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Abstract

Deep Reinforcement Learning (DRL) has emerged as a prominent method for enhancing the training
of autonomous Unmanned Aerial Vehicles (UAVs). At the heart of this advancement lies the critical
and complex challenge of obstacle avoidance, which is essential for ensuring that UAVs can navigate
safely and efficiently. The incorporation of DRL into UAV training protocols enhances their ability to
autonomously navigate through and adapt to diverse environments. This, in turn, is pivotal for expanding
the operational capabilities of UAVs, enabling them to tackle a broader array of applications across
various challenging and complex scenarios.

In our research, we undertake a multifaceted examination of the impact of measurement uncertainty
on the performance of DRL-based waypoint navigation and obstacle avoidance for UAVs covering both
static and dynamic obstacles environment scenario. The challenge increases when the obstacles changes
from static to dynamic as now these obstacles can change position in time and affect the navigation.

The measurement uncertainty primarily stems from sensor noise, which impacts localization accu-
racy and obstacle detection capabilities. We model this uncertainty as adhering to a Gaussian probability
distribution, characterized by an unknown mean and variance.

Our research unfolds by assessing the performance of a DRL agent, meticulously trained using the
Proximal Policy Optimization (PPO) algorithm, operating within an environment characterized by con-
tinuous state and action spaces. This investigation takes place in unseen randomized environments,
each exposed to varying degrees of state-space noise, effectively emulating the effects of noisy sensor
readings. Our primary objective is to pinpoint the threshold at which the policy becomes susceptible
to noise, ultimately paving the way for us to explore diverse filtering techniques to mitigate these detri-
mental effects.

Our findings reveal that the DRL agent exhibits a remarkable degree of inherent robustness against
specific types of noise. We leverage this inherent robustness to bolster its performance in scenarios
where it would otherwise succumb to the deleterious influence of state-space noise. To empirically
validate our research, we undertake extensive training and testing of the DRL agent across a spectrum
of UAV navigation scenarios within the PyBullet physics simulator.

In a significant stride towards practical applicability, we port the policy distilled through simulation
directly onto a real UAV without any additional modifications, and subsequently, we meticulously verify
its performance in a real-world operational setting. This transformative approach holds the potential to
inform the selection of sensors with varying biases and variances, and intriguingly, it suggests that artifi-
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cially injecting noise into measurements can yield performance enhancements in certain scenarios. The
substantiation of this proposition is achieved through rigorous testing on a real UAV, thereby solidifying
the practicality and real-world utility of our approach.

In summation, our research contributes to the burgeoning field of UAV autonomy by shedding light
on the intricate interplay between measurement uncertainty and Deep Reinforcement Learning-based
navigation and obstacle avoidance. The insights garnered from our study not only advance our under-
standing of UAV operation but also provide actionable guidance for sensor selection and noise injection
strategies to bolster real-world performance.
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Chapter 1

Introduction

Unmanned aerial vehicles (UAVs) are commonly used for various critical missions that often re-
quire navigation in unpredictable environments with obstacles and potential threats to the safety of the
UAV[3]. In recent years, the widespread application of unmanned aerial vehicles (UAVs) has become
increasingly evident in various civilian tasks such as object tracking[4], 3D reconstruction[5], wireless
coverage provision[6], remote sensing[7], wildlife protection[8], search and rescue operations[9], goods
delivery[10], security and surveillance[11], agriculture[12], and inspection of civil infrastructure[13].
Despite the numerous applications, navigation remains challenging primarily in dynamic and stochastic
environments. Velocity obstacles[14], artificial potential fields[15], fuzzy logic[16] and genetic algo-
rithms [17] are some methods for obstacle avoidance in dynamic environments. Methods like SLAM
[18] are effective in high obstacle-density environments, using data from sensors like cameras and LI-
DAR. This makes it too computationally complex for real-time implementation in UAVs.

An increasingly popular approach for waypoint navigation amidst obstacles is to use Reinforcement
Learning (RL)[19]. RL allows an agent to learn the optimal behaviour for a particular task through
trial-and-error interactions with the environment. This makes RL a promising method for improving the
autonomy of agents in various robotics applications [20].

Our research focuses on examining the impact of measurement uncertainty on the efficacy of DRL-
based waypoint navigation and obstacle avoidance in UAVs, accounting for both static and dynamic
obstacles. Measurement uncertainty arises from sensor noise affecting localization and obstacle de-
tection, it is assumed to follow a Gaussian probability distribution with an unknown non-zero mean
and variance and it makes the relative position of the obstacles and the target from the UAV uncertain.
Our research undertakes the evaluation of a Deep Reinforcement Learning (DRL) agent’s effectiveness,
which has been trained using the Proximal Policy Optimization (PPO) technique. Extensive training and
testing of the DRL agent under various UAV navigation scenarios are performed in the PyBullet physics
simulator. To evaluate the practical validity of our method, we port the policy trained in simulation onto
a real UAV without any further modifications and verify the results in a real-world environment.
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Figure 1.1: UAV Obstacle Avoidance Scenario: The UAV starts at one end of the environment, and

must make it to the target (indicated by the green square) at the other end. Between them lie obstacles

that the UAV must avoid. Further, the UAV’s position is constrained at all times by a geofence, indicated

by the white lines (figure from the simulated environment).

Figure 1.2: Real World UAV Navigation Test Setup (Side View): This image illustrates the experi-

mental setup delineating an operational test area with clear white boundary lines. The setup features a

Crazyflie 2.1 drone initiating at a marked starting point, navigating around a cylindrical obstacle, and

aiming for a designated target position. The environment simulates potential real-world conditions to

assess the UAV’s autonomous navigation capabilities.
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1.1 Related Works

The advent of Reinforcement Learning (RL) as a prominent approach for waypoint navigation in
complex environments marks a significant advancement in the field of robotics, particularly for Un-
manned Aerial Vehicles (UAVs). RL facilitates agents in acquiring optimal behavior for specific tasks
through trial-and-error interactions with their environment, thereby augmenting the autonomy of agents
in diverse robotics applications [21].

Pham et al. [22] provide a framework for using reinforcement learning to enable UAVs to navigate
a discretized environment. S. Ouahouah et al. [23] propose probabilistic and Deep Reinforcement
Learning based algorithms for avoiding collisions in a discrete space environment.

Expanding the scope to dynamic obstacle avoidance, several studies have introduced innovative RL
applications. The work of Guo et al. [24] that presented Layered-RQN, an improved DRL technique
for UAVs to navigate in dynamic situations. Yan et al. [25] employ D3QN, a DRL algorithm for real
time path planning in dynamic environments. They use a separate action space that includes eight
directions around the UAV. Yang et al. [26] proposed a framework based on double deep Q-network
with priority experience replay (DDQN-PER) which allows UAVs to navigate and avoid obstacles in a
dynamic environment.

To enhance UAV navigation training, Villanueva et al. [27] introduced a technique to improve UAV
navigation training by adding Gaussian noise to a DRL agent’s action space. This reduced navigation
steps and flight time per task. There have been work of Zhao et al. [28] that study generalisation in RL,
however it is completely in simulation. TQ Pham (2019)[29] proposed an avoidance assistance system
in simulation and W Poomarin et. al [30] used trajectory guidance for automatic docking of wheel
mobile robot.

All of the procedures described above presume that the data acquired from the sensors is perfect.

However in real-world scenarios, the sensors and techniques used for UAV localisation result in
noise. Some common techniques used to localise UAV in indoor environments are IMU(inertial mea-
surement unit), VO(visual odometry) and SLAM(simultaneous localisation and mapping) [18]. IMUs
are usually chosen because they can provide the measurement data at a higher sampling rate. But over
time IMU measurements are drifted and generate errors [31]. Because of this IMUs are fused with
other methods like visual odometry [32], or GPS [33]. However, cameras used for visual odometry also
suffer through noise [34]. UWB (Ultra-wide band) based techniques are also used for localisation in
GPS denied environments[35] [36]. UWB signals can experience reflections, diffractions, and scatter-
ing from various surfaces and objects in the environment. This leads to noise in obtained data. Yang
et al [35] presents a UWB based technique for localisation producing noise with bias and variance upto
0.2 m and 0.07m respectively. Another commonly used technique for UAV localisation involves using
RF(radio frequency) [37]. RF, similar to UWB may also face reflections, diffractions, scattering, signal
attenuation and interference causing noise in measurements. Ultimately, there are many techniques, and
sensors available for UAV localisation, with bias and variance trade-offs.
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Recent works have started addressing noise in RL-based UAV navigation. Hu et al[38] use PPO, a
DRL algorithm for autonomous obstacle avoidance in a UAS (Unmanned Aircraft System) with moving
obstacles considering a continuous state and observation space. The authors consider uncertainty in the
UAS position due to various factors such as wind, true speed, and positioning error.However they use
fixed levels of noise. Wan et al[39] propose a novel DRL method Robust-DDPG for UAV navigation in
dynamic environments. They use Gaussian noise as adversial attacks during training to improve policy
robustness.

All these works in RL based navigation for UAVs in complex and stochastic environments consider
noisy sensors to allow better generalisation of the RL agent. However, these works do not provide any
reasoning or study behind the choice of the noise added, and to the best of our knowledge there is no
systematic study on generalisation on RL based navigation for UAVs. There have been works like those
of A. Zhang et al. [40], C. Zhang et al. [41] and Cobbe at al. [42] that study generalisation in RL,
however all these works are on games that have little to no physical significance. We thus provide a
systematic evaluation of policies for UAV navigation in a dynamic environment trained on different
levels of noise.

No studies have been conducted on the effects of measurement noise in the context of training and
implementation of DRL-based algorithms for UAVs that are deployed from simulation to real world.

Building upon this foundation, our work also extends to the exploration of RL’s capacity to mitigate
the adverse impacts of time-varying noise, such as those observed with Inertial Measurement Units
(IMUs). Narasimhappa et al [43] use a modified Kalman Filter (SHAKF) to incorporate time-varying
noise estimator to reduce the drifting measurements of the IMU while Tsiakmakis et al[44] used DRL to
learn a policy to correct localization errors from IMUs leading to more precise localization. However we
would like to look at reinforcement learning as a method to eradicate the effects of such noise by training
an inherently robust policy. To the best of our knowledge, there are no other works that acknowledge
such type of noise while training RL based policies for UAV navigation. We also incorporate the study
of time varying bias for static obstacle in our study in chapter 4.

1.2 Problem Formulation

The agent’s main objective is to reduce the separation between the Unmanned Aerial Vehicle (UAV)
and the target (dtarget) to a level within a predefined acceptable margin of error (ϵsuccess). Simultaneously,
the agent must ensure a minimum safety distance (ϵsafe) from the closest obstacle doi at all times, with
the understanding that this constraint trivially holds for other obstacles in the environment like shown
in figure 1.3.
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Figure 1.3: Obstacle Avoidance Challenge: The UAV is tasked to navigate towards the target, strate-

gically maneuvering around obstacles that lie along its path.

However, the presence of noisy sensors introduces inaccuracies in the UAV’s localization estimates.
These inaccuracies manifest as deviations in the UAV’s intended path, increasing the risk of collisions
with obstacles, as depicted in Figure 1.4.

Figure 1.4: Imprecise Localization Arising from Sensor Noise: The UAV’s trajectory, indicated by the

orange dotted line, illustrates the deviations caused by noisy sensor data, increasing the risk of collision

with obstacles.
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The estimated position variables x̂ and ŷ are defined as:

x̂ = x+ ηx ŷ = y + ηy (1.1)

ηx, ηy ∼ N (µ, σ) (1.2)

Here x and y denote the true position of the UAV and ηx and ηy are localization errors caused due to
sensor noise, which conform to a normal distribution N with parameters µ and σ

The challenge of obstacle avoidance increases because the UAV’s estimated position deviates from
its actual position due to sensor noise, leading to uncertainty in the observed state at each time step.

Our investigation aims to assess the inherent robustness of a policy learned through deep reinforce-
ment learning to such noise. To tackle this challenge, we leverage the Proximal Policy Optimization
(PPO) algorithm, a well-established method in deep reinforcement learning (DRL), known for its sta-
bility and efficiency in policy learning. PPO plays a pivotal role in our investigation by allowing us to
systematically evaluate and enhance the robustness of the UAV’s navigation policy in the face of mea-
surement noise. By training and evaluating the DRL agent under various levels of sensor noise, with
unknown mean and variance, we aim to not only assess the inherent resilience of the learned policy
but also explore strategies to augment its performance despite the adversities posed by imprecise sensor
data. The approach ensures the UAV’s proficiency in maintaining safety distances and achieving its
navigation objectives under fluctuating levels of environmental uncertainty, highlighting the indispens-
able value of PPO in developing robust autonomous systems capable of operating reliably in real-world
conditions fraught with sensor imperfections.

1.3 Thesis Contribution

The key contributions of this thesis are given below.

• This is the first study that systematically analyzes the effects of noisy sensor inputs on DRL-based
waypoint navigation and obstacle avoidance for UAVs.

• The measurement noise is modelled as a random variable sampled from a Gaussian distribution.
Both training and evaluation of the well-known DRL algorithm, Proximal Policy Optimization
(PPO) is performed in the presence of measurement noise with different levels of the unknown
mean and variance. The performance of the DRL agent trained with perfect measurements is
compared with other agents trained with different levels of measurement noise.

• We also consider scenarios involving time-varying bias, where the bias µ in the Gaussian noise
N (µ, σ) linearly changes over time. This time-varying bias is often observed in noise originating
from position estimates provided by Inertial Measurement Units (IMUs).
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• We show that artificially injecting noise with carefully chosen variance into the existing measure-
ment error improves the performance of the DRL agent when the measurement error has some
unknown bias.

• The policy trained in simulations can be directly deployed to a real-world environment for way-
point navigation and obstacle avoidance, using a CrazyFlie 2.1.

1.4 Thesis Overview

This thesis presents a comprehensive study of Reinforcement Learning (RL) applied to quadrotors,
addressing key concepts, algorithm taxonomy, and experimental validations with both simulations and
real-world applications. The main contributions and the structure of the thesis are outlined as follows:

• In Chapter 2, provides background for the study: foundational concepts of RL are discussed,
including states, observations, and action spaces, along with a detailed exploration of policy de-
termination, value functions, and the optimization problem intrinsic to RL. UAV model, Mocap,
Gaussian Noise, Low Pass Filter (LPF), Kalman Filter (KF), Velocity Obstacle (VO) and Pybullet.

• Chapter 3 details a comprehensive study for navigating static obstacles using RL. The methodol-
ogy includes a thorough description of the environment, the agent, and the impacts of noise and
time-varying bias. The results section evaluates the trained policies under various noise condi-
tions, analyzing mean rewards and episode durations.

• The focus of Chapter 4 is a study on dynamic obstacles. It presents the methodology and en-
vironment setup, delves into the agent’s structure, and discusses the effects of noise. Results
from training in two distinct environments are assessed, with evaluations of the trained policies’
robustness against different types of noise presented alongside a discussion section.

• In Chapter 5, the sim-to-real transfer is showcased through experiments with static obstacles in a
real-world setup. This includes the implementation and testing protocols, an evaluation of noise
impact, performance metrics, and a summary of the experimentation results.

