 65.03 0.67

Table 6.3: Comparing APE scores of ChatGPT against our State-of-the-Art model

• src_en: ”Most of these headliners appeared at Carolines, and went on to greater success,

to the point where theyŕe too big to play a club,” Hirsch said.

• nmt_hi: इनमें से अिधकांश हेडलाइनर कैरोिलन में िदखाई िदए, और अिधक सफलता के िलए चले गए, इस िंब͆दु पर
िक वे एक क्लब खेलने के िलए बहुत बड़े हैं , िहशर् ने कहा।

• tgt_hi: "लोगाें को देश भिवष्य के िलए िजम्मेदार लोगाें को सरकार और राष्ट्रपित हैं , और लगता है िक वह समस्याआें
के िलए समाधान को खोजने के िलए एक होना चािहए, "वे कहते हैं .

• ape_hi: िहशर् कहती हैं , इनमें से अिधकांश हेडलाइनसर् कैरोलाइन्स में िदखीं, तथा बहुत बड़ी सफलता बन गइर्ं , ऐसे
स्तर तक जहां पर वे क्लब में प्ले िकए जाने के िलए बहुत बड़ी बन गइर्ं ।

GPT-3.5 model (src_en + ape_output + tgt_hi):

• src_en: ”Most of these headliners appeared at Carolines, and went on to greater success,

to the point where theyŕe too big to play a club,” Hirsch said.

• nmt_hi: इनमें से अिधकांश हेडलाइनर कैरोिलन में िदखाई िदए, और अिधक सफलता के िलए चले गए, इस िंब͆दु पर
िक वे एक क्लब खेलने के िलए बहुत बड़े हैं , िहशर् ने कहा।

• tgt_hi: "लोगाें को देश भिवष्य के िलए िजम्मेदार लोगाें को सरकार और राष्ट्रपित हैं , और लगता है िक वह समस्याआें
के िलए समाधान को खोजने के िलए एक होना चािहए, "वे कहते हैं .

• ape_hi: िहशर् ने कहा, "इन हेडलाइनर में से अिधकांश कैरोलाइन्स पर िदखाई देने वाले थे, और उन्हाें ने बड़ी सफलता
हािसल की, ऐसा िक वे िकसी क्लब में खेलने के िलए बहुत बड़े हो गए हैं।
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Scores for APE output (IIT-B)

APE Model BLEU score CHRF TER COMET

GPT-3.5 22.78 0.51 65.61 0.80

DET2T-PE

(Cross-Attention)

27.26 0.53 54.60 0.73

Table 6.4: Comparing English to Hindi NMT using LTRCNMT and GPT-3.5

However, a consistent trend across all 3 experiments involves the COMET score of GPT-3.5

being notably higher than the COMET score of the corresponding DET2T-PE model. This

difference can be anywhere between 8% to 20%. This could be due to the fact that GPT-3.5

is primarily trained on English data, with a small focus on Hindi. Due to this, the study in-

volving semantic understanding of English to its Hindi counterpart could sway the translation

to be more semantically led. BLEU, TER, and CHRF focus more on surface-level linguistic

similarities, such as n-gram overlap or edit distance, where localized training can tightly align

with specific translation tasks. In contrast, COMET, designed to assess semantic adequacy

and fluency using advanced language models, might favor GPT-3.5’s extensive knowledge and

nuanced understanding of English. This suggests GPT-3.5 excels in capturing deeper, contex-

tual language relationships that COMET evaluates, highlighting the importance of considering

multiple metrics for a holistic assessment of translation quality.

6.5 Conclusion

In summary, the use of LLMs in the field of Automatic Post-Editing has undergone signifi-

cant evolution, moving from foundational models that introduced new architectural paradigms

to advanced generative models capable of producing high-quality, contextually accurate text.

The ongoing research and development in this area continue to push the boundaries of what

is possible, promising even more sophisticated and efficient APE systems in the future. This

evolution, documented through a series of influential papers and studies, highlights the trans-

formative impact of LLMs on the APE field, setting a trajectory for continued innovation and

improvement.
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The integration of LLMs in APE workflows is increasingly common, with ongoing research

exploring optimal training and application methods to enhance translation quality further. The

dynamic nature of LLMs, combined with their scalability, makes them well-suited to adapt to

the evolving demands of language translation and editing tasks. This result yet again enforces

another conclusion made previously in this study that shows that a model trained specifically

for the purpose of Automatic Post Editing - preferbally with homogenous data - is more likely

to perform better than a generic language model.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis presents a comprehensive study on the application of advanced techniques in auto-

matic post-editing (APE) for English-Hindi translations. By leveraging neural models and data

augmentation strategies, we sought to address the inherent challenges in improving machine

translation (MT) outputs. Our approach integrates various methodologies, including Con-

volutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term

Memory networks (LSTMs), and Transformer-based models, to refine the quality of Hindi

translations.

The experimental results demonstrated that neural models, particularly those employing Trans-

former architectures, significantly outperform traditional statistical methods in APE tasks. The

Transformer models excel in handling long-range dependencies and variable-length sequences,

which are crucial for accurately capturing the complexities of the Hindi language. The Dual-

Encoder Transformer model, in particular, showed remarkable improvements in BLEU, CHRF,

TER, and COMET scores, highlighting its effectiveness in post-editing tasks.

This study also underscored the importance of data augmentation in enhancing model perfor-

mance. Techniques such as forward generation, backward generation, and backward translation

were instrumental in creating a robust training dataset, addressing the scarcity of triplet data
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required for APE. These methods not only expanded the dataset but also introduced variability,

enabling the models to generalize better and improve translation accuracy.

Moreover, we explored the integration of Large Language Models (LLMs) and Pre-trained Lan-

guage Models (PLMs) in APE. These models, through zero-shot and few-shot learning, demon-

strated potential in refining translation outputs without extensive retraining, thus offering a

scalable solution for real-world applications.

7.2 Future Work

While this research has made significant strides in advancing APE for English-Hindi transla-

tions, several avenues remain unexplored and warrant further investigation:

1. Enhanced Data Augmentation Techniques: Future research could explore more

sophisticated data augmentation techniques, including adversarial training and synthetic

data generation using Generative Adversarial Networks (GANs) [129]. These methods

could introduce greater diversity in training datasets, further improving model robustness

and translation quality.

2. Multimodal APE: Incorporating multimodal data, such as visual and auditory inputs,

could enhance the contextual understanding of translations [130]. This approach, known

as multimodal neural machine translation (MNMT) [131], has shown promise in handling

low-resource languages and could be particularly beneficial for complex language pairs

like English-Hindi.

3. Real-time APE Systems: Developing real-time APE systems that can integrate seam-

lessly with existing MT frameworks is another critical area for future work. Such systems

would require optimizing model architectures for low-latency inference, ensuring that the

post-editing process does not introduce significant delays in translation workflows.

4. Domain-Specific APE Models: Tailoring APE models to specific domains, such as

legal, medical, or technical translations, could improve accuracy and relevance. Domain-

specific models can leverage specialized terminologies and contextual knowledge, address-

ing the unique challenges posed by different fields.
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5. Human-in-the-Loop APE: Integrating human feedback into the APE process could

enhance model training and evaluation. A human-in-the-loop approach allows for contin-

uous improvement of the models by incorporating real-time corrections and suggestions

from human post-editors, thereby improving the quality and reliability of translations.

6. Cross-lingual Transfer Learning: Applying transfer learning techniques across differ-

ent language pairs could help in developing more versatile APE models. By leveraging

knowledge from high-resource language pairs, such as English-Spanish, to improve low-

resource pairs like English-Hindi, models can benefit from shared linguistic features and

improve overall performance.

7. Ethical and Bias Considerations: Future research should also focus on addressing

ethical considerations and mitigating biases in APE models. Ensuring that translations

are fair, unbiased, and culturally sensitive is crucial for building trustworthy MT systems.

In conclusion, this thesis has laid the groundwork for advanced APE techniques in English-Hindi

translations, showcasing the potential of neural models and data augmentation. However, the

field remains ripe with opportunities for further innovation and improvement. By addressing

the identified future work areas, researchers can continue to enhance the quality, efficiency, and

applicability of APE systems, contributing to more accurate and fluent machine translations

for diverse languages and contexts.

7.2.1 Examiner Comments

In the current thesis, the experiments of APE are trivial.

This is so because the main objective of this study is to study data augmentation models and

see their response to state-of-the-art models.

Also, the data augmentation methods could be more strategic.

The data augmentation methods were indeed strategic in nature. The reason we picked For-

ward generation, Backward Generation, and Back-translation is because these 3 augmentation

methods only involve changing ready existing data like the input or output to the APE model.
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Additional examples have also been added.
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