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Abstract

Air pollution poses a threat to the lives of all living beings. Government authorities generally moni-
tor pollution levels using a high-grade setup. The high-grade instruments are expensive and also require
space for setup. A few low-cost sensors have been introduced for monitoring air quality. But, those
sensors also have a few shortcomings. This thesis mainly focuses on the performance evaluation of
low-cost PM sensors and an image processing-based technique to estimate air quality.

Firstly, the performance of three new and popular low-cost particulate matter (PM) sensors, namely
SDS011, Prana Air, and SPS30, for measuring PM2.5 and PM10 levels is evaluated against a standard ref-
erence Aeroqual Series-500. The test setup was exposed to PM concentrations ranging from 30 µg/cm3

to 600 µg/cm3. The results were based on 1 min, 15 min, 30 min, and 1 hr average readings. The
experiments were carried out in indoor as well as outdoor environments. The comparative evaluation
was performed before and after calibration. The performance of these sensors is evaluated in terms of
coefficient of determination (R2), coefficient of variation (Cv), and root mean square error (RMSE).

A real-time Air Quality Index (AQI) estimation technique using images and weather sensors on
Indian roads is also presented. A mixture of image features, i.e., traffic density, visibility, and sensor
features, i.e., temperature and humidity, were used to predict the AQI. Object detection and localization-
based Deep Learning (DL) method and image processing techniques were used to extract image features.
At the same time, an ML model was trained on those features to estimate the AQI. For this experiment, a
dataset containing 5048 images was collected over four months from September-December 2021 using
AQSense device that was developed in International Institute of Information Technology (IIIT), Hy-
derabad, and co-located AQI values across different seasons were collected by driving on the roads of
Hyderabad city in India. The experimental results report an overall accuracy of 82% for AQI prediction.
A few challenges faced during the measurement campaign are also discussed.
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Chapter 1

Introduction

1.1 Motivation

Internet of Things (IoT) refers to multiple things that can communicate with each other. Previously,
this ability was limited to only big machines like computers and servers. With the advancement in the
semiconductor industry, we can see billions of devices connected to the internet at any instant. The
data that is being generated by these devices is enormous [3]. According to a study [4], it has been
projected that the total number of devices that are connected to the internet will be around 30 billion
by 2023. It is also reported that the share of IoT devices among all the internet-connected devices was
33 percent in 2018, which will grow to 50 percent by 2023. This means that we will witness a flurry
of smart devices in the future. These devices include various products today, such as smartwatches,
smart homes, industrial automation, home appliances, HVAC solutions, etc. The main characteristic of
intelligent machines is their ability to sense a few parameters such as temperature, humidity, pressure,
and gases. The sensor data is sent to the servers that have the AI engines running in the background
[5, 3]. These engines analyze the data in real-time and send the feedback to the IoT nodes, triggering
the appropriate actuator mechanism. The IoT devices, in general, aim to revolutionize the method of
working of the existing technologies, improve the efficiency of machines and businesses, and make the
life quality of the individuals better.

Air pollution is one particular domain that has been a topic of interest for IoT applications recently.
According to a report [6], air pollution is a cause of respiratory diseases and premature deaths. The
government currently does pollution monitoring in India. The pollution and weather monitoring systems
are installed at a few points in a city. But, the number of these stations is generally low concerning the
area of coverage. For example, in Hyderabad, there are six monitoring stations against the landmass
of 217 sq-km. The main reason for this scarcity is the bulkiness of the measuring instruments. Hence,
the spatial coverage of pollution data is less. One possible solution to improve the spatial resolution is
deploying a low-cost sensing network of IoT-based nodes. Such networks can help enhance the spatial
resolution of the pollution data and assist in identifying the areas that have remained unchecked by
the sparse deployment. A few attempts have been made to deploy IoT- based air pollution monitoring
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networks that monitor the concentration of harmful gases and particulate matter (PM) along with the
meteorological parameters [7, 8].

Although low-cost sensing networks are a promising approach for improving the spatial resolution of
the data related to the concentration of pollutants such as PM, a few limitations need to be checked before
using these sensors. The readings indicated by the low-cost sensors may not be the best approximation
and might require calibration. It is essential to have a basic background in the performance of low-cost
sensors to get the best results. There is a lack of literature on the performance evaluation of low-cost
PM sensors. This is also the primary motivation for this work. This thesis mainly focuses on two
issues. First, a comparative assessment of the three most popular low-cost PM sensors is presented
for the readers. This analysis is presented to bring attention to the issues associated with the low-cost
PM sensors, such as inaccuracies and inter-unit variation. Second, a novel methodology to monitor air
pollution without PM sensors is presented. This method further tries to address the problems posed by
using low-cost PM sensors apart from accuracy and inter-unit variation.

1.2 Summary of Contributions

The main contributions from this thesis are presented in the chapters mentioned as follows -

• Chapter 4

– The performance of three most popular low-cost PM sensors namely SDS011, Prana, SPS30
is evaluated against Aeroqual.

– Performance is evaluated in mobile as well as stationary mode in separate experiments.

– Correlation and coefficient of variation are used as the evaluation metrics.

– A calibration technique is presented using linear regression.

• Chapter 5

– A newly developed sensor node named AQSense that was used to collect training data for
image-based AQI estimation is presented.

– A dataset of more than 5000 data points collected over six months are presented along with
the details of the measurement campaign.

– Results of different ML-based algorithms are discussed.

– Normalized Difference Vegetation Index (NDVI) analysis of the col

– A dataset of more than 5000 data points collected over six months are presented along with
the details of the measurement campaign.

– Results of different ML-based algorithms are discussed.
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– Normalized Difference Vegetation Index (NDVI) analysis of the collected data is presented
to show the effect of vegetation on PM level.lected data is presented to show the effect of
vegetation on PM level.

Note: The object detection algorithm YOLOv5 and its training on Indian dataset is not discussed
in this dissertation. Only results are shown. Credits belong to Nitin Nilesh and Jayati Narang.

1.3 Structure of Thesis

The rest of this thesis is organized as follows-

• Chapter 2 provides a brief introduction to IoT, applications of IoT, and challenges involved.

• Chapter 3 gives an overview of the related work and literature about air pollution monitoring
networks and low-cost sensors.

• Chapter 4 presents a performance evaluation of low-cost PM sensors against a standard refer-
ence in two different indoor and outdoor experiments. The linear regression-based calibration
technique is also shown.

• Chapter 5 presents the proposed methodology for predicting the AQI without using the PM
sensor. Details of the dataset and measurement campaign are also put in focus. The challenges
faced during the campaign are also discussed. The results obtained are based on the feature-rich
dataset of 5000 data points.

• Chapter 6 contains the conclusion of this thesis.
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Chapter 2

An Overview on IoT

This chapter gives an introduction to IoT. The basic building blocks of IoT are discussed, followed
by a brief overview of the applications and technologies that have evolved using IoT. Additionally, a
few challenges that are related to IoT are discussed. This chapter is presented concisely, and more
information about the concepts mentioned in this chapter can be found in the following sources for
interested readers [9, 10, 3, 11, 12].

2.1 Introduction to IoT

IoT refers to the interconnected systems (things) that can transfer data through a suitable protocol.
There is no formal definition of IoT yet. A few attempts have been made to define IoT. Two definitions
of IoT are mentioned as follows-

• Gartner Research [13] defines it as the network of physical objects that contain embedded technol-
ogy to communicate and sense or interact with their internal states or the external environment.

• United Nations International Telecommunication Union [14] defines it as a global infrastructure
for the information society, enabling advanced services by interconnecting (physical and virtual)
things based on existing and evolving interoperable information and communication technologies.

Before the arrival of the IoT concept, the connectivity among the devices or internet access was
restricted to high-end computers, servers, and other big machines. Such machines primarily perform
computations, information transfer, storage, etc. Due to the advancement of semiconductor technol-
ogy over the past few decades, new-age chips can accommodate more features in smaller surface areas,
giving rise to Wi-Fi and Bluetooth Low Energy (BLE) enabled microcontroller units (MCU) in the mar-
ket. Such modern MCUs are present in smaller electronic appliances such as fans, bulbs, etc. All such
devices/things can gain communication with each other, and therefore, such networks are termed the
“Internet Of Things.” Fig. 2.1 shows an illustration of devices connected representing an IoT network.
These networks are now commonly found in smart homes, factories, and other automation-based indus-
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Figure 2.1 IoT network [15]

tries. IoT helps us connect computational, mechanical, and virtual machines by enabling the feature to
exchange data through the internet or some different mode of communication.