• Finally, in Conclusion section we conclude the thesis, summarizing the key findings, discussing
the implications of the research, and suggesting directions for future work.
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Chapter 2

Background

Reinforcement Learning (RL) is a machine learning paradigm that function by incentivizing desired
behaviours and penalizing undesirable ones in order to instruct agents in decision-making [1]. In re-
inforcement learning (RL), an agent interacts with its environment to achieve a goal, in contrast to
supervised learning where models are trained on a preset set of data with known outputs. The agent
discovers, by means of trial and error, the optimal course of action in various circumstances so as to
maximize its cumulative reward over time.

The learning process is regulated by the exploration and exploitation principles, in which the agent
actively pursues novel strategies and utilizes its prior knowledge to optimize its decision-making. Typ-
ically, the environment offers rewards or penalties as feedback, which the agent employs to modify its
behaviour. This framework possesses a broad range of applications, encompassing finance, healthcare,
games, and robotics. It empowers systems to enhance their performance in dynamic, complex tasks
autonomously.

2.1 Key Concepts in RL

The principal entities in Reinforcement Learning (RL) are the agent and the surrounding environ-
ment. The global context in which the agent interacts and resides is referred to as the environment. The
agent determines the most suitable course of action after perceiving a (potentially incomplete) observa-
tion of the state of the world at each stage of interaction. In addition to changes that occur during agent
interaction, the environment is also capable of undergoing spontaneous transformations.

The agent also receives a reward signal from the environment, which is a numerical indication of the
quality of the current condition of the world. The objective of the agent is to optimize its cumulative
reward, known as the return. Reinforcement learning methods refer to strategies employed by an agent
to acquire behaviours that enable it to accomplish its objective .
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Figure 2.1: Agent Environment Interaction loop: The figure depicts the fundamental framework of

a Reinforcement Learning model, in which an agent engages with an environment by taking action At,

the action is then received by the environment which uses that to produce a reward Rt+1 and a state St+1

at the next moment in time and then this is then passed to the agent for the next action to be decided.

Image ref. [1]

In order to provide a more precise explanation of the function of RL, it is necessary to introduce
further terminology [1], [45]:

2.1.1 States and observations

A state s, offers a thorough understanding of the world’s condition, leaving no aspect of the world
undisclosed. Conversely, an observation o provides an incomplete view of a state, potentially excluding
some details.

In deep reinforcement learning, states and observations are typically encoded as vectors, matrices,
or tensors of real numbers. For example, a visual observation might be encoded as the RGB values of
its pixels, while the condition of a robot could be captured by the angles and velocities of its joints.

In reinforcement learning terminology, the symbol for state s, is occasionally used in contexts where
it would be more accurate to use the symbol for observation, o. This is particularly evident when
discussing the process by which an agent determines an action. The notation often suggests that the
action is based on the state, s, whereas in reality, the action is based on the observation, o, because the
agent does not have full access to the state. This reflects a simplification or idealization in the notation
that does not always align with the practical limitations of the agent’s access to information.

If an agent has access to the entirety of the environment’s state, the environment is considered fully
observable. On the other hand, if the agent only receives partial information about the state, the envi-
ronment is deemed partially observable.
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2.1.2 Action space

Environments in reinforcement learning dictate the types of actions that can be taken, with the en-
tirety of valid actions within a specific environment being referred to as the action space. For some
environments, like those in Atari games or the game of Go [46] , the action space is discrete, mean-
ing the agent has a limited set of specific moves it can make. In contrast, environments that involve
controlling a robot in the physical world usually feature continuous action spaces, where actions are
represented by real-valued vectors and can vary across a wide range.

The distinction between discrete and continuous action spaces significantly impacts the choice and
design of algorithms in deep reinforcement learning. Certain algorithm families are tailored exclusively
for either discrete or continuous action spaces and require significant modifications to be applicable
in the other scenario. This difference fundamentally affects the strategies, techniques, and theoretical
approaches employed in deep RL, influencing how algorithms learn, adapt, and perform across various
environments.

2.1.3 Policy

A policy π outlines the strategy an agent employs to decide actions based on the current state. Poli-
cies are categorized into deterministic and stochastic forms.

2.1.3.1 Deterministic Policies

A deterministic policy π is defined as a function π : S → A, where for each state s ∈ S, there is a
corresponding action a ∈ A such that a = π(s). This formulation implies a fixed action selection for
each state, expressed mathematically as:

a = π(s) (2.1)

π : S → A (2.2)

2.1.3.2 Stochastic Policies

A stochastic policy, in contrast, is represented as a probability distribution over actions for each state,
denoted as π(a|s), indicating the probability of selecting action a when in state s. Formally, for each
state s, π(·|s) is a probability distribution over the action space A, described as:

π(a|s) = P (A = a|S = s) (2.3)

π : S ×A → [0, 1], where S is the state space, A is the action space. (2.4)

This allows the agent to explore actions in a probabilistic manner, which can be particularly beneficial
in complex or uncertain environments.
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Deterministic Vs Stochastic approaches

The differentiation between deterministic and stochastic algorithms hinges on the nature of the poli-
cies or environments they interact with or learn from.

Deterministic Algorithms

• Policy Determinism: Deterministic RL algorithms adopt a deterministic policy, implying that for
a specific state, the policy invariably designates the same action i.e the outcome of the action, in
terms of the next state, might still be stochastic due to the environment’s dynamics, but the choice
of action is fixed for any given state. This eradicates randomness in the action selection phase
during policy execution.

• Environment Assumption: These algorithms often presuppose a deterministic environment,
where the subsequent state and reward are precisely determined by the current state and the action
executed. Notwithstanding, deterministic policies are also applicable in stochastic environments,
aiming to identify the optimal action to maximize expected rewards.

• Examples: Deterministic Policy Gradient (DPG), Deep Deterministic Policy Gradient (DDPG),
and Twin Delayed DDPG (TD3) exemplify deterministic RL algorithms, focusing on learning a
deterministic policy mapping states to actions π : S → A .

• Application Scenarios: Primarily suitable for environments where outcomes are predictable and
consistent for the same actions and states. Robotics requiring precise control often benefit from
deterministic approaches.

Stochastic Algorithms

• Policy Randomness: Stochastic RL algorithms develop a stochastic policy, denoting that for a
given state, the policy provides probabilities for each potential action. The action is subsequently
selected based on these probabilities, introducing randomness into action selection.

• Environment Assumption: These algorithms adeptly manage stochastic environments, where
transition dynamics (next state and reward given a state and action) are probabilistic. However,
they’re also deployable in deterministic environments π : SxA → [0, 1] .

• Examples: Stochastic Policy Gradient, Proximal Policy Optimization (PPO), and Soft Actor-
Critic (SAC) are instances of stochastic RL algorithms. These methods learn policies that proba-
bilistically determine actions, facilitating more effective exploration of the environment and avert-
ing local optima pitfalls.
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• Application Scenarios: Optimal for environments where uncertainty or variability in action out-
comes is inherent. This includes complex, dynamic environments like financial markets or adap-
tive game AI, where exploration and risk management are beneficial.

In our study, we have used PPO which is Stochastic Algorithm. PPO introduces a clipped objec-
tive function that prevents excessively large updates to the policy. This clipping mechanism is crucial
for maintaining the stability of the learning process over time, reducing the likelihood of catastrophic
performance drops after updates (explained in detail in later section). The algorithm’s stability and ro-
bustness make it suitable for a broad array of tasks, including complex environments where maintaining
policy stability is challenging. This is one of the reason we have used it in our study. PPO is the current
SotA in Reinforcement Learning in terms of sample efficiency, ease of implementation and quality of
results. PPO scales well with high-dimensional state and action spaces, making it applicable to a range
of problems, from robotic control. PPO has shown good generalization capabilities across tasks. It can
be effectively used in different domains, from simulated environments to real-world applications, by
appropriately adjusting its parameters.

2.1.4 Trajectories

In reinforcement learning, a trajectory, (or sometimes called an episode), denoted as τ , is a sequence
of states, actions, and rewards observed by an agent throughout an episode. It is formally defined as:

τ = (s0, a0, r1, s1, a1, r2, . . . , sT−1, aT−1, rT , sT ) (2.5)

where st denotes the state at time step t, at represents the action taken at time step t, and rt+1 is the
reward received after executing action at in state st. The term T refers to the terminal time step of the
episode, which can be finite for episodic tasks or infinite for continuing tasks.

2.1.5 Reward and Return

The return, Gt, is the total discounted reward received by the agent from time step t onwards. It can
be formulated in several ways depending on the task:

1. Cumulative Return for episodic tasks is given by:

Gt =

T∑
k=t+1

rk (2.6)

2. Discounted Return, incorporating a discount factor γ to weigh immediate rewards more heavily
than future rewards, is defined as:

Gt =
∞∑
k=0

γkrt+k+1 (2.7)

where 0 ≤ γ ≤ 1.
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2.1.6 Reinforcement Learning Optimization Problem

The objective in reinforcement learning is to discover a policy π∗ that maximizes the expected re-
turn from the initial state distribution over all possible trajectories. This optimization problem can be
formally stated as:

π∗ = argmax
π

Eτ∼π[G0] (2.8)

where Eτ∼π[G0] represents the expected return of following policy π from the initial state over all
trajectories.

2.1.7 Value Functions

Value functions are fundamental in reinforcement learning as they quantify the expected return for
states or state-action pairs under specific policies. These functions are pivotal in policy evaluation and
improvement. There are four primary value functions of interest:

1. The On-Policy Value Function, V π(s), which provides the expected return when starting in state
s and consistently following policy π:

V π(s) = Eτ∼π [R(τ) | S0 = s] (2.9)

where R(τ) denotes the return of the trajectory τ .

2. The On-Policy Action-Value Function, Qπ(s, a), which indicates the expected return upon tak-
ing an action a in state s under policy π, and thereafter always following π:

Qπ(s, a) = Eτ∼π [R(τ) | S0 = s,A0 = a] (2.10)

This function is particularly useful for evaluating the potential of actions that are not necessarily
derived from policy π.

3. The Optimal Value Function, V ∗(s), which gives the maximum expected return achievable from
state s across all policies:

V ∗(s) = max
π

Eτ∼π [R(τ) | S0 = s] (2.11)

This function represents the best possible outcome from any given state, serving as a benchmark
for policy performance.

4. The Optimal Action-Value Function, Q∗(s, a), which provides the maximum expected return
for taking action a in state s when followed by the optimal policy:

Q∗(s, a) = max
π

Eτ∼π [R(τ) | S0 = s,A0 = a] (2.12)

Q∗(s, a) is critical in many RL algorithms as it directly informs the decision-making process by
indicating the quality of taking action a in state s.
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2.1.8 The Optimal Q-Function and the Optimal Action

The Optimal Q-Function, denoted as Q∗(s, a), represents the expected return for choosing an action
a in state s and subsequently adhering to the optimal policy. The Bellman optimality equation for
Q∗(s, a) is:

Q∗(s, a) = E
[
Rt+1 + γmax

a′
Q∗(St+1, a

′) | St = s,At = a

]
(2.13)

This equation captures the essence of the decision-making process at the heart of reinforcement
learning, where the goal is to maximize the expected return.

The Optimal Action, denoted a∗(s), is the action that maximizes the expected return from state s:

a∗(s) = argmax
a

Q∗(s, a) (2.14)

The optimal policy π∗ in state s will select actions according to this principle, potentially choosing
randomly among multiple actions that yield the same maximum value from Q∗(s, a). This situation
implies that there could be several optimal actions for a given state:

π∗(s) =

a randomly selected action from argmaxaQ
∗(s, a), if multiple maxima exist

a∗(s), if a unique maximum exists
(2.15)

Note that while there may be multiple actions that maximize Q∗(s, a), and thus the optimal policy
could be stochastic when selecting among these, there always exists a deterministic policy that will
select an optimal action.

2.1.9 Bellman Equations

Bellman equations are fundamental to reinforcement learning, expressing the recursive relationships
inherent in value functions. These equations reflect the principle that the value of a state (or state-action
pair) is based on the rewards expected in the future, adjusted by the value of the subsequent states. They
ensure self-consistency in value estimates and are key to both policy evaluation and policy improvement.

2.1.9.1 Bellman Expectation Equations

The Bellman expectation equations for the on-policy value functions under a policy π are given by:

V π(s) = Ea∼π,s′∼P

[
r(s, a) + γV π(s′)

]
, (2.16)

for the state-value function, and

Qπ(s, a) = Es′∼P

[
r(s, a) + γEa′∼π

[
Qπ(s′, a′)

]]
, (2.17)
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for the action-value function, where s′ ∼ P (·|s, a) denotes that the next state s′ is sampled according
to the environment’s transition dynamics given current state s and action a, and a′ ∼ π(·|s′) denotes
that the next action a′ is chosen according to policy π in the next state s′.

2.1.9.2 Bellman Optimality Equations

The Bellman optimality equations for the optimal value functions, which do not condition on a
particular policy, are:

V ∗(s) = max
a

Es′∼P

[
r(s, a) + γV ∗(s′)

]
, (2.18)

for the optimal state-value function, and

Q∗(s, a) = Es′∼P

[
r(s, a) + γmax

a′
Q∗(s′, a′)

]
, (2.19)

for the optimal action-value function. The key distinction between the Bellman equations for on-
policy and optimal value functions is the maximization over actions, which reflects the goal of selecting
the action leading to the highest value.

Bellman Backup The term ”Bellman backup” refers to the operation performed on the right-hand
side of the Bellman equation. For a state-value function, this is the expected return for a state, includ-
ing the immediate reward and the discounted value of the next state. For the action-value function, it
includes the expected immediate reward plus the discounted value of the subsequent state after taking
the best possible action.

2.1.10 Advantage Functions

Advantage functions play a critical role in reinforcement learning (RL) by quantifying how much
better it is to take a particular action compared to the average action at a given state under a certain
policy. The concept of the advantage function, Aπ(s, a), helps in understanding the relative utility of
each action without needing to consider the absolute quality of that action.

The advantage function for a policy π, denoted as Aπ(s, a), is defined as the difference between the
action-value function Qπ(s, a) and the state-value function V π(s). This difference tells us how much
more (or less) beneficial it is to take action a in state s over randomly selecting an action according to
π(·|s), assuming the policy π is followed thereafter. Mathematically, the advantage function is expressed
as:

Aπ(s, a) = Qπ(s, a)− V π(s) (2.20)

This measure is particularly useful in policy gradient methods where it helps to estimate the efficacy
of actions relative to a baseline, enabling more informed decisions for policy improvement.
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2.2 Taxonomy to RL Algorithms

Figure 2.2: Taxonomy to RL Algorithms: An informative yet non-exhaustive taxonomy of algorithms

in contemporary RL, image ref [2]

2.3 Model-Free vs Model-Based Reinforcement Learning

One of the principal distinctions in reinforcement learning (RL) is whether the algorithm utilizes a
model of the environment. Model-based RL methods incorporate a representation that predicts state
transitions and rewards, allowing for planning and foresight. This approach can substantially improve
sample efficiency over model-free methods, as demonstrated by the success of algorithms such as Al-
phaZero [47]. However, acquiring a ground-truth model is often infeasible, necessitating the learning
of the model from environmental interactions, which introduces challenges such as model bias and
potential sub-optimal performance in the actual environment.

Model-free methods, in contrast, learn from direct interaction without an explicit environmental
model. These methods can be broadly categorized into policy optimization and Q-learning approaches,
each with distinct characteristics and use cases.

2.3.1 Policy Optimization in Model-Free RL

Policy optimization directly adjusts the policy’s parameters to maximize the expected return. The
policy, expressed explicitly as πθ(a|s), is optimized either by gradient ascent on the performance objec-
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tive J(πθ), or through surrogate objectives for more stable updates. Almost always, this optimization
is performed on-policy, which means that each update utilizes only data gathered while the policy is in
effect at the time. Notable algorithms include A2C/A3C and Proximal Policy Optimization (PPO):

• A2C/A3C [48] perform gradient ascent to maximize the expected return directly.

• PPO [49] optimizes a surrogate objective that provides a conservative estimate for policy updates.

2.3.2 Q-Learning in Model-Free RL

Q-learning focuses on learning an approximate Q-function, Qθ(s, a), based on the Bellman equation.
This method often utilizes off-policy data, enabling the efficient reuse of past experience. Examples
of Q-learning algorithms are Deep Q-Networks (DQN) [50] and C51 [51], which models the return
distribution.

2.3.3 Trade-offs Between Policy Optimization and Q-Learning

The primary strength of policy optimization methods lies in their principled approach to directly
optimizing the desired objective. This direct optimization strategy tends to enhance the stability and
reliability of the learning process. Formally, policy optimization techniques focus on adjusting a policy,
π(a|s; θ), to maximize the expected return by directly influencing the agent’s actions in the environment.

In contrast, Q-learning methods approach the optimization problem indirectly. They aim to train
a parameterized action-value function, Qθ(s, a), to satisfy a self-consistency Bellman equation. This
indirect approach introduces potential failure modes, rendering Q-learning techniques generally less
stable than their policy optimization counterparts.

However, when Q-learning methods are effective, they offer a substantial advantage in terms of
sample efficiency. This efficiency stems from their ability to reuse data more effectively, as opposed to
policy optimization techniques which typically require fresh samples to update the policy. The ability
to efficiently utilize data makes Q-learning particularly appealing in environments where acquiring new
samples is costly or time-consuming.

2.3.4 Interpolating Between Policy Optimization and Q-Learning

Interpolation between policy optimization and Q-learning has led to algorithms that balance the two
approaches, such as Deep Deterministic Policy Gradients (DDPG) and Soft Actor-Critic (SAC), which
combine elements of both to improve learning stability and performance.

• DDPG [52] learns a deterministic policy alongside a Q-function using each to improve the other.

• SAC [53] employs stochastic policies with entropy regularization to enhance exploration and
learning stability.
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2.4 DDPG and TD3

Deep Deterministic Policy Gradient (DDPG) algorithm is a reinforcement learning approach de-
signed for environments with continuous action spaces, learning a Q-function and a policy concurrently
through off-policy data and the Bellman equation. DDPG builds on Q-learning principles, aiming to
identify the optimal action-value function to dictate the best action in a given state. It incorporates a
replay buffer to mitigate issues from correlated data and employs target networks with Polyak averag-
ing [54] for more stable learning, enhancing Q-learning’s applicability to continuous domains by using
modern deep learning techniques.

Twin Delayed DDPG (TD3) advances DDPG by addressing its susceptibility to hyperparameter
sensitivity and overestimation bias through three main improvements: Clipped Double-Q Learning,
which reduces overestimation by taking the minimum of two separate Q-function estimates; Delayed
Policy Updates to lessen policy update variance; and Target Policy Smoothing, adding clipped noise
to actions to avoid overfitting to Q-function peaks. These adjustments make TD3 more robust and
effective, significantly outperforming DDPG in various settings. Both DDPG and TD3 are off-policy
and support continuous action spaces, but TD3 further enriches exploration by introducing uncorrelated
noise to policy actions during training, balancing the exploration-exploitation trade-off more effectively.

2.5 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a policy gradient method for reinforcement learning that has
gained popularity due to its effectiveness and simplicity. It is designed to improve upon its predecessor,
Trust Region Policy Optimization (TRPO), by seeking to take the largest possible improvement step
on a policy using the currently available data without causing a performance collapse, a challenge that
TRPO addresses with a complex second-order method.

PPO simplifies this approach and operates by maintaining a balance between exploration and ex-
ploitation. It does this by utilizing a clipped objective function that prevents the new policy from devi-
ating too far from the old policy. This ensures that the updates are stable and the policy improves in a
more controlled manner.

There are two primary variants of PPO: PPO-Penalty and PPO-Clip.

• PPO-Penalty: This variant solves a KL-constrained update like TRPO but introduces a penalty on
the KL-divergence in the objective function instead of a hard constraint. The penalty coefficient
is adjusted throughout training for appropriate scaling.

• PPO-Clip: Unlike PPO-Penalty, PPO-Clip does not have a KL-divergence term in the objective
function. It uses a clipping mechanism to modify the objective function, which removes incentives
for moving too far from the old policy.
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PPO is an on-policy algorithm that can handle environments with either discrete or continuous action
spaces.

Key Equations

PPO-Clip updates policies by solving the following optimization problem:

θk+1 = argmax
θ

Es,a∼πθk
[L(s, a, θk, θ)] , (2.21)

where the objective function L is defined as:

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip
(

πθ(a|s)
πθk(a|s)

, 1− ϵ, 1 + ϵ

)
Aπθk (s, a)

)
. (2.22)

In this function, ϵ is a hyperparameter that defines the clipping range and Aπθk (s, a) is the advantage
function, indicating the relative value of taking action a in state s under policy πk = π(θk)

The clipping function serves as a form of regularization, ensuring that the updated policy does not
deviate significantly from the old policy, thus promoting a more stable learning process.

Exploration vs. Exploitation

PPO trains a stochastic policy in an on-policy way, balancing exploration by sampling actions ac-
cording to the stochastic policy, and exploitation by progressively making the policy less random as it
learns to exploit higher rewards. The policy becomes progressively less random over time as it learns to
exploit the higher rewards it has found, which could potentially lead to getting trapped in local optima
if not managed properly.
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Algorithm 1 PPO with Clipping Strategy

1: Input: initial policy parameters θ0, initial value function parameters φ0

2: for each iteration k = 0, 1, 2, . . . do

3: Collect trajectories Dk = {τi} by executing policy πk = π(θk) in the environment.

4: Calculate rewards-to-go R̂t for each time step.

5: Estimate advantages Ât using a chosen advantage estimation technique based on the current

value function Vφk
.

6: Optimize the policy parameters by maximizing the clipped objective:

θk+1 = argmax
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

(
πθ(at|st)
πθk(at|st)

Ât, clip
(

πθ(at|st)
πθk(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)
where ϵ is the clipping hyperparameter.

7: Update the value function by minimizing the mean-squared error:

φk+1 = argmin
φ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vφ(st)− R̂t

)2

8: end for

Referenced from [49], [55] and https://spinningup.openai.com/en/latest/algorithms/
ppo.html

2.6 UAV Model

A first-order linear UAV model with position coordinates [x, y]T as output and velocity [vx, vy]
T as

the control input is used here, as given by Eq. (2.23).

ẋ = vx, ẏ = vy (2.23)

My current work assumes that the altitude z is held constant throughout the flight, constraining the
UAV navigation to the XY plane.

2.7 Measurement Noise Model and Denoising Algorithm

The noise used in all of our simulations and experiments is sampled from Gaussian distributions with
different combinations of the mean (µ) and standard deviation (σ).

f(x) =
1√
2πσ2

e−
1
2(

x−µ
σ )

2

= N (µ, σ) (2.24)
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There are several approaches to denoising (reducing the effect of measurement noise) a signal cor-
rupted by Gaussian noise. Our primary focus is on two of them: The Bessel Low Pass Filter [56], and
the Kalman Filter [57]

2.7.0.1 Low Pass Filter

A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency
and attenuates signals with frequencies higher than the cutoff frequency. For the denoising aspect of our
experiments, we employed a 2nd order Bessel Low Pass Filter, selected for its nuanced balance between
phase response and filtering efficacy. The chosen filter, with a cutoff frequency set at 2, is described by
the following transfer function as cited from [56]:

H(s) =
3

s2 + 3s+ 3
(2.25)

The choice of this LPF was predicated on its proven performance in preserving the temporal integrity
of the signal, thus ensuring minimal distortion during the denoising process.

2.7.0.2 Kalman Filter

The Kalman Filter [57] [58] is a recursive algorithm used for estimating the state of a linear dynamic
system from a series of noisy measurements. It consists of two main steps: prediction and update.

Prediction

The prediction step projects the current state estimate ahead in time. It also projects the current
estimate uncertainty. The equations for the prediction step are:

• State Prediction Equation:
x̂k|k−1 = Ax̂k−1|k−1 +Buk (2.26)

where x̂k|k−1 is the predicted state estimate at time k given all measurements up to time k− 1, A
is the state transition model, x̂k−1|k−1 is the estimated state at time k− 1 given all measurements
up to time k − 1, and B is the control input model applied to the control vector uk.

• Covariance Prediction Equation:

Pk|k−1 = APk−1|k−1A
T +Q (2.27)

where Pk|k−1 is the predicted state covariance at time k given all measurements up to time k− 1,
Pk−1|k−1 is the estimated state covariance at time k − 1 given all measurements upto time k − 1

and Q is the process noise covariance matrix.
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Update

The update step adjusts the predicted estimate by an actual measurement at time k.

• Kalman Gain:
Kk = Pk|k−1C

T (CPk|k−1C
T +R)−1 (2.28)

where Kk is the Kalman Gain at time k, C is the observation model, and R is the observation
noise covariance matrix.

• State Update Equation:
x̂k|k = x̂k|k−1 +Kk(zk − Cx̂k|k−1) (2.29)

where x̂k|k is the updated state estimate at time k given all measurements up to time k, and zk is
the measurement at time k.

• Covariance Update Equation:

Pk|k = (I −KkC)Pk|k−1 (2.30)

where Pk|k is the updated state covariance at time k given all measurements up to time k.

2.8 Velocity Obstacle (VO)

The Velocity Obstacle(VO) is used to devise avoidance maneuvers in dynamic environments[59]. It
is used here to design a reward function that allows us to train policies capable of avoidance maneuvers
in such dynamic environments. The Velocity Obstacle(VO) of a moving circular obstacle B with respect
to a moving circular agent A is defined as set of all velocities of A that may lead to a collision between
B. That is,

A(t) ∩B(t) = ∅ if VA(t) /∈ V O(t) (2.31)

where A(t) and B(t) are the trajectories of A and B respectively. The region V OB ∩ V OH in figure
2.3, accounts for this total Velocity obstacle. To consider only immediate collisions, we can modify the
VO by subtracting from VO, a set V OH defined as eq. 2.32

V Oh = {VA | VA ∈ V O, ∥VA,B∥ ≤ dm
Th

} (2.32)

where VA is velocity of A and VA,B = VB − VA, the relative velocity of A with respect to B. V OH

is the set of all velocities of A that lead to a collision within a time horizon Th. In figure 2.3, region
V OB = V O − V OH represents such a ’reduced’ Velocity Obstacle.
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Figure 2.3: V OB is the velocity obstacle for agent A with respect to object B for some time horizon T.

2.9 Pybullet

PyBullet [60] is a Python module for physics simulation, including robotics, that offers both high
performance and accuracy. The reasons to use Pybullet were:

• Realistic Physics Simulations: PyBullet is based on the Bullet Physics SDK, which provides
highly accurate simulations of real-world physics. This accuracy is crucial for research and RL,
especially in robotics, where understanding the dynamics of objects and environments is key to
developing effective algorithms and models.

• Versatility and Flexibility: It supports a wide range of simulations, from rigid body dynamics
to soft body physics. Researchers can simulate complex scenarios, including those with multiple
interacting objects, which is often required in robotics and other domains. This versatility allows
for a broad range of experiments and studies, making it an invaluable tool in scientific research.

• Reinforcement Learning Support: PyBullet is particularly well-suited for RL experiments. It
offers a fast and direct way to test algorithms in a controlled, yet realistic environment. Re-
searchers can rapidly prototype and iterate on their RL algorithms, testing them under various
conditions and scenarios without the need for real-world testing, which can be costly and time-
consuming.
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• Accessibility and Community Support: Being an open-source project, PyBullet is accessible to
everyone, fostering a community of users and contributors who continuously improve and extend
its capabilities. This community support also means that researchers can easily find solutions to
problems and share their findings with others, advancing the field more rapidly.

• Integration with Machine Learning Libraries: PyBullet easily integrates with popular machine
learning and data science libraries, such as TensorFlow and PyTorch. This compatibility is essen-
tial for researchers in RL, where machine learning algorithms are a core component. It enables
seamless transitions between the simulation environment and the learning algorithm, facilitating
more efficient development cycles.

• Benchmark Environments: PyBullet includes a variety of benchmark environments that are
commonly used in RL research. These standardized scenarios allow researchers to compare the
performance of their algorithms against established baselines, ensuring that advances in the field
are measurable and replicable.

In summary, PyBullet’s combination of realistic physics simulation, flexibility, support for reinforce-
ment learning, and integration with machine learning libraries makes it an essential tool in research
and RL. Its open-source nature and strong community support further enhance its value, facilitating
widespread use and ongoing improvement.
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Chapter 3

Navigating UAVs Through Static Environments

In this chapter, we delve into the intricacies of the system architecture designed for navigating Un-
manned Aerial Vehicles (UAVs) through static obstacle environments followed by the description of
the environment, action space, observation space, reward function, agent and then will cover in detail
the effect of noise. The last section of the chapter includes the study for time varying bias for static
obstacles.

3.1 System Architecture Overview

This section describes the computational framework for navigating an Unmanned Aerial Vehicle
(UAV) through its environment.

The architecture of the methodology followed is shown in Fig. 3.1.

It involves several key steps and components, as outlined below:

• Current Time Step (t): The system operates in discrete time steps, with t indicating the current
moment.

• UAV Position (xt): The current position of the UAV at time step t.

• Nearest Obstacle Position (xot): The position of the closest obstacle to the UAV, which must be
avoided for successful navigation.

• Goal Position (xgt): The target location the UAV is attempting to reach.

• Noisy Position Estimate (x̂t): To simulate real-world inaccuracies, the UAV’s position is per-
turbed, creating a noisy estimate of its actual position.

• Denoising and Final Position Estimate (x̃t): The noisy position estimate is processed (de-
noised), considering the previous action At−1 and the previous estimates, to obtain a refined
estimate of the UAV’s position.
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Figure 3.1: System Architecture: At the current time step t, we obtain the UAV’s position xt, the

position of the nearest obstacle xot, and the goal position xgt. xt is perturbed to generate the noisy

position estimate x̂t, which is then denoised along with the previous action At−1 to yield the final

position estimate x̃t. The denoised position estimate, along with xot and xgt, is utilized to produce the

environment observation Õt. The reward Rt is calculated using the true position xt. The observation

and reward are then inputted into the policy, which generates the action to be taken At.
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• Environment Observation (Õt): An observation of the environment is generated using the de-
noised position estimate, the position of the nearest obstacle, and the goal position. This observa-
tion is crucial for the UAV’s decision-making process.

• Reward (Rt): The system computes a reward based on the UAV’s true position to provide feed-
back on its navigation performance.

• Policy and Action (At): Based on the observation and the reward, the UAV’s policy determines
the next action to take (At), such as adjusting its trajectory or speed to move towards the goal
while avoiding obstacles.

This architecture establishes a feedback loop where the UAV continuously updates its position and
understanding of the environment, evaluates its progress towards the goal, and adjusts its actions ac-
cordingly.

3.1.1 The Environment

The environment consists of multiple obstacles, the target location, and the initial position of the
UAV. Each episode commences with the UAV being placed at a random starting position defined as
follows:

x0 =
[
xmin + rminor, yg0 ,

zmin + zmax

2

]
(3.1)

yg0 ∼ Uniform(ymin + rminor, ymax − rminor) (3.2)

Next, the goal position is set as

xg =

[
xmax − rminor,

ymin + ymax

2
,
zmin + zmax

2

]
(3.3)

In this setup, mmin and mmax denote the minimum and maximum limits of the environment along
the respective axes (m ∈ x, y, z), ensuring the goal location is reachable while maintaining a consis-
tent challenge level. The positioning also ensures the UAV begins within the bounds of the environ-
ment, avoiding any immediate out-of-bounds penalties, with rminor acting as a safety margin to prevent
boundary infringements.

3.1.
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Figure 3.2: Simulated Environment: This is a Pybullet simulated environment with xmin as 0, xmax

as 2, ymin as -0.5, ymax as 0.5 and z axis fixed at 0.5 and rminor is 0.15 (all values in meter)

The environment’s complexity is further augmented by the introduction of obstacles. The process
begins with the determination of the total number of obstacles, constrained within a predefined upper
and lower limit. These obstacles are then systematically distributed throughout the environment. Their
placement along the x-axis follows a uniform distribution, ensuring an even spatial spread. Along
the y-axis, a normal distribution is employed to simulate varying densities and clustering of obstacles,
reflecting more realistic scenarios. The altitude for each obstacle is set at a constant, determined by the
midpoint of the z-axis range. And the obstacles in the study are considered to be spherical with diameter
dobs.

Note that we refer to the Environment with Static Obstacles (SO) with ”Environment 1” and
Dynamic Obstacles(DO) with ”Environment 2” in our study.
Chapter 3 consists with study with Static Obstacles, (Environment 1) and Chapter 4 consists with the
study with Dynamic Obstacles (Environment 2).
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3.1.1.1 Observation Space

The observation space within the environment is conceptualized as a refined, continuous represen-
tation of the current state, capturing only the essential information necessary for the agent to devise an
effective policy. This concept is mathematically formalized as:

Ot =
[
∆xgt ∆ygt ∆xot ∆yot

]
(3.4)

Here, ∆xgt and ∆ygt denote the distances to the goal along the x and y axes at time t, respectively.
Similarly, ∆xot and ∆yot represent the distances to the closest obstacle or wall along the x and y axes,
respectively.

Due to the presence of localization noise, the actual positions (x̂, ŷ) are influenced by noise, leading
to perturbations in the observed state as described by:

Ôt =
[
∆x̂gt ∆ŷgt ∆x̂ot ∆ŷot

]
(3.5)

Upon the application of a denoiser, the noisy position estimates (x̂, ŷ) are denoised to yield positions
(x̃, ỹ), resulting in the denoised form of the observation:

Õt =
[
∆x̃gt ∆ỹgt ∆x̃ot ∆ỹot

]
(3.6)

The denoised observation, Õt, is the feedback provided by the environment to the agent at each
timestep t, facilitating the agent’s learning and navigation through the task environment.

3.1.1.2 Action Space

The action space within our environment is designed as continuous, accommodating any action vec-
tor delineated by:

A =
[
vx vy vmag

]
(3.7)

In this, vx and vy represent the velocities of the Unmanned Aerial Vehicle (UAV) in the x and y axes,
correspondingly. The term vmag denotes the overall magnitude of the velocity vector, which is a crucial
component for determining the UAV’s speed.

The methodology to derive the velocity command from the given action vector is as follows:

v⃗ =

[
vx vy

]
√
v2x + v2y

× vmag (3.8)

This equation normalizes the velocity components (vx, vy) to a unit vector, which is then scaled
by the magnitude vmag. This process effectively translates the action vector into a precise velocity
command for the UAV, ensuring that its movement is accurately governed by the inputs within the
continuous action space.
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3.1.1.3 Reward Function

The environment employs a densely structured reward function designed to offer the agent contin-
uous feedback, essential for its learning and adaptation. The reward allocated at each time step t is
defined as:

Rt =



Rs, if distance to target < ϵsuccess

Rf , if collision with an obstacle occurs

Rf , if the agent is out of time

(−Rd

∥∥∥[∆xt ∆yt

]∥∥∥−Rmajor1major −Rminor1minor) otherwise
(3.9)

where:

• Rs > 0 is the reward for successfully reaching the target.

• Rf < 0 signifies the penalty for either colliding with an obstacle or failing to reach the target
within the stipulated time.

• Rd > 0 is the distance penalty coefficient, encouraging the agent to minimize the distance to the
target.

• Rmajor > 0 and Rminor > 0 are penalties assigned for breaching major and minor safety bound-
aries, respectively.

• ∥[∆xt,∆yt]∥ denote the euclidean distance between the agent’s current position and the traget
position.

• 1major and 1minor are indicator functions that are activated when the respective safety boundaries
are violated.

An agent is considered ”out of time” if it has not achieved its objective or encountered an obstacle
within a predefined timeframe. This reward structure ensures the agent is continuously guided towards
optimizing its path to the target, efficiently minimizing travel distance and avoiding safety boundary
breaches.

Additionally, graphical representations of training outcomes, such as the progression of mean re-
wards and episode lengths, offer valuable insights into the effectiveness of different training policies
3.4.
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Figure 3.3: Normalized Reward Function plot for Static Obstacle Environment (Environment 1)

: You can see that the reward continuously increases as we go closer to the goal point, then suddenly

increases within the success region of the goal. The two sudden drops in reward mark the presence of

the obstacles, indicating a bad reward being given for collision with them. The reward also plumates at

regions close to the boundaries.

3.1.2 The Agent

The agent in our study is based on the Proximal Policy Optimization (PPO) algorithm, utilizing the
implementation from stablebaselines3[61]. The architecture comprises two main components: the actor
and the critic, both of which receive the observation from the environment as input. The critic is tasked
with learning the state value function, outputting the perceived value of the input state. Conversely, the
actor focuses on policy learning, aiming to predict the mean value for each element in the action vector
based on the given state. An action value is then sampled using this mean from a Gaussian distribution.

It is important to highlight that the primary goal of our research is not to develop the most effi-
cient policy for navigating the environment. Instead, we aim to investigate the impact of noise on a
policy that demonstrates an acceptable success rate. For this purpose, we have selected a vanilla PPO
implementation from stablebaselines3 without any modifications for our experiments.
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3.1.3 The Effects of Noise

The cornerstone of our investigation revolves around the impact of observation space noise on policy
performance. Initially, multiple policies were trained across varying levels of unbiased noise to scru-
tinize their training outcomes, including mean rewards and mean episode durations over a set of 100
episodes. Subsequent to establishing baseline performances in a noise-free environment (µ = 0, σ = 0),
these policies were then assessed under different noise conditions:

1. Unbiased noise (µ = 0, σ ̸= 0)

2. Bias-only noise (µ ̸= 0, σ = 0)

3. Biased noise (µ ̸= 0, σ ̸= 0)

While the effects of unbiased noise with unknown standard deviation (σ) can be mitigated quite
effectively with the use of denoisers, as shown by our results in Section 3.2, the same cannot be said
about bias-only noise and biased noise with unknown mean (µ).

Through our experimental analysis, it emerged that policies conditioned in the aforementioned man-
ner exhibit superior performance under conditions of biased noise compared to bias-only noise. This
suggests that the adverse impact of bias-only noise on policy performance can be alleviated by super-
imposing a carefully injection of unbiased noise onto the biased localization estimates.

Again, it is important to note here that we am not treating biased noise in the same way as the other
two noises; rather, we treat it as two separate noises — the first is the biased noise with none-to-low
variance plaguing sensor readings, which cannot be fixed by using a filter, and the second is some
unbiased noise that we inject into the existing sensor noise to improve the performance of the policy.

3.1.4 Sim-to-Real Transfer

In our experimental setup, we leverage the Crazyflie 2.1 quadcopter, with motion capture markers to
facilitate real-time, high-precision localization. This setup enables us to exercise comprehensive control
over the perturbations introduced into the observation data. The localization data, captured via motion
capture technology, is relayed to our computational infrastructure. Here, it undergoes a process of
intentional corruption with simulated noise, followed by a denoising procedure when deemed necessary,
before the derivation of the observation vector. This vector is subsequently fed into the policy algorithm,
which, in turn, generates the requisite action commands.

These action commands are translated into velocity instructions that the UAV is programmed to
execute, marking the completion of a single timestep in our experimental framework. An episode is
classified as successful upon the UAV’s arrival within a predefined proximity to the designated target.
Notably, the transition from simulation to real-world application of the trained agent network onto the
UAV is achieved without necessitating any modifications to the training regime.
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This seamless sim-to-real transfer underscores the robustness of our training methodology, evidenc-
ing the practical applicability of our research in real-world scenarios. It demonstrates the commitment
to bridging the gap between theoretical models and their tangible implementation in our study.

3.2 Results

This section delves into the experimental outcomes garnered from both the training phase and the
evaluative sessions conducted in simulated settings. For Physical settings, we have another dedicated
chapter later. The training was executed on an RTX 2080 Ti GPU, with the entire process spanning
approximately 5 hours for a comprehensive 5 million timesteps. Subsequent evaluation of each policy,
encompassing 1000 episodes across various configurations of µ, σ, and the presence or absence of a
denoiser, was completed within an estimated timeframe of 10 minutes.

Details pertaining to the specific environmental variables deployed during these experiments are
systematically catalogued in Table 4.1.

Variable Name Value

Rs 1000

Rf -1000

Rd 4

Rmajor 5

Rminor 1

rmajor 0.1 (in m)

rminor 0.2 (in m)

dobs 0.1 (in m)

ϵsuccess 0.1 (in m)

Table 3.1: Environment Variables: Chapter 3

3.2.1 Training

Within our research, we embarked on the training of three distinct policies under varied conditions
of unbiased noise to compare the effects of noise added to the observation during training. The config-
urations were as follows:

1. Policy 1: No Noise (µ = 0, σ = 0)
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2. Policy 2: Low Noise (µ = 0, σ = 0.1)

3. Policy 3: High Noise (µ = 0, σ = 1.0)

For each policy, the training regimen extended over 5 million timesteps within environments charac-
terized by 1 to 3 randomly positioned obstacles at the commencement of each episode. The selection of
policy hyperparameters, as delineated in Table 4.2, was informed by extensive preliminary experimen-
tation to optimize learning efficacy.

Hyperparameter Value

Actor Layers 64× 64× 3

Critic Layers 64× 64× 1

Output Activation Function tanh

Optimizer Adam

Table 3.2: Policy Training Hyperparameters: Chapter 3

The evaluation of the training quality for these policies hinged on two pivotal metrics: mean re-
ward over the last 100 episodes and mean episode duration over the last 100 episodes. These criteria
served not only as indicators of policy robustness but also facilitated a comparative analysis of policy
adaptability across varying noise levels.
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3.2.1.1 Mean Reward Analysis

An examination of Figure 3.4(a) reveals a progressive increase in the mean reward for all three
policies throughout the duration of the training. This upward trend substantiates the effective acquisition
of the targeted behaviors, notably obstacle avoidance and optimal target acquisition with minimal steps.

Remarkably, Policy 2, represented in orange, achieves the highest mean reward, slightly surpassing
Policy 1. This superior performance can be attributed to the introduction of a minimal level of noise
(σ = 0.1) during its training phase. This strategic insertion of noise facilitated enhanced exploration
capabilities, thereby refining the policy’s effectiveness. Conversely, Policy 3, depicted in green, exhibits
the least favorable outcomes. The substantial variance (σ = 1.0) associated with this policy significantly
impedes its ability to discern patterns within its observations, resulting in a comparatively lower mean
reward.

This analysis underscores the delicate balance between noise introduction and policy performance.
A moderate amount of noise, as demonstrated by Policy 2, can serve as a catalyst for improved policy
exploration and learning efficiency. However, excessive noise, as with Policy 3, proves to be detrimental,
overwhelming the policy’s learning mechanism and hindering its performance.

3.2.1.2 Analysis of Episode Duration

The Figure 3.4(b) illustrates a notable reduction in the mean duration of episodes as training pro-
gresses. This trend is a direct consequence of the training environment’s design, where each non-
terminal timestep incurs a negative reward. Such a penalty mechanism inherently motivates the agent to
expedite the completion of an episode, thereby minimizing the accumulation of negative rewards.

This strategic imposition of negative rewards for prolonged episode durations serves a dual purpose.
It instills a sense of urgency in the agent, compelling it to seek the most efficient path to the episode’s
objective. The observed decrease in episode duration is a testament to the effectiveness of this approach,
reflecting the agent’s increasing proficiency in navigating the environment swiftly and effectively.

3.2.2 Evaluations of Trained Policies

My rigorous evaluation of the trained policies was conducted across a spectrum of environments,
each characterized by distinct levels of bias and noise variance. These assessments were meticulously
designed to include both scenarios: with and without the implementation of denoising techniques,
namely the Low Pass Filter (LPF) and the Kalman Filter (KF). The environments for these evalua-
tions were dynamically generated, featuring zero to three obstacles randomly placed at the onset of each
episode. This approach, encompassing 1000 episodes per evaluation, was strategically chosen to ensure
a high degree of statistical reliability in our findings.

For the denoising aspect of our experiments, we employed a 2nd order Bessel Low Pass Filter, se-
lected for its nuanced balance between phase response and filtering efficacy. The chosen filter, with a
cutoff frequency set at 2, is described by the following transfer function as cited from [56]:
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(a)

(b)

Figure 3.4: Policy Training Results: Figure (a) depicts the mean reward progression, and figure (b)

illustrates the episode length variation through the training period. Blue, orange, and green plots corre-

spond to Policy 1 (trained without noise), Policy 2 (trained with moderate noise µ = 0, σ = 0.1), and

Policy 3 (trained with significant noise µ = 0, σ = 1.0), respectively.
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H(s) =
3

s2 + 3s+ 3
(3.10)

This choice of LPF was predicated on its proven performance in preserving the temporal integrity
of the signal, thus ensuring minimal distortion during the denoising process. The implementation of
this filter, alongside the Kalman Filter, provides a comprehensive overview of the effects of different
denoising strategies on the performance of policies subjected to various noise profiles.

Metric Values

For the base metric of Policy 1 of unbiased noise with a mean (µ) of 0 and a standard deviation (σ)
of 0.0, when no denoiser is applied, the success rate is 61.50%, the collision rate is 38.50%, the mean
reward is -929.98, and the mean episode length is 298.123.

When a Low-Pass Filter (LPF) is used as the denoiser under the same conditions, the success rate
slightly decreases to 60.20%, while the collision rate increases to 39.80%. The mean reward also de-
creases to -957.45, and the mean episode length increases to 300.106.

Using a Kalman Filter (KF) as the denoiser results in further reduction of the success rate to 58.90%,
with an increase in the collision rate to 41.10%. The mean reward decreases more significantly to
-982.55, while the mean episode length is 297.165.

For the base metric of Policy 2 of unbiased noise with a mean (µ) of 0 and a standard deviation (σ)
of 0.0, when no denoiser is applied, the success rate is 71.60%, the collision rate is 28.40%, the mean
reward is -747.05, and the mean episode length is 298.034.

When a Low-Pass Filter (LPF) is used as the denoiser under the same conditions, the success rate
decreases to 69.40%, while the collision rate increases to 30.60%. The mean reward also decreases to
-795.71, and the mean episode length increases to 299.356.

Using a Kalman Filter (KF) as the denoiser results in an improvement in the success rate to 74.80%,
with a reduction in the collision rate to 25.20%. The mean reward improves significantly to -690.14,
while the mean episode length is 299.124.

These metrics highlight the performance differences when applying different denoisers in different
policies under the same conditions.

3.2.2.1 Unbiased Noise Evaluation

In this section, we delve into the comprehensive analysis of our three meticulously trained policies
under the influence of unbiased noise, characterized by a mean (µ) of 0 and a standard deviation (σ)
ranging from 0 to 3.0, with increments of 0.1. The scenario where σ = 0 serves as the baseline
benchmark for subsequent comparisons.

Policy 1 : As delineated in Figure 3.6(a), Policy 1 commences with a 60% success rate at the baseline.
However, a precipitous decline in performance is observed as σ increases, plummeting to nearly 0% by
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σ = 2.0. The incorporation of Low Pass and Kalman Filters mitigates this decline, sustaining a 30%
success rate even at σ = 3.0, showcasing the efficacy of denoising in preserving policy performance
under increased noise levels.

Policy 2 : Figure 3.6(b) reveals that Policy 2 not only surpasses Policy 1 at the baseline with a
72% success rate but also demonstrates an enhanced performance peak of 76% at σ = 0.5. Despite
a subsequent performance decrement with escalating σ, Policy 2, even at σ = 3.0, maintains a 56%
success rate, effectively doubling the performance of Policy 1 under similar conditions. The strategic
application of a denoiser further bolsters Policy 2’s resilience, maintaining a robust success rate of
approximately 70% across varying levels of noise.

Policy 3 : As per Figure 3.6(c), Policy 3 exhibits a near-zero success rate at baseline, which starkly
transitions to 50% at a σ of 0.3, before experiencing a gradual decline with increasing σ. Interestingly,
Policy 3 outperforms Policy 1 in higher noise scenarios, aligning closely with Policy 1’s denoised per-
formance for σ values exceeding 1.8. The integration of an LPF with Policy 3 yields a modified response
curve, indicating a delayed but steadier ascent to a 50% success rate and a more gradual performance
reduction thereafter, maintaining a near-constant success rate past a σ of 0.1. Contrarily, the Kalman
Filter does not exhibit a similar trend within the tested experimental range.

This intricate analysis underscores the nuanced effects of unbiased noise on policy performance,
highlighting the critical role of denoisers in enhancing policy robustness against environmental noise
perturbations. The findings from these evaluations not only contribute to the understanding of noise
resilience in autonomous systems but also underscore the potential of denoising techniques in improving
operational efficiency under diverse noise conditions.
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(a) Policy 1 (b) Policy 2

(c) Policy 3

Figure 3.5: Mean Reward against Unbiased Noise (µ = 0, 0 ≤ σ ≤ 3.0 in meters) The images depict

line graphs showing the mean reward over different noise levels σ for three separate policies in UAV

obstacle avoidance. The first image (a) shows Policy 1 with no noise during training, the second (b)

shows Policy 2 with 0.1 standard deviation (STD) noise during training, and the third (c) shows Policy 3

with 1.0 STD noise during training. In each graph, there are lines representing the performance without

a denoiser, with a Low Pass Filter (LPF), and with a Kalman Filter (KF).
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(a) Policy 1 (b) Policy 2

(c) Policy 3

Figure 3.6: Success Rate against Unbiased Noise (µ = 0, 0 ≤ σ ≤ 3.0 in meters): (a) Policy 1’s

success rate decreases sharply with an increase in σ, reaching a 0% success rate at around σ = 2. The

decline is slowed down by the introduction of a denoiser. (b) Policy 2’s success rate initially increases

with a small increase in σ, then drops off quickly, still outperforming Policy 1 for all tested values of

σ, even with a denoiser. The addition of a denoiser results in a nearly constant success rate of around

70% throughout the σ range. (c) Policy 3 starts with a near 0% success rate in the presence of very low

noise but jumps to a 50% success rate at σ = 0.3, then decreases gradually. The Low Pass Filter (LPF)

follows this trend with a lag, while the Kalman Filter (KF) is consistently poor.

3.2.2.2 Bias-only Noise Evaluation

Within this analytical segment, we scrutinize the performance dynamics of the three rigorously
trained policies under conditions dominated by bias-only noise, with bias levels (µ) extending from
0 to 0.3, while maintaining zero variance (σ = 0), and incrementing µ by 0.01. This examination
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seeks to elucidate the impact of bias on policy efficacy, both in the presence and absence of denoising
mechanisms.

Empirical evidence, as depicted in Figure 3.8, categorically illustrates the inherent limitations of
denoisers in counteracting the deleterious influence of bias-only noise. This limitation manifests uni-
formly across all policies, underscoring a pivotal challenge in noise compensation strategies. Policy
1 : As illustrated in Figure 3.8(a), there is a discernible decrement in success rate corresponding with
incremental bias for Policy 1. This trend unambiguously indicates the susceptibility of Policy 1 to bias,
revealing a correlation between increasing bias and diminishing performance.

Policy 2 : Contrary to Policy 1, Policy 2 exhibits a remarkable resilience to bias-induced performance
degradation, as shown in Figure 3.8(b). This policy maintains robust performance metrics up to a µ of
1.2, post which a precipitous decline is observed. Such resilience underscores the intrinsic adaptability
of Policy 2 to bias, up to a critical threshold.

Policy 3 : The performance of Policy 3, detailed in Figure 3.8(c), presents a challenging scenario
for systematic analysis due to its significantly lower success rates. The variability observed here is
predominantly attributed to random factors, rather than systematic policy responses to bias adjustments.

This comprehensive analysis accentuates the criticality of understanding the nuanced effects of bias-
only noise on autonomous policy performance. It highlights the imperative for advanced denoising
strategies or bias compensation mechanisms that extend beyond the conventional capabilities of current
denoisers. Furthermore, it brings to light the variable resilience of different policies to bias, emphasizing
the need for tailored approaches in policy design and training to mitigate the impacts of bias in noise-
dominant environments.
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(a) Policy 1 (b) Policy 2

(c) Policy 3

Figure 3.7: Mean Reward against Biased-Only Noise (0 ≤ µ ≤ 0.3, σ = 0) The images are line

graphs representing the mean reward for three different policies when tested with varying levels of bias

(denoted as µ). Each graph depicts the results for a policy under a specific training condition with

different levels of bias from 0 to 0.30 The first image (a) is for Policy 1, which was trained with no

noise. The second image (b) is for Policy 2, which was trained with 0.1 STD noise. The third image (c)

is for Policy 3, which was trained with 1.0 STD noise.
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(a) Policy 1 (b) Policy 2

(c) Policy 3

Figure 3.8: Success rate against bias-only noise (0 ≤ µ ≤ 0.3, σ = 0): (a) Policy 1’s success rate

drops off quickly with an increase in µ, hitting 0% around µ = 0.16. (b) Policy 2 manages to maintain a

consistent success rate up to µ = 0.11, before a sudden drop-off, (c) Policy 3’s success rate is near zero

for all values of µ, with any fluctuation in the success rate being attributed to randomness. We see in all

three cases that the denoisers can provide no assistance to the policies when faced with bias-only noise.

3.2.2.3 Biased Noise Evaluation

In this rigorous examination, we present the outcomes of evaluating the three distinct policies in
environments subjected to a spectrum of biased noise, characterized by a bias (µ) ranging from 0 to 0.3,
and a variance (σ) from 0 to 3.0, incrementing µ by 0.01 and σ by 0.1. This assessment specifically
eschews the use of denoisers to isolate and understand the intrinsic resilience of each policy to biased
noise.

Policy 1 : Analysis of Figure 3.10(a) delineates three pivotal regions. Initially, a minor blue region in
the lower left corner underscores the policy’s inefficacy under conditions of high bias but low variance.
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Subsequently, a broader blue region to the right signifies the policy’s collapse under high variance noise.
Intriguingly, a red region descending diagonally suggests a mitigative strategy against high bias through
the strategic introduction of unbiased noise at selected σ levels. For instance, at µ = 2.0, a zero success
rate at σ = 0 can be elevated to over 40% success by choosing an optimal σ of 1.2. This effect tapers
with increasing µ, highlighting the diminishing returns of this approach against escalating bias.

Policy 2 : Figure 3.10(b) showcases Policy 2’s robustness across a wide bandwidth of µ and σ values.
The convergence of the blue region at the bottom left with the drop-off in performance at µ = 1.2 from
Figure 3.8(b) is notable. Yet, the surrounding red contour indicates the potential to counteract bias
effects by fine-tuning σ, enhancing the success rate dramatically from 35% to beyond 70%. As bias
and variance intensify, the success rate predictably declines, as depicted by the gradient towards the
diagram’s lower and right peripheries.

Policy 3 : Reflecting trends observed in Figure 3.6(c), Policy 3’s performance is markedly poor for
minimal σ values, as illustrated by the left-sided blue strip in Figure 3.10(c). Beyond a σ threshold of
0.3, a significant uptick in success rates is observed for lower µ values, with performance deteriorating
radially outward. This decline is more pronounced with increases in µ compared to σ, aligning with
Policy 3’s historical consistency at high variance levels but marked underperformance across all bias
levels.

This nuanced analysis underscores the complex interplay between bias and variance in shaping policy
performance. It highlights the potential of leveraging unbiased noise as a strategic tool to ameliorate the
adverse effects of bias, albeit with diminishing efficacy against higher bias levels. These insights pave
the way for future explorations into noise-resilient policy development and the strategic use of noise in
enhancing autonomous system performance in noise-pervasive environments.

0The code for training and evaluation of the policies, with detailed results, can be found at https://github.com/BhaskarJoshi-
01/DroneControl
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(a) Policy 1 (b) Policy 2

(c) Policy 3

Figure 3.9: Mean Reward against Biased Noise (0 ≤ µ ≤ 0.3, 0 ≤ σ ≤ 3.0) The heatmaps provided

illustrate the performance of three different policies for UAV obstacle avoidance with respect to biased

noise during training. Each heatmap shows the mean reward on the vertical axis (representing the bias

µ) against the standard deviation of noise σ on the horizontal axis. Darker red indicates higher rewards,

while darker blue signifies lower rewards.
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(a) Policy 1 (b) Policy 2

(c) Policy 3

Figure 3.10: Success rate against Biased Noise (0 ≤ µ ≤ 0.3, 0 ≤ σ ≤ 3.0): The colour scheme

of the heatmap maps red to high success rate and blue to low success rate. Each heatmap’s spectrum

scale is presented as a colorbar to the right of the plot. (a) Policy 1 shows a somewhat linear trend —

the negative effects of bias-only noise can be mitigated to great effect by carefully choosing a value for

σ to inject, but performance becomes worse if either or both of them increase. (b) Policy 2, already

being robust to variance, improves upon the success rate of Policy 1 in regions with high values of σ.

Interestingly, the success rate at µ = 0.12 jumps from 35% to over 70% when increasing σ from 0 to

0.1. (c) Policy 3 performs poorly in the presence of low variance, indicated by the blue strip on the left

side. Success rate drop-off is steeper along the µ axis than along the σ axis, indicating higher robustness

to variance than bias, but showing no benefit of injecting unbiased noise.
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3.3 Time Varying Bias

The study for time varying Bias is done on Static Obstacles (SO) i.e Environment 1.

Environment 1 The first environment encompasses N static obstacles O ∈ SO, with the quantity N

being variably selected for each episode from a set {0, 1, 2, 3}. The distribution of these obstacles
is methodically arranged: uniform along the x-axis, Gaussian along the y-axis, and positioned at a
consistent elevation, the median, along the z-axis.

3.3.0.1 Effect of Noise : Environment 1

For environment 1, we trained three policies with noise having linearly dependent time varying bias
and different fixed levels on variance. Such a type of noise is generally produced by IMU readings. Then
we compared their training results, such as mean reward and mean episode duration over 100 episodes.
We then tested the three learnt policies in the same environment for noise with the same time varying
bias and fixed levels of variance.

3.3.0.2 Training: Environment 1

we trained three policies each having noise with the same time varying bias as (20)

µ = ±0.3 ·
(

timesteps
Lmax

)
(3.11)

Where Lmax is the fixed maximum possible length for an episode. The positive or negative deviation is
randomly chosen at start of every episode. For our study, each step is 1/48 seconds long, thus effectively
modelling the bias as

µ(k) = ±0.3 · kT, (3.12)

where k = 0, 1, 2, . . . and T = 1
48 seconds.

Furthermore, each policy has three different fixed level of variance, giving us 3 policies as,

1. Policy 1: No variance (time varing µ, σ = 0)

2. Policy 2: Low Variance (time varying µ, σ = 0.1)

3. Policy 3: High High Variance (time varying µ, σ = 1.0)

To allow better robustness against obstacles, at least one fixed obstacle was ensured to be present during
training. The maximum number of obstacles as described in the methodology section, are three.
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(a) (b)

Figure 3.11: Policy Training Results with noise having linearly dependent time varying bias: (a) in-

dicate the mean reward progression for the policies trained in environment 1, while (b) indicate episode

length progression through the training process for policies trained in environment 1. The mean reward

increases in all cases indicating improved obstacle avoidance behaviour, and episode length decreases

indicating the agent is learning how to avoid obstacles and reach the goal well before the episode time

limit.

3.3.0.3 Evaluation of Trained Policy: Time Varying Biased Noise

Policies 1,2 and 3 trained in environment 1 containing noise with time varying bias and fixed variance
of 0, 0.1 and 1.0 were tested in the same environment with the same time varying bias but on a wider
range of variances (0 ≤ σ ≤ 3.0,∆σ = 0.1). We also evaluate the denoising capacity of LPF and
Kalman filter during testing. The evaluation plots can be found in figure 3.12 and can be described as
follows:

Policy 1: Policy 1 has a success rate of 0.8 for the no denioser and LPF case, and around 0.65 for
the KF. The performance for the no denoiser case dropes and reaches zero for σ ≥ 2.1. Both denoisers
assist in reducing the drop in performances giving a success of 0.3 for KF and 0.4 for LPF at σ = 3.0.

Policy 2: Policy 2 behaves very similar to policy 1 but starts off with a lower success rate of 0.6 at
σ = 0 and decreases till near zero at σ = 3.0 for no denoisers. Presence of denoisers again decreases
the fall in performance giving a success rate of about 0.45 at σ = 3.0 for KF and 0.35 for LPF.

Policy 3: The policy starts off with a success rate between 0.35 and 0.4 for both cases, with and
without denoisers. The denoisers maintain the success rate for all values of σ till σ = 3.0 but the for
the no denoiser case, the performance quickly starts to plumet after σ = 1.3, falling down to almost 0
at σ = 3.0

We can effectively conclude from the plots that adding variance over time varying bias during training
deprecates the performance of the policy against noise with low fixed variance and time varying bias.
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(a) Policy 1, Environment 1 (b) Policy 1, Environment 1

(c) Policy 2, Environment 1 (d) Policy 2, Environment 1

(e) Policy 3, Environment 1 (f) Policy 3, Environment 1

Figure 3.12: Success Rate and Mean Reward Analysis with Time-Varying Bias (µ = kT, 0 ≤

σ ≤ 3.0) in Meters: (a, b) Policy 1 demonstrates a decreasing success rate with an increase in noise

standard deviation σ, nearing a 0% success rate at approximately σ = 2. The denoisers (LPF and IF)

attenuate the rate of decline. The mean reward also shows a steep decline with increasing σ, mitigated

by denoisers. (c, d) Policy 2 shows a similar trend in success rate, beginning at a lower success rate of

0.6 and experiencing a decline as σ increases. Here too, denoisers help in reducing the fall in success

rates and mean rewards. (e, f) Policy 3 maintains a more constant success rate between 0.35 and 0.4, but

begins to plummet post σ = 1.3. Denoisers are effective in preserving the initial success rate and mean

reward level across the noise range.
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However for noise with high variance, adding variance during training improves the performance of the
policies. In both cases, denoisers assist in improving the performance.

We have firstly trained a policy under time varying bias and three levels of fixed variance in a static
environment, then tested on a wider range of variances along with the time varying bias. We observed
that for low fixed variance and varying bias, the policy trained with no variance performed the best and
denoisers did not have much effect (fig 4.5 (a)), while in the case of high variance, it is better to train
with a small variance and use denoisers during deployment. Such results can be greatly utilised while
making training choices for RL based navigation while relying on IMUs as sensors, if the nature of the
varying bias of IMU is known.

3.4 Simulation Trajectories

3.4.1 Effects of Noise on Training : No noise, No Denoiser

Figure 3.13 illustrates the simulation trajectories within an environment devoid of both noise and
denoising mechanisms. The depicted trajectories are highlighted by a red line for each scenario. In
scenarios (a) and (b) of Figure 3.13, the trajectory successfully reaches the designated target. However,
in scenario (c) of Figure 3.13, the trajectory concludes upon reaching the maximum number of steps,
leading to the termination of the episode. Additionally, a green line emanates from the drone (in some
figures), indicate the maintained safe distance from the nearest obstacle throughout its journey.

3.4.2 Effects of Noise on Training : µ = 0, σ = 1.5 and No Denoiser

This section evaluates the performance of various policies in an environment characterized by unbi-
ased noise with µ = 0, σ = 1.5, and the absence of a denoising mechanism. Observations from Figure
3.14 reveal that policies represented in scenarios (b) and (c) are trained with a non-zero σ, enabling them
to adapt and perform effectively in the presence of unbiased noise. In contrast, the policy depicted in
Figure 3.14 (a), which was not trained under noisy conditions, exhibits poor performance when exposed
to high levels of unbiased noise.
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(a) Policy 1

σ = 0

(b) Policy 2

σ = 0.1

(c) Policy 3

σ = 1

Figure 3.13: Simulation Trajectories : No noise, No Denoiser
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(a) Policy 1

σ = 0

(b) Policy 2

σ = 0.1

(c) Policy 3

σ = 1

Figure 3.14: Simulation Trajectories for Effects of Unbiased Noise on Training Without Denoising

3.4.3 Unbiased Noise and Filters

This subsection presents an evaluation of Policy 1, under conditions of unbiased noise (µ = 0, σ =

1), with the incorporation of filtering techniques. Figure 3.15 illustrates the trajectory outcomes when
Policy 1 is subjected to these conditions. Notably, scenarios (b) and (c) in Figure 3.15 have Low Pass
Filter (LPF) and Kalman Filter (KF), respectively. These filters enable successful target achievement in
an environment influenced by unbiased noise with parameters µ = 0 and σ = 1. The efficacy of these
filtering methods is evident, highlighting their utility in enhancing navigational accuracy under noisy
conditions.
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(a) Policy 1

No Denoiser

(b) Policy 1

LPF

(c) Policy 1

KF

Figure 3.15: Simulation Trajectories for Unbiased Noise and Filters

3.4.4 Handling Biased Noise µ = 0.1 and σ = 0

This subsection explores the effect of biased noise (µ = 0.1 and σ = 0) on navigational strategies and
evaluates the effectiveness of denoising approaches. In Figure 3.16, scenarios (a) and (b) demonstrate
trajectories under biased noise conditions without filter and with the application of a Kalman Filter
(KF), respectively. The trajectory in Figure 3.16(b), utilizing KF, appears smoother compared to Figure
3.16(a), which lacks a denoising mechanism. However, both scenarios exhibit an inability to circumvent
obstacles effectively.

Introduction of unbiased noise (σ = 0.5), as depicted in Figure 3.16(c), significantly enhances ob-
stacle avoidance, suggesting that the adverse effects of bias can be mitigated by introducing a specific
magnitude of noise variance. This finding underscores the potential for strategic noise manipulation to
improve navigational outcomes under biased conditions.
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(a) Policy 1

No Denoiser

(b) Policy 1

KF

(c) Policy 1

Unbiased Noise Injection

σ = 0.5

Figure 3.16: Simulation Trajectories for Handling Biased Noise
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Chapter 4

Navigating UAVs Through Dynamic Environments

In this chapter, we delve into the enhancements and adaptations made to UAV navigation systems
for effectively dealing with dynamic obstacles environment under measurement uncertainty.

4.1 System Architecture Overview

The architecture of the methodology followed is shown in Fig. 4.1.

Figure 4.1: System Architecture: At time step t, We have access to the UAV’s position Xt, the nearest

obstacle’s position Xot, and the target position Xgt. We introduce noise to Xt to create a noisy position

estimate, denoted as X̂t, which is then denoised to obtain the final position estimate X̃t, taking into

account the previous action At−1. The denoised position estimate, along with Xot and Xgt, are used to

generate the environmental observation Õt. The reward Rt is computed based on the true position Xt

for Environment 1 and both the position Xt and velocity Vt for Environment 2. The policy takes the

observation and reward as inputs and produces the action to be taken, denoted as At.
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4.1.1 The Environment

Note: Evironmnent will dynamic obstacles will be stated as Environment 2 and with static
obstacles will be referred as Enviornment 1.
For Dynamic Obstacle (DO) environment also the spawn position and dimentions are same as Chapter
3, at the beginning of each episode, the UAV is placed randomly at:

X0 =

[
xmin + rminor, yg0 ,

zmin + zmax

2

]
(4.1)

yg0 ∼ Uniform(ymin + rminor, ymax − rminor) (4.2)

and, the goal position is set as:

Xg =

[
xmax − rminor,

ymin + ymax

2
,
zmin + zmax

2

]
(4.3)

Here, mmin and mmax denote the environment’s dimensions along the m-axis (where m could be x,
y, or z), and rminor represents the safety margin to avoid boundary exceedance.

• Environment 2 This consists of two dynamic obstacles (DO), one exhibiting simple harmonic
motion along the y-axis as per:

d2y

dt2
= −ω2ẏ (4.4)

Wechoose amplitude as eq. 4.5
ymin + ymax

2
(4.5)

such that it is always between the bounds of the Geofence. Value of ω is taken as 0.72 rad/s. The
other moving with a constant linear velocity vi of 0.005 m/s along the x-axis as follows:

v = viî (4.6)

The first obstacle is spawned randomly on the x axis, while for the second obstacle, the initial y
coordinate is distributed based on the normal distribution and the initial x coordinate is fixed as
xmax.

The action space, observation space and the reward functions for Dynamic obstacle environment
are as follows:

4.1.1.1 Action Space

Both environments (Static and Dynamic) share the same action space, where a valid action can be
any vector with the following format ref eq 4.7
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A =
[
vx vy vmag

]
(4.7)

vx and vy represent the velocities of the Unmanned Aerial Vehicle (UAV) in the x and y axes,
correspondingly. The term vmag denotes the overall magnitude of the velocity vector. The velocity
command can be calculated based on the action as follows ref eq 4.8:

v⃗ =

[
vx vy

]
√
v2x + v2y

× vmag (4.8)

Wehave the following observation space and reward function for Environment 2 (i.e with Dynamic
obstacles) .

4.1.1.2 Observation Space

Observation space represents a condensed, continuous representation of the current state similar for
both the environments (Static and Dynamic) as described in Chapter 3 3.1.1.1 . Observation space
selectively encodes essential information for the agent to acquire an effective policy as Eq. 4.9

Ot =
[
∆xgt ∆ygt ∆xot ∆yot

]
(4.9)

Here, ∆xgt and ∆ygt denote the distances to the goal along the x and y axes at time t, respectively.
Similarly, ∆xot and ∆yot represent the distances to the closest obstacle or wall along the x and y axes,
respectively. Because of the noise in localisation of the UAV and noise in localisation of the obstacles as
well as goal positions, the relative positions would also contain noise, giving us the the noisy observation
space Ôt as Eq. 4.10

Ôt =
[
∆x̂gt ∆ŷgt ∆x̂ot ∆ŷot

]
(4.10)

And during evaluation Wetest the effectiveness of various denoising methods, giving us the denoisesd
estimates of the observation space Õt as Eq. 4.11

Õt =
[
∆x̃gt ∆ỹgt ∆x̃ot ∆ỹot

]
(4.11)

4.1.1.3 Reward Function

For the reward function for environment 2, We have considered a velocity obstacle reward RO(t) for
both moving obstacles as follows:

RO(t) =

Rcollide if V ∈ V OO(t)

0 otherwise
(4.12)
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Where V is the velocity of the UAV and V OO(t) is the velocity obstacle [59] with time horizon TH of
obstacle O with respect to the UAV at time step t. This reward incentivizes the agent to avoid velocities
that may result in future collisions.

The reward, for Environment 2 is then given by adding RO for both moving obstacles to Rt defined
in Eq. 4.13.

R′
t = Rt +

∑
∀OϵDO

RO(t) (4.13)

Where, Rt is the same as eq 3.9 and is given here by 4.14 :

Rt =



Rs, if distance to target < ϵsuccess

Rf , if collision with an obstacle occurs

Rf , if the agent is out of time

(−Rd

∥∥∥[∆xt ∆yt

]∥∥∥−Rmajor1major −Rminor1minor) otherwise
(4.14)

Rs > 0 represents the reward for success, Rf < 0 is the penalty for failure, Rd > 0 is the coefficient
for the distance penalty, and rminor > 0 and rmajor > 0 are penalties for breaching minor and major
bounds, respectively. t is here is total number of time steps and Lmax is a chosen maximum time after an
episode terminates by default.The variables 1major and 1minor are binary indicators set to 1 when the
major and minor safety bounds with radii Rmajor and Rminor, respectively, are violated. They are set
to 0 when no violation occurs. Additionally, a slight negative reward, determined by the UAV’s distance
from the target, is assigned to each non-terminal time step. This is done to incentivize the agent to reach
the target in as few steps as possible.
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(a)

Figure 4.2: Visualization of the Reward Function: This figure displays a heatmap visualization of the

reward function utilized within the context of drone navigation. Lower rewards are indicated by darker

shades, whereas higher rewards are denoted by bright yellow areas. Obstacles within the environment

are marked with “o”, and the designated target location is indicated by an “x”. The gradient of colors

from dark to bright illustrates the increasing reward values, guiding the drone’s movement from regions

of lower reward to higher reward. This visualization aids in understanding how the drone is incentivized

to navigate around obstacles towards its target.
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(a) Distance to Obstacle VS Timestep for UAV

(b) Velocity outside Velocity obstacle (bool) VS Timestep for

UAV

Figure 4.3: Visualization of Velocity Obstacle for UAV Obstacle Avoidance

From the figure 4.3 Initially the UAV is focussed on reaching the goal and chooses velocities in that
direction. As the obstacles get closer, the velocities intersect with the velocity obstacles of the obsta-
cles.The UAV, as observed in the plots shifts its focus to obstacle avoidance, choosing new velocities
outside the velocity obstacles. This maneuver guides the UAV away from the obstacles. As seen from
the plots the distance to obstacles starts increasing soon after the UAV selects velocities outside the
velocity obstacle.
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4.1.2 The Agent

We have chosen to use an unmodified implementation of vanilla PPO (already described in chapter
3, Section 3.1.2) for our experiments as our focus is on examining the influence of noise on a general
policy that achieves an acceptable success rate.

4.1.3 The Effects of Noise

our primary emphasis in this research is on analyzing how noise in the observation space impacts the
policy’s performance. We assume that all elements in the observation spaces in both environments are
subject to noise from the same normal distribution N (µ, σ).

4.1.3.1 Environment 2: Dynamic Obstacles

For this environment, We train three policies on unbiased noise with different levels of variance
and compare the training results. Subsequently, We conducted baseline tests for each trained policy
by assessing their performance in a noise-free environment (µ = 0, σ = 0). After establishing these
baselines, We proceeded to evaluate these policies in environments characterized by different types of
measurement noise, as outlined below:

1. Unbiased noise (µ = 0, σ ̸= 0)

2. Bias-only noise (µ ̸= 0, σ = 0)

3. Biased noise (µ ̸= 0, σ ̸= 0).

4.2 Results

This section covers the experimental results obtained during training and during evaluation. Polices
in environment 1 were trained for 5 million steps each on an RTX 3050 GPU, while policies in envi-
ronment 2 were trained for 5 million steps each on an RTX 2080 Ti GPU. The process of evaluating
a policy for 1000 episodes, with each episode having a maximum of 1000 timesteps, on a particular
combination of µ, σ, and denoiser, requires approximately 10 minutes. You can find the detailed envi-
ronment variables used in our experiments in TABLE 4.1. All distance measurements in TABLE 4.1 are
in meters.

4.2.1 Training

4.2.1.1 Environment 2

We have trained the following 3 policies with different degrees of unbiased noise:
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Hyperparameter Value Hyperparameter Value

Rs 1000 Rminor 1

Rf -1000 rmajor 0.1

Rd 4 rminor 0.2

Rmajor 5 ϵsuccess 0.1

Rcollide -0.5 Th 5

Lmax 1000 xmin 0

xmax 2 ymin -0.5

ymax 0.5 zmin 0

zmax 1

Table 4.1: Environment Variables: Chapter 4

1. Policy 4: No Noise (µ = 0 and σ = 0)

2. Policy 5: Low Noise (µ = 0 and σ = 0.1)

3. Policy 6: High Noise (µ = 0 and σ = 1.0)

Policies 1, 2 and 3 were trained in Environment 1 while policies 4, 5 and 6 were trained in Environ-
ment 2. All policies were trained for 5 million steps. Policy hyperparameters are mentioned in TABLE
4.2.

Hyperparemeter Value

Actor 64 ∗ 64 ∗ 3

Critic 64 ∗ 64 ∗ 1

Output Activation Function tanh

Optimizer Adam

Table 4.2: Policy Training Hyperparameters: Chapter 4
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(a) (b)

Figure 4.4: Policy Training Results for Environment 2: (a) indicate the mean reward progression

for the policies trained in environment 2, while (b) indicate episode length progression through the

training process for policies trained in environment 2 .The mean reward increases in all cases indicating

improved obstacle avoidance behaviour, and episode length decreases indicating the agent is learning

how to avoid obstacles and reach the goal well before the episode time limit.

We have employed two criteria to assess the effectiveness of our training process for the policies: the
mean reward obtained over the last 100 episodes and the mean duration of episodes over the last 100
episodes. Episode duration is defined as number of time steps before terminal state is reached.

• Mean Reward: From Figure 4.4(a), it’s evident that the mean reward for all policies demon-
strates a gradual increase throughout the training process. This trend suggests that the policies are
effectively learning the desired behavior of avoiding obstacles and reaching the target in the most
efficient manner possible.

• Episode Duration: Figure 4.4(b) the mean episode duration exhibits a decreasing trend over the
course of training. This phenomenon can be attributed to the fact that each non-terminal time
step within the environment results in a negative reward for the agent. Consequently, the agent is
incentivized to complete each episode as swiftly as possible.

4.2.2 Evaluations of Trained Policies

We have assessed the performance of the trained policies in the identical environment where they
underwent training, under various levels of bias and variance in the noise, both with and without the
application of a denoiser (Low Pass Filter and Kalman Filter). The denoiser was applied to both noisy
observation spaces as defined in eq. 4.10 to get the denoised observation space as eq 4.11 for both
environments. The Low Pass Filter (LPF) utilized in our experiments is a 2nd order Bessel filter with a
cutoff frequency of 2. Its transfer function is given by [56] as given in equation 4.15.
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G(s) =
3

s2 + 3s+ 3
(4.15)

4.2.2.1 Unbiased Noise

This subsection presents the evaluation results of three policies trained in Environment 2 (referred
to as Policy 4, 5, and 6), which includes dynamic obstacles. These policies were tested in the same
environment under varying levels of unbiased noise (µ = 0, 0 ≤ σ ≤ 3.0,∆σ = 0.1), with comparisons
made between their performances with and without the implementation of a denoiser. We will use the
term baseline to refer to the scenario where there is no standard deviation in the noise (σ = 0) for the
remainder of this subsection.

Policy 4: Figure 4.5(a) visualizes the performance of Policy 4. At baseline, Policy 4 achieves a
success rate of around 50%. This is followed by a slight increase till 60% at 0.2 standard deviation then
gradually drops till near-zero success at standard deviation of 3.0. The drop-off is further slowed down
significantly by the Low Pass and Kalman Filters, still achieving around 30% success rate at σ = 3.

Policy 5: From Figure 4.5(c), Policy 5 outperforms Policy 4 at baseline, achieving around 60%
success rate. The success rate drops as σ increases, but not at as rapidly as Policy 1. With a denoiser this
drop is reduced significantly, and the success rate gradually decreases to around 40% at σ = 3. Policy 5
shows a higher and more consistent success rate as compared to Policy 4 across the range of σ values.

Policy 6: Figure 4.5(e) visualizes the performance for Policy 6 . The performance starts off with
baseline success rate of around 50%. In the case without a denoiser, a small increase in success rate
is seen until σ = 0.8, and then proceeds to rapidly decrease.This can be attributed to the fact that this
policy was trained with noise around that range(σ = 1.0) .With the denoisers, the drop in success rate is
slowed down significantly, with a success rate of around 30% and 40% at σ = 3 for the Low Pass Filter
and the Kalman Filter respectively.

4.2.2.2 Bias-only Noise

This subsection contains the evaluation results of the three trained policies in environment 2 ( Policy
4, Policy 5 and Policy 6 ) with varying degrees of bias-only noise (0 ≤ µ ≤ 0.3, σ = 0,∆µ = 0.01),
comparing their performances with and without a denoiser.

Figure 4.6 confirms the fact that the denoisers have no way of mitigating the negative effects of bias,
as we see the same trend across the three cases for each policy. The success rate for Policy 4 and 5
decreases as bias increases (Figure 4.6(a), (b)).

Policy 4:Figure 4.6 (a,b) shows the result of Policy 4 against biased noise. The Policy starts off with
a success rate of around 0.7 at no bias and drops to around 0.1 at µ = 0.3 . The behaviour of the plots for
the denoiser as well as no de-noiser case is simlar indicating that deniosers have no way of mitigating
biased noised.
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(a) Policy 4, Environment 2 (b) Policy 4, Environment 2

(c) Policy 5, Environment 2 (d) Policy 5, Environment 2

(e) Policy 6, Environment 2 (f) Policy 6, Environment 2

Figure 4.5: Success Rate and Mean Reward Analysis with Unbiased Noise (µ = 0, 0 ≤ σ ≤ 3.0)

in Meters: (a, b) Policy 4’s success rate begins relatively stable but declines sharply as σ increases,

reaching a 0% success rate near σ = 2.4. The implementation of denoisers (LPF and KF) appears

to moderate the decline. The mean reward also diminishes with higher σ, with denoisers mitigating

the downward trend. (c, d) Policy 5 experiences a decrease in success rate as σ rises, maintaining a

moderate initial success rate but deteriorating more gradually with the aid of denoisers. Similarly, the

mean reward decreases less sharply when denoisers are applied. (e, f) Policy 6 starts off with a success

rate of 0.4, increases slightly to 0.55, then plumates to 0 at = 2.4. Denoisers smoothen the small peak,

but also slow down the drop in performance. The mean reward reflects a similar pattern, with denoisers

reducing the rate of decline.
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Policy 5: Figure 4.6 (c,d) shows the result of Policy 5 against biased noise. Policy 5 starts with a
success rate of around 0.6 at µ = 0.6 then drops to near 0 as µ approaches 0.3. The drop is more steeper
than that of Policy 4. Denoisers, again, seem to have no effect on improving the drones performance.

Policy 6: Figure 4.6 (e,f) shows the result of Policy 6 against biased noise. Policy 6, trained on
noise with variance of 1.0 starts off at a success rate of around 0.5 and does not drop as in the case of
Polcies 4 and 5. We can conclude that training on noise with variance helps in immunity against noise
containing only a bias and no variance. The LPF performs very similar to the no denoiser case, while
the KF performs a little worse than the two others. Conclusively, the denoisers do not help improve
performance in this case as well.

4.2.2.3 Biased Noise

In this subsection, We present the evaluation outcomes of Policies 4, 5, and 6 within Environment 2,
where the noise levels vary under biased conditions (0 ≤ µ ≤ 0.3, 0 ≤ σ ≤ 3.0,∆µ = 0.01,∆σ =

0.1). We compare the performances of these policies without the application of a denoiser.

Policy 4: From the plot 4.7 (a), we can infer that in general, the performance decreases with increase
in either of σ or µ. However there is a region of special interest at 0.2 ≤ µ ≤ 0.3. We can observe that at
this region, additional σ improves the performance till about σ = 1.0. This can be used to our advantage
by adding artificial noise to improve the performances of the policies. We discuss this more detail in
the discussions section. Another such region is encompassed in 0.7 ≤ σ ≤ 1.2, where additional µ
improves the performance till µ ≈ 0.12.

Policy 5: From the plot 4.7 (b), a similar observation can be made for Policy 5, with performances
dropping with increase of either of µ or σ. Another region of interest as described for Policy 4, can be
seen for 0.05 ≤ µ ≤ 0.12

Policy 6: The heat map for Policy 6 4.7 (c) trained with standard deviation of 1 is very different from
the previous 2 policies. We can observe that the performance exclusively depends only on σ, decreasing
as σ increases. Although there are no special regions as described for Policies 4 and 5, we can see that
this Policy is almost immune to bias in noise.

The plot for mean reward during training is in 4.8 for each of the cases.
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(a) Policy 4, Environment 2 (b) Policy 4, Environment 2

(c) Policy 5, Environment 2 (d) Policy 5, Environment 2

(e) Policy 6, Environment 2 (f) Policy 6, Environment 2

Figure 4.6: Success Rate and Mean Reward Analysis against Bias-Only Noise (0 ≤ µ ≤ 0.3, σ = 0):

(a) Policy 4’s success rate drops slowly with an increase in µ, hitting around 0.1% at µ = 0.30. (c) Policy

5 starts off worse with a succes rate of around 0.6, and drops to lower values faster than policy 1. (e)

Policy 6’s success rate is between 0.5 and 0.6 thoughtout, except a slight underperformance using KF.

We see in all three cases that the denoisers can provide no assistance to the policies when faced with

bias-only noise.
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(a) Policy 4, Environment 2 (b) Policy 5, Environment 2

(c) Policy 6, Environment 2

Figure 4.7: Rate of Success in the Presence of Biased Noise (0 ≤ µ ≤ 0.3, 0 ≤ σ ≤ 3.0): This

heatmap uses a color gradient where red indicates a high success rate and blue signifies a lower success

rate. The color gradient for each heatmap is detailed by a colorbar positioned to the right of the chart.

(a) In policy 4, we observe a region interest at 0.2 ≤ µ ≤ 0.3 where adding where adding additional σ

improves performance. This can be utilised to improve performance of the agent. (b) Policy 5 shows an

increase in performance with both µ and σ with a small region of interest at 0.05 ≤ µ ≤ 0.12 (c) Policy

is almost immune to changes in σ while showing linear with increase in µ
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(a) Policy 4, Environment 2 (b) Policy 5, Environment 2

(c) Policy 6, Environment 2

Figure 4.8: Mean Reward Plots in the Presence of Biased Noise (0 ≤ µ ≤ 0.3, 0 ≤ σ ≤ 3.0): This

heatmap uses a color gradient where red indicates a high success rate and blue signifies a lower success

rate. The color gradient for each heatmap is detailed by a colorbar positioned to the right of the chart.

These are corresponding heatmaps for 4.7

4.3 Discussion

We have trained policies with noise of three different variances and tested their performance against
different combinations of bias and variance (fig 4.6). We have also tested the effectiveness of denoisers
for unbiased and bias-only noise. Fig 4.7 confirms that denoisers have no way of assisting in helping
with bias-only bias, while from fig 4.5 we can conclude that denoisers in general help in improving
performance for unbiased noise. Fig 4.6 gives the trade offs between bias and variance. This can be
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leveraged greatly in two ways, first- choosing amongst sensors and techniques for localisation yielding
noise in observation with different biases and variances, and second- artificially injecting appropriate
noise to data received from noisy sensors to improve performance of a trained policy. The noise in
localisation affects the performance of a trained RL policy as shown by the plots, thus making sensor
choosing an important aspect to consider while utilising RL for UAV navigation. We propose an RL
policy being trained for UAV navigation using any method can be evaluated on varying bias and variance
of observation space noise, and obtain plots similar to those of fig 4.6. These plots can then be utilized
to choose between various sensors, and localisation techniques having different levels of bias and vari-
ance.Moreover, the policy’s performance can be enhanced by deliberately introducing suitable noise, as
indicated by these plots. For example in fig 4.6 (a) for the region 0.2 ≤ µ ≤ 0.3 of special interest as
described above, we can observe that, additional σ improves the performance till about σ = 1.0 . Thus
if our sensor has noise with a low variance and bias in this region, we can artificially add unbiased noise
with appropriate standard deviation derived from the plot to existing sensor noise in order to improve
performance. This section of the research was entirely simulated. It is our intention to put this to the
test in the future for the scenario with a dynamic environment.

4.4 Simulation Trajectories

In this section, We show some simulation trajectory for the models above. Since the environment
is dynamic, We have provided snapshot of 4 figures to capture the trajectory with more intuition as the
obstacle’s location changes so does the trajectory for drone. Kindly note that the snapshots are from one
episode and not different episode. It is the trajectory from starting point to target.

4.4.1 Effects of Noise on Training : No noise, No Denoiser

Figure 4.9 4.10 4.11 illustrates the simulation trajectories within an environment 2, with dynamic
obstacles devoid of both noise and denoising mechanisms. The depicted trajectories are highlighted
by a red line for each scenario. In each of these 3 scenarios the trajectory successfully reaches the
designated target. Additionally, a green line emanates from the drone (in some figures can also be
yellow or red), indicate the maintained safe distance from the nearest obstacle throughout its journey.

4.4.2 Effects of Noise on Training : µ = 0, σ = 1.5 and No Denoiser

This section evaluates the performance of various policies in an environment characterized by un-
biased noise with µ = 0, σ = 1.5, and the absence of a denoising mechanism. Observations from
Figure, 4.12, 4.13 and 4.14 reveal that policies represented in scenarios Fig. 4.13 and 4.14 are trained
with a non-zero σ, enabling them to adapt and perform effectively in the presence of unbiased noise. In

0The code for training and evaluating the policies, together with comprehensive results, may be accessed at
https://github.com/BhaskarJoshi-01/DroneControl-Dynamic
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(a) (b)

(c) (d)

Figure 4.9: Simulation Trajectory for Environment 2: Model 4, with No noise and No Denoiser
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(a) (b)

(c) (d)

Figure 4.10: Simulation Trajectory for Environment 2: Model 5, with No noise and No Denoiser
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(a) (b)

(c) (d)

Figure 4.11: Simulation Trajectory for Environment 2: Model 6, with No noise and No Denoiser
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contrast, the policy depicted in Figure 4.12, which was not trained under noisy conditions, exhibits poor
performance when exposed to high levels of unbiased noise.

4.4.3 Unbiased Noise and Filters

This subsection presents an evaluation of Policy 4, under conditions of unbiased noise (µ = 0,
σ = 0.1), with the incorporation of filtering techniques. Figure. 4.15, 4.16 and 4.17 illustrates the
trajectory outcomes when Policy 4 is subjected to these conditions. Notably, scenarios 4.16 and 4.17
have Low Pass Filter (LPF) and Kalman Filter (KF), respectively. These filters enable successful target
achievement in an environment influenced by unbiased noise with parameters µ = 0 and σ = 0.1.
The efficacy of these filtering methods is evident, highlighting their utility in enhancing navigational
accuracy under noisy conditions.

4.4.4 Handling Biased Noise µ = 0.1 and σ = 0

This subsection explores the effect of biased noise (µ = 0.1 and σ = 0) on navigational strategies
and evaluates the effectiveness of denoising approaches. In Figure 4.18, 4.19 and 4.20 scenarios: 4.18
and 4.19 demonstrate trajectories under biased noise conditions without filter and with the application
of a Low Pass Filter (LPF), respectively. The trajectory in Figure 4.19, utilizing LPF, appears smoother
compared to Figure 4.18, which lacks a denoising mechanism. However, both scenarios exhibit an
inability to circumvent obstacles effectively.

Introduction of unbiased noise (σ = 0.7), as depicted in Figure 4.20, significantly enhances ob-
stacle avoidance, suggesting that the adverse effects of bias can be mitigated by introducing a specific
magnitude of noise variance. This finding underscores the potential for strategic noise manipulation to
improve navigational outcomes under biased conditions.
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(a) (b)

(c) (d)

Figure 4.12: Simulation Trajectory for Environment 2: Model 4 with µ = 0, σ = 1.5 and No

Denoiser
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(a) (b)

(c) (d)

Figure 4.13: Simulation Trajectory for Environment 2: Model 5 with µ = 0, σ = 1.5 and No

Denoiser
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(a) (b)

(c) (d)

Figure 4.14: Simulation Trajectory for Environment 2: Model 6 with µ = 0, σ = 1.5 and No

Denoiser
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(a) (b)

(c) (d)

Figure 4.15: Simulation Trajectory for Environment 2: Model 4 with µ = 0, σ = 0.1 and No

denoiser
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(a) (b)

(c) (d)

Figure 4.16: Simulation Trajectory for Environment 2: Model 4 with µ = 0, σ = 0.1 and LPF
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(a) (b)

(c) (d)

Figure 4.17: Simulation Trajectory for Environment 2: Model 4 with µ = 0, σ = 0.1 and KF
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(a) (b)

(c) (d)

Figure 4.18: Simulation Trajectory for Environment 2: Model 4 with µ = 0.1 and σ = 0 and No

Denoiser
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(a) (b)

(c) (d)

Figure 4.19: Simulation Trajectory for Environment 2: Model 4 with µ = 0.1 and σ = 0 and LPF
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(a) (b)

(c) (d)

Figure 4.20: Simulation Trajectory for Environment 2: Model 4 with µ = 0.1 and Injection of

Unbiased Noise with σ = 0.7

83



Chapter 5

Simulation to Reality Transfer for Static Obstacles

This chapter delves into the intricate process of deploying a trained policy in Pybullet to the real-
world environment using a sophisticated Motion Capture (MoCap) system and Crazyflie drone. The
chapter talks about MoCap, setup in real world describes about implementation and testing protocol,
evaluation of noise impact and summary of real world experiments.

5.1 MoCap

Motion Capture (MoCap) systems are advanced tracking technologies that utilize a network of cam-
eras to monitor markers affixed to objects of interest, such as the Crazyflie drone. These markers are
pivotal for the system’s ability to ascertain the object’s precise location and orientation within a global
reference framework. The system’s recognition of the marker positions on the object facilitates the
calculation of its pose (position and orientation) with high accuracy.

Figure 5.1: Illustration of Motion Capture positioning (Image Reference: Bitcraze Documentation)

The data acquisition process involves multiple cameras—six in our setup—capturing the spatial po-
sitions of the markers. This information is then relayed to a central processing unit that performs the
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Figure 5.2: The image represents the flowchart of method of deploying the model in simulation to the

real world.

necessary computations to determine the markers’ locations and, by extension, the object’s pose. In the
specific scenario involving the Crazyflie drone, its positional data is wirelessly communicated to the
drone via a Crazyradio link. This data integration into the drone’s control system is crucial for enabling
precise maneuvering and stabilization.

The arrangement of markers on the Crazyflie is a critical factor that influences the MoCap system’s
ability to accurately determine the drone’s pose. A distinctive marker configuration can significantly
enhance the system’s efficiency in tracking the object amidst other items within the same environment.
To optimize tracking accuracy while minimizing additional weight, small passive markers are directly
affixed to the Crazyflie’s structure. This approach avoids the weight penalty associated with attaching
larger tracking modules or decks, ensuring that the drone’s agility and performance are not compro-
mised.

5.2 Experimental Setup in the Real World

We employed the Crazyflie 2.1 UAV, augmented with motion capture markers to facilitate real-time,
high-precision localization. This setup ensures meticulous control over the observation perturbations,
a critical aspect for validating our simulation-to-reality transfer methodologies. The UAV’s position
data, captured through motion capture technology, is relayed to our computational framework. Herein,
it undergoes a sequential process beginning with intentional corruption via a bespoke noise generator,
followed by an optional denoising phase, depending on the experimental conditions. Subsequently, the
observation is derived and relayed to the policy algorithm.

The policy algorithm, upon receiving the modified observation, computes the requisite action. This
action, in turn, is translated into a velocity command, meticulously crafted to guide the UAV’s move-

85



ment. The command is then dispatched to the UAV, marking the completion of a singular timestep in
our experiment.

We delineate an episode’s success by the UAV’s ability to navigate within a predefined proximity
to the designated target. Notably, the transition from simulation-based training to real-world applica-
tion was seamless, with the trained agent’s network being directly implemented on the UAV sans any
modifications. This seamless sim-to-real transition underscores the robustness and adaptability of our
training methodologies, holding promise for future explorations in autonomous UAV navigation.

For the environment with static obstacles, policies underwent training for 5 million steps each, using
RTX 3050 GPU and took 5 hours. The evaluation process for a policy involves running it across 1000
episodes, where each episode is capped at 1000 timesteps. This evaluation, conducted on a set of param-
eters—mean (µ), standard deviation (σ), and a denoiser—takes roughly 10 minutes to complete without
GUI Rendering. To assess the effectiveness of the UAV navigation system in static environments, two
modes of evaluation are implemented: with and without graphical user interface (GUI) rendering. Con-
ducting evaluations with GUI rendering necessitates approximately 15 seconds to complete a successful
episode. Notably, this duration mirrors the time required for analogous real-world experiments, high-
lighting the simulator’s fidelity and its utility in realistic scenario testing.

In our study, We meticulously constructed a physical testing environment ref fig 5.4 that mirrors the
simulated environment ref fig 5.6 where our UAV control policies were initially trained. This approach
is vital for evaluating the fidelity of sim-to-real transfer techniques.

A critical aspect of our real-world setup involves the transferring of the simulated environment’s -
floating spherical obstacles were replaced with physical cylindrical pipes, each measuring 10 centime-
ters in diameter, to maintain consistency with the simulation parameters ref fig 5.5. The starting and
target locations are explicitly marked within the operational area. The target zone is surrounded by a
10-centimeter radius circle, signifying the success threshold identical to the simulation environment,
where ϵsuccess= 0.1 meter denotes the margin for error in completion.
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Figure 5.4: Real World Setup (Side View): The setup, depicted in consists of a delineated operational

area marked by distinct white boundary lines, within which a Crazyflie 2.1 drone undertakes navigation

tasks.

Figure 5.3: Craziflie 2.1 Drone: The drone used for experiments having MOCAP passive markers

placed on it.
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Figure 5.5: Real World Setup (Top View): There are 6 mocap cameras well calibrated and the Craziflie

2.1 (drone) at the right moves to the Target Position by avoiding the Circular Obstacle that was supposed

to be on the plane of its trajectory

Figure 5.6: Simulation Setup (Top View): Pybullet View for the Fig. 5.5 above
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Figure 5.7: Real World Setup (Top View): Snapshot of Experiment being performed, where the UAV

is flying to avoid the obstacle and the trajectory plot is being created on the laptop screen.

5.2.1 Implementation and Testing Protocol

our control policy, designed to be robust and adaptable, was directly deployed on the Crazyflie 2.1
drone without necessitating modifications. This direct applicability underscores the high-level abstrac-
tion and generalization capabilities of our policy design. To evaluate the efficacy and reliability of our
approach, We focused our testing on two distinct policies—Policy 1 (No Noise µ = 0, σ = 0 ) and
Policy 2 (Low Noise µ = 0, σ = 0.1) —both of which demonstrated promising results during the
simulation phase for static obstacles. Another note is We demonstrated Sim to Real for our first paper.

Given the practical constraints on the number of trials executable in a physical setting, each policy
underwent a series of five trials to ensure the statistical significance of the results. The real-world
experiments aimed to replicate the conditions of the simulation as closely as possible, including the
introduction of controlled unbiased and biased noise to assess the policies’ robustness and adaptability.

5.2.2 Evaluation of Noise Impact and Performance Metrics

A noteworthy aspect of our real-world experimentation involves the systematic introduction of noise
to the UAV’s localization system. Initial tests were conducted under conditions of minimal bias (0.15
meters) without added variance, resulting in significantly lower success rates. This outcome aligns with
simulation expectations, as the absence of variance in localization estimates can exacerbate the impact
of bias.
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Subsequently, We introduced unbiased noise with a standard deviation σ = 0.8, which remarkably
improved the success rates for both policies, achieving target acquisition in all trials. This improvement
suggests that introducing a moderate level of variance can enhance the robustness of control policies
against localization bias.

However, increasing the standard deviation further to σ = 1.3 led to a decrease in success rates,
illustrating the delicate balance between beneficial and detrimental levels of noise in real-world UAV
navigation tasks. These findings were consistent across both policies, with Policy 2 generally outper-
forming Policy 1, mirroring the trends observed in simulation studies.

5.3 Summary of Real-World Experimentation Results

The summarized outcomes of our real-world tests are presented in Table 3.1, which details the suc-
cess and failure rates of each policy under various noise conditions. These results corroborate our
simulation findings, underscoring the efficacy of our sim-to-real transfer methodology. Notably, the
data reveals that a calibrated injection of unbiased noise into the system can mitigate the adverse effects
of bias, enhancing overall performance.

Through comprehensive analysis and rigorous testing, our research demonstrates the feasibility and
effectiveness of applying simulation-trained policies to real-world UAV navigation tasks. This sim-
to-real transition not only validates our control strategies but also provides valuable insights into the
dynamics of UAV operation in complex, noise-influenced environments.

Policy Experimental Result in Real Environment

µ σ Filter Policy 1 (S/F) Policy 2 (S/F)

0 0.1 None 2/3 5/0

0 0.1 LPF 5/0 5/0

0 0.1 KF 5/0 5/0

0.15 0 None 0/5 0/5

0.15 0.8 None 5/0 5/0

0.15 1.3 None 0/5 1/4

Table 5.1: Real-World Evaluation Results: The table presents the outcomes of conducting each exper-

iment five times, indicating whether it was successful (S) or failure (F). Policy 2 demonstrates superior

performance compared to Policy 1, which aligns with the findings from the simulation. Furthermore,

the injection of a small amount of unbiased noise to bias enhances performance.

90



(a) UAV kept on the left, just before flight (b) UAV is at the left side of the obstacle

(c) UAV Successfully avoided the Obstacle (d) UAV has reached the target location

Figure 5.8: Real World Experiment Setup: A sample zoom out version of the environment with

instances of flight
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The red line depicts the actual trajectory of the UAV, obtained via motion capture. Meanwhile, the
green dots indicate the position estimate after undergoing perturbation and, if necessary, denoising. The
initial deviation is attributed to the UAV’s takeoff. Once the UAV ascends to the default altitude of 0.5
meters and stabilizes, control transitions to the trained policy.

0The experimental video for sim to real could be found at https://youtu.be/ALTblQmQtHM
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(a) µ = 0

σ = 0.1, None

(b) µ = 0

σ = 0.1, KF

Figure 5.9: Real World Trajectories for Policy 2 (part 1): Red line represents the true trajectory of

the UAV collected through motion capture. The green dots represent the position estimate after being

perturbed and passed through the denoiser if needed. The initial drift is due to the takeoff of the UAV.

After the UAV reaches the default altitude (0.5 meters) and stabilizes, control is passed over to the

trained policy. Fig (a) shows the trajectory in the presence of unbiased noise with σ = 0.1, and no

denoiser. In Fig (b), the Kalman Filter is used to denoise the position estimate, as a result of which the

green dots are much closer to the true trajectory.
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(a) µ = 0.15

σ = 0, None

(b) µ = 0.15

σ = 0.8, None

(c) µ = 0.15

σ = 1.3, None

Figure 5.10: Real World Trajectories for Policy 2 (part 2): Figures (a), (b) and (c) correspond to

evaluation with standard deviation at 0, 0.8 and 1.3 respectively, all with µ = 0.15. Consistent with

simulated results, bias-only (a) causes the policy to fail. A carefully selected value of σ causes improves

performance (b) but choosing a value of σ that is too high causes failure.
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(a) (b)

(c) (d)

Figure 5.11: Real World Experiment Setup for Dynamic Obstacles: Four of eight images represent-

ing different stages of dynamic obstacle avoidance by drone.
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(a) (b)

(c) (d)

Figure 5.12: Real World Experiment Setup for Dynamic Obstacles: Next four of eight images rep-

resenting different stages of dynamic obstacle avoidance by drone.
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Figure 5.13: Distance Plot : The 2D plot provides a summary of the distance between the drone and

the dynamic obstacle over time Fig. 5.11 and 5.12 above. The drone starts at a certain distance from the

obstacle. It moves closer, showing some complex maneuvers to avoid the obstacle. After getting closer,

the drone avoids the obstacle and moves away, which is reflected by the increasing distance in the final

plot.
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Figure 5.14: VO Plot : This is the VO plot for the above fig 5.13 The figure demonstrates when the

UAV is avoiding obstacles by choosing a velocity outside the velocity obstacles.
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Chapter 6

Conclusions

This research investigates the correlation between diverse Gaussian noise and a Proximal Policy
Optimization agent. The agent is responsible for directing an unmanned aerial vehicle (UAV) to avoid
obstacles in environments that are both static and dynamic, and have continuous state and action spaces.
We have conducted experiments involving training policies with varying levels of unbiased noise in
a dynamic environment and time-varying noise for the static environment. Furthermore, we assessed
policy performance across different noise types—unbiased, bias-only, time-varying bias, and biased
noise. To evaluate the effectiveness of denoising methods, we conducted experiments where we tested
the trained policy in the presence of unbiased noise. We noticed improved performance when utilizing
denoising techniques like the Low Pass Filter or the Kalman Filter, especially in situations with unbiased
noise and time-varying biased noise. It’s noteworthy that these filters did not yield any discernible
benefits in cases of bias-only noise. The key results from our work are two-fold — first, training the PPO
agent with a small amount of state space noise leads to it learning a very stable policy, outperforming
a policy trained without noise across the board when evaluated in noisy environments. Second, and the
more surprising result, is that we can leverage the inherent robustness of the trained policy to unbiased
noise to improve its performance in environments with high bias low variance noise. This can be done
by artificially injecting unbiased noise into the sensor measurements, yielding perturbed observations,
which are then fed into the policy, greatly improving the success rate.

We tested addition of artificial noise for the static obstacles case in our work of Chapter 3, and have
drawn the basis for dynamic obstacle environment in Chapter 4. And in Chapter 5, we showed the sim-
to-real transfer with static obstacles in real-world setup. In our future work we look forward to testing
on a real UAV in a dynamic environment, as well as extend the work to multi agent systems.
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