
Mitigating Web-borne Security Threats by
Enhancing Browser Security Policies

Thesis submitted in partial fulfillment
of the requirements for the degree of

DEGREE
in

Master of Science (by Research)
in

Computer Science and Engineering

by

Krishna Chaitanya Telikicherla
201107633

KrishnaChaitanya.T@research.iiit.ac.in

Software Engineering Research Center
International Institute of Information Technology

Hyderabad - 500 032, INDIA
May 2016

Copyright c© Krishna Chaitanya Telikicherla, 2016

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Mitigating Web-borne Security Threats by
Enhancing Browser Security Policies” by Krishna Chaitanya Telikicherla, has been carried out under
my supervision and is not submitted elsewhere for a degree.

Date Adviser: Dr. Venkatesh Choppella

To my mother Srimati Jaya Lakshmi, and father Sri Telikicherla Rama Mohana Rao, and

my wife Sindhuri.

Acknowledgments

I would like to express my deep sense of gratitude to Dr. Venkatesh Choppella, my adviser, for his
continuous support, guidance and motivation during the course of my research. It is said: “When the
student is ready, the teacher appears". Four years back when I was in a desperate search for an adviser
who could support my interest in web security and sculpt my career, I happened to meet Venkatesh at
a local technical meetup. That kickstarted my research journey and since then, every meeting we had
was full of energetic discussions, interesting observations and promising ideas that questioned the fun-
damentals. Till date, the sense of satisfaction we have when we stretch for hours, re-discover the whys
and hows of certain web security mechanisms and think of better approaches, is immense and beyond
words. I am indebted to Venkatesh for selecting me as one of his research students and will always be
thankful for the work ethics and discipline he has inculcated in me.

I would like to express my gratitude to the faculty of IIIT-Hyderabad who helped me build the
foundations required for pursuing research. The rigorous course work, the innumerable assignments,
hands-on labs and exams helped me in strengthening my understanding of several concepts. The Prin-
ciples of Programming Languages class taught by Dr. Venkatesh immensely helped me to correlate
open web security problems with similar problems in programming languages that have already been
solved. The Compilers class taught by Dr. Suresh Purini helped me understand some of the intricacies
of web browsers. The Topics in Programming Languages class taught by Dr. Venkatesh introduced me
to logic and formal modeling tools, which helped me analyze and build formal models of web browsers
using Alloy. The Semantics of Programming Languages class taught by Dr. Viswanath Kasturi, Dr.
Kesav Nori and Dr. Venkatesh gave me diverse insights about interpreters. The Middleware class taught
by Mr. Ramesh Loganathan helped me gain a good understanding of communication protocols. The
Research in Information Security class taught by Dr. Bruhadeshwar Bezawada greatly helped me in
gaining insights about the field of Information Security. Also, the numerous discussions I had with Dr.
Bruhadeshwar during our web security meetings helped me in refining my research. I will be grateful
to all of them for spending their valuable time to mould my career.

I would like to express my heartfelt thanks to the faculty and members associated with Software En-
gineering Research Center (SERC): Dr. Raghu Reddy, Dr. Devi Prasad, Saurabh Barjatiya, Kirti Garg,
Manjula P, Sridhar Chimalakonda, Naveen Kulkarni, Sai Gollapudi and Amulya Sri, for all the wonder-
ful debates, discussions and advices. I am fortunate to be associated with such a vibrant research group

v

vi

and will always cherish the precious moments we have shared, especially during R & D showcases,
conferences and SERC meetings.

On a special note, I would like to thank the management of Infosys Labs, my ex-employer1, for
allowing me to pursue research at IIIT-Hyderabad on a part-time basis. Particularly, the support I have
received from Dr. Srinivas Padmanabhuni, AVP and Head of Software Engineering Lab at Infosys,
is unparalleled. Without his encouragement and freedom at work, this research would not have been
possible. Also, I am fortunate to be associated with several researchers at Infosys Labs who always
gave the apt guidance whenever required.

Lastly, I would like to thank the members of NULL and OWASP security chapters and Microsoft
User Group at Hyderabad. I had the opportunity to present some of my works at these vibrant security
and developer communities. This helped me in evaluating my understanding of several concepts in web
security, while ensuring that my work holds relevant to the latest web application architectures.

1I was working at Security and Privacy Research Lab of Infosys Labs while completing the credits for M.S by Research
degree. At the time of writing this thesis, I am working at Microsoft India as a Security Consultant

Abstract

The World Wide Web has evolved from a set of simple static pages connected by hyperlinks to a
complex platform, to meet the demands of users and businesses. The modern web is characterised
by complex operations such as online social networking, content sharing, electronic payments, single
sign-on etc. The evolution of web APIs (Application Programming Interfaces) and open data initiatives
encouraged developers to build Mashups, web applications that integrate data from multiple servers.
Data has become the currency on the web, due to which the web has turned into a lucrative target for
attackers a.k.a cyber criminals. Newer web standards such as HTML5 are evolving and newer versions
of browsers are emerging to meet the needs of the modern web. However, the security policies governing
the web have not evolved at the same pace. Due to this, the number of vulnerabilities and newer web
based attacks are increasing rapidly.

Browsers, being the entry points to the web, are heavily targeted by attackers. One good reason is
that the time and effort required to compromise a website due to a vulnerability in the application layer
is much lesser compared to that of other layers. E.g., to steal certain sensitive data from a web server, it
is much easier to inject a small snippet of JavaScript into a vulnerable web page loaded in a browser and
exfiltrate the data, than to intercept a connection and break a fairly strong crypto system, or to bypass
firewalls and break into the network.

This work attempts to understand the core security policies of web browsers that govern the security
and privacy of web interactions. It closely examines a series of client side web attacks, their existing
defenses and deficiencies. It observes the need for novel application-level security frameworks as well
as browser security policies in mitigating them. The outcome of the work is two fold: Firstly, it presents
a security abstraction layer (as an API library) called “SafeMash”, which helps developers build safe
mashups over the current low-level security APIs in HTML5. Secondly and more importantly, it pro-
poses a novel declarative browser security policy called CORP (Cross Origin Request Policy) to mitigate
a set of attacks which we refer to as “Web Infiltration attacks”. CORP enables a server to control which
site can access which resource on a cross-origin server, and through which browser event.

To evaluate the effectiveness of SafeMash and CORP, several experiments were conducted. The us-
age of SafeMash was empirically demonstrated by first building an interactive mashup using open APIs
from ProgrammableWeb (without using state-of-the-art security mechanisms) and then rebuilding it us-
ing SafeMash without losing functionality. To clearly understand the security model of web browsers
and its limitations, a corpus of web attacks was developed. The formulation, effectiveness and ease of

vii

viii

deployment of CORP was demonstrated based on the insights derived from examining the corpus of
web attacks. The design of CORP was formally verified by building a light weight model in the Alloy
model finder. An implementation of CORP was provided as a browser extension for Chrome and it is
evaluated against real-world cross origin attacks on open source web applications. Our initial investiga-
tion revealed that most of the popular websites already segregate their resources in a way which makes
deployment of CORP easier.