2.2 Architecture

Fig. 2.2 shows the architecture of an IoT system. To this date, there has not been any standard IoT
architecture. A few models are described in [16]. There are a few models that consider five layers, and
there are several others that include four or three stages for an IoT project. But, three major stages are
common to all IoT-based projects [17]. For that reason, this thesis presents a three-layer architecture of
IoT. The three layers are- sensing and actuation, communication, cloud storage and data analysis. The
information flow can occur from one end to another in both ways, as shown in Fig. 2.2 by green and red
arrows. Each of these building blocks of the IoT system is described briefly in the following subsections.

2.2.1 Sensing

The sensors and actuators are the embedded system devices with one or more sensors to capture
and quantify parameters, such as temperature, pressure, humidity, current, wind speed, PM, etc. In
an extensive IoT network, multiple units of the same hardware devices can be present. Each machine
is referred to as a node in the network. Apart from having the sensors, nodes may have a feedback
system and contain actuators that react based on the input received by the device from the sensors. We

5



Figure 2.2 Three layer IoT architecture

see these kinds of devices every day. Examples include vending machines, alarm systems, etc. In a
vending machine, the screen or buttons of the machine sense or capture the inputs from a user, and
actuators dispense the desired item in a specific quantity asked by the user. The inventory report is sent
continuously to the server in modern machines, which helps the owner refill the machine in good time.
Also, the payment sent digitally by the user is verified through the server before triggering any actuator.
Node devices use a protocol such as BLE, Wi-Fi, and ZigBee to communicate with the gateway. The
information is relayed to the cloud by the gateway using protocols like HTTP, MQTT, DDS, and AQMP.

2.2.2 Communication

The data collected by the sensor nodes need a medium to move forward towards its destination.
The gateways generally serve this purpose. A gateway is responsible for the movement of data in both
directions. It may be a wireless or a wired device and might use different protocols such as Wi-Fi, LoRa,
etc. Many communication chips are available in the market that can be embedded with the low-end MCU
or interfaced externally using serial wired protocols such as UART, SPI, and I2C. These chips allow
the low-end devices to establish wireless communication with the gateway. Few examples of wireless
technologies include WiFi (802.11b/n/g/ah), BLE, ZigBee (IEEE 802.15.4), Z-wave, LoRa, NB-IoT
and LTE-M [5]. Each protocol has some unique characteristics. The selection of the protocol depends
on the designers. There are tradeoffs between power, range, cost, communication speed, accessibility,
and security.

2.2.3 Cloud and User Interface

2.2.3.1 Cloud

A cloud can be considered as a virtual machine that stores data from all the sensing elements of an
IoT network. The IoT devices have limited processing power due to design constraints. In a complex
network, there is a lot of data generated by the machines. The cloud generally contains a big processing
unit and supercomputers to make an intelligent decisions or regulate coordination between the nodes.
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Figure 2.3 ThingSpeak User Interface

These network developers put all their decision-making algorithms into this computer. In other words,
the cloud is the master of the IoT network, and it can also analyse the collected data according to the
conditions specified by the user. It can also dictate the job to be performed by the nodes based upon the
output of decision-making algorithms.

Another necessary functionality of the cloud is that it works as global storage. Any node can request
data anytime from the cloud. Also, developers make use of the data that is stored in the cloud to develop
algorithms. We also get many insights from this data, which leads to new ideas. Some examples of
cloud storage services are Amazon Web Services IoT, IBM Watson IoT Platform, Microsoft Azure IoT
Hub, Google Cloud IoT, etc.

2.2.3.2 User Interface

The user interface in IoT systems serves the purpose of human-device interaction. It helps us un-
derstand the system in a better and more intuitive way. IoT devices may generate a lot of information
at short time intervals which is very difficult for a human to understand in a raw manner. The user
interfaces conveniently present the data and information to the user. One such interface used throughout
writing this dissertation is ThingSpeak. Fig. 2.3 shows a screenshot of this interface. It becomes easy to
keep track of devices using this interface. All the progress is visible in real-time on the screen. We can
also monitor the data patterns and perform mathematical operations on the time-series data generated
by the IoT devices.
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2.3 Applications

The advent of IoT has widened the scope of several industries. It is a breakthrough in technology
because the earlier products and devices did not have the luxury of storing a large amount of sensor
data. They also lacked the feature of edge computing. There have been many innovations in the global
industries recently. A few of them are listed below in brief. Interested readers can refer to the following
sources for detailed information [18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

• Smart cities: The main idea behind smart cities is to improve the lifestyle and address the prob-
lems related to pollution, traffic, logistics, education, public transport, etc., for sustainable devel-
opment. The term “smart” refers to an intelligent system that can make its own decision without
any manual intervention up to a certain extent. For example, a traffic light that adjusts the duration
of red and green signals in real-time according to the vehicle density at the junctions. The smart
Heating Ventilation and Air Conditioning (HVAC) systems in the smart buildings ensure good
ventilation. The Government of India launched the smart city mission in 2015, where a hundred
cities were selected for smart development to improve the existing infrastructure and make the
systems more efficient by using technology that will benefit the common public. This includes
smart street lamps, free internet, smart public transport, intelligent parking logistics, etc.

• Healthcare: IoT has revolutionized this industry. Several wearable low-power devices have been
introduced to provide detailed insights to the consumer [21, 22]. This helps the patients, doctors,
analysts, and researchers to progress faster than ever. The data generated by the new-age IoT
devices are accessible globally and just a few clicks away. This has helped improve the research
and diagnosis of diseases, including COVID-19. During the COVID-19 pandemic, many doctors
and analysts could diagnose and monitor the patients from long distances.

• Consumer electronics: Several consumer-grade electronic products have been introduced to the
market that has helped in improving and monitoring the lifestyle of individuals. These products
range from smart homes to wearable devices. A smart home may contain automatic lights/fan
control, fire alarm systems, water leakage warning, electric breakdown handling systems, anti-
theft systems, etc. This has improved the sense of security for families and made the lifestyle
easy. Smart-home systems can inform the owner about any possible problem before it happens.
Many smart wearable products can monitor steps, heart rate, blood pressure, oxygen level, etc.
[23, 24]. Such devices can also generate a detailed report over time and inform the user about the
possible health conditions that an individual might be suffering from.

• Smart industries: The concept of warehousing and logistics has been modified using the IoT-
based chains. The industrial-grade approaches have seen a significant disruption after the intro-
duction of IoT. A lot of products have been introduced that improve the safety of workers and can
prevent substantial mishaps in the factories. The heavy machinery have become interconnected
and can communicate with each other, leading to the reduction of manual intervention [18, 19].
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These industries are seeing a major improvement in power efficiency, turn-around time, etc. Other
examples include fully automated supermarkets such as AmazonGo. These are the modern super-
markets that do not require human presence. This has enabled the companies to set up 24-hour
open supermarkets and beneficial facilities. This store can also be set up in places with scarce
human resources.

• Automobiles: This technology has been present for a very long time. But, recently automobile
industry has seen a significant technology breakout in the electric vehicle sector. Electric vehicles
are being projected as the next big thing for the automobile industry [25, 26, 27]. They will lead
us towards a cleaner environment in the future and support sustainable development. Another
promising aspect in this sector is autonomous driving technology. IoT plays a pivotal role in
facilitating this transformation. A fully electric and autonomous car can be seen as a collection
of many sensors and components that have been interfaced together as a system. IoT has also
facilitated other new features to the traditional cars such as tracking of vehicle from anywhere in
the world using smartphone in case of loss or theft. The self-driving rental automobile services
use an IoT-based device in their vehicles to track and monitor the driving performance of the
customer.

2.4 Challenges

We have discussed several applications of IoT in the previous section. But, IoT is a relatively new
research area and suffers from a few challenges that need to be addressed to utilize the resources best.
A few of such challenges are discussed below -

• Reliability of sensors: As discussed in the previous sections, a few IoT systems rely on low-cost
and small form-factor devices. These tiny devices are not the ideal substitutes for high-grade
instruments. The low-cost devices suffer from certain inaccuracies that need to be considered
before deployment. A few fixes, such as intelligent sensing and calibration, help to a certain
extent but cannot be regarded as a long-term solution. This problem is discussed in detail in
Chapter 5.

• Power consumption: Low-power IoT devices need to be more efficient in terms of power con-
sumption. The battery’s capacity is limited, and all the devices cannot be powered through the
regular supply line because some devices are intended to be installed in places where wires and
cables do not reach, or the appliance cannot be made entirely dependent on the main supply for
some particular application such as security systems. To increase the battery life, developers are
forced to compromise on the features that are present on the device. This problem can also be
solved if the battery technology progresses and we can get higher capacity batteries in a smaller
area, just like the rate at which semiconductor technology has moved ahead.
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• Security: As mentioned in this chapter previously, standard protocols such as Wi-Fi and BLE
have been embedded in the small low-end MCU. But, these chips do not implement the protocol
with all the features. Sometimes, the data sensed by the IoT nodes are susceptible and should be
kept private and secure at any cost. Although the name of the protocols used by the low-end chip
is the same, the encryption methods used on these chips are primarily old and vulnerable. This
concern is on the device level. Other problems include transferring the data in a secured fashion
from the gateway to the cloud. It is also necessary to secure the cloud as it contains data from all
the network nodes. Thankfully, a few players like Amazon, Google, and Microsoft offer secure
cloud services for the users. So, an individual does not need to worry about security concerns on
the gateway and cloud levels. But, the low-end devices still have a long way to go.

• Privacy: The IoT devices are becoming omnipresent. There are so many IoT-enabled devices
available in the market that people use daily in their lives, such as television, air conditioner, toys,
health trackers, security systems, etc. Although these devices might be used for leisure or for
some utility that makes the lifestyle more comfortable, some people might not like their day-to-
day life data to be stored somewhere on the cloud. The data has a lot to say about a person’s life.
Many insights about an individual can be inferred from the data, such as sleeping habits, medical
conditions, work routine, cooking schedule, etc. Hence, it is a severe concern for the privacy of
the individuals if this data reaches the wrong hands.

• Deployment: The idea of IoT may be popular in the research community, but it still has a long
way to go to win the trust of ordinary people and authorities, with a weak technical background.
As mentioned in the preceding paragraph, the individuals or organizations concerned with privacy
do not absorb the idea of IoT readily. It is sometimes difficult to convince people to install a new
IoT device near them. All the hard work and planning for developing the IoT devices might go in
vain if the deployment is impossible.
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Chapter 3

Overview of AQI Monitoring Networks

This chapter briefly describes the motivation for working on monitoring air pollution. A thorough
literature review of various approaches followed previously is also presented. A few low-cost sensor
networks and other IoT and image processing-based air quality estimation ideas that scholars worldwide
have brought forward are also introduced briefly.

3.1 Motivation

Air pollution is a matter of grave concern and is the cause of many airborne diseases and premature
deaths of many individuals belonging to all age groups [6]. Particulate matter (PM) is one of the air
pollutants that can reach the lungs and prove fatal if an individual is exposed to it for a long term. Apart
from this, it can cause many respiration and heart-related diseases [28]. Due to rapid and unplanned
constructions in the urban areas, this problem is more prevalent in developing nations with high popula-
tion and traffic density. The process of urbanization leads to the degradation of vegetation, and also, the
closely packed houses of the metropolitan areas have poor ventilation. The individuals living in such
conditions are mainly at a higher risk of getting affected by the air pollution [29]. Therefore, it is essen-
tial to monitor the air quality and take suitable actions. This thesis mainly focuses on the performance
evaluation of low-cost PM sensors and an image processing-based technique to estimate air quality.

3.2 Related Work

There have been many attempts to monitor air pollution around the world. The experiments in-
clude static, mobile, and modern image processing-based ideas to estimate air quality. A few relevant
approaches are discussed in the following subsections.
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3.2.1 Stationary Networks

These kinds of networks are used mainly by the Governmental authorities to keep the public aware of
the AQI. The high-grade PM monitoring devices are usually bulky and expensive, such as instruments
based on Tapered Element Oscillating Microbalance (TEOM) technology and Beta Attenuation Monitor
(BAM) [30]. They also require frequent servicing to get the best performance. Only a few PM-level
monitoring systems are deployed in a city for the aforementioned reasons. Therefore, the data captured
from these devices represent only a particular location and does not cover all the areas.

In the existing literature, it has been shown that the PM has a very high spatial variance, i.e., PM
concentration might vary at places as close as a few meters [31]. To address this problem, there have
been a few modern low-cost IoT-based approaches that help increase the spatial resolution of the PM
data. Most of them involve hardware devices that can be easily mounted on poles, walls, traffic lights,
etc. Out of many examples, two such networks include London Air Quality Network (LAQN) [32],
CitySense [33].

In India, Central Pollution Control Board (CPCB) is the official authority that takes care of air
and water pollution-related matters [1]. They have launched a National Air Monitoring Programme
(NAMP), under which three pollutants - sulphur dioxide, nitrogen dioxide, and PM have been identified
for regular monitoring. Besides pollutants, meteorological parameters such as temperature, humidity,
wind speed, and direction have also been included. CPCB is carrying out the monitoring, State Pol-
lution Control Boards, Pollution Control Committees; National Environmental Engineering Research
Institute (NEERI), Nagpur. CPCB coordinates with the other agencies to ensure the uniformity and
consistency of air quality data and provides technical and financial support for operating the monitoring
station. There are 804 operating stations in 344 cities/towns in 28 states and 6 Union Territories. Fig.
3.2.1 shows the monitoring stations across India. The air pollution and weather data is recorded and is
available to the public in real-time.

In LAQN [32], the network consists of 33 measurement units spread across London city. A few
more nodes that the local authorities have deployed contribute additional data to the network. This data
is available in the public domain, and anyone can check the air quality in real-time on the website.

The CitySense [33] project aims to develop a wireless network of sensors on the scale of an urban
area in the city of Cambridge. The sensors also include air quality monitoring sensors. A total of a
hundred Linux-based PCs are deployed at various places like streetlamp posts and poles. The nodes are
equipped with radios that work as a mesh. The data is continuously pushed to the servers and made
available to the public through a web app.

3.2.2 Mobile Networks

In this kind of network, the hardware devices are smaller than the stationary deployment. As the
name suggests, these devices can be carried from one place to another, providing a better spatial reso-
lution. These look like small gadgets that are easily portable and battery-powered. They also contain
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Figure 3.1 CPCB monitoring stations under NAMP [1]

wireless interfaces like Wi-Fi, BLE, 4G, etc. Data can be transferred through an auxiliary device like a
smartphone to the cloud. There are generally two variations of a network of mobile nodes. The main
difference is how devices are ported from one place to another.

In the community-based monitoring networks, the devices are generally given to the common pub-
lic, researchers, professionals, etc. They need to recharge the devices and connect them to their smart-
phones. The hardware’s form factor is like a smartphone and can be easily carried in a bag or pocket. A
few examples of such kinds of networks include MegaSense [34], and GasMobile [35]. These projects
include a small sensing node and an interfacing protocol like USB, BLE, to connect the devices to the
smartphone. The basic idea here is that people can carry these nodes along with themselves and check
the air quality continuously. The data also gets transferred to a central server with the help of their
smartphones, which helps the researchers and authorities collect meaningful insights and make deci-
sions over a long period.

MegaSense [34] gadget is a part of the HOPE project in Helsinki, Finland. It aims to monitor air
quality with the help of public support. MegaSense is a battery-powered mobile device that is equipped
with sensors. Individuals can carry this device to the places they commute to every day. They can
monitor the air quality in real-time with the help of an android application that provides the UI for
MegaSense. In this way, users can check the air quality around them, and the data is also sent to the
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servers, which can further be analyzed to extract more information on the developer’s end. A district-
level map of pollution data is also created using the data obtained from various users.

In GasMobile [35], researchers have developed a device that can monitor outdoor air pollution and
directly connect to the smartphone via a USB interface. Users need to connect their smartphones to the
device. The data is also sent to the server using the user’s cellular network and is available to the public.
In this way, the pollution data can also be accessed by the people who do not own the device.

The other kind of mobile network is the vehicular sensing network. The sensing nodes are mounted
on the public transport vehicles in this arrangement. These systems work on either a cellular network
or in offline mode. The data does not automatically get transmitted to the server offline. It needs to be
manually transferred to a device using cables. This information is then relayed to the internet with the
help of an auxiliary device. A few examples of such kinds of networks include City Scanner [36, 37],
and Google street view car [38].

3.2.3 Machine Learning and Image Processing based AQI Estimation

So far, we have discussed the methods that include some hardware that can sense and report the AQI.
As mentioned at the beginning of this thesis, hardware-based solutions require frequent maintenance
and cleaning. For that, researchers worldwide have introduced a few novel approaches that can report
the AQI without using any PM sensor to avoid this hassle. They predict the AQI based on the images
and extra parameters such as temperature and humidity. These are machine-learning-based approaches
and use historical data to predict the AQI.

A few of them [39, 40, 41] rely on the hybrid supervised deep learning models that can predict air
quality using historical data. In some of them, features are extracted from the images automatically to
predict the AQI. The dataset generally consists of photos taken from traffic cameras, CCTV footage, and
other public camera sources. The PM and weather data are aggregated from the nearest weather station.

In [39], a CNN-LSTM (Convolutional Neural Network- Long Short-Term Memory) based super-
vised hybrid deep learning model is trained to predict the air quality. Two approaches were used in
this experiment - univariate and multivariate. In the univariate process, the model contained only one
pollutant, whereas, in the multivariate model, information about multiple pollutants and meteorological
data were stored in the model. The data was taken from the pollution monitoring facilities installed by
the Municipal office in Barcelona, Spain, from June’18 to January’19. The final weights obtained after
training were used to predict the AQI data for Barcelona and other cities with similar meteorological
conditions. This approach suffers from a major shortcoming. The authors have used a model trained
for one city for other cities with similar meteorological conditions. The pollution data depends on the
weather parameters and the traffic, construction, and population density. If there is a rich source of
pollution, such as chimneys or mining, this model will miss the actual AQI values for such places.

In another approach, [42], CNN architecture along with transfer learning on a manually created
dataset. The model is trained on 591 images obtained from public cameras in Beijing, China, and the
corresponding PM data was taken from the nearest air quality monitoring station. A CNN was trained on
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Figure 3.2 Trade off between different types sensor networks w.r.t cost, spatial coverage/resolution, data
quality (accuracy and precision) [43].

the images, and the AQI was classified into three categories- Good, Moderate, and Severe. The authors
report a maximum accuracy of 68.74% for their CNN-based model. However, a few things should be
noted about this approach. This model works like a black box with no explicit features to catch in every
image sample. Also, the authors have captured data from only one place and do not consider the spatio-
temporal relationship of PM data. The PM data can vary at several places in the same city. The authors
have tried to use a model based on just 591 samples of the same place captured for a concise time frame.
This kind of model can report PM values on any image if it can provide the features expected by the
model unknowingly.

Apart from this, all the image-based approaches suffer from a common issue with their dataset.
The data points are aggregated from various sources. Images are taken from public cameras, PM, and
weather data from the nearest weather station. In this sense, the PM and other parameters annotated with
the sample image may not represent the correct values, and the dataset might be faulty. This problem
is addressed later in this thesis, where we discuss a similar approach with our dataset, which has been
collected with specially designed hardware.

This chapter covered different types of initiatives taken by individuals worldwide to monitor air
quality. Selecting any network as the universal solution for monitoring air quality is challenging. There
are a few tradeoffs related to each method discussed in this chapter. Fig. 3.2 shows the tradeoffs involved
with each type of technology in brief. It is up to the user to select the appropriate solution as per their
application and constraints.
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Chapter 4

Comparative Evaluation of New Low-Cost Particulate Matter Sensors

The weather and pollution stations use bulky and expensive standard instruments to measure PM
concentration accurately. In recent times, a few new low-cost sensors have been introduced to the
global market for monitoring particulate matter (PM). These sensors usually come in a small factor to
compact the overall device. They enable the dense deployment of compact devices to increase the spatial
resolution of the PM data. But, there is one major drawback of using these sensors, i.e., the inaccuracy
of their measurements. In this chapter, the performance of three such low-cost PM sensors, namely
SDS011, Prana Air, and SPS30, for measuring PM2.5 and PM10 levels is evaluated against Aeroqual
Series-500 PM monitor as the reference.

4.1 Introduction to Low-cost PM Sensors

The low-cost PM sensors were introduced to the global market a few years ago. Before that, only
standard, bulky, high-grade, and expensive instruments (approx. USD 10,000) were available to measure
the PM concentration. The availability of low-cost PM sensors (USD20-30) has enabled developing and
emerging nations to afford the measurement of PM levels in their countries. These sensors also help
increase the spatial and temporal resolution of the PM data.

4.1.1 Sensor Design

The commercially available low-cost PM sensors work on the principle of scattering of light as
shown in Fig. 4.2(a). Four major electronic components are used in the system - MCU, a light source
(LED), a photodiode (PTD), and a focusing lens. The light source continuously emits photons directed
towards the PTD using a lens. In normal conditions, the light coming from the source reaches the PTD,
and it works in the ON condition. The sensor also has two more components- inlet pipe and exhaust fan.
The exhaust fan has a rotation direction such that it pulls the air from the inlet vent and pushes it out of
the sensor from the other end. When the air enters the sensor, its particles scatter the light, and the PTD
turns OFF for that duration. The PM concentration is estimated internally by the MCU present in the
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Figure 4.1 Cross-section of a low-cost PM sensor [2]

(a) Light scattering mechanism [44] (b) Electrical response

Figure 4.2 Light scattering principle and electrical response of a low-cost PM sensor

sensor based on the number of these ON/OFF transitions of the PTD. Fig. 4.1 shows the actual internal
setup of a low-cost PM sensor. These sensors are calibrated in the factory by the manufacturer. The data
can be retrieved from these sensors using the suitable protocol (UART/ I2C/ PWM). Fig. 4.2(b) conveys
the method discussed above in the graphical form.

4.1.2 Limitations

Although the low-cost PM sensors have a large number of benefits, there are a few drawbacks of
using these sensors, such as -

• The accuracy of these sensors might suffer from place to place. The manufacturer calibrates the
sensor in the factory. The type of particle used to calibrate the sensor may be different from the
particle that the sensor is exposed to in the field.

• These sensors use a light source such as LED or LASER, which have a limited lifetime. Also, the
performance might be affected as the light source’s lifetime nears its end. The typical lifetime is
up to 8000 hours.
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• When we buy multiple copies of the same sensor, we expect all of them to give similar readings
when placed together in an identical environment. But, there is always some variation in the
readings of all the copies.

4.2 Evaluation Methods

Previous works that have been done to compare and evaluate the performance of the low-cost PM
sensors use the weather station as the reference. In [45], the sensors were kept near the weather station,
and the data was collected for a long time. In [46], the sensors were placed in an artificial wind tunnel
along with the reference instrument. The particle concentration was controlled by varying the speed of
the wind. However, these methods have a few limitations. In [45], authors evaluate the performance
in stationary mode. The weather station can not be moved. Hence, the sensors were exposed to the
particles reaching the monitoring facility only. As the number of these stations is significantly less, the
setup might not capture a wide range of PM values. Also, different kinds of particles can come from
various sources that have the same dimension. It is essential to capture data from all sorts of sources
possible to remark on the performance of the sensors in different natural conditions. In [46], a single
type of particle was used for the evaluation of sensors. But, it is impossible to determine which kind of
particle is suspended in the air in the actual deployment field. It can be a mixture of several particles
with the same dimension.

In this chapter, the evaluation of three low-cost PM sensors is presented. The performance was
analyzed in the indoor as well as outdoor environment. Unlike the existing literature, which primarily
used a stationary setup, we used a portable setup to test the PM sensors in a few different parts of the
city. This way, sensors are exposed to different particles from sources like factories, vehicles, restaurants
by taking the test setup and the reference instrument near such places. In addition, this study evaluated
two new sensors (Sensirion and Prana) along with one well-studied sensor (SDS011).

4.3 Experimental Setup

This section briefly describes the architecture of the hardware setup and the reference device used
for this study. A single node consisted of three different PM sensors, and three such nodes were used
for this experiment. Aeroqual Series-500 was the reference instrument. More discussion about the
hardware setup is presented in the following subsections.

4.3.1 Reference Instrument

Series-500 manufactured by Aeroqual [47] was the reference instrument used for this experiment. It
is a monitoring device with a separate “head” for monitoring PM and gases. It can measure only one
pollutant at a time. Aeroqual is a portable air pollution monitoring device that can measure PM2.5 and
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(a) Block architecture (b) Actual hardware

Figure 4.3 Hardware setup

PM10 levels simultaneously with a minimum time resolution of 1 min. It works on laser particle counter
(LPC) technology and is factory calibrated. A case study [48] reports a very high correlation between
this portable monitor and higher specification environmental monitors.

4.3.2 Hardware Design

Three identical test nodes were created for the experiment. Fig. 4.3 shows the schematic view
and actual view, respectively, for each such node, which consists of one unit of SDS011, Prana Air,
and SPS30 each. ESP8266 based Wi-Fi enabled NodeMCU v1.0 microcontroller module was used to
interface these sensors. Samples were collected at 2 s intervals, and all data was pushed to Thingspeak,
an MQTT-based IoT platform. The Wi-Fi access point was created using a smartphone, and a 4G cellular
network was employed to access the internet. All information was downloaded in CSV format from the
Thingspeak platform for all three nodes. We also downloaded the data from our standard reference
Series-500. The data was processed and analyzed using the python programming language for 1 min,
15 min, 30 min, and 1 hr averaged readings.

4.4 Measurement Campaigns

In this experiment, the performance evaluation was done in indoor and outdoor environments. The
main reason to perform these two experiments separately was to understand the ability of these sensors
when exposed to the static and dynamic environment. The following two sub-sections briefly describe
the process of both experiments.
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Figure 4.4 Open street map of the chosen places for data collection

4.4.1 Indoor Experiment

In this method, the test setup was stationary and placed near an open window to record the PM
concentration continuously for one week. The room windows remained available for the whole duration
of this experiment to keep good ventilation. The PM level inside the room does not change by an
enormous amount during any time of the day. This happens because the indoor environment is primarily
free of any pollution source except for a few places such as the kitchen. The primary PM source is the
dust coming from nearby roads or areas with a pollution source. Hence, the range of PM levels captured
during the day is not very dynamic. The objective of this experiment was to examine the sensor in such
static condition.

4.4.2 Outdoor Experiment

All three nodes and the reference instrument Series-500 were placed inside a vehicle with open
windows in the outdoor experiment. All devices were powered using a 5000 mAh power bank. The
vehicle was taken to several parts of the city to cover industrial, residential, and commercial areas and
places with high and low traffic movement. A few halts for short intervals of 30-45 minutes were made
to collect the readings of that particular area. The main objective was to evaluate the ability of sensors
to record the change in PM levels. Fig. 4.4 displays the PM2.5 levels at the locations chosen for this
experiment.
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4.5 Data Pre-processing and Performance Evaluation Parameters

The data obtained from the test setup was filtered for outliers before performing any analysis. All
sensors work in a specific humidity range, so all the readings obtained beyond the operating humidity
range were removed.

The performance parameters used in this paper areR2, Cv, and RMSE. The coefficient of determina-
tionR2 analyzes the ability to report the changes in PM levels in comparison to the reference instrument.
It is given in [49] by

R2 = 1 −

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − ȳ)2
, (4.1)

where yi denotes the observations, ȳ denotes the average of the observations and ŷi is the prediction of yi
using the fitted model. TheR2 values were calculated with raw sensor output and calibrated values. The
calibration of the test sensors with respect to the reference sensor is done using simple linear regression.

Coefficient of variability Cv measures the reproducibility or the variance across multiple units of the
same sensor and is given by

Cv =
1

N

N∑
i=1

σ̂i
µ̂i

× 100%, (4.2)

where N is the total number of samples, µ̂i denotes the sample mean of readings of all three units of a
particular sensor at one moment of time and σ̂i is the average standard deviation of all the copies of a
sensor [50]. Cv was calculated only on the raw data in this paper.

RMSE denoted by Erms is a metric representing the average of the square root of the sum of squares
of errors.

Erms =
1

N

√√√√ N∑
i=1

(yi − ŷi)2, (4.3)

where ŷi is the prediction of yi using the fitted model. RMSE was only calculated for the calibrated data
in this paper.

4.5.1 Calibration using Linear Regression

Linear regression technique was used in this experiment for correcting the offset of the low-cost
sensors. The manufacturers of these sensors claim that the PM values reported by the sensors are the
true values. Also, the sensors are calibrated in the factory environment. Hence, a simple regression
should be good enough ideally if the sensors are of a good quality. For this reason, this technique was
selected in this experiment for the calibration among the several other advanced ML techniques that are
available with us.
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The offset in the low-cost sensors measurements is compensated by doing linear regression of the
form

y = mx+ c, (4.4)

where x and y are the reading from the test sensors and the reference instrument, respectively, while m
and c are constants that represent the slope and intercept of the fitting curve, respectively. This method
gives us a model to calculate the actual PM concentration using raw values from test sensors.

4.6 Results and Discussion

4.6.1 Indoor experiment

Based on approximately 200,000 data points, the performance of the sensors is analyzed. All the
sensors and reference instruments data in the indoor setup plotted against time are shown in Figs. 4.5
and 4.6 for PM2.5 and PM10, respectively. The graphs in Figs. 4.5 and 4.6 show that the sensors’ data
and reference instruments’ data follow a similar trend. The sensors underestimate the PM values most
of the time compared to Aeroqual. It can also be observed that the bias between the sensors and the
reference instrument is lower at lower PM values and higher at higher PM values. The matching trend
indicates that the sensors can comfortably capture the PM values change.

Tables 4.1 and 4.2 contain the average R2 values of all three copies of the same sensor for PM2.5 and
PM10 before performing the calibration. A very high correlation value was observed for all the sensors
in this setup. All sensors respond equally well while capturing the changes in PM2.5 levels. A minor
drop in R2 values is observed in the estimation of PM10 levels for all the sensors.

Figure 4.5 PM2.5 trend for indoor experiment.

22



Figure 4.6 PM10 trend for indoor experiment.

Particle Sensor Name
Dimension SDS011 Prana Air SPS30

PM2.5 9.6 5.73 2.75
PM10 9.05 6.64 2.95

Table 4.3 Cv values for PM2.5 and PM10 in % for indoor experiment

Averaging Sensor Name

Interval SDS011 Prana Air SPS30

1 min 0.99 0.99 0.98

15 min 0.99 0.98 0.98

30 min 0.98 0.98 0.97

1 hr 0.97 0.97 0.96

Table 4.1 R2 values for PM2.5 for indoor ex-

periment

Averaging Sensor Name

Interval SDS011 Prana Air SPS30

1 min 0.87 0.98 0.98

15 min 0.98 0.90 0.90

30 min 0.98 0.90 0.90

1 hr 0.97 0.89 0.90

Table 4.2 R2 values for PM10 for indoor ex-

periment

Table 4.3 indicates the Cv values for estimation of PM2.5 and PM10. It can be observed that this
parameter is not more than 10% for any sensor. SDS011 is found to have the most variation of approxi-
mately 9% for both kinds of particles, followed by Prana Air (≈ 5-7%) and SPS30 (≈ 3%).

4.6.2 Outdoor Experiment

The results obtained in this section are based on an analysis of approximately 30,000 data points,
collected at 2 s intervals, before calibration. Figs. 4.7 and 4.8 show the plots for PM2.5 and PM10,
respectively. The graphs show that the bias between the sensors and reference instrument is high, and
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Figure 4.7 PM2.5 trend for outdoor experiment.

Figure 4.8 PM10 trend for outdoor experiment.

sensors sometimes do not follow the same trend. This might be due to the sudden increase in the PM
concentration and the change in the type of particle.

Tables 4.4 and 4.5 contain the R2 values for PM2.5 and PM10 respectively. The R2 and Cv values
for mobile setup were not calculated for 30 min and 1 hr intervals due to insufficient data points. The
overall response is less accurate than the indoor experiment results from these tables. It is observed
that SDS011 has the highest R2 value for both kinds of particles. Prana Air and SPS30 have an almost
similar response for PM2.5 and PM10.

Table 4.6 shows the Cv values obtained from the outdoor experiment. There is a minor change in Cv

values for all sensors except SDS011 compared to the indoor experiment. The Cv values were observed
to be in the range of 3-9% approximately for PM2.5 and 3-20% for PM10. It is seen that the SDS011 has
the highest Cv value for this experiment.

It can be observed from Figs. 4.5-4.8 that the performance of the sensors is better in the indoor
environment. This difference in performance can be justified by looking at the range of the PM values
that the sensors were exposed to in both experiments. In the indoor experiment, the PM values were
restricted to a range of 20-70µg/cm3 while in the outdoor experiment, the observed range was up to 200
µg/cm3. Apart from this, there were many sudden spikes in the outdoor experiment, which indicates
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Averaging Sensor Name
Interval SDS011 Prana Air SPS30

1 min 0.89 0.60 0.70
15 min 0.89 0.74 0.71

Table 4.4 R2 values for PM2.5 for out-
door experiment

Averaging Sensor Name
Interval SDS011 Prana Air SPS30

1 min 0.73 0.61 0.70
15 min 0.87 0.68 0.65

Table 4.5R2 values for PM10 for outdoor
experiment

Particle Sensor Name
Dimension SDS011 Prana Air SPS30

PM2.5 9.29 6.86 3.88
PM10 20.13 7.89 3.38

Table 4.6 Cv values for PM2.5 and PM10 in % for outdoor experiment

the environment was very dynamic. On the other hand, the PM levels in the indoor experiment changed
gradually, and there were no abrupt changes in the PM level. Hence, the sensors were able to follow the
trend of the reference instrument.

4.6.3 Calibration

This section contains results obtained after performing the calibration for the indoor experiment
only. Data points obtained from the outdoor experiment are fewer, so they have been excluded from
this section. The R2 values for 1 hr averaged samples, after performing calibration, were calculated as
0.92, 0.91, 0.86 for SDS011, Prana Air, and SPS30, respectively. Table 4.7 indicates the Erms values
for 1 hr averaged samples for all test sensors. It was also observed to be reasonable for the collected data.

Figs. 4.9-4.11 present the scatter plots of all units represented by different colors before and after
performing the calibration. These figures further explain the Erms values. For the sensors having the
least Erms values, Prana Air for PM2.5 and SDS011 for PM10, the data points align very well around
the average value of the reference instrument.

Particle Sensor Name
Dimension SDS011 Prana Air SPS30

PM2.5 3.40 1.80 2.63
PM10 2.42 8.3 8.8

Table 4.7 Erms values for 1 hr averaged readings
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(a) PM2.5 before calibration (b) PM2.5 after calibration (c) PM10 before calibration (d) PM10 after calibration

Figure 4.9 SDS011 scatter plots

(a) PM2.5 before calibration (b) PM2.5 after calibration (c) PM10 before calibration (d) PM10 after calibration

Figure 4.10 Prana Air scatter plots

(a) PM2.5 before calibration (b) PM2.5 after calibration (c) PM10 before calibration (d) PM10 after calibration

Figure 4.11 SPS30 scatter plots
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Chapter 5

AQSense: Image Processing and IoT based AQI Estimation Device

The AQI estimation techniques used in the dense IoT-based networks or weather stations generally
use the PM2.5 and PM10 readings from the PM sensor. But, PM sensors also come with their limitations.
Standard instruments are not easily portable for mobile measurements, and on the other hand, the low-
cost sensors may have inaccuracies and a short lifetime. This chapter presents an image processing-
based method that can report AQI in real-time without using the PM sensor. Image-based features
like traffic density, visibility, along with temperature, and humidity were used to determine the AQI.
Supervised learning algorithms and deep learning-based object detection models were used to predict
the AQI. The data for training and testing the models was collected by driving through the roads of
Hyderabad city in India. This technique can predict the AQI with an accuracy of up to 90%, according
to the obtained experimental results.

5.1 AQI Estimation using ML-based Techniques

Predicting the AQI using natural images and machine learning-based models has been a recent ap-
proach in the research community. In [39], a combination of a convolutional neural network (CNN)
and long short-term memory (LSTM) deep neural network model was proposed to predict the concen-
tration of air pollutants in multiple locations of a city by using spatial-temporal relationships of PM
and weather data. The already available meteorological data was used to make the model, and the final
weights were used to predict the AQI of the city with similar weather conditions. But in this method,
the model is based on the dataset generated by the weather stations, which has a low spatial resolution,
as mentioned in the previous chapter. Other image processing-based techniques use the fact that the PM
values affect the visibility. This change in visibility can be extracted from the images as a feature and
can further predict AQI. In [42], authors use CNN architecture along with transfer learning on a manu-
ally created dataset. The dataset contains a total of 591 images collected across different seasons from
a Beijing tourist website with their respective PM2.5 values. The air quality is categorized into three
levels i.e., good, moderate, and severe. Overall, the proposed method achieved 68.74% classification
accuracy. However, this method has a significantly less number of data points to build, and it classifies
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the data into only three categories. The authors have trained a CNN on the images and do not use other
features. In the other method by [51], various numerical and categorical features from an image are
extracted using image processing algorithms. A support vector regression (SVR) model was trained on
these features to predict the PM values. Their dataset contains images collected from a fixed scene with
respective PM2.5 value, weather data, and geographic location. It has a total of 6587 images spanning
three cities in China. The SVR model performs well for the two cities but fails in the third city because
of the narrow range of PM2.5 values. The main shortcoming of these methods is that images and PM
values were not taken at the same place and time. They are aggregated from different sources. Prior
literature [31] shows that PM data has spatial and temporal variation. The previous methods mentioned
above may have inaccuracies because they have aggregated data from several sources.

5.2 AQSense: IoT based Hardware Device for AQI Estimation

5.2.1 Why AQSense?

This section presents the hardware device AQSense used to collect the data throughout the measure-
ment campaign. It is important to mention that the purpose of this device is only to collect the PM and
weather data with the best estimation of the ground truth. This data is used only to train the ML-based
model discussed later in this chapter. AQSense is not meant to be used as a portable AQI meter or a
gadget for the general public. The ultimate objective of this work is to predict the AQI using the picture
of traffic. Once the model is fully trained, the inputs required are mentioned as follows -

• Picture of traffic (can be captured with any camera-enabled device).

• Temperature and humidity values (can be obtained through nearest weather station data).

Although, the best practice would be to have a temperature and humidity sensor at the point where AQI
needs to be predicted to get the most accurate results. But, the weather station data can also help provide
a rough idea.

5.2.2 Technical Specifications

The main idea behind this device is to estimate the AQI using the features that affect the particulate
matter. Previous works show that PM values depend on meteorological parameters. In addition to that,
this approach includes traffic and visibility as two more features. Fig. 5.1 shows the hardware and
block diagram of AQSense. This solution has three parts: an embedded hardware device with PM,
temperature, humidity sensors, a camera, embedded firmware for sampling and sending data to the
cloud, and ML-based algorithms to estimate the AQI in real-time.
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Figure 5.1 Block diagram and hardware setup.

Fig. 5.1 shows the block architecture of the hardware developed for this experiment. A Rpi0 MCU
and a PiCamera are connected to capture and process the vehicle images. The other sensors interfaced
with the MCU include BME280 for temperature and humidity. A Prana Air [52] sensor was used for
measuring the PM2.5 and PM10 concentrations. It is a reliable PM sensor, as shown in the study[53].
The data collected from Prana sensor was used to calculate the AQI, which also served as the ground
truth for the ML algorithm developed for this experiment. The dimensions of this device are 100x80
mm making it compact and suitable for mobile use.

The accuracy and resolution of all the sensors are listed in Table 5.1. The hardware setup can send
the processed data into a remote server, suitable for edge computing. A sample from each sensor was
collected once in every 30s by the MCU. The sample is processed using the methodology defined in the
upcoming sections. A cellular 4G-based Wi-Fi access point sent the data to the remote server.

Sensor Parameter Range Tolerance

BME Temperature -40 to 85 °C ±1%

280 Humidity 0 to 100% ±3%

Prana PM2.5 ≤ 1000µg/m3 ±10%

Air PM10PM10 ≤ 1000µg/m3 ±10%

Table 5.1 Specifications of sensors

5.3 Data Measurement Campaign

With the help of the hardware setup mentioned in the previous section, a traffic dataset was collected,
containing images of traffic and the measurement of pollution levels. The device was placed on top of
a car, as shown in Fig. 5.2. The car was driven during the daytime and captured variations, including
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Figure 5.2 AQSense mounted on top of a car

different scenarios (urban and sub-urban areas), traffic conditions, and pollution levels.

The dataset was captured across Sep 21-Dec’21, comprising two seasons, monsoon and winter. The
attempt was to get a diverse dataset. A total of 5048 samples were collected in this duration. Datapoints
collected between Sep’21 and Oct’21 were considered for the monsoon season. The rest of the data
collected from Nov 21- Dec’21 was accounted for for the winter season. Fig.5.3 shows the routes
traveled during this campaign in the metro city of Hyderabad, India. Each captured image is associated
with co-located respective sensor values, i.e., temperature, humidity, PM2.5, and PM10 measurement.
The AQI level is computed using the PM2.5 and PM10 values as per the Central Pollution Control Board,
India [1], and categorized into five classes which are as follows: 1. Good (0 - 50) 2. Satisfactory
(51-100) 3. Moderate (101-200) 4. Poor (201-300), and 5. Severe (>300). The distribution of the
collected data in terms of the AQI level and month is shown in Fig. 5.4.

5.3.1 Dataset

Bike Truck Car Bus Rickshaw Temperature Humidity AQI
1 1 3 0 3 28 62 Good
4 2 3 2 3 32 42 Moderate

Table 5.2 Specifications of sensors
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Hyderabad, India

Figure 5.3 Street view of routes traveled during measurement campaign (Total distance = 1000 km).

Figure 5.4 Left: Frequency of the AQI levels in the collected dataset. Right: Frequency of samples
collected across months. (Best viewed in color).

The final dataset obtained for this experiment has a total of 5048 samples. Table 5.2 shows the
sample entries of the dataset. It has eight features, namely motorcycle, car, bus, truck, autorickshaw,
temperature, humidity, and visibility, and the target is the AQI category. The AQI categories are decided
by using the standard Indian chart as shown in Fig. 5.5. For this experiment, the last two categories, i.e.,
“Very poor” and “Severe,” were clubbed in the “Severe” category due to the lack of data points in those
two categories. Fig. 5.4 shows the spread of data with the help of a histogram that was collected during
the measurement campaign. Most samples (around 80 %) belong to the first three categories based on
the AQI level.
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Figure 5.5 Standard PM reference chart according to Indian standards

5.3.2 Issues and Challenges

The measurement campaign was conducted over four months and included two seasons - monsoon
and winter. AQSense was tested thoroughly regarding embedded hardware and firmware credibility
before taking it to the field. Still, plenty of challenges was faced during the campaign that resulted
in corrupt/ redundant data or, sometimes, hardware failure. A few trivial routines need to be followed
on-field to capture the data without compromising the quality. Most of the significant issues were
faced during the monsoon season. Also, after the monsoon season, we addressed a few problems by
making suitable changes and faced more minor challenges during the winter season. A few of such
challenges and issues are listed from personal experience, which might be insightful to this thesis’s
on-field researchers and readers.

• Hardware reset - Each hardware component has a fixed humidity range for proper functioning.
As we were collecting PM data, we had to maintain proper ventilation. Hence, we did not have the
freedom to use an air-tight container for the AQSense to prevent the effect of outdoor humidity on
our device. Consequently, there were a few instances when the AQSense experienced hardware
resets and malfunction due to suspected short circuits during the monsoon season.

• Unreliable sensor data - This issue was particularly faced during the monsoon season. The
operating range of the BME280 is 0-100% relative humidity (RH), while that of Prana Air is 0-
70%. Sometimes, during the rainy season, we faced a lot of variation (from 60% to 100% ) in
the humidity as we moved in the vehicle. When the rain was in patches, the PM sensor became
unreliable, and its readings started to fluctuate in a big range even if we halted the vehicle at a
place with RH less than 70%. We can easily filter the data by putting a condition on 70% RH,
but, in this case, data points below 70% were also incorrect. Such data points need to be removed
manually.

• Dirt on glass case - We put the AQSense in a ventilated IP65 rated plastic box with a glass cover
for the measurement campaign. But sometimes, due to a lot of pollution and humidity, the glass
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cover requires cleaning so that the image quality does not get affected. Also, the images captured
with dusty surfaces incorrectly calculated the visibility feature that was used to predict the AQI.

5.4 Methodology

This AQI estimation technique involves the following three steps -

• Initially, the object detection algorithm You Only Look Once (YOLOv5) was trained on Indian
Driving Dataset (IDD).

• The weights obtained by training YOLOv5 were then used to do feature extraction using AQSense
on edge. A dataset was collected using AQSense in the city of Hyderabad from Sep-Dec’21.

• Using the collected dataset, supervised learning algorithms were used for AQI classification. The
weights obtained from this step are the final solution and can be used directly for estimating AQI
from the image. The PM sensor can be removed from the AQSense hardware setup.

The first step of the methodology that involves training the YOLOv5 algorithm on IDD is beyond the
scope of this thesis, and the subsequent steps are discussed in the following subsections.

5.4.1 Feature Extraction using AQSense

The AQI estimation algorithm relies on the features such as traffic, visibility, temperature, and hu-
midity. A trained YOLOv5 algorithm was deployed on the AQSense to quantify the traffic. The total
number of vehicles that occur in the scope of the picture captured by the camera are quantified into their
respective categories using the YOLOv5 algorithm. There were a total of five categories of vehicles
chosen for this experiment that are mentioned as follows: 1. Motorcycle 2. Car 3. Truck 4. Bus 5.
Autorickshaw. These are the most commonly found vehicle categories in the urban areas of India. The
vehicle count of each category is used as a feature to predict the AQI category. The general intuition of
using each category as a feature is that pollution levels might partially depend on the vehicles’ engine
capacity. For example, a motorcycle has a small engine. Hence, pollution content released from its
exhaust would be generally lower than a car or a truck. However, this might not be necessarily true
because there can be exceptional cases where vehicles might not be in good health. In that case, smaller
vehicles might be emitting more pollutants. This can contribute to a drop in the accuracy of the final
model to a small extent.

The visibility feature is calculated using the BRISQUE algorithm on the captured images. As the
camera can only take pictures of the traffic and road condition in front of the test vehicle, the information
received by the image is limited in terms of scope. It is essential to capture the air pollution generated
by the other elements, e.g., constructions (roads, buildings, etc.), fire, etc. To capture the essence of
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pollution caused by other sources, the visibility of the image is computed using BRISQUE [54] which
is a no-reference Image Quality Assessment (IQA) metric. As visibility is a subjective matter, a human
evaluated dataset named TID2008 [55] which has 1700 images and their respective quality scores, is
used as an image visibility score reference. The output of the BRISQUE algorithm for a given image is
a number between 0 to 100, where 0 signifies the best and 100 signifies the worst visibility. An example
of image visibility metric calculation can be seen in Fig. 5.6. The importance of this feature can be
explained more clearly by the following example - There can be two instances such that the vehicle
count is similar. Still, there can be a significant change in the PM concentration due to an external
source such as a chimney, construction site, etc. In such cases, the visibility will get affected severely,
which can be captured using the visibility score as a feature. This will help the model differentiate
between the situations when the traffic and the meteorological conditions are the same.

5.4.2 AQI Estimation using Supervised Learning

This is the final step of the proposed methodology. Till this point, we have obtained a dataset with all
the features as shown in Section 5.3.1. Here, a supervised learning-based model is trained on the dataset
to predict the AQI category given the following features: temperature, humidity, traffic, and visibility.
When the model is fully trained, the obtained weights can be saved. After this, the PM sensor can be
removed from the AQSense. The device can predict the AQI by collecting the images and the weather
parameters.

5.5 Experiments & Results

Table 5.3 shows the R2 score of the features with respect to the AQI. It can be seen that all features
have a positive correlation with the AQI in the range of 0.2-0.4. This indicates the partial dependence
of the AQI on these features and, therefore, justifies the intuition of dependence of the AQI on traffic
and visibility as discussed in the Sections 5.4.1. It is a well-known fact that weather conditions have an
impact on PM values from the previous findings [56]. As the humidity increases, the dust tends to settle
down, which reduces the number of impurities suspended in the air. For the same reason, most of the
data points collected during the monsoon season (around 90%) belong to the first two categories.

The ML models were trained and validated for the dataset mentioned in Section 5.3.1. As there are
seasonal variations in PM values [56], we trained three different models each for 1. Monsoon dataset
(samples collected between Sep’21 - Oct’21) 2. Winter dataset (samples collected between Nov’21 -

Vehicles Temperature Humidity Visibility
AQI 0.33 0.29 0.31 0.41

Table 5.3 R2 score of features w.r.t AQI
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Method Monsoon Winter Overall
Acc F1 Acc F1 Acc F1

SVM 0.86 0.85 0.74 0.72 0.77 0.76
MLP 0.90 0.89 0.78 0.74 0.79 0.78
RF 0.91 0.90 0.80 0.78 0.82 0.81

CNN [42] 0.71 0.70 0.61 0.61 0.67 0.65

Table 5.4 Performance of various methods on overall and season-wise data.

Dec’21), and 3. Overall dataset (combining Monsoon and Winter dataset). The results obtained for all
three datasets are presented in Table 5.4. Note that the ML methods (SVM, MLP, RF) were trained on
features extracted using the method described in section 5.4.

For the overall dataset, the RF model achieved an accuracy of 82% and an F1 score of 81%. For the
data points of monsoon season, it is observed that the RF classifier performs the best with an accuracy
of 90.32%. The main reason for this relatively high accuracy is better model training as there is a
significantly increased number of data points with low AQI values in monsoon season. Hence, most of
the data points belong to the first two categories. This is more evident from Fig. 5.4 that shows the
category-wise distribution of the dataset. Classes named “Good” and “Moderate” account for 50% of
the collected data points, which leaves significantly less room for the misclassification of the samples.
On the other hand, RF is the best performing model for the Winter dataset, with an accuracy of 80.14%.
It is relatively low compared to the monsoon season as the data is spread over all categories of AQI,
which also increases the chance of misclassification.

To compare our proposed method with the existing work, we applied the method proposed in [42]
on each of the three datasets mentioned above and observed an overall improvement of 15%. The main
reason behind this improvement is how features from images are extracted. As a traffic image can have
different objects, our work emphasizes focusing only on those responsible for air pollution. On the other
hand, applying plain CNN on straight-forward images fails to identify this paradigm.

5.6 NDVI Analysis

5.6.1 What is NDVI?

Normalized Difference Vegetation Index (NDVI) is a graphical indicator that indicates the presence
of vegetation in a particular area. It is a technique used to classify the land as green, barren, etc.
NDVI is calculated on the satellite images of the earth. Vegetation areas absorb red light and reflect the
light falling in the near-infra-red region. Based upon the amount of light absorbed/reflected, these two
parameters are quantified as Red, and NIR (Near Infra-red), and their normalized difference is taken
to obtain the NDVI. This value ranges between −1 to +1. If the value is close to −1, there is a high
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probability that it is a water body, and if the value is close to +1, there is a high probability of vegetation
in that area. The mathematical formula for calculating NDVI is given in the equation 5.1 -

NDV I =
(NIR−Red)

(NIR+Red)
(5.1)

5.6.2 Why NDVI?

It has been found in the previous studies [57, 58] that vegetation is a sound-absorbent of PM. It helps
settle the dust and acts as a natural bio-filter against the PM. In this experiment, we collected the GPS
coordinates in our dataset and the PM values. Using NDVI, we try to locate the vegetation areas in
Hyderabad city and then relate the PM values captured by the sensor. This will give us a better idea of
the importance of vegetation in reducing the PM level. Ideally, let us suppose green spaces surround a
busy road. In that case, the PM values should be lower than the site with the same level of traffic but
without any vegetation land in the vicinity.

5.6.3 NDVI Analysis

5.6.3.1 Observations

Fig. 5.7 shows the plot of NDVI with PM values. The NDVI values range from 0.1 to 0.3 because
the GPS coordinates collected are from the main road, and hence, the NDVI values are close to 0. As
the data is collected on the streets, it cannot collect the vegetation part. Moreover, it is observed from
the graph that the PM values are above 100. This is because the device is present in areas with traffic
movement. One more thing that can be observed from Fig. 5.7 is that most of the data points that have
high AQI are present in the low NDVI value range. This indicates that in the low vegetation zones, the
PM settles less than the places with some traces of vegetation.

5.6.3.2 NDVI as a Feature

We tried to use NDVI as a feature in our dataset, which was shown earlier in section 5.3.1 in this
chapter. Since vegetation helps in settling the dust particles, we had the intuition that including NDVI
values in the model might help us in training a better model as it will be able to understand the difference
in the cases where all other features, namely temperature, humidity, traffic, visibility are same. This is
a very realistic scenario where the traffic and weather parameters could be the same. Still, the average
PM values might differ due to the magnitude of vegetation cover in the subject areas. The maximum
accuracy that we achieved with the help of this additional feature was 65% which is less than the models
that do not consider this feature. The results obtained by using various algorithms are shown in Table 5.5

The NDVI-based model provides less accuracy because the data was collected in a moving vehicle
on the road. The main road is a source of pollution at every instant time. The car also moves on the
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Figure 5.7 NDVI analysis of dataset

Method Monsoon Winter Overall
Acc F1 Acc F1 Acc F1

SVM 0.52 0.51 0.48 0.44 0.54 0.57
MLP 0.59 0.59 0.53 0.51 0.53 0.54
RF 0.65 0.64 0.62 0.62 0.60 0.61

Table 5.5 Performance of various methods on overall and season-wise data with NDVI as a feature.

main road all the time. Hence, each observation in the dataset corresponds to the average PM values of
the previous 30 s before the observation was recorded, which can be expected to be the new emissions
from the vehicles and other sources present around the sensor. Settling of dust requires some time which
seems to be insufficient in this case.

The NDVI values would make more sense if the data were collected using a stationary node for a few
days. The time series plot of such an experiment would have shown a good trend of settling particles
with time. But in our case, we do not have multiple observation points of the exact or approximate GPS
coordinates. Hence, we could not get the desired results for AQI prediction using NDVI as a feature.
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Chapter 6

Concluding Remarks

6.1 Conclusion

This dissertation discussed the challenges associated with traditional air pollution monitoring sys-
tems. A few modern approaches for monitoring AQI include stationery, community, vehicular, and
mobile-based IoT solutions. We found that all the modern techniques rely upon low-cost PM sensors,
which have some limitations. Image-based AQI determination systems that do not use low-cost PM sen-
sors were also discussed. The two main contributions from this thesis have been presented that address
the concerns related to low-cost PM sensors and the current image-based AQI monitoring systems.

First, a comprehensive study was performed to evaluate the low-cost PM sensors. The low-cost
PM sensors were able to follow the trend of the reference instrument most of the time with reasonably
correlated values. The sensors underestimated the PM values, which can be corrected to some extent
by performing calibration. We were able to achieve low Erms values after doing the calibration using
a simple linear regression for the indoor experiment. Also, different copies of the same sensor output
the PM values in a very close range, indicating a low inter-unit variability for the sensors examined in
this paper. In general, it can be concluded that the new low-cost PM sensors can be used for measuring
the PM levels, but calibration is required to get a better output. Furthermore, the low-cost PM sensors
evaluated in this study were also able to provide reasonably correlated raw values for PM2.5 and PM10

when exposed to the various types of particles during the outdoor experiment.
Next, a simple yet efficient image-based AQI classification technique on an IoT device (AQSense)

using a mixture of ML and DL-based supervised learning algorithms was also discussed. This technique
uses low-cost PM sensors only for the training period. Therefore, this model does not rely heavily on
the PM sensor for its entire lifetime, and hence, it does not require any special maintenance frequently.
Also, the users do not need to carry a separate hardware device for checking the AQI. The only required
input from a user’s side is an image of the traffic. Experimental results show accuracy up to 90% for the
AQI classification. Additionally, a feature-rich dataset was created to be released in the public domain
to promote further research.
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