
Discrete and Continuous Trajectory Optimization Methods for Complex
Robot Systems

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
in

Electronics and Communication Engineering
by Research

by

Dipanwita Guhathakurta
2018112004

dipanwita.g@research.iiit.ac.in

International Institute of Information Technology, Hyderabad
(Deemed to be University)

Hyderabad - 500 032, INDIA
June 2023

Copyright © Dipanwita Guhathakurta, 2023

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Discrete and Continuous Trajectory
Optimization Methods for Complex Robot Systems” by Dipanwita Guhathakurta, has been carried
out under my supervision and is not submitted elsewhere for a degree.

June 13, 2023 Adviser: Prof. K. Madhava Krishna

June 13, 2023 Co-Adviser: Prof. Arun Kumar Singh

One Small Step for Robot, One Giant Leap for Mankind

Acknowledgements

I wish to express my gratitude to my adviser, Prof. K. Madhava Krishna from the Robotics Research
Centre at IIIT Hyderabad, for being a huge pillar of support, from helping me recognize my aptitude for
research to allowing me to hone my skills in multiple sub-domains under Robotics. I am also immensely
thankful to my co-adviser, Prof. Arun Kumar Singh from the University of Tartu, Estonia, for guiding
me in every step of my research journey, starting from formulating research problems to hands-on pair
programming. I would also like to thank Prof. Ponnurangam Kumaraguru for boosting my confidence in
research paper writing and allowing me to explore diverse domains during my Independent Study under
his supervision.

Next, I would like to thank the faculty at IIIT Hyderabad for providing rigorous training in mathematics
and Electronics at the undergraduate level that helped me build my foundations in Robotics. I owe my
understanding of Robotics to the project-based electives taught by Prof. Harikumar Kandath, Prof. K.
Madhava Krishna, and Prof. Spandan Roy and to the Robotics Summer School organized by my seniors.

I would also like to convey my gratitude to Fatemeh Rastgar, a Junior Ph.D. Researcher under Prof.
Singh, who has supported me as a mentor, helping me gain a strong understanding of multi-robot planning
algorithms and GPU-acceleration libraries. My teammates in the manipulator project from RRC - Vishal
Reddy Mandadi, Md. Nomaan Qureshi, Bipasha Sen, Aditya Aggarwal, and Kallol Saha have also played
a significant role in my understanding of physics simulators and Reinforcement Learning-based robot
control. My student mentors - Mithun Babu Nallana, Jyotish P, and Raghu Ram Theerthala, helped
me take my first steps in robot path planning at the end of my second year and patiently reviewed my
implementations of state-of-the-art algorithms. In addition, my batchmates and fellow research students
at RRC have often readily contributed suggestions to improve my research work and validated my ideas.
Aditya Sharma Meduri has helped me get acquainted with ROS and Gazebo to run simulations for my
paper. My batchmates and friends, Vedant Mundheda, Karan Mirakhor, Rahul Swayampakula, Nipun
Wahi and Manav Bhatia have constantly offered their feedback on my research projects as teammates in
course projects and external competitions. They have also supported me throughout my degree, helping
me balance my academics with research, along with my social life on campus.

Finally, I would like to thank my mother and grandmother for constantly supporting me and believing
in me.

v

Abstract

Path planning for autonomous systems is a fundamental problem in robotics, especially when the
task assigned to a robot is heavily dependent on the motion of one or more of its constituent parts.
Efficient path planning requires fast adaptation to changes in the environment and generalizability to
a variety of tasks while being intricately linked with a motion planner that handles the kinematic and
dynamic constraints of the robot and its workspace. Present-day planning algorithms for robots fail
to achieve real-time performance for robot systems with complex kinematics and heavy interactions
such as multi-robot systems and robot manipulators. In fact, the motion planning objectives for these
complex systems often present mathematical infeasibilities when posed as an optimization problem or
become computationally cumbersome to compute by pure sampling. Further, these algorithms do not
generalize to the task of collision avoidance against different types of obstacles for multi-robot systems
or different types of end-effectors in robots with high-dimensional articulation. The primary focus of
this dissertation is to present computationally-tractable solutions to the trajectory optimization problem
for both multi-robot systems and manipulators. We explore gradient-based and stochastic optimization
techniques and perform mathematical reformulations to adapt them to a wide variety of applications.

First, we provide the requisite background in robot path planning and motion planning, including
robot kinematics, trajectory representation methods, and collision-avoidance techniques. We also discuss
state-of-the-art methods in gradient-based trajectory optimization and stochastic trajectory optimization.
Next, we present a distributed GPU-based multi-agent trajectory optimizer that first converts the gradient-
based multi-agent trajectory optimization problem into a set of simple matrix-matrix products and then
leverages parallel computations over GPUs to accelerate these computations. We demonstrate through
a large number of qualitative and quantitative experiments in simulation that our distributed algorithm
outperforms existing sequential trajectory optimizers or sampling-based methods for multi-robot planning.
Next, we design a collision-aware path planner for robot manipulators operating in the high-dimensional
joint space and demonstrate its application across scenes with different types and numbers of obstacles.
We finally couple this stochastic optimization-based path planner with a low-level motion planner for the
task of pushing objects on a table using a robot manipulator. We also make our software for multi-agent
path planning public for open-source development so that our algorithm can be used for further research
in this domain.

vi

Contents

Chapter Page

1 Introduction . 1
1.1 Scope of the Thesis . 1

1.1.1 Research problems Tackled . 2
1.2 Motivation . 4

1.2.1 Fast Trajectory Optimization for Multi-Robot Systems 4
1.2.2 Trajectory Optimization for Robot Manipulators 5

1.3 Thesis Layout . 6

2 Gradient-based and Sampling-based Trajectory Optimization 7
2.1 Mobile Robot Kinematics . 8

2.1.1 Holonomic Robots . 8
2.1.2 Non-holonomic Robots . 8

2.2 Trajectory Representation . 9
2.2.1 Continuous-time representation . 9

2.2.1.1 Cubic Spline . 9
2.2.1.2 Bernstein Polynomials . 10

2.2.2 Discrete-time representation . 11
2.3 The Trajectory Optimization Problem . 11

2.3.1 Gradient-based Optimization . 12
2.3.2 Sampling-based Optimization . 12
2.3.3 Collision Avoidance methods . 13

2.3.3.1 Distance-based Collision Avoidance 13
2.3.3.2 Time-scaling . 14

2.3.4 Performance Metrics . 15
2.4 Multi-Robot Path Planning . 16

2.4.1 Applications . 16
2.4.2 Challenges Involved . 16
2.4.3 Graph-Search-based Multi-Agent Path Finding 17

2.4.3.1 A* Algorithm: . 17
2.4.3.2 Conflict-based Search(CBS) Algorithm: 17
2.4.3.3 Push and Swap (PaS): . 18

2.4.4 Batch Trajectory Optimization . 18
2.4.5 Accelerating Batch Optimization over GPUs 18

2.5 Manipulator Path Planning . 19
2.5.1 Manipulator Kinematics . 19

vii

viii CONTENTS

2.5.1.1 Franka Emika Panda . 20
2.5.1.2 UR5e . 21

2.5.2 Challenges Involved . 21
2.5.3 Joint space-vs end-effector space . 23
2.5.4 Gradient-based Optimization . 23

2.5.4.1 CHOMP . 23
2.5.4.2 TrajOpt . 24

2.5.5 Sampling-based Optimization . 24
2.5.5.1 STORM . 24
2.5.5.2 Cross-Entropy Methods(CEM) . 25

3 Fast Joint Multi-Robot Trajectory Optimization by GPU Accelerated Batch Solution of Distributed
Sub-Problems . 26
3.1 Introduction . 26
3.2 Problem Formulation and Related Work . 28

3.2.1 Symbols and Notations . 28
3.2.2 Robot Kinematics . 29
3.2.3 Trajectory Optimization . 29
3.2.4 Literature Review . 30

3.2.4.1 Joint Optimization with Conservative Convex Approximation 30
3.2.4.2 Sequential Optimization . 30
3.2.4.3 Distributed Optimization . 31
3.2.4.4 Online DMPC . 33
3.2.4.5 Batch optimization over CPU Vs GPU 33

3.3 Methods . 34
3.3.1 Overview . 34
3.3.2 Collision Avoidance in Polar Form . 35
3.3.3 Proposed Reformulated Distributed Problem 35

3.3.3.1 Finite Dimensional Representation 36
3.3.4 Augmented Lagrangian and Alternating Minimization 37
3.3.5 AM Steps and Batch Update Rule . 38

3.3.5.1 Analysis . 39
3.4 Results . 40

3.4.1 Benchmarks and Convergence . 41
3.4.2 Comparisons With State-of-the-Art . 41

3.4.2.1 Comparison with [1] . 41
3.4.2.2 Comparison with [2] . 45

3.5 Ablation Study . 45
3.5.1 Initializations using Reciprocal Velocity Obstacle(RVO)[3] 45
3.5.2 Initializations using Multi-robot Pathfinding(MAPF)[4] 49

3.6 Discussions . 51

4 Stochastic Trajectory Optimization for Robot Manipulators 53
4.1 Introduction . 53
4.2 High-level Global Planning for Manipulators . 55

4.2.1 Via-Point Stochastic Trajectory Optimization(VP-STO) 55

CONTENTS ix

4.2.2 Collision Detection . 57
4.2.2.1 PyBullet Mesh Overlap: . 57

4.2.3 Joint-Space Path Planning . 59
4.2.4 Simulation Results for Joint-Space Path Planning 59
4.2.5 Path Planning for Pushing Objects on a Table 59

4.2.5.1 Analysis of Joint Costs associated with Cartesian-space trajectories
for pushing objects . 61

4.3 Bi-Level Optimization for Pushing by Striking . 62
4.3.1 Introduction . 62
4.3.2 Related Work . 64
4.3.3 Task Specification . 64
4.3.4 Proposed Framework . 65

4.3.4.1 Low-level RL Push Planner . 65
4.3.4.2 High-Level Path Planning Module 66

4.3.5 Designing the bi-level optimization objective 67
4.3.6 Simulation Results . 68

4.4 Discussions . 68

5 Conclusions . 70

Appendix A: Distributed GPU-accelerated Multi-Agent Joint Trajectory Optimizer: JAX NumPy
and Initializations . 72
A.1 JAX NumPy: Usage Tutorial . 72
A.2 Comparison of different off-the-shelf GPU-based tensor manipulation libraries 73

List of Figures

Figure Page

1.1 Overview of Autonomous Robot Systems . 1
1.2 Sequential Planning Pipeline for Multi-Robot Systems 4

2.1 Bernstein curves and trajectory . 10
2.2 Ellipsoidal Robots . 14
2.3 Swarm Drones . 16
2.4 Path Planning for a Manipulator . 19
2.5 Franka Emika Panda Robot Arm . 20
2.6 DH Parameters for the Franka Panda Arm . 21
2.7 Universal Robots(UR5e) Robot Arm . 22
2.8 DH Parameters for the UR5e Arm . 22

3.1 GPU multi-robot optimizer pipeline . 32
3.2 Multi-robot Trajectory Snapshots . 42
3.3 Gazebo Simulation Snapshots . 43
3.4 GPU Optimizer Cost Plot . 44
3.5 Minimum pairwise distances in benchmark scenes . 44
3.6 Qualitative Benchmark against Multi-Robot State-of-the-Art 46
3.7 Quantitative Benchmark against Multi-Robot State-of-the-Art 47
3.8 Appendix: Trajectories using RVO + multi-robot optimizer 49
3.9 Appendix: Trajectories using MAPF + multi-robot optimizer 50

4.1 The VP-STO pipeline . 56
4.2 Collision detection through Mesh Overlap . 58
4.3 Joint-space trajectories using VP-STO . 60
4.4 2-D Trajectory of an object being pushed by a Manipulator 61
4.5 Bi-level optimization pipeline . 65
4.6 Bi-level optimizer trajectories . 68
4.7 Bi-level simulation in PyBullet . 69

x

List of Tables

Table Page

3.1 Important Symbols used in our optimizer . 51
3.2 Comparison with current state-of-the-art [1] in terms of computation time. 52
3.3 Comparison with [2] in terms of computation time, arc-length and smoothness cost . . 52

4.1 Comparison of Joint Costs associated with different types of object-center trajectories
using our push planner from Section 4.3.4.1. 62

A.1 Comparison of multi-agent path planning times using different mathematical libraries . 73

xi

Chapter 1

Introduction

1.1 Scope of the Thesis

The task of path planning for a robot involves finding an optimal start-to-goal trajectory that enables
autonomous intelligent motion. A path planning algorithm for an autonomous robot performs the task
of a pilot operating an aircraft, first understanding the environment, then estimating a high-level path
from its start to destination, and, finally, deciding on the controls necessary to execute this path. It must
be aware of the dynamic and hardware constraints associated with the robot’s mechanical system while
interacting heavily with its environment and adapting its motion to potential changes in its surroundings.
The ability of drones, autonomous cars, and personal robots to maneuver through complex environments
relies on the following components as depicted in Fig 1.1:

Figure 1.1: An overview of the components of an autonomous robot system. The perception component

gathers data from the environment and sends a local map to the robot for detecting its own pose, which is

eventually sent into the task/path planning module. The planned path or task sequence is finally sent for

execution to the low-level motion controller. Source: [5]

1. A data ingestion system consisting of a fusion of sensors (camera, LiDAR, Infrared Sensors) that
form the sensory system of the robot, allowing it to interact with its surroundings.

1

2. A localization system that allows the robot to map its environment and calibrate its own pose with
respect to it.

3. A global path planner that returns a high-level path from the start to destination, similar to Google
Maps planning the shortest route between two cities.

4. A low-level motion planner that takes the high-level path plan, returns a sequence of controls,
such as linear and angular velocities, and sends it to the controller that interfaces with the robot
hardware.

While points 3 and 4 have been widely explored for individual mobile robots, there are multiple
challenges associated with generalizing existing approaches for complex problems such as multiple
interacting robots or robots with high-dimensional articulation. The goal of this thesis is to discuss some
of these challenges and propose novel solutions.

1.1.1 Research problems Tackled

Solving the high-level path-planning problem introduces the challenge of efficiently representing
a start-to-goal robot trajectory. To put it simply, a trajectory should define a sequence of robot states
stacked with respect to time. For fixed-base robots, such as tabletop manipulators, the trajectory needs
to be planned in terms of its moving components, i.e., the joints or the end-effector. So, a manipulator
with n moving joints would have to plan a trajectory consisting of n-dimensional position vectors. The
motion planner is equipped with the knowledge of the robot’s kinematics (the laws governing its motion)
and needs to find a sequence of controls (such as velocity and acceleration) that executes this high-level
path. The optimality of a trajectory is determined by the performance of both the path planner and the
motion planner, judged by several heuristics (such as those discussed in Section 2.3.4), as well as the
ability to avoid collisions with other interacting objects. Mathematically, finding the optimal trajectory
can be represented as an optimization problem with a predefined task-based objective function, collision
avoidance constraints, kinematic and dynamic bounds, and boundary constraints stretching across both
the path planner and the motion planner.

The difficulty of solving this trajectory optimization problem depends on the following:

• the complexity of the robot’s own kinematics,

• the extent of its interactions among its moving components and with its environment

In this thesis, we consider solving the trajectory optimization for two challenging applications -
multi-robot systems with heavy interactions among the constituent robots and multi-jointed manipulators
with complex kinematics. Both of these systems constantly interact with the environment. Broadly, we
tackle the following research objectives:

2

T1 To accelerate robot trajectory optimization for real-time performance

For robots continuously interacting with their environment, generating a high-level path and
motion controls to be followed in the future may not guarantee optimal motion. The robot should
be able to adapt its trajectory with respect to changes in the environment, which necessitates
repeated re-computation of the trajectory optimization problem. It is, therefore, important to design
an optimizer fast enough to allow the robot to re-compute its path. For instance, an individual
quadrotor in a drone swarm would need to update its trajectory plan by predicting the trajectories
of the other drones, or a self-driving car would re-compute its route based on traffic on the road.
We target to achieve the real-time generation of start-to-goal robot trajectories and demonstrate
mathematical techniques that allow this computational acceleration.

T2 To design highly-parallelized trajectory optimizers for multi-robot systems

The path planning problem for multi-robot systems requires us to repeat the core per-robot trajectory
optimization over multiple agents while considering interactions among the robots as well as with
the environment. For each robot, the other robots in the system can be thought of as dynamic
obstacles. Collision avoidance between a pair of robots involves continuously predicting each
other’s trajectories or communicating their current states. The pairwise collision constraints scale
quadratically with an increase in the number of robots, and the system-wide optimization problem
eventually becomes intractable. We attempt to parallelize trajectory computation for multi-robot
systems in batches and accelerate the per-batch optimization through fast matrix operations over
GPUs and approximations of collision constraints.

T3 To extend trajectory optimization methods for end-effector and obstacle-agnostic motion planning
in robots with complex kinematics such as manipulators

For multi-jointed robot manipulators, the high-level trajectory is planned for each movable joint,
either as a sequence of joint position vectors or joint angle vectors. For the motion planner to
execute this trajectory, the kinematics of the robot brings several constraints in terms of joint angle
limits, velocity limits, and so on. The high dimensionality of motion spaces and the complexity of
dynamic and kinematic constraints makes continuous-time trajectory optimization computationally
expensive and slow. Further, for tasks such as pushing objects on a table, the path planner and
motion planner should be agnostic to different types of end-effectors and arrangements of objects
on the table. We adopt a unique approach to distribute the path planning and motion planning
tasks into two levels of optimization for manipulator push tasks. Our path planner samples points
from a distribution to guess candidate trajectories and simulate them through the motion planner to
intelligently update the sample distribution along the optimization iterations.

3

Figure 1.2: For sequential optimization, an implicit ordering is maintained among the robots, and

each robot uses the trajectories of other robots computed before it to compute the collision avoidance

constraints while planning its own path.

1.2 Motivation

This section discusses the inspiration behind some of the methods discussed in the subsequent chapters
of this dissertation. We present the challenges in solving the path-planning problem for multi-robot
systems and multi-jointed robot manipulators and discuss the limitations of existing approaches.

1.2.1 Fast Trajectory Optimization for Multi-Robot Systems

The problem of coordination planning between multiple robots in robot fleets or drone swarms has
been tackled through two optimization paradigms in literature:

• Centralized Optimization, where the trajectories of all robots are computed together. An implicit
ordering is maintained among the robots for sequentially optimizing their trajectories, where each
robot avoids collision by using the optimal trajectories of other robots computed before it. This
sequential solution to the multi-robot planning problem has been depicted in Figure 1.2.

For joint optimization, the system-wide trajectory planning is performed simultaneously as a single
large-optimization problem returning trajectories for all the robots in one go. The optimization is
performed over the larger feasible solution space, involving trajectory variables for all the robots
together.

• Distributed Optimization, where the trajectory planning problem of each robot is completely
decoupled from the other robots. Each robot predicts the others’ trajectories based on a prediction
model to compute collision-free paths. That is, for an n-robot system, each robot considers n− 1

collision constraints with other robots while planning its trajectory. The per-robot optimization
problem becomes simpler to solve, and this is repeated over all n robots.

Centralized optimization approaches, whether sequential or joint, discussed in [6], [7], fail to scale
efficiently with an increase in the number of robots in the system. The pairwise collision avoidance

4

constraints among the robots scale quadratically with the number of robots. Distributed approaches, on
the other hand, are fast to compute paths but susceptible to digressions between the trajectory predictions
and actual robot trajectories and have been shown in [8] to be less effective in collision avoidance.

To achieve our goal discussed in 1.1.1 of real-time trajectory planning for multiple robots, we choose
the distributed optimization paradigm owing to its speed. We aim to achieve computational acceleration
on the following two fronts:

1. Speeding up the per-robot trajectory optimization

2. Avoiding having to loop over all robots while computing individual paths by parallelizing decoupled
trajectory computations.

To achieve 1, we approximate the trajectory optimization problem as a sequence of matrix operations
so that we only need to solve a set of linear equations to obtain the trajectory of each robot. We then
vectorize our computations and solve the planning problem for all robots by stacking up independent
per-robot problems into a large block matrix. This removes the need to loop over an increasing number
of robots and returns trajectories for all robots in a single shot. We cache computationally expensive
operations such as block matrix inversing through clever mathematical reformulations of the optimization
problem and leverage GPUs to accelerate matrix multiplications. We also compare our approach against
a diverse range of state-of-the-art multi-robot path planners and achieve a 2x computational acceleration
while not compromising on other metrics such as collisions and trajectory length, as shown in Section
3.4.

1.2.2 Trajectory Optimization for Robot Manipulators

Motion planning for robot manipulators involves planning a sequence of controls to achieve a desired
objective, for example, pushing an object from one point to another or picking and placing an object at a
target location. The motion planner executes the trajectory plan coming from a high-level path planner.
Finding the optimal high-level plan is coupled with calculating a permissible set of controls that allow
the robot to execute it, and thus, a trajectory optimizer should be aware of the motion controls to obtain
an optimal feasible trajectory.

We first use the Stochastic Trajectory Optimization(STO) method as a high-level path planner to
generate collision-free trajectories for manipulators. STO optimizes the control inputs of a robot to
minimize a cost function that captures the desired task objectives using a probabilistic approach. It
generates a large number of random trajectories and evaluates their cost function values. It then selects
the best-performing trajectories and generates new random trajectories around them to further explore
the search space. This process is repeated until a satisfactory solution is found. The STO algorithm is
particularly useful for manipulator path planning since it can work with high-dimensional motion spaces
and non-differentiable and discontinuous cost functions. It is also robust to uncertainties and disturbances

5

in the environment and sensor noise, which gives it advantages in complex and uncertain planning tasks
over gradient-based optimizers.

We design a novel cost function, incorporating collision penalty, joint limit cost, and trajectory length
for STO to give us a high-level trajectory. We then combine this high-level path planner with a low-level
motion planner explicitly designed for non-prehensile tasks, such as pushing an object on a tabletop from
a start position to a desired goal position. This low-level planner decides an optimal set of controls to
enable the manipulator to execute the planned STO trajectory and sends feedback to the STO algorithm
to adapt its cost according to the actual low-level motion.

1.3 Thesis Layout

C1 This is the introductory chapter, which discusses the scope of the work carried out in this thesis in
terms of path planning and motion planning, addresses the research problems we are tackling, and
outlines the motivation behind some of the methods we have adopted to solve them.

C2 In this chapter, we present a background of standard algorithms used for continuous-time and
discrete-time trajectory optimization for individual robots, forming a necessary prerequisite to
understand the ideas discussed in the following chapters. We also discuss two primary paradigms
in trajectory optimization - gradient-based optimization and sampling-based optimization and
compare their applications in complex robot systems.

C3 We present the first contribution of this thesis - Fast Joint Multi-Robot Trajectory Optimization
by GPU Accelerated Batch Solution of Distributed Sub-Problems. This algorithm employs
mathematical reformulations to allow efficient caching of gradients and convex approximations for
collision constraints in multi-robot systems and computes trajectories in near real-time for as many
as 36 robots.

C4 This chapter presents the second contribution of this thesis - a sampling-based trajectory opti-
mization framework for global path planning and its application in designing a bi-level trajectory
optimizer for push actions in robot manipulators, generalizable to avoid collisions against a range
of objects. We test and show the efficacy of our optimizer in complex tabletop rearrangement
scenarios for a few common robot manipulators.

C5 We conclude with a summary of methods and results discussed in this thesis and the scope of
extension of this work in the future.

6

Chapter 2

Gradient-based and Sampling-based Trajectory Optimization

This chapter introduces some fundamental background concepts essential for understanding the
methods adopted in the subsequent chapters.

We first discuss the differences in kinematics among different types of robots and the necessity of
designing a suitable trajectory representation respecting these differences prior to formulating a path
planning problem. We talk about continuous-time trajectory representation using Cubic Splines and
Bernstein polynomials, which are leveraged extensively in our GPU-based multi-robot optimizer and
the bi-level manipulator trajectory optimizer. Next, we introduce how to pose a trajectory optimization
problem and explore two broad types of optimization - Gradient-based and Sampling-based. We contrast
the performance of these two paradigms for various applications and then explore collision avoidance
constraints to the trajectory optimization problem. Under standard collision avoidance techniques, we
discuss two approaches - distance-based Collision Avoidance and Time-scaling. We also coin a few
standard evaluation metrics for judging the quality of a trajectory planned by an optimizer.

Next, we discuss Multi-Robot Path Planning, starting with real-world multi-agent systems and the
challenges involved in extending standard path planning approaches directly to them. We analyze a
few existing multi-robot path planners and discuss their advantages and weaknesses. Finally, we briefly
introduce batch trajectory optimization and commercial off-the-shelf GPU-based mathematical libraries
to prime the reader for the next chapter on our GPU-accelerated optimizer.

Next, we move on to path planning and motion planning for robot manipulators and discuss state-
of-the-art optimization methods used for manipulator planning. We offer a detailed explanation of
methods such as CHOMP[9], TrajOpt[10], STORM[11] and Cross-Entropy Methods(CEM)[12]. These
optimization techniques form the backdrop for the Via-Point Stochastic Trajectory Optimization(VP-
STO)[13] method, which forms a crucial component in our bi-level optimization framework for push
actions in manipulators.

7

2.1 Mobile Robot Kinematics

Kinematics equations dictate how given a set of controls, the state of a robot changes. Thus if a
robot starts at a given state, its kinematics will tell us what will be the robot state if a set of controls are
executed. These kinematic laws are specific to the design and motion of the robot. Broadly, mobile robots
(those in which a full-body displacement occurs during motion) can be classified into the following two
types based on their kinematics:

2.1.1 Holonomic Robots

For a robot with n controllable degrees of freedom, it is considered holonomic if it can move in any
of those n dimensions, i.e., the number of degrees of freedom is equal to the number of controllable
degrees of freedom. Let us demonstrate this with the help of an example. Considering an omnidirectional
robot fitted with special wheels so that it is capable of moving in any direction on a 2-D plane. The 2-D
kinematics equation for the robot that started moving from the point (x0, y0) can, therefore, be written as
follows:

x = x0 + ẋ ∗ δt (2.1a)

y = y0 + ẏ ∗ δt (2.1b)

where ẋ and ẏ denote the velocities in the two axes and δt indicates a time step. Examples of common
holonomic robots include drones (holonomic in 3-D), omnidirectional robots, etc.

2.1.2 Non-holonomic Robots

Non-holonomic robot systems are characterized by constraint equations limiting degrees of freedom.
Thus the permissible degrees of freedom for non-holonomic robot systems are less than the controllable
degrees of freedom. A typical example of a non-holonomic system in 2-D is a differential drive mobile
robot incapable of slipping in the lateral direction. The non-holonomic constraint is written as below:

ẏ = ẋ tan θ (2.2)

The controls for a non-holonomic system are given by the linear velocity v and the angular velocity ω,
giving rise to the following kinematics equations:

x = x0 + vδt cos (θ0 +

∫
ωδt) (2.3a)

y = y0 + vδt sin (θ0 +

∫
ωδt) (2.3b)

8

2.2 Trajectory Representation

A trajectory consists of state vectors for each moving component of the robot, stacked with respect
to time. For example, for a mobile holonomic robot in 2-D, each point in the trajectory denotes a 2-D
position of the center of the robot, consisting of X and Y position coordinates. As the robot moves with
time, this center position changes, giving rise to a sequence of 2-D vectors corresponding to different
timestamps. We could represent the X-coordinate position as a time-varying sequence gx(t) and the
Y-coordinate position as gy(t). Thus the trajectory is of the following form:

g(t) =

gx(t1) gy(t1)

gx(t2) gy(t2)

... ...

gx(tf) gy(tf)

 (2.4)

For a manipulator with n movable joints, the trajectory would be a time-parameterized sequence of
n-dimensional vectors, each denoting either a joint position or joint angle at a given timestamp.

We could also use the kinematics equations to transform the trajectory from state space to control
space. The control space contains controls as independent time-varying sequences. We can calculate the
robot states from them to denote the trajectory. This technique is particularly useful for non-holonomic
robots, where the robot state is governed by the linear velocity v(t) and the angular velocity ω(t) controls.
Thus while the robot states in different dimensions may be kinematically coupled to each other (such as
in eqn.2.2), these controls are independent and can be used to represent the trajectory.

The time-varying controls or robot states can be represented as a time-parameterized function or a
discrete sequence of values over time, as discussed below:

2.2.1 Continuous-time representation

Here, each time-varying robot state is represented through a function f : t 7→ S where S denotes the
allowed set of states of the robot and t extends over the time of observation. If we denote time-varying
controls through the function f , then S would denote the allowed set of controls of the robot.

The function f and its derivatives should satisfy the boundary limits on the robot states and controls
as dictated by the robot kinematics. For example, for a holonomic robot in 2-D, we could have different
functions fx and fy denoting the X and Y positions of the robot with respect to time. The choice of this
function forms a crucial design choice in most path-planning applications. Some of the commonly used
functions used to represent holonomic and non-holonomic mobile robot trajectories include:

2.2.1.1 Cubic Spline

The function f is considered to be a 3rd-order polynomial in t with four weights, as depicted below:

f(t) = w0 + w1t+ w2t
2 + w3t

3 (2.5)

9

(a) (b)

Figure 2.1: (a) Bernstein basis curves of order-4, (b) An example of a holonomic robot trajectory fitted

using order-4 Bernstein polynomials.

To solve for the weights, we would require a minimum of four equations, i.e., four deterministic states
of the robot at predefined timestamps. To give an idea, suppose we are dealing with the trajectory of
a holonomic robot. We could know start and goal positions f(t0), f(tf), as well as the start and goal
velocity, values ˙f(t0) and ˙f(tf) for a trajectory between time t0 and tf forming the boundary state vector
A and solve the following system of linear equations using the basis polynomial matrix B to compute
the weights W = [w0, w1, w2, w3].

[
w0 w1 w2 w3

]

1 1 0 0

t0 tf 1 1

t20 t2f 2t0 2tf

t30 t3f 3t20 3t2f

 =
[
f(t0) f(tf) ˙f(t0) ˙f(tf)

]
(2.6a)

or, WB = A (2.6b)

The above system of linear equations becomes over-constrained as the number of constraints on the
trajectory increases, necessitating an increase in the degree of the polynomial. Another approach to
the over-constrained problem would be to sample goal points along the trajectory and plan piecewise
trajectories leading up to the final destination state.

2.2.1.2 Bernstein Polynomials

The trajectory can be represented as a linear combination of Bernstein basis polynomials [14] coming
from the Bezier curve. The i-th Bernstein basis polynomial of order n is a real-valued function valued on
t ∈ [0, 1] as follows:

Bi,n(t) =

(
n

i

)
ti(1− t)n−i, i = 0, 1, ...n (2.7)

Fig. 2.1 depicts Bernstein basis polynomials of order-4.

10

The trajectory represented as a Bernstein polynomial can be depicted in terms of the basis polynomials
and Bernstein coefficients Wi as follows:

f(t) =
n∑

i=0

WiBi,n(t) (2.8)

The derivatives of the Bernstein basis function are, in themselves, Bernstein polynomials[14]. Similar
to eqn. 2.5, we can equate the function f at discrete timestamps to obtain the Bernstein coefficients Wi

by solving a system of linear equations.

2.2.2 Discrete-time representation

A discrete-time trajectory represented as a sequence of states f(t) = {f(t0), f(t1), ...f(tf)} corre-
sponding to successive timestamps t = {t0, t1, ...tf}. It can be considered sampling a continuous-time
trajectory function at predefined timestamps. For the computational representation of trajectories, discrete-
time sequences are generally used. To represent a trajectory in continuous time, generally, the basis
functions are predetermined, and only the coefficients are saved to reconstruct the trajectory as a weighted
linear combination of known basis functions, similar to eqns. 2.5 and 2.8.

2.3 The Trajectory Optimization Problem

Linear Programming: Solving polynomial coefficients for the boundary state constraints, as dis-
cussed in section 2.2 falls into a class of mathematical optimization known as Linear Programming(LP),
which, simply put, involves solving a system of linear equations. Eqn. 2.6b with the polynomial weight
vector as W , the basis polynomial matrix as B and the right-hand side boundary vector A can be solved
using LP as follows:

W = inv(B)A (2.9)

In addition to solving for boundary constraints, we can define a general objective function(ζ) in terms
of the trajectory function f that should be subject to the robot’s kinematic, dynamic, and environmental
equality and inequality constraints g. The evaluation of this objective function comes from the motion
planning module of the robot system. Mathematically, this optimization problem may be written as
follows:

min
f(t)

ζ(f(t)) st: g(f(t)) ≤ 0 (2.10)

Quadratic Programming: For most path planning objectives such as goal-reaching, jerk minimiza-
tion, and smooth trajectory generation, the cost function ζ is quadratic with respect to f , giving rise to
constrained Quadratic Program(QP) optimization, and can be written as follows:

11

min
f

1

2
fTP f + qT f st: Gf ≤ h (2.11)

For example, the objective function could be the Euclidean distance of the current position of a
robot from the intended goal position, and the constraint matrices G and h could denote the boundary
states and velocity limits for the robot. The solution to the above QP optimization problem presents
challenges, including the non-convexity of the objective function and its constraints and discontinuities
in the objective function. We will now discuss two approaches to solving QP optimization.

2.3.1 Gradient-based Optimization

The QP optimization proposed in eqn. 2.11 for ζ(f) = 1
2f

TPf + qT f can be solved by finding
the inflection point in the convex objective curve. To do this, we compute the gradient of the objective
function with respect to the optimization variables as follows:

▽fζ = fTP + qT = 0 (2.12)

Now, we attempt to attain the minima by updating the optimization variable with an iterative Gradient
Descent approach. The update rule for f in the kth optimization iteration for a learning rate of α > 0 is
as shown below:

fT
k+1 = fT

k − α▽fζ (2.13)

The feasibility of solving the optimization problem with this approach depends on factors such as the
convexity of the objective function, the convexity of the constraints, and the computational complexity
of computing the gradient. A few existing approaches for mobile robot path planning that use gradient-
based optimization include [2], and [15]. Even for manipulator planning, [9], [16] use gradient-based
optimization where the gradient of the objective is computed over the joint angle space.

2.3.2 Sampling-based Optimization

Sampling-based approaches bypass the gradient computation in eqn.2.12 by sampling points in the
solution space and picking the sample that minimizes the optimization objective ζ. This approach is
adopted in Rapidly-Exploring Random Trees(RRT) [17], where around each current point, random
uniform samples of points are considered and connected to an expanding tree toward the goal. Similarly,
in A* [18], Djikstra, and EBS-A* [19] algorithms, a heuristic function is optimized over an expanding
graph search to compute the most optimal path from a start pose to an end pose.

Recent approaches [11], [12], and [?] sample candidate solutions to the optimization problem from a
distribution and compute the cost associated with each candidate. Then the sample distribution is adapted
to produce a ”better” sample in the next iterations. This translates a deterministic optimization problem
into a stochastic optimization problem. The benefit of this approach is its speed and generalizability to

12

non-convex, discontinuous objective functions that would be infeasible to solve using gradient-based
optimization techniques.

2.3.3 Collision Avoidance methods

Collision avoidance for a robot involves the interaction of the robot with its environment and ensuring
the following:

1. Collision avoidance with static obstacles (e.g., tree on a road, brick wall, etc.)

2. Collision avoidance with dynamic obstacles (e.g., other moving robots, pedestrians (for cars), birds
(for drones), etc.)

3. Self-collision avoidance in the case of an extended robot, such as a manipulator, between its links
and joints.

Collision detection is usually performed by sensors onboard the robot in simulation or hardware, but
for path planning, we mathematically estimate collisions using geometric approximations of obstacles
and the robot. We assume the map of the environment is known to the robot from the Localization
and Mapping modules. Most existing research, such as [3], approximate obstacles of varied shapes
by their circumscribing spheres in 3-D or circles in 2-D. The robot itself is reduced to a point object,
while its circumscribing radius is added as padding to the obstacles in the environment to account for
grazing scenarios to simplify the path-planning process and collision detection. [2] estimates obstacles
with axis-aligned ellipsoids with padding to generalize to a wider range of obstacles with non-uniform
dimensions.

2.3.3.1 Distance-based Collision Avoidance

For Mobile Robots: For a 2-D mobile robot centered at (xr, yr), let us consider a circumscribing
circle of radius Rbot. We aim to avoid collision with an obstacle centered at (xo, yo) of a circumscribing
radius of Robs. To avoid collision of the robot with the obstacle, we need to ensure the Euclidean distance
between their centers is greater than or equal to the sum of their radii (the equality holding in the situation
where the robot just grazes along the obstacle). Mathematically this can be represented as follows:

√
(xr − xo)2 + (yr − yo)2 ≥ Robs +Rbot (2.14)

For unequal robot dimensions along the axes, we can estimate the robots with their circumscribing
ellipsoids instead of spheres in 3-D. Fig 2.2 depicts the axis-aligned ellipsoidal robot representation and
the distance between them that we use in Chapter 3 for our multi-agent optimizer.

For Manipulators: The same approach can be extended to robots moving in higher dimensional
spaces. For complex robot systems such as manipulators, distance-based collision avoidance involves

13

Figure 2.2: Axis-aligned ellipses representing robots for collision avoidance in chapter 3.

self-collision among the robot links, as discussed in point 3, along with collision avoidance with the
environment. Based on our literature survey, there are broadly three approaches to solving this problem:

1. Distance of sampled points: [16] approximates the robot body B as a set of overlapping spheres
b ∈ B of radius rl. We require all points in each sphere to be a distance, at least ϵ away from the
closest obstacle. This constraint can be simplified as the sphere’s center being at least ϵ+ rl away
from obstacles. Thus, our obstacle cost function is as follows:

qo(θt) =
∑
b∈B

max(ϵ+ rl − d(xb), 0)||ẋb|| (2.15)

2. Implicit Representation Learning-based Collision Avoidance: [11] uses jointNERF, a query-able
neural network that learns implicit representations of the objects in the environment, including
robot links and obstacles, and computes distances between them to detect collisions.

This dissertation addresses collisions for manipulators by involving mesh overlaps for collision
avoidance in manipulators using the PyBullet simulator.

2.3.3.2 Time-scaling

A change in the independent variable from t to τ in the trajectory definition f(t) does not change the
path taken by the robot but brings the following changes in the velocity profile of the trajectory:

14

˙f(τ) = ˙f(t)
dt

dτ
(2.16)

The trajectory f(τ) can be thought of as the robot passing through the same points as f(t), with a
scaled version of the original velocity ˙f(t), i.e., changing the velocity and acceleration of the robot while
keeping its position undisturbed. This transformation in the time scale allows us to regulate the velocity
of the robot, playing a pivotal role in collision avoidance. The robot sticks to its original planned global
path with a scaled version of its original velocity and regains its original velocity once the collision with
a dynamic obstacle has been avoided. This approach proves to be agnostic to the kinematics of the robot
itself since it does not hold any assumptions about the initial trajectory of the robot.

As for the transformation between t and τ , [15] experiments with constant as well as exponential
time-scaling, estimating the parameters of the transformation function and using them for collision
avoidance against workspaces cluttered with dynamic obstacles.

2.3.4 Performance Metrics

This subsection discusses a few performance metrics used to evaluate trajectories obtained from
different planning methods. We use the following metrics for bench-marking one algorithm against
another:

• Smoothness cost: It is computed as the norm of the second-order finite difference of the robot
position at different time instances. We aim to minimize this smoothness cost to get smooth
trajectories feasible for execution through a controller.

• Arc-length: It is computed as the norm of the first-order finite difference of the robot positions at
different time instances. We aim to minimize arc length for computed trajectories to ensure short
trajectory curves are returned.

• Computation Time: The time taken for each approach to return a smooth and collision-free solution.
Depending on the application, we may want computation time in the order of milliseconds for
real-time online adaptive planning or in the order of a few seconds for offline planning.

• Success Rate: It is computed as the number of successful completion of the intended task (such as
reaching a goal or picking up a payload) as a fraction of the total number of tries. An algorithm
with a higher success rate will be preferred for the task at hand.

• Number of Collisions: It is calculated as the number of times the robot collides with static and
dynamic obstacles, as well as with itself while following a planned trajectory. Lower the number
of collisions, the more effective our planning method.

15

2.4 Multi-Robot Path Planning

This section briefly overviews the multi-robot path planning problem, including a primer for some of
the ideas that shape our algorithm discussed in Chapter 3.

2.4.1 Applications

Multi-robot systems consist of several interaction-aware robots, each capable of independent decision-
making to execute a collective task. The inspiration behind such systems is derived from swarms of
bees and other insects. Typical examples of such systems used widely include swarm drones and robot
fleets. Multi-robot systems involve coordination and communication among constituent robots, allowing
a division of labor to achieve a given task. For example, robot fleets are being extensively used today
to perform search-and-rescue missions in areas unsuitable for human intervention, particularly during
natural disasters. Swarm drones are also used for imaging and mapping vast territories, particularly
for military applications to detect enemy advances. They are also used for demonstrating geometric
formations, as well as for military combat, last-mile parcel delivery, and precision agriculture.

Figure 2.3: Swarm drones are used for a wide variety of robotics applications, ranging from search-
and-rescue missions, military combat, parcel delivery, and precision agriculture. Source: https://www.
economist.com/the-economist-explains/2015/10/02/how-swarm-drones-are-mimicking-nature

2.4.2 Challenges Involved

A multi-robot system must ensure that individual robots do not crash into their surroundings or each
other. The individual robots must also follow short and safe trajectories from start to goal and replan their
trajectories in near real-time if required. A few challenges associated with multi-robot path planning are
as follows:

1. Coordination and Communication Issues: Individual robots may communicate directly with each
other or relay through a central ground station to share information and coordinate their actions.
However, communication and bandwidth limitations can cause delays and disruptions in data
transmission.

16

https://www.economist.com/the-economist-explains/2015/10/02/how-swarm-drones-are-mimicking-nature
https://www.economist.com/the-economist-explains/2015/10/02/how-swarm-drones-are-mimicking-nature

2. Scalability Issues: Multi-robot systems need to perceive their environment accurately to avoid
collisions and perform their tasks effectively. However, the limited sensing capabilities of robots
and the complexity of the environment can make it difficult to obtain reliable information about the
surroundings. Moreover, as the number of drones in a swarm increases, the overhead for collision
avoidance also increases since collision constraints need to be computed pairwise.

Overall, multi-robot planning and coordination are complex and challenging tasks that require careful
consideration of communication, sensing, control, and optimization. Despite these challenges, the
potential benefits of swarm drones make them an attractive area of research and development for many
applications. To solve problem 1, multi-robot systems typically use decentralized control, meaning that
each robot makes decisions for itself without central coordination. We have already discussed Centralized
versus Distributed trajectory optimization paradigms in Section 1.2.1, which can solve the scalability
issues in problem 2, rising from an increasing number of robots in a multi-robot system. However, the
accuracy of distributed multi-robot planning depends on the accuracy of the predictive model each robot
uses for the other robots. The algorithms we discuss in the following subsections can be implemented in a
centralized or a distributed setting, depending on the speed, scale, and collision avoidance requirements.

2.4.3 Graph-Search-based Multi-Agent Path Finding

Multi-Agent Path Finding(MAPF) consists of a class of algorithms under the umbrella of multi-robot
planning that involves the computation of collision-free paths from the start to the goal in a shared
environment. Typical solutions for the multi-agent path-finding problem derive inspiration from shortest
path computation in graph theory by discretizing the action space of the robots into graph nodes and
constructing edges between them based on permissible controls. Let us now discuss some of the different
graph-search-based algorithms that have been developed for MAPF:

2.4.3.1 A* Algorithm:

A*[18] is a popular heuristic search algorithm that can be used for MAPF. It uses an admissible
heuristic function to estimate the cost of reaching the goal state, typically based on the distance between
agents and their targets. A* algorithm can find optimal solutions but can be slow for large-scale MAPF
problems.

2.4.3.2 Conflict-based Search(CBS) Algorithm:

CBS[20] is a popular algorithm for solving MAPF problems. CBS is a two-level search algorithm
that first searches for individual agent paths and then resolves conflicts between them. CBS can handle a
large number of agents and can find optimal solutions for MAPF problems.

17

2.4.3.3 Push and Swap (PaS):

PaS[21] is a local search algorithm that operates by pushing agents and swapping their positions to
find a collision-free solution. PaS algorithm is efficient for small-scale MAPF problems but can struggle
to find optimal solutions for large-scale problems.

2.4.4 Batch Trajectory Optimization

Batch trajectory optimization can be applied to multi-robot systems, where a group of robots works
together to perform a task. In this context, the goal is to optimize the trajectories of all robots in the
system to achieve the desired task while minimizing the overall cost of the system. Instead of considering
all the robots in the system at once, they could be split into groups or batches that solve the trajectory
optimization problem independently. A set of candidate trajectories are chosen for each robot based on
the robot dynamics and task definition and are optimized for all the robots in a single shot by minimizing
the overall cost function for all the robots in the system. The cost function could be the norm of the
acceleration of all the robots to ensure precise, smooth movements or the total time taken by all the
robots to execute the given task. Note that this optimization problem also includes collision avoidance
constraints between pairs of agents and obstacles in the environment. Then the optimal set of trajectories
is executed by all the robots.

2.4.5 Accelerating Batch Optimization over GPUs

Matrix computations can be sped up over a GPU (Graphics Processing Unit) by taking advantage of
the massively parallel architecture of the GPU. A GPU typically contains thousands of small processing
cores that work together to perform computations in parallel. Matrix computations, such as matrix
multiplication, are particularly well-suited for parallel processing because each element of the output
matrix can be computed independently.

To speed up matrix computations on a GPU, the matrix data is first transferred from the CPU to the
GPU memory. This transfer can be done using specialized libraries such as CUDA, a parallel computing
platform and programming model developed by NVIDIA for general-purpose computing on GPUs. Once
the matrix data is in the GPU memory, the computation is split into many smaller computations that can
be performed in parallel across the thousands of cores on the GPU. For example, in matrix multiplication,
each output element can be computed by multiplying the corresponding row of the first matrix by the
corresponding column of the second matrix. By breaking the computation down into smaller tasks that
can be performed in parallel, the GPU can perform matrix computations much faster than a CPU, which
typically has fewer processing cores.

We use the JAX library [22], developed by Google in Chapter 3 to accelerate matrix operations.
Additional details and usage of the JAX NumPy library have been discussed in Appendix A.1

18

2.5 Manipulator Path Planning

This section provides a brief overview of the kinematics of robot manipulators and introduces the task
of path planning for manipulators as a background for our approach discussed in Chapter 4.

The problem of robot manipulator path planning is the task of finding a collision-free path for a robotic
arm to move from its initial position to a desired final position while avoiding obstacles in its workspace.
This is a challenging problem because the workspace of the robot can be complex and high-dimensional,
and the motion of the robot can be constrained by its physical limits, such as joint velocity and angle
limits. Path planning algorithms must take into account these constraints and find an optimal path that
satisfies the constraints while minimizing some performance criteria, such as the path length or the time
required to complete the motion. This problem is relevant in many applications of robotics, including
industrial automation, manufacturing, and healthcare, where robots are used to perform repetitive or
complex tasks safely and efficiently. An example of path planning required for a robot manipulator is
illustrated in Figure 2.4.

Figure 2.4: An illustration showing the task of path planning for a robot manipulator
from a start pose to an end pose while avoiding obstacles in the surroundings and prevent-
ing self-collisions and coiling in on itself. The red line denotes the trajectory to be fol-
lowed by the end-effector from start to goal. Source: https://control.com/technical-articles/

how-does-motion-planning-for-autonomous-robot-manipulation-work/

2.5.1 Manipulator Kinematics

In the context of this thesis, we discuss the manipulator planning problem primarily for two robot
manipulators - the Franka Emika Panda robot arm and Universal Robots(UR5e) robot arm. The number
of degrees of freedom(DoF) for the former is 7, while that for the latter is 6. Figure 2.5 shows the Franka

19

https://control.com/technical-articles/how-does-motion-planning-for-autonomous-robot-manipulation-work/
https://control.com/technical-articles/how-does-motion-planning-for-autonomous-robot-manipulation-work/

(a) (b)

Figure 2.5: (a) The Franka Emika Panda Robot Arm with an end-effector(two-finger gripper) (b) The

links and types of joints and their locations for the 7-DoF Franka Panda manipulator.

Panda robot manipulator against its links and joints, while Figure 2.7 denotes the same for the UR5e
robot arm.

The kinematics of a robot manipulator describes the relationship between the joint angles and the
position and orientation of the robot’s end-effector. Forward kinematics denotes the transformation of
joint angles to an end-effector position, while inverse kinematics attempts to calculate the required joint
angles to achieve a desired end-effector position. We will now discuss the forward kinematics of both
manipulators mathematically.

2.5.1.1 Franka Emika Panda

The Franka Emika Panda is a 7-degree-of-freedom robot manipulator widely used in research and
industrial applications. The Panda robot has a serial kinematic structure, where each joint is connected to
the previous joint and the base of the robot. The joint angles, corresponding to the 7 joints, shown in
Figure 2.5 are denoted by q1, q2, ..., q7, corresponding to the rotations of each joint around its respective
axis. The position and orientation of the end-effector are represented by a 4x4 transformation matrix T .
The forward kinematics of the Panda robot can be described by the following equations:

T = T1T2T3T4T5T6T7 (2.17)

where Ti is the transformation matrix corresponding to the ith joint of the robot. These transformation
matrices can be computed from the Denavit-Hartenberg parameters, which describe the geometry and
kinematics of the robot as per the following equation:

Ti =

cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)

sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di

0 0 0 1

 (2.18)

20

The Denavit-Hartenberg frames and parameters for the Franka Panda robot arm are depicted in Figure
2.6.

Figure 2.6: Denavit-Hartenberg(D-H) frames and parameters for the 7-DoF Franka Panda robot arm.

Source: [23].

2.5.1.2 UR5e

The Universal Robots UR5e is a 6-degree-of-freedom robot arm. The joint angles, corresponding
to the 6 joints, shown in Figure 2.7 are denoted by q1, q2, ..., q6, and the overall forward kinematics
is described by the serial multiplication of six transformation matrices corresponding to the six joints,
similar to eqn.2.17. The Denavit-Hartenberg(D-H) frames and parameters for the 6-DoF UR5e robot arm
are depicted in Figure 2.8.

2.5.2 Challenges Involved

Path planning for robot manipulators is a complex problem that involves several challenges. Here are
some of the key challenges involved:

• High Dimensionality: Robot manipulators typically operate in high-dimensional spaces, with
each joint providing a degree of freedom, such as the 7-dimensional joint angle space in the
case of the Franka Panda arm and the 6-dimensional joint space for the UR5e arm. This makes
the search space for path-planning algorithms very large, and finding an optimal path becomes
computationally expensive.

21

(a) (b)

Figure 2.7: (a) The Universal Robots(UR5e) Robot Arm (b) The links and types of joints and their

locations for the 6-DoF UR5e manipulator.

Figure 2.8: Denavit-Hartenberg(D-H) frames and parameters for the 6-DoF UR5e robot
arm. Source: https://www.universal-robots.com/articles/ur/application-installation/

dh-parameters-for-calculations-of-kinematics-and-dynamics

• Nonlinear Constraints: The motion of robot manipulators is subject to nonlinear constraints, such
as the dynamics of the robot and the workspace bounds, as well as physical constraints, such as
joint limits and collision avoidance. Incorporating these constraints into path-planning algorithms
can be challenging, and some algorithms may require sophisticated mathematical techniques to
solve the constraints.

• Real-time Operation: In many rearrangement applications, path planning must be performed in
real-time, with the manipulator making decisions and adapting to new obstacles or changes in the
environment. Real-time path planning requires efficient algorithms that can quickly search the
space of possible paths and adapt the plan as needed.

Overcoming the above challenges requires the development of efficient path-planning algorithms that
can handle these constraints and produce high-quality paths. We attempt to address all these challenges
through our bi-level trajectory optimizer for manipulators discussed in Chapter 4.

22

https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics
https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics

2.5.3 Joint space-vs end-effector space

For a robot manipulator, the path-planning can be performed in two motion spaces - either in the high-
dimensional space formed by the joint angles corresponding to each movable joint or the end-effector
space, which is a 3-dimensional space limited by the workspace bounds or a 2-dimensional table plane
(for planar end-effector motion). The choice of motion space is determined by the requirements of the
task at hand. For example, for a robot arm pushing objects on the table, the major task at hand involves
the pose of the end-effector on the 2-D tabletop plane. Hence, the path planning can be performed in the
Cartesian end-effector space or even in the Cartesian space of the center of the object being pushed on
the table. For tasks involving grasping objects, it is more effective to plan trajectories in the joint space to
avoid collisions and minimize joint movements.

Based on the two paradigms of optimization discussed in Sections 2.3.1 and 2.3.2, let us discuss both
Gradient-based and Sampling-based trajectory optimization for a robot manipulator.

2.5.4 Gradient-based Optimization

2.5.4.1 CHOMP

CHOMP (Covariant Hamiltonian Optimization for Motion Planning)[9] is a gradient-based optimiza-
tion method for efficient motion planning of robot manipulators in high-dimensional spaces. This method
was developed by Brian Paden and Emo Todorov in 2011.

The key idea behind CHOMP is to formulate the motion planning problem as an optimization
problem, where the objective is to minimize an objective function that typically includes terms that
penalize collisions with obstacles, deviation from a desired trajectory, and energy consumption. In
CHOMP, the optimization is performed using a gradient descent method, where the gradient of the cost
function with respect to the joint angles of the robot is computed and used to update the joint angles
iteratively. The gradient is computed using backpropagation through time, which involves propagating
the gradient backward through a sequence of time steps.

One of the key advantages of CHOMP is its ability to handle non-convex constraints and to generate
smooth, continuous paths that avoid collisions with obstacles. This is achieved using a smoothing term in
the cost function, which encourages the joint angles to vary smoothly over time. Another advantage of
CHOMP is its scalability to high-dimensional spaces, which makes it well-suited for motion planning of
robot manipulators with many degrees of freedom.

However, CHOMP does have some limitations. It requires a good initial guess of the path, which can
be challenging in complex environments with many obstacles. The optimization can also converge to
local minima, resulting in suboptimal paths. Further, CHOMP involves gradient computations which may
get intractable to compute in very high-dimensional spaces and spend a significant amount of time to
return a feasible trajectory, eliminating the scope of real-time path planning. To address these limitations,
various extensions and modifications to CHOMP have been proposed, such as incorporating stochastic
optimization or combining CHOMP with other planning algorithms.

23

2.5.4.2 TrajOpt

TrajOpt[10], developed by John Schulman and his colleagues at UC Berkeley in 2013, is an open-
source library for motion planning and trajectory optimization of robot manipulators.

TrajOpt also involves gradient-based trajectory optimization using sequential quadratic programming
or gradient descent techniques. The TrajOpt library provides a flexible and modular framework for
specifying the motion planning problem, allowing users to define a wide range of cost functions and
constraints, including collision avoidance, joint limits, end-effector constraints, and task-specific objec-
tives such as minimizing energy consumption. TrajOpt also uses a collision-checking algorithm based on
bounding volume hierarchies, which can quickly identify potential collisions between the robot and the
environment. It also incorporates a warm-starting strategy, which initializes the optimization algorithm
with a feasible solution from a previous iteration, reducing the time required for convergence.

TrajOpt, written in C++ and Python, is designed to be highly customizable and extensible. It can be
integrated with various robot simulation and control frameworks, such as ROS, Gazebo, or PyBullet,
and supports a wide range of environments, robot models, and kinematic solvers. [24] uses TrajOpt as a
collision-detection module.

2.5.5 Sampling-based Optimization

Sampling-based optimizers rely on stochastic optimization, i.e., sampling a set of potential candidate
trajectories to be followed by the manipulator and evaluating the associated costs to finally choose the
trajectory with the minimum cost. The best set of candidates is used to iteratively improve on the samples
for the next iteration iteratively, ultimately helping the optimizer converge to an optimum in the cost
function.

2.5.5.1 STORM

STORM(Stochastic Tensor Optimization for Robot Motion)[11] is an optimization algorithm designed
to efficiently and effectively generate smooth and collision-free trajectories for robots in complex
environments between a start state and a desired state by iteratively optimizing a tensor-based cost
function. STORM works by first defining a tensor-based representation of the state space, designed to
capture the high-dimensional motion space of the robot. The tensor is defined as a multi-dimensional
array, where each dimension corresponds to a specific aspect of the robot’s state, such as position, velocity,
or acceleration. The size of each dimension is determined by the resolution of the state space.

The optimization process is stochastic, which involves randomly sampling different trajectories and
evaluating their costs. Self-collisions are detected using jointNERF, a network that computes the closest
distance between robot links given joint poses, while environment collisions are based on signed distances.
This randomness helps to ensure that STORM is able to find a diverse set of trajectories that can be used
to navigate complex environments. Additionally, STORM is able to leverage parallel computing to speed
up the optimization process, which can be critical for real-time applications.

24

One of the key advantages of STORM is its ability to handle high-dimensional state spaces, which is
particularly useful for manipulator path planning. It achieves this by using a tensor-based representation
of the state space, which allows it to explore large and complex environments efficiently. STORM is also
able to incorporate a wide range of constraints, including collision avoidance, joint limits, and kinematic
constraints.

2.5.5.2 Cross-Entropy Methods(CEM)

The cross-entropy method (CEM)[25] is a derivative-free optimization technique that employs an
adaptive importance sampling procedure using the cross-entropy measure. In each iteration of the
CEM-based stochastic trajectory optimization, the following two steps are performed:

• Derive candidate trajectories by sampling from a probability distribution

• Minimize the cross-entropy between the sample distribution and a target distribution to update the
parameters of the former.

Mathematically, these steps can be represented as follows (Source: https://en.wikipedia.
org/wiki/Cross-entropy_method):

1. Choose initial parameter vector v0; set t = 1

2. Generate a random sample X1, ...,XN from f(v(t−1)).

3. Solve for v(t), for a given cost function ζ where,

v(t) = argmax
v

1

N

N∑
i=1

ζ(Xi)
f(Xi;u)

f(Xi,v
(t−1))

logf(Xi;v) (2.19)

4. If convergence is reached, then stop; otherwise proceed to the next iteration by incrementing t by 1
and repeat from step 2.

The cost function ζ takes into account factors such as the length of the path, the amount of time it
takes to complete the path, and the distance from the robot arm to obstacles in the environment. Over
time, the CEM algorithm converges to an optimal solution, representing the best path for the robot arm to
reach the target point while avoiding obstacles.

We use an improved version of CEM, called Via-Point Stochastic Trajectory Optimization(VP-
STO)[13] for manipulator path planning in Chapter 4.

25

https://en.wikipedia.org/wiki/Cross-entropy_method
https://en.wikipedia.org/wiki/Cross-entropy_method

Chapter 3

Fast Joint Multi-Robot Trajectory Optimization by GPU Accelerated

Batch Solution of Distributed Sub-Problems

In this chapter, we design a novel approach to solve our research problem T2 from Section 1.1.1 - a joint
multi-robot trajectory optimizer that can compute trajectories for tens of robots within a small fraction of
a second. The computational efficiency of our approach is built on breaking the per-iteration computation
of the joint optimization into smaller, decoupled sub-problems and solving them in parallel through
a custom batch optimizer. By achieving near real-time planning through a distributed optimization
paradigm, we are able to address challenges involving both coordination and scalability in a multi-robot
system, discussed in Section 2.4.2.

(Published in the journal Frontiers in Robotics and AI, Vol. 9, 2022. [26], also presented at the DMMAS

workshop, International Conference on Intelligent Robots and Systems (IROS) 2022.)

3.1 Introduction

Deployment of multiple aerial vehicles such as quadrotors is critical for applications like search
and rescue and exploration and mapping of large areas [27]. Over the last decade, robot fleets have
also become ubiquitous in applications like ware-house automation that have a substantial economic
impact on society [28, 29]. Furthermore, with the advent of connected autonomous cars, it becomes
imperative also to view urban mobility as a multi-robot system [30]. A fundamental component of
any multi-robot system is the coordination planning that guides individual robots between their start
and goal locations while avoiding collisions with the environment and other robots. In this chapter, we
adopt the optimization perspective for multi-robot motion planning [2]. In this context, the existing
approaches broadly fall into two spectra. On one end, we have the centralized approaches wherein the
trajectory of all the robots are computed together. The centralized approach can be further subdivided
into sequential [7], [1] and joint optimization [31], [2] respectively depending on whether the trajectories
of the robots are computed one at a time or simultaneously. On the other end of the spectrum, we have
online distributed model predictive control (DMPC) [8], [32] based approaches wherein each individual

26

robot computes its trajectories in a decoupled manner based on the trajectory prediction of the other
robots in the environment. In some works, the prediction module is replaced by robots communicating
their current trajectory with each other [33].

Centralized approaches, especially the joint optimization variants, provide a rigorous treatment of the
collision avoidance constraints and access a larger feasible space formed by all trajectory variables of all
the robots. However, joint optimization quickly becomes intractable as the number of robots increases
[6]. In contrast, the distributed MPC approaches can run in real-time but can lead to oscillatory behaviors,
and consequently, low success rates of collision avoidance [8], [33]. This is because the trajectories
computed at each control cycle by any robot are only collision-free with respect to the predicted (or prior
communicated) trajectories of other robots and not the actual trajectories followed by them.

Our main motivation in this chapter is to improve the computational tractability of multi-robot
trajectory planning using a distributed optimization approach to the extent that it becomes possible to
compute trajectories for tens of robots in densely cluttered environments in a few tens of milliseconds. To
put in context, the said timing is several orders of magnitude faster than some of the existing approaches
for joint multi-robot trajectory optimization [31], [34]. Such improvements in computation time would
ensure the applicability of our approach for even online re-planning besides the standard use case of
computing offline global trajectories for the robots. For example, consider a scenario wherein each robot
uses local real-time planners such as Dynamic Window Approach [35] or DMPC [8] to avoid collisions
with other robots in a distributive manner. Our approach could provide global re-planning for the local
planners at more 5Hz. or more.

On the application side, our main focus is on coordination of multiple quadrotors, typically for
applications like search and rescue and coordinated exploration. These applications require point-
to-point, collision-free navigation and forms the main benchmark in our experiments. However, our
algorithm can be useful for coordination of multiple wheeled mobile robots and even autonomous cars.

Contributions: The computational efficiency of our approach is built on several layers of reformulation
of the underlying numerical aspects of the joint multi-robot trajectory optimization. We summarize the
key points and the benefits that it leads to below.

Algorithmic: Our main idea is to break the per-iteration computation of the joint multi-robot trajectory
optimization into smaller, distributed sub-problems by leveraging the solution computed in the previous
iterations. Although similar ideas have appeared in many existing works [34], [33], a core challenge
remains: how to efficiently solve the decoupled problem arising at each iteration in parallel. The basic
assumption is that the decoupled optimizations can be parallelized across separate CPU threads [34].
However, our recent works have shown that such a parallelization approach does not scale well with an
increase in the number of problems [36]. The inherent limitation stems from the available CPU cores and
thread synchronization issues.

Thus our main algorithmic contribution in this chapter lies in deriving a novel optimizer that can be
efficiently run in a batch setting. In other words, our optimizer can take a set of decoupled optimization
problems and vectorize the underlying numerical computations across multiple problem instances.

27

Consider an optimizer that solves a given problem by adding two vectors as a hypothetical example.
We can trivially vectorize the computation over different problem instances by stacking each problem’s
vectors together in the form of a matrix and adding them together. Moreover, this matrix addition
can be easily parallelized over GPUs for many problem instances. Our proposed optimizer achieves
similar vectorization but for a set of difficult non-convex sub-problems, resulting in each iteration of
joint multi-robot trajectory optimization. Specifically, we show that solving the decoupled sub-problems
predominantly reduces to solving novel equality constrained quadratic programming (QP) problems
under certain collision constraint reformulations. The novelty of the QPs stems from the fact that they
all share the same matrices (e.g., Hessian), and only the vectors associated with the QPs vary across
the sub-problems. We show that solving all the QP sub-problems in one shot reduces to computing one
large matrix-vector product that can be trivially parallelized over GPUs using off-the-shelf linear algebra
solvers.

Applied: We release our entire implementation for review and to promote further research on this
problem. We also release the benchmark data sets used in our simulations.

State-of-the-art Performance We compare our GPU accelerated optimizer with two strong baselines
[1, 2] and show massive improvement in computation time while being competitive in trajectory quality
as measured by metrics like arc-length and smoothness. Our first comparison is with [1] that uses a
sequential approach for multi-robot trajectory optimization. Our computation time is at least 76.48%
lower than that of [1] for a smaller problem size involving 16 robots. Moreover, the performance gap
increases substantially in our favor as we increase the number of robots and make the environment more
cluttered by introducing more static obstacles. We observe similar trends in trajectory arc-length and
smoothness comparison between the two approaches. Our second comparison is with [2] that searches
directly in the feasible joint space formed by all the pair-wise collision avoidance constraints. Our
proposed optimizer shows improved scalability over [2] for a larger number of robots while being also
superior in trajectory arc length and smoothness.

3.2 Problem Formulation and Related Work

This section introduces the general problem formulation for multi-robot trajectory optimization. We
subsequently use the problem set-up to review existing works and contrast our optimizer with them. We
begin by summarizing the main symbols and notations used throughout the chapter.

3.2.1 Symbols and Notations

In this chapter, the lower normal and bold letters denote the scalars and vectors, respectively, while the
upper bold case variants represent matrices. The left and right super-scripts denoted by k and T will
be used to denote the iteration index of the optimizer and transpose of the vectors and matrices. The
time-stamp of any variable will be denoted by t. The symbol ∥.∥2 stands for l2 norm. We summarize

28

some of the main symbols in Table (3.1) while some are also introduced in their first place of use. At
some places, we perform a special construction where time-stamped variables are stacked to form a
vector. For example, xi will be formed by stacking xi(t) at different time instants.

3.2.2 Robot Kinematics

Our optimizer is designed for robots with holonomic motion models. That is, the motion along each
axis is decoupled from each other. This is a common assumption made in quadrotor motion planning.
Many commercially available wheeled mobile robots also have similar kinematic model. Under certain
conditions, even motion planning for car-like vehicles also adopt similar kinematic model and thus our
optimizer is suitable for those as well [37].

3.2.3 Trajectory Optimization

For holonomic robots modeled as series of integrators, the joint trajectory optimization can be formulated
in the following manner.

min
xi(t),yi(t),zi(t)

∑
t,i

(
ẍ2i (t) + ÿ2i (t) + z̈2i (t)

)
,

(3.1a)(
xi(t0), ẋi(t0), ẍi(t0), yi(t0), ẏi(t0), ÿi(t0), zi(t0), żi(t0), z̈i(t0)) = bo,i,∀i

(3.1b)(
xi(tf), ẋi(tf), ẍi(tf), yi(tf), ẏi(tf), ÿi(tf), zi(tf), żi(tf), z̈i(tf)) = bf,i,∀i

(3.1c)

−

xi(t)− xj(t)

yi(t)− yj(t)

zi(t)− zj(t)

T

S

xi(t)− xj(t)

yi(t)− yj(t)

zi(t)− zj(t)

+ 1 ≤ 0, ∀t, {i, j ∈ {1, 2, ..., nr}, j ̸= i},S =

a
2 0 0

0 a2 0

0 0 b2

(3.1d)

The cost function (3.1a) minimizes the squared norm of the acceleration at each time instant for all
the robots. The equality constraints (3.1b)-(3.1c) enforces the initial and final boundary conditions
on positions, velocity, and accelerations on each robot trajectory. The pair-wise collision avoidance
constraints are modeled by inequalities (3.1d), wherein we have assumed that the robots are shaped as
axis-aligned spheroids with axis dimensions (a, a, b). For the ease of exposition, we consider all robots
to have the same shape. Extension to a more general setting is trivial. The constraints (3.1d) are typically
enforced at pre-selected discrete time-stamps, and thus a fine resolution of discretization is necessary for
accurately satisfying the constraints. For now, we do not consider any static obstacles in the environment

29

in the formulation above. The extension is trivial as static obstacles can be considered robots with zero
velocity and whose trajectories are not updated within the optimizer’s iteration.

Let the trajectory of each robot along each motion axis x, y, z be parameterized through nv number
of variables. For example, these variables could be time-stamped way-points representing the trajectory
or the coefficients of their polynomial representation (see (3.8)). Then, for a set-up with nr number of
robots and a planning horizon of np, optimization (3.1a)-(3.1d) involves nr ∗ nv variables, and 18 ∗ nr

equality constraints. The number of pair-wise collision constraints would be
(
nr

2

)
∗ np.

The number of decision variables in optimization (3.1a)-(3.1d) scales linearly with the number of
robots. Although this increase poses a computational challenge, the main difficulty in solving the
optimization stems from the non-convex pair-wise collision avoidance constraints (3.1d) as the rest of
the cost and constraint functions are convex. Moreover, the number of collision avoidance constraints
increases exponentially with the number of robots. Existing works [31, 2, 7, 29, 1] have adopted different
simplifications on the collision avoidance constraints to make multi-robot trajectory optimization more
tractable. We thus next present a categorization of these works based on the exact methodology used.

3.2.4 Literature Review

3.2.4.1 Joint Optimization with Conservative Convex Approximation

The most conceptually simple approach is to solve (3.1a)-(3.1d) as one large optimization problem,
wherein the trajectory of every robot is computed in one shot. Authors in [31] simplified the joint
optimization by deriving a conservative affine approximation of the collision avoidance constraints
(3.1d) and consequently reducing (3.1a)-(3.1d) to a sequence of QPs. As a result, their solution process
becomes somewhat tractable for a moderate number of robots (≈ 10). However, the computation time
of [31] scales poorly because the number of affine constraints still increases exponentially with the
number of robots. Our prior work [2] substantially improved the scalability of joint multi-robot trajectory
optimization by reformulating the Euclidean collision constraints (3.1d) into polar form and augmenting
them into the cost function by using concepts from the Alternating Direction Method of Multipliers
(ADMM). Moreover, we showed that such reduction allowed one-time offline caching of the most
expensive parts of the computation. As a result, [2] achieved over two orders of magnitude speed-up over
[31] for 16 robots. The current proposed work provides a further significant improvement over [2] in
computation time and trajectory quality.

3.2.4.2 Sequential Optimization

Sequential planners plan for only one robot at a time. At any given planning cycle, the previously
computed robot trajectories are considered dynamic obstacles for the currently planned robot. As a result,
these approaches ensure that the number of decision variables does not increase with robots. Moreover,
the number of collision avoidance constraints increases linearly as the planning cycle progresses. How-

30

ever, note that the linear increase in the number of constraints does not translate to similar scaling in
computation time. Even state-of-the-art interior-point solvers have cubic complexity with respect to the
number of constraints.

A critical disadvantage of sequential planners is that each subsequent robot has access to less feasible
space to maneuver. As a result, optimization problems become progressively constrained as the planning
cycle progresses, leading to potential infeasibility. Authors in [7] tackle this problem by developing
an incremental constraint tightening approach. The authors integrate a subset of collision avoidance
constraints into the optimization problem, and the size of this set is gradually increased based on the
actual collision residuals.

Sequential planners naturally have the notion of priority, and these can be chosen carefully for
improved performance. For example, [29] adopts a priority-based optimization method in which the
robots are divided into groups/batches with pre-determined priorities, and the trajectory optimization
problem is solved from the highest to the lowest priority group. Similar approach was adopted in
[1]. Performing sequential planning over a small batch of robots reduces its conservativeness. On the
other hand, it introduces an additional challenge of ensuring collision amongst the robots in a given
batch. Authors in [1] tackle this bottleneck by leveraging graph-based Multi-robot Path Finding (MAPF)
methods.

3.2.4.3 Distributed Optimization

Distributed optimizers at each iteration, break (3.1a)-(3.1d) into decoupled smaller problems. For
example, see [34], [38]. The key insight upon which all existing works build is that the only coupling
between different robots stem from the pair-wise collision constraints (3.1d) [38]. Thus, we if we discard
this coupling, (3.1a)-(3.1d) can be easily reduced to nr number of decoupled optimizations. One way to
achieve the said decoupling is to let each robot make prediction of how the trajectories of other robots are
going to look in the immediate next iterations and use that to simplify the collision avoidance constraints.
More formally, let (xj(t), yj(t), zj(t)) be the predicted position of jth robot at time t. Then, the collision
avoidance constraints can be simplified as (3.2).

xi(t)− xj(t)

yi(t)− yj(t)

zi(t)− zj(t)

T

S

xi(t)− xj(t)

yi(t)− yj(t)

zi(t)− zj(t)

+ 1 ≤ 0 (3.2)

Note that (xj(t), yj(t), zj(t)) is a known constant in (3.2). Fig.3.1 shows how the process of using (3.2)
to formulate decoupled optimization problems for each robot. Existing works differ in their method of
computing the prediction (xj(t), yj(t), zj(t)). The simplest possibility is to set it as the solution obtained
in the previous iteration [34], which is what we use in our formulation as well.

31

Figure 3.1: Figure shows our approach for breaking the joint optimization (first block) at each iteration

into decoupled sub-problems (third group of blocks). Each robot exchanges their current computed

trajectories with each other. For the next iteration, robots will use the communicated trajectories to frame

their collision avoidance constraints. Thus, in this manner, we can avoid the inter-robot coupling in

collision constraints. Our core novelty in this chapter is a batch optimizer that can solve all the decoupled

problems in parallel over GPUs. It is also possible to replace the trajectory exchange set-up with a model

that predicts the nature of the robot trajectories in the immediate next iteration. Note that we only show

the x component of the trajectory purely to maintain clarity in the figure.

32

3.2.4.4 Online DMPC

DMPC approaches are the online variants of the distributed optimization approach. In other words, if we
run one iteration of distributed optimization and let each robot move with the computed trajectory, we
recover the DMPC works such as [8], [33]. This insight also points to the main issue of DMPC. At each
control cycle, imagine a robot i receiving information (directly through communications or indirectly
through prediction) about the trajectory that the other robot j computed. Then it uses this information
to construct collision avoidance constraints in its trajectory optimization set-up. However, robot j will
follow the same process and update its trajectory as well. Thus, essentially both robot i and j compute
their motion based on outdated information about each other’s behavior.

3.2.4.5 Batch optimization over CPU Vs GPU

Parallelization of a batch of optimization problems across CPUs and GPUs operates fundamentally
differently, and both classes of approaches have been tried in existing works to speed up multi-robot
trajectory optimization. Each CPU core is efficient at handling arbitrary numerical computations, and
thus solving a batch of optimizations problems in parallel is conceptually simple. We can solve each
problem in a separate thread without needing to make any change in the underlying numerical algebra
of the optimizer [36], [34]. As mentioned earlier, the scalability of CPU parallelization is limited by
the number of cores (typical 6 in a standard laptop). On the other hand, GPUs have many cores, but
these are primarily efficient at parallelizing primitive operations such as matrix-vector and matrix-matrix
multiplication. Moreover, GPUs excel in performing the same primitive operations over many data points.
Thus, to fully leverage the compute power of GPUs, it is necessary to modify the underlying numerical
aspect of an optimizer to fit the strengths of GPUs. For example, GPU acceleration of Newton’s method
requires adopting indirect matrix factorization over the more common direct approaches [39]. One
optimization technique that trivially accelerates over GPUs is Gradient Descent (GD) since it boils down
to just matrix-vector multiplication. Authors in [40] leverage this insight for developing a fast multi-robot
trajectory optimization algorithm. One critical issue of [40] is that the proposed GD is very sensitive to
hyper-parameters like weights of the different cost function, learning rate, etc.

GPUs are designed using threads grouped into blocks, which are themselves organized as grids to
parallelize computations for computational efficiency [41]. The GPU first tiles an n× n matrix using
p× q tiles indexed with a 2-dimensional index to multiply large matrices. The output of each tile in the
result matrix is independent of other tiles, which allows for parallelization. The parallelized CUDA code
uses a block of threads to compute each tile of the result matrix, and to compute the entire result matrix;
it uses a n

p × n
q grid of thread blocks. Many threads and blocks in modern GPUs allow for simultaneous

computation of tile outputs, allowing for a many-fold boost in the computation time required for large
matrix multiplications. Most off-the-shelf GPU-based libraries have this inbuilt CUDA programming
for parallel GPU computations and can be utilized for achieving computational speed-ups in matrix
multiplications.

33

3.3 Methods

3.3.1 Overview

Similar to [34], we break the joint multi-robot trajectory optimization (3.1a)-(3.1d) into decoupled smaller
sub-problems at each iteration. This is illustrated in Fig.3.1. At a conceptual level, this decoupling process
can be interpreted in the following manner: the robots communicate among themselves the trajectories
they obtained in the previous iteration of the optimizer. Each robot then uses them to independently
formulate their collision avoidance constraints. Our work differs from existing works in the way the
decoupled problems illustrated in Fig.3.1 is solved. As mentioned before, a trivial approach to solving
the sub-problems in parallel CPU threads is not scalable for tens of robots. In contrast, our main idea in
this chapter is to develop a GPU-accelerated optimizer that can solve a batch of optimization problems in
one shot.

In this sub-section, we aim to provide a succinct mathematical abstraction of our main idea. We
discuss a special class of problems that are simple to solve in a batch fashion. To this end, consider the
following batch of equality-constrained QPs, i ∈ {1, 2, ..., nr}.

min
ξi

(1
2
ξTi Qξi + qT

i ξi

)
, st: Aξi = bi (3.3)

In total, there are nr QPs to be solved, each defined over variable ξi. The QPs defined in (3.3) have
a unique structure. The Hessian Q and the constrained matrix A are shared across the problems and
only the vectors qi and bi varies across the batch. This special structure leads to efficient batch solution
formulae. To see how note that each QP in the batch can be reduced to solving the following set of linear
equations.

[
Q AT

A 0

][
ξi

µi

]
=

[
qi

bi

]
, ∀i ∈ {1, 2, ..., nr} (3.4)

where µi are the dual optimization variables. Now, it can be observed that the matrix on the left-hand side
of (3.4) is independent of the batch index i, and thus, the solutions for the entire batch can be computed
in one shot through (3.5).

[
ξ1 ... ξnr

µ1 ... µnr

]
=

matrix︷ ︸︸ ︷[
Q AT

A 0

]−1

stacked vectors︷ ︸︸ ︷[
q1 q2 ... qnr

b1 b2 ... bnr

]
, (3.5)

where | represents that the columns are stacked horizontally. The batch solution (3.5) amounts to
multiplying one single matrix with a batch of vectors. Furthermore, the matrix is constant, and its

34

dimension is independent of the number of problems in the batch. Thus, operation (3.5) can be trivially
parallelized over GPUs using off-the-shelf libraries like JAX [22].

How it all fits: In the next few sub-sections, we will show how the distributed sub-problems of (3.1a)-
(3.1d), shown in Fig.3.1 can be solved efficiently in a batch setting. Specifically, we reformulate these
problems in such a way that the most intensive part of their solution process reduces to solving a batch of
QPs with the special structure presented in (3.3).

3.3.2 Collision Avoidance in Polar Form

An important building block of our approach is rephrasing the collision avoidance constraints into the
following polar representation from [2], [42].

fc(xi(t), yi(t)) =

xi(t)− xj(t)− adij(t) sinβij(t) cosαij(t)

yi(t)− yj(t)− adij(t) sinβij(t) sinαij(t)

zi(t)− zj(t)− bdij(t) cosβij(t)

 , dij(t) ≥ 1, (3.6)

where αij(t), βij(t), dij(t) are unknown variables that will be computed by the optimizer along with
each robot’s trajectory. Physically, αij(t) and βij(t) represent the 3D solid angle of the line-of-sight
connecting robot i and j based on the predicted motion of the latter. The variable dij(t) is the ratio of the
length of the line-of-sight vector with minimum safe distance

√
a2 + a2 + b2 (see [2]).

3.3.3 Proposed Reformulated Distributed Problem

Using (3.6), we can reformulate the distributed sub-problems presented in Fig.3.1 for the ith robot in the
following manner. We reiterate that (xj(t), yj(t), zj(t)), ∀j ̸= i is known based on the prediction of the
trajectories of other robots.

min
xi(t), yi(t), zi(t), dij(t), αij(t), βij(t)

∑
t

(
ẍ2i (t) + ÿ2i (t) + z̈2i (t)

)
, (3.7a)(

xi(t0), ẋi(t0), ẍi(t0), yi(t0), ẏi(t0), ÿi(t0), zi(t0), żi(t0), z̈i(t0)) = bo,i,∀i (3.7b)(
xi(tf), ẋi(tf), ẍi(tf), yi(tf), ẏi(tf), ÿi(tf), zi(tf), żi(tf), z̈i(tf)) = bf,i,∀i (3.7c)

fc:

xi(t)− xj(t)− adij(t) sinβij(t) cosαij(t)

yi(t)− yj(t)− adij(t) sinβij(t) sinαij(t)

zi(t)− zj(t)− bdij(t) cosβij(t)

 (3.7d)

dij(t) ≥ 1, ∀t, j, {j|j ∈ {1, 2, ..., nr}, j ̸= i} (3.7e)

35

3.3.3.1 Finite Dimensional Representation

Optimization (3.7a)-(3.7e) is expressed in terms of functions and thus has the so called infinite dimensional
representaton. To obtain a finite-dimensional form, we assume some parametric form for this functions.
For different dij(t), αaij (t), βij(t), we assume a way-point paramterization. That is, these functions
are represented through values at discrete time instants. The trajectories along each motion axis are
represented as following polynomials.

xi(t1)

xi(t2)
...

xi(tnp)

 = Pcx,i,

ẋi(t1)

ẋi(t2)
...

ẋi(tnp)

 = Ṗcx,i,

ẍi(t1)

ẍi(t2)
...

ẍi(tnp)

 = P̈cx,i. (3.8)

Similar expressions as (3.8) can be written for the y, z component of the trajectory as well. The matrix P
is formed with time dependent polynomial basis functions. Using (3.8), we can re-write (3.7a)-(3.7e) in
the following matrix form.

min
ξ1,i,ξ2,i,ξ3,i,ξ4,i

(1
2
ξT1,iQξ1,i

)
, (3.9a)

Aeqξ1,i = beq, (3.9b)

Fξ1,i = gi(ξ2,i, ξ3,i, ξ4,i), (3.9c)

ξ4,i ≥ 1, (3.9d)

where, ξ1,i = (cx,i, cy,i, cz,i), ξ2,i = αij , ξ3,i = βij and ξ4,i = dij . Note that αij is formed by stacking
αij(t) at different time instants. Similar construction is followed for other elements in ξ2, ξ3. The matrix
Q is block diagonal matrix with P̈T P̈ as main diagonal block. The affine constraint (3.9b) is a matrix
representation of the initial and final boundary conditions (3.7b)-3.7c. The matrix Aeq and vector beq is
constructed in the following manner.

Aeq =

[
A 0
0 A

]
,Aeq =

[
P1|Ṗ1|P̈1|P−1|P̈−1P̈−1

]T
,beq =

[
b0,i

bf,i,

]
(3.10)

where, P1, Ṗ1, P̈1,P−1, Ṗ−1, P̈−1 represents the first and last elements of the corresponding matrices.
Matrix F and vector gi defining constraints (3.7e) are constructed as

F =

Fo 0 0
0 Fo 0
0 0 Fo

 gi =

gx,i(ξ2,i, ξ3,i, ξ4,i)
gy,i(ξ2,i, ξ3,i, ξ4,i)
gz,i(ξ2,i, ξ3,i, ξ4,i)

 (3.11)

where,

36

gx,i = xj + adij sinβij cosαij ,∀j, gy,i = yj + adij sinβij sinαij ,∀j, gz,i = zj + bdij cosβij ,∀j
(3.12)

and Fo is formed by vertically stacking P, nr − 1 times. The vectors xj , yj , zj are formed by stacking
xj(t), yj(t), zj(t) at different time instants.

Remark 1 The subscript i signifies that (3.9a)-(3.9c) is constructed for the ith agent.

Remark 2 All the non-convexity in optimization (3.9a)-(3.9d) is rolled into the equality constraint (3.9c)

Remark 3 The matrices Aeq,F in optimization (3.9a)-(3.9d) is independent of the robot index. In other

words, these matrices remain the same irrespective of the sub-problems shown in Fig.3.1 we are solving.

Remark 3 sheds light behind our motivation of presenting the elaborate reformulations of the collision
avoidance constraints. In fact, on the surface, our chosen representation (3.6) seems substantially more
complicated than the conventional form (3.1d) based on the Euclidean norm. In the next sub-section,
we present an optimizer that can leverage the insights presented in Remark 3. More precisely, we will
show that the due to the matrices Aeq,F being independent of the robot index i, the most intensive part
of solving (3.9a)-(3.9d) reduces to the batch QP structure presented in sub-section 3.3.1

3.3.4 Augmented Lagrangian and Alternating Minimization

Our proposed optimizer for (3.9a)-(3.9d) relies on relaxing the non-convex equality constraints (3.9c) as
l2 penalties and incorporating them into the cost function in the following manner.

min
ξ1,i,ξ2,i,ξ3,i,ξ4,i

(1
2
ξT1,iQξ1,i − ⟨λi, ξ1,i⟩+

ρ

2

∥∥Fξ1,i − gi(ξ2,i, ξ3,i, ξ4,i)
∥∥2
2

)
(3.13)

As the residual of the constraint term is driven to zero, we recover the solution to the original problem.
To this end, the parameter λi, known as the Lagrange multiplier, plays an important part. Its role is to
appropriately weaken the effect of the primary cost function so that the optimizer can focus on minimizing
the constraint residual [43]. The parameter ρ is a scalar and is typically constant. However, it is possible
to increase or decrease it depending on the magnitude of the constraint residual at each iteration of the
optimizer.

The relaxation of non-convex equality constraints, as augmented Lagrangian (AL) cost, is extensively
used in non-convex optimization [44], [45]. However, what differentiates our use of AL from existing
works is how we minimize (3.13). Typical approaches towards non-convex optimization are based on
first (and sometimes second) order Taylor Series expansion of the non-convex costs or constraints. In

37

contrast, we adopt an Alternating Minimization (AM) based approach, wherein at each iteration, we
minimize only one of the variable blocks amongst ξ1,i, ξ2,i, ξ3,i, ξ4,i while others are held constant at
specific values. In the next section, we present the various steps of our AM optimizer and highlight how
it never requires any linearization of cost or constraints. Moreover, we show how the AM steps naturally
lead to a simple yet efficient batch update rule using which we can solve (3.9a)-(3.9d) for all the robots
in one shot.

Algorithm 1 Alternating Minimization (AM) based solution for the ith Sub-Problem
Initialize kξ2,i,

kξ3,i and kξ4,i values at iteration k = 0. while k ≤ max iteration

or till norm of the residuals are below some threshold

k+1ξ1,i = min
ξ1,i

(1
2
ξT1,iQξ1,l − ⟨kλi, ξ1,i⟩+

ρ

2

∥∥∥Fξ1,i − gi(
kξ2,i,

kξ3,i,
kξ4,i)

∥∥∥2
2

)
, st.Aeqξ1 = beq

(3.14)

k+1ξ2,i = min
ξ2,i

(ρ
2

∥∥∥Fk+1ξ1,i − gi(ξ2,i,
k ξ3,i,

k ξ4,i)
∥∥∥2
2

)
(3.15)

k+1ξ3,i = min
ξ3,i

(ρ
2

∥∥∥Fk+1ξ1,i − gi(
k+1ξ2,i, ξ3,i,

k ξ4,i)
∥∥∥2
2

)
(3.16)

k+1ξ4,i = min
ξ4,i

(ρ
2

∥∥∥Fk+1ξ1,i − gi(
k+1ξ2,i,

k+1 ξ3,i, ξ4,i)
∥∥∥2
2

)
(3.17)

k+1λi =
kλi − ρ(F k+1ξ1,i − gi(

k+1ξ2,i,
k+1 ξ3,i,

k+1 ξ4,i))F (3.18)

Return k+1ξ1,i

3.3.5 AM Steps and Batch Update Rule

Our AM based optimizer for minimizing (3.13) subject to (3.9b)-(3.9d) is presented in Algorithm 1.
Here, the left superscript k is used to track the values of the variable across iteration. For example, kξ2,i
denotes the value of this respective variable at iteration k.

The Algorithm begins (line 1) by providing the initial guesses for ξ2,i, ξ3,i, ξ4,i. The main optimizer
iterations run within the while loop for the specified max iteration limit or till the constraint residuals are
a below specified threshold. Each step within the while loop involves solving a convex optimization over
just one variable block. We present a more detailed analysis of each of the steps next.

38

3.3.5.1 Analysis

Step (3.14): This optimization is a convex QP with a similar structure as (3.3) with

Q = Q + ρFTF, qi = −kλi − (ρFT gi(
kξ2,i,

kξ3,i,
kξ4,i))

T . (3.19)

Thus, we can easily solve (3.14) for all the robots in parallel to obtain (ξ1,1, ξ1,2, ξ1,3, . . . , ξ1,nr
) in one

shot. The exact solution update is given by (3.5).
For a constant ρ, the inverse of Q needs to be obtained only once irrespective of the number of robots.
Thus, the complexity of the batch solution of all the sub-problems stems purely from obtaining the
matrix-matrix products in (3.5) and FT gi, ∀i. We can formulate the latter also as one large matrix-matrix
product in the following manner.

FT (

G︷ ︸︸ ︷[
g1|g2| . . . |gnr

]
)T (3.20)

The dimension of F, gi and G is ((nr − 1) ∗ np)× 3nv, ((nr − 1) ∗ np)× 1, and ((nr − 1) ∗ np)× nr

respectively. For convenience, we recall that nr, np, nv represents the number of robots, planning steps
and coefficients of the trajectory polynomial (along each axis) respectively. Thus, the row-dimension of
F and G increases linearly with nr.
Step (3.15): The variable k+1ξ1,i computed in the previous step and (3.8) can be used to fix the position
trajectory k+1xi, k+1yi,

k+1zi at the (k+1)th iteration. Thus, optimization (3.15) reduces the following
form

∀i, j, k+1αij = min
αij

ρ

2

∥∥∥∥∥∥∥∥∥∥

k+1x̃i︷ ︸︸ ︷
k+1xi − xj −akdij sinβij cosαij

k+1ỹi︷ ︸︸ ︷
k+1yi − yj −akdij sinβij sinαij

∥∥∥∥∥∥∥∥∥∥

2

2

(3.21)

where xj , yj is formed by stacking xj(t), yj(t) at different time instants.
Although (3.21) is a seemingly non-convex problem but it has a few favorable computational structures.

First, for a fixed position trajectory k+1xi, k+1yi,
k+1zi, we can treat each element of αij as independent

from each other. Thus , (3.21) reduces to (nr − 1) ∗ np decoupled problems. Second, the solution can be
obtained by purely geometrical intuition; αij is simply one part of the 3D solid-angle of the line-of-sight
connecting the ith robot and the predicted trajectory of jth agent. The exact solution update is given by
the following.

k+1ξ2,i =
k+1αij = arctan 2(k+1ỹi,

k+1x̃i), (3.22)

39

Step (3.16): Following the exact same reasoning as the previous step (3.15), we have the following
solution update rule for ξ3,i:

ξ3,i
k+1 = k+1βij = arctan 2(

k+1x̃i

a cos k+1αij
,
k+1z̃i

b
) (3.23)

Step k+1ξ4,i: Similar to the last two steps, each element of ξ4,i = dij once the position trajectory k+1xi,
k+1yi,

k+1zi is fixed. Thus, (3.17) can be broken down into (nr − 1) ∗ np parallel problems of the
following form.

k+1ξ4,i =
k+1dij = min

dij≥1

ρ

2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

k+1x̃i︷ ︸︸ ︷
k+1xi − xj −adij sin

k+1βij cos
k+1αij

k+1ỹi︷ ︸︸ ︷
k+1yi − yj −adij sin

k+1βij sin
k+1αij

k+1z̃i︷ ︸︸ ︷
k+1zi − zj −bdij cos

k+1βij

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(3.24)

Each optimization in (3.24) is a single variable QP with simple bound constraints. We first obtain the
symbolic formulae for the unconstrained version and then clip the resulting solution to [0 1].

Remark 4 Evaluating (3.22), (3.23) and the solution of 3.24 requires no matrix factorization/inverse

or even matrix-matrix products. We just need element-wise operation that can obtained for all the

sub-problems in one shot. In other words, we obtain (ξ2,1, ξ2,2, . . . ξ2,nr
), (ξ3,1, ξ3,2, . . . ξ3,nr

), and

(ξ4,1, ξ4,2, . . . ξ4,nr
) in parallel.

3.4 Results

The objective of this section is twofold. First, to validate that a distributed approach augmented with
our custom batch optimizer can indeed generate collision-free trajectories for tens of robots in highly
cluttered environments. Second, to compare our approach with the existing state-of-the-art (SOTA)
multi-robot trajectory optimizer in terms of solutions quality and computation time.

Implementation Details: We built our optimizer in Python using JAX [22] as our GPU accelerated
linear algebra back-end. We considered static obstacles as robots with fixed zero velocity. We modeled
each robot by a sphere and each obstacle by its circumscribing sphere. We experiment with a diverse
range of radii of both robots and obstacles. Simulations were run on a desktop computer with 32 GB
RAM and RTX 2080 NVIDIA GPU.

40

3.4.1 Benchmarks and Convergence

Our optimizer is tested using the following benchmarks.

• The robots’ start and goal positions are sampled along the circumference of a circle.

• The robots are initially located on a grid and are tasked to converge to a line formation.

By changing the number and positions of robots and static obstacles, we created several variations
of the mentioned benchmarks and utilized them to validate our optimizer. Fig. 3.2(A-I) presents a few
qualitative results in a diverse set of environments. Fig. 3.2(A-C) shows an environment with 32 robots
and 20 obstacles. Interestingly, we observe a circular pattern formation among the robots while passing
through narrow passages between static obstacles. In Fig. 3.2(D-F), 36 robots initially arranged in a grid
are given the task to navigate to a line formation while avoiding collisions with each other and with the
four static obstacles in the environment. Fig.3.3 shows the execution of the computed trajectories in a
high-fidelity physics engine called Gazebo available in Robot Operation System [46].

A conceptually simple way of validating the convergence of the proposed optimizer is to observe the
trends in residual of constraints (3.9c) over iterations. If the residuals converge to zero, the computed
trajectories are guaranteed to be collision-free. Fig. 3.4 empirically provides this validation. It presents
∥Fξ1,i − gi∥ averaged over all i. Furthermore, we average the residuals over different trials in various
benchmarks. We can observe from Fig.3.4 that, on average, 100 iterations are sufficient to obtain residuals
around 0.01. A further increase in residuals can be obtained by increasing the number of iterations but at
the expense of increasing the computation time. In our implementation, we adopt a heuristic wherein we
inflate the size of the robots with four times the typical residual observed after 100 iterations.

For a further sanity check, we check for inter-robot and robot-obstacle distances at each point along
the computed trajectories (Fig. 3.5). Collisions are considered to have happened if the distances are less
than sum of the robots’ (blue line in Fig.3.5) or robot-obstacles’ (yellow line in Fig.3.5) radii. Fig 3.5
summarizes the average behavior observed across several trials, which validates the satisfaction of the
collision avoidance requirement.

3.4.2 Comparisons With State-of-the-Art

This subsection compares our optimizer with existing state-of-the-art approaches [2] and [1]. We use the
metrics Smoothness Cost, Arc-Length and Computation Time as discussed in Section 2.3.4.

3.4.2.1 Comparison with [1]

Fig. 3.6 presents a qualitative comparison between the trajectories obtained by our optimizer and [1]
in two different benchmarks. Both approaches are successful; however, ours results in shorter trajectories.
This trend is further confirmed by Fig.3.7. Our optimizer achieves an average reduction of 3.90% and
13.72% in arc-length in 16 and 32 robots benchmarks, respectively. Furthermore, the performance gap

41

Figure 3.2: Trajectory snapshots for (A-C) 32 robots, each of radius 0.3m arranged in a circle and 20

obstacles of radius 0.4m, (D-F) 32 robots, each of radius 0.3m arranged in a circle and 8 randomly

placed obstacles of radius 0.4m, (G-I) 36 robots, each of radius 0.1m arranged in a grid configuration are

required to move to a line formation. Also, the environment has 4 static obstacles, each of radius 0.15m.

42

Figure 3.3: Simulation snapshots for (A-F) 16 drones and 8 static obstacles of radius 0.3m, and (G-

L) 8 drones and 2 static obstacles of radius 0.3m. (A-C) and (G-I) are screenshots of simulations

on Gazebo. In (A-C), the gray static hovering drones represent static obstacles while in (G-I) white

hovering drones represent static obstacles. (D-F) and (J-L) are screenshots of RViz simulations with the

brown hovering drones representing static obstacles. For the full simulation videos, please refer to the

following link: https://www.dropbox.com/scl/fo/xnostapkvf72uudyb840t/h?dl=

0&rlkey=02gjjllohbomzi0kcifbqezt9

43

https://www.dropbox.com/scl/fo/xnostapkvf72uudyb840t/h?dl=0&rlkey=02gjjllohbomzi0kcifbqezt9
https://www.dropbox.com/scl/fo/xnostapkvf72uudyb840t/h?dl=0&rlkey=02gjjllohbomzi0kcifbqezt9

Figure 3.4: Empirical validation of convergence of our optimizer. The figure shows the residual of

∥Fξ1,i − gi∥ averaged over all i (agent index) and across different benchmarks.

Figure 3.5: Figure showing the minimum of the pair-wise distances between the robots averaged across

different benchmarks, some of which are shown in Fig.3.2. The pair-wise distance is always greater

than the lower bound shown in blue. Similarly, we also show the average minimum distance between

the robots’ and obstacles’ centers. The corresponding lower bound is shown in yellow which is always

respected by the computed trajectories.

44

between our optimizer and [1] increases as the environment becomes more cluttered with static obstacles.
We also observe similar trends in the smoothness metric, with the performance gap being even starker.
Our optimizer achieves an average reduction of 35.86% and 59.06% in smoothness cost in 16 and 32
robots benchmark, respectively.

Table 3.2 compares the computation time of our optimizer and [1]. Our optimizer shows better
scaling with the number of robots and obstacles in the environment. On the considered benchmark, our
optimizer shows a worst and best case improvement of 74.28% and 98.48% respectively. The trends
in computation time can be understood in the following manner. The approach of [1] uses sampling-
based multi-agent pathfinding algorithms to compute initial guesses for the robot trajectories. As the
environment becomes more cluttered, the computational cost of computing the initial trajectories increases
dramatically. Moreover, their sequential optimization also becomes increasingly more computationally
intensive as the number of robots and obstacle increase.

In contrast, our optimizer only requires matrix-matrix products, and the dimension of these matri-
ces increases linearly with the number of robots and obstacles. This linear scaling along with GPU
parallelization explains our computation time.

3.4.2.2 Comparison with [2]

Table. 3.3 compares the performance of our optimizer with [2]. Our core difference with [2] stems
from the fact that we break a large optimization problem into smaller distributed sub-problems. In
contrast, [2] retains the original larger problem itself. However, both our optimizer and [2] use GPUs to
accelerate the underlying numerical computations. Thus, unsurprisingly, [2] shows a decent scaling with
the number of robots and obstacles. Nevertheless, our approach still outperforms [2]. Specifically, in 16
robot benchmarks, our optimizer shows a worst-case improvement of 2 times over [2] in computation
time. As the environment becomes more cluttered, this factor increases to almost 10. In 32 robot
benchmarks, the difference between our optimizer and [2]’s computation time is around nine times.

In terms of the arc-length and the smoothness metrics, our optimizer shows an improvement of
around 57% and 58% respectively over [2]. However, both approaches provide comparable results in the
more challenging 32 robot benchmarks. The arc-length and smoothness cost difference decreases as the
environment becomes more cluttered.

3.5 Ablation Study

3.5.1 Initializations using Reciprocal Velocity Obstacle(RVO)[3]

RVO is a local, reactive multi-robot trajectory planner that has been shown to generate collision-free
trajectories in real-time for hundreds of robots[3]. Even though it runs in real-time, RVO trajectories
cannot be directly executed by Robots as they are jittery and jerky. We use a trick to precompute
trajectories using RVO for given start and goal positions of multiple Robots and use the RVO trajectories

45

Figure 3.6: Comparison of trajectories generated by [1](A),C)) and our optimizer(B),D)) for 16 robots-12

obstacles (upper row) and 32 robots-20 obstacles (bottom row) benchmarks. Black spheres denote static

obstacles and colored spheres denote robots. Our optimizer generates trajectories with smaller arc-length

than [1].

46

Figure 3.7: Comparison of our optimizer with [1] in terms of arc-length and smoothness of obtained

trajectories in 16 robots (A,B) and 32 robots (C,D) benchmarks. Our optimizer generates trajectories with

not only better smoothness, but also with shorter arc-lengths. Moreover, the performance gap between

our approach and [1] increases as the environment becomes more cluttered.

47

along with other optimizer parameters computed from them to initialize our optimizer. Thus the task of
eliminating collisions is first performed by RVO and further enhanced by our optimizer. We consider the
velocity along the straight line joining the start and goal positions of the Robots as the desired velocity in
RVO and sample the RVO trajectory obtained at evenly spaced intervals to match the number of time
samples expected by the optimizer. We define the following set of additional configurations to test our
optimizer with different types of initializations:

• Square Antipodal: Robots are placed on the edge of a square and are needed to reach their
antipodal positions. This scenario is particularly challenging since if the robots were moving in
straight lines between the start and goal positions, they would all collide together at the center of
the workspace.

• Circle: Robots are distributed evenly along a circle and are needed to rotate by k positions. (default
k = 5).

• Ellipse: Robots are placed uniformly along a straight line, and the ith robot is needed to reach the
position of the (n− i)th robot where n is the total number of robots.

Figure 3.8 shows the trajectories generated by RVO alone for 16 Robots in the Square Antipodal
scenario vs trajectories generated by our optimizer with RVO initialization. We observe a significant
improvement in the smoothness of the trajectories generated by our optimizer with RVO initialization
compared to RVO alone. The improvement in trajectory quality can be explained as follows: the optimizer
starts with an already low residual due to RVO initialization and further reduces it with iterations while
smoothing the trajectories at the same time. However, in terms of computation time, the RVO initialization
does not offer significant benefits compared to a straight-line initialization of trajectories.

48

Figure 3.8: Comparison of trajectories from a) RVO alone in 16 Robots 2D Square Antipodal b)

Optimizer + RVO initialization for 16 Robots 2D Square Antipodal c) RVO alone in 16 Robots 2D Ellipse

b) Optimizer + RVO initialization for 16 Robots 2D Ellipse.

3.5.2 Initializations using Multi-robot Pathfinding(MAPF)[4]

Similar to RVO, we can also couple graph-search-based Multi-robot Pathfinding (MAPF) algorithms
discussed in Section 2.4.3 for initializing our optimizer. For this purpose, we will use the cbs-mapf
PyPI package that implements the high-level Conflict Based Search Algorithm based on [4] and low-level
space-time A*(STA*), which is similar to normal A*(from Section 2.4.3.1 with an additional time
dimension. The trajectories generated by CBS-MAPF are piecewise linear and exhibit jerks and sharp
turns, so these cannot be used practically for multi-robot navigation. We scale up the start and goal
coordinates depending on grid size (we use grid size = 10) as well as the robot radii and precompute

49

multi-robot trajectories using CBS-MAPF. Similar to the RVO trajectories, we sample points from the
trajectories obtained from CBS-MAPF to calculate the optimizer parameters and initialize our optimizer.

We introduce a new scenario to test MAPF for 14 Robots arranged in a 2D grid and are needed to
move to the opposite end of the grid. Figure 3.9 shows a comparison of trajectories between CBS-MAPF
alone and the optimizer using CBS-MAPF for initialization. We again observe a significant improvement
in the smoothness of the trajectories generated by our optimizer with CBS-MAPF initialization compared
to CBS-MAPF alone. However, similar to RVO, there is no benefit to using MAPF initialization in terms
of computational time.

Figure 3.9: Comparison of trajectories generated by CBS-MAPF alone and our optimizer with CBS-

MAPF initialization for a)-b) 16 Robots in the Circle(k=5) scenario, c)-d) 14 Robots in 2D Grid

orientation.

50

Table 3.1: Important Symbols used in our optimizer

np, nv , nr Planning steps, number of variables parameterizing trajectory

along each motion axis, and number of robots, respectively.

a, b Spheroid dimensions

xi(t), yi(t), zi(t) Position of ith robot at time t.

xi(t), yi(t), zi(t) Predicted position of jth agent.

λi Lagrangian multiplier

3.6 Discussions

Joint multi-robot trajectory optimizations are generally considered intractable beyond a small number
of robots. This is because the number of pair-wise collision avoidance constraints increases exponentially
with the number of robots. Moreover, even the best optimization (QP) solvers show polynomial scaling
with the number of constraints. We have fundamentally altered this notion through the discussion in
this chapter. By employing a clever set of reformulations and parallelism offered by modern computing
devices such as GPUs, we managed to compute trajectories for tens of robots in highly cluttered
environments in a fraction of a second. Our formulation is simple to implement and involves computing
just matrix-matrix products. Such computations can be trivially accelerated or parallelized on GPUs using
off-the-shelf libraries like JAX ([22]). We benchmarked our approach against two strong state-of-the-art
baselines and showed substantial improvement over them in terms of computation time and trajectory
quality.

Our work has potential beyond multi-robot coordination for interaction-aware trajectory prediction.
We show in Sections 3.5.1 and 3.5.2 how our multiagent optimizer may be used to improve the quality
of trajectories obtained from multi-agent collision avoidance methods, such as Reciprocal Velocity
Obstacle(RVO)[3] and Multi-Agent Pathfinding(MAPF)[4].

It must be noted here that we were able to approximate collision constraints and solve the multi-robot
path planning problem through gradient-based optimization due to the simplicity of the kinematics
governing the motion of each robot. In this case, all the robots in the multi-robot system were holonomic.
However, to extend this framework for car-like vehicles (non-holonomic robots), we would have to obey
more complicated kinematic equations as discussed in Section 2.1.2. When the robot kinematics becomes
as complex as for manipulators, discussed in Section 2.5.1, even solving the trajectory optimization
problem for a single robot may become intractable using gradient-based optimizers. This raises the need
for a stochastic optimizer for robots with high-dimensional articulation, such as manipulators. In the next
chapter, we will discuss how stochastic optimization can be used to generate collision-free trajectories
for manipulators, and how the optimization can be decoupled into a bi-level framework, consisting of a
global path planner and low-level motion planner.

51

Table 3.2: Comparison with current state-of-the-art [1] in terms of computation time.

Number of robots Number of Obsta-

cles

ours[s] [1][s]

32 24 0.21 12.897

32 20 0.20 11.827

32 16 0.20 12.423

32 12 0.19 12.504

16 24 0.17 0.795

16 12 0.17 0.661

16 8 0.16 0.680

16 4 0.16 0.702

16 2 0.15 0.621

Table 3.3: Comparison with [2] in terms of computation time, arc-length and smoothness cost

Number of robots Number of Obstacles Benchmark Computation

time[s]

Arc-length[M] Smoothness cost

2 [2] 0.34 13.488 0.102

2 Ours 0.15 9.999 0.048

16 robot
4 [2] 0.37 14.257 0.114

4 Ours 0.16 11.693 0.093

8 [2] 0.70 15.539 0.140

8 Ours 0.16 11.118 0.089

12 [2] 0.79 15.931 0.159

12 Ours 0.17 11.192 0.106

24 [2] 1.49 24.198 0.164

24 Ours 0.17 10.249 0.069

12 [2] 1.688 23.855 0.157

12 Ours 0.19 22.593 0.132

16 [2] 1.752 24.04 0.164

32 robots
16 Ours 0.20 22.303 0.122

20 [2] 1.804 24.14 0.170

20 Ours 0.20 23.156 0.210

52

Chapter 4

Stochastic Trajectory Optimization for Robot Manipulators

Manipulating a target object using a fixed-base robot manipulator presents a complex problem requir-
ing multiple constraints, such as optimizing the manipulator joint cost, finding a collision-free trajectory,
and modeling the object dynamics. Previous approaches have relied on contact-rich manipulation, where
the object moves predictably while attached to the manipulator’s end-effector, thereby avoiding the
need to model the object’s dynamics, which does not generalize to multiple types of end-effectors.
Further, collision avoidance for manipulators in existing approaches relies on context-specific neural
network-based object representation, which needs to be retrained for each specific arrangement and type
of obstacles and robots. In this chapter, we try to solve the research problem T3 from Section 1.1.1. We
will first discuss a stochastic trajectory optimizer, Via-point Stochastic Trajectory Optimization, and
adapt it for obstacle-agnostic path planning in the joint space for commonly-used robot manipulators,
such as the Franka Panda and UR5e. Next, we propose a novel framework for allowing manipulators to
push objects on a table by striking, agnostic to different types of end-effectors. Our approach disentangles
the non-prehensile long-horizon manipulation problem into path planning and motion planning. The
planning component uses the aforementioned context-agnostic Via-Point Stochastic Trajectory Optimizer,
generating a collision-free trajectory from the start to the goal position, consisting of multiple via points.
We pair the high-level via-point planner with a low-level motion planner based on Deep Reinforcement
Learning, which is gripper-agnostic.

Accepted at IEEE International Conference on Automation Science and Engineering (CASE) 2023

4.1 Introduction

Object manipulation is an essential task for robots to perform that has many diverse downstream
applications, for example, in the service industry (manipulating kitchenware [47]), industrial setting
(packaging [48]) and household (tabletop rearrangement [49]). Broadly, object manipulation can be
of two types - Prehensile, which involves continuous contact-rich gripping of the object using the
manipulator’s end-effector(gripper or a hand-like structure), and Non-Prehensile, which involves moving
the object without grasping it. Prehensile actions are often used in manufacturing, packaging, and

53

assembly processes where the robot needs to handle and manipulate objects of various shapes and sizes.
On the other hand, non-prehensile actions are typically used when the object is too fragile or oversized
to be picked up by the robot’s gripper. Instead, the robot uses other methods, such as pushing, pulling,
sliding, or rolling, to move the object around. Non-prehensile manipulator actions are commonly used in
warehouse automation, sorting, and material handling applications.

Path planning for manipulators involves finding a collision-free path for a robot arm or manipulator to
follow as it moves from its current state to a desired state. This state could be a set of predefined joint
angles or end-effector positions. Any trajectory sent to a manipulator to be followed must satisfy the
dynamic and kinematic constraints, such as joint angle and velocity limits, as well as the workspace
bounds in which it operates. These constraints come from the motion planner, which calculates the
joint velocities necessary for executing the high-level path. A few commonly-used approaches to path
planning for manipulators include the following:

• Sampling-based Methods: These methods randomly sample the robot’s configuration space (i.e.,
the set of all possible positions and orientations) and attempt to find a collision-free path by
connecting the samples. Examples of sampling-based methods include Rapidly-exploring Random
Trees(RRTs)[17] and Probabilistic Roadmaps (PRMs)[50].

• Search-based Methods: These methods search for a path through the configuration space using a
search algorithm, such as A*[18] or Dijkstra’s algorithm. Search-based methods can be combined
with heuristics to reduce the search space and improve performance.

• Optimization-based Methods: These methods formulate the path planning problem as an optimiza-
tion problem, where the objective is to find the shortest path that satisfies certain constraints (e.g.,
collision avoidance). Optimization may be performed by gradient-based updates or by sampling
potential candidates from a distribution and updating the distribution itself after evaluating the cost
of the candidates.

In this chapter, we will explore optimization-based methods for path planning for manipulators. The
intuition behind this choice is derived from the following ideas:

• Sampling-based methods or search-based methods may take a very long time to return an end-
to-end path for complex scenes, such as cluttered tabletops. Optimization-based approaches,
especially long-horizon planning, can return sub-optimal end-to-end trajectories very quickly and
iteratively improve on them.

• Optimization-based methods can handle a variety of objectives, including collision avoidance, joint
cost, and kinematic limits, which would merely be heuristics for the other methods. Search-based
and sampling-based methods are restricted to a discrete solution space by virtue of their design, and
if our samples do not include the most optimal solution, they will return sub-optimal trajectories.
However, optimization-based techniques can adapt along the iterations to converge to the most
optimal solution.

54

Sections 2.5.4 and 2.5.5 provide a background of standard gradient-based, and sampling-based
optimization approaches for robot manipulation, respectively. Stochastic optimization includes the
speed of sampling-based planners and the optimality guarantee of optimization frameworks to generate
trajectories for manipulators. We adopt an improved version of stochastic trajectory optimization from
Section 2.5.5 for our purpose and incorporate it into a bi-level push planner for manipulators. The
contributions of this chapter are twofold:

1. Designing a fast, obstacle-agnostic collision-aware high-level global path planner using stochastic
trajectory optimization for manipulators

2. Coupling this high-level planner with a low-level push planner to enable the manipulator to perform
long-horizon non-prehensile actions, such as pushing an object on a table by striking.

4.2 High-level Global Planning for Manipulators

In this section, we introduce the basics of a high-level path planning algorithm, Via-Point Stochastic
Trajectory Optimization(VP-STO)[13], and design a suitable joint-space cost function incorporating
collision avoidance. We show a few simulation results of our high-level global planner on the Universal
Robots, UR5e robot arm, and the Franka Emika Panda robot arm, both of whose kinematics have been
discussed in Section 2.5.1.

4.2.1 Via-Point Stochastic Trajectory Optimization(VP-STO)

Via-Point Stochastic Trajectory Optimization(VP-STO)[13] fits different candidate trajectories sat-
isfying the start and goal constraints to perform stochastic optimization over a cost function. VP-STO
computes N via points between the start and the goal by sampling them from a multivariate Gaussian dis-
tribution and fits trajectories satisfying the kinematic constraints of the robot and the workspace passing
through them. The costs corresponding to these trajectories are then evaluated, and the trajectories are
ranked in their order of cost. Finally, the parameters of the sampling distribution are updated using the
Covariance-Matrix Adaptation Method (CMA-ES). The benefit of the CMA-ES approach over standard
Cross-Entropy Methods(CEM) lies in the following factors:

• Better handling of non-linearities: CMA-ES is known for its ability to handle non-linear optimiza-
tion problems, which are common in manipulator planning. Conversely, CEM tends to struggle
with non-linearities, which can result in slower convergence and suboptimal solutions.

• Adaptive step size: CMA-ES uses an adaptive step size to adjust the search direction and step size
during optimization, which helps to avoid getting stuck in local optima. Conversely, CEM uses a
fixed step size, which can lead to premature convergence and suboptimal solutions.

55

• Better exploration of search space: CMA-ES uses a probabilistic approach to explore the search
space, which helps to avoid getting stuck in local optima and to find the global optimum. CEM, on
the other hand, uses a deterministic approach, which can lead to poor exploration of the search
space.

The overall optimization pipeline in VP-STO is denoted in Figure 4.1. The cost function can be
represented as the following:

min

∫ 1

0
q′′(s)T q′′(s)ds (4.1a)

s.t q(sn) = qn, n = 1, .., N (4.1b)

q(0) = q0, q
′(0) = q′0, q(1) = qT , q

′(1) = q′T (4.1c)

Figure 4.1: The end-to-end pipeline for Via-Point Stochastic Trajectory Optimization(VP-STO). Source:

[13]

.

Here sn denotes the scaled via point timings sn = tn/T , which are uniformly distributed between
(0, 1). q(s) is a weighted sum of basis functions. T is the total movement duration. Now, given the
via-points qvia and the boundary conditions q0, v0, qT , vT , the computation of the explicit continuous
trajectory only depends on T . VP-STO approximates T by solving for the minimum positive duration
such that the resulting velocity and acceleration limits are satisfied over a discrete set of evaluation points
uniformly distributed in the continuous time space.

For each evaluation point sk, there exists a closed-form solution Tk such that the motion happens
through q0, qT , qvia, and the robot arm reach either the velocity limit or the acceleration limit at time
t = sk. VP-STO then picks the most conservative duration among the K solutions for T : T (qvia) =

max(Tk) to make sure that the velocity and acceleration constraints are satisfied at all evaluation points.
Once T is known, q(s) is found using the equations for q0, qT , qvia, v0, and vT .

VP-STO optimizes the trajectory by minimizing a cost function that captures the tradeoff between
smoothness, efficiency, and safety. We can adapt it for various applications based on the design of the cost
function that VP-STO minimizes. In this dissertation, we adapt the VP-STO algorithm for manipulator
pushing tasks on a tabletop and pair it with a low-level push planner in Section 4.3.

56

4.2.2 Collision Detection

Collision detection for a robot manipulator needs to be performed on two fronts - self-collision, which
involves collisions among the robot’s links, and environment collision, which includes collisions between
the robot links and objects in the environment. Note that the contact between the robot’s end-effector
and the target object to be moved on the table is not considered a collision. We have already discussed
standard distance-based collision avoidance for manipulators in Section 2.3.3.1. Let us now analyze the
drawbacks of these existing approaches.

As discussed in Section 2.3.3.1, one way of checking for collisions is to sample points uniformly
along the robot body and compute pairwise distances among them(for self-collision) and with other
objects in the environment. If the computed distance exceeds the threshold separation determined by the
geometries of the robot body and the objects, the point is collision-free. The difficulty with this approach
arises due to its reliance on the knowledge of the exact geometries of the robot and the other objects.
This makes it hard to generalize this approach across a range of objects of different shapes and sizes on
the table and to robots with various dynamics. Learning implicit representations of objects also runs
into the same generalizability issue. Thus the necessity of a standardized approach capable of detecting
collisions agnostic to object and robot geometries becomes evident.

4.2.2.1 PyBullet Mesh Overlap:

In this chapter, we will adopt a different approach called Mesh Overlap, that attempts to solve this
problem of collision avoidance in a simulator setting. The simulator of our concern is PyBullet, which is
a physics simulation engine that can be used to simulate robots and other complex systems in 3D. To use
PyBullet to load 3D robots into a simulation scene, one can follow this general sequence of steps:

1. Define the robot model: Start by defining the geometry, mass, and other properties of each link and
joint in the robot model. This can be done using the URDF (Unified Robot Description Format)
file format.

2. Load the robot model: Once we have defined the robot model, we can load it into PyBullet using
the loadURDF function. This function takes as input the path to the URDF file and returns a unique
identifier for the robot in the simulation.

3. Visualize the robot: We can visualize the robot in PyBullet using the render function. This function
generates a 3D mesh of the robot model and displays it in a window.

4. Simulate the robot: We can simulate the robot’s behavior by applying forces and torques to its
joints using the {setJointMotorControl2} function. This function allows us to specify the
desired position, velocity, or torque for each joint in the robot model.

57

5. Collect data: During the simulation, we can collect data on the robot’s position, velocity, and other
properties using the {getBasePositionAndOrientation} and {getJointState}

functions. This data can be used for analysis and control purposes.

As discussed in point 3, the simulator contains the robot model as a set of geometric meshes. Similarly,
the simulator loads geometric meshes into the scene for objects in the environment. An overlap between
two object meshes indicates a collision between them. We can, thus, detect collisions using PyBullet’s
inbuilt collision detection feature based on the overlap between the meshes of the robot and the obstacles
or between the meshes of robot links. PyBullet is equipped with the feature to detect collision by detecting
mesh overlap and penetration depth between meshes through the function {getCollisionFn}. An
example of mesh overlap and subsequent collision detection in PyBullet is depicted in Figure 4.2.

Figure 4.2: Collision Detection through Mesh Overlaps in the PyBullet simulator. Source: https:

//github.com/yijiangh/pybullet_planning_tutorials

To explain PyBullet’s inbuilt collision detection through code, let us analyze the standard use of the
getCollisionFn as follows:

collision_fn = get_collision_fn(robot, ik_joints, obstacles,

self_collisions=True, disabled_collisions=self_collision_links)

print (collision_fn(joint_poses, diagnosis = True))

We send the robot model, list of movable joints, and list of obstacle models to the getCollisionFn,
along with a few Boolean flags. selfCollisions indicates whether to detect self-collisions among
the robot link meshes, disabledCollisionFn relaxes the collision detection between mesh pairs
that are not counted as a collision, for example, between the end-effector and the target object being
moved. getCollisionFn returns a Boolean flag for a given snapshot of joint poses, indicating
whether it has been able to detect a collision or not. The diagnosis flag indicates whether we want to
visualize the detected collision in the PyBullet GUI.

58

https://github.com/yijiangh/pybullet_planning_tutorials
https://github.com/yijiangh/pybullet_planning_tutorials

4.2.3 Joint-Space Path Planning

The design of the cost function for VP-STO determines its application to the task at hand. For
non-planar end-effector motion, such as grasping and pick-and-place operations, we perform global
path-planning in the joint angle space. Recall from Section 2.5.1 that the Franka Emika Panda robot
has seven movable joints, while the UR5e robot has six. To represent the joint angle movements and
perform path-planning in the joint space, we need to plan in 7-D for the Franka Panda manipulator and
6-D for the UR5e manipulator. Joint-space planning allows us to also introduce joint limits as constraints
into the optimization problem based on the robot dynamics. Note that we can design discontinuous
non-differentiable cost functions since VP-STO never computes the gradient of the cost function but
relies on stochastic optimization. We design a cost function for VP-STO as a sum of the following terms:

1. Cost Limits: This is defined as the frequency of violation of joint limits while executing a
joint-space trajectory.

2. Cost curvature: Curvature cost aims to shorten the arc length (refer to Section 2.3.4 for arc-length
definition) of the joint-space trajectory to ensure short trajectories.

3. Joint Cost: Joint cost is defined as the norm of the difference in joint angles over successive
timestamps. In essence, joint cost captures the effort expended by the robot to perform some task
by changing its joint angles.

4. Cost Collision: This is a discrete cost, consisting of a very high-cost value C if a collision is
detected, or 0 otherwise.

Collision Cost =

C if collision = True

0 otherwise
(4.2)

4.2.4 Simulation Results for Joint-Space Path Planning

We test the VP-STO-based global joint-space path planner using the cost function defined in Section
4.2.3 in PyBullet for a few scenarios involving one or two obstacles of varied sizes. The results of a few test
simulations can be found at: https://www.dropbox.com/scl/fo/t1dy47cgz2rvmedj9a87o/
h?dl=0&rlkey=ou4losxv0i9lawc2wffnk60vl. Figure 4.3 shows an example trajectory from
our simulator runs for the Universal Robots UR5e robot arm.

4.2.5 Path Planning for Pushing Objects on a Table

For the planar motion of the manipulator’s end-effector, such as pushing an object along a table,
we can discard the high-dimensional joint space path planning in favor of a simpler Cartesian-space
motion of the end-effector. Thus the path planning for the end-effector can be performed in the Cartesian
end-effector space, which would be 2-D in the case of planar tabletop motion. The end-effector can be

59

https://www.dropbox.com/scl/fo/t1dy47cgz2rvmedj9a87o/h?dl=0&rlkey=ou4losxv0i9lawc2wffnk60vl
https://www.dropbox.com/scl/fo/t1dy47cgz2rvmedj9a87o/h?dl=0&rlkey=ou4losxv0i9lawc2wffnk60vl

Figure 4.3: (a) A few examples of trajectories obtained after joint-space trajectory optimization using

VP-STO simulated in PyBullet. (b) The associated cost function plots during the optimization iterations.

VP-STO is able to minimize the cost function, which can be denoted by the reducing trend in the cost

plots.

considered a circular holonomic robot in 2-D of diameter, equivalent to the separation between the fingers
of the gripper plus the finger widths. This approximation makes it possible to use standard holonomic
robot path-planning algorithms and stochastic optimizers like VP-STO to plan the end-effector trajectory.
We can further simplify this by planning 2-D trajectories for the center of the object being pushed on
the table instead of directly the end-effector, particularly in cases where only brief contacts or pushes
by striking are allowed between the end-effector and the object. In such cases, it is not enough for
the end-effector to reach the desired goal position. Rather, the object should be able to reach the goal
position, and an efficient push planner should be designed to determine the controls necessary for the
manipulator to push the object along the planned trajectory. An example of a 2-D trajectory for an object
being pushed on a table by a manipulator is shown in Figure 4.4.

60

Figure 4.4: 2-D Trajectory of an object being pushed by a Manipulator. Here the red-shaded manipulator

denotes its start pose, and the green-shaded manipulator denotes its final pose. The blue cubes indicate

obstacles (collision objects) on the table. The end-effector motion happens along the plane of the black

table as the object moves from the start to the goal position. The yellow line denotes the trajectory of the

center of the object being pushed.

4.2.5.1 Analysis of Joint Costs associated with Cartesian-space trajectories for pushing objects

For manipulators, in addition to the performance metrics discussed in Section 2.3.4, joint cost becomes
a crucial metric for benchmark comparison. Joint cost is defined as the norm of the difference in joint
angles over successive timestamps. In essence, joint cost captures the effort expended by the robot to
perform some task by changing its joint angles, and therefore, the goal of an efficient trajectory optimizer
would be to minimize the joint cost incurred by the robot arm to complete a given task. For joint-space
path planning, it is easy to incorporate the differences between successive joint angles for each joint-space
trajectory. However, if we are planning in the Euclidean end-effector space or in the space of the center
of the object being pushed on the table, minimizing just the Euclidean length of the trajectory may not
be sufficient; it is important to check for the joint effort to execute an end-effector trajectory or push
an object along a planned trajectory. Table 4.1 demonstrates that the shortest object-center trajectory
in terms of Euclidean length, i.e., straight-line trajectory, does not always guarantee the least joint
cost; in fact, the trajectory returned by VP-STO optimizing over joint-cost is more optimal in terms of
joint effort for the same number of waypoints. To compute joint cost, we need to execute the planned
object-center trajectory using a push planner and obtain the joint angles. For real robots, we can use
manipulator-specific analytical Inverse Kinematics(IK) solvers[51] to convert end-effector positions to
joint angles.

61

Table 4.1: Comparison of Joint Costs associated with different types of object-center trajectories using

our push planner from Section 4.3.4.1.

Start Posi-

tion(m,m)

End Posi-

tion(m,m)

Trajectory Type Num WayPoints Joint Cost

(0.35, -0.05) (0.5, 0.1) Straight line 8 48.0866966147044

(0.35, -0.05) (0.5, 0.1) 2-piecewise straight lines 8 53.2750370301563

(0.35, -0.05) (0.5, 0.1) VP-STO 8 39.5423031834928

(0.4, -0.15) (0.63, 0.05) Straight line 8 83.0072021138549

(0.4, -0.15) (0.63, 0.05) 2-piecewise straight lines 8 113.146020007934

(0.4, -0.15) (0.63, 0.05) 3-piecewise straight lines 8 115.673830244566

(0.4, -0.15) (0.63, 0.05) 4-piecewise straight lines 8 120.5008919817

(0.4, -0.15) (0.63, 0.05) VP-STO 8 62.1512468250956

(0.5, 0.1) (0.65, -0.05) Straight line 18 88.1713855670522

(0.5, 0.1) (0.65, -0.05) 2-piecewise straight lines 18 100.889302118451

(0.5, 0.1) (0.65, -0.05) VP-STO 18 77.346373

4.3 Bi-Level Optimization for Pushing by Striking

4.3.1 Introduction

Non-prehensile manipulation has typically received less attention in the literature compared to grasp
manipulation. A standard mechanism to robustly push an object from start to goal position while avoiding
colliding with objects on the table does not exist.

A recent work [52] tackles this problem but assumes contact-rich manipulation in which the target
object is attached to the manipulator. This reduces the complexity of the problem by assuming predictable
dynamics - the object moves along with the manipulator. Contact-rich manipulator, however, assumes a
certain type of gripper that may not be feasible for a given use case. We concentrate on non-prehensile
manipulation in an end-effector agnostic manner that assumes the object dynamics to be independent of
the end-effector dynamics. The primary challenge in developing a policy to execute such an action is
the stochastic outcome of pushing an object: in the absence of privileged information like friction, the
weight of the target object, it is impossible to accurately predict the dynamics of the object on a push
action. To tackle this, several works have tried to explicitly model the outcome by training a deep neural
network on a large amount of push-outcome pairs collected via simulation [53, 54, 55]. However, such
explicit modeling results in low generalization, making multi-step long-horizon planning of pushing an
object from start to goal challenging.

Deep reinforcement learning (RL) has shown promising results in various robotics applications in
recent years. RL algorithms learn to perform a task by maximizing a reward signal, which can be a scalar
value that reflects the task’s success or failure; or a dense reward indicating the distance from the goal.

62

However, RL algorithms have high sample complexity [56], and designing the perfect reward function is
tricky, limiting their application in long-horizon scenarios [57] needing complex reward design.

Moreover, RL algorithms trained for long-horizon tasks are hard to generalize across a wide variety
of scene configurations and out-of-distribution object shapes and sizes.

In this work, we tackle the problem of object rearrangement using non-prehensile actions by disentan-
gling the space of control and planning. The path planning module generates a feasible trajectory for the
robot’s end-effector, while the low-level RL motion planner learns to plan the robot’s controls to achieve
the desired task. In our framework, RL acts as an efficient mechanism for understanding the dynamics of
an object on different push actions. Here, the RL motion planner is trained using a simple objective to
push the object quickly to a given goal location.

In this setting, the low-level motion planner is unaware of the collision objects and is dependent on a
high-level planning module to obtain an optimal collision-free trajectory. At the same time, the high-level
planning module predicts the most optimal trajectory for the given RL motion planner. The framework is
trained using bi-level optimization: the high-level planning module is optimized on the cost of execution
of the low-level motion planner.

A global RL policy solves the task of manipulating an object from start to goal position end-to-
end using a single policy. Such a global policy simultaneously solves the control task (understanding
the system’s dynamics) and the planning task (a collision-free optimal trajectory from start to goal).
Compared to training a global RL model for non-prehensile object manipulation, our framework, based
on a bi-level optimization objective, can have several advantages:

1. Better task-specific performance: Non-prehensile object manipulation tasks can be highly varied
and complex, and a single global RL model may not be able to handle all tasks equally well. In
contrast, a bi-level optimization approach can generate task-specific plans optimized for each task,
resulting in better performance.

2. Improved sample efficiency: Non-prehensile object manipulation tasks typically require a large
number of samples to train an RL model effectively. A bi-level optimization approach can reduce
the number of samples required by using the high-level planning module to generate a task-specific
collision-free plan, which can simplify the RL objective to only push to a goal location.

3. Better interpretability: A bi-level optimization approach separates the generation of the task-
specific plan and the low-level actions, making it easier to understand how the system operates and
diagnose issues. In contrast, a global RL model can be more opaque and difficult to interpret.

4. Ability to handle constraints: Non-prehensile object manipulation tasks often have constraints,
such as avoiding collisions or maintaining balance. A bi-level optimization approach can incor-
porate these constraints into the high-level planning module and use them to guide the low-level
actions.

63

In contrast, a global RL model may struggle to handle constraints effectively, as designing an
appropriate reward can be tricky.

4.3.2 Related Work

Push-based non-prehensile manipulation can be divided into push-to-grasp, such as pushing objects
in clutter to make them graspable [53, 54] or sliding an object to the edge of the table [58, 59] and
push-to-goal to push an object from a start to a goal position [52, 60, 61, 55]. The latter line of work can
further be classified as contact-rich manipulation either by sliding by the top [62, 63, 60, 52] or by the
side [61].

We aim to tackle push-to-goal through push-by-striking manipulation. Push-by-striking loses the
contact-rich assumption and thus disentangles the dynamics of the object from the manipulator dynamics
removing the constraints in the type of end-effector - as the end-effector strikes an object, the outcome of
the object state is independent of the end-effector state.

RL has been applied in various robotics applications, including grasping [64, 65, 66], manipulation [67,
68], and locomotion [69, 70]. Recently there has been a lot of work [71, 72, 73] on combining RL with
classic controllers and primitives to improve their performance. RL-based methods have also shown
promising results in performing non-prehensile object manipulation tasks. For instance, Tan et al.[74]
proposed a hierarchical RL method for non-prehensile object manipulation, where the high-level policy
generates a sequence of subtasks, and the low-level policy learns to execute each subtask. Zhang et
al.[75] proposed a hierarchical RL framework that combines the advantages of both model-based and
model-free methods for non-prehensile object manipulation.

Path planning algorithms are also widely used in robotics applications, including object manipula-
tion =[76, 77, 78]. Path planning algorithms generate a feasible trajectory for the robot to perform the
task. Various path-planning algorithms have been proposed, including sampling-based methods[76] and
optimization-based methods[77]. While other path-planning approaches would build a path without
considering the capabilities of the lower-level motion planner, our trajectory optimization model samples
optimal trajectories by considering the capability of our low-level RL motion planner. Our neural network
is aware of the limitations and capabilities of the lower-level RL motion planner.

4.3.3 Task Specification

We consider the task of pushing a target object from an initial pose to a goal pose on a tabletop scene
with multiple movable collision objects. The environment consists of a planar surface with dimensions
of 0.8m × 0.8m, upon which up to four movable objects are randomly placed. The target object is a
rectangular block with dimensions 0.05m × 0.05m × 0.1m, and the robot manipulator is a Franka-Panda
arm with a two-fingered gripper; however, our framework is independent of the type of gripper and can
be extended to any end-effector setting (point contact, area contact, contact-rich, etc.). The manipulator

64

PUSH PLANNER

Figure 4.5: Our bi-level optimization framework solves the task of non-prehensile object manipulation

in a cluttered tabletop rearrangement scene. We make use of a low-level RL motion planner that is

trained to reach a short goal. The high-level planning module predicts a set of waypoints optimal for

the low-level RL motion planner to execute. The purple and brown objects indicate obstacles (collision

objects); dark-blue squares indicate the target object, and the light-blue squares indicate the trajectory the

RL motion planner takes between a set of intermediate waypoints predicted by the high-level planning

module.

interacts with the environment by pushing the target object, using the tip of the arm as the pushing point.
The goal location is specified as the pose of the target object on the given tabletop scene.

4.3.4 Proposed Framework

Our proposed approach involves two modules: a path-planning module and a low-level RL motion
planner. The path planning module generates an optimal collision-free trajectory for the robot’s end-
effector, while the low-level RL motion planner plans the robot’s controls to accomplish the task
objectives. Fig. 4.5 illustrates the proposed approach.

4.3.4.1 Low-level RL Push Planner

Our RL motion planner learns to simply push a target object from a start to a goal location on a
tabletop scene. Our push planner is trained without any obstacles on the table and is optimized to
approach the goal location quickly. Our state space consists of the set of poses taken by the target object,

65

which is being pushed by the RL motion planner. The action space is defined as a set of 8 discrete
equidistant points on the perimeter of the target object and eight different push angles at each of these 8
points. The objective of this RL push planner is to learn a policy that maximizes the expected cumulative
reward, where the reward is the dense negative distance from the current pose to the goal location. The
distance metric is the Euclidean distance between the centroid of the target object and the goal location.

Formally, the state space is represented by S ∈ R6, where each element of the state vector represents
the position and orientation of the target object. The action space is represented by A ∈ R16, where each
action is a combination of a point on the object and a push angle. Let st ∈ S, and at ∈ A denote the
state and action at time step t, respectively. The state transition is deterministic, and the next state st+1 is
computed as the result of applying the push action to the current state st.

The reward function is defined as

r(st, at) = −γ|| C(st)− G ||2 (4.3)

where γ is a discount factor, C(st) is the centroid of the target object in the current state, and G is the
goal location. The negative distance metric encourages the push planner to minimize the distance to the
goal location. The discount factor balances the tradeoff between short-term and long-term rewards.

The RL motion planner learns a policy π(st) that maps states to actions by maximizing the expected
cumulative reward. The optimal policy is obtained by solving the Bellman equation, which is given by:

Q(st, at) = r(st, at)

+ γ
∑
st+1

P (st+1|st, at)max
at+1

Q(st+1, at+1)
(4.4)

where Q(st, at) is the state-action value function, P (st+1|st, at) is the transition probability, and
maxat+1 Q(st+1, at+1) is the maximum expected future reward. The policy is then derived from the
optimal value function:

π(st) = argmax
at

Q(st, at) (4.5)

To learn the optimal policy, we employ a deep Q-learning algorithm that uses a neural network to
approximate the value function. The network takes the state as input and outputs the value for each
action in the action space. We use the Adam optimizer to minimize the mean squared error between the
predicted and target Q-values.

4.3.4.2 High-Level Path Planning Module

The high-level planner generates a feasible trajectory for the object being pushed by the manipulator,
taking as input the initial and final configurations of the object and producing a sequence of intermediate
via points that the low-level motion planner must push it along. In our case, it is important to plan the
high-level trajectory for the object instead of the manipulator itself, as is done in the case of contact-rich
manipulation. This is because the behavior of the manipulator and the object being pushed are different.

66

Pushing in a contact-impoverished manipulation task, the robot’s end-effector only contacts the object
briefly to give it a push, and the object continues to move without being directly contacted by the
manipulator. Due to this, it is not straightforward to predict the object’s trajectory based solely on the
manipulator’s motion, making it more challenging to plan a trajectory directly for the manipulator. It is
noteworthy that planning the high-level trajectory for the object, as opposed to the manipulator, provides
a robust and gripper-agnostic algorithm that accounts for the mismatches between the manipulator’s
motion and the object’s movement due to striking.

The predicted via points are collision-free and ensure the object can be pushed toward the goal
location without encountering obstacles. For high-level planning, we use the VP-STO algorithm, a
stochastic sampling-based optimization method. VP-STO evaluates candidate trajectories by estimating
the per-iteration cost function on a simulator running the low-level RL motion planner, which effectively
captures the manipulator and environment dynamics. The cost function incorporates joint cost, collision
cost, and boundary cost, as explained in the following section.

4.3.5 Designing the bi-level optimization objective

As shown in Fig. 4.5, the high-level planning module predicts an optimal trajectory for the end-effector.
In other words, the predicted trajectory, T , comprising of a set of via-points, V , is optimal in terms of the
manipulator’s joint cost, J , as it tries to execute the trajectory.

To obtain the optimal trajectory for a given scene made of multiple obstacles, VP-STO optimizes the
following cost objective, J computed as:

J(π,V) = αJ + βX + γB (4.6)

where π is our low-level RL policy as defined in Sec. 4.3.4.1. X and B are the collision and out-of-
boundaries cost, respectively. α, β, and γ are the scaling parameters to normalize the three metrics. J is
calculated based on the first-order change in the manipulator’s joint angles, while the collision cost, X ,
reflects the change in obstacle positions in the scene. The out-of-boundary cost, B, is calculated as the
frequency of workspace boundary violations. Note that the joint angles are obtained after simulating the
manipulator’s movement using the low-level RL motion planner in PyBullet. For each of the via-point
{vi}K−1

i=1 ∈ V , the RL motion planner is executed to push the object from vi to vi+1; here K is the number
of via-points predicted by the planning module. The total joint cost is then computed as:

J =
K−1∑
i=1

j(vi, vi+1) (4.7)

where j indicates the local cost of moving the target object between the intermediate via points. Further-
more, our approach mainly focuses on the pushing behavior of the manipulator on the plane of the table;
collisions can be assumed to be marked by positional displacements of obstacles according to the task
specification in Section 4.3.3.

67

Figure 4.6: Trajectories predicted by our framework. Our framework successfully avoids trajectories and

is conservative when choosing a path. Note that the positions shown here are placeholders to indicate the

locations of the centers of various objects. (a) shows a trajectory with a simple case of a single collision

object, and (b) shows a more complicated case when multiple collision objects exist. The obstacle sizes

are so big that it is not possible for the manipulator to go between them, so it takes an alternate route

around the obstacles. (c) shows a case with an elongated obstacle. Even though the trajectories may not

look the most optimal in terms of Euclidean distance, these trajectories are near-optimal with respect to

joint and collision costs. Refer to Table 4.1 for the analysis of joint costs vs. Euclidean distance for 2-D

trajectories.

4.3.6 Simulation Results

We test our bi-level optimizer on a few tabletop scenarios involving one or more obstacles of varied
shapes and sizes in the PyBullet simulator. Figure 4.6 shows the trajectories predicted by our bi-level
approach while avoiding collisions and minimizing joint cost within the workspace bounds. Figure 4.7
indicates the predicted trajectory when run in the PyBullet simulator using our low-level push planner.
Additional simulation results on other test cases can be found at https://www.dropbox.com/sh/
mf8j0kq4mv53wct/AABVdITIHCfNBtqHMphnJcSia?dl=0.

4.4 Discussions

In this chapter, we adapted the Via-point-based Stochastic Trajectory Optimization(VP-STO) trajectory
optimizer for manipulator path planning tasks, using PyBullet’s mesh overlap technique to detect
collisions. We presented a few simulation results obtained from joint-space trajectory planning using
VP-STO. We then proposed a framework for disentangling non-prehensile long-horizon manipulation
into path planning and motion control. Our approach predicts a collision-free trajectory using VP-STO
and simplifies the motion planning component’s task by reducing it to moving the object toward the next
via point. In the future, one can reduce the planning time for our offline bi-level optimizer by curating a
dataset of start-goal pairs and their optimal trajectories. A neural network can be trained to learn these

68

https://www.dropbox.com/sh/mf8j0kq4mv53wct/AABVdITIHCfNBtqHMphnJcSia?dl=0
https://www.dropbox.com/sh/mf8j0kq4mv53wct/AABVdITIHCfNBtqHMphnJcSia?dl=0

(a) (b)

Figure 4.7: (a) Trajectories predicted by our framework simulated in PyBullet with our low-level RL push

planner. The blue boxes on the black table indicate collision objects(obstacles), and (b) The top-view of

the object motion as a result of executing the trajectory.

configuration-to-trajectory mappings and can be used in real-time during inference to obtain optimal
manipulator trajectories quickly. Further, more ablation studies can be performed by replacing the
optimizer and the push planner in our bi-level optimization framework. Overall, our proposed framework
is a promising step towards achieving more efficient and flexible non-prehensile manipulation.

69

Chapter 5

Conclusions

This dissertation discusses various optimization techniques for the high-dimensional trajectory opti-
mization of robots. We tackle two complex robot systems - multi-robot systems with a large number of
robots planning start-to-goal collision-free trajectories and robot manipulators operating in n-dimensional
joint spaces formed by n joints. By suitable design of objective functions, choice of optimization
paradigm, and mathematical approximations, our proposed path-planning methods aim to solve otherwise
computationally intractable trajectory optimization problems. We present two major contributions - a
GPU-accelerated distributed multi-agent trajectory optimizer and a stochastic trajectory optimizer for
robot manipulators.

For the GPU-accelerated multi-agent trajectory optimizer, we leverage parallelism offered by GPUs
and mathematical reformulations to convert a complex Quadratic Programming(QP) optimization problem
into a simple set of matrix-matrix products. We have outperformed existing state-of-the-art algorithms in
various multi-robot planning scenarios with varied numbers of robots, obstacles, and their configurations.
Beyond just computational acceleration, we also achieve comparable trajectory quality against our
benchmarks and show how our optimizer achieves an improving performance gap with respect to them
as the complexity of the planning task increases. 1

For manipulator trajectory generation, we adapt the existing Via-Point-based Stochastic Trajectory
Optimization(VP-STO) method with a suitably-designed cost function to plan collision-free paths in the
joint space. We leverage PyBullet’s mesh overlap-based collision detection to design our collision cost
function. We demonstrate the efficiency of our approach through simulations in PyBullet for different
manipulators such as UR5e and Franka Emika Panda. We then couple this high-level path planner with
a low-level Deep Reinforcement Learning(RL) based push planner to solve the non-prehensile task of
pushing an object on a 2-D tabletop. We present results obtained from the bi-level trajectory optimizer
for different shapes and numbers of obstacles on the table.

Beyond computational speed-up, we demonstrate in Section 3.5.1 and 3.5.2 a few additional ap-
plications of our multi-agent optimizer, in improving the quality of trajectories given by multi-agent

1The software package for our GPU-accelerated distributed multi-robot optimizer has been made publicly available at
https://github.com/susiejojo/distributed_GPU_multiagent_trajopt.

70

https://github.com/susiejojo/distributed_GPU_multiagent_trajopt

collision-avoidance methods such as Reciprocal Velocity Obstacle(RVO) and Multi-agent Pathfind-
ing(MAPF) Methods. This shows that our algorithm, when coupled with other planning algorithms as
initializations, can improve the quality of trajectories planned by them. Beyond holonomic robots, our
algorithm can also be extended to non-holonomic robot systems and even to high-dimensional robots
such as manipulators. Similarly, our bi-level trajectory optimization algorithm for manipulators can be
used as a teacher to train artificial neural networks to learn optimal paths from a given start position to
an intended goal position. This approach could ultimately make the goal of real-time path planning for
robot manipulators a reality.

In the entirety, we believe that the contributions of this dissertation will help solve path-planning
problems for a wide variety of complex robot systems and will serve as inspiration to enable robots to solve
tasks ranging from simplifying our daily household work to industrial labor and defense applications.

71

Appendix A

Distributed GPU-accelerated Multi-Agent Joint Trajectory Optimizer:

JAX NumPy and Initializations

A.1 JAX NumPy: Usage Tutorial

JAX is a Python library developed by Google that provides an easy and efficient way to perform
numerical computations on a GPU, particularly those involving large matrices and tensors. JAX uses a
technique called Just-In-Time (JIT) compilation, which compiles the Python code into optimized machine
code that can run on the GPU. This allows JAX to take advantage of the parallelism offered by the GPU,
making computations much faster than if performed on the CPU.

One of the key features of JAX is its ability to differentiate functions automatically. JAX also provides
a set of linear algebra operations optimized for GPU acceleration, including matrix multiplication,
matrix-vector multiplication, and matrix inversion. To perform matrix operations using JAX, one first
needs to create arrays or tensors containing the matrix data and then use the JAX linear algebra functions
to perform matrix operations.

Using the JAX NumPy library involves a minor change in standard NumPy Python code by replacing
most NumPy function calls with JAX NumPy calls. For example, to define a 2-D tensor of zeroes of
shape (5, 3) in JAX NumPy, we would do the following:

import jax.numpy as jnp

new_arr = jnp.zeros((5,3))

To use the JIT feature of JAX NumPy, we can think of JIT as a decorator that accepts functions
operating on JAX arrays and their arguments as static arguments. For example, if we have a function
’addJAX’ defined over JAX NumPy arrays, we would tell the Python interpreter to use JIT compilation
for this function as follows:

from jax import jit

add_jit = jit(addJAX)

72

Table A.1: Comparison of multi-agent path planning times using different mathematical libraries

Number of Robots Planning time(in sec) Library

4 0.0050 NumPy

8 0.0049 NumPy

16 0.0046 CuPy

32 0.0046 JAX NumPy

32 0.267 NumPy

32 0.0049 CuPy

64 0.0047 JAX NumPy

JAX NumPy does not allow tensor slicing or direct indexing but instead uses the C++ style ‘at’
function to access tensor elements by index. In addition, JAX tensors are immutable, i.e., they cannot
be edited in place. Please refer to the official documentation of JAX NumPy for further details on JAX
methods at https://jax.readthedocs.io/en/latest/jax.numpy.html

A.2 Comparison of different off-the-shelf GPU-based tensor manipulation

libraries

For the centralized joint trajectory optimization problem for multiple holonomic robots, we implement
the path planning algorithm using three different off-the-shelf open-source Python libraries - vanilla
NumPy, JAX NumPy, and CuPy. The latter two libraries use accelerated tensor computations to achieve
computational speed-up in computing large tensor operations, such as matrix multiplications, inverses,
etc. As discussed in Appendix A.1, JAX NumPy leverages GPU acceleration for CUDA-based tensor
computations, and so does CuPy. Table A.1 compares the time taken to plan start-to-goal offline
trajectories for a varying number of robots using the same core centralized trajectory optimization
approach.

Table A.1 shows that compared to NumPy, JAX NumPy achieves a computational acceleration of
around 60 times over vanilla NumPy by leveraging GPU computations. Further, the planning time for 32
as well as 64 robots are similar, indicating that the JAX-based implementation of the algorithm remains
nearly constant regardless of the increase in the number of robots, or, in other words, an increase in
the size of the matrices used in the optimization process. For CuPy, we observe a similar trend in the
planning time, where between 16 and 32 robots, the computation time remains nearly constant as well.

73

https://jax.readthedocs.io/en/latest/jax.numpy.html

Related Publications

1. Guhathakurta, D., Rastgar, F., Sharma, M. A., Krishna, K. M., & Singh, A. K. (2022). Fast
Joint Multi-Robot Trajectory Optimization by GPU Accelerated Batch Solution of Distributed
Sub-Problems. Frontiers in Robotics and AI, 9. doi:10.3389/frobt.2022.890385

2. Guhathakurta, D., Rastgar, F., Sharma, M. A., Krishna, M., & Singh, A. K. (2022). GPU
Acceleration of Joint Multi-Agent Trajectory Optimization. Poster presented at IROS 2022
workshop on Decision Making in Multi-Agent Systems(DMMAS), Kyoto, Japan.

3. Mandadi, V. R., Saha, K., Guhathakurta, D., Qureshi, M. N., Agarwal, A., Sen, B., Das, D.,
Bhowmick, B., Singh, A. K., & Krishna, M. (2023). Disentangling Planning and Control for
Non-Prehensile Tabletop Manipulation. Accepted at IEEE International Conference on Automation
Science and Engineering (CASE) 2023.

74

Bibliography

[1] Jungwon Park, Junha Kim, Inkyu Jang, and H. Jin Kim. Efficient multi-agent trajectory planning
with feasibility guarantee using relative bernstein polynomial, 2020.

[2] Fatemeh Rastgar, Houman Masnavi, Jatan Shrestha, Karl Kruusamäe, Alvo Aabloo, and Arun Ku-
mar Singh. Gpu accelerated convex approximations for fast multi-agent trajectory optimization.
IEEE Robotics and Automation Letters, 6(2):3303–3310, 2021.

[3] Jur van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles for real-time
multi-agent navigation. pages 1928–1935, 05 2008.

[4] Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant. Conflict-based search for optimal
multi-agent pathfinding. Artificial Intelligence, 219:40–66, 02 2015.

[5] Thi Thoa Mac, Cosmin Copot, Duc Trung Tran, and Robin De Keyser. Heuristic approaches in
robot path planning: A survey. Robotics and Autonomous Systems, 86:13–28, 2016.

[6] Yufan Chen, Mark Cutler, and Jonathan P How. Decoupled multiagent path planning via incre-
mental sequential convex programming. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 5954–5961. IEEE, 2015.

[7] Yufan Chen, Mark Cutler, and Jonathan P How. Decoupled multiagent path planning via incre-
mental sequential convex programming. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 5954–5961. IEEE, 2015.

[8] Carlos E Luis, Marijan Vukosavljev, and Angela P Schoellig. Online trajectory generation with
distributed model predictive control for multi-robot motion planning. IEEE Robotics and Automation
Letters, 5(2):604–611, 2020.

[9] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srinivasa. Chomp: Gradient
optimization techniques for efficient motion planning. In 2009 IEEE International Conference on
Robotics and Automation, pages 489–494, 2009.

[10] John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, and Pieter Abbeel.
Trajopt.

75

[11] Mohak Bhardwaj, Balakumar Sundaralingam, Arsalan Mousavian, Nathan Ratliff, Dieter Fox, Fabio
Ramos, and Byron Boots. Storm: An integrated framework for fast joint-space model-predictive
control for reactive manipulation. 2021.

[12] Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan Achterhold, Joerg Stueckler, Michal
Rolinek, and Georg Martius. Sample-efficient cross-entropy method for real-time planning. In
Conference on Robot Learning 2020, 2020.

[13] Julius Jankowski, Lara Brudermüller, Nick Hawes, and Sylvain Calinon. Vp-sto: Via-point-based
stochastic trajectory optimization for reactive robot behavior, 2022.

[14] Mehmet Acikgoz and Serkan Araci. On the generating function for bernstein polynomials. AIP
Conference Proceedings, 1281:1141–1143, 09 2010.

[15] Arun Kumar Singh and K. Madhava Krishna. Reactive collision avoidance for multiple robots by
non-linear time scaling. In 52nd IEEE Conference on Decision and Control, pages 952–958, 2013.

[16] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan Schaal. Stomp:
Stochastic trajectory optimization for motion planning. pages 4569–4574, 05 2011.

[17] Steven M. LaValle. Rapidly-exploring random trees : a new tool for path planning. The annual
research report, 1998.

[18] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

[19] Huanwei Wang, Shangjie Lou, Jing Jing, Yisen Wang, Wei Liu, and Tieming Liu. The ebs-a*
algorithm: An improved a* algorithm for path planning. PLOS ONE, 17:1–27, 02 2022.

[20] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-based search for optimal
multi-agent pathfinding. Artificial Intelligence, 219:40–66, 2015.

[21] Ryan Luna and Kostas E. Bekris. Push and swap: Fast cooperative path-finding with completeness
guarantees. In International Joint Conference on Artificial Intelligence, 2011.

[22] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. Jax: composable transformations of python+ numpy
programs, 2018. URL http://github. com/google/jax, 4:16, 2020.

[23] Claudio Gaz, Marco Cognetti, Alexander Oliva, Paolo Giordano, and Alessandro Luca. Dynamic
identification of the franka emika panda robot with retrieval of feasible parameters using penalty-
based optimization. IEEE Robotics and Automation Letters, PP:1–1, 07 2019.

76

[24] Rosen Diankov and James Kuffner. Openrave: A planning architecture for autonomous robotics.
04 2011.

[25] Reuven Y. Rubinstein and Dirk P. Kroese. The Cross Entropy Method: A Unified Approach
To Combinatorial Optimization, Monte-Carlo Simulation (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg, 2004.

[26] Dipanwita Guhathakurta, Fatemeh Rastgar, M. Aditya Sharma, K. Madhava Krishna, and Arun Ku-
mar Singh. Fast joint multi-robot trajectory optimization by gpu accelerated batch solution of
distributed sub-problems. Frontiers in Robotics and AI, 9, 2022.

[27] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmenreich. Swarm robotic
behaviors and current applications. Frontiers in Robotics and AI, 7:36, 2020.

[28] Ali Bolu and Ömer Korçak. Adaptive task planning for multi-robot smart warehouse. IEEE Access,
9:27346–27358, 2021.

[29] Juncheng Li, Maopeng Ran, and Lihua Xie. Efficient trajectory planning for multiple non-holonomic
mobile robots via prioritized trajectory optimization. IEEE Robotics and Automation Letters, PP:1–
1, 12 2020.

[30] Yuan Zhou, Hesuan Hu, Yang Liu, and Zuohua Ding. Collision and deadlock avoidance in
multirobot systems: A distributed approach. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 47(7):1712–1726, 2017.

[31] Federico Augugliaro, Angela P Schoellig, and Raffaello D’Andrea. Generation of collision-free
trajectories for a quadrocopter fleet: A sequential convex programming approach. In 2012 IEEE/RSJ
international conference on Intelligent Robots and Systems, pages 1917–1922. IEEE, 2012.

[32] Enrica Soria, Fabrizio Schiano, and Dario Floreano. Predictive control of aerial swarms in cluttered
environments. Nature Machine Intelligence, 3(6):545–554, 2021.

[33] Carlos E Luis and Angela P Schoellig. Trajectory generation for multiagent point-to-point transitions
via distributed model predictive control. IEEE Robotics and Automation Letters, 4(2):375–382,
2019.

[34] José Bento, Nate Derbinsky, Javier Alonso-Mora, and Jonathan S Yedidia. A message-passing
algorithm for multi-agent trajectory planning. Advances in neural information processing systems,
26, 2013.

[35] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance. IEEE
Robotics Automation Magazine, 4(1):23–33, 1997.

77

[36] Vivek K. Adajania, Aditya Sharma, Anish Gupta, Houman Masnavi, K Madhava Krishna, and
Arun K. Singh. Multi-modal model predictive control through batch non-holonomic trajectory
optimization: Application to highway driving. IEEE Robotics and Automation Letters, 7(2):4220–
4227, 2022.

[37] Moritz Werling, Julius Ziegler, Sören Kammel, and Sebastian Thrun. Optimal trajectory generation
for dynamic street scenarios in a frenet frame. In 2010 IEEE International Conference on Robotics
and Automation, pages 987–993. IEEE, 2010.

[38] Trevor Halsted, Ola Shorinwa, Javier Yu, and Mac Schwager. A survey of distributed optimization
methods for multi-robot systems. arXiv preprint arXiv:2103.12840, 2021.

[39] Sudhir Kylasa, Fred Roosta, Michael W Mahoney, and Ananth Grama. Gpu accelerated sub-
sampled newton’s method for convex classification problems. In Proceedings of the 2019 SIAM
International Conference on Data Mining, pages 702–710. SIAM, 2019.

[40] Michael Hamer, Lino Widmer, and Raffaello D’andrea. Fast generation of collision-free trajectories
for robot swarms using gpu acceleration. IEEE Access, 7:6679–6690, 2018.

[41] Junjie Li, Sanjay Ranka, and Sartaj Sahni. Gpu matrix multiplication. 05 2012.

[42] Fatemeh Rastgar, Arun Kumar Singh, Houman Masnavi, Karl Kruusamae, and Alvo Aabloo. A
novel trajectory optimization for affine systems: Beyond convex-concave procedure. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1308–1315.
IEEE, 2020.

[43] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein. Training
neural networks without gradients: A scalable admm approach. In International conference on
machine learning, pages 2722–2731. PMLR, 2016.

[44] Laura Ferranti and Tamas Keviczky. Operator-splitting and gradient methods for real-time predictive
flight control design. Journal of Guidance, Control, and Dynamics, 40(2):265–277, 2017.

[45] Laura Ferranti, Rudy R Negenborn, Tamás Keviczky, and Javier Alonso-Mora. Coordination of
multiple vessels via distributed nonlinear model predictive control. In 2018 European Control
Conference (ECC), pages 2523–2528. IEEE, 2018.

[46] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-robot
simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
volume 3, pages 2149–2154 vol.3, 2004.

[47] Deheng Zhu, Hiroaki Seki, Tokuo Tsuji, and Tatsuhiro Hiramitsu. Tableware tidying-up robot
system for self-service restaurantndash;detection and manipulation of leftover food and tableware-.
Sensors, 22(18), 2022.

78

[48] L.-H Hu, X.-P Li, and Wansheng Tang. Paper roll packing automatical by using industrial robots.
34:48–51, 04 2015.

[49] Aditya Agarwal, Bipasha Sen, Shankara Narayanan V, Vishal Reddy Mandadi, Brojeshwar
Bhowmick, and K Madhava Krishna. Approaches and challenges in robotic perception for table-top
rearrangement and planning. arXiv preprint arXiv:2205.04090, 2022.

[50] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation,
12(4):566–580, 1996.

[51] Yanhao He and Steven Liu. Analytical inverse kinematics for franka emika panda – a geometrical
solver for 7-dof manipulators with unconventional design. In 2021 9th International Conference on
Control, Mechatronics and Automation (ICCMA), pages 194–199, 2021.

[52] Nils Dengler, David Großklaus, and Maren Bennewitz. Learning goal-oriented non-prehensile
pushing in cluttered scenes. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1116–1122, 2022.

[53] Baichuan Huang, Shuai D Han, Abdeslam Boularias, and Jingjin Yu. Dipn: Deep interaction
prediction network with application to clutter removal. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 4694–4701. IEEE, 2021.

[54] Baichuan Huang, Shuai D Han, Jingjin Yu, and Abdeslam Boularias. Visual foresight trees for
object retrieval from clutter with nonprehensile rearrangement. IEEE Robotics and Automation
Letters, 7(1):231–238, 2021.

[55] Fan Bai, Fei Meng, Jianbang Liu, Jiankun Wang, and Max Q-H Meng. Hierarchical policy for
non-prehensile multi-object rearrangement with deep reinforcement learning and monte carlo tree
search. arXiv preprint arXiv:2109.08973, 2021.

[56] Wenlong Mou, Zheng Wen, and Xi Chen. On the sample complexity of reinforcement learning with
policy space generalization, 2020.

[57] Andrew C. Li, Pashootan Vaezipoor, Rodrigo Toro Icarte, and Sheila A. McIlraith. Challenges to
solving combinatorially hard long-horizon deep rl tasks, 2022.

[58] Kaiyu Hang, Andrew S. Morgan, and Aaron M. Dollar. Pre-grasp sliding manipulation of thin
objects using soft, compliant, or underactuated hands. IEEE Robotics and Automation Letters,
4(2):662–669, 2019.

[59] Jennifer King, Matthew Klingensmith, Christopher Dellin, Mehmet Dogar, Prasanna Velagapudi,
Nancy Pollard, and Siddhartha Srinivasa. Pregrasp manipulation as trajectory optimization. In
Proceedings of Robotics: Science and Systems (RSS ’13), June 2013.

79

[60] Weihao Yuan, Johannes A. Stork, Danica Kragic, Michael Y. Wang, and Kaiyu Hang. Rear-
rangement with nonprehensile manipulation using deep reinforcement learning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 270–277, 2018.

[61] João Moura, Theodoros Stouraitis, and Sethu Vijayakumar. Non-prehensile planar manipulation
via trajectory optimization with complementarity constraints. In 2022 International Conference on
Robotics and Automation (ICRA), pages 970–976. IEEE, 2022.

[62] Zhuo Xu, Wenhao Yu, Alexander Herzog, Wenlong Lu, Chuyuan Fu, Masayoshi Tomizuka, Yunfei
Bai, C Karen Liu, and Daniel Ho. Cocoi: Contact-aware online context inference for generalizable
non-planar pushing. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 176–182. IEEE, 2021.

[63] Changkyu Song and Abdeslam Boularias. Object rearrangement with nested nonprehensile ma-
nipulation actions. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 6578–6585. IEEE, 2019.

[64] Shirin Joshi, Sulabh Kumra, and Ferat Sahin. Robotic grasping using deep reinforcement learning.
CoRR, abs/2007.04499, 2020.

[65] Andrej Orsula, Simon Bøgh, Miguel Olivares-Mendez, and Carol Martinez. Learning to Grasp on
the Moon from 3D Octree Observations with Deep Reinforcement Learning. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4112–4119, 2022.

[66] Wenxuan Zhou and David Held. Learning to grasp the ungraspable with emergent extrinsic dexterity.
2022.

[67] Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar, Edward Adelson, and Pulkit Agrawal. Visual
dexterity: In-hand dexterous manipulation from depth. arXiv preprint arXiv:2211.11744, 2022.

[68] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for general in-hand object re-orientation. Confer-
ence on Robot Learning, 2021.

[69] Ananye Agarwal, Ashish Kumar, Jitendra Malik, and Deepak Pathak. Legged locomotion in
challenging terrains using egocentric vision. CoRL, 2022.

[70] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. RSS, 2021.

[71] Shikhar Bahl, Mustafa Mukadam, Abhinav Gupta, and Deepak Pathak. Neural dynamic policies for
end-to-end sensorimotor learning. In NeurIPS, 2020.

[72] Mohammad Nomaan Qureshi, Ben Eisner, and David Held. Deep sequenced linear dynamical
systems for manipulation policy learning. In ICLR 2022 Workshop on Generalizable Policy Learning
in Physical World, 2022.

80

[73] Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll,
Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning for
robot control, 2018.

[74] Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek. Hierarchical reinforcement
learning: A comprehensive survey. ACM Computing Surveys, 54:1–35, 06 2021.

[75] Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning by discovering intrinsic
options, 2021.

[76] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srinivasa. Chomp: Gradient
optimization techniques for efficient motion planning. In 2009 IEEE International Conference on
Robotics and Automation, pages 489–494, 2009.

[77] Mohak Bhardwaj, Balakumar Sundaralingam, Arsalan Mousavian, Nathan D. Ratliff, Dieter Fox,
Fabio Ramos, and Byron Boots. Fast joint space model-predictive control for reactive manipulation.
CoRR, abs/2104.13542, 2021.

[78] John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, and Pieter Abbeel. Finding
locally optimal, collision-free trajectories with sequential convex optimization. In Proceedings of
Robotics: Science and Systems, Berlin, Germany, June 2013.

81

	Introduction
	Scope of the Thesis
	Research problems Tackled

	Motivation
	Fast Trajectory Optimization for Multi-Robot Systems
	Trajectory Optimization for Robot Manipulators

	Thesis Layout

	Gradient-based and Sampling-based Trajectory Optimization
	Mobile Robot Kinematics
	Holonomic Robots
	Non-holonomic Robots

	Trajectory Representation
	Continuous-time representation
	Cubic Spline
	Bernstein Polynomials

	Discrete-time representation

	The Trajectory Optimization Problem
	Gradient-based Optimization
	Sampling-based Optimization
	Collision Avoidance methods
	Distance-based Collision Avoidance
	Time-scaling

	Performance Metrics

	Multi-Robot Path Planning
	Applications
	Challenges Involved
	Graph-Search-based Multi-Agent Path Finding
	A* Algorithm:
	Conflict-based Search(CBS) Algorithm:
	Push and Swap (PaS):

	Batch Trajectory Optimization
	Accelerating Batch Optimization over GPUs

	Manipulator Path Planning
	Manipulator Kinematics
	Franka Emika Panda
	UR5e

	Challenges Involved
	Joint space-vs end-effector space
	Gradient-based Optimization
	CHOMP
	TrajOpt

	Sampling-based Optimization
	STORM
	Cross-Entropy Methods(CEM)

	Fast Joint Multi-Robot Trajectory Optimization by GPU Accelerated Batch Solution of Distributed Sub-Problems
	Introduction
	Problem Formulation and Related Work
	Symbols and Notations
	Robot Kinematics
	Trajectory Optimization
	Literature Review
	Joint Optimization with Conservative Convex Approximation
	Sequential Optimization
	Distributed Optimization
	Online DMPC
	Batch optimization over CPU Vs GPU

	Methods
	Overview
	Collision Avoidance in Polar Form
	Proposed Reformulated Distributed Problem
	Finite Dimensional Representation

	Augmented Lagrangian and Alternating Minimization
	AM Steps and Batch Update Rule
	Analysis

	Results
	Benchmarks and Convergence
	Comparisons With State-of-the-Art
	Comparison with park2020efficient
	Comparison with aksral21

	Ablation Study
	Initializations using Reciprocal Velocity Obstacle(RVO)RVO
	Initializations using Multi-robot Pathfinding(MAPF)sharonjournal

	Discussions

	Stochastic Trajectory Optimization for Robot Manipulators
	Introduction
	High-level Global Planning for Manipulators
	Via-Point Stochastic Trajectory Optimization(VP-STO)
	Collision Detection
	PyBullet Mesh Overlap:

	Joint-Space Path Planning
	Simulation Results for Joint-Space Path Planning
	Path Planning for Pushing Objects on a Table
	Analysis of Joint Costs associated with Cartesian-space trajectories for pushing objects

	Bi-Level Optimization for Pushing by Striking
	Introduction
	Related Work
	Task Specification
	Proposed Framework
	Low-level RL Push Planner
	High-Level Path Planning Module

	Designing the bi-level optimization objective
	Simulation Results

	Discussions

	Conclusions
	Appendix A: Distributed GPU-accelerated Multi-Agent Joint Trajectory Optimizer: JAX NumPy and Initializations
	JAX NumPy: Usage Tutorial
	Comparison of different off-the-shelf GPU-based tensor manipulation libraries