Contents

Chapter Page

1 Introduction . 1
1.1 Anatomy of HTTP transactions . 2

1.1.1 HTTP end points . 2
1.1.2 URL . 2
1.1.3 HTTP Transaction . 3
1.1.4 HTML elements, DOM and Origin . 3
1.1.5 Cascading HTTP requests . 4

1.2 Threat Model . 5
1.3 Organization of The Thesis . 7

2 Web-borne Security Threats . 8
2.1 Browser Security Model . 9

2.1.1 Origin . 9
2.1.2 Same Origin Policy (SOP) . 10

2.2 Limitations of the browser security model . 11
2.2.1 Cross Origin Content Inclusion . 11
2.2.2 Cross-Site Scripting (XSS) . 12
2.2.3 Data-Exfiltration . 12
2.2.4 Cross-Site Request Forgery (CSRF) . 12
2.2.5 Clickjacking . 13
2.2.6 Cross-Site Timing Attacks . 13

3 Related Work . 15
3.1 Security of Web Mashups . 15

3.1.1 Fragment Identifier Messaging . 15
3.1.2 Subspace . 16
3.1.3 Safe JavaScript Subsets . 16
3.1.4 HTML5 Enabled Privilege Separation . 16

3.2 Mitigating Web Infiltration Attacks . 17
3.2.1 Approaches to Mitigate CSRF . 17
3.2.2 Approaches to Mitigate Clickjacking . 19
3.2.3 Approaches to Mitigate Cross-Site Timing Attacks 19

ix

x CONTENTS

4 Building Secure Web Mashups . 20
4.1 Evolution of Mashups . 20

4.1.1 Security concerns in mashups . 21
4.1.2 Security versus Interactivity . 22

4.2 Newer Browser Security Model . 23
4.2.1 PostMessage API . 23
4.2.2 Iframe Sandbox . 24

4.2.2.1 Relaxing Sandbox Restrictions . 24
4.2.3 Content Security Policy . 24

4.3 Insecure Usage of HTML5 APIs . 25
4.3.1 Security Considerations in Sandbox . 26

4.3.1.1 Sandbox Flags and Privilege Escalation 26
4.3.1.2 Disabling Frame Busting Defense 27

4.3.2 Security Considerations in PostMessage . 28
4.3.2.1 Attack on Confidentiality . 28
4.3.2.2 Attack on Integrity . 29

4.4 Implementation of SafeMash . 29
4.4.1 SafeMash API . 30
4.4.2 Security Checks Built into SafeMash . 31

4.4.2.1 Sandbox Related Checks . 31
4.4.2.2 PostMessage Related Checks . 31

4.4.3 Evaluation . 32

5 Enhancing Browser Security Policies . 33
5.1 Web Infiltration attacks . 33

5.1.1 Observations and Inferences . 34
5.2 Cross Origin Request Policy . 36

5.2.1 Core Idea Behind CORP . 36
5.2.2 Browser Model with CORP . 37

5.2.2.1 Setting the Policy . 37
5.2.2.2 Deleting the Policy . 38
5.2.2.3 CORP and CSP - How They Differ 38

5.2.3 Abstract Syntax of CORP . 38
5.2.3.1 Order of Precedence for CORP rules 39
5.2.3.2 Example Policies . 39

5.2.4 Security Guarantees Provided by CORP . 40
5.2.4.1 Fine Grained Access Control . 40
5.2.4.2 Combating CSRF . 40
5.2.4.3 Early Enforcement of Clickjacking Defense 41
5.2.4.4 Controlling Social Engineering Attacks 42
5.2.4.5 Defeating Cross-Site Timing Attacks 42
5.2.4.6 Mitigating Application-level DDoS Attacks 42

5.3 Validating the Soundness of CORP . 44
5.3.1 A Brief Introduction to Alloy . 44

5.3.1.1 Alloy specifications . 45
5.3.1.2 Sample model . 46

CONTENTS xi

5.3.2 Design considerations of CORP Alloy model 47
5.3.2.1 Simpler Abstraction . 47
5.3.2.2 Non-empty browser context . 47
5.3.2.3 Single browser instance . 47

5.3.3 Modelling cross-origin requests in the web platform (Pre-CORP.als) 48
5.3.3.1 HTTP Transactions . 48
5.3.3.2 Origin . 50
5.3.3.3 HTTP Event Initiators . 51
5.3.3.4 Fact: EventInitiatorsInheritParentOrigin 52
5.3.3.5 Fact: TransactionRules . 53
5.3.3.6 Fact: Disjointness . 54
5.3.3.7 Pred: SameOriginTransaction . 54
5.3.3.8 Pred: CrossOriginTransaction . 55

5.3.4 Modelling restrictions introduced in CORP (Post-CORP.als) 56
5.3.4.1 Key idea of CORP . 56
5.3.4.2 Resource Paths . 58
5.3.4.3 Pred: maliciousXOriginTransaction 58
5.3.4.4 Pred: corpCompliantTransaction 59
5.3.4.5 Assert: showMaliciousTransactionWithJsCode 61

5.4 Experimentation and Analysis . 62
5.4.1 Implementation . 62
5.4.2 Experiments . 63

5.4.2.1 Evaluating CORP Against a Corpus of Attacks 63
5.4.2.2 Configuring CORP on Open Source Web Applications 63
5.4.2.3 Analyzing Adherence of Top Websites to CORP 64

6 Conclusions and Future Work . 65
6.1 Research Contributions . 65
6.2 Future Work . 66

Appendix A: Sample Alloy Model . 69
A.1 A basic academic time table Alloy Model . 69

Appendix B: CORP Alloy Models . 74
B.1 Pre-CORP Alloy Model . 74
B.2 Post-CORP Alloy Model . 78

Bibliography . 84

List of Figures

Figure Page

1.1 Cascading HTTP requests (Same Origin) . 5
1.2 Cascading HTTP requests (Cross Origin) . 6

2.1 Exfiltration of data from a website due to script injection 9

4.1 A typical web mashup built by embedding third party JavaScript. The bidirectional ar-
rows in the webpage indicate lack of privilege separation between content in the widgets
and their parent. 22

4.2 An interactive web mashup with privilege separation. Sandboxed iframes restrict JavaScript
activity across widgets. PostMessage channel (depicted by a pipe) enables inter-widget
communication. CSP enforces restrictions on HTTP traffic (e.g., blocking request to
Ox.com in the figure). 26

4.3 Attacks on postMessage API. (1) postMessage communication with targetOrigin set to
‘*’. (2) Attacker redirecting a frame via descendant policy. (3)Attack on confidentiality.
(4) Attack on integrity. 28

5.1 Exfiltration vs. Infiltration attacks . 34
5.2 Browser model showing exfiltration & infiltration and how they are mitigated by CSP &

CORP . 37
5.3 Browser model showing the enforcement of Clickjacking defense in CSP/XFO and CORP 41
5.4 Understanding an application-level DDoS attack . 43
5.5 Meta model of the Pre-CORP Alloy model . 49
5.6 An instance of an HTTP transaction in the Pre-CORP model 50
5.7 An instance of the predicate showBasicModel . 51
5.8 An instance of the predicate sameOriginTransaction 55
5.9 An instance of the predicate crossOriginTransaction 56
5.10 Meta model of the Post-CORP Alloy model . 57
5.11 An instance of the predicate maliciousXOriginTransaction 59
5.12 An instance of the predicate restrictJsCodeWithCorp 61
5.13 Checking the post-CORP assertion showMaliciousTransactionWithJsCode 62
5.14 Bar chart showing adherence of Alexa Top 15,000 websites to CORP. 64

A.1 Model instances generated by Alloy analyzer for the predicate showTimeTable 72
A.2 Model instance generated by Alloy analyzer for the predicate studentCanAttendSame-

ClassInDifferentSlots . 72

xii

LIST OF FIGURES xiii

A.3 No counterexample is found for the assertion studentCannotAttendDifferentClassesIn-
SameSlot . 73

List of Tables

Table Page

2.1 Understanding what Same Origin means. 10
2.2 Browser model with Same Origin Policy . 11

5.1 Summary of open source web applications we experimented with 63

xiv

Chapter 1

Introduction

Web browsers are the entry points of the web platform and are heavily targeted by attackers. When a
user types a URL in the address bar of a web browser, the browser initiates one or more HTTP requests,
as triggered by the HTML content in the page. Some of these requests can load resources such as
images, scripts, style sheets etc., from any remote server. The browser builds a DOM (Document Object
Model) tree, a data structure containing static HTML elements and fetched resources, and finally renders
the page. The basic browser model allows resources to loaded from any server and this is one of the
design flaws which has made the web an uncontrolled platform, and as explained in the later sections,
one of the main reasons for several web attacks.

The last decade has seen the evolution of web APIs (Application Programming Interfaces) and open
data initiatives. This has encouraged developers to build Mashups, web applications that integrate data
from multiple servers. As a result, the web has seen a drastic change in the way online interactions
happen. E-Commerce, online social networks, single sign-on mechanisms etc. are some of the outcomes
of enhanced web technologies. To meet the needs of the modern web, newer web standards such as
HTML5 are evolving and newer versions of browsers are emerging. At the same time the number of
vulnerabilities and newer web based attacks are increasing rapidly. Same Origin Policy (SOP), the core
security policy driving today’s web platform, was designed at a time when the web had static web pages
connected by hyperlinks. As shown in several studies [37, 53, 64], Same Origin Policy is not sufficient
to meet the security considerations of the modern web.

Researchers have proposed several interesting browser security policies [40, 37, 53, 64, 35, 52, 30,
58] to fix the loopholes of SOP and mitigate dangerous web based attacks. These policies have made
very good contribution to browser security by restricting cross origin resource inclusion, script execution
and data exfiltration. However, as explained in the later sections, there are a few known attacks which
either escape or do not fall under the scope of these solutions.

1

1.1 Anatomy of HTTP transactions

Before understanding the current browser security model and its weaknesses, it is important to un-
derstand the anatomy of HTTP transactions.

1.1.1 HTTP end points

HTTP [19] is an application layer protocol used by the World Wide Web. HTTP connections are
typically established between the HTTP end points - browsers and web servers. A browser is an HTTP
client software installed on a user’s computer. It conforms to HTTP specifications [71]. It is the means
through which users interact with the World Wide Web. A web server is a computer which hosts software
that can respond to HTTP requests. It typically has higher hardware configurations such as memory,
RAM etc., so that it can process several concurrent requests (sometimes millions) initiated by clients.

1.1.2 URL

Resources on the web (e.g., html pages, images etc.) are accessed through a browser by means of a
URL (Uniform Resource Locator) [20]. A generic URL is of the following form:
scheme://host[:port][/path][?query][#fragment].
The segments in square braces denote optional segments. Port is an optional segment of a URL which
corresponds to the port number on a web server to which a connection has to be established by an HTTP
client. Typically, shemes have a default port number (e.g., the default port for http is 80). When a
port is omitted from a URL, it is understood by HTTP clients that the connection has to be made to
the default port on a server. Path is another optional segment of a URL which specifies how a specific
resource on a server can be accessed. Web servers have default resources e.g., web pages such as html,
php, asp etc., which will be served when path is not mentioned in a request’s URL. Query String and
Fragment Identifier are optional segments of a URL which help in conveying additional information
about a request to a web server.

http://example.com

http://example.com/scripts/events.js

http://example.com/categories/product?id=1&price=100#description

Listing 1.1 Examples of URLs

Listing 1.1 shows a few examples of URLs. The first URL in the listing is of the simplest form having
only a scheme (http) and a host (example.com). The second URL additionally has the path /scripts/
events.js, which specifies how the JavaScript file events.js can be accessed. The third URL has
the path /categories/product?id=1&price=100#description. The section of the path
following the ? (id=1&price=100) is the query string, while the section of the path following the
(description) is the fragment identifier. The query string and the fragment identifier provide

2

scheme://host[:port][/path][?query][#fragment]
/scripts/events.js
/scripts/events.js
/categories/product?id=1&price=100#description
id=1&price=100
description

additional information to the web server about the request. Based on the values in these segments, the
web server can vary its response. The triple - scheme, host and port are together called the origin.
It is the basic unit of isolation on the web. Chapter 2 explains in detail the importance of origin in
understanding the security model of a browser.

1.1.3 HTTP Transaction

When a user types a URL in the address bar of a browser, an HTTP request will be initiated by the
browser. Firstly, the hostname in the URL will be resolved by a DNS server on the web into an IP
address. Once the hostname resolution is done, the request will be sent to the web server that has the
resolved IP address. The server generates an HTTP response that has a document with HTML content
(i.e., an HTML document, also known as a web page). The browser receives the HTML document and
renders it. This request-response round trip is referred to as an HTTP Transaction.

1.1.4 HTML elements, DOM and Origin

An HTML document contains a set of HTML elements - some of which are passive elements such as
div, span, textbox etc., while the rest are active elements such as script, image, iframe etc. The passive
HTML elements contribute to the presentation and formatting of the document. They are referred to as
passive elements as they do not trigger HTTP transactions. The active HTML elements trigger HTTP
transactions and enhance the document with additional content. When a browser renders HTTP re-
sponses, it constructs a tree data structure called DOM (Document Object Model). In the HTML DOM
tree, the HTML document is the root node and is referred to as the document object. Rest of the HTML
elements are the descendants of the HTML document. The document object has properties and methods
to access/modify other nodes using JavaScript. One of the important read-only properties of the docu-
ment object is the origin, which can be accessed as document.origin. When a document is rendered, the
browser sets the origin property with the scheme-host-port triple, extracted from the URL from which
the document has loaded. All the elements of a document inherit the origin from their parent. When a
new window/tab is opened in a browser, the browser creates a window JavaScript object corresponding
to each open browser window/tab. When a web page is loaded in the browser tab/window, the document
object of the page in the tab/window can be accessed as window.document.
The iframe element of an HTML document has special properties. It can trigger an HTTP request to
a web page and embed the HTML document in the HTTP response into the iframe’s parent document.
If an HTML document contains iframe elements, the browser creates a window object for the HTML
document and one additional window object for each iframe’s document. This means, each of the doc-
ument objects (one parent document and one or more child document objects) have their respective
origin properties set by the browser. Certain access control mechanisms e.g., permission to access/mod-
ify the nodes of one document by a script in another document are granted only if the origins of the two
documents match. This is discussed in detail in Chapter 2.

3

1.1.5 Cascading HTTP requests

Let us say a user types a URL http://example.com in the address bar of a browser. Since
there is no path in this URL, the web server responds with a default HTML document, say index.html,
which is rendered by the browser. The origin of the document, extracted from the URL from which it is
loaded, will be http://example.com. Listing 1.2 shows the source code of the HTML document
loaded in the browser. It shows script and link elements, which would in-turn trigger two additional
cascading HTTP requests to load a JavaScript file (logic.js) and a stylesheet (style.css) respectively.
This phenonmenon of embedding content from a server into a document is known as content inclusion.

<html>

<head>

<script src="/logic.js"/>

<link href="/style.css"/>

</head>

<body>

...

</body>

</html>

Listing 1.2 Same Origin HTTP requests triggered by a document loaded from example.com

Note that the URLs referenced by script and link elements are relative URLs i.e., their paths are relative
to the URL from which the document has loaded. The origin of the resources (extracted from the
resources’ URL) is same as the origin of the document, which is http://example.com. Therefore,
the HTTP transactions triggered by these elements are known as Same Origin transactions. Figure 1.1
shows the corresponding sequence diagram.

<html>

<head>

<script src="http://cdn.com/script.js"/>

<link href="/style.css"/>

</head>

<body>

...

</body>

</html>

Listing 1.3 Cross origin HTTP requests triggered by a document loaded from example.com

4

http://example.com
http://example.com
example.com
http://example.com
example.com

Figure 1.1 Cascading HTTP requests (Same Origin)

Listing 1.3 shows the source code of an HTML document where one of the resources (script) is loading
from a third party server. The origin of the document is http://example.com whereas the origin
extracted from the script’s URL is http://cdn.com. Therefore, the HTTP transaction triggered
by the script element is known as a Cross Origin (informally referred to as cross-site) transaction.
Figure 1.2 shows the corresponding sequence diagram. It is important to note that though the script
element initiates a cross origin transaction (to http://cdn.com), once the response (script.js) is
received by the browser, the origin of the received JavaScript continues to be http://example.com,
since it inherits the origin of the script element’s document.

1.2 Threat Model

The threat model we assume is similar to the model described by Akhawe et al. [5]. The principals
involved in our attack scenarios are Web attackers and Genuine users. For the attacks we discuss in this
thesis, we do not consider the involvement of Network attackers.

Web Attacker: A web attacker is a malicious principal who owns web servers and serves malicious
web pages. A web attacker can control the following:

• Web servers: The web attacker controls one or more web servers, which host malicious re-
sources. Malware, browser extensions, web pages with malicious JavaScript etc., are examples of

5

http://example.com
http://cdn.com
http://cdn.com
http://example.com

Figure 1.2 Cascading HTTP requests (Cross Origin)

malicious resources which can be served by the web server. The web attacker also owns one or
more domain names which can point to any web server. In this thesis, we use the domain names
“attacker.com” and “evil.com” interchangeably to designate the domain names controlled by web
attacker. In addition, the web attacker can obtain HTTPS certificates for the domains controlled
by him and can serve malicious pages through https://attacker.com.

• Network: The web attacker does not have special privileges to control the network. i.e., he
cannot eavesdrop or forge network messages. However, by virtue of controlling web pages, he
can utilize HTML elements to trigger network calls to honest or evil servers, thereby exfiltrating
data. Since he can control web servers, he can control HTTP responses of the requests received
by his servers. More importantly, he might opt out from all server side security mechanisms based
on the context of the request. e.g., Content Security Policy requires the server to set “x-content-
security-policy” response header, to prevent attacks like script injections, content inclusions etc.
By denying to set this header, the web attacker is at free will to make cross origin calls via content
inclusions.

• Browsers: When a genuine user visits a web attacker’s website, the attacker can gain certain level
of access on the user’s browser through browser APIs. e.g., the attacker can have code like “win-
dow.open” or “window.postMessage” which can open a new popup window or can communicate
with another popup using HTML5 postMessage API. However, we assume that the web attacker
does not have access to file system of the user’s operating system due to the sandbox restrictions

6

https://attacker.com

set by browsers. Also, we assume that the user uses a standard web browser which respects Same
Origin Policy 2.1.2, the core browser security policy which restricts access to content based on
origin of the webpage.

1.3 Organization of The Thesis

In this thesis, we analyze and demonstrate why the state-of-the-art browser security policies are not
sufficient to prevent certain web-borne threats. We attempt to propose and formalize stricter policies,
which mitigate such threats, and contribute towards building a safer web. The outcome of the research
is in two folds:

1. SafeMash: In this, we present a survey of security concerns in the insecure usage of HTML5
APIs, particularly relevant to the security of mashups. We then present a high-level library called
“SafeMash”, which helps developers build safe mashups over the current low-level security APIs
in HTML5. SafeMash allows the mashup developer to configure the degree of interaction and
communication of a widget. It warns developers in case of any misconfiguration. Our initial
empirical analysis shows that an interactive mashup that does not leverage state-of-the-art browser
security features can be rebuilt with SafeMash, without any loss in functionality.

2. CORP: In this, we propose a new declarative browser security policy — “Cross Origin Request
Policy” (CORP) — to mitigate a set of attacks based on cross origin interactions. CORP enables
a server to have fine-grained control on the way different sites can access resources on the server.
The server declares the policy using HTTP response headers. The web browser monitors cross
origin HTTP requests targeting the server and blocks those which do not comply with CORP. Our
initial investigation reveals that most of the popular websites already segregate their resources in
a way which makes the deployment of CORP easier.

Apart from the above, other important contributions of this thesis are our simulations which explain
the foundations of web security. In the process of experimenting with various web attacks, we have built
several empirical simulations [63] which greatly enhanced our learning. Also, we have simplified the
formal model of the web platform proposed by Akhawe et al.. [5] using Alloy. These simulations serve
as good references for future researchers working on web security.

The rest of the thesis is organized as follows: Chapter 2 gives an overview of web-borne security
threats, which are important to understand the effectiveness of browser security policies. Chapter 3 gives
an overview of the related work done in preventing the aforementioned threats. Chapter 4 explains about
the security of web mashups and presents our work, SafeMash. Chapter 5 explains about the deficiencies
of existing browser security policies and presents our proposal, CORP, and Chapter 6 concludes.

7

Chapter 2

Web-borne Security Threats

When the World Wide Web was invented in 1989 [69], it only had a set of static pages interconnected
via hyperlinks. With the addition of images in 1993[56], a request to a website could cascade a set of
requests to multiple other sites. There is something unnerving about such cross-origin (or cross-site)
HTTP requests triggered without explicit user interaction.

With the advent of forms and scripts in 1995[12], cross-site interactions became a real security
threat. For example, as shown in Figure 2.1, a genuine website, say example.com, could now be
compromised by an attacker who injects a malicious JavaScript code. This is an example of a cross-site
scripting (XSS) attack. Listing 2.1 shows a concrete example of such a malicious code. In this, the
JavaScript code attempts to create a new image element and crafts its URL (the src property) such that a
cross origin HTTP request is sent to the attacker’s site. The query string of the URL (cookie="+cooky) is
crafted to contain a user’s session cookie, accessed by JavaScript’s document.cookie property. Finally,
the specially crafted image element is appended to the web page’s DOM. When a victim visits the
infected page, the script executes in the victim’s browser and steals his/her cookie. The victim could
end up unwittingly participating in exfiltration, i.e., the leakage of private data to the attacker’s site, say
attacker.com. This is possible by the design of HTTP specifications since the image attempts to
perform a content inclusion, which is a valid HTTP transaction.

var img=new Image();

var cooky=encodeURIComponent(document.cookie);

img.src="http://attacker.com/listener.php?cookie="+cooky;

document.appendChild(img);

Listing 2.1 Malicious JavaScript which steals and exfiltrates a user’s cookie

JavaScript is the scripting language interpreted by web browsers and it is widely used in modern web
applications. Two main security policies embeded in browsers restrict the access privileges of JavaScript
— Sandbox and Same Origin Policy (SOP). In short, sandbox restricts JavaScript running in a web page
from accessing the underlying file system, whereas, Same Origin Policy defines the conditions under
which JavaScript running in one webpage can access the resources of another webpage. While the

8

example.com
attacker.com

Figure 2.1 Exfiltration of data from a website due to script injection

sandbox restrictions are sufficiently strong, the restrictions around SOP are not sufficient by design and
this is one of the main rootcauses of web-borne threats. The subsections below expand on SOP, its
limitations and the need for stricter browser security policies.

2.1 Browser Security Model

To clearly appreciate the web-borne security threats, an understanding of the browser security model
is required. Since the advent of JavaScript, browsers introduced a security policy called Same Origin
Policy (SOP), which is responsible for restricting the capabilities of JavaScript code in a web page.

2.1.1 Origin

Origin is the basic unit of isolation on the web platform, represented by the 3-tuple (scheme, host,
port) [9].

• Scheme defines the protocol used for triggering a request to a web server (e.g., http, https, ftp
etc.).

9

• Host defines the domain name that resolves to the IP address of the destination web server (e.g.,
google.com, yahoo.com).

• Port is the port number that is configured on the web server to accept web requests.

E.g., http://A.com and https://A.com belong to different origins since they differ in scheme
(http vs https). Port 80 is the default port for HTTP connections and hence it is not explicitly mentioned
in notations. e.g., In the case of http://A.com, the scheme is “http”, the host is “A.com” and the
port is 80. Table 2.1 helps in understanding the term Same Origin better.

Table 2.1 Understanding what Same Origin means.

Origin 1 Origin 2 Same Origin?
http://A.com https://A.com No
http://A.com http://A.com:81 No

http://www.A.com http://chat.A.com No
http://A.com/user1 http://A.com/user2 Yes

Communications between different origins are generally known as cross-origin communications and
the requests which trigger such communications are called cross-origin requests. Sub-domains (e.g,
http:// chat.google.com and http:// mail.google.com), though have the same parent origin (http://google.com),
are treated as different origins by most browsers for enhanced security.

Every document loaded in a web browser will be associated with an origin (derived from the doc-
ument’s URL). A document can in turn load resources such as images, scripts via content inclusion
(<script src=URI> for example). Furthermore, the HTML standard allows content to be included across
origins i.e., from third party servers (see Table 2.2). Any element that is embedded in a document
inherits the document’s origin.

2.1.2 Same Origin Policy (SOP)

SOP states that a script associated with an origin will have complete access to the DOM (Document
Object Model), storage (e.g., cookies), and network (e.g., AJAX calls) within that origin. It will not
be able to access any of these across origins. E.g., If a page belonging to the origin http://A.com
opens a popup window pointing to http://B.com, a script in http://A.com will not have access
to the DOM, storage, network of http://B.com and vice-versa.
Even if a script is loaded from a cross origin server, by virtue of SOP, the script has complete privileges
on the document’s data structures (Section 2.2.1). Since developers embed possibly malicious scripts
from third party servers, the resultant web applications, called web mashups, will be insecure. A mali-
cious script can deface the mashup by mutating its DOM, read sensitive information present in cookies
and export it to destinations unknown to the mashup developer, through network calls. This problem is
explained in detail in Chapter 4.

10

http://A.com
https://A.com
http://A.com
http://A.com
http://B.com
http://A.com
http://B.com

Table 2.2 Browser model with Same Origin Policy

Privilege Initiator Within origin? Across origins?
DOM access JavaScript Yes No

Storage access JavaScript Yes No
Network access (AJAX) JavaScript Yes No

Network access (Form Submission) <form action=URI> Yes Yes
Network access (Content inclusion) <script>,<iframe>,<audio>,<video>,,<embed> etc. Yes Yes

Apart from restricting JavaScript access, browsers use SOP checks in features such as caching, pop-
up blocking, geolocation sharing, password management, camera and microphone access etc.

2.2 Limitations of the browser security model

The sub-sections in this section provide details on why the current browser security model, specifi-
cally SOP, is not sufficient to meet the security requirements of the modern web.

2.2.1 Cross Origin Content Inclusion

As outlined in Table 2.2, SOP enforces restrictions on certain privileges requested by JavaScript,
on cross origin content. However, it is quite liberal with respect to cross origin content inclusion i.e.,
loading content from one origin and including it in another origin. For example, a script element in
orign http://A.com can make an HTTP GET request and load a JavaScript file from origin http:
//B.com’. This applies to all elements which make HTTP GET requests to load remote content. Few
examples are shown in Listing 2.2.

<script src="URL"/>

<iframe src="URL">

<link rel="stylesheet" href="URL">

Listing 2.2 Examples of Cross origin content inclusion via HTML elements

In the case of loading JavaScript files across origins, the problem gets aggrevated further. Though the
script file belongs to http://B.com, once it is loaded in the DOM of the document having the origin
http://A.com, it inherits the origin of http://A.com. Due to this origin inheritence, the script
will be treated as same-origin script and will have complete privileges on the origin http://A.com.
i.e., the script will inherit all the privileges listed in Table 2.2. Unrestricted cross origin content inclusion
is one of the main weaknesses of SOP. Apart from this, there are other inconsistencies, some of them
being: an image tag can point to a script file, load and execute it., script from a trusted source can

11

http://A.com
http://B.com
http://B.com
http://B.com
http://A.com
http://A.com
http://A.com

dynamically and recursively load another script file from an untrusted origin. Due to this, trust cannot
be verified by static analysis of web pages.

2.2.2 Cross-Site Scripting (XSS)

XSS is an attack technique in which attackers use vulnerabilities in web applications to inject ma-
licious JavaScript code into the server. Code injection attacks happen due to insufficient validation of
inputs before storing into database or lack of proper encoding before rendering the output of a web page
to the browser. Based on the way XSS is triggered, it is classified into 3 types: Stored XSS, Reflected
XSS and DOM XSS.

The Same Origin Policy does not differentiate between JavaScript code injected due to an XSS attack,
versus third party JavaScripts embeded in a web page by the application developer. Scripts executing in
a web page in either ways are treated the same and have equal privileges. They have read/write access
to the DOM, full network access via XMLHTTPRequest and storage access via cookies/web storage.
This is the reason why JavaScript injections a.k.a XSS attacks are considered highly dangerous.

2.2.3 Data-Exfiltration

If an attacker succeeds in injecting malicious content such as JavaScript into a web page through an
XSS attack, he/she can access sensitive data from the page and send it to an attacker-controlled server.
This can be achieved through the vectors listed in Table 2.2, that can trigger cross origin HTTP GET
and POST requests. Listing 2.1 shows a JavaScript code snippet which, when injected into a vulnerable
server’s web page, steals the cookies set by that page. It creates a new image tag in the web page’s doc-
ument, which sends the stolen cookies to an attacker-controlled server (http://attacker.com).
This outward flow of data across origins is called “Exfiltration” and SOP does not prevent this. Fig-
ure 2.1 gives a clear depiction of an exfiltration attack.

2.2.4 Cross-Site Request Forgery (CSRF)

CSRF is a popular web based vulnerability, listed as one of the top ten application security risks
by OWASP [54]. In this attack, a malicious site instructs a victim’s browser to send a request to an
honest site. This malicious request is initiated on behalf of the victim using his/her network connectivity,
browser state, cookies etc., thereby disrupting the integrity of victim’s session. To launch a CSRF attack,
an attacker crafts a malicious web page, which triggers cross origin HTTP requests to the honest site.
Listing 2.3 shows a sample code snippet from such a page. It has an image tag that has a maliciously
crafted URL, pointing to a banking site, http://bank.com.

Listing 2.3 Code snippet in a malicious web page that can trigger a CSRF attack on a banking site

12

http://attacker.com
http://bank.com

Let us consider that a victim has logged into the banking site in a browser tab/window and opens the
attacker’s page in a different tab/window of the browser. The image tag in the attacker’s web page
triggers a cross origin HTTP GET request, which transfers the amount from the victim’s bank account
to the attacker’s bank account (note the querystring "?amount=100000&TargetBankAccount=1337").
CSRF attacks can be triggered not only by HTTP GET requests, but also through HTTP POST requests
using HTML form tags. It is important to note that the cross origin requests launched in a CSRF attack
are not restricted by browsers, since SOP allows content inclusion and form submission across origins
(Refer Table 2.2).

Note that in CSRF, the attacker masquerades as a genuine user and initiates requests from a malicious
webpage to a vulnerable server (as opposed to data-exfiltration). Irrespective of the origin from which
a request has initiated, browsers attach authentication credentials i.e., cookies, to every request made to
the destination origin. Due to this, browsers do not distinguish between a request triggered by a genuine
and a malicious web page. The Same Origin Policy does not include any mechanism to distinguish
between a genuine and a forged request. Also, in most cases, servers do not have information about the
origin that triggered the request (see Section 3.2.1).

2.2.5 Clickjacking

Clickjacking was first reported in web browsers in 2008 [27]. It is also known as UI-redressing
and has gained popularity in the modern attacker community. In this, attackers lure users to visit a
malicious page and trick them to click on invisible targets e.g., buttons, which belong to a cross origin
web page. Typically, attackers embed target cross origin content in iframes, reduce their opacity to
zero and position them above seemingly genuine buttons. End users will not have any suspicion or
indication that their click is hijacked, but the attacker will be able use their click for malicious purposes.
Clickjacking differs from CSRF in the fact that along with the click, user’s credentials as well as CSRF
tokens (Section 3.2.1) are submitted. This makes clickjacking more dangerous than CSRF.

There are many online scams/spams, especially on social networks, which use clickjacking and
make money. Recently, Facebook sued an ad network [21], which stole personal information of users
via clickjacking. The ad network made upto $1.2 million a month by employing this attack technique.

2.2.6 Cross-Site Timing Attacks

Bortz et al. [13] explained that the response time for HTTP requests can expose private information
of a web user e.g., detecting if a user has logged in at a particular site, finding the number of items in
the user’s shopping cart etc. Though there are several ways to time web applications, as shown by Bortz
et al., we examine a class of timing attacks called cross-site timing attacks, which rely on cross origin
HTTP requests. In these attacks a genuine user is tricked to open a malicious page, which tries to load
resources e.g., images, html pages etc. from a site being targeted. On measuring the time taken for
the loading of the resources, sensitive information such as the login status of a user can be extracted.

13

Two recent works by Stone and Kotcher et al., showed how SVG filters [59] and CSS shaders [41]
can be used as vectors for cross-site timing. Technically, cross-site timing attacks can be classified as
CSRF attacks with the exception that the traditional defenses for CSRF i.e., tokens do not generally
work for these. Typically, attackers target authenticated resources [36], which do not have CSRF tokens
e.g., private profile pictures, script files etc. This means that a majority of websites are vulnerable to
cross-site timing attacks. We have analyzed popular social networks and email providers and found at
least one way of detecting the login status of a user. We found that apart from authenticated resources,
authenticated URLs can also be used as a vector for login detection. Listing 2.4 shows the case where a
script tag makes a cross origin HTTP request to a non-existing page on a target site, to detect the login
status of a user on the target site.

<script src="http://example.com/user/nonExistingPage.php" onload=

notLoggedIn() onerror=loggedIn()>

Listing 2.4 Login detection by fetching cross origin authenticated resources

Once the login status of a user is known, as explained by Bortz et al., spammers can perform invasive
advertising and targeted phishing i.e., phishing a site which a user frequently uses, rather than phishing
randomly.

Stealth mode Clickjacking Apart from these, we have identified an attack scenario that uses login
detection, which we call Stealth mode clickjacking. Developers usually protect sensitive content using
authentication. So in most cases, for a clickjacking attack to be successful, the victim should be logged
in at the target site. Moreover, if the victim is not logged in and clicks on the framed target, authen-
tication will be prompted, thereby raising suspicion. Using login detection techniques, an attacker can
redesign the attack by ensuring that clickjacking code executes only if the victim is logged in at the
target site, thereby removing any scope of suspicion. We observe that it is easy to compose such attacks
with a comprehensive knowledge of the web.

14

Chapter 3

Related Work

This section explains about the related work done by researchers, along the web security aspects
covered in this thesis. Section 3.1 contains the work done on Mashup Security, and Section 3.2 contains
the work done on each of the web infiltration attacks.

3.1 Security of Web Mashups

Mashup security is an active area of research with contributions such as secure JavaScript sub-
sets [23], Cross-domain interaction channels [33], Information flow tracking [45], Access control poli-
cies for JavaScript [49] etc. A survey of techniques proposed to solve the mashup security problem can
be found at [16]. While some of them approaches require modifications in browser architectures, some
make use of libraries or work arounds which can be used by developers in the existing browsers. In
this section, we explain some of the approaches of the latter kind, which achieve effective separation of
privileges between third party web content, while attaining interaction.

3.1.1 Fragment Identifier Messaging

A fragment is a part of a URL after the # symbol, which is used to navigate within a page via
a hyperlink e.g., http://example.com/article#section1. If a web page is reloaded in a
browser by changing only the fragment part of the URL, browsers do not send an HTTP request to
the server. Therefore, a frame can send messages to a target frame by navigating the target frame with
different fragment identifiers. The target frame can observe the value of the fragment by polling for
window.location.hash. This feature has been used by developers as a workaround to communicate be-
tween cross origin iframes. Though this approache provides privilege separation along with interaction,
the communication channel lacks authentication [11]. Also, since a URL can hold only a limited set of
characters, this mechanism is not ideal to exchange long messages. The HTML5 postMessage API was
built addressing these concerns of fragment identifier messaging and is the recommended approach to
follow.

15

http://example.com/article#section1

3.1.2 Subspace

Subspace [33] is a mechanism that allows cross-origin frame communication without sacrificing
security. It is available as a JavaScript library which can be used by developers, without the need for
any browser modification. Subspace relies on passing JavaScript objects across frames by manipulating
the document.domain property of the frames. If two origins that want to communicate share a common
suffix (e.g., www.example.com and chat.example.com), they can set their document.domain
property to their hostname (in this case example.com). This technique is called domain relaxation and
it allows both the origins to exchange JavaScript code and data with each other. By using nested iframes
and domain relaxation techinique, subspace facilitates sharing JavaScript objects across origins, thereby
achieving interaction. Though subspace guarantees confidentiality and integrity, managing subdomains
turns out to be an expensive task for developers and hence it is not as widely adopted as other techniques.

3.1.3 Safe JavaScript Subsets

One of the popular techniques to embed third party JavaScript in a web page is to rewrite and restrict
the code to a strict subset of JavaScript, which has desirable containment properties. By restricting the
third party code to a subset of the language, an integrator can ensure that the code can interact only
with object references explicitly provided by it. E.g., If an object in the language has no reference to
XMLHTTPRequest object, it will not be able to trigger AJAX calls. By permitting the object a reference
to XMLHTTPRequest object, capability to trigger AJAX calls is given. This is the core idea behind safe
JavaScript subsets and is known as object-capability security model. Yahoo’s ADSafe, Google’s Caja,
Facebook’s FBJS follow this model. They allow restricted interactions via normal JavaScript objects
and eliminating the usage of iframes. Several popular applications like Facebook, Orkut, iGoogle use
JavaScript subsets while allowing untrusted third party code. The downside of this approach is the
additional learning curve involved in using and maintaining the code.

3.1.4 HTML5 Enabled Privilege Separation

Akhawe et al. proposed a design [6] for achieving effective privilege separation in web applications
using already available HTML5 security features. In their design, a HTML5 application has one priv-
ileged parent and any number of unprivileged children. The parent has three components-Bootstrap
code, parent shim and policy code. The bootstrap code is the entry point of the applicaiton. It spawns
the unprivileged children and controls their lifetime. The parent shim manages requests from children
to make privileged calls. The policy code decides whether to allow or disallow calls initiated by the
children. The children have two components- Child shim (which sends request to the parent shim for
making privileged calls) and application specific code. The authors retrofit two popular Chrome ex-
tensions and a popular database management system (SQLBuddy) to use their design. They showed
that the amount of trusted code running with full privileges reduced by a factor of 6 to 10000. De-
velopers hosting applications of varying privileges under a single origin (e.g., http://bank and

16

www.example.com
chat.example.com
example.com
http://bank

http://bank/sqlBuddy) are suggested to use this architecture to ensure that a flaw in one appli-
cation does not abuse the privileges of the other.

3.2 Mitigating Web Infiltration Attacks

In this section, we briefly describe existing defenses against each of web infiltration attacks - CSRF,
clickjacking and cross-site timing attacks.

3.2.1 Approaches to Mitigate CSRF

In the case of CSRF, there are several server side (Secret tokens, NoForge, Origin header etc.) and
client side defences (RequestRode, BEAP, CsFire etc.) to prevent the attack.

Secret Tokens: This is one of the most popular approaches used by developers. In this, a protected
server generates a unique random secret token and embeds it into web pages in every HTTP response.
When the server receives HTTP requests, it expects each request to contain the token it generated in the
earlier response. It checks if the received token is the same as the one it generated earlier, and accepts
the request only if the check succeeds. Since the token is not available to an attacker, request forgery
cannot happen. CSRF Guard [55] and CSRFx [28] are a few server side frameworks which implement
this technique. Though this technique is robust, most websites, including high profile ones, often miss
them. Also, using XSS attacks and social engineering techniques, the secret tokens can be stolen thereby
re-enabling request forgery.

NoForge: NoForge [39] is a server side proxy which inspects and modifies the HTTP responses sent
to a browser. It modifies the responses such that future requests originating from the web page will
contain a valid secret token. It takes countermeasures against requests that do not contain a valid token.
The downside of this approach is, since it is a server side proxy, it will not be able to add tokens to
dynamic content generated by JavaScript in the browser.

SOMA: Same Origin Mutual Approval (SOMA) [53] enforces constraints on HTTP traffic by man-
dating mutual approval from both the sites participating in an interaction. Websites send manifest files
that inform a browser about the list of domains the site can communicate with. The domains whitelisted
in the manifest expose a service which replies with a “yes” or “no” when queried for a domain name.
When both the sites agree for the communication (via the manifest and the service), a cross origin re-
quest is allowed. Though SOMA enforces strict restrictions on cross origin interactions, it involves an
additional network call to verify the permissions on a request. Moreover, it does not provide fine-grained
control such as restricting only a subset of cross origin requests for a domain.

Origin Header: Barth [10] et al., proposed adding an Origin header to HTTP request headers, which
indicates the origin from which each HTTP request initiates. It was an improvement over its predecessor
- the Referer header, which includes the complete path of the page from where a request is originating.
Due to privacy constraints, the Referer header is stripped by filtering proxies [4]. Since the Origin header

17

http://bank/sqlBuddy

sends only the Origin in the request, it improves over Referer in terms of privacy. Majority of modern
browsers already implemented this header. Using the origin information, the server can decide whether
it should allow a particular cross origin request or not. However, origin header is not sent (set to null) if
the request is initiated by hyperlinks, images, stylesheets and window navigation (e.g., window.location)
since they are not meant to be used for state changing operations. Developers are forced to use Form
GET if they want to check the origin of a GET request on the server. Such changes in application code
require longer time for adoption by developer community.

Request Rodeo: Request Rodeo [38] is a client side proxy which sits in between web browser and
the server. It intercepts HTTP responses and adds a secret random value to all URLs in the web page
before it reaches the browser. It also strips authentication information from cross origin HTTP requests
which do not have the correct random value, generated in the previous response. The downside of this
is, it does not differentiate between genuine and malicious cross origin requests. Also, it fails to handle
cases where HTML is generated dynamically by JavaScript, since this dynamic content has come after
passing through the proxy.

BEAP: Browser Enforced Authenticity Protection [46] is a browser based solution which attempts
to infer the intent of a user. It considers attack scenarios where a page has hidden iframes (clickjacking
scenarios), on which users may click unintentionally. It strips authorization information from all cross
origin requests by checking referer header on the client side. However, it also strips several genuine
cross origin interactions, which are common on the web.

CsFire: CsFire [17, 18] builds on Maes et al. [44] and relies on stripping authentication information
from HTTP requests. A client side enforcement policy is constructed which can autonomously mitigate
CSRF attacks. The core idea behind this approach is - Client-side state is stripped from all cross-origin
requests, except for expected requests. A cross-origin request from origin A to B is expected if B
previously delegated to A by either issuing a POST request to A, or if B redirected to A using a URI
that contains parameters. To remove false positives, the client policy is supplemented with server side
policies or user supplied whitelist. The downside of this approach is that without the server-supplied or
user-supplied whitelist, CsFire will not be able to handle complex, genuine cross origin scenarios and
the whitelists need to be updated frequently.

ARLs: Allowed Referrer Lists (ARLs) [15] is a recent browser security policy proposed to mitigate
CSRF. ARLs restrict a browser’s ability to send ambient authority credentials with HTTP requests.
The policy requires developers to identify and decouple credentials they use for authentication and
authorization. Also, a whitelist of allowed referrer URLs has to be specified, to which browsers are
allowed to attach authorization state. The policy is light weight, backward compatible and aims to
eradicate CSRF, provided websites meet the policy’s requirement. However, expecting all legacy, large
websites to identify and decouple their authentication/authorization credentials may be unrealistic, since
it could result in broken applications and also requires extensive regression testing. Our proposal, CORP,
which uses whitelists like CSP and ARLs, does not require complex/breaking changes on the server.
Details of the approach are explained in Section 5.2.1.

18

3.2.2 Approaches to Mitigate Clickjacking

There are several proposals to detect [8, 47] and prevent [57, 32] Clickjacking. At the same time,
there are a few intelligent tricks [31, 43] that can bypass some of these proposals. Browser vendors
and W3C have incorporated ideas from these efforts and are working towards a robust defense against
clickjacking. Below are two important contributions in this direction:

X-Frame-Options (XFO) Header: The X-Frame-Options HTTP response header [50], was intro-
duced by Microsoft in Internet Explorer 8, specifically to combat clickjacking. The value of the header
takes two tokens-DENY, which does not allow an iframe to load any content, and SAMEORIGIN, which
allows a frame to load only if its origin matches with the origin of the top frame. XFO was the first
browser based solution for clickjacking.

CSP User Interface Security Directives: Content Security Policy (CSP) added a set of new
directives- User Interface Security Directives for Content Security Policy [48] specifically to focus on
User Interface Security. It supersedes XFO and encompasses the directives in it, along with providing a
mechanism to enable heuristic input protections.

Both XFO and CSP, though promise to prevent clickjacking, leave CSRF wide open. Also, these
solutions get invoked just before the frame is rendered, which is too late in the request/response life-
cycle. Due to this, several bypasses such as Double Clickjacking [31], Nested Clickjacking [43] and
Login detection using XFO [36] arise.

3.2.3 Approaches to Mitigate Cross-Site Timing Attacks

Bortz et al. [13] proposed that by ensuring that a web server takes a constant time to process a
request, cross-site timing attacks can be mitigated. However, it is unlikely to get wider acceptance in
web community as it involves complex server side changes. A popular recommendation by security
researchers is to disable onload/onerror event handlers for cross origin requests, but this affects genuine
cases. As of date, cross-site timing attacks are still unresolved.

19

Chapter 4

Building Secure Web Mashups

The advent of open data and APIs (Application Programming Interfaces) have led to the growth of
insightful web applications, which cut across domains such as health care, retail, finance etc. As soon
as organizations open up their data and provide APIs, developers compete with each other to build rich
web applications, referred to as Mashups, by composing APIs from various service providers. While this
newer development paradigm has made the web a collaborative platform, web developers have found
it hard to understand and leverage browser security mechanisms like Same Origin, Content Security
etc. As a result, the applications they develop often violate the principle of least privilege [72]. For
example, a travel agency could develop a useful web-based visualization by composing a user’s past
travel itineraries (fetched using its own API), finance data (fetched using a bank’s API), health records
(fetched using a hospital’s API). However, if the web application was not developed using the state-
of-the-art security mechanisms, an advertisement on the application’s web page could have complete
access to the user’s sensitive data and export it to a spammer. Therefore, with the growing adoption of
open data by organizations, the need for developers to build secure applications by utilizing the security
capabilities provided by the web platform has become even more important.

4.1 Evolution of Mashups

For close to a decade after the World Wide Web was made available to the public in 1993 [69],
data belonging to websites existed in isolation. With the advent of technologies driving web services
(SOAP [68], REST [22] etc.) in early 2000, websites started exposing their data via APIs, which made
the web a collaborative platform. During the same period, the evolution of AJAX [24] (Asynchronous
JavaScript and XML), JSON [14] (a lightweight data interchange format) and thereafter the rise of
JavaScript libraries such as jQuery, Dojo, YUI etc. enabled web developers to build richer web appli-
cations. Leveraging these technologies, JavaScript in a web page could communicate asynchronously
to the server from which the page was loaded and could dynamically update the page with fresh con-
tent. Utilizing the data exposed via APIs and JavaScript’s capabilties, a new breed of web applications
called Mashups evolved, which integrated content from various online resources and provided enriched

20

results. One of the popular examples of mashups is HousingMaps.com, which utilizes real estate
information from CraigsList and overlays it on Google maps, providing a richer user experience. Web
applications which come integrated with social widgets (e.g., Facebook’s Like, Twitter’s Tweet), com-
ments systems (e.g., Disqus) etc., can also be called as mashups, since they aggregate content from more
than one server.

Mashups can be broadly classified into two categories based on their mode of development: server
side mashups and client side mashups. In server side mashups, the server hosting the mashup application
plays the role of a proxy and relays data between a client and third party services. It aggregates data from
various services and provides a unified user interface to the client. Several enterprise mashups take this
approach since there is more control to deploy additional layers of defense over third party code. The
limitations of this approach are the costs involved in maintaining the server, additional bandwidth and
latency costs incurred due to routing via an intermediary server, instead of directly accessing the third
party services from the client. In client side mashups, there are no intermediary proxies involved and
communication takes place between the mashup application in the browser and the third party services.
This approach is widely used by developers since it overcomes the limitations of server side mashups,
apart from providing better interactivity and responsiveness. However, it has several security concerns
whose roots lie in the architecture of web browsers. We refer to client side mashups as Web mashups,
the content loaded from a third party website as a widget and the parent page integrating and unifying
the widgets as the integrator.

In this work, we address the problem of enabling developers to build secure web mashups. We
explain the need for newer security APIs in HTML5 and security concerns which arise due to their
insecure usage. We present a security abstraction layer (as an API library) called “SafeMash”, which
handles low-level security checks and assists developers in creating secure and interactive mashups.
We empirically demonstrate the usage of SafeMash by first building an interactive mashup using open
APIs from ProgrammableWeb (without using state-of-the-art security mechanisms) and then rebuilding
it using SafeMash without losing functionality.

The rest of this section is organized as follows: Section 4.1.1 explains the security concerns in
mashups. Section 4.2 explains the newer, HTML5 enriched security model introduced in modern
browsers. Section 4.3 shows the attacks that are possible due to insecure usage of HTML5 APIs. Sec-
tion 4.4 explains how Safemash eases developer’s tasks in creating safer mashups, leveraging the newer
security model.

4.1.1 Security concerns in mashups

Web mashups are developed using two approaches: loading third party JavaScript files (e.g., Google
maps) or embedding remote resources via iframes (e.g., Facebook widgets). Both the approaches have
their own advantages and limitations. In the case of the script approach, the loaded JavaScript assumes
the origin of the integrator, and not the origin of the server from which it has been served. Therefore, the
script has complete access to the DOM (Document Object Model) of the integrator. Due to this, better

21

HousingMaps.com

interactivity can be achieved, but at the cost of giving the script complete privileges to the integrator.
Figure 4.1 depicts this behavior, where scripts loaded from various origins have equal access to the
parent page’s DOM.

Figure 4.1 A typical web mashup built by embedding third party JavaScript. The bidirectional arrows

in the webpage indicate lack of privilege separation between content in the widgets and their parent.

To overcome the security problems of using scripts and ensure separation of privileges, cautious
developers use iframes to embed third party content in a web page. Iframes embedded in a webpage
can load new documents. Elements inside an iframe inherit the origin of the document loaded in the
iframe and do not not inherit the origin of the iframe’s parent document. If the origin of the document
inside the iframe does not match with the origin of its parent document, the restrictions of Same Origin
Policy (Table 2.2) will be enforced by browsers. This means, a script in the parent page will not have
any privileges on content inside the iframe and vice-versa, thereby isolating third party content from
accessing the state of the parent. While the security concern is resolved, this draconion isolation defeats
several benefits of web mashups.

4.1.2 Security versus Interactivity

Let us understand with an example the trade-off between security and interactivity in mashups. Con-
sider a mashup having a widget displaying a map (using Google Maps API), a widget displaying weather
information (using Yahoo weather API) and other useful widgets. A possible business requirement could
involve clicking on any geographical location in the map widget, to display the corresponding weather
information in the weather widget. If the mashup was designed by directly embedding third party scripts
in the parent page, the requirement can be easily achieved, but every script will have access to every
widget. So a script belonging to a malicious widget can tamper map data, weather information or steal
sensitive user-data. On the other hand, if the mashup was designed using the iframes approach, scripts
belonging to each widget will not be able to tamper content belonging to other widget due to SOP restric-

22

tions. However, the core functionality of communicating information between map and weather widgets
cannot be achieved. Though developers have come up with fragment identifiers (see Section 3.1) as a
work-around for communication between iframes, the approach does not provide authentication. More-
over, in spite of SOP, a script inside an iframe can open popups, redirect parent page and submit forms.
These limitations demanded the need for secure mechanisms for building mashups.

4.2 Newer Browser Security Model

HTML5 introduces several security mechanisms such as PostMessage API [66], Sandboxed iframes [67],
Cross Origin Resource Sharing [65] to overcome the limitations of existing browser security model.
Apart from these, a new declarative policy called Content Security Policy (CSP) implemented by mod-
ern browsers helps developers in enforcing restrictions on the HTTP transactions originating from a
webpage. These new specifications extend the traditional browser security model and encourage safer
cross origin collaboration and communication. The rest of the section introduces the capabilities of the
new APIs.

4.2.1 PostMessage API

The postMessage API of HTML5 enables documents belonging to different origins to authenticate
and communicate with each other. This solves one of the main limitations in mashups which are built
using iframes. Let iframe1 and iframe2 be the ids of two iframes loading their documents from http:

//A.com and http://B.com respectively.

var iframe2= queryElement(‘iframe2’);

var targetOrigin = "http://B.com";

iframe2.postMessage("text", targetOrigin);

Listing 4.1 JavaScript code in iframe1 sending messages to iframe2 using postMessage API

window.addEventListener("message", receiveMessage, false);

function receiveMessage(event){

if (event.origin !== "http://A.com")

return;

// ... (Authentication successful)

}

Listing 4.2 JavaScript code in iframe2 receiving messages from iframe1 using postMessage API

23

http://A.com
http://A.com
http://B.com

Listing 4.1 shows how iframe1 can send a message to iframe2 using postMessage. To receive a mes-
sage, iframe2 must add a “message” event listener and process the received data via a callback (see List-
ing 4.2). PostMessage improves over existing communication mechanisms (e.g., fragment identifiers)
by providing confidentiality (senders can specify the intended recepient’s origin) as well as authentica-
tion (recepients can identify the sender via the event.origin property).

4.2.2 Iframe Sandbox

The sandbox attribute of iframes, introduced in HTML5, enables developers to assign fine-grained
privileges on third-party content. By merely adding the sandbox attribute without any values (flags), an
iframe will be assigned a unique and temporary origin. This means that even if the origin of the framed
content is same as that of its parent, it is treated as cross-origin content and is denied privileges like
script execution, form submission, opening popups etc.

4.2.2.1 Relaxing Sandbox Restrictions

Developers can relax sandbox’s restrictions by assigning a whitelist of flags such as allow-scripts,
allow-forms etc., as values to the sandbox attribute, as shown in Listing 4.3. Some of the important flags
of sandbox are described below:

• allow-forms: Allows form submission within the iframe

• allow-scripts: Allows script execution within the iframe

• allow-same-origin: Re-enables same-origin treatment to the sandboxed content.

• allow-top-navigation: Allows framed content to navigate and replace the top-level window.

• allow-popups: Allows framed content to open popups.

<iframe sandbox="allow-forms allow-scripts">

... Third party content...

</iframe>

Listing 4.3 Whitelisting privileges using sandbox

More details about a few experimental flags and nested browsing contexts can be found in the W3C
recommendation [67].

4.2.3 Content Security Policy

Allowing HTTP traffic without any restrictions (e.g., via content inclusion and form submission etc.)
is considered as one of the limitations of SOP and the cause of web attacks like Cross Site Scripting

24

(XSS) and data exfiltration. To fix this limitation, Mozilla pioneered the development of Content Se-
curity Policy (CSP) [58], which enables web administrators to declare a set of content restrictions for a
web resource. Developers can declare CSP via HTTP response headers or meta tags of a page and in-
form the browser to which whitelisted origins HTTP requests will be allowed from the page. Apart from
imposing restrictions on HTTP traffic, CSP automatically disables inline scripts (e.g., event attributes
like onclick) and evaluation of strings (e.g., eval(str), setTimeout etc.). These features are known to be
responsible for XSS attacks and hence CSP disables them by default. Developers can re-enable these
features using the options directive, but should carefully evaluate the possible threats.

Content-Security-Policy: script-src ‘self’ https://apis.google.com

Listing 4.4 Whitelisting HTTP traffic via CSP

The code in Listing 4.4 shows a sample CSP rule which restricts loading of scripts only from a doc-
ument’s own origin (self) and from https://apis.google.com and rejects any other loading
attