
Self Adaptation of Machine Learning Enabled Systems Through
QoS-Aware Model Switching

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science and Engineering by Research

by

Shubham Shantanu Kulkarni
2022701003

shubham.kulkarni@research.iiit.ac.in

International Institute of Information Technology
(Deemed to be University)

Hyderabad - 500 032, INDIA
May 2024

Copyright © Shubham Shantanu Kulkarni, 2024

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Self Adaptation of Machine Learning
Enabled Systems Through QoS-Aware Model Switching” by Shubham Shantanu Kulkarni, has been
carried out under my supervision and is not submitted elsewhere for a degree.

Date Advisor: Prof. Karthik Vaidhyanathan

Acknowledgments

Starting my MS journey at IIIT Hyderabad, I was lucky to have Dr. Karthik Vaidhyanathan as my
advisor. He showed me how amazing software and the area of self-adaptation could be. From teaching
me the basics like how to use Linux, nurturing my curiosity, to guiding me through the complexities of
my research, his push and help has been incredible. He always had time for our discussions, allowing me
to explore my interests while making sure I had all the support I needed. He meticulously reviewed my
work, offered ideas and constructive feedback, and spent countless hours discussing and brainstorming
ideas with me, which significantly contributed to my papers and research confidence. His support went
beyond academics; he was always there to offer timely advice on both professional and personal matters,
helping me navigate the complexities of graduate life with ease. He built a supportive team around me,
creating an enriching research environment that was both challenging and rewarding. His belief in my
potential was a constant source of motivation to do better and explore new things.
Arya, a colleague in my lab, played a key role in my thesis work. His coding skills and proactive approach
were essential. We made sure that our discussions turned into well-built research projects. Tackling
challenging projects with Arya, we developed a strong personal bond, becoming best friends who could
talk about anything and be there for each other.
Working with Meghana was a pleasure. She brought energy and commitment to our projects, making
our work together both successful and fun. Her eagerness to explore new concepts and dedication to our
research significantly advanced the sustainability aspects of my study.
Hiya’s support, care and friendship were invaluable during my MS journey. We explored new ideas for
my thesis together, leading to significant results. Her positivity kept me focused and well. Our shared
adventures and personal bond enriched my college experience, becoming a highlight of my time here.
She is intern here at our SERC Lab from MU Jaipur, her involvement added greatly to this journey.
I also want to thank my lab mates Prakhar, Adyansh, Shrikara, Raghav Donakanti, Rudra, Chandrashekhar,
VJS Pranav, Dhiraj, Saianirudh, Raghav Mittal and Akhila for their friendship and the collaborative lab
environment. Their company and spirit made my research journey more enriching. Also I would like
thank my colleague Adithyan CP for amazing work with edge self adaptation. We had really nice time
together during his summer internship program.
The generous travel grant from Microsoft Research India, ACM SIG, ACM India and advisor (SERC
LAB) enabled me to attend ASE’23 conference in Luxembourg, SEAMS/ICSE’24 Conference in Lisbon,
Portugal and ISEC’24 Conference in Bangalore respectively, further broadening my horizons and
providing invaluable exposure to the global research community. This experience along with the support
and insights of many at the conference, enriched my academic journey significantly.

v

vi

I would like to extend my gratitude to all my professors, our center head Prof. Dr Raghu Reddy and IIIT
academics that gave me exposure to various evolving fields in technology, primarily artificial intelligence
and software engineering.
I also thank the Software Engineering Research Center (SERC) lab and the institute for providing the
computational resources and infrastructure required for my research.
I thank the staff and administration, for promptly resolving any issues. I also thank them for providing
me with the opportunity to travel and present my work at the conference.
To my hostel mates, classmates, and the wonderful friends I made along the way, your support and
companionship made my time at IIIT Hyderabad unforgettable. The shared meals in Yuktahar and VC,
birthday celebrations, college events, treats, late-night discussions, and collaborative projects enriched
my college life experience beyond measure.
Finally, my deepest gratitude goes to my family. My mother’s unwavering support and belief have been
the bedrock of my journey. Her encouragement and sacrifices have empowered me to chase my dreams
and achieve what I have today. She has always inspired me to give my best, offering endless motivation
and love. I am equally grateful to my brother, Shardul, for his support and for maintaining our home
as a haven of peace, enabling me to focus on my work. I also hold deep appreciation and love for my
father, who, although no longer with us, left a lasting impact on my life. The education he emphasized,
the sacrifices he made, and the values he instilled in us have significantly contributed to where I stand
today. His legacy continues to guide and inspire me, shining as a beacon of strength and perseverance.
Together, their love and support have been the guiding lights of my journey.
This journey has been about growth, discovery, and the power of collaborative effort. I stand grateful and
humbled by the support and inspiration I’ve received from each individual who has been part of my MS
journey. Thank you all for believing in me, guiding me, and helping me grow not just as a researcher, but
as a person.
In humble acknowledgment of the divine, I recognize the Krupa and blessings of Bhagwan Shreepad
ShreeVallabh Swami Maharaj, whose presence has been the guiding light behind all my endeavors. With
a heart full of devotion, I see my work not as my own effort but as a flow of divine grace through me.
The accomplishments and insights gained are manifestations of His divine will, a reminder that wisdom
and strength are bestowed in His remembrance. I am merely a medium for His grace, a conduit for His
blessings to be channeled into this world. The success and achievements of this thesis are not mine to
claim but are offerings at His lotus feet. It is through His divine intervention and guidance that my path
has been illuminated, allowing me to act as an instrument of His will. May this work serve as a humble
tribute to His infinite wisdom and love, reflecting the devotion He embodies. In remembrance of Him, I
find the true essence of success and fulfillment.

Abstract

Machine Learning (ML), particularly deep learning, has seen vast advancements, leading to the rise
of Machine Learning-Enabled Systems (MLS). However, numerous software engineering challenges
persist in propelling these MLS into production, largely due to various run-time uncertainties that
impact the overall Quality of Service (QoS). These uncertainties emanate from ML models, software
components, and environmental factors. Self-adaptation techniques present potential in managing run-
time uncertainties, but their application in MLS remains largely unexplored. As a solution, this thesis
proposes Machine Learning Model Balancer, a novel concept focusing on managing uncertainties related
to ML models by using multiple models in runtime.

Subsequently, the thesis introduces AdaMLS, an novel approach that leverages the Machine Learning
Model Balancer concept for continuous adaptation. AdaMLS extends the traditional MAPE-K loop,
employing lightweight unsupervised learning for dynamic model switching, thereby ensuring consistent
QoS in dynamic environments. The effectiveness of AdaMLS is demonstrated through an object detection
use case, showcasing its ability to effectively mitigate run-time uncertainties and surpass both naive
approaches and standalone models in terms of QoS.

We further developed SWITCH, an exemplar to demonstrate the practical application of our research
in self-adaptation of MLS. The discussion on SWITCH highlights its role as a tool designed to enhance
self-adaptive capabilities in MLS through dynamic model switching in runtime. SWITCH is developed as
to cater to a broad range of ML scenarios. It features advanced input handling, real-time data processing,
and logging for adaptation metrics, supplemented with an interactive real-time dashboard for system
observability. Through its architecture and user-friendly interface, SWITCH not only demonstrates
adaptability and performance but also serves as a valuable platform for researchers, practitioners, and
students to explore self-adaptation in MLS.

Beyond the primary focus on ensuring optimal QoS, we also explore the application of the Machine
Learning Model Balancer concept in two main areas. Firstly, the EcoMLS approach leverages this concept
to enhance the sustainability of MLS. By optimally balancing energy consumption with model confidence
through runtime ML model switching, EcoMLS marks a significant step towards sustainable, energy-
efficient ML solutions. Secondly, RelMLS approach to systems, where machine learning is deployed in
streaming mode. Through experiments and implementation, this approach has shown promising results in
object detection use case, adopting a software architecture-based solution to dynamically switch between
models based on contextual reliability.

vii

viii

This thesis encapsulates a comprehensive exploration of the Machine Learning Model Balancer
concept, from its theoretical introduction to practical applications in diverse MLS scenarios. Through
AdaMLS, SWITCH, EcoMLS, and RelMLS implementations, we demonstrate the potential of our
approaches in enhancing both the QoS and sustainability of MLS. Our findings suggest that the judi-
cious application of model switching and self-adaptation techniques can significantly mitigate run-time
uncertainties, paving the way for more resilient, efficient, and adaptable MLS.

Contents

Chapter Page

1 Introduction . 1
1.1 Research Questions . 3
1.2 Self-Adaptation of MLS: Solution Overview . 3
1.3 Research Activities . 4
1.4 Thesis Structure . 6
1.5 Research Publications . 7

2 Background . 9
2.1 Self Adaptive Systems . 9

2.1.1 Conceptual Model of a Self-Adaptive System 11
2.1.2 The MAPE-K Framework . 12

2.2 Object Detection . 12
2.3 Discussion . 14

3 Literature Review . 15
3.1 Self Adaptive Systems . 15

3.1.1 Literature Reviews in Self-Adaptive Systems 16
3.1.2 Addressing Uncertainty in Self-Adaptive Systems 17
3.1.3 Advancements and Techniques in Self-Adaptation 18
3.1.4 Challenges in Machine Learning-Enabled Systems 19
3.1.5 Self-Adaptation in Machine Learning-Enabled Systems 20

3.2 Object Detection: A Use Case for Self-Adaptation in ML Systems 21
3.3 Exemplars for Self-Adaptive Systems . 23
3.4 Sustainability and Self Adaptation . 24
3.5 Discussion . 26

4 Machine Learning Model Balancer . 27
4.1 Introduction . 27
4.2 Challenges in Self-Adaptation of ML-Enabled Systems 28
4.3 Machine Learning Model Balancer . 29
4.4 Discussion . 31

5 AdaMLS: Approach For Self-Adaptation of ML-Enabled Systems 33
5.1 Introduction . 33
5.2 Running Example . 34

ix

x CONTENTS

5.2.1 Conclusion of the Running Example . 36
5.3 AdaMLS Approach . 37

5.3.1 Learning Engine . 38
5.3.1.1 Data Store and ML Model Executor 38
5.3.1.2 Unsupervised Model Builder and Performance Evaluator 38
5.3.1.3 Adaptation Rule Creator . 39

5.3.2 MAPE-K Loop . 40
5.3.2.1 Knowledge . 40
5.3.2.2 Monitor . 41
5.3.2.3 Analyzer . 41
5.3.2.4 Planner . 42
5.3.2.5 Executor . 43

5.4 Uncertainty Analysis in AdaMLS . 43
5.4.1 Uncertainty Sources and Mitigation Strategies 44

5.5 Results . 45
5.5.1 Implementation Setup . 45
5.5.2 Results Analysis . 45

5.6 Discussion . 48
5.6.1 AdaMLS: Lessons Learned . 48
5.6.2 Threats to Validity . 49

6 SWITCH: An Exemplar for Evaluating Self-Adaptive ML-Enabled Systems 50
6.1 Introduction . 50
6.2 Overview . 51
6.3 Architecture and Design . 52

6.3.1 Managed System . 52
6.3.2 Switch: Front-end . 53
6.3.3 SWITCH: Environment Manager . 54
6.3.4 SWITCH: Managing System . 54

6.3.4.1 Self-Adaptation Through MAPE-K Framework 55
6.4 System Usage & Adaptation . 55

6.4.1 System Usage: . 57
6.4.2 Adaptation Strategies . 57

6.5 Empirical Evaluation . 58
6.5.1 Evaluation using AdaMLS Approach . 59
6.5.2 Technical Challenges & Solutions . 61

6.6 Discussion . 62
6.6.1 Lessons Learned from SWITCH Deployment 62
6.6.2 Threats to Validity . 64

7 Applications of ML Model Balancer . 65
7.1 Introduction . 65
7.2 EcoMLS: Enhancing sustainability in MLS . 67

7.2.1 EcoMLS: Running Example . 67
7.2.2 EcoMLS: Approach . 68
7.2.3 EcoMLS: Experimentation and Results . 68

CONTENTS xi

7.2.4 EcoMLS: Experimental Setup . 69
7.2.5 EcoMLS: Results . 69

7.3 RelMLS: Self-Adaptation of Streaming Mode MLS 71
7.3.1 RelMLS: Running Example and Implementation Details 71
7.3.2 RelMLS: Approach . 74

7.3.2.1 RelMLS Approach: System Architecture 74
7.3.2.2 The Core of RELMLS: Contextual Reliability Index (CRI) 74
7.3.2.3 Operational Dynamics: MAPE-K Framework Implementation 74
7.3.2.4 RelMLS: Empirical Validation and Results 75

7.4 Discussion . 77
7.4.1 Lessons Learned: EcoMLS . 77
7.4.2 Lessons Learned: RelMLS . 78
7.4.3 Threats to Validity . 78

7.4.3.1 EcoMLS: Threats to Validity . 78
7.4.3.2 RelMLS: Threat to Validity . 79

8 Conclusion and Future Work . 80
8.1 Conclusion . 80

8.1.1 Addressing Research Questions . 80
8.1.2 Summary of Contributions . 81

8.2 Future Work . 82

Bibliography . 84

List of Figures

Figure Page

1.1 Typical Workflow in Machine Learning-Enabled Systems 2
1.2 Stage by stage development of overall research . 5

2.1 What is Self-Adaptation? . 9
2.2 Why Self-Adaptation? . 10
2.3 Conceptual Model and MAPE-K Framework of a Self-Adaptive System 11

3.1 Self Adaptive Systems: Research Evolution . 17
3.2 Trends and Gaps: Self Adaptive Systems . 18

5.1 AdaMLS Approach Diagram . 37
5.2 AdaMLS: Model Switching: Naive Vs. AdaMLS . 46
5.3 AdaMLS: Utility Function Over Requests processed 47

6.1 SWITCH : Architecture Diagram . 52
6.2 SWITCH User Interface: Home Page . 56
6.3 SWITCH : Request Rate and Model Switching . 60
6.4 SWITCH Dashboard: Runtime Metrics Excerpts . 61
6.5 SWITCH Dashboard: Runtime Filters Excerpts . 62
6.6 SWITCH Dashboard: Runtime Histograms Excerpts 62
6.7 SWITCH Dashboard: Runtime Analytics Excerpts 63

7.1 Architecture of the EcoMLS and RelMLS Approach 66
7.2 Model switching: Naive baselines Vs. EcoMLS . 71
7.3 Trade-off between energy consumption and the average confidence score of individual

models (first row), EcoMLS with varying ϵ (second row), and naive baselines (third row). 72

xii

List of Tables

Table Page

4.1 Challenges, impact on ML-Enabled Systems and necessity for adaptive mechanisms . . 29
4.2 Addressing Challenges with the ML Model Balancer 31

5.1 Summary of YOLOv5 Model Variants’ Characteristics and Performance Metrics . . . 35
5.2 Simplified Example of Aggregated Performance Metrics for ’Large’ and ’Nano’ Models 39
5.3 Sample Confidence Intervals for Model Performance Metrics 40
5.4 AdaMLS: Mitigating Uncertainty in Self-adaptive Systems 44
5.5 AdaMLS : Performance Comparison . 48
5.6 AdaMLS: Utility Comparison . 48

6.1 SWITCH: API endpoints and their descriptions. 55
6.2 SWITCH: Comparison of General Object Detection using AdaMLS Approach and Nano

Model-(No Switching) . 59

7.1 EcoMLS: Model score frequency table . 70
7.2 EcoMLS: Comparison of energy metrics and confidence scores across different approaches 73
7.3 RelMLS: Comparative Analysis of Detection Performance and Efficiency 76

xiii

Chapter 1

Introduction

Software technology has advanced, integrating machine learning (ML), deep learning (DL), and
artificial intelligence (AI) into a wide array of applications. These technologies have enabled the
development of machine learning-enabled systems (MLS), such as ChatGPT, Amazon Rekognition,
DALLE-2 etc, capable of performing tasks that require human-like intelligence, including decision-
making and outcome prediction. MLS leverage ML models to interpret data, adapt to new inputs, and
make informed decisions based on identified patterns. These systems, ranging from recommendation
engines and spam filters to more complex applications like autonomous vehicles and advanced healthcare
diagnostics, showcase the potential of MLS to learn from data and adapt to new inputs, thus making
them integral to technological advancement [3]. As represented in Figure 1.1 referred from a case
study [3], a typical MLS workflow begins with incoming requests, processed through APIs, leading to
data preprocessing, model inference, and post-processing stages before delivering the output. The core
of an MLS lies in its ML models, stored in a repository and loaded as needed to ensure accurate and
timely responses. This process highlights the system’s ability to adapt and learn from data, a fundamental
attribute of MLS that drives their application across diverse domains.

Deploying and maintaining such machine learning-enabled systems presents challenges [49, 3],
including engineering tasks like data management, ML model integration, and versioning. These tasks
are important for utilizing the more accurate and efficient models. Additionally, operational challenges
such as scalability and resource management are essential for managing variable loads and ensuring a
high Quality of Service (QoS) [64]. Nearly half of MLS projects face hurdles in reaching production
stages, primarily due to inconsistent model performance and software component instability, as noted by
a Gartner report [1]. Beyond the engineering and operational challenges, MLS are particularly vulnerable
to runtime uncertainties that influence their Quality of Service (QoS) [9, 13]. QoS encompasses the
system’s ability to deliver timely, accurate, and reliable outputs, ensuring user satisfaction and operational
efficiency. These uncertainties that arises during the system’s runtime, directly affects system performance.
As highlighted by Casimiro et al [15] these mainly include:
Data-Driven Uncertainties: Where the quality and relevance of input data vary over time, leading to
potential inaccuracies in the system’s outputs.

1

Model Management Uncertainties: Stemming from the need for continuous model evaluation and updates
to accommodate new data or changes in the operational context.
Resource Allocation Uncertainties: The dynamic demand for computational resources can lead to
bottlenecks, affecting the system’s ability to process data efficiently and meet response time requirements.
System Stability: Frequent changes in the operational environment or data patterns can disrupt the balance
between system adaptability and stability, resulting in unpredictable behavior.
These runtime uncertainties challenge the system’s capability to maintain a high QoS, showing the
necessity for a dynamic approach to adapt the behavior and structure of the system in run-time. The
focus on runtime is important because it is during the system’s operation that these uncertainties have
the most significant impact, directly influencing the effectiveness, efficiency, and reliability of MLS
outputs. Addressing these uncertainties requires a way that allows the system to autonomously adjust
its operations, ensuring that the QoS is not compromised despite the changing conditions. This shows
why systems need to adapt by themselves, introducing us to self-adaptation. Self-adaptation refers to

ML Model
Inference

Post
Processing

API Fetch Data
Preprocessing

Overview of Workflow in Machine Learning Enabled System

Requests Coming
from real world

Result
Storage

Requests

API Send

Data
Ingestion

Figure 1.1: Typical Workflow in Machine Learning-Enabled Systems

the capability of a system to autonomously modify its structure and/or behaviour in response to changes
within its operating environment or internal state [17]. The prefix ”self” in self-adaptation implies that
the system will have the capabilities to autonomously (with minimal human intervention) decide the
action to be performed in the event of any uncertainty [79]. This concept has been extensively explored
within traditional software systems, leading to advancements in system resilience, efficiency, and user
satisfaction by automatically managing uncertainties and maintaining system objectives under changing
conditions [42]. Self-adaptive systems are designed to manage a variety of uncertainties, ensuring that
the system continues to meet its objectives amidst changing conditions [87]. Although self-adaptation
has proven effective in domains like IoT, healthcare, traffic management, and finance [11, 22, 84], its
application in MLS is largely unexplored [15]. Thus, by enabling MLS to autonomously adjust their
behavior, we can significantly enhance their capability to maintain service quality, model accuracy, and
overall system performance tackling data, system and operational uncertainties [87, 15].
Hence in this thesis, we scope our research area on self-adaptation within machine learning-enabled
systems. Further details on our research questions and the proposed solutions are discussed in the
following sections.

2

1.1 Research Questions

Recognizing the impact of runtime uncertainties on MLS and noting that self-adaptation within MLS
remains largely unexplored, this study aims to explore self-adaptation for these systems. It will focus on
developing strategies that allow MLS to effectively respond to changing conditions and sustain high QoS.
The research is structured around three research questions:

RQ1 In the context of machine learning-enabled systems, how can self-adaptive mechanisms be devel-
oped and applied to mitigate runtime uncertainties, thereby enhancing their Quality of Service (QoS)?

RQ2 What tools can be devised to facilitate the implementation and exploration of self-adaptation within
machine learning-enabled systems for researchers, students, and practitioners?

RQ3 How can self-adaptation in MLS be applied and generalized across MLS deployment modes and
aspects in computer vision domain, broadening their applicability and impact?

RQ1 seeks to develop self-adaptive strategies for MLS to mitigate runtime uncertainties, with a
focus on maintaining or improving the systems’ QoS. RQ2 aims at creating tools that facilitate the
practical application and experimentation making self-adaptation accessible and actionable to students,
researchers and practitioner. RQ3 explores the potential for broader application of self-adaptation
strategies, examining their adaptability and effectiveness across other aspects like sustainability and
deployment modes of MLS like streaming deployment mode of MLS.

1.2 Self-Adaptation of MLS: Solution Overview

To address the identified challenges and answer the research questions outlined above, this thesis
presents a solution enabling self-adaptation in Machine Learning-Enabled Systems (MLS). This is aimed
at equipping MLS with the ability to self adapt to the dynamic run-time uncertainties that affect their
Quality of Service (QoS), ensuring consistent performance under varying operational conditions.

The main contribution of our solution is the development of the Machine Learning Model Balancer
concept. This novel concept suggests that dynamically switching between multiple models1 during
runtime can significantly enhance the adaptability and performance of MLS. It is based on the under-
standing that no single ML model is universally optimal across all operational scenarios. By leveraging
the strengths of different models according to the current context, MLS can achieve a balance between
model accuracy and computational efficiency, thereby maintaining or even improving their QoS.

Building upon the Machine Learning Model Balancer concept, we introduce AdaMLS, a novel
self-adaptation approach that leverages this concept. AdaMLS provides a structured approach to self-

1unless specified otherwise by model we imply ML model in this thesis

3

adaptation in MLS. Through a self-adaptive object detection system prototype, we demonstrate AdaMLS’s
effectiveness in balancing system and model performance achieving better QoS.

To complement the contributions of our research and provide a practical tool for exploration and
experimentation, we developed SWITCH. This exemplar serves as a platform for real-world MLS
environments, enabling the academic and professional communities to engage with self-adaptive strategies
without the constraints of live deployment. SWITCH provides a versatile environment for testing and
refining self-adaptive mechanisms, facilitating understanding of their potential benefits and limitations.

Additionally, this thesis explores the application of the Machine Learning Model Balancer concept
in two specific areas: sustainability and contextual self-adaptation in streaming modes of MLS. These
explorations aim to extend the generalizability of the concept beyond performance improvement, ad-
dressing the broader implications of self-adaptation in MLS, including energy efficiency and contextual
reliability in data streaming contexts.

Sustainability in Machine Learning Systems: This aspect of our research emphasizes the importance
of energy efficiency in MLS operations. Through EcoMLS approach, by integrating sustainability
considerations into the self-adaptive process, we seek to reduce the environmental impact of MLS while
ensuring they remain effective and reliable through run-time model switching.

Contextual Self-Adaptation in Streaming Modes: Recognizing the increasing relevance of MLS
in applications that require continuous data processing, we propose RelMLS approach which aim to
ensure these systems can maintain context accuracy and reliability. This involves extending the Machine
Learning Model Balancer concept to adaptively manage model selection in streaming environments,
where the context and data are continuously changing.

In summary, this thesis contributes to the field by proposing a novel research work for self-adaptation
in MLS, demonstrated through the Machine Learning Model Balancer concept, AdaMLS approach,
and SWITCH exemplar. Furthermore, by exploring the application of this concept in sustainability and
streaming data contexts, we highlight the broader potential of self-adaptation to enhance the adaptability,
efficiency, and environmental responsibility of MLS. Through these efforts, we aim to provide valuable
insights into the capabilities and future directions of self-adaptation of machine learning-enabled systems.

1.3 Research Activities

To address the challenges in self-adaptation of Machine Learning-Enabled Systems (MLS) and
respond to the outlined research questions, the following stages were systematically undertaken in this
thesis as illustrated in Figure 1.2:

Stage 1: State-of-the-Art Analysis
A comprehensive review of current literature in both self-adaptation and MLS was conducted. This
revealed a notable gap in real-time adaptation strategies for MLS. Identifying this gap was important,
as it directed our research focus towards innovating real-time adaptive solutions for MLS, laying the
groundwork for our subsequent contributions and deciding the research goal.

4

Legend

Research
Questions

Research
Stages

1. State of The Art
Analysis

3.Self Adaptation
of MLS

4. Development of
 Exemplar

5a. Enhancing
Sustainability

in MLS

5b. Contextual
Self-Adaptation

in MLS

RQ1

RQ3

RQ2

TAAS 2024
(Planning to Submit)

ICSA 2024

SEAMS 2024

ASE 2023

Publication

Stage Flow

2. Conceptual
Approach

Figure 1.2: Stage by stage development of overall research

Stage 2: Conceptual Approach
The research goal, the research challenges, and our domain knowledge were used in the second stage
and we proposed the Machine Learning Model Balancer as a mechanism for enabling real-time model
switching in MLS. This novel concept aims to dynamically select the better model during runtime to
enhance system adaptability and performance, directly addressing the challenge posed in Research
Question 1 (RQ1). The development of this concept was detailed in a paper presented at the 38th

IEEE/ACM International Conference on Automated Software Engineering (ASE) 2023 [47].

Stage 3: Self Adaptation of MLS
With the conceptual foundation established, we introduced the AdaMLS approach, leveraging the
Machine Learning Model Balancer concept. AdaMLS showcases the practical application of dynamic
model switching to improve MLS adaptability, aligning with the goals of RQ1. Details of the AdaMLS
approach were shared in the same ASE 2023 publication [47].

Stage 4: Development of Exemplar
Recognizing the need for a practical tool to test and validate self-adaptive strategies in MLS, we
developed SWITCH. This exemplar, published in the artifact track of 19th International Conference on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS) 2024, co-located with the 46th

International Conference on Software Engineering (ICSE 2024), facilitates experimentation with MLS
under various uncertainties. SWITCH’s development aligns with Research Question 2 (RQ2), focusing
on providing a platform for empirical evaluation of self-adaptive strategies in MLS.

Stage 5a: Enhancing Sustainability in MLS
Further exploring the applications of the Machine Learning Model Balancer concept, we focused
on sustainability within MLS through the EcoMLS approach. Detailed in our submission to the 8th

International Workshop on Green and Sustainable Software (GREENS’24) part of 21st IEEE International
Conference on Software Architecture (ICSA 2024), EcoMLS aims to integrate energy efficiency into

5

MLS, addressing the objectives of Research Question 3 (RQ3). This work aims at reducing the ecological
impact of MLS operations without sacrificing performance, highlighting our commitment to sustainable
technological solutions.

Stage 5b: Contextual Self-Adaptation in Streaming MLS
This section details our ongoing work on self-adaptation of MLS deployed as streaming service, intended
for submission to the ACM Transactions on Autonomic and Adaptive Systems (TAAS). Focused on
RQ3, this research aims to enable MLS to autonomously adjust their processing to maintain context
reliability in real-time data streams, enhancing adaptability and QoS in dynamic conditions. This work
is conducted in collaboration with Hiya Bhatt, an intern at our Software Engineering Research Center
(SERC) from Manipal University Jaipur; Arya Marda, an undergraduate student; and guided by my
supervisor. Their collective expertise and contributions are invaluable to the advancement of this research.

Also, our contributions have been recognized within the academic and professional communities as
follows:

1. The work was honored with the Best Student Poster Award at the Innovation in Software Engi-
neering Conference (ISEC) 2024 held in Bangalore. This accolade serves as a testament to the
relevance and impact of our research in addressing the outlined research questions.

2. The practical implementation of our proposed machine learning model balancer concept on
the Qualcomm’s QIDK HDK8550 Development Kit as an edge device has yielded promising
preliminary results. The author of this thesis presented these findings at Qualcomm’s University
Platforms Developer Conference 2024, highlighting the practical applicability of our research.

1.4 Thesis Structure

The remainder of this thesis is organized as follows:

Chapter 2: Background
In Chapter 2, we provide background details of various concepts underlying this thesis. It covers the basics
of MLS, the fundamentals of self-adaptation, the significance of our object detection use case within
MLS, and the use of exemplars in research. This background information is necessary for understanding
the context and motivation behind our research.

Chapter 3: Literature Review
Here, we present a thorough review of existing literature related to self-adaptation in MLS, the application
of self-adapting strategies, the use of exemplars, challenges in object detection as our use case, and
considerations for environmental sustainability and streaming data processing in MLS. The aim is to
highlight the current state of research and identify areas where further work is needed.

Chapter 4: Machine Learning Model Balancer Concept
This chapter addresses Research Question 1 (RQ1) by introducing and detailing the Machine Learning

6

Model Balancer concept. It discusses the rationale behind this concept and how it aims to improve the
adaptability and Quality of Service (QoS) of MLS by addressing runtime uncertainties.

Chapter 5: AdaMLS : Novel Approach For Self-Adapting MLS
Continuing with the exploration of RQ1, Chapter 5 focuses on AdaMLS, a novel approach that applies
the Machine Learning Model Balancer concept. The chapter elaborates on the design, functionality,
results and challenges addressed by AdaMLS within the context of self-adaptive MLS.

Chapter 6: SWITCH : An Exemplar for Evaluating Self-Adaptive ML-Enabled Systems
Dedicated to Research Question 2 (RQ2), this chapter discusses SWITCH, an exemplar tool created
to test and evaluate self-adaptive strategies in MLS. It highlights the tool’s role in supporting research,
experimentation, and educational efforts in the field of self-adaptation of MLS.

Chapter 7: Applications of Model Balancer Concept
Focusing on Research Question 3 (RQ3), this chapter explores the application of the Machine Learning
Model Balancer concept in enhancing sustainability through EcoMLS and in contextual self-adaptation
for streaming data environments through RelMLS. It outlines the motivation, methodology, results and
contributions of these applications to the broader field of self-adaptive MLS.

Chapter 8: Conclusion and Future Work
The concluding chapter summarizes the main findings and contributions of this thesis. It reflects on the
significance of our work and suggests future research directions that could further advance the domain of
self-adaptive MLS.

1.5 Research Publications

The research presented in this (as depicted in Figure 1.2) has resulted in the following peer-reviewed
publications :

1. S. Kulkarni, A. Marda and K. Vaidhyanathan, ”Towards Self-Adaptive Machine Learning-Enabled
Systems Through QoS-Aware Model Switching,” 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Luxembourg, Luxembourg, 2023, pp. 1721-1725.
(Thesis author’s contributions: Overall idea, methodology, approach, evaluation and writing of the
publication under the guidance of the supervisor. Implementation was collaboratively carried out with
co-author A. Marda).

The following publications are accepted for publication in respective conferences and are available as
technical reports:

2. A. Marda, S. Kulkarni and K. Vaidhyanathan, ”SWITCH: An Exemplar for Evaluating Self-Adaptive
ML-Enabled Systems” International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ’24), April 15–16, 2024, Lisbon, AA, Portugal.

7

Available at: https://arxiv.org/abs/2402.06351
(Thesis author contribution: Conceived and designed the research framework for the SWITCH exemplar,
outlining the overall idea, methodology, and approach with co-authors. Led the writing of the publication,
ensuring a coherent presentation of the research contributions with co-authors. The implementation of
the SWITCH exemplar, including coding and tool development, was done by the first author A. Marda in
collaboration with other authors)

3. M. Tedla, S. Kulkarni and K. Vaidhyanathan, ”EcoMLS: A Self-Adaptation Approach for Architect-
ing Green ML-Enabled Systems” 2024 IEEE 21st International Conference on Software Architecture
Companion (ICSA-C), Hyderabad, India, 2024
Available at: https://doi.org/10.36227/techrxiv.171177355.53837507/v1
(Thesis author contribution: Overall idea, conceptual methodology, evaluation setup and writing along
with the other authors.)

8

Chapter 2

Background

In this chapter, we explore the concept of Self-Adaptive Systems (SAS), detailing their development,
applications, and mechanisms for self-improvement in response to environmental or internal changes
along with object detection use case.

2.1 Self Adaptive Systems

Self-adaptive systems (SAS) constitute a significant and evolving research domain within computer
science, particularly in the context of increasing software and environmental complexity as shown in
Figure 2.1. The principle driving SAS is the capability to autonomously modify behavior in response to
changes within their environment, internal states, or in response to observed faults, thereby enhancing their
performance, dependability, and utility. This section provides a comprehensive overview of self-adaptive
systems, elucidating their theoretical foundations, methodologies, application domains, challenges, and
future directions. The genesis of self-adaptivity can be traced back to the challenges associated with

Ability to Dynamically Adjust its Behaviour
& Structure to Changing Environmental

Conditions or User Requirements

Improve Performance,
Availability & Reliability

in Run-Time!
Architecture Based Approach

= Flexibility & Modularity

Techniques = Feedback
Control, ML, Rule Based

& Many More!

Domain = Cloud Computing,
Cyber Physical Systems,

IoT & Many More!

Increasingly Important
Due to the

Growing Complexity

What is Self Adaptation?

Figure 2.1: What is Self-Adaptation?

managing increasingly complex software systems. An IBM’s vision of autonomic computing highlighted
the impending software complexity crisis, underlining the need for systems that could manage themselves
based on high-level administrator objectives, heralding the era of autonomic computing. This initiative
laid the groundwork for the development of self-adaptive systems, aiming to mitigate the complexity and
manageability challenges inherent in contemporary computing systems [42].

9

At the core of SAS is the ability to perform self-adaptation, which encompasses autonomy in adapta-
tion, driven by overarching objectives and facilitated by feedback loops. These systems are distinguished
by their capacity to autonomously decide and act upon changes in their context or environment with min-
imal or no human intervention. Definitions offered in literature tells that the system’s capability to adjust
its operations in response to environmental changes, pursuing goals through adaptive actions. This adap-
tivity is realized through various approaches, including external control mechanisms, component-based
software engineering (CBSE), model-driven development, nature-inspired strategies, and multi-agent
systems, each contributing uniquely to the adaptivity process [17, 52].

The evolution of self-adaptive systems has seen a transition from theoretical formulations towards
practical implementations and holistic frameworks. This progression is evidenced by the broad spectrum
of application domains, from networking and web services to robotics, and more recently, the Internet
of Things (IoT) and Infrastructure as a Service (IaaS). Methodologies employed in the design and
development of SAS incorporate a blend of traditional software engineering approaches with insights
from cybernetics, artificial intelligence, and control theory, aiming to furnish systems with the capabilities
to self-manage and adapt in real-time to changes [87].

Self-adaptive systems find applicability across a diverse array of domains, including but not limited to,
embedded systems, decision-making processes, healthcare, and the software industry itself. Noteworthy
among the challenges faced in these applications is the user’s understanding and trust in the systems’
adaptive behaviors. Efforts to address these concerns include the development of human-readable
explanations of system actions and the incorporation of user feedback into the adaptation process.
Furthermore, the quest for creating systems that can learn from new experiences and adapt to evolving
conditions remains a central research direction [52].

As the domain of self-adaptive systems matures, the emphasis shifts towards addressing the scalability,
reliability, and security concerns inherent in these systems, particularly in the context of application areas
such as machine learning systems, cyber-physical systems and cloud computing. The future trajectory
of SAS research is poised to explore bio-inspired approaches, enhance decision-making algorithms,
and refine feedback control mechanisms to better manage the complexity and dynamism of modern
computing environments. As explained in Figure 2.2 the continuous evolution of self-adaptive systems
promises to significantly impact how future computing systems are designed, deployed, and managed,
steering towards more autonomous, efficient, and resilient computing paradigms.

Complex & Dynamic Softwares =
Difficulty to Anticipate and Handle
All changes and Failures Manually

Autonomously Respond!
Why Reactive?

Go Self Adaptive!

Reduces the Need of
Human Intervention!

"SELF"

Improves Reliability,
Availability,

Scalability & Efficiency

Enhance User Experience
Stability & Responsiveness!

Real World Issues
Effectively
Addressed!

Why Self Adaptation?

Figure 2.2: Why Self-Adaptation?

10

2.1.1 Conceptual Model of a Self-Adaptive System

The conceptual framework[82, 79] of self-adaptive systems (SAS) delineates their structure through
four primary components: the environment, the managed system, adaptation goals, and the managing
system, as illustrated in Figure 2.3. This model provides a vocabulary foundational to the self-adaptation
discipline and guides the organization and focus of knowledge within this field.

Environment encompasses both physical and virtual entities that interact with the SAS. This in-
teraction is mediated through sensors and effectors, allowing the system to perceive and act upon its
surroundings. The environment is distinguished from the SAS based on control limitations, introducing
uncertainty in sensed information and effected actions.

Managed System refers to the application layer responsible for the system’s domain functionality,
interacting directly with the environment to fulfill its designated tasks. Adaptation support within the
managed system necessitates sensing capabilities for monitoring and actuators for executing adaptations,
ensuring minimal disruption to regular activities.

Adaptation Goals represent the objectives guiding the managing system’s oversight of the managed
system, often pertaining to the software qualities of the latter. These goals include self-configuration,
self-optimisation, self-healing, and self-protection, each addressing distinct aspects of system adaptability
and resilience.

Managing System embodies the adaptation logic that manages the managed system towards achieving
adaptation goals. It monitors and adapts the managed system based on real-time analysis, potentially
across multiple levels of adaptation strategies.

This conceptual model abstracts from specifics such as software distribution and adaptation decision
coordination, providing a generalized framework for understanding and developing SAS.

Environment

Self-Adaptive Systems Conceptual Framework

Knowledge

Monitor Executor

Analyzer Planner

EffectorsSensors

Managed System

Managing System

Self-Adaptive System Based on MAPE-K Framework

Managed System

Managing
System

Adaptation
Goals

Self-Adaptive System

effect

adapt

read

sense

sense

Figure 2.3: Conceptual Model and MAPE-K Framework of a Self-Adaptive System

11

2.1.2 The MAPE-K Framework

The MAPE-K (Monitor, Analyze, Plan, Execute over a shared Knowledge base) framework represents
a cornerstone in the architecture of managing systems within SAS, orchestrating the adaptive cycle
through its constituent activities (see Figure 2.3). Introduced by Kephart and Chess, and further elaborated
by IBM and others, MAPE-K encapsulates the essence of self-adaptation mechanisms[42].

• Monitor: This phase involves continuous surveillance of the managed system, collecting data on
its operation, metrics, and logs, which are then relayed to the Analyze component.

• Analyze: Here, the system assesses the need for adaptation based on the monitored data and
predefined adaptation goals, triggering the planning phase upon identifying such needs.

• Plan: This stage devises an adaptation strategy to meet the goals, utilizing a variety of techniques
from model-checking to machine learning for plan formulation.

• Execute: The execution phase implements the adaptation plan through the managed system,
altering its behavior or structure via effectors that facilitate dynamic adjustment.

• Knowledge: Acting as the framework’s central repository, the Knowledge base accumulates
and disseminates data among the MAPE components, supporting informed decision-making and
adaptation.

The MAPE-K framework effectively embodies the adaptive loop, enabling SAS to dynamically respond
to changes and maintain or enhance their operational objectives. Now that we have established a
foundational understanding of self-adaptive systems and their underlying mechanisms, let’s explore the
object detection as a use case in the context of these systems in the following section.

2.2 Object Detection

Object detection is an important area of study in artificial intelligence (AI) and machine learning (ML),
offering the capability to identify and locate objects within an image or a video. This capability extends
across various applications impacting sectors like autonomous driving, surveillance, augmented reality,
and beyond. Object detection algorithms analyze visual inputs, breaking down images into elements
or objects, and identifying instances of particular categories such as humans, vehicles, or animals. In
object detection, an ”image” refers to digital representations captured by cameras or sensors, which are
processed by AI models. These models are trained on vast datasets to recognize patterns and features
corresponding to different objects. The process involves the model scanning the image, predicting
the presence of objects, and drawing bounding boxes around them. Each detection is accompanied
by a ”confidence score,” which quantifies the model’s certainty regarding the object’s presence and
classification. This score filters out less likely detection, enhancing the reliability of the results.

12

Key Concepts of Object Detection:

• Confidence Score:: A metric that measures the probability that a detected object belongs to a
certain category. Higher confidence scores indicate greater assurance in the detection’s accuracy.

• Bounding Boxes: Rectangular borders drawn around detected objects to specify their location
within the image. These boxes are defined by coordinates that pinpoint the object’s position.

• Response Time: The duration the object detection model takes to analyze an image and identify
objects. This metric is critical for applications requiring real-time detection, such as autonomous
vehicles and video surveillance systems.

Object detection’s significance in AI and ML is multifaceted, impacting both technological advance-
ment and practical applications. It enhances machines’ understanding of visual contexts, enabling them
to interact with their surroundings in a more human-like manner. This capability is pivotal for creating
intelligent systems that can autonomously navigate environments, recognize and track objects in real-time,
and make informed decisions based on visual inputs.

YOLO Algorithm and Its Importance: The YOLO (You Only Look Once) algorithm stands as as
notable advancement in the object detection domain, epitomizing efficiency and accuracy in processing
visual data. Originating from the foundational work of Redmon et al., YOLO revolutionized the approach
to detecting objects by analyzing an entire image in a single evaluation, rather than processing multiple
segments of the image separately [69]. This innovation not only accelerates the detection process but
also enhances the algorithm’s ability to understand contextual information, improving the accuracy of
object identification.

YOLO’s significance is further highlighted by its iterations and improvements, with Ultralytics’
YOLOv5 being among the latest and most efficient versions [41]. YOLOv5 benefits from an optimized
architecture and pre-trained models provided by Ultralytics, facilitating rapid deployment and integration
into a wide array of applications, from real-time video analysis to autonomous navigation systems. The
availability of these pre-trained models democratizes access to high-quality object detection capabilities,
allowing developers and researchers to focus on application-specific challenges rather than the intricacies
of model training.

The decision to incorporate the YOLO algorithm, particularly YOLOv5, into our study as use-case
is motivated by its balance between speed and accuracy, its adaptability to diverse scenarios, and the
support provided by Ultralytics. In summary, the YOLO algorithm, with its emphasis on speed, accuracy,
and ease of use, represents a cornerstone in the development of efficient object detection systems. Its
evolution, marked by significant contributions like YOLOv5, continues to shape the landscape of artificial
intelligence, driving forward the capabilities of machines to perceive and interpret the visual world with
remarkable precision.

13

Despite remarkable progress, object detection faces challenges, especially in processing speed, accuracy,
and the detection of small or partially obscured objects. Future research is directed towards developing
lightweight models for faster inference on edge devices, enhancing end-to-end detection pipelines
for improved accuracy and efficiency, and advancing 3D object detection for comprehensive spatial
understanding[93]. Moreover, innovations in cross-modality detection and open-world detection aim
to create systems capable of learning from new, unlabeled data, mimicking human learning efficiency
and adaptability. In conclusion, object detection represents a dynamic and evolving field within AI
and ML, driven by the pursuit of creating more intelligent, responsive, and autonomous systems. As
technologies advance, object detection will undoubtedly play a key role in bridging the gap between
artificial perception and human-like understanding of the visual world, catalyzing the development of
next-generation AI applications [93].

2.3 Discussion

This chapter provided an overview of Self-Adaptive Systems (SAS) and their role in modern comput-
ing, alongside an introduction to object detection as a key application area in AI and ML. Understanding
SAS and object detection lays the groundwork for addressing the complexities of dynamic and unpre-
dictable environments through adaptive strategies.

• We highlighted the evolution of SAS from foundational concepts to their application in complex
computing systems, emphasizing their capacity for self-management and adaptation.

• The challenges and future directions of SAS were discussed, particularly focusing on the need for
enhanced adaptability, security, and scalability.

• Object detection was introduced as a vital AI/ML domain, showcasing its significance in various
applications and the ongoing challenges and innovations in this area.

In the following chapter 3, we will delve into a detailed literature review pertinent to our research,
exploring how SAS and object detection intersect and identifying gaps where our work can contribute to
advancing these fields.

14

Chapter 3

Literature Review

In this chapter, we discuss the literature on Self-Adaptive Systems (SAS), focusing on their develop-
ment, challenges, and the role of machine learning, paving the way to our exploration of self-adaptation
in Machine Learning-Enabled Systems.

3.1 Self Adaptive Systems

Exploring the foundational concepts and evolution of Self-Adaptive Systems (SAS) lays the ground-
work for understanding their role in the development of modern computing infrastructures. This section
delves into the journey from their inception to their integration with machine learning (ML), highlighting
the importance of adaptability and resilience in software systems.

The inception of self-adaptive systems (SAS) research was marked by the introduction of autonomic
computing by IBM in 2003 [42], establishing the MAPE-K loop as an architecture for systems to
autonomously monitor, analyze, plan, and execute adaptations. This foundational work underscored
the necessity for systems to self-manage in the face of environmental changes and internal challenges.
Building upon this Cheng et al provided a research road-map that detailed the active field of SAS,
emphasizing their capacity to adapt and improve in response to changes, thus setting the stage for future
research directions in the field [17].

Building upon the foundation of autonomic computing, the integration of machine learning has
marked an enhancement in the adaptability and potential applications of SAS. This evolution shows a
natural progression from foundational principles to advanced applications in modern computing.

The role of machine learning in enhancing the adaptability of SAS was explored by Wenys et al,
highlighting its integration and pointing to the potential for greater application, especially in unsupervised
learning contexts [83]. Further expanding the discussion, De Lemos et al presented a second research
road-map, focusing on the design space for adaptive solutions, the shift from centralized to decentralized
control, and the importance of run-time verification and validation for SAS [25]. The further research
work by de Lemos et al addressed the complex issue of providing assurances in self-adaptive systems,
considering their evolving nature and need for reliability and trustworthiness [24]. An empirical study on

15

the resilience of architecture-based SAS compared to traditional code-embedded adaptation methods
demonstrated the benefits of an architectural approach to adaptation [10]. Cámara Javier et al explains a
method for elucidating architectural design trade-offs, using machine learning and quantitative verification
to aid architects in making informed decisions under uncertainty [12].

Mendonça Nabor C et al discussed the balance between the generality and reusability of SAS frame-
works, advocating for solutions that meet the adaptation needs of contemporary software systems [56].
Also, a research work from Cheng et al focused on the progression of SAS from theoretical models to
practical, engineered systems, emphasizing the importance of self-adaptation in the software engineering
landscape [18]. These contributions collectively highlight the evolution of self-adaptive systems from
theoretical constructs to essential components of modern computing infrastructure, emphasizing the
ongoing importance of adaptability, resilience, and autonomy in software systems.

As we navigate through the advancements and challenges in SAS, it becomes evident that integrating
self-adaptive mechanisms into machine learning-enabled systems represents an uncharted but promising
frontier in enhancing system adaptability and efficiency. The next subsection further explore the depth of
literature surrounding SAS and the emerging discussions on their role in ML systems.

3.1.1 Literature Reviews in Self-Adaptive Systems

The exploration of self-adaptive systems (SAS) has been enriched by several comprehensive literature
reviews, each contributing to a broader understanding of the field’s state of the art and guiding future
research directions.

Self-adaptive systems: A systematic literature review across categories and domains in 2022 offer
extensive overviews of SAS research, tracing the evolution from theoretical underpinnings to practical
implementations and more holistic approaches [87] as shown in Figure 3.1. These reviews underscore
the field’s dynamic progression, noting a shift toward integrating SAS in areas such as networking, web
services, and notably, the Internet of Things (IoT) and Infrastructure as a Service (IaaS). They highlight
the maturation of SAS research, from initial concepts to frameworks and exemplars that have practical
applications in diverse domains, including bio-inspired approaches, security, and cyber-physical systems.

Applying Machine Learning in Self-adaptive Systems: A Systematic Literature Review by Gheibi
Omid et al in 2021 specifically addresses the intersection of machine learning (ML) and self-adaptation,
noting a rapid increase in leveraging ML within SAS for tasks such as environmental modeling and
configuration management [32]. Despite the growth of literature in this niche, the review points out a
lack of systematic overviews, which it then provides, focusing on the MAPE feedback loop. This paper
highlights on the use of ML for updating adaptation rules and managing resources, emphasizing the
dominance of supervised and interactive learning methods while pointing out the underutilized potential
of unsupervised learning.

The industrial application and relevance of SAS are scrutinized in [85] in 2023, which contrasts
academic research with practical needs. This survey reveals insights into the adoption of self-adaptation
for enhancing robustness, performance, and user experience in industrial settings, while also highlighting

16

Theoretical & Model-Based
Research

= Foundational Theory

1990s

Practical Implementations
& Framework

Outlining The Grand
Challenges of The Field

Moving Forward

Principals & Ideas for More
Holistic Generic Approaches

Frameworks Became
Exemplars,

Working Solutions with
Real Use Cases

2000s 2006-
2010s

Early
2010s

Several
New

Frameworks

2010- Today

Evolution of Self Adaptive Systems Research

Figure 3.1: Self Adaptive Systems: Research Evolution

the challenges faced when engineering SAS in practice. It suggests a significant alignment between
academic pursuits and industrial implementations, with opportunities for future collaborations to foster
self-adaptation in real-world applications.

Further, work entitled ’Self-adaptive systems: A survey of current approaches, research challenges
and applications’ shows current approaches, challenges, and applications of SAS, emphasizing the
necessity of autonomy in adaptation and the critical role of feedback loops [52]. It outlines the broad
application of SAS across embedded systems and software engineering, supported by various European
research initiatives. Lastly, work by Gheibi et al in 2021 delves into the impact of applying ML on the
decision-making processes within SAS, urging a consideration of ML’s implications on system strategy
and performance [33].

Despite the depth of research and systematic reviews covering SAS and the integration of ML, there
remains a notable gap in literature specifically addressing the adaptation of ML systems themselves. These
comprehensive reviews highlight the dynamic progression of SAS research and shows a significant gap:
the underexplored integration of SAS principles within machine learning-enabled systems. Addressing
this gap presents a promising avenue for future research.

3.1.2 Addressing Uncertainty in Self-Adaptive Systems

Understanding and managing uncertainty is a fundamental aspect of self-adaptive systems (SAS),
as it significantly influences their ability to meet objectives under varying conditions. Research work
entitled as ’The Uncertainty Interaction Problem in Self-Adaptive Systems’ by Cámara, Javier introduces
the Uncertainty Interaction Problem, highlighting the complexities in mitigating uncertainty due to
the inter-dependencies among different types, sources, and dimensions of uncertainty [13]. This work
emphasizes the need for integrated approaches to uncertainty modeling, aiming to construct more resilient
SAS by understanding how uncertainties interact and affect system properties. Further exploring this
theme, Calinescu Radu et al surveys the research community’s perception of uncertainty within SAS [9].
Findings suggest that systems can be engineered to cope with unanticipated changes through evolving

17

actions, synthesizing new actions, or employing default actions. The study advocates for the use of
confidence intervals, probabilities, and multiple models to manage uncertainties effectively, pointing out
the ongoing challenge of ensuring safety-critical SAS.

The potential of decentralized approaches in handling uncertainty is examined in [66], which discusses
the advantages of decentralizing adaptation functions for better coordination and management of uncer-
tainties. Moreno Gabriel et al presents an approach that significantly reduces adaptation decision time,
demonstrating the effectiveness of proactive self-adaptation under uncertainty [62]. Additionally, Kinneer
Cody et al and Moreno Gabriel A et al contribute to the discourse by suggesting methodologies like plan
reuse and stochastic search to manage and reduce uncertainty in SAS, underlining the importance of
innovative strategies in tackling the inherent uncertainties of these systems [43, 61].

As current literature largely focuses on SAS without a specific emphasis on ML systems, bridging
this gap to understand uncertainty management in ML-enabled SAS could lead to the development
of more adaptable, reliable, and efficient systems. The exploration of uncertainty in SAS shows the
necessity for innovative strategies that could be pivotal when applied to ML systems. The advancements
discussed offer a glimpse into how addressing uncertainty could enhance the adaptability and reliability
of ML-enabled systems, an area we aim to explore further in next subsections.

3.1.3 Advancements and Techniques in Self-Adaptation

Recent advancements in self-adaptive systems (SAS) shows the field’s progression towards integrating
sophisticated architectures, machine learning (ML), and human-machine teaming to address complex
adaptation challenges as explained in Figure 3.2.

Exemplars Turn Into
Mainstream Adopted

Solutions

2000-10s

Popularity From
Web Services to IoT

Bio-Inspired Approaches,
Securty & Cyber-Physical Systems

8% of papers on Empirical Aspects,
36% Technological,

27% Methodology Papers
Current Literature Focuses

on Managed Systems
That Dont Rely on ML2010-

20s

Approaches are Evaluated Using
Real-World Case Studies,

Less Reliance on Simulations

Trends And Gaps: Self Adaptive Systems Research

Figure 3.2: Trends and Gaps: Self Adaptive Systems

Moreno Gabriel A et al delves into software architecture and task plan co-adaptation for mobile service
robots, highlighting the need for SAS to adapt both structural and behavioral aspects dynamically [11].
This work illustrates the complexity of making runtime decisions based on the mutual dependencies
between software architecture and task planning under uncertainty. The project by Weyns Danny et al
introduces a self-adaptive service-based system exemplar, offering a reference implementation to evaluate

18

and compare new self-adaptation methods, techniques, and tools. This exemplar serves as a foundational
platform for further SAS research, particularly in service-based systems [84].

Cámara Javier et al presents a tandem approach that combines quantitative verification and machine
learning to architect self-adaptive IoT systems capable of maintaining Quality of Service (QoS) levels
amidst inherent uncertainties [22]. This innovative methodology signifies a shift towards proactive
self-adaptation, enhancing decision accuracy and system resilience. Bureš, Tomáš proposes a vision
where self-adaptation stands in equal relationship to AI, suggesting a synergistic approach that benefits
from and enables AI, marking a pivotal direction for future SAS development [8].

Furthering the discourse, C. Kinneer et al [44], Schmerl Bradleyet al [73], and Moreno Gabriel A
et al [60] introduce techniques such as stochastic self-* planners, architecture-based self-protection,
and proactive latency-aware decision-making. These techniques demonstrate the evolving toolbox for
SAS, aiming to improve re-usability, security, and performance. Works by Cámara Javier et al and
Cleland-Huang et al reflect on real-world applications and extensions of SAS [21, 20]. The former shares
insights from integrating the Rainbow platform for architecture-based self-adaptation into industrial
middleware, while the latter augments the MAPE-K loop with support for Human-Machine Teaming
(HMT), emphasizing the importance of human interaction in autonomous systems.

Li Nianyu et al and Cheng ShangWen et al address the human aspects and resource management
challenges in SAS, proposing frameworks to prepare human operators for tasks in self-adaptive environ-
ments and improve architecture-based self-adaptation through resource prediction [50, 19]. Lastly, Simon
Reichhuber et al and Gheibi Omid et al explore the frontiers of lifelong self-adaptation and the application
of active reinforcement learning [70]. These works by Gheibi Omid et al introduces a novel approach that
enhances SAS with a lifelong machine learning layer to adapt to concept drift [31], while [70] provides a
road-map towards curious classifier systems for self-adaptation.

These contributions collectively represent the current state of self-adaptation, highlighting the integra-
tion of advanced architectures, machine learning, and human-centric approaches to tackle the multifaceted
challenges of SAS. As we have observed significant work in self-adaptation, the next section will explore
the challenges associated with software systems that incorporate machine learning and further investigate
the potential for self-adaptation within these ML-enabled systems, where managing uncertainty will play
a important role.

3.1.4 Challenges in Machine Learning-Enabled Systems

As the integration of machine learning (ML) into software systems becomes increasingly common,
new classes of challenges have emerged, demanding attention and novel solutions. These challenges,
spanning a wide array of applications and technical issues, highlight the complexity of deploying and
maintaining ML-enabled systems. Branco Bernardo et al and Erickson Bradley J et al illustrate the
application-specific challenges of ML in fraud detection and medical imaging, respectively, pointing out
the reliance on ML for critical classification tasks further emphasizes the ubiquity of ML in systems

19

requiring dynamic rule management for fraud detection, underlining the operational challenges faced by
these systems[7, 27, 4].

The issue of dataset shift, as explored in [2] and further investigated in [67], presents a significant
hurdle for ML systems. These studies explore the detection of dataset shift and its impact, emphasizing
the silent failure modes of ML systems when confronted with unexpected inputs. Miller Brad et al
addresses the integration of ML with expert reviewers in malware detection, showcasing the critical role
of human expertise in complementing ML, especially in evolving threat landscapes [57].

Microsoft’s case study sheds light on the software engineering challenges encountered when develop-
ing AI-based applications, revealing the intricacies of data management, model customization, and the
modular integration of AI components within software projects [3]. This is complemented by Gartner’s
report, which starkly notes that half of ML models fail to transition into production, highlighting the gap
between development and operationalization [1].

Technical challenges such as detecting concept drift in data streams [65], avoiding adversarial
attacks [38], implementing machine unlearning [14], and rapid retraining of ML models [88] shows the
dynamic nature of ML-enabled systems and the continuous need for adaptation and vigilance.

These studies collectively outline the multifaceted challenges faced by ML-enabled systems, from
application-specific hurdles to broader issues of data management, model robustness, and integration
within traditional software engineering practices. As we delve into these challenges, the potential for
self-adaptation in addressing the complexities of ML systems becomes evident, opening up intriguing
possibilities for enhancing the reliability, efficiency, and security of these systems. The exploration of
self-adaptation strategies tailored for ML-enabled systems promises not only to mitigate these challenges
but also to advance the state of the art in software engineering for AI.

3.1.5 Self-Adaptation in Machine Learning-Enabled Systems

As machine learning (ML) systems become increasingly integral to a wide array of applications, the
unique challenges they present become more apparent. The literature reveals a breadth of issues, from
architectural considerations to the dynamic nature of data and operational environments these systems
must navigate. Lewis Grace A et al and Henry Muccini et al outline the software architecture challenges
specific to ML systems, emphasizing the necessity of addressing data-dependent behavior, drift over
time, and the critical need for continuous retraining informed by timely ground truth capture [49, 64].
These challenges necessitate architectural practices and patterns that cater specifically to the nuances of
ML systems.

The integration of ML into traditional software architectures not only introduces new complexities
but also magnifies existing challenges around data management, model customization, and component
integration, as detailed in the Microsoft case study [3]. Issues such as dataset shift [2] and silent
failures in response to unexpected inputs [67] further underscore the unpredictable nature of ML systems’
operational environments. Detecting concept drift using human feedback [65], avoiding adversarial
attacks [38], and tactics for unlearning and retraining [14, 88] represent specific technical challenges that

20

highlight the need for adaptable and responsive ML systems. Zhang, Jeff (Jun) et al introduces a novel
idea to managing fluctuating workloads by switching between models of varying complexity by external
system in cloud computing, hinting at the potential for self-adaptation strategies in ML systems [92].

Despite the growing body of knowledge on engineering challenges and techniques for ML-enabled
systems, there remains a significant gap in the literature concerning the self-adaptation of these systems.
Casimiro Maria et al take the first steps toward addressing this gap by proposing frameworks for
self-adapting systems reliant on ML components [15, 16]. These works highlight the necessity of
detecting misbehavior in ML components and adapting to maintain desired system qualities, such as
accuracy and efficiency, amidst changing operational conditions and emerging patterns. Krupitzer
Christian et al, Ervasti Kim et al and Wohlrab Rebekka et al further the discussion by exploring
engineering approaches for SAS that incorporate ML models, emphasizing the complexities of managing
these systems and the importance of considering multiple objectives and stakeholder preferences in
adaptation decisions [46, 28, 86]. The advancements in self-adaptation techniques, especially those
incorporating machine learning and human-centric approaches, open new pathways for addressing the
complex challenges of ML-enabled systems. As we conclude this exploration of SAS, the potential for
these techniques to revolutionize the adaptability and efficiency of ML systems is both exciting and
largely uncharted, guiding the direction of our subsequent investigation.

Moreover, to the best of our knowledge, we are not aware of any comprehensive work that thoroughly
analyzes and discusses the nuanced interplay between self-adaptive systems (SAS) and machine learning-
enabled systems (MLS) in depth. This oversight in the literature reveals a critical gap in our collective
understanding of how self-adaptive mechanisms can be effectively integrated into MLS to address the
unique challenges they face, particularly in managing uncertainty and adapting to dynamic operational
environments. As we conclude this section, it’s evident that despite substantial progress in identifying and
tackling the challenges within ML-enabled systems, the realm of integrating self-adaptation into these
systems remains largely unexplored. This thesis seeks to bridge this gap, proposing a novel exploration
of self-adaptation through the mechanism of runtime model switching within ML systems, showing
promising avenues for enhancing their performance and reliability. Our research not only aims to enrich
the field of self-adaptive systems research but also aims to equip ML systems with the robustness,
adaptability, and resilience needed to thrive amidst the ever-changing demands of their operational
contexts.

3.2 Object Detection: A Use Case for Self-Adaptation in ML Systems

In exploring the integration of self-adaptive systems within machine learning, object detection serves
as a practical use case. This section delves into how self-adaptation can address inherent challenges in
object detection, showcasing the potential for enhanced system performance.

As our research showcases, the novel approach of self-adaptation through runtime ML model switch-
ing, particularly at the system and inference level, is exemplified through the domain of object detection.

21

Object detection, a main field within machine learning/deep learning, has seen remarkable advancements
and plays a key role in various applications, from autonomous driving to smart surveillance systems.
Object detection in 20 years: A survey in 2023 [93] provides a comprehensive survey of the achievements
and challenges in object detection over the past two decades, highlighting the evolution of techniques
and the emergence of lightweight, end-to-end, and small object detection methods. Despite considerable
progress, there remains a performance gap, especially in real-time applications and detecting objects with
multi-source information, pointing towards the necessity for innovative approaches in object detection.

J. Huang et al delves into the trade-offs between speed, accuracy, and memory usage in modern
convolutional object detection systems, emphasizing the importance of selecting the right detection
architecture for specific application needs [37]. This work guides through various configurations within
”meta-architectures” to achieve desired balances, which is important for deploying object detection in
varied contexts, from mobile devices to high-accuracy requirements. Recent advancements, such as
Interactron presented in CVPR 2022, propose methods for adaptive object detection by continuing model
training during inference, without explicit supervision. This approach hints at the potential for systems to
adapt in real-time to environmental changes, improving detection accuracy significantly [45].

Hou Jie-Bo et al and Zhang Chong et al introduce techniques aimed at enhancing object detection
through self-adaptive aspect ratios and progressive representation alignment, respectively [36, 91]. These
methods address specific technical challenges within object detection, such as the variation in aspect
ratios and domain shift, demonstrating the ML community’s efforts towards more adaptable detection
models. Despite these advancements, challenges persist, particularly when addressing complex scenes
with dynamic backgrounds or illumination variations, as noted in [35]. The Global-Local Self-Adaptive
Network proposed in [26] for drone-view object detection tackles tiny-scale objects and unevenly
distributed object challenges, showcasing the potential of self-adaptive strategies in specialized detection
scenarios. While advancements in object detection have led to significant improvements, the application
of self-adaptive strategies at a system level remains underexplored. This oversight presents a critical
gap where self-adaptation could offer substantial benefits. The persistent challenges and the lack of
comprehensive exploration into self-adaptive object detection systems shows the need for innovative
research approaches.

Moreover, we’re not aware of any detailed work that fully explores how self-adaptation can be
applied in the context of object detection within Machine Learning-Enabled Systems. Even though
object detection is a key area with lots of innovations, where self-adaptation could greatly benefit system
performance and reliability, the focus has mostly been on improving models themselves, not on how
these models can be dynamically switched or adapted at a system level based on changing conditions.
There’s a clear gap when it comes to looking at object detection from a broader, system-level perspective,
where self-adaptation could help select the best model to use based on the situation, constraints, and
requirements at hand. Previous studies like those by Casimiro Maria et al have started to look into the
self-adaptation of ML-based systems focusing on strategies like retraining models [15, 16]. However,

22

they haven’t delved deeply into the idea of switching between models as a way to adapt. Despite the
progress in object detection, these efforts mainly aim at making small, model-specific improvements.

This leaves room for a new research: applying self-adaptation on a system-wide level to tackle the
dynamic challenges found in object detection. Our research aims to fill this gap, presenting a way that
not only improves object detection systems’ performance and reliability but also demonstrates how
self-adaptation can be practically implemented. By doing so, we offer a valuable contribution to the
fields of vision, AI, and ML, potentially guiding future research and applications in ML-enabled systems
towards adopting more flexible and responsive adaptation strategies.

3.3 Exemplars for Self-Adaptive Systems

Exemplars play a key role in the research and development of self-adaptive systems, serving as
testbeds for novel strategies and frameworks. This section discuss the importance of such exemplars in
advancing our understanding and capabilities in self-adaptation.

As we’ve navigated through the intricacies of self-adaptive systems, literature reviews on such
systems, the importance of addressing uncertainty within these frameworks, and the advances in self-
adaptive machine learning-enabled systems, we’ve established a strong foundation on the necessity of
self-adaptation. We’ve also discussed the challenges within machine learning-enabled systems and our
contribution which is an innovative approach of runtime model switching to tackle these challenges, as
showcased through object detection use cases.

However, venturing directly into real-world applications of such systems can be tricky and financially
risky. This necessitates a sandbox environment or a tool where strategies can be tested and refined safely.
This is where the concept of an exemplar comes into play—an exemplar is essentially a software tool or
framework designed to facilitate experimentation and learning in a controlled environment.

The SEAMS community 1, a symposium focused on Software Engineering for Adaptive and Self-
Managing Systems, has been at the forefront of promoting such exemplars. Since its inception, SEAMS
has been a repository and breeding ground for exemplars across various domains, underscoring the
community’s commitment to advancing research and application in self-adaptive systems. Despite
this rich repository, there remains a noticeable gap: the absence of exemplars tailored for machine
learning-enabled systems.

A review of the current exemplars listed on the SEAMS website1, such as SWIM[63] for web/cloud/ser-
vice applications, ATRP[89] for autonomous vehicles/robotics, and DeltaIoT[39] for cyber-physical
systems/IoT, reveals a diverse range of domains being explored. Yet, there is a distinct lack of tools
specifically designed for experimenting with self-adaptive strategies in ML systems.

Moreover, we haven’t seen much work dedicated to creating exemplars for machine learning-enabled
systems that need self-adaptive strategies. This gap is significant because testing and refining these
strategies in a safe, controlled environment could lead to breakthroughs in how we apply self-adaptation

1https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

23

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

in ML systems. In response to this identified need, our work contributes SWITCH, an exemplar developed
to explore self-adaptive strategies within ML systems. This tool represents a step toward enriching the
exemplar repository with resources that directly address the challenges of self-adaptation in the context
of ML.

For further details on the tradition of exemplars within the SEAMS community and the wide array
of existing exemplars, please refer to their repository1. This initiative not only acknowledges the rich
heritage and contribution of SEAMS to the advancement of self-adaptive systems but also highlights the
need for expanding this repository to include tools that address the emerging challenges of ML-enabled
systems.

3.4 Sustainability and Self Adaptation

In this discussion, we focus on how self-adaptive systems, especially within machine learning, plays
an important role in addressing sustainability challenges. The growing concern over the environmental
impact of ML technologies calls for innovative solutions. The burgeoning field of Green AI addresses
the environmental impact of ML, highlighting a need for adaptive strategies that ensure sustainability
without compromising system performance. Recent advancements in ML, especially in natural language
processing (NLP) and deep learning, have significantly increased model accuracies. However, this
progress comes at a cost, notably in terms of energy consumption and associated carbon emissions.
Strubell et al [75] quantified the financial and environmental costs of training state-of-the-art NLP models,
revealing substantial energy requirements and urging the research community towards more cost-effective
and equitable practices.

The energy efficiency of ML accelerators is another area of focus. Reuther et al [71] surveyed and
benchmarked a range of processors and accelerators, identifying trends in power consumption and
performance that are crucial for designing sustainable ML systems. These insights are particularly
relevant for applications in domains with strict Size, Weight, and Power (SWaP) constraints, emphasizing
the need for low-power solutions that do not sacrifice computational capabilities. As we consider the
integration of ML into broader AI services, the call for Green AI technologies becomes louder. The
review by Mehta Yukta et al not only champions sustainable solutions but also highlights the challenges
at the community level, pointing out the necessity for accurate forecasting in energy consumption and the
selection of appropriate ML algorithms to minimize environmental impact [55].

The estimation of energy consumption in ML, as discussed by Garcia Martin et al [29], presents a
comprehensive overview of methodologies to assess energy use in data mining and neural networks.
This review stresses the importance of incorporating energy metrics into the design and operation of ML
systems, advocating for a shift towards energy-aware ML development. Martinez et al [54] contribute
to this dialogue by surveying software engineering approaches for AI-based systems, underscoring the
predominance of software testing and quality in research, while highlighting the overlooked area of

24

software maintenance. Data-related issues emerge as a recurrent challenge, emphasizing the integral role
of sustainable practices in the life-cycle of AI-based systems.

The quantification of carbon emissions by Lacoste et al [48] provides a practical tool for the ML
community to better understand the environmental impact of training models. Their Machine Learning
Emissions Calculator serves as a call to action, encouraging both individual practitioners and organizations
to adopt measures that mitigate carbon emissions. However, the pursuit of larger and more complex
language models raises concerns about their environmental and financial viability. Bender et al [6]
critically examine the trend towards ever-larger models, advocating for a balanced approach that considers
the environmental, financial, and societal costs of such developments.

Despite the growing awareness and efforts to address the environmental implications of ML, there
remains a significant gap in strategies that enhance the energy efficiency of model inference in real-world
applications. The discussions surrounding Green AI have predominantly focused on optimizing the
training phase, with less emphasis on the energy demands of inference [90, 5, 40, 80]. This oversight
shows the need for self-adaptation techniques that can dynamically balance energy efficiency with Quality
of Service (QoS), an area opens up for exploration [58].

The field of Green AI has attracted substantial research interest, focusing on energy efficiency in
Machine Learning (ML) systems. Verdecchia et al [81] reviewed 98 studies, highlighting a dominant
emphasis on energy efficiency mechanisms. Despite this, the practical application of these findings,
particularly in making ML-enabled systems sustainable, has been limited. Studies like those by Jarvenpaa
et al [40] propose tactics for sustainability, mainly at the design stage, covering data-centric methods [80]
and optimization of algorithms and models. However, the aspect of runtime energy efficiency has been
relatively unexplored. The concept of self-adaptation in software, originating from IBM’s autonomic
computing [87], has evolved to include Machine Learning Systems (MLS). Research in this area [15,
64, 59] categorizes self-adaptation into software design approaches (SDA) and system engineering
approaches (SEA), focusing on design-time solutions. Recent studies by Gerostathopoulos et al explore
enhancing adaptability at runtime, including unsupervised learning and model switching [30]. Yet, these
approaches often limit systems to pre-set configurations, as noted by Tundo et al [77].

Moreover, to the best of our knowledge, there is a noticeable lack of research focusing on directly
applying self-adaptation principles to improve sustainability in machine learning systems. While there’s
a growing conversation around Green AI and its importance, actual strategies that dynamically adjust
model operations to balance performance with energy efficiency are sparse. As we explore sustainability
as our application domain, it becomes clear that self-adaptation could play a pivotal role in bridging this
gap, offering a pathway to more environmentally friendly ML applications without compromising on the
quality of service or performance.

Our research directly addresses this gap by demonstrating the potential of self-adaptation mechanisms
in ML systems to enhance sustainability. By integrating energy efficiency considerations into the adaptive
decision-making process, we present a novel approach that not only mitigates the environmental impact

25

of ML technologies but also advances the field towards more responsible and sustainable computational
practices.

3.5 Discussion

In this chapter, we’ve looked at Self-Adaptive Systems (SAS) and found areas that need more attention:

SAS and ML Integration: We’ve seen that SAS have come a long way, but such systems with
machine learning (ML) inside is something not much talked about in research.

Self-Adaptation for ML Systems: The idea of making ML systems self-adaptive based on uncertain-
ties hasn’t been explored much, especially across different ways of using ML like in streaming data or
online-deployment mode for real-time analysis.

Uncertainty in ML Systems: While SAS are known for handling uncertainty, how this applies to
ML systems specifically hasn’t been covered enough.

Tools for Testing Self-Adaptive Systems: We noted a lack of special tools (exemplars) for testing
how self-adaptive strategies work in ML systems, showing a gap in resources for researchers.

Sustainability Through Self-Adaptation: Our look into sustainability showed it’s possible to make
ML systems be more energy efficient through self-adaptation, a topic has been unexplored.

Moving forward, we aim to fill these gaps, focusing on how self-adaptation can be specifically applied
to and developed for machine learning-enabled systems, across various deployment modes, and how they
can help make these systems more energy-efficient.

26

Chapter 4

Machine Learning Model Balancer

In this chapter, we introduce Machine Learning Model Balancer concept as a way to self-adapt
machine learning-enabled systems through dynamic model switching to address operational uncertainties
and challenges for enhancing Quality of Service.

4.1 Introduction

Building upon the foundations laid in Chapters 2 and 3, we have established a comprehensive
understanding of self-adaptive systems and identified a significant gap in the literature concerning the
self-adaptation of machine learning-enabled systems. Particularly, while the need for adaptive actions in
such systems is well-recognized, concrete implementations of these actions remain largely unexplored.
Notably, the works by Maria et al [15, 16] and take first steps toward bridging this gap. Their studies
shows the potential of various adaptation strategies, including retraining, transfer learning, and adversarial
actions, yet they stop short of detailing their practical application within self-adaptive systems.

The discussions this far have highlighted the challenges faced by machine learning systems at the
inference level. Uncertainties such as data drift and model drift not only compromise the accuracy
and reliability of these systems but also call into question their ability to meet predefined system goals
under evolving operational conditions. It is within this context that our research introduces a novel
contribution: the concept of runtime model switching as a dynamic and sensible action for maintaining
and enhancing service quality in machine learning-enabled systems named as Machine Learning Model
Balancer concept.

This chapter explains this concept, positing that among the various adaptive actions proposed in
the literature, switching between multiple machine learning models at runtime presents a feasible and
impactful solution. Unlike the approach suggested by [92] , which introduces model switching as
a mechanism to manage fluctuating workloads externally, our concept centers on an inherently self-
adaptive methodology. This distinction emphasizes not just the novelty but the necessity of our approach,
particularly in scenarios where real-time data processing and decision-making are paramount.

27

Our model switching idea is based on the understanding that no single ML model can optimally
address all operational scenarios. By enabling a system to autonomously switch between an array of
models at the inference level, we aim to circumvent the limitations posed by static model deployments.
This approach aligns with the overarching goal of self-adaptive systems: to achieve optimal performance
and reliability in the face of dynamic operational environments and evolving system objectives.

In the forthcoming sections, we will explore the challenges of integrating machine learning into
self-adaptive systems in greater depth, laying the groundwork for a comprehensive discussion on the
Machine Learning Model Balancer concept. In this exploration, we aim to explain the idea behind our
concept and show its practical use. We want to show how it can change the way self-adaptation works in
systems that use machine learning.

4.2 Challenges in Self-Adaptation of ML-Enabled Systems

Addressing operational challenges in ML-integrated systems, especially during inference, is crucial for
maintaining performance and reliability. Our focus is on recognizing these uncertainties and their impacts,
laying the groundwork for adaptive strategies to improve adaptability and efficiency. We highlight some
key challenges underscoring the need for our Machine Learning Model Balancer concept.

1. Environmental Uncertainty (Varying Load): The unpredictability of user demand and system load,
which can fluctuate significantly, impacting the system’s ability to process and respond in real-time.

2. Data and Model Drift: Changes in the operational environment that lead to data drift and model drift,
compromising the accuracy and relevance of the ML model over time.

3. Resource Uncertainty: Fluctuations in the availability and allocation of computational resources,
influenced by competing processes or inherent limitations of the deployment environment.

4. Network Uncertainty: Variability in network conditions affecting the system’s ability to access
external data sources or services, impacting the timeliness and accuracy of ML predictions.

5. Unstable Software Components: The presence of other software components within the system that
may exhibit unpredictable behavior, affecting overall system stability and ML model performance.

6. Quality of Service Uncertainty: The challenge of ensuring a consistent level of service quality, given
the probabilistic nature of ML predictions and the dynamic operational environment.

7. Performance Uncertainty: The variability in the effectiveness and efficiency of the ML model under
different conditions, complicating the prediction of system performance.

As explained in Table 4.1 the limitations of existing self-adaptive strategies, highlighting the need
for a sophisticated solution capable of navigating the demands of ML-enabled systems. The Machine
Learning Model Balancer, our novel contribution, is specifically designed to address these challenges.

These challenges underline the limitations of standard adaptive strategies for ML systems. We present
the Machine Learning Model Balancer as a solution, enabling flexible run-time model switching to
improve adaptability and maintain performance across different situations. This approach aims to offer a
practical way to address these challenges, which we will detail further in the upcoming section.

28

Table 4.1: Challenges, impact on ML-Enabled Systems and necessity for adaptive mechanisms

Challenge Impact on ML-Enabled Systems Necessity for Adaptive Strategies

Environmental

Uncertainty

(Varying Load)

Leads to potential system overloads

or underutilization during fluctuating

user demands.

Adaptive strategies optimize resource utilization and model

deployment to maintain performance.

Data and Model

Drift

Decreases model accuracy over time,

necessitating continual adaptation to

preserve system effectiveness.

Real-time adaptation mechanisms ensure models remain

relevant and accurate.

Resource

Uncertainty

Limits the system’s capacity for

efficient data processing and model

execution.

Dynamic resource management enables the system to operate

within available constraints.

Network

Uncertainty

Introduces delays and

inconsistencies in data access,

affecting prediction accuracy.

Adaptation strategies compensate for network variability,

ensuring reliable ML predictions.

Unstable

Software

Components

Affects overall system reliability and

complicates model performance

consistency.

Implementing robust adaptation approaches enhances system

stability despite component variability.

Quality of

Service

Uncertainty

Challenges the system’s ability to

deliver a consistent level of

performance and reliability.

Adaptable models and strategies improve service quality

under dynamic operational scenarios.

Performance

Uncertainty

Complicates the predictability of

system efficiency and effectiveness.

Adaptive model selection and deployment strategies optimize

performance under varying conditions.

4.3 Machine Learning Model Balancer

As we navigate through the evolving landscape of self-adaptive systems (SAS) enhanced by ML as a
part of underlying managed system, the introduction of the Machine Learning Model Balancer concept
addresses the intrinsic limitations and challenges faced by ML-enabled systems. This concept emerges as
a necessity for ensuring optimal performance and reliability across diverse operational scenarios. The
Machine Learning Model Balancer is designed to autonomously switch between a ”squad” of ML models

29

in real-time, each tailored to specific aspects of the operational environment. This dynamic selection
ensures that the system can adapt to environmental changes, varying loads, and shifting objectives
without human intervention. It represents a solution that enhances system adaptability, efficiency, and
effectiveness, leveraging the strengths of different models to achieve the best possible outcome under
any given conditions. The core of the Model Balancer lies in its ability to seamlessly navigate the
complexities of runtime operation, making informed decisions about which ML model is best suited for
the current context. This process involves:

• Dynamic Selection: Analyzing the current operational conditions and selecting the most appropri-
ate model from the ”squad” based on predefined criteria.

• Seamless Switching: Transitioning between models with minimal latency, ensuring continuous
system operation.

• Performance Optimization: Continuously monitoring system performance to optimize the selec-
tion and switching process, thereby enhancing the overall Quality of Service (QoS).

Consider a user engaging with ChatGPT. For rapid queries, ChatGPT-3.5 might be preferred for its
speed, whereas deeper inquiries might benefit from ChatGPT-4’s comprehensive analysis. Traditionally,
toggling between these versions requires user discretion. Imagine, however, a system so advanced that it
intuitively selects the appropriate version based on the user’s query type, optimizing for either speed or
depth as needed. This scenario shows how the idea of model switching can be used in practical scenarios.
The Machine Learning Model Balancer directly addresses the challenges identified in ML-enabled
systems as explained in Table 4.2:

Implementing the Machine Learning Model Balancer requires careful consideration of several key
factors, including:

• Criteria for Model Switching: Establishing clear guidelines for when and why to switch between
models based on performance metrics and environmental conditions.

• Managing Transition Latency: Developing strategies to minimize the impact of model switching
on system operation, ensuring seamless performance.

• Efficient Model Transition Mechanisms: Creating robust mechanisms for model switching that
maintain system state and dependencies.

• Strategic Model Placement: Identifying optimal scenarios and system components for model
switching to maximize impact on performance and reliability.

By addressing these considerations, the Machine Learning Model Balancer concept offers a structured
approach to enhancing the adaptability, resilience, and performance of ML-enabled SAS. This approach
addresses the challenges posed by integrating ML into self-adaptive systems.

30

Table 4.2: Addressing Challenges with the ML Model Balancer

Challenge Solution Offered by the ML Model Balancer

Environmental

Uncertainty (Varying

Load)

Optimizes resource utilization and model deployment dynamically to maintain

performance during fluctuating user demands.

Data and Model Drift
Ensures models remain relevant and accurate through real-time adaptation, addressing

the decrease in model accuracy over time.

Resource Uncertainty
Implements dynamic resource management to efficiently operate within the available

constraints, adapting to fluctuations in computational resources.

Network Uncertainty
Compensates for network variability through adaptable strategies, maintaining reliable

ML predictions even under adverse conditions.

Unstable Software

Components

Enhances system stability by adapting to component variability, ensuring consistent

model performance and system reliability.

Quality of Service

Uncertainty

Improves service quality under dynamic operational scenarios through adaptable models

and strategies, addressing the probabilistic nature of ML predictions.

Performance Uncertainty
Optimizes performance under varying conditions through adaptive model selection and

deployment strategies.

4.4 Discussion

RQ1: In the context of Machine Learning-Enabled Systems (MLS), how can self-adaptive strategies
be developed and applied to manage and mitigate runtime uncertainties, thereby maintaining or enhancing
their Quality of Service (QoS)?

Responding to RQ1 as discussed in chapter 1, this chapter introduces a significant step forward in the
development and application of self-adaptive strategies for managing and mitigating runtime uncertainties
in Machine Learning-Enabled Systems (MLS), thus aiming to maintain or enhance their Quality of
Service (QoS). In this discussion the Machine Learning Model Balancer concept emerges as a pivotal
solution to the highlighted challenges.

Addressing Identified Gaps: The discussion in this chapter has not only pinpointed but also
elaborated on the complex challenges that MLS face during their operational phase, particularly at

31

the inference level. By clearly outlining these challenges—from environmental uncertainties to the
limitations imposed by ML models—we have identified the pressing need for dynamic strategy capable
of navigating through the fluctuating landscapes of operational demands and system performances.

Practical Implementation of Adaptive Strategies: The Machine Learning Model Balancer concept,
introduced here, represents an innovative approach that moves beyond theoretical discussions, providing
a practical solution that enables runtime model switching. This concept surpasses traditional adaptation
methods by introducing a real-time decision-making layer, allowing systems to autonomously choose
the most suitable ML model based on the prevailing operational conditions. This strategy addresses the
outlined challenges directly, opening pathways to improve system resilience, flexibility, and efficiency.

Shifting Paradigms: This innovative approach encourages a shift in how we perceive and implement
self-adaptation within MLS. By granting systems the ability to dynamically switch among a set of models,
we’re addressing uncertainties head-on and actively enhancing the system’s capacity to sustain high
service quality under diverse conditions. This marks a notable advancement toward realizing the potential
of self-adaptive systems, bridging the gap between static ML deployments and the dynamic nature of
operational environments.

Looking Ahead: The Machine Learning Model Balancer concept sets the foundation for future
exploration and research. The forthcoming examination of AdaMLS will demonstrate a concrete
application of this concept, illustrating its practical benefits and feasibility of runtime model switching.
This exploration reinforces our response to RQ1 while paving the way for addressing further research
questions, contributing to the evolution of self-adaptive strategies within MLS.

Toward a Comprehensive Understanding of Adaptive Strategies: The conversation around the
Machine Learning Model Balancer concept, its implications for self-adaptive MLS, and its significance
in the broader landscape of computational environments culminates in a broader call to action. There’s an
evident need to expand our collective knowledge, tools, and methodologies to fully embrace the dynamic
and uncertain nature of today’s computational challenges. The work from conceptualization to practical
application, as will be demonstrated by AdaMLS in upcoming chapter 4, highlights the iterative and
collaborative effort required to mitigate the uncertainties of self-adaptation in MLS.

In summary, our discussion not only answers RQ1 by showcasing the development and application
of self-adaptive strategies within MLS but also emphasizes the Machine Learning Model Balancer as a
important concept for enhancing QoS amidst runtime uncertainties. Through the principles of dynamic
model switching, this novel approach aims to envision a future where MLS can seamlessly adapt to
ensure optimal performance and reliability, irrespective of operational environment challenges.

32

Chapter 5

AdaMLS: Approach For Self-Adaptation of ML-Enabled Systems

In this chapter, we explore the advancement and integration of machine learning model balancer
concept within self-adaptive systems, establishing a foundation in adaptive machine learning for our
exploration into Machine Learning-Enabled Systems (MLS). Here, we introduce AdaMLS: a novel
approach for enhancing system’s QoS through dynamic model switching and uncertainty mitigation,
laying the groundwork for addressing the complexities of runtime uncertainties in MLS.

5.1 Introduction

In the preceding chapters of this thesis, we delved into the Machine Learning Model Balancer concept,
illustrating how integrating machine learning into modern software systems presents numerous challenges.
Self-adaptation emerged as a promising solution for addressing these complexities. Specifically, in
Chapter 4, we discussed the potential of dynamically switching between models at runtime to improve
the Quality of Service (QoS), presenting a significant stride towards mitigating the inherent uncertainties
of Machine Learning-Enabled Systems (MLS). This raises a crucial question: how can we operationalize
this concept? Is there an approach that allows us to implement this dynamic model switching effectively?

To address this, we leverage the Machine Learning Model Balancer concept, proposing a novel
approach, AdaMLS, which is software architecture-based self-adaptation approach using the MAPE-K
(Monitor, Analyze, Planner, Executor, Knowledge) framework. This framework facilitates a structured
method for adapting system behavior in real-time, ensuring optimal performance and service quality.
Machine learning-enables systems operates in various operational modes, such as online, batch, and
streaming. In this chapter, we focus on the online mode—a setup where a request triggers the machine
learning model within a software system, processing it to deliver an output. This setup shows the
operation of many current ML-enabled software systems, providing services in real-time to meet user
demands. In such a scenario, the Machine Learning Model Balancer concept holds the potential to
significantly enhance system adaptability and performance.

This chapter discusses AdaMLS, which operationalizes the concept of the ML Model Balancer.
AdaMLS consistently excels in navigating the intricacies of online ML deployments, ensuring superior

33

QoS. This includes: i) monitoring model and system parameters; ii) analyzing model and system
quality for QoS violations; iii) using knowledge from lightweight unsupervised learning to dynamically
switch models, ensuring QoS; and iv) executing system adaptation. Prioritizing ML model adaptability,
AdaMLS shifts from conventional load balancing to QoS-aware dynamic ML model switching. By
continuously tuning model selections in response to environmental uncertainties and system demands,
AdaMLS guarantees MLS QoS, promoting consistent MLS operation in live settings. This represents a
self-adaptive MLS, designed to maintain an optimal performance equilibrium amidst changing data and
user demands. We evaluate AdaMLS using an object detection use case through utility showcasing a
self-adaptive prototype. Our preliminary findings indicate that the runtime model switching, facilitated
by lightweight unsupervised learning, effectively manages both system and model performance. This
enables AdaMLS to surpass both naive strategies and individual models in terms of Quality of Service
(QoS). Our work adapts the MAPE-K loop to address the uncertainties inherent in MLS, emphasizing
dynamic model-switching approach. Through AdaMLS’s real-world application, we highlight our move
towards self-adaptive MLS that can quickly switch between models based on data shifts and user demands,
always maintaining optimal QoS.

The structure of the chapter is as follows: Section 5.2 discusses the running example. Section 5.3
details the AdaMLS methodology and section 5.4. Section 5.5 presents the results from its application.
Section 5.6 provides the conclusion.

5.2 Running Example

Our approach, AdaMLS, is demonstrated using an object detection system. Object detection system
signifies progress in the evolution of machine learning technologies over recent decades [93]. The
architecture of AdaMLS follows a design typical to current machine learning systems (MLS). It begins
with a web service featuring a REST API, the primary method for user interaction and request submission.
This component is important as it conceals the system’s complexity and ensures easy integration with
various applications. Next to the web service is the model repo i.e. model repository which serves as a
central place for storing and managing different machine learning models. This repository, together with
the with model loader for dynamic model selection and versioning, guarantees that the most suitable
and up-to-date models are available for inference tasks. The system also includes a message broker, a
key element for orchestrating data flow—such as image data for object detection—through the system.
Acting as an intermediary, the message broker ensures efficient and reliable message transfer between the
web service, the model repository, and the object detection models. This configuration facilitates system
compartmentalization and scalability. Finally, at the core of our system is the ML model, pretrained for
object detection tasks, utilizing the YOLO algorithm [69], known for its effectiveness and precision in
real-time object detection challenges. Our architecture reflects the structures of leading solutions like
Google Cloud Vision and Amazon Rekognition, highlighting its pertinence and viability for real-world
MLS applications.

34

In our example, we define a set M of available machine learning models, each denoted by mj where
j ranges from 1 to n, and n represents the total number of models in the set. This ensemble includes
variants of the YOLOv5 models—YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x—each
provided by Ultralytics and pre-trained on the COCO 2017 training dataset[41]. The models in M are
evaluated based on their mean Average Precision (mAP), along with other performance metrics such as
processing time per image (τ ′), model’s processing time (τ), and the overall system response time (r),
which includes network, queuing, and processing delays.

To illustrate, we present a table summarizing key characteristics and performance metrics for two
YOLOv5 model variants as examples:

Table 5.1: Summary of YOLOv5 Model Variants’ Characteristics and Performance Metrics

Model Parameters mAP System Processing Time (τ ′)
Model Processing

Time (τ)

Overall System

Response Time (r)

YOLOv5n 1.9M 28
τ ′ =

τ + other processing times
45 ms r = τ ′ + queuing time

YOLOv5x 86M 50.7
τ ′ =

τ + other processing times
766 ms r = τ ′ + queuing time

The diverse models offer varying response times and mAP scores, yet none present a perfect balance
between these two factors. To manage this, we establish a set of thresholds for operational parameters:

• mAP scores: Cmax and Cmin define the upper and lower limits for detection accuracy, ensuring the
system maintains high accuracy while accommodating performance variability.

• Response times: Rmax and Rmin delineate the acceptable range for response times, balancing
promptness against the computational demands of precision models.

This setup allows for the prioritization of accuracy and efficiency within our system, ensuring
adaptability and high performance across varying operational conditions.

Given the context of our object detection system, our primary goal is to maximize the utility function
U . This utility function evaluates the performance of each processed image in terms of mean Average
Precision (mAP) score ci and response time ri, applying penalties pev and pdv for exceeding predefined
thresholds. The total utility U for all k uniquely identified images processed by the system is calculated
as per Equation 5.1:

U =

k∑
i=1

Ui (5.1)

35

Where the utility Ui for each image i is defined as per Equation 5.2

Ui = weEτi + wdTτi (5.2)

In this formula, we and wd represent weights, while Eτi and Tτi are piece-wise functions that evaluate
the mAP score ci and response time ri respectively defined as per Equation ??

Eτi =


ci if Cmin ≤ ci ≤ Cmax

(ci − Cmax) · pev if ci > Cmax

(Cmin − ci) · pev if ci < Cmin

(5.3)

Tτi =


ri if Rmin ≤ ri ≤ Rmax

(Rmax − ri) · pdv if ri > Rmax

(ri −Rmin) · pdv if ri < Rmin

(5.4)

To extend our AdaMLS framework’s applicability beyond object detection to other ML systems, we
introduce Equation 5.5 as a generalized utility function template:

U =
k∑

i=1

q∑
l=1

wl · fli (5.5)

In this generalized form, fli symbolizes the lth key performance metric for the ith request, q is
the total number of key performance metrics considered, and wl represents the weight or importance
assigned to each metric within the system’s optimization goals. This flexible approach allows AdaMLS
to dynamically adjust to the specific requirements and critical performance metrics of various ML
applications, ensuring optimal performance across different scenarios.

Additionally, we introduce an evaluation dataset d, comprising x rows, each row corresponding to
a unique request or image processed. The count x represents the total number of requests or images
evaluated in this dataset, providing a practical basis for assessing the performance and effectiveness of
the AdaMLS approach across diverse machine learning scenarios.

5.2.1 Conclusion of the Running Example

Key features of the utility function include:

• The integration of weights and piece-wise evaluations, reflecting the dynamic and varied nature of
ML system environments.

• The capability to adapt to different utility formulations, illustrating the system’s versatility in
representing Quality of Service (QoS) across diverse operational contexts.

36

AdaMLS is inherently flexible and capable of enhancing alternative utility formulations, which can
represent the system’s QoS in various operational contexts. This flexibility signifies that AdaMLS is not
rigidly utility-driven; rather, it is designed to explore and capitalize on the potential of model switching
strategies to enhance system performance under varying conditions, demonstrating the effectiveness
of the ML Model Balancer concept, with the current utility function serving as one of many possible
representations of system objectives.

5.3 AdaMLS Approach

AdaMLS approach as shown in Figure 5.1 is explained ahead.

Managing System

Executor

Planner

Monitor

Analyzer

ML
Metric Monitor

System
QoS Monitor

System Evaluator

Load Calculator

Planner
Initiator

Strategy
Formulator

Model
Selector

Adaptation Executor

Knowledge

System Metrics Repository

Adaptation Rules
Repository

Logs
Repository

Managed System
Machine Learning-Enabled System (MLS)

Learning Engine

Performance EvaluatorUnsupervised
Model Builder

ML Models
Executor

Adaptation
Rules Creator

Data store

Figure 5.1: AdaMLS Approach Diagram

37

5.3.1 Learning Engine

In the AdaMLS approach, the Learning Engine (LE) is essential for analyzing and optimizing the
performance of machine learning models within the system’s operational environment. Its primary goal
is to utilize real-world performance data to facilitate dynamic model selection, thereby improving the
Quality of Service (QoS).

5.3.1.1 Data Store and ML Model Executor

The operation of the Learning Engine (LE) within the AdaMLS framework is initiated by the ML
Models Executor. This component is tasked with running models, mj ∈ M , in a managed system’s envi-
ronment that mirrors the final, production-ready setup, encompassing all necessary software components.
This configuration ensures that key performance metrics—such as confidence score (c), processing time
(τ), response time (r), and CPU consumption (s)—accurately reflect the model’s interaction within a
realistic operational context. The ML Models Executor’s primary function includes the collection of
output result data for evaluation datasets dj stored from the Data Store for each model mj inside the
managed system. This comprehensive data collection is used to the effectiveness of each model in synergy
with the system’s other software components. Choosing the right evaluation dataset is important to the
LE’s effectiveness. The evaluation dataset is selected to mirror the real-world challenges and scenarios the
system is expected to navigate, making it an indispensable component of the LE’s operational framework.
A carefully selected evaluation dataset serves as a proxy for the real world, enabling the LE to make
well-informed decisions regarding model selection. The congruence between the evaluation dataset and
actual real-world conditions plays a crucial role in the LE’s ability to accurately predict and enhance
real-world system performance.

5.3.1.2 Unsupervised Model Builder and Performance Evaluator

The Unsupervised Model Builder is a key component of the AdaMLS approach, leveraging unsu-
pervised learning techniques, notably K-Means clustering, to systematically analyze datasets dj . This
analysis employs methods such as the Elbow method and the Silhouette coefficient to ascertain the
optimal clustering of models based on performance metrics, facilitating an impartial evaluation process.
Emphasis is placed on τ ′, the processing time per image by the system, exclusive of network and queuing
delays, due to its significance in assessing system efficiency and responsiveness. Following the analysis,
the results from the models are organized into g distinct clusters, with each image i in the evaluation
dataset d assigned a cluster label l, categorizing it into one of the performance-based groups. This
classification aids the Performance Evaluator in constructing a performance matrix Pj for each model
mj , crucial for a comprehensive cross-model performance comparison. The matrix Pj , and its extended
form P ′

j , provide a detailed comparative analysis of model performances:

38

Pj =


f1i f2i . . . ffi li

f1i+1 f2i+1 . . . ffi+1
li+1

...
...

. . .
...

...
f1x f2x . . . ffx lx


x×(f+1)

In Pj , fli denotes the lth key performance metric for the ith request or image, where f1i could
represent the average confidence score and f2i the response time for image i, with li providing the cluster
label based on clustering outcomes. The enriched matrix P ′

j further incorporates additional metrics from
other models for the same requests or images, facilitating a more expansive performance analysis across
all models. For illustrative purposes, below is a simplified example in Table 5.2 showcasing aggregated
performance metrics from different YOLOv5 model variants, focusing on ’Large’ and ’Nano’ models for
a subset of images and metrics.

Table 5.2: Simplified Example of Aggregated Performance Metrics for ’Large’ and ’Nano’ Models

Image ID ’Large’ Model ’Nano’ Model

Conf. Time (s) CPU (%) Conf. Time (s) CPU (%)

000000020806 0.885 0.391 45.2 0.628 0.041 15.3

000000503824 0.933 0.363 50.6 0.825 0.037 24.6

This meticulous way, culminating in P ′
j , equips AdaMLS with a robust dataset for evaluating each

model’s performance, forming the empirical foundation for informed model selection and system
optimization. By juxtaposing metrics across models, AdaMLS can dynamically adapt model selection to
optimize system performance and efficiency in any operational context.

5.3.1.3 Adaptation Rule Creator

The Adaptation Rule Creator in AdaMLS approach by calculates the 90% confidence intervals (CI)
for each performance cluster l across every model mj . These confidence intervals define the statistical
boundaries for Key Performance Indicators (KPIs), thereby minimizing uncertainty in the system’s
adaptive processes. This statistical method enhances the predictability of system adaptations by providing
a defined range for expected KPI values, based on empirical data.

For illustration, let’s consider the implementation of this approach for a ’nano’ model variant repre-
sented by mj within the ensemble of models M . For each performance cluster l pertinent to ’nano’, the
CIs for performance metrics are computed using data points exclusively from that cluster. In parallel,
for a consistent set of images, CIs for performance metrics of all other models (mk ̸= mj) are also
determined, offering a holistic view of potential performance variability across different models.

39

This analytical process results in a CI matrix specific to the ’nano’ model, encapsulating the expected
performance range when evaluating the collective model ensemble. Replicating this methodology for
each model variant in M yields a series of CI matrices, each reflecting the performance variability within
the clusters of the respective model mj . Through periodic analyses conducted by the Learning Engine
(LE), AdaMLS accumulates in-depth insights into potential variations in model performance, facilitating
statistical projections of their impact on the system’s KPIs during model transitions.

Consider the following table as an example of the CI matrices produced through this process:

Table 5.3: Sample Confidence Intervals for Model Performance Metrics

Cluster Metric
Medium CI

Lower

Medium CI

Upper

Example Comparison

CI

1 Avg. Confidence 0.675 0.676 Nano: 0.544-0.544

1 Response Time (s) 0.121 0.122 Nano: 0.032-0.032

1 CPU (%) 43.48 43.49 Nano: 31.49-31.50

0 Avg. Confidence 0.578 0.579 Small: 0.559-0.560

0 Response Time (s) 0.120 0.121 Small: 0.064-0.065

0 CPU (%) 43.35 43.36 Small: 40.03-40.05

This CI matrix exemplifies how the Adaptation Rule Creator quantifies model performance variability,
allowing AdaMLS to make more informed decisions regarding model adaptations. By establishing clear
statistical limits for KPIs, AdaMLS enhances its capacity to optimize the system’s performance and
Quality of Service (QoS), ensuring efficient adaptation to changing operational conditions.

5.3.2 MAPE-K Loop

5.3.2.1 Knowledge

As per the structure depicted in Figure 5.1, the Knowledge (K) base in our system is primarily a
repository divided into three sections: the Log Repository, the Adaptation Rule Repository, and the
System Metrics Repository. The Log Repository stores system logs, including vital KPIs. For instance, in
our running example, this would mean processing time per image by the system τ , the system response
time r, model confidence c, and CPU consumption s for all processed requests k, as recorded by the
MLS. The Adaptation Rule Repository houses the CI matrix generated by the LE, acting as a set of

40

adaptation rules for the Planning phase. Lastly, the System Metrics Repository keeps track of various
system metrics such as real-time incoming request rate per second denoted as v and system logs if any.

5.3.2.2 Monitor

The monitoring phase of the AdaMLS approach is divided into two main components: the ML
Metric Monitor and the System QoS Monitor, which together ensure comprehensive tracking of system
performance and environmental conditions. The ML Metric Monitor is responsible for continuously
tracking key performance indicators (KPIs) of the machine learning models and system QoS. In the
context of our object detection use case, this includes:
1. The average number of detection boxes per processed image, denoted by b.
2. The processing time per image by the model, excluding network or queuing delays, denoted by τ ′.
3. The overall system response time, including network, queuing, and processing delays, denoted by r.
4. The confidence score of the detection, denoted by c.
5. The CPU consumption for the model processing, denoted by s

These metrics are measured over the last i processed requests and are collectively represented as k′ to
provide a real-time overview of the system’s operational performance. Simultaneously, the System QoS
Monitor focuses on the operational aspects of the system, particularly:
1. The current model in use, represented by m′, which is critical for understanding the immediate context
of system performance.
2. The version of the model, denoted by v, to track updates or changes in the model repository that might
affect performance.
This component also monitors the number of pending requests, iw, which offers insights into the current
workload and potential system stress, indicating when the system may need to adapt to maintain optimal
QoS. Both sets of monitored data are forwarded to the Analyze function for assessment and determination
of necessary adaptations. This ensures the system’s self-awareness and adaptability in response to internal
performance metrics and external environmental conditions. All monitored data are also logged in the
Knowledge component, maintaining a comprehensive record for future analysis and learning.

5.3.2.3 Analyzer

The Analyzer phase is pivotal in the AdaMLS approach, featuring two key components: the Planner
Initiator and the System Evaluator, which together assess the need for system adaptation based on the
monitored data.

The Planner Initiator leverages the System Evaluator to analyze data collected by the Monitor
components. Its primary objective is to ascertain whether the current operational conditions necessitate
a system adaptation to maintain or enhance QoS. The System Evaluator determines the necessity for
adaptation. It achieves this by identifying the closest performance cluster, denoted by l, within the
confidence interval (CI) matrix pertinent to the current model in use, represented as m′. This identification

41

process relies on analyzing the mean values of the most recent k′ results (e.g., the last 50 processed
requests) for m′, with a particular focus on the two key performance indicators (KPIs) demonstrating the
highest variance. This methodological approach is instrumental in mitigating uncertainties related to data
drift. Upon pinpointing the relevant cluster l, the System Evaluator then establishes a feasible request
rate range, represented as [vmin, vmax]. This range is derived from the CI matrix for m′ by utilizing the
inverse of the upper and lower confidence interval bounds for τ ′ for m′. This process facilitates the
determination of an adjusted operational threshold that aligns with the current system’s performance
capabilities and environmental conditions.

Following the identification of the feasible request rate range, the Load Calculator computes the
adjusted request rate, vadj, by incorporating the count of pending requests, iw, that exceed vmax. This
calculation ensures that the system’s operational capacity is optimized in real-time, balancing workload
demands with the available computational resources and the performance characteristics of the currently
deployed ML model (m′). This adjustment in the request rate, vadj, is crucial for maintaining system
resilience and QoS, especially under varying workload conditions. By dynamically adapting to the
current operational state and the identified performance cluster (l), the AdaMLS approach ensures that
the system remains responsive and efficient, effectively addressing the challenges posed by data drift and
other forms of runtime uncertainty.

If vadj is not within the range [vmin, vmax], the Planner Initiator implements a waiting period, denoted
by twait (e.g., 0.25 seconds), to mitigate the potential for unnecessary system adaptations. This pause
allows for a reassessment of the system’s state before proceeding. Following this brief interlude, the
Planner Initiator activates the Planning phase, equipped with the adjusted request rate vadj, the current
model in use m′, and the identified performance cluster l, to ensure that any system adaptations are both
necessary and optimally timed for the current operational conditions.

5.3.2.4 Planner

The Planner phase is a critical component of the AdaMLS approach, with the Strategy Formulator
and Model Selector working in tandem to develop a targeted adaptation strategy based on insights from
the Analyzer and the Knowledge base.

The Strategy Formulator utilizes the outputs from the Analyzer—specifically the adjusted request
rate vadj and the identified performance cluster l—along with the accumulated knowledge base to draft a
preliminary adaptation strategy. This strategy involves identifying potential models within the set M
that are capable of accommodating vadj while belonging to the specified cluster l. The compatibility of a
model for selection is assessed by comparing vadj against the inverse of the lower value of the confidence
interval (CI) bound for τ ′ for each model. For the current model m′, this comparison utilizes the most
recent n results to ensure relevance and accuracy. Conversely, for other models within M , the CI matrix
associated with m′ is referenced to maintain consistency in evaluation criteria.

Following the Strategy Formulator’s assessment, the Model Selector undertakes the task of choosing
mbest, defined as the model that exhibits the highest lower CI value for c, thereby effectively addressing

42

potential goal and model drift uncertainties. This decision-making process prioritizes models that not only
meet the operational demands but also align with the system’s QoS objectives. If the current model m′ is
identified as mbest, indicating that it remains the optimal choice under the present conditions, the Planner
abstains from initiating further actions to avoid unnecessary system adjustments. Conversely, should a
more suitable model be identified—signaling a divergence from m′ = mbest—the Planner proceeds to
signal a model switch to the Execution phase. This transition is activated only when a clear advantage
in performance or efficiency is discerned, ensuring that system adaptations are both purposeful and
beneficial. In instances where no model within the current evaluation is deemed sufficiently advantageous
to perform a switch, the system continues its operations with m′, prioritizing stability and avoiding the
potential for counterproductive changes.

5.3.2.5 Executor

The Executor phase implements the adaptation strategy devised during the Planning phase. This
process is managed by the Adaptation Executor, which actualizes the system’s response to the identified
need for adaptation. The Adaptation Executor is responsible for enacting the planned adaptations to the
system. This involves a critical decision point based on the outcome of the Planning phase:
1. If the Planner has identified an optimal model, mbest, that differs from the currently deployed model
m′, indicating that a model switch would enhance the system’s performance or efficiency, the system
will transition to utilizing mbest.
2. Conversely, if the Planning phase concludes that continuing with the current model m′ remains the
best course of action, no switch is initiated. This decision is based on the assessment that m′ is still the
most suitable model given the current operational conditions and performance metrics.
In both scenarios, the execution of the adaptation strategy is designed to ensure the system’s autonomy
and its capacity for self-adaptation in response to changing conditions. This dynamic adaptability
is fundamental to maintaining or enhancing the Quality of Service (QoS) while addressing potential
challenges such as goal drift or environmental uncertainties. Furthermore, the implementation of any
adaptation, whether it involves a model switch or the continuation with the current model, is accompanied
by an update to the Knowledge base. This ensures that all adaptations are logged, providing a rich
historical dataset that can inform future decision-making processes and enhance the system’s learning
capabilities. By systematically recording the outcomes and impacts of adaptations, the Knowledge base
becomes an invaluable resource for continuous improvement and learning within the AdaMLS approach.

5.4 Uncertainty Analysis in AdaMLS

As seen in the previous section, AdaMLS approach operates within the dynamic and often unpre-
dictable domain of Machine Learning-Enabled Systems (MLS), necessitating a robust approach to
handling uncertainties. This section delves into the various sources of uncertainty AdaMLS encoun-

43

ters and outlines the strategies implemented across its components—Monitor, Analyzer, Planner, and
Executor—to mitigate these uncertainties. Self-adaptive systems are distinguished by their capability
to continuously deliver service despite changes in the system, environment, or goals. Main aspect of
such systems is a self-adaptive layer that executes adaptation actions based on monitored information,
adhering to a MAPE-K loop —Monitor, Analyzer, Planner, Executor, with a Knowledge component.
AdaMLS manage uncertainties stemming from multiple sources, influencing the satisfaction of system
goals and properties. Uncertainty in self-adaptive systems can emerge from various locations, including
the adaptation functions, environment, goals, and resources, each contributing to the system’s dynamic
nature.

5.4.1 Uncertainty Sources and Mitigation Strategies

The following table outlines the specific uncertainties AdaMLS encounters and the corresponding
mitigation strategies employed:

Table 5.4: AdaMLS: Mitigating Uncertainty in Self-adaptive Systems

Uncertainty

Source
Uncertainty Explanation Mitigation Strategy

Implemented

In

ML Models in

MLS
Abstraction of ML model

Evaluate all models on test set; abstract

performance with statistics

Learning

Engine

Resources Dynamicity in the system
Preload ML Models; reduce latency and

adaptation action costs
MLS

Environment
Incoming requests

unpredictability

Monitor request rate and produced

results continuously
Monitor

Adaptation

Function
Impact of tactic

Utilize confidence intervals for

adaptation rules, ensuring assurance

Learning

Engine

Goal Conflicting or dependent goals
Prioritize most accurate model among

eligible models for requests
Planner

Data Drift Untrained or rare data
Map performance for past ’n’ requests

to nearest cluster for insight
Analyzer

Model Drift Model performance decay
Rank models per goal; auto-remove

degraded models
Planner

44

AdaMLS’s design and operation are informed by a understanding of the sources and nature of
uncertainty within self-adaptive systems. By embedding mechanisms for continuous monitoring, analysis,
planning, and execution, AdaMLS effectively reduces uncertainty’s impact on system performance and
goal satisfaction. The approach’s reliance on statistical metrics, confidence intervals, and dynamic model
evaluation ensures that AdaMLS not only adapts to present conditions but also anticipates and mitigates
future uncertainties.

Through its comprehensive approach to uncertainty management, AdaMLS demonstrates a sophisti-
cated application of self-adaptive system principles, ensuring that machine learning-enabled systems can
operate reliably and efficiently in the face of inherent and emerging challenges.

5.5 Results

5.5.1 Implementation Setup

We implemented AdaMLS on an object detection system, utilizing YOLOv5 variants in conjunction
with FastAPI, as detailed in Section 5.1. For testing, we utilized a situation derived from FIFA98 [72],
capable of handling up to 28 parallel requests per second, totaling 25,000 requests. The testing framework
employed the COCO 2017 unlabelled dataset [51] for testing purposes, with the COCO 2017 test
dataset serving as our evaluation dataset. Our data clustering process, facilitated through Python and
PySpark’s MLlib1, identified optimal clusters using the elbow method [78]. Complete specifics of our
implementation, parameters, and the associated results are detailed in repository2.

5.5.2 Results Analysis

In response to RQ1 as explained in chapter 1, which queries how self-adaptive strategies can be
developed and applied in MLS to manage runtime uncertainties while maintaining or enhancing QoS,
this chapter explains our approach through AdaMLS.

RQ1: In the context of Machine Learning-Enabled Systems (MLS), how can self-adaptive strategies be
developed and applied to manage and mitigate runtime uncertainties, thereby maintaining or enhancing
their Quality of Service (QoS)?

Building on the foundational concepts introduced in Chapter 4 regarding the Machine Learning
Model Balancer, AdaMLS operationalizes dynamic model switching, effectively addressing runtime
uncertainties inherent in MLS. By integrating self-adaptation mechanisms within the MAPE-K framework,
AdaMLS not only exemplifies a novel application of these principles but also validates the efficacy of
dynamic model switching in enhancing system QoS.

1https://spark.apache.org/
2https://github.com/sa4s-serc/AdaMLS

45

https://spark.apache.org/
https://github.com/sa4s-serc/AdaMLS

In our evaluation and analysis, AdaMLS is assessed against the naive approach and individual YOLOv5
models. The key parameters set for our utility calculations include pev = 1, pdv = 1, delineating the
penalty multiplication coefficients for exceeding operational thresholds. These coefficients are integral to
our utility function, a piecewise linear construct designed to quantify the effectiveness of model switching
strategies within various operational contexts. Specifically, the utility function applies a penalty when
performance metrics, such as confidence scores or response times, deviate from the desired range set
by Cmax = 1, Cmin = 0.5, Rmax = 1s, and Rmin = 0.1s, representing the max and min thresholds for
optimal performance.

The performance comparison, as shown in Table 5.5, highlights AdaMLS’s strategic advantage in
model switching, executing 308 instances compared to the naive approach’s 49 also shown in 5.2.

Figure 5.2: AdaMLS: Model Switching: Naive Vs. AdaMLS

This increased frequency in model switching underlines AdaMLS’s dynamic adaptability. Despite
YOLOv5xl’s superior average confidence score (c) of 0.689, its practical applicability is hindered by
nearly 25,000 penalty instances for response time (r), underscoring the inherent trade-offs between
model complexity and operational efficiency. Conversely, YOLOv5n, with the best average response
time of 0.28 seconds, suffers in terms of confidence score and penalty instances for c, showcasing the

46

challenges in balancing speed with accuracy. AdaMLS, with an average confidence of 0.6, demonstrates
a commendable balance, indicating its ability to maintain a high quality of service without leading in
every individual metric.

Utility, as detailed in Table 5.6, is a pivotal measure, with AdaMLS demonstrating its efficacy across
varying weight scenarios (we and wd), reflecting the system’s adaptability to different operational needs.
Despite not always achieving the highest scores in individual metrics, AdaMLS excels in overall utility,
achieving up to a 39% improvement over YOLOv5n as shown in 5.3. This utility measure is a testament

Figure 5.3: AdaMLS: Utility Function Over Requests processed

to AdaMLS’s proficiency in intelligently navigating the trade-offs between different performance metrics
for optimal outcomes. Moreover, the efficiency of our approach is highlighted by the model transition
time, which is maintained below the crucial threshold of 0.01 seconds. This efficiency, coupled with
the system’s adaptive capabilities, underscores AdaMLS’s effectiveness in enhancing the Quality of
Service (QoS) for ML-driven systems. In conclusion, AdaMLS exemplifies a model switching strategy
that significantly enhances system performance and QoS. Through analysis of performance metrics and
utility scores, AdaMLS has proven its capability to dynamically adapt and optimize operational efficiency
and accuracy. Its strategic application of model switching, grounded in empirical analysis and utility
optimization, sets a new benchmark in the adaptive management of ML models within self adaptation of
machine learning-enabled systems.

The AdaMLS approach, detailed in Section 3 and its subsequent empirical validation in Section
4, showcases significant advancements in managing and mitigating the uncertainties associated with
MLS. The results shows AdaMLS’s capability to dynamically adapt to operational conditions, thereby

47

Table 5.5: AdaMLS : Performance Comparison

Parameter Yolov5n Yolov5s Yolov5m Yolov5l Yolov5xl Naive AdaMLS

Model Switch Instances N/A N/A N/A N/A N/A 49 308

Avg. Confidence Score (c) 0.535 0.61 0.651 0.6756 0.689 0.606 0.6

Avg. Response time (r) 0.28 32.5 418.29 1589.7 3273.7 1.94 0.47

Avg. CPU Consumption 42.94 52.92 70.92 80.65 81.69 66.42 65.27

Penalty Instances for r 365 13991 17843 20361 24998 7731 927

Penalty Instances for c 9770 5382 3366 2342 1941 5843 6137

Table 5.6: AdaMLS: Utility Comparison

we wd Yolov5n Yolov5s Yolov5m Yolov5l Yolov5x Naive AdaMLS

0 1 5817 −7.9× 105 −10× 106 −39× 106 −81× 106 -27313 9978

0.25 0.75 6487 −5.9× 105 −7.8× 106 −29× 105 −61× 106 -17427 8992

0.5 0.5 7157 −3.9× 105 −5.2× 106 −19× 106 −40× 106 -7541 9978

0.75 0.25 7827 −1.8× 105 −2.5× 106 −9.9× 106 −20× 106 2345 10964

1 0 8498 12566 14612 15270 16264 12231 11949

optimizing QoS. Through its implementation using an object detection system and comparative analysis
against both naive strategies and individual model performances, AdaMLS has demonstrated a profound
ability to balance accuracy with efficiency, resulting in a superior utility score. This balance is pivotal in
enhancing the QoS, highlighting AdaMLS as a pivotal step forward in applying self-adaptive strategies
within MLS.

5.6 Discussion

In this section, we first provide details on the different lessons learned from the experiments and
evaluations. Following this, we list down the possible threats to validity.

5.6.1 AdaMLS: Lessons Learned

Extending Applicability and Encouraging Innovation: AdaMLS, through its implementation and
validation in an object detection use case, showcases not just an application but a methodology that
invites further exploration and customization. By providing open APIs and a generic design framework,
AdaMLS encourages researchers, practitioners, and students to not only use the approach as-is but
also to customize and extend it to fit a wide range of MLS applications beyond object detection. This

48

flexibility paves the way for innovative self-adaptive strategies across various domains of machine
learning, including but not limited to vision tasks, natural language processing, and predictive analytics.

Bridging Theory and Practice The AdaMLS approach bridges the theoretical aspects of self-adaptive
systems with practical applications in MLS, offering a novel approach that can dynamically respond
to changing environmental conditions and operational demands. The strategy of utilizing unsupervised
learning for dynamic model switching presents a novel pathway for MLS systems to maintain optimal
performance metrics, emphasizing AdaMLS’s role as a pioneer in the self-adaptive MLS landscape.

Future Directions Looking forward, the adaptability of AdaMLS invites exploration into a broader
spectrum of machine learning tasks and challenges. The approach’s inherent flexibility and the success
demonstrated in the object detection use case lay a foundation for extending its application to other
domains. Future research could focus on refining the AdaMLS approach to enhance its efficiency,
exploring additional learning techniques, model-switching strategies, and adapting it to varied operational
contexts and machine learning tasks.

5.6.2 Threats to Validity

In acknowledging the contributions of AdaMLS, it’s important to consider potential threats to validity
that could influence the interpretation and generalization of the results.

External Validity: While the AdaMLS approach has been validated in the context of an object
detection system, its effectiveness and generalizability to other machine learning tasks and domains
remain to be fully explored. Future research should aim to test AdaMLS across diverse MLS applications
to evaluate its adaptability and performance in varied contexts.

Internal Validity: The performance of AdaMLS is contingent upon the specific experimental setup,
including the choice of datasets, machine learning models, and operational parameters. Variations in these
aspects could impact the results, necessitating a comprehensive examination of AdaMLS’s performance
under different conditions.

Construct Validity: The evaluation metrics and operational thresholds defined to assess the perfor-
mance and effectiveness of AdaMLS play a critical role in determining its success. Ensuring that these
metrics accurately reflect the Quality of Service and system performance is essential for validating the
approach’s utility.

Conclusion Validity: The conclusions drawn from the empirical evaluation of AdaMLS are based
on specific experimental conditions and performance comparisons. Expanding the scope of empirical
evaluations and incorporating a broader range of datasets, models, and operational scenarios will enhance
the robustness of the conclusions and support the approach’s scalability and generalizability.

Addressing these threats through continued research and development is essential for advancing the
AdaMLS approach and confirming its role as a valuable asset in the evolution of self-adaptive Machine
Learning-Enabled Systems.

49

Chapter 6

SWITCH: An Exemplar for Evaluating Self-Adaptive ML-Enabled

Systems

In this chapter, we introduce SWITCH, a novel exemplar designed to facilitate the exploration and
evaluation of self-adaptive strategies within Machine Learning-Enabled Systems.

6.1 Introduction

Throughout our exploration of self-adaptation of machine learning-enabled systems, especially
highlighted in Chapters 2 and 3, we saw the role of self-adaptation in managing the uncertainties inherent
to Machine Learning-Enabled Systems (MLS). As seen in chapter 3, our literature review pinpointed a
significant gap: the field of self-adaptation within MLS is largely unexplored, with a notable absence
of tools or software designed for this purpose. Progressing into Chapter 4, we introduced the Machine
Learning Model Balancer as a new concept aimed at enhancing the Quality of Service (QoS) through
dynamic run-time ML model switching in response to runtime uncertainties. This led to the development
of AdaMLS, an innovative approach that successfully demonstrated the benefits of runtime model
switching in MLS, particularly in the context of object detection. AdaMLS not only showed potential in
managing uncertainties but also in significantly improving system utility and QoS. However, to advance
our research and develop more sophisticated self-adaptive strategies for MLS, we identified the need for
a specialized environment or tool. This is where the concept of an exemplar comes into play, serving as a
tool for simulating real-world scenarios to allow researchers, students, and practitioners to experiment
with and evaluate self-adaptive strategies in MLS. Despite the existence of various exemplars within the
SEAMS community1, our investigation revealed a clear gap: the lack of exemplars specifically designed
for MLS.

Addressing this research gap, we present SWITCH in this chapter, an exemplar of real-world ML-
enabled systems. SWITCH is an exemplar specifically developed for MLS, showcased through its
application in the object detection domain. This choice of application is strategic, aligning with our

1https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

50

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

AdaMLS case study and underscoring the significance of object detection within MLS research. SWITCH
provides a comprehensive platform for runtime ML model switching, designed to cope with varying
operational demands, data drifts, and the complex uncertainties typical of MLS. Its key features, including
advanced input handling, real-time data processing, and a user-friendly dashboard, make it an effective
tool for monitoring and experimenting self-adaptation with MLS in realistic scenarios.

Utilizing SWITCH to validate the AdaMLS approach highlights its potential to enhance QoS in MLS,
making it an invaluable resource for the self-adaptation and MLS research community. SWITCH not
only facilitates thorough testing, analysis, and refinement of self-adaptive strategies but also ensures their
practicality and effectiveness for real-world MLS applications. Accessible through its Git Repository2 and
an official website3, SWITCH is further complemented by a You-Tube video4 demonstration, providing
a detailed insight into its functionality and application.

The subsequent sections of this chapter are organized as follows: Section II introduces SWITCH,
offering an overview of its capabilities. Section III delves into the architecture and design of SWITCH,
detailing its operational framework. Section IV discusses system usage and adaptation strategies enabled
by SWITCH. Section V presents an empirical validation case study, focusing on the encountered
technical challenges and the devised solutions. Section VI reviews related work, comparing SWITCH
with existing self-adaptive systems and exemplars. Finally, Section VII outlines future research directions
and concludes the chapter, setting the stage for further advancements in self-adaptive MLS.

6.2 Overview

SWITCH is designed as a practical web service for ML, functioning in an online deployment mode.
It stands out as an exemplar in the field of MLS, offering a unique simulation platform for dynamic
model switching through software architecture-based self-adaptation through MAPE-K framework [23].
This approach effectively addresses the challenge of maintaining Quality of Service (QoS) in the face
of operational uncertainties. The system’s architecture is tailored for handling complex ML scenarios,
particularly demonstrated through object detection use cases. SWITCH integrates input handling via
FastAPI2, facilitating seamless and efficient user interactions.

It employs state-of-the-art YOLOv5u object detection models [41] for real-time data processing,
ensuring high accuracy and responsiveness. The system also features systematic logging of observability
metrics and system logs in Elasticsearch2, providing a robust framework for data management & analysis.
A standout feature of SWITCH is its interactive, real-time dashboard, implemented using Kibana2.
This user-friendly interface is designed for effective experiment management and system performance
monitoring. It allows researchers to visualize the model switching process in action and evaluate its

2https://github.com/sa4s-serc/switch
3https://tool-switch.github.io
4https://www.youtube.com/@tool-switch

51

https://github.com/sa4s-serc/switch
https://tool-switch.github.io
https://www.youtube.com/@tool-switch

impact on the system’s behavior and overall QoS. This dashboard plays a vital role in offering insights
into the system’s adaptive mechanisms and their outcomes.

6.3 Architecture and Design

SWITCH as shown in Figure 6.1 comprises core components like Managed System, Front-end,
Environment Manager, and Managing System, each integral to the system’s adaptability and user
interaction. Unlike traditional SAS techniques that modify software architecture, SWITCH addresses
specific ML challenges like handling data variability and ensuring model accuracy. This approach reflects
a shift from architectural adjustments to dynamic ML model management, showcasing a novel aspect of
adaptability in real-world MLS systems.

Image
StoreLoad Simulator

Model Loader

ML Model Post
ProcessorData

Pre-Processer
ML Model

Repository

Managed System

Knowledge

Result
Storage

SWITCH:Environment Manager

Analyzer

Adaptation Rules RepositoryReal-Time
Dashboard

SWITCH: Managing System

User

SWITCH: Frontend

Image Ingestion
Service

Experiment
Manager

Configuration
Manager

Observability Metrics
Indexes

System Logs
 Indexes

Data Store

Planner

ExecutorMonitor

Figure 6.1: SWITCH : Architecture Diagram

6.3.1 Managed System

In real-world scenarios, especially for online-deployed Machine Learning Systems, user requests
are processed asynchronously, i.e. continuously accepting them regardless of the processing time by
model - a key feature of dynamic and responsive ML services. SWITCH emulates this real-world
behavior in its Image Ingestion Service. This service, powered by FastAPI, Uvicorn2 and python, receives
image data from users (simulated by the Load Simulator) and stores it in the Image Store in a Base-64
Encoded format. This service efficiently handles concurrent, real-time data at variable rates, mirroring
asynchronous user interaction for seamless subsequent processing. Image Store in SWITCH functions as
a dynamic queue within the local storage. It stores the incoming image data from the Image Ingestion
Service. Images are queued here and are picked for processing based on their arrival order and then
removed from the queue, implementing a first-in-first-out (FIFO) mechanism. At any given time, the

52

number of images in the queue reflects pending images to be processed, providing a real-time view of the
workload similar to operational queues in MLS deployments.

Data Preprocessor picks the oldest unprocessed image from the Image Store for preprocessing. It
prepares the image data for object detection. It opens and loads image data from a byte array into
memory for model processing, ensuring data readiness for model inference. Model Loader in SWITCH
is a dynamic component that manages the ML Model in use as shown in Figure 6.1. It continuously
monitors a specific file (’model.csv’ in SWITCH) for indications of which model to load and process.
This approach allows for real-time model switching based on external inputs, reflecting a key aspect of
adaptability in real-world MLS systems. When SWITCH starts, it preloads all the models and stores
them in the Model Repository as a dictionary, ready for switching. Model Loader ensures that the system
is always ready to respond with the appropriate model as required. Model Repository of SWITCH
houses YOLOv5nu, YOLOv5su, YOLOv5mu, YOLOv5lu & YOLOv5xu - all preloaded models of the
YOLOv5u algorithm provided by Ultralytics [41], a state-of-the-art object detection system renowned
for its accuracy and efficiency. YOLOv5u models, developed using the PyTorch framework and trained
on the COCO dataset [51], are ready for deployment in the repository. The concept of ’preloading’
models here means that each model is initialized and kept ready for immediate use, ensuring the system’s
adaptability and responsiveness to different object detection requirements. In addition to this, SWITCH’s
Model Repository allows users to integrate different types of object detection models.

In SWITCH, the ’ML Model’ refers to the currently active YOLOv5 model processing the image
data. This model, selected by the Model Loader, is the primary driver of the object detection task
within the system. It receives preprocessed images, applies the detection algorithms, and generates
results, embodying the core functionality of an ML system in operation. Post Processor refines detection
outcomes with a confidence score threshold (e.g., 0.35), focusing on desired classes (e.g., Humans, Cars).
It computes total detections and average confidence. System metrics include the processing timestamp,
count of processed requests (e.g., Request No. 370), current model name, model processing time, total
time from image receipt to output (total time), duration since project start (absolute time), and utility
based on response time and confidence. System logs in JSON format are also generated for detailed
performance insights. Result Storage is a temporary storage which manages processed data flow into the
Elasticsearch-based Data Store, inside Knowledge in the managing system. REST API ensures seamless
data transfer from the Result Storage to Data Store, critical for real-time performance understanding
and adaptive decision-making. This integration enables SWITCH to maintain efficient storage, runtime
observability and adaptability.

6.3.2 Switch: Front-end

SWITCH’s front-end, comprising the Experiment Manager, Configuration Manager, and Real-Time
Dashboard, is the hub for user interaction, offering an intuitive and user-friendly experience. Built with
React, these components form the primary interface for user interaction. Experiment Manager facilitates
the uploading of image data and interarrival rate files. Users can either upload .zip or can directly give

53

the path of the image data folder stored locally. Configuration Manager is where users select or upload
MAPE-K files for the managing system, determining the adaptation strategy. This includes choosing
from predefined strategies like AdaMLs [47] or Naive [47], or uploading custom MAPE-K files. The
backend, developed using FastAPI and hosted with Uvicorn as an ASGI server, manages interaction with
the frontend UI through a series of API endpoints defined in FastAPI as shown in table 6.1. It enables
operations such as starting and stopping processes, uploading data, and retrieving metrics, ensuring a
seamless interaction between the user and the system.

Real-Time Dashboard, developed using Kibana, is a key component of SWITCH’s user interface.
Integrated as an iframe within the React application and runs in a docker container, it provides real-time
interactive visualizations of the latest system performance metrics, sourced directly from the Elasticsearch-
based Data Store through REST API endpoints. Kibana’s data visualization capabilities allow users to
explore a wide array of metrics interactively. The Real-Time Dashboard enables users to analyze and
learn about self-adaptation strategies in MLS through runtime model switching, thereby playing a crucial
role in the adaptive process of the MLS. In conclusion, the front-end components of SWITCH —from the
interactive React-based UI to the insightful Kibana Real-Time Dashboard—significantly enhance user
engagement, providing critical insights into the system’s performance and adaptive strategies in run-time.

6.3.3 SWITCH: Environment Manager

SWITCH’s Environment Manager features a Load Simulator, essential for replicating real-world API
traffic showing load uncertainty in the environment and testing the system’s adaptability. It receives image
data and interarrival rate files from the Experiment Manager of the SWITCH frontend through FastAPI
endpoints. This component uses Locust, an open-source load testing tool, to emulate user behavior and
manage incoming image data distribution. Locust’s Python script simulates user interactions, which is
crucial for evaluating SWITCH’s performance under various operational loads.

The simulator leverages interarrival rate data from user inputs, like the FIFA98 World Cup logs [72],
to create realistic traffic patterns. These patterns, characterized by time gaps between image uploads,
test the system’s responsiveness to fluctuating and peak load conditions. These scripts direct traffic to
Image Ingestion Service through FastAPI within the Managed System, ensuring realistic and varied
testing scenarios. By mirroring real-world user behaviors and traffic scenarios, this setup is essential for
practitioners to analyze and enhance MLS systems’ adaptive capabilities by assessing the impact of their
adaptation strategies in practical environments.

6.3.4 SWITCH: Managing System

Knowledge component within Switch’s Managing System plays a central role in adaptive decision-
making of model switching. It contains Adaptation Rules Repository, storing adaptation rules by user for
MAPE loop. Its Elasticsearch-based Data Store, which is adept at handling large-scale data processing
and analytics, runs in a docker container. It continually receives data from the Managed System via REST

54

Table 6.1: SWITCH: API endpoints and their descriptions.

API Endpoint Description

/api/stopProcess Stops the current process

/api/downloadData Downloads logs and metrics

/api/latest metrics data Retrieves the latest metrics

/api/latest logs Retrieves the latest system logs

/api/changeKnowledge Changes adaptation knowledge

/api/upload Uploads input to the server

API and stores in two indexes: - new logs for troubleshooting and performance analysis in System Logs
Indexes as JSON documents. - final metrics for monitoring system performance and guiding adaptations
in - Observability Metrics Indexes as JSON documents. Elasticsearch’s JSON-based REST API facilitates
CRUD operations and data searches, enhancing the system’s adaptive capabilities. Knowledge provides
these metrics to Real-Time Dashboard for visualization and to Monitor for monitoring the system’s
realtime performance through REST API.

6.3.4.1 Self-Adaptation Through MAPE-K Framework

Switch’s self-adaptive capabilities are primarily demonstrated using the MAPE-K framework, which
is a standard approach for implementing self-adaptive systems.

i) Monitor retrieves metrics from Knowledge using API calls for real-time system monitoring; ii)
Analyzer analyzes the monitored data to assess whether adaptation is necessary; iii) Planner develops
strategies based on the analysis for potential adaptations; iv) Executor executes the adaptation strategies,
influencing the managed system as needed. SWITCH offers flexibility by allowing users to use, customize,
or create adaptation strategies within the MAPE-K framework. This versatility makes it an ideal tool for
exploring various model-switching approaches in self-adaptation for MLS. SWITCH’s API, facilitates
interaction with the system for custom strategy implementation. Table 6.1 lists the key API endpoints
that users can leverage to programmatically interact with SWITCH. These endpoints allow real-time
adaptation and monitoring.

6.4 System Usage & Adaptation

As discussed in chapter 1, RQ2 is :

RQ2: What tools or frameworks can be devised to facilitate the implementation and exploration of
dynamic model switching strategies within Machine Learning-Enabled Systems for researchers, students,
and practitioners?

55

In response to RQ2, SWITCH exemplifies a pioneering tool designed to bridge the gap in self-
adaptation within MLS, notably with the action of dynamic model switching. As a comprehensive
exemplar, it incorporates the crucial elements of self-adaptation through the MAPE-K framework,
facilitating the implementation, testing, and refinement of various model switching strategies. Its
development was motivated by the identified need for a specialized environment that allows for hands-on
exploration of self-adaptive strategies, making it an invaluable asset for the research community and
educational sectors alike. In the following sections, SWITCH not only answers the call for such a
tool but also extends its utility by enabling detailed experimentation and analysis, fostering a deeper
understanding of self-adaptation’s potential benefits and challenges in MLS.

Figure 6.2: SWITCH User Interface: Home Page

56

6.4.1 System Usage:

SWITCH, an exemplar for Machine Learning-Enabled Systems (MLS), offers an intuitive and
straightforward user experience. It reflects real-world scenarios of MLS in its design and operation. Upon
initiating SWITCH, the user’s actions set in motion a series of automated processes. Docker Compose
uses containers to launch Elasticsearch and Kibana services to establish the backend for data visualization
and storage. Concurrently, the backend services of SWITCH are brought online through the execution
of the Node.py script, creating essential links between the system’s front and back ends. The React
application, comprising the Experiment Manager and Configuration Manager, becomes operational and
presents the user with SWITCH’s home page, an interactive web interface as shown in figure 6.2 and
preloads all ML models in the repository through Model Loader. Once experiments commence, the
integrated Kibana dashboard within the React application becomes accessible, offering real-time insights
into system performance.

In SWITCH, users engage in the following activities on the home page to start the experiment: i)
Upload Image Data: Users can upload images either as a .zip file or directly from a local folder. This
versatility enables SWITCH to handle data directly from the user’s environment; ii) Inter-arrival Rate
File: Users upload a .csv file for inter-arrival rates, allowing them to test the system’s performance under
varied real-world conditions; iii) Experiment ID: Users assign an ID to their experiment, under which
all related logs and metrics are organized and stored; iv) Select Self-Adaptation Strategy: Through a
drop-down menu, users can choose from a range of self-adaptation strategies detailed in the subsequent
subsection, tailoring the system’s adaptation approach to their needs.

6.4.2 Adaptation Strategies

The switch incorporates a range of self-adaptation strategies, notably the NAIVE and AdaMLS
approaches, each uniquely enhancing the system’s adaptability as explained in [47].

Single Model Strategies: These strategies (no switching) involve running a single YOLOv5u model
variant throughout the experiment. Users can choose from five YOLOv5u models, each catering to
specific performance requirements.

NAIVE and Modified NAIVE: The NAIVE approach, based on the incoming rate of images, switches
between models to balance speed and accuracy. For instance, it uses YOLOv5nu (nano) for higher rates
(15-30 images/sec) and YOLOv5xu for lower rates (below 2 images/sec). The Modified NAIVE approach
allows users to customize these threshold values and adapt the strategy to their specific needs.

AdaMLS: This novel approach, based on unsupervised learning, assesses the capabilities of different
models in real-time and selects the one offering the highest confidence score while meeting the target
response time. AdaMLS’s detailed methodology and its impact on enhancing Quality of Service are
discussed in [47]. SWITCH provides AdaMLS implementation, enabling users to experiment with this
advanced adaptation strategy.

57

Custom MAPE-K Strategies: SWITCH is designed to be flexible, allowing users to develop and
deploy their own MAPE-K strategies with ease. The system’s user-friendly interface and accessible APIs
make monitoring and executing custom strategies straightforward. Below is an example showing how
users can set up both monitoring and model-switching functionalities.

Listing 6.1: SWITCH: Custom MAPE-K Strategy Implementation

M o n i t o r i n g M e t r i c s from E l a s t i c s e a r c h
def f e t c h m e t r i c s (index name , f i e l d s , n u m d o c s t o f e t c h) :

que ry = {” s i z e ” : n u m d o c s t o f e t c h , ” s o r t ” : [{ ” l o g i d ” : {”
o r d e r ” : ” desc ” }}]}

r e s p o n s e = es . s e a r c h (i n d e x = index name , body= query)
Example f i e l d p r o c e s s i n g f o r ’ m o d e l p r o c e s s i n g t i m e ’
p r o c e s s e d m e t r i c s = p r o c e s s r e s p o n s e (r e s p o n s e , f i e l d s)
re turn p r o c e s s e d m e t r i c s

def p r o c e s s r e s p o n s e (r e s p o n s e , f i e l d s) :
Log ic t o p r o c e s s f i e l d s l i k e ’ m o d e l p r o c e s s i n g t i m e ’ from

r e s p o n s e
re turn a v e r a g e d m e t r i c s

S w i t c h i n g Model based on a c o n d i t i o n
def s w i t c h m o d e l (model name) :

w i th open (” model . c sv ” , ”w”) as f i l e :
f i l e . w r i t e (model name)

SWITCH c h e c k s ’ model . c s v ’ and u p d a t e s t h e model a c c o r d i n g l y

In this implementation, the ‘fetch metrics‘ function retrieves desired metrics from Elasticsearch,
and the ‘switch model‘ function updates the ‘model.csv‘ file to switch models. SWITCH continuously
monitors this file and adapt the active model as specified, demonstrating its capability for real-time,
dynamic self-adaptation.

6.5 Empirical Evaluation

Switch employs YOLOv5u models [41] for a wide range of object detection scenarios. These models
are renowned for their accuracy and efficiency and are trained on the COCO dataset [51], which includes
80 object categories.

Case Study: 1. General Detection: Utilizing 10,000 images from the COCO 2017 Unlabelled dataset
(1.6 GB) [51], Switch handles a wide variety of 80 categories, showcasing its capacity to deal with
diverse general object detection tasks. Note: Evaluations for 2. Crowd Detection and 3. Traffic Detection

58

was also conducted, focusing on different scenarios and datasets. Results and analyses for these cases are
available on our GitHub repository5.

Customizing Object Detection: SWITCH enables easy customization for detection tasks. Users can
modify the detection process by altering the process.py file. For instance, filtering results based on a
confidence threshold (e.g., 0.35) and desired class IDs allows targeted detection for classes like ’crowd’
or ’vehicle’.Example: For ’crowd’ class: if confidences[i] ¿= 0.35 && class list[i] == 0 {...}

System Requirements: SWITCH can be deployed on any laptop or PC capable of running Docker
and supporting Linux. For detailed technical requirements and setup instructions, please refer to our
GitHub repository.

6.5.1 Evaluation using AdaMLS Approach

The AdaMLS approach from [47] was directly applied in SWITCH, with tests on a 12th Gen Intel(R)
Core(TM) i5-12500H -12 CORE system. We primarily focused on General Object Detection, using load
conditions simulated with scaled FIFA98 logs [72]. AdaMLS’s rules, which can be recalibrated based
on different setups, were applied in SWITCH. For a comprehensive interpretation of the AdaMLS results,
refer to the AdaMLS paper [47].

Comparison of Model Switching Approaches: To illustrate the effectiveness of model switching
strategies in SWITCH, we conducted a comparison between the AdaMLS and a baseline ’Nano Model’
approach. The latter represents a non-switching scenario for contrast. The following table 6.2 presents
the comparison in terms of various performance metrics for General Object Detection:

Table 6.2: SWITCH: Comparison of General Object Detection using AdaMLS Approach and Nano

Model-(No Switching)

Metric AdaMLS Nano Model

Total Images Processed 10000 10000

Average Confidence Score 0.7 0.65

Average CPU Consumption 20 20.14

Total Objects Detected 47026 37829

Average Model Processing Time (s) 0.033 0.015

Average Image Processing Time (s) 0.25 0.35

The results from the AdaMLS application, as shown in the Table 6.2 and Figure 6.3, illustrate the
dynamic model switching capabilities of SWITCH. The table indicates that in 10,000 processed images,
each containing multiple detectable objects, a total of 47,026 objects were detected. ’Average Model
Processing Time’ refers to the duration for which an image is processed within the model itself, while

5https://github.com/sa4s-serc/switch

59

https://github.com/sa4s-serc/switch

Figure 6.3: SWITCH : Request Rate and Model Switching

’Average Image Processing Time’ represents the end-to-end life-cycle of an image — from queueing to
processing completion.

Figure 6.3 provides insights into the varying request rates over time and how AdaMLS smartly
switches between models in response. When the load is high, SWITCH quickly transitions to the Nano
Model for faster processing. Conversely, during periods of lower request rates, it opts for models with
higher accuracy, achieving better confidence scores. In this way, SWITCH is used to test approaches.
This adaptability demonstrates the critical need for smart model switching strategies in MLS, as it allows
for a balance between speed and accuracy based on real-time demands.

Effectiveness of SWITCH: SWITCH preloades 5 YOLOv5u models, consuming 21.3 to 34.8 CPU,
with load time of around 0.25 seconds and energy usage of about 10.56 joules. Model switching is
executed in approximately 100 microseconds on average.

Real-time Dashboard: The SWITCH dashboard, illustrated through Figures 6.4 to 6.7, offers an
in-depth view of the system’s real-time metrics, including processing times versus the number of requests
processed. It features a rich array of key performance indicators and dynamic visual elements such as pie
charts, bar plots, filters, and histograms for a comprehensive, real-time overview.

Figure 6.4 shows a glimpse of the dashboard’s capability to present runtime metrics, providing users
with critical data on system performance at a glance. This feature is key for making informed decisions
on-the-fly. Figure 6.5 reveals how SWITCH users can apply runtime filters to the dashboard. This
functionality allows for the segregation and deeper analysis of data based on specified criteria, enhancing
the user’s ability to monitor and adjust strategies in real-time.

In Figure 6.6, the dashboard displays histograms that offer insights into the distribution of system
performance metrics over time. Such visualizations are crucial for identifying trends, spikes, or anomalies
in system behavior, facilitating a understanding of system dynamics.

Lastly, Figure 6.7 encapsulates the dashboard’s analytics capabilities, presenting processed data in
a way that highlights operational insights and performance benchmarks. This aspect of the dashboard

60

Figure 6.4: SWITCH Dashboard: Runtime Metrics Excerpts

supports the continuous refinement of machine learning systems, encouraging the development of new
adaptive strategies tailored to the evolving landscape of MLS.

This user-friendly dashboard empowers users to effectively analyze and adapt their custom strategies
for machine learning systems, bolstering the development and refinement of innovative approaches to
MLS. Through its comprehensive visualization and analysis tools, SWITCH stands as a pivotal platform
for exploring the potential of self-adaptation in the realm of machine learning-enabled systems.

6.5.2 Technical Challenges & Solutions

In SWITCH, we’ve preloaded various YOLOv5u models to enable quick switching based on real-time
performance, addressing the challenge of working with different ML models. For efficient handling of
large volumes of image data, images are stored locally for swift processing, and Elasticsearch is used
for dashboard updates, ensuring smooth data management. The dashboard, developed with Kibana and
Elasticsearch, offers an intuitive and interactive experience, making real-time data understandable for
users. Although SWITCH is designed for Linux environments, it can also be used on non-Linux systems
through a Linux virtual environment, enhancing its compatibility across different computer types.

By tackling these challenges, we’ve made SWITCH a more flexible tool. It’s now better suited
for research and practical applications in the field of MLS that adapt themselves based on changing
conditions.

61

Figure 6.5: SWITCH Dashboard: Runtime Filters Excerpts

Figure 6.6: SWITCH Dashboard: Runtime Histograms Excerpts

6.6 Discussion

This chapter has highlighted SWITCH’s response to RQ2, offering a comprehensive tool for exploring
dynamic model switching strategies within Machine Learning-Enabled Systems (MLS). The development
of SWITCH is a significant stride towards filling the existing gap in self-adaptive MLS tools, providing a
robust platform for both the research community and practitioners to engage deeply with self-adaptive
mechanisms in MLS.

6.6.1 Lessons Learned from SWITCH Deployment

Enhanced User Experience and Accessibility: SWITCH’s architecture is meticulously designed to
be user-friendly and accessible, allowing users to not just use the platform but also customize it according
to their specific requirements. The provision of detailed API endpoints enables users to create their
own model-switching strategies, facilitating a broader exploration of self-adaptation scenarios. This

62

Figure 6.7: SWITCH Dashboard: Runtime Analytics Excerpts

level of customization underscores SWITCH’s versatility and adaptability, making it a powerful tool for
educational and research purposes.

Validation and Empirical Support: The insights gained from the application of SWITCH, especially
in validating the machine learning model balancer concept introduced in Chapter 4 and the AdaMLS
approach detailed in Chapter 5, provide empirical support for the effectiveness of dynamic model
switching. SWITCH’s ability to adaptively manage runtime uncertainties, thereby enhancing the quality
of service (QoS), serves as a practical demonstration of these concepts. These validations not only prove
the utility of SWITCH but also contribute to the broader understanding of self-adaptive systems within
the machine learning domain.

Design Versatility and Applicability: The generic design of SWITCH not only serves the object
detection domain but also sets a precedent for its applicability across various MLS domains. This
versatility opens avenues for its application in other vision tasks and beyond, highlighting the adaptability
of the SWITCH framework to accommodate diverse MLS use cases. Such design flexibility ensures
that SWITCH remains a relevant and invaluable tool as MLS continues to evolve and expand into new
domains.

Flexibility and Adaptability: SWITCH’s architecture and design principles underscore the critical
importance of flexibility in MLS. By enabling dynamic model switching based on real-time data,
SWITCH addresses one of the key challenges in MLS—maintaining high performance in the face of
fluctuating operational conditions.

Educational Value: As a research and educational tool, SWITCH provides a unique platform for
students, researchers, and practitioners to gain hands-on experience with self-adaptive systems. It

63

demystifies the complexities of implementing dynamic model switching strategies, giving a deeper
understanding of their benefits and challenges.

Moving Forward: Future versions of SWITCH will aim to extend its functionality and application
scope. This includes integrating mechanisms for model retraining, exploring transfer learning opportuni-
ties, and facilitating user-driven customization. By pushing the boundaries of what is currently achievable
with SWITCH, we anticipate uncovering new insights and strategies that will further advance the field of
self-adaptive MLS.

6.6.2 Threats to Validity

In presenting SWITCH and its applications, we acknowledge several threats to validity that could
influence the interpretation and generalizability of our findings:

External Validity: While SWITCH demonstrates the practical application of dynamic model switch-
ing strategies in object detection, its applicability to other MLS domains remains to be explored. Future
research should aim to test SWITCH across various MLS tasks to validate its effectiveness more broadly.

Internal Validity: The performance metrics and results obtained from SWITCH depend significantly
on the specific configurations, models, and datasets used in our experiments. Variations in these
parameters could lead to different outcomes, suggesting the need for extensive testing under diverse
conditions to ensure the robustness of our findings.

Construct Validity: Our choice of metrics and evaluation criteria in assessing the performance of
SWITCH could affect our conclusions. Ensuring that these metrics accurately reflect the objectives of
self-adaptive MLS is crucial for the validity of our results.

Conclusion Validity: The statistical significance of the improvements observed with SWITCH could
be impacted by the scale and design of our experiments. Future studies should consider larger datasets
and more complex scenarios to strengthen the conclusion validity of the research.

Addressing these threats to validity will be critical in future work as we continue to refine SWITCH
and expand its application domain. By doing so, we aim to solidify its role as a key tool in the development
and exploration of self-adaptive MLS strategies.

64

Chapter 7

Applications of ML Model Balancer

In this chapter, we expand the application of the Machine Learning Model Balancer concept into two
areas: sustainability and streaming mode operations in MLS, exploring novel strategies like EcoMLS
and RelMLS for enhancing system efficiency and reliability.

7.1 Introduction

In this chapter, we build upon the foundation laid out in the previous chapters, particularly Chapter 4,
which introduced the Machine Learning Model Balancer concept, and Chapter 5, where we discussed the
AdaMLS approach. AdaMLS exemplified the application of the model balancer concept, specifically
targeting the speed-accuracy trade-off prevalent in machine learning-enabled systems (MLS). Further,
Chapter 6 introduced the SWITCH exemplar, enabling users with a platform to perform self-adaptation
within MLS, providing a hands-on platform for experimentation and validation of self-adaptive strategies.
With the utility and versatility of the Machine Learning Model Balancer concept established, this chapter
aims to explore its application across two areas: sustainability aspect and streaming mode in MLS.

The imperative for sustainability in MLS is highlighted by the environmental footprint of AI tech-
nologies, which, while driving advancements in fields such as autonomous vehicles and smart cities,
also contribute significantly to energy consumption and carbon emissions. As discussed in literature
review in chapter 3, research, including works by Emma Strubell et al [75] and Lacoste Alexandre et
al [48], has illuminated the substantial energy requirements and resultant carbon footprint associated with
training and deploying ML models, likening the energy consumption of training a single AI model to that
of five cars over their lifetimes. This comparison highlights the necessity of integrating sustainable AI
practices, aiming to balance technological progression with environmental conservation. Efforts have
largely focused on optimizing the training phase for energy efficiency; however, the inference phase
remains relatively unexplored, characterized by significant energy utilization yet essential for maintaining
system responsiveness and accuracy. In response to this need, our research introduces EcoMLS, an
approach leveraging the machine learning model balancer concept, devised to dynamically modulate
energy consumption alongside model confidence in response to the operational conditions and request

65

variability. EcoMLS uses novel self-adaptive model switching strategy that not only aims to optimize
energy usage across MLS applications but also seeks to uphold, if not elevate, the systems’ performance
metrics. Through object detection use case, we validate EcoMLS, showcasing its potential to minimize
energy consumption while maintaining high levels of model accuracy, thus contributing a self-adaptive
strategy towards the sustainability of MLS. Parallelly, the significance of deploying MLS in streaming

Load
Simulator

Model Loader

ML Model Post
ProcessorData

Pre-Processer
ML Model

Repository
Result

Storage

Environment Manager and Managed System

Image
Ingestion
Service

Image
Storage

ML Metric
Monitor

Energy
Monitor

Score
Generator

System
Evaluator

Planner
Initiator

Strategy
Formulator

Model
Selector

Adaptation Executor

Monitor

Analyzer Planner

Executor

Learning Engine

ML Model ExecutorData Store Performance
Evaluator

Adaptation Rule
Generator

Knowledge

Base
Rules

Repository

 Runtime
Rules

Repository
Logs Repository

Managing System

Data
Stream

Model Loader

ML Model Post
Processor

Data
Pre-Processer

ML Model
Repository

Result
Storage

Environment Manager and Managed System

Frame
Ingestion
Service

Frame
Storage

ML Metric
Monitor

Reliability
Checker

Model
Selector

Adaptation Executor

Monitor

Analyzer Planner

Executor

Rulebook
Manager

Knowledge

Rules
Repository

Logs
Repository

Managing System

ML Model
Repository

Most
Accurate

Model

1. EcoMLS: Application of ML Model Balancer
For Sustainable ML Systems

Thorugh Base System of SWITCH Exemplar

1. ReLMLS: Application of ML Model Balancer
For Streaming Mode in ML Systems

Thorugh Base System of SWITCH Exemplar

Figure 7.1: Architecture of the EcoMLS and RelMLS Approach

modes, especially for tasks such as object detection in video streams, cannot be overstated. Streaming
mode poses unique challenges, including the imperative of maintaining contextual reliability—ensuring
the accuracy and relevance of detected objects over continuous video feeds [34]. This mode extends the
concept of online deployments, where instead of singular request-response transactions, there is a contin-
uous influx of data requiring real-time processing. In the object detection use case, this translates to video
object detection, where not just speed and accuracy, but the reliability of contextual information—such
as the number and accuracy of detected objects—becomes important. To navigate these challenges, we
introduce RelMLS, another novel application of the Machine Learning Model Balancer concept, tailored
to enhance MLS reliability in streaming contexts in terms of reliability detection outcomes. RelMLS
is designed to evaluate the contextual reliability of current models against predetermined benchmarks,
initiating model switches, aiming to maintain detection results within an acceptable range, thereby
ensuring decision-making processes are informed by accurate and relevant data.

Both EcoMLS and RelMLS approached are depicted in Figure 7.1 represent our efforts toward
advancing the self-adaptability and efficiency of MLS, each targeting distinct yet equally important
aspects of modern machine learning applications. As we proceed, the ensuing sections will offer a
comprehensive overview of these applications. We will explore the methodology, experimentation, and
results that showcase the practical implications and benefits of applying the Machine Learning Model

66

Balancer concept in addressing the challenges of sustainability and streaming mode deployments in MLS.
Through this exploration, we aim to provide valuable insights and strategies that propel MLS toward
greater adaptability, energy efficiency, and operational effectiveness.

7.2 EcoMLS: Enhancing sustainability in MLS

This EcoMLS work and approach in collaboration with M. Tedla, illustrates the implementation of the
model switching concept to enhance sustainability in machine learning systems. The primary focus of
this thesis section is to demonstrate the practicality and effectiveness of model switching as a strategy for
balancing energy efficiency and system performance. Readers interested in a comprehensive understand-
ing of the EcoMLS approach, its detailed architecture, and operational dynamics are encouraged to read
the publication ”EcoMLS: A Self-Adaptation Approach for Architecting Green ML-Enabled Systems.”
This reference provides complete details into the EcoMLS approach and its foundational principles1.

7.2.1 EcoMLS: Running Example

Our implementation of the Machine Learning Model Balancer concept is exemplified through the
integration with the SWITCH [53] exemplar’s managed system and environment manager, tailored
for an object detection web service. This service employs a comprehensive architecture designed to
efficiently process image-based requests. It includes an Image Ingestion Service for simulating real-world
asynchronous request handling; an Image Store functioning as a dynamic first-in-first-out (FIFO) queue
for incoming data; a Data Preprocessor that prepares images for detection; a Model Loader responsible
for dynamically selecting machine learning models; a Model Repository containing a variety of preloaded
models for rapid deployment; an ML Model that performs the core detection processing; a Post Processor
for refining detection outcomes; and a Result Storage for the temporary holding of processed data before
its final transfer. This arrangement reflects the operational design of services like Google Cloud Vision or
Amazon Rekognition, showcasing its practicality and adaptability in handling object detection tasks.

Within this system, a set of machine learning models, denoted as M , is defined. Each model mj

within M is a variant of the YOLO algorithm [69], distinguished by its size and computational demands.
These models are evaluated based on two primary metrics: energy consumption, which measures the
electricity used during the inference process, and the confidence score, which indicates the model’s
accuracy in object identification and classification. The set M encompasses the YOLOv5 models:
YOLOv5n (nano), YOLOv5s (small), YOLOv5m (medium), and YOLOv5l (large), all of which are
provided by Ultralytics [41] and pretrained on the COCO 2017 training dataset [51]. The models vary in
their parameter count, affecting both their energy consumption (Ej) and detection confidence score (cj),
where j serves as the model index within M .

1The EcoMLS approach complete details are not covered here; its specifics are beyond this thesis’s scope as the concept’s
application, not its development, represents the thesis author’s main contribution

67

The model variants from YOLOv5n to YOLOv5l demonstrate a spectrum of trade-offs between energy
consumption (Ej) and confidence score (cj). For instance, YOLOv5n, which is optimized for low energy
consumption, utilizes 2 mJ of energy (E1) and achieves a mean Average Precision (mAP) of 45.7 (c1).
Conversely, YOLOv5l, designed for higher accuracy, consumes 16 mJ (En) to reach an mAP of 68.9
(cn). This variation underscores the necessity to balance computational demand with detection accuracy
in real-world applications.

The operational framework processes a continuum of image requests (i), selecting an appropriate
model (mj) for each based on a strategy that optimizes the balance between energy efficiency (Ei) and
detection confidence (ci). Through the EcoMLS approach, we aim to dynamically navigate between
these models, striving to strike an optimal balance that enhances both the sustainability and the efficacy
of the detection service.

7.2.2 EcoMLS: Approach

EcoMLS applies the Machine Learning Model Balancer concept to improve sustainability in Machine
Learning-Enabled Systems (MLS) by dynamically adjusting model selection to balance energy efficiency
and performance. The approach integrates a Learning Engine and utilizes the MAPE-K loop (Monitor,
Analyze, Plan, Execute, Knowledge) to continuously assess and adapt machine learning models based on
their energy consumption and performance metrics. A key feature of EcoMLS is the implementation of
an ϵ-greedy algorithm that makes decisions based on a performance score calculated as Energy * (1 -
Confidence). This strategy allows for a dynamic switch between models, prioritizing energy efficiency
when possible while maintaining confidence in the system’s outputs. The algorithm optimizes this
balance by either reducing energy consumption or enhancing output confidence, depending on real-time
requirements. Complete details of the approach available in our publication ’EcoMLS: A Self-Adaptation
Approach for Architecting Green ML-Enabled Systems’ [76].

7.2.3 EcoMLS: Experimentation and Results

Focusing on the application of machine learning model balancer concept to enhance sustainability
within Machine Learning-Enabled Systems (MLS), this section is dedicated to illustrating the efficacy
of model switching as derived from the broader context of self-adaptation, directly addressing the
overarching research question (RQ3) outlined in Chapter 1. This discussion centers on the adaptability
of MLS, specifically within the aspect of sustainability in the computer vision domain, and examines
the practical implications of applying model switching strategies to balance energy efficiency and sys-
tem performance. The discussion concentrate on two key aspects outlined in following research questions:

RQ3.1 How does the implementation of model switching idea compare to other static and non-adaptive
methodologies in terms of enhancing the sustainability of MLS?

68

RQ3.2 In what ways does model switching contribute to the balance between energy efficiency and
performance within ML-Enabled Systems?

To comprehensively address these questions, we initially outline our experimental framework, subse-
quently stating the outcomes of our empirical evaluations. This approach aims to explain the practical
benefits and the broader applicability of model switching in promoting sustainability and efficiency in
machine learning deployments.

7.2.4 EcoMLS: Experimental Setup

To evaluate the EcoMLS approach, our experimental setup is adopted from the SWITCH [53]
exemplar. It employs an object detection system, as detailed in Section 7.2, utilizing YOLOv5 models
and FastAPI simulating requests using the FIFA98 World Cup log dataset, processing 25,000 image
requests. For evaluation, as detailed in our approach, the COCO 2017 test dataset is utilized. For the
testing phase, which includes performance results, the COCO 2017 unlabelled dataset is employed. The
YOLOv5 models (YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l) used are pre-trained by Ultralytics
on the COCO 2017 training dataset. The experiments were conducted on a system equipped with an
Intel Core i7-11370H processor, NVIDIA GeForce RTX 3050 Ti 4GB Graphics, 16GB DDR4 3200MHz
SDRAM, and developed using Python 3.11. To measure energy consumption, we utilized pyRAPL2, a
Python package specifically designed for assessing the energy consumption and power usage of software
applications running on Intel processors. The EcoMLS approach’s evaluation included varying the ϵ

value to analyze its impact on balancing exploration and exploitation. We compared EcoMLS’s adaptive
model selection with individual YOLOv5 model performances and three naive strategies: (1) using fixed
knowledge for model switching (naive 1), (2) updating knowledge based on average confidence (naive
2), and (3) incorporating dynamic updates of both confidence and energy metrics in knowledge (naive
3). Our approach builds on naive 3 by adding an ϵ-greedy mechanism, enhancing exploration through
probability. The complete specifics of our implementation, parameters and results can be found here3.

7.2.5 EcoMLS: Results

In exploring the efficacy of the EcoMLS framework, particularly the role of model switching for
sustainability within Machine Learning-Enabled Systems (MLS), we undertook a comparative analysis
against baselines and static model approaches, focusing on their energy consumption and accuracy
metrics. The examination is following research questions RQ3.1 and RQ3.2, with an emphasis on under-
standing how model switching, a core aspect of the EcoMLS approach, contributes to the sustainability
and performance of MLS.

2https://pypi.org/project/pyRAPL/. Latest version released on Dec 19, 2019
3https://github.com/sa4s-serc/EcoMLS

69

RQ3.1 How does the implementation of model switching idea compare to other static and non-adaptive
methodologies in terms of enhancing the sustainability of MLS?

Our assessment uses detailed metrics from Table 7.1, showing that EcoMLS, with a strategic ϵ = 0.1

setting, processed 13,040 images within a low score range, demonstrating its ability to maintain a
balanced trade-off between energy efficiency and model accuracy. This contrasts with the ’nano’ model,
which, while processing a higher number of images (20,265), did so at the expense of lower average
confidence (0.536), highlighting a preference for energy savings over accuracy. In stark comparison,
the ’large’ model, with the highest accuracy (C avg = 0.675) and energy demand (17.705), positions
EcoMLS as an effective intermediary, achieving an average confidence of 0.61 with considerably reduced
energy usage (2.762). This not only signifies a balanced approach but also demonstrates the efficacy of
model switching in enhancing the system’s sustainability and accuracy.

Table 7.1: EcoMLS: Model score frequency table

Name 0-1 1-2 2-3 3-4 4-5 5-6 6-7

nano 20265 4480 237 16 1 0 0

small 5301 11870 6139 1258 290 102 31

medium 2394 4447 6018 5319 3670 1870 706

large 645 2398 2304 2691 3204 3148 2693

EcoMLS 13040 10740 841 180 61 37 31

NAIVE1 14301 9996 562 96 27 9 4

NAIVE2 14860 9560 491 62 12 4 3

NAIVE3 9188 12408 2698 492 156 43 9

Figure 7.2 details the frequency of model switches within EcoMLS, underscoring its adaptability and
the strategic use of the ϵ-greedy mechanism for model selection. The frequent switching, particularly
evident with 160 switches at ϵ = 0.1, reflects a understanding of operational conditions, allowing
EcoMLS to outperform traditional and static models by dynamically balancing energy consumption
against model confidence.

RQ3.2 In what ways does model switching contribute to the balance between energy efficiency and
performance within ML-Enabled Systems?

The core of our evaluation of EcoMLS centers on its ability to navigate the intricate balance between
energy use and accuracy. Employing a performance score metric (Scorem = Ej × (1 − Cj)), we
found that EcoMLS, especially at ϵ = 0.1, exhibits an optimal blend of low energy consumption (2.762)
and high model confidence (0.61). This balance, as detailed in Table 7.2, is further highlighted by a

70

Figure 7.2: Model switching: Naive baselines Vs. EcoMLS

comparative analysis of energy consumption and confidence scores, visualized in Figure 7.3.
The graph shows EcoMLS’s performance predominantly aligning below a delineated trade-off line,
especially marked at ϵ = 0.1, indicating a successful maintenance of balance despite the inclination for
more detections to exceed this line at higher ϵ values.

The dynamic model switching inherent to EcoMLS proves instrumental in this balance, making
the system a flexible approach to sustainably manage MLS operations. This balance is not merely
about achieving lower energy consumption or higher accuracy in isolation but about harmonizing these
objectives within the operational dynamics of MLS, thereby ensuring sustainable and efficient system
performance. Through these evaluations, the value of model switching within EcoMLS is demonstrated,
aligning with the aim of sustainability in MLS. The detailed results from this exploration affirm the
significance of self-adaptive model switching, as facilitated by EcoMLS, in advancing the field of
sustainable MLS by efficiently managing the dual objectives of energy conservation and accuracy
enhancement.

7.3 RelMLS: Self-Adaptation of Streaming Mode MLS

The RelMLS approach, applying the Machine Learning Model Balancer concept within MLS deployed
in streaming mode, is demonstrated through an adapted version of the SWITCH exemplar architecture,
specifically designed for video object detection for this evaluations.

7.3.1 RelMLS: Running Example and Implementation Details

RelMLS running example implementation is tailored to handle the continuous stream of data inherent
to video feeds, making it well-suited for dynamic environments where contextual reliability is paramount.

In this system, a Data Stream Component simulates the reception of video streams from real-world
scenarios, directing the data to the Frame Ingestion Service. This service meticulously extracts individual
frames from the stream, storing them in a Frame Storage queue for sequential processing. The Data
Preprocessor then retrieves each frame, preparing it for analysis by the ML model.

71

Figure 7.3: Trade-off between energy consumption and the average confidence score of individual models

(first row), EcoMLS with varying ϵ (second row), and naive baselines (third row).

Given the system’s foundation on the SWITCH exemplar, we’ve evolved its architecture to cater
specifically to video inputs. While SWITCH primarily processes static images, RelMLS advances this
capability to address the dynamic nature of video streams. This adaptation involves a Model Loader
that dynamically selects from a range of ML models housed within the Model Repository, optimizing
for contextual reliability—defined here as the accuracy of detected objects within frames, crucial for
applications like crowd counting.

For this running example, we focus on crowd counting within video object detection, selecting four
models to span the spectrum from speed to accuracy:

1. Nanodet: A lightweight model optimized for speed, ideal for mobile applications where rapid frame
processing is essential. [68] 2. P2PNet: The state-of-the-art in crowd counting, offering unparalleled
accuracy in dense object environments. [74] 3. YOLOv5m and YOLOv5l: These models from Ultralytics
strike a balance between speed and detection precision, making them versatile choices for varied
operational scenarios. [41]

Each model is chosen for its unique attributes: Nanodet for its swift processing capabilities, P2P for
its exceptional accuracy in counting, and the YOLOv5 variants for their balanced performance. This

72

Table 7.2: EcoMLS: Comparison of energy metrics and confidence scores across different approaches

Approach name Cavg Eavg Emonitor Eanalyzer Eplanner Eexecutor Emape-k
Eavg +

Emape-k

No. of

Switches

nano 0.536 1.61 - - - - - 1.61 0

small 0.611 4.327 - - - - - 4.327 0

medium 0.652 8.918 - - - - - 8.918 0

large 0.675 17.705 - - - - - 17.705 0

EcoMLS

(ϵ = 0.1)
0.61 2.762 1.284 0.001 0.001 0.0 1.285 4.047 160

EcoMLS

(ϵ = 0.2)
0.612 3.044 1.166 0.001 0.001 0.0 1.168 4.212 324

EcoMLS

(ϵ = 0.3)
0.613 2.912 1.035 0.001 0.001 0.0 1.037 3.949 313

EcoMLS

(ϵ = 0.4)
0.616 3.564 0.959 0.001 0.001 0.001 0.961 4.525 676

NAIVE1 0.609 2.47 1.226 0.001 0.001 0.0 1.228 3.697 20

NAIVE2 0.609 2.399 1.21 0.001 0.001 0.0 1.213 3.612 5

NAIVE3 0.609 3.319 1.658 0.001 0.002 0.0 1.661 4.98 106

diverse model lineup ensures that RelMLS can adaptively switch between models based on the current
video frame’s contextual requirements, maintaining a reliable count of objects (e.g., people) detected
in each frame. For testing purpose we have used used Japan walk crowd videos from Japan Explorer
YT channel4. Particularly video named as ’Japan’s Thousands Gate a paradise that Mesmerizes the
travelers’5 from Japan Explorer YouTube channel6. It has 39150 frames, with 30 fps, total duration of 21
min 45 seconds, dimensions 1280 x 720, size 391 Mb and in MPEG-4 video format.

The system processes video streams frame by frame, employing the ML Model selected by the Model
Loader for object detection. Post-detection, the Post Processor refines the results, which are then stored
temporarily in the Result Storage. This process repeats for each incoming frame, ensuring a seamless and
adaptive pipeline that prioritizes contextual reliability in the detection results.

By focusing on crowd counting, RelMLS addresses a critical application of video object detection,
demonstrating the capability of the Machine Learning Model Balancer concept to enhance the reliability
and effectiveness of ML systems in streaming mode. This approach not only underscores the importance
of adaptability in ML systems but also showcases the potential of dynamic model selection in maintaining
high-quality, contextually relevant detection outcomes in real-time video streams.

4Proper permission to use the video for academic research purposes has been obtained from Japan Explorer YT
5https://youtu.be/ndJ3X2uiHM4?si=e5txlFIraVdc7kG8
6https://www.youtube.com/@Japanexplorer1

73

https://youtu.be/ndJ3X2uiHM4?si=e5txlFIraVdc7kG8
https://www.youtube.com/@Japanexplorer1

7.3.2 RelMLS: Approach

The exploration of the Machine Learning Model Balancer concept extends into the realm of RelMLS,
an approach designed specifically for enhancing contextual reliability in streaming Machine Learning-
Enabled Systems (MLS). Emphasizing the real-time analysis and adaptation of video stream processing
for tasks such as object detection, RelMLS aims for advancing MLS towards greater operational integrity
and reliability.

7.3.2.1 RelMLS Approach: System Architecture

The architecture of RelMLS integrates a series of components structured to manage and process
continuous video streams effectively as shown in 7.1:

In running example managed system it has Frame Ingestion Service Manages the intake of video
streams, partitioning continuous footage into discrete frames for processing. Data Preprocessor Prepares
frames for analysis, ensuring they meet the necessary criteria for accurate object detection. Model
Loader Dynamically selects the optimal model for the current context, balancing processing demands
with detection accuracy. And in managing system, RelMLS has ML Model Repository which houses
a diverse range of ML models, including a designated model serving as the benchmark for reliability
(the ”most reliable model”). Rulebook Manager and MAPE-K Knowledge Components dynamically
adapt operational strategies based on real-time data analysis, continually refining the system’s approach
to model selection and adaptation.

7.3.2.2 The Core of RELMLS: Contextual Reliability Index (CRI)

At the heart of RELMLS is the Contextual Reliability Index (CRI), a novel metric designed to assess
the trustworthiness of the model’s predictions against a dynamically chosen benchmark model within the
ML Model Repository. The CRI is calculated as per Equation 7.1 :

CRI =
Contextual result from model-in-use

Result from most reliable model
(7.1)

This ratio, aimed to hover between 0.5 and 0.9 for optimal reliability, informs the system’s adaptive
strategies, ensuring that the contextual information remains both accurate and trustworthy.

7.3.2.3 Operational Dynamics: MAPE-K Framework Implementation

RelMLS harnesses the MAPE-K framework for its adaptive loop, outlined as follows:
Monitor observes system performance and contextual reliability through metrics such as CPU usage,
response times, confidence scores, and the number of detected objects (contextual information). This
data is stored in the Logs Repository. Analyzer This component periodically receives the latest processed
frame and evaluates it against the most reliable model to determine the CRI. Based on the CRI value and
predefined thresholds, the Analyzer decides whether adaptation is necessary. Rulebook Manager Operates

74

asynchronously, receiving frames from the Analyzer to compare across all models in the repository,
updating the Rules Repository with new adaptation rules based on the outcomes. Planner Informed by
the CRI and the Rules Repository, the Planner devises strategies for model switching. It selects models
that balance speed and accuracy within the desired CRI range.

The decision-making process by Planner utilizes a set M = {m1,m2, ...,mn}, where each mi

represents a model, ordered by processing speed. Given the current Contextual Reliability Index (CRI)
and a target reliability range CRItarget = [0.5, 0.9], the selection of an optimal model m∗ is formalized
as follows:
1. If CRI < 0.5, the search begins from the slowest model to prioritize accuracy.
2. If CRI > 0.9, the search starts with the fastest model to prioritize speed.
3. For each model mi ∈ M, evaluate if CRImi ∈ CRItarget.
4. Select m∗ = min{mi : CRImi ∈ CRItarget}, prioritizing the fastest model that meets the CRI
criteria.
This ensures RelMLS dynamically adapts to the contextual requirements, maintaining an optimal balance
between detection speed and accuracy.This highlights how the Planner assesses and selects models based
on the CRI, incorporating both proactive and reactive measures to adjust the model in use. It delineates
the process of selecting the fastest model within an acceptable CRI range or defaulting to the most
reliable model when necessary, thereby ensuring that the system dynamically maintains its contextual
reliability within the specified operational parameters.

Executor Implements the Planner’s decisions by switching to the selected model, thus ensuring the
system’s continuous adaptation to maintain contextual reliability.

Through the detailed exposition of the RelMLS approach, encapsulating its system architecture,
the pivotal role of CRI, and the intricacies of its adaptive cycle within the MAPE-K framework, we
demonstrate a structured methodology for enhancing contextual reliability in MLS. This approach
underscores the adaptability and precision of RelMLS in handling real-time video stream processing for
critical ML tasks, ensuring operational efficiency and reliability.

7.3.2.4 RelMLS: Empirical Validation and Results

RQ3.4: How does RelMLS maintain operational efficiency while ensuring high contextual reliability
in real-time streaming video object detection tasks?

The empirical results demonstrate that RelMLS effectively maintains a balanced trade-off between
operational efficiency and high contextual reliability. By dynamically adapting the model selection based
on the Contextual Reliability Index (CRI), RelMLS ensures that the system remains responsive to the
streaming video’s demands without compromising the accuracy of object detection. This is evident
in the comparative analysis (Table 7.3), where RelMLS optimizes both the average persons detected
and frames per second (FPS), outperforming individual baseline models in terms of detection accuracy
while maintaining a reasonable FPS rate. This section explores the empirical validation of the RelMLS

75

approach, focusing on its efficacy in the context of video object detection and, more specifically, crowd
counting accuracy. The validation is conducted through a comparative analysis involving baseline models
(Nanodet, YOLOv5m, YOLOv5l, and P2P) against the adaptive RelMLS framework. Results emphasize
the adaptive capabilities of RelMLS in balancing detection accuracy and operational efficiency within a
streaming context.

Experimental Setup and Metrics : The ”Japan walk crowd” video, characterized by dynamic and
densely populated scenes, served as the testbed for this evaluation. Key metrics for comparison included
the average number of persons detected per second (averaged over 10-second intervals to normalize
differences in frame processing rates across models) and the frames per second (FPS) achieved by each
model during processing.

Table 7.3: RelMLS: Comparative Analysis of Detection Performance and Efficiency

Model Nanodet Yolov5m Yolov5l P2P RelMLS

Avg Persons Detected (10 sec avg) 8.62 7.95 8.36 25.49 15.23

FPS (10 sec avg) 24.89 8.72 4.28 0.56 5.83

Total Persons Detected 1129 1041 1087 3340 1997

Table 7.3 presents a comparative analysis showcasing the balance between detection performance and
operational efficiency across different models, including the adaptive RelMLS approach. The averaging
of persons detected and FPS over 10-second intervals accounts for the variability in output rates due to
differing processing speeds of each model.

1. Nanodet and Yolov5 variants demonstrated high FPS, indicative of their suitability for scenarios
requiring rapid frame processing. However, their detection accuracy, as reflected by the average
number of persons detected, was lower compared to the more computationally intensive P2P
model.

2. P2P, while achieving the highest detection accuracy, suffered significantly in terms of FPS, high-
lighting the trade-off between accuracy and operational efficiency inherent to existing models.

3. RelMLS emerged as a balanced solution, optimizing both detection accuracy and FPS. By dynami-
cally switching between models based on the Contextual Reliability Index (CRI), RelMLS adapts
to the operational context, ensuring reliable crowd counting without substantial compromises on
processing speed.

The RelMLS approach, through its adaptive mechanism, effectively bridges the gap between the need
for high detection accuracy and the demand for operational efficiency in real-time video processing
tasks. By averaging over 10-second intervals, the results underscore RelMLS’s capability to maintain a
higher average detection accuracy compared to individual baseline models (except P2P) while achieving

76

a more favorable FPS rate than the most accurate model (P2P). This balance underscores the effectiveness
of RelMLS in managing the intrinsic trade-offs of MLS applications, particularly in scenarios where
contextual reliability is crucial.

Therefore, in response to RQ3.4, RelMLS demonstrates significant effectiveness in managing the
intrinsic challenges of streaming MLS applications, showcasing its ability to provide reliable and efficient
real-time video object detection.

7.4 Discussion

In this section, we provide the insights, lessons learned and threats to validity from the comprehensive
evaluations of the EcoMLS and RelMLS approaches. Both were meticulously developed to apply the
Machine Learning Model Balancer concept to two distinct yet important aspects of machine learning-
enabled systems: sustainability and streaming mode adaptability.

7.4.1 Lessons Learned: EcoMLS

The EcoMLS approach provided us with valuable lessons on the intricate balance between sustain-
ability and system performance in MLS. Through its implementation and testing, several key insights
emerged:

1. Adaptability is Key to Sustainability: EcoMLS demonstrated that dynamic model switching,
driven by real-time performance and energy consumption metrics, significantly enhances the sustainability
of MLS. By adapting to varying operational conditions, EcoMLS minimized energy consumption without
compromising on the accuracy or reliability of the system.

2. Balancing Trade-offs: One of the principal challenges encountered was the trade-off between
energy efficiency and model confidence. EcoMLS showed the importance of a nuanced approach to
model selection, where not only are energy consumption and accuracy balanced, but the operational
context is also considered to make informed decisions.

3. Impact of Exploration Strategies: The use of an ϵ-greedy mechanism in EcoMLS highlighted the
impact of exploration strategies on system performance. It was observed that a carefully chosen ϵ value
could effectively balance the exploration of new models with the exploitation of known efficient models,
optimizing the system’s overall performance.

4. Sustainability Beyond Energy Consumption: The EcoMLS evaluation extended the conversation
on sustainability beyond mere energy consumption to include aspects such as computational resources
and system longevity. It illuminated the broader implications of adaptive systems in reducing the
environmental footprint of MLS.

77

7.4.2 Lessons Learned: RelMLS

Similarly, the RelMLS approach provided profound insights into the adaptation of MLS in streaming
modes, emphasizing the importance of contextual reliability:

1. Contextual Reliability as a Cornerstone: The concept of Contextual Reliability Index (CRI)
introduced by RelMLS proved to be pivotal in ensuring the accuracy and reliability of streaming video
object detection. It showcased the necessity of maintaining high contextual reliability to inform adaptive
decisions effectively.

2. Dynamic Benchmarking for Adaptation: The implementation of RelMLS illustrated the value
of dynamic benchmarking, where models within the system could be re-evaluated against changing
operational scenarios. This dynamic benchmarking facilitated informed model switching, enhancing the
system’s adaptability and performance.

3. Challenges in Streaming Adaptation: Addressing the unique challenges of streaming MLS, such
as maintaining high throughput and low latency, shows the need for optimized data processing pipelines
and efficient model management strategies. RelMLS’s architecture offered a blueprint for addressing
these challenges, emphasizing the role of efficient frame processing and model selection.

4. Balance Between Speed and Accuracy: RelMLS’s evaluations reaffirmed the critical balance
between processing speed and detection accuracy in streaming MLS. The approach highlighted the
necessity of choosing models that not only provide high accuracy but also maintain a viable frame rate to
ensure the system’s responsiveness.

Both EcoMLS and RelMLS contribute valuable perspectives on implementing the Machine Learning
Model Balancer concept, each addressing distinct aspects of adaptability in MLS. Their evaluations offer
novel insights into the challenges and opportunities of enhancing MLS with self-adaptive capabilities,
setting the stage for future research and development in this promising field.

7.4.3 Threats to Validity

In this subsection, we scrutinize the potential limitations and biases in our research methodologies,
addressing how these might influence the outcomes and interpretations of our studies on EcoMLS and
RelMLS.

7.4.3.1 EcoMLS: Threats to Validity

Threats to external validity concern the focus on a single type of task and a select group of machine
learning models, and by limiting our examination to the inference phase. To address the first challenge,
we chose a range of YOLOv5 models, varying in complexity (from YOLOv5n to YOLOv5l), and used
diverse datasets, including COCO 2017. This strategy aimed to cover different visual data types and
model sizes. However, our decision to focus only on the inference phase, without considering the full
lifecycle of machine learning models like training and tuning, was intentional. This choice was made to

78

study energy consumption during inference specifically, acknowledging its narrow scope in reflecting the
entire machine learning process.

A threat to the internal validity could be the impact of varying hardware conditions like temperature
changes on the results of the evaluations. To tackle this, we implemented a 24-hour sleep period
before each test to stabilize hardware conditions and performed a warm-up run to maintain consistency
throughout our experiments. The threats to construct validity could be constituted by the accuracy of our
energy consumption measurements. To mitigate this, we utilized the pyRAPL library in Python (pyRAPL
makes use of the RAPL library provided by Intel), which is a well-known library for measuring energy
consumption. Concerning conclusion validity, the main threat is the potential low statistical power of our
tests, which we addressed by conducting multiple experiments across different settings and conditions.
Additionally, we took precautions to minimize the impact of extraneous variables, such as background
tasks, on our energy consumption measurements by ensuring a clean experimental environment.

7.4.3.2 RelMLS: Threat to Validity

Threats to external validity for RelMLS also revolve around the choice of application domain (video
object detection, specifically crowd counting) and the selected models for the evaluation. While we
aimed to represent a realistic scenario by choosing a real-world video and a mix of models including
Nanodet, P2PNet, and YOLOv5 variants, this choice may not encompass all streaming MLS applications.
Future work could expand the scope to include a broader range of tasks and models, particularly those
requiring different forms of contextual analysis.

For internal validity, similar to EcoMLS, the consistency of hardware performance over time could
influence the results. The streaming nature of RelMLS, involving continuous data processing, might
accentuate such effects. To mitigate this, consistent environmental conditions were maintained, and
evaluations were structured to allow for system normalization before each testing session.

The accuracy of contextual reliability measurements and model switching decisions represents a
potential threat to construct validity. Ensuring the precision of these measures was critical, and we
relied on established metrics and methodologies to evaluate model performance and contextual accuracy.
However, the dynamic nature of streaming applications and the potential variability in video content
complexity could affect these evaluations.

Lastly, regarding conclusion validity, the statistical significance of RelMLS’s performance improve-
ments was carefully considered. The experimental design included repetitions and varied conditions
to ensure robust conclusions could be drawn. Nevertheless, the complexity of real-world streaming
environments means that further validation in diverse operational contexts would be beneficial to confirm
these findings.

Overall, while both EcoMLS and RelMLS present promising approaches to their respective challenges,
acknowledging these threats to validity is important for accurately interpreting their contributions and
identifying areas for future research and improvement.

79

Chapter 8

Conclusion and Future Work

In this chapter, we conclude our exploration into self-adaptive mechanisms within Machine Learning-
Enabled Systems (MLS), summarizing key findings and proposing directions for future research to
continue advancing the field.

8.1 Conclusion

In this thesis, we have started with a exploration of the runtime uncertainties faced by Machine
Learning-Enabled Systems (MLS) and their impact on the Quality of Service (QoS). Our investigation
has highlighted the challenges presented by such uncertainties, from environmental variability to data
and model drifts, which collectively pose significant hurdles to maintaining consistent QoS. In response
to these challenges, we proposed self-adaptive mechanisms, mainly Machine Learning Model Balancer
concept and the AdaMLS approach, aimed at dynamically managing these uncertainties to uphold or
enhance the QoS.

8.1.1 Addressing Research Questions

RQ1: In the context of machine learning-enabled systems, how can self-adaptive mechanisms be devel-
oped and applied to mitigate runtime uncertainties, thereby enhancing their Quality of Service (QoS)?

The Machine Learning Model Balancer concept and the AdaMLS approach have demonstrated that
self-adaptive strategies can be effectively developed and applied within MLS. By allowing real-time
model switching based on operational conditions, they provide a novel solution for mitigating runtime
uncertainties and ensuring an optimal balance between model accuracy and system performance. This not
only answers RQ1 but also highlights the potential of engineering self-adaptive capabilities into MLS.

RQ2: What tools can be devised to facilitate the implementation and exploration of self-adaptation within
machine learning-enabled systems for researchers, students, and practitioners?

80

The development of SWITCH as an exemplar for facilitating the implementation and exploration of
dynamic model switching strategies stand as a novel contribution to the field. SWITCH, designed for both
theoretical exploration and practical application, offers a versatile platform for researchers, students, and
practitioners to delve into the complexities of self-adaptive MLS, directly addressing RQ2 by providing a
platform to engage with and refine self-adaptive model switching approaches.

RQ3: How can self-adaptation in MLS be applied and generalized across MLS deployment modes
and aspects in computer vision domain, broadening their applicability and impact?

Through the EcoMLS and RelMLS approaches, we expanded the application of self-adaptation principles
across different aspects, demonstrating their generalizability and impact. EcoMLS showcases how these
strategies can be leveraged for environmental sustainability, optimizing energy efficiency without highly
compromising model confidence. Meanwhile, RelMLS shows promising improvement in QoS in MLS
for streaming data, highlighting the versatility and broad applicability of self-adaptive strategies, thereby
offering a answer to RQ3.

8.1.2 Summary of Contributions

Our research contributions include:

• The conceptualization and validation of the Machine Learning Model Balancer as a novel concept
for enhancing the adaptability of MLS.

• The development of AdaMLS, a novel approach that leverages unsupervised learning for dynamic
model switching, demonstrating significant improvements in QoS.

• The creation of SWITCH, an novel exemplar that enables hands-on experimentation and investiga-
tion into dynamic model switching strategies as self-adaptation mechanism for MLS.

• The application and generalization of self-adaptation principles through EcoMLS and RelMLS,
showcasing their efficacy in diverse operational contexts and aspects.

Therefore, we advance the state-of-the-art in the field of self-adaptive machine learning-enabled
systems by introducing dynamic model switching strategies that enhance system adaptability and perfor-
mance. Our work achieves an improvement in the quality of service across various operational contexts,
highlighting the potential of our approaches for broader application and impact. In conclusion, we believe
our contributions not only address the challenges posed by runtime uncertainties but also pave the way
for future research and development in self-adaptive MLS.

81

8.2 Future Work

We believe that the research presented in this thesis marks only the beginning of a comprehensive
exploration into the domain of runtime uncertainties in Machine Learning-Enabled Systems (MLS) and
their management through self-adaptive strategies. The evolving nature of software systems, coupled
with rapid advancements in machine learning technologies, necessitates ongoing innovation and research.
Here, we outline the future directions that stem from our work, highlighting areas for further exploration
and development.

Future Directions for AdaMLS: The AdaMLS approach, with its foundation on dynamic model
switching to manage runtime uncertainties, opens up several avenues for future research. Firstly, there is
a significant opportunity to explore a diverse range of learning techniques and model-switching strategies
to further enhance the adaptability and effectiveness of AdaMLS across various operational contexts.
Secondly, extending AdaMLS’s applicability to diverse domains beyond object detection, such as Natural
Language Processing (NLP) and autonomous systems, could explore its potential in a broader spectrum
of ML applications. Lastly, an important future direction involves exploring opportunities for improving
the environmental and economic sustainability of MLS through AdaMLS, focusing on strategies that
minimize resource consumption while maximizing system performance.

Advancements in SWITCH: SWITCH has demonstrated its potential as a versatile tool for facilitating
the implementation and exploration of dynamic model switching strategies. Future enhancements to
SWITCH could include further development to support a broader range of self-adaptive MLS tasks,
including retraining, transfer learning, and user-driven customization, beyond the MAPE-K framework.
Additionally, conducting empirical studies and adaptations of SWITCH to address emerging challenges
and uncertainties in MLS will ensure that it remains at the forefront of research and practical applications.
Enhancing SWITCH as an educational tool by integrating additional features that facilitate the exploration
of self-adaptive strategies in MLS will enrich the learning experience for users.

Expanding EcoMLS: The EcoMLS approach, aimed at optimizing energy efficiency in MLS without
compromising model confidence, suggests several future directions. These include broadening the
application of EcoMLS to include sustainable computing initiatives, particularly through its integration
with edge computing and lightweight AI models, to promote energy efficiency across different computing
paradigms. Another direction involves developing EcoMLS into a comprehensive tool for sustainability-
aware decision-making, enabling the design and deployment of greener ML-enabled systems. Extending
the impact of EcoMLS to new domains to demonstrate its versatility and effectiveness in promoting
environmental sustainability in ML applications is also a key future direction.

Future directions with RelMLS: The RelMLS approach, with its focus on enhancing the adaptability
and effectiveness of MLS for streaming data, presents opportunities for further innovation. Enhancing the
adaptability and efficiency of RelMLS in processing streaming data, focusing on minimizing latency and
maximizing accuracy in real-time decision-making scenarios, is a crucial area for future work. Investigat-
ing the application of RelMLS in high-stakes environments, where reliability and real-time processing
are paramount, could lead to significant advancements. Additionally, exploring new methodologies for

82

dynamic model management in RelMLS to further improve its performance and reliability remains an
important future direction.

In conclusion, our research contributions aims to lay the groundwork for future research in self-
adaptation of MLS. By continuing to explore and innovate within this space, we can advance the state-
of-the-art in MLS and contribute to the development of more resilient, efficient, and environmentally
friendly technological solutions.

83

Bibliography

[1] Trend. https://tinyurl.com/2abwwdx7.

[2] N. Adams. Dataset shift in machine learning by j. quiñonero-candela; m. sugiyama; a. schwaighofer; n. d.

lawrence. Journal of the Royal Statistical Society. Series A (Statistics in Society), 173, 01 2010.

[3] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi, and T. Zimmermann.

Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st International Conference

on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages 291–300. IEEE, 2019.

[4] D. Aparı́cio, R. Barata, J. Bravo, J. T. Ascensão, and P. Bizarro. Arms: Automated rules management system

for fraud detection, 2020.

[5] E. Barbierato and A. Gatti. Towards green ai. a methodological survey of the scientific literature. IEEE

Access, pages 1–1, 2024.

[6] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. On the dangers of stochastic parrots: Can

language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and

Transparency, FAccT ’21, page 610–623, New York, NY, USA, 2021. Association for Computing Machinery.

[7] B. Branco, P. Abreu, A. S. Gomes, M. S. C. Almeida, J. T. Ascensão, and P. Bizarro. Interleaved sequence

rnns for fraud detection. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge

Discovery amp; Data Mining, KDD ’20. ACM, Aug. 2020.

[8] T. Bureš. Self-adaptation 2.0. In 2021 International Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS), pages 262–263, 2021.

[9] R. Calinescu, R. Mirandola, D. Perez-Palacin, and D. Weyns. Understanding uncertainty in self-adaptive

systems. In 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems

(ACSOS), pages 242–251, 2020.

[10] J. Cámara, P. Correia, R. de Lemos, and M. Vieira. Empirical resilience evaluation of an architecture-based

self-adaptive software system. In Proceedings of the 10th International ACM Sigsoft Conference on Quality

of Software Architectures, QoSA ’14, page 63–72, New York, NY, USA, 2014. Association for Computing

Machinery.

[11] J. Cámara, B. Schmerl, and D. Garlan. Software architecture and task plan co-adaptation for mobile service

robots. In 2020 IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and

84

https://tinyurl.com/2abwwdx7

Self-Managing Systems (SEAMS), SEAMS ’20, page 125–136, New York, NY, USA, 2020. Association for

Computing Machinery.

[12] J. Cámara, M. Silva, D. Garlan, and B. Schmerl. Explaining architectural design tradeoff spaces: A machine

learning approach. In Software Architecture: 15th European Conference, ECSA 2021, Virtual Event, Sweden,

September 13-17, 2021, Proceedings, pages 49–65. Springer, 2021.

[13] J. Cámara, J. Troya, A. Vallecillo, N. Bencomo, R. Calinescu, B. H. C. Cheng, D. Garlan, and B. Schmerl.

The uncertainty interaction problem in self-adaptive systems. Softw. Syst. Model., 21(4):1277–1294, aug

2022.

[14] Y. Cao and J. Yang. Towards making systems forget with machine unlearning. In 2015 IEEE Symposium on

Security and Privacy, pages 463–480, 2015.

[15] M. Casimiro, P. Romano, D. Garlan, G. A. Moreno, E. Kang, and M. Klein. Self-adaptation for machine

learning based systems. In ECSA (Companion), 2021.

[16] M. Casimiro, P. Romano, D. Garlan, and L. Rodrigues. Towards a framework for adapting machine learning

components. In 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems

(ACSOS), pages 131–140, 2022.

[17] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo,

Y. Brun, B. Cukic, G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,

G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A. Müller, S. Park, M. Shaw,

M. Tichy, M. Tivoli, D. Weyns, and J. Whittle. Software Engineering for Self-Adaptive Systems: A Research

Roadmap, pages 1–26. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[18] S.-W. Cheng, D. Garlan, and B. Schmerl. Making self-adaptation an engineering reality. pages 158–173, 01

2005.

[19] S.-W. Cheng, V. Poladian, D. Garlan, and B. Schmerl. Improving architecture-based self-adaptation through

resource prediction. 01 2009.

[20] J. Cleland-Huang, A. Agrawal, M. Vierhauser, M. Murphy, and M. Prieto. Extending mape-k to support

human-machine teaming. In Proceedings of the 17th Symposium on Software Engineering for Adaptive and

Self-Managing Systems, SEAMS ’22, page 120–131, New York, NY, USA, 2022. Association for Computing

Machinery.

[21] J. Cámara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. Schmerl, and R. Ventura. Evolving an adaptive

industrial software system to use architecture-based self-adaptation. In 2013 8th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 13–22, 2013.

[22] J. Cámara, H. Muccini, and K. Vaidhyanathan. Quantitative verification-aided machine learning: A tandem

approach for architecting self-adaptive iot systems. In 2020 IEEE International Conference on Software

Architecture (ICSA), pages 11–22, 2020.

[23] W. D, P. H, G. T, K. R, and M. L. The mape-k architecture for self-adaptation systems. Software Engineering

for Adaptive and Pervasive Systems, 1(1):15–29, 2006.

85

[24] R. de Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson, M. Litoiu, B. Schmerl, D. Weyns, L. Baresi,

N. Bencomo, Y. Brun, J. Cámara, R. Calinescu, M. Cohen, A. Gorla, V. Grassi, L. Grunske, P. Inverardi,

J.-M. Jézéquel, and F. Zambonelli. Software Engineering for Self-Adaptive Systems: Research Challenges in

the Provision of Assurances, pages 1–29. 09 2017.

[25] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. M.

Villegas, T. Vogel, et al. Software engineering for self-adaptive systems: A second research roadmap.

In Software Engineering for Self-Adaptive Systems II: International Seminar, Dagstuhl Castle, Germany,

October 24-29, 2010 Revised Selected and Invited Papers, pages 1–32. Springer, 2013.

[26] S. Deng, S. Li, K. Xie, W. Song, X. Liao, A. Hao, and H. Qin. A global-local self-adaptive network for

drone-view object detection. IEEE Transactions on Image Processing, 30:1556–1569, 2021.

[27] B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline. Machine learning for medical imaging. radiographics,

37(2):505–515, 2017.

[28] K. Ervasti. A survey on network measurement: Concepts, techniques, and tools. University of Helsinki,

2016.

[29] E. Garcı́a-Martı́n, C. F. Rodrigues, G. Riley, and H. Grahn. Estimation of energy consumption in machine

learning. Journal of Parallel and Distributed Computing, 134:75–88, 2019.

[30] I. Gerostathopoulos, C. Raibulet, and P. Lago. Expressing the adaptation intent as a sustainability goal. In

Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: New Ideas and

Emerging Results, ICSE-NIER ’22, 2022.

[31] O. Gheibi and D. Weyns. Lifelong self-adaptation: self-adaptation meets lifelong machine learning. In

Proceedings of the 17th Symposium on Software Engineering for Adaptive and Self-Managing Systems,

SEAMS ’22. ACM, May 2022.

[32] O. Gheibi, D. Weyns, and F. Quin. Applying machine learning in self-adaptive systems: A systematic

literature review. ACM Trans. Auton. Adapt. Syst., 15(3), aug 2021.

[33] O. Gheibi, D. Weyns, and F. Quin. On the impact of applying machine learning in the decision-making

of self-adaptive systems. In 2021 International Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS). IEEE, May 2021.

[34] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, and J. a. Gama. Machine learning for streaming data: state of

the art, challenges, and opportunities. SIGKDD Explor. Newsl., 21(2):6–22, nov 2019.

[35] K. Goyal and J. Singhai. Texture-based self-adaptive moving object detection technique for complex scenes.

Computers & Electrical Engineering, 70:275–283, 2018.

[36] J.-B. Hou, X. Zhu, and X.-C. Yin. Self-adaptive aspect ratio anchor for oriented object detection in remote

sensing images. Remote Sensing, 13(7), 2021.

[37] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama,

and K. Murphy. Speed/accuracy trade-offs for modern convolutional object detectors. In 2017 IEEE

86

Conference on Computer Vision and Pattern Recognition (CVPR), pages 3296–3297, Los Alamitos, CA,

USA, jul 2017. IEEE Computer Society.

[38] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar. Adversarial machine learning. In

Proceedings of the 4th ACM workshop on Security and artificial intelligence, pages 43–58, 2011.

[39] M. U. Iftikhar, G. S. Ramachandran, P. Bollansée, D. Weyns, and D. Hughes. Deltaiot: A self-adaptive

internet of things exemplar. In 2017 IEEE/ACM 12th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS), pages 76–82, 2017.

[40] H. Järvenpää, P. Lago, J. Bogner, G. Lewis, H. Muccini, and I. Ozkaya. A synthesis of green architectural

tactics for ml-enabled systems. arXiv preprint arXiv:2312.09610, 2023.

[41] G. Jocher. Yolov5 by ultralytics, May 2020.

[42] J. Kephart and D. Chess. The vision of autonomic computing. Computer, 36(1):41–50, 2003.

[43] C. Kinneer, Z. Coker, J. Wang, D. Garlan, and C. Le Goues. Managing uncertainty in self-adaptive systems

with plan reuse and stochastic search. In 2018 IEEE/ACM 13th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 40–50, 2018.

[44] C. Kinneer, R. Tonder, D. Garlan, and C. Goues. Building reusable repertoires for stochastic self-* planners.

In 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS),

pages 222–231, Los Alamitos, CA, USA, aug 2020. IEEE Computer Society.

[45] K. Kotar and R. Mottaghi. Interactron: Embodied adaptive object detection. In 2022 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 14840–14849, Los Alamitos, CA, USA, jun

2022. IEEE Computer Society.

[46] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker. A survey on engineering approaches for

self-adaptive systems. Pervasive Mob. Comput., 17(PB):184–206, feb 2015.

[47] S. Kulkarni, A. Marda, and K. Vaidhyanathan. Towards self-adaptive machine learning-enabled systems

through qos-aware model switching. In 2023 38th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 1721–1725, 2023.

[48] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres. Quantifying the carbon emissions of machine learning.

arXiv preprint arXiv:1910.09700, 2019.

[49] G. A. Lewis, I. Ozkaya, and X. Xu. Software architecture challenges for ml systems. In 2021 IEEE

International Conference on Software Maintenance and Evolution (ICSME), pages 634–638. IEEE, 2021.

[50] N. Li, J. Cámara, D. Garlan, B. Schmerl, and Z. Jin. Hey! preparing humans to do tasks in self-adaptive

systems. In 2021 International Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS), pages 48–58, 2021.

[51] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick,

and P. Dollár. Microsoft coco: Common objects in context, 2015.

87

[52] F. D. Macı́as-Escrivá, R. Haber, R. del Toro, and V. Hernandez. Self-adaptive systems: A survey of current

approaches, research challenges and applications. Expert Systems with Applications, 40(18):7267–7279,

2013.

[53] A. Marda, S. Kulkarni, and K. Vaidhyanathan. Switch: An exemplar for evaluating self-adaptive ml-enabled

systems, 2024.

[54] S. Martı́nez-Fernández, J. Bogner, X. Franch, M. Oriol, J. Siebert, A. Trendowicz, A. M. Vollmer, and

S. Wagner. Software engineering for ai-based systems: A survey. ACM Trans. Softw. Eng. Methodol., 31(2),

2022.

[55] Y. Mehta, R. Xu, B. Lim, J. Wu, and J. Gao. A review for green energy machine learning and ai services.

Energies, 16(15), 2023.

[56] N. C. Mendonça, D. Garlan, B. Schmerl, and J. Cámara. Generality vs. reusability in architecture-based

self-adaptation: the case for self-adaptive microservices. In Proceedings of the 12th European Conference on

Software Architecture: Companion Proceedings, ECSA ’18, New York, NY, USA, 2018. Association for

Computing Machinery.

[57] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz, R. Bachwani, R. Faizullabhoy, L. Huang, V. Shankar,

T. Wu, G. Yiu, et al. Reviewer integration and performance measurement for malware detection. In Detection

of Intrusions and Malware, and Vulnerability Assessment: 13th International Conference, DIMVA 2016, San

Sebastián, Spain, July 7-8, 2016, Proceedings 13, pages 122–141. Springer, 2016.

[58] F. A. Moghaddam, P. Lago, and I. C. Ban. Self-adaptation approaches for energy efficiency: a systematic

literature review. In Proceedings of the 6th International Workshop on Green and Sustainable Software,

GREENS ’18. Association for Computing Machinery, 2018.

[59] F. A. Moghaddam, P. Lago, and I. C. Ban. Self-adaptation approaches for energy efficiency: a systematic

literature review. In Proceedings of the 6th International Workshop on Green and Sustainable Software, New

York, NY, USA, 2018. Association for Computing Machinery.

[60] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl. Flexible and efficient decision-making for proactive

latency-aware self-adaptation. ACM Trans. Auton. Adapt. Syst., 13(1), apr 2018.

[61] G. A. Moreno, J. Cámara, D. Garlan, and M. Klein. Uncertainty reduction in self-adaptive systems. In 2018

IEEE/ACM 13th International Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS), pages 51–57, 2018.

[62] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl. Efficient decision-making under uncertainty for

proactive self-adaptation. In 2016 IEEE International Conference on Autonomic Computing (ICAC), pages

147–156, 2016.

[63] G. A. Moreno, B. Schmerl, and D. Garlan. Swim: An exemplar for evaluation and comparison of self-

adaptation approaches for web applications. In 2018 IEEE/ACM 13th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 137–143, 2018.

88

[64] H. Muccini and K. Vaidhyanathan. Software architecture for ml-based systems: What exists and what lies

ahead. In 2021 IEEE/ACM 1st Workshop on AI Engineering-Software Engineering for AI (WAIN), pages

121–128. IEEE, 2021.

[65] F. Pinto, M. O. P. Sampaio, and P. Bizarro. Automatic model monitoring for data streams, 2019.

[66] F. Quin, D. Weyns, and O. Gheibi. Decentralized self-adaptive systems: A mapping study. In 2021

International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE,

May 2021.

[67] S. Rabanser, S. Günnemann, and Z. C. Lipton. Failing loudly: An empirical study of methods for detecting

dataset shift, 2019.

[68] RangiLyu. Nanodet-plus: Super fast and high accuracy lightweight anchor-free object detection model.

https://github.com/RangiLyu/nanodet, 2021.

[69] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 779–788, 2016.

[70] S. Reichhuber and S. Tomforde. Active reinforcement learning – a roadmap towards curious classifier

systems for self-adaptation, 2022.

[71] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner. Survey and benchmarking of

machine learning accelerators. In 2019 IEEE High Performance Extreme Computing Conference (HPEC).

IEEE, Sept. 2019.

[72] P. Rodriguez, C. Spanner, and E. Biersack. Analysis of web caching architectures: hierarchical and distributed

caching. Networking, IEEE/ACM Transactions on, 9:404 – 418, 09 2001.

[73] B. Schmerl, J. Cámara, J. Gennari, D. Garlan, P. Casanova, G. A. Moreno, T. J. Glazier, and J. M. Barnes.

Architecture-based self-protection: composing and reasoning about denial-of-service mitigations. In Pro-

ceedings of the 2014 Symposium and Bootcamp on the Science of Security, HotSoS ’14, New York, NY,

USA, 2014. Association for Computing Machinery.

[74] Q. Song, C. Wang, Z. Jiang, Y. Wang, Y. Tai, C. Wang, J. Li, F. Huang, and Y. Wu. Rethinking counting and

localization in crowds: A purely point-based framework. 2021.

[75] E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning in nlp. arXiv

preprint arXiv:1906.02243, 2019.

[76] M. Tedla, S. Kulkarni, and K. Vaidhyanathan. Ecomls: A self-adaptation approach for architecting green

ml-enabled systems. Mar. 2024.

[77] A. Tundo, M. Mobilio, S. Ilager, I. Brandic, E. Bartocci, and L. Mariani. An energy-aware approach to

design self-adaptive ai-based applications on the edge. In 2023 38th IEEE/ACM International Conference on

Automated Software Engineering (ASE). IEEE Computer Society, 2023.

[78] E. Umargono, J. E. Suseno, and S. Gunawan. K-means clustering optimization using the elbow method and

early centroid determination based-on mean and median. In Proceedings of the International Conferences on

89

https://github.com/RangiLyu/nanodet

Information System and Technology, pages 234–240. SCITEPRESS—Science and Technology Publications

Setubal, Portugal, 2019.

[79] K. Vaidhyanathan et al. Data-driven self-adaptive architecting using machine learning. 2021.

[80] R. Verdecchia, L. Cruz, J. Sallou, M. Lin, J. Wickenden, and E. Hotellier. Data-centric green ai an exploratory

empirical study. In 2022 International Conference on ICT for Sustainability (ICT4S), pages 35–45, Los

Alamitos, CA, USA, 2022. IEEE Computer Society.

[81] R. Verdecchia, J. Sallou, and L. Cruz. A systematic review of green ai. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, page e1507, 2023.

[82] D. Weyns. Software engineering of self-adaptive systems. Handbook of software engineering, pages 399–443,

2019.

[83] D. Weyns. An Introduction to Self-Adaptive Systems: A Contemporary Software Engineering Perspective. 02

2021.

[84] D. Weyns and R. Calinescu. Tele assistance: A self-adaptive service-based system exemplar. In 2015

IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems,

pages 88–92, 2015.

[85] D. Weyns, I. Gerostathopoulos, N. Abbas, J. Andersson, S. Biffl, P. Brada, T. Bures, A. Di Salle, M. Galster,

P. Lago, G. Lewis, M. Litoiu, A. Musil, J. Musil, P. Patros, and P. Pelliccione. Self-adaptation in industry: A

survey. ACM Trans. Auton. Adapt. Syst., 18(2), may 2023.

[86] R. Wohlrab and D. Garlan. A negotiation support system for defining utility functions for multi-stakeholder

self-adaptive systems. Requirements Engineering, 01 2022.

[87] T. Wong, M. Wagner, and C. Treude. Self-adaptive systems: A systematic literature review across categories

and domains. Information and Software Technology, 148:106934, 2022.

[88] Y. Wu, E. Dobriban, and S. B. Davidson. Deltagrad: Rapid retraining of machine learning models, 2020.

[89] J. Wuttke, Y. Brun, A. Gorla, and J. Ramaswamy. Traffic routing for evaluating self-adaptation. In 2012 7th

International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pages

27–32. IEEE, 2012.

[90] T. Yigitcanlar, R. Mehmood, and J. M. Corchado. Green artificial intelligence: Towards an efficient,

sustainable and equitable technology for smart cities and futures. Sustainability, 13(16), 2021.

[91] C. Zhang, Z. Li, J. Liu, P. Peng, Q. Ye, S. Lu, T. Huang, and Y. Tian. Self-guided adaptation: Progressive

representation alignment for domain adaptive object detection. IEEE Transactions on Multimedia, PP:1–1,

05 2021.

[92] J. J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and S. Garg. Model-switching: dealing with fluctuating workloads

in machine-learning-as-a-service systems. In Proceedings of the 12th USENIX Conference on Hot Topics in

Cloud Computing, HotCloud’20, USA, 2020. USENIX Association.

[93] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye. Object detection in 20 years: A survey. Proceedings of the IEEE,

2023.

90

	Introduction
	Research Questions
	Self-Adaptation of MLS: Solution Overview
	Research Activities
	Thesis Structure
	Research Publications

	Background
	Self Adaptive Systems
	Conceptual Model of a Self-Adaptive System
	The MAPE-K Framework

	Object Detection
	Discussion

	Literature Review
	Self Adaptive Systems
	Literature Reviews in Self-Adaptive Systems
	Addressing Uncertainty in Self-Adaptive Systems
	Advancements and Techniques in Self-Adaptation
	Challenges in Machine Learning-Enabled Systems
	Self-Adaptation in Machine Learning-Enabled Systems

	Object Detection: A Use Case for Self-Adaptation in ML Systems
	Exemplars for Self-Adaptive Systems
	Sustainability and Self Adaptation
	Discussion

	Machine Learning Model Balancer
	Introduction
	Challenges in Self-Adaptation of ML-Enabled Systems
	Machine Learning Model Balancer
	Discussion

	AdaMLS: Approach For Self-Adaptation of ML-Enabled Systems
	Introduction
	Running Example
	Conclusion of the Running Example

	AdaMLS Approach
	Learning Engine
	Data Store and ML Model Executor
	Unsupervised Model Builder and Performance Evaluator
	Adaptation Rule Creator

	MAPE-K Loop
	Knowledge
	Monitor
	Analyzer
	Planner
	Executor

	Uncertainty Analysis in AdaMLS
	Uncertainty Sources and Mitigation Strategies

	Results
	Implementation Setup
	Results Analysis

	Discussion
	AdaMLS: Lessons Learned
	Threats to Validity

	SWITCH: An Exemplar for Evaluating Self-Adaptive ML-Enabled Systems
	Introduction
	Overview
	Architecture and Design
	Managed System
	Switch: Front-end
	SWITCH: Environment Manager
	SWITCH: Managing System
	Self-Adaptation Through MAPE-K Framework

	System Usage & Adaptation
	System Usage:
	Adaptation Strategies

	Empirical Evaluation
	Evaluation using AdaMLS Approach
	Technical Challenges & Solutions

	Discussion
	Lessons Learned from SWITCH Deployment
	Threats to Validity

	Applications of ML Model Balancer
	Introduction
	EcoMLS: Enhancing sustainability in MLS
	EcoMLS: Running Example
	EcoMLS: Approach
	EcoMLS: Experimentation and Results
	EcoMLS: Experimental Setup
	EcoMLS: Results

	RelMLS: Self-Adaptation of Streaming Mode MLS
	RelMLS: Running Example and Implementation Details
	RelMLS: Approach
	RelMLS Approach: System Architecture
	The Core of RELMLS: Contextual Reliability Index (CRI)
	Operational Dynamics: MAPE-K Framework Implementation
	RelMLS: Empirical Validation and Results

	Discussion
	Lessons Learned: EcoMLS
	Lessons Learned: RelMLS
	Threats to Validity
	EcoMLS: Threats to Validity
	RelMLS: Threat to Validity

	Conclusion and Future Work
	Conclusion
	Addressing Research Questions
	Summary of Contributions

	Future Work

	Bibliography

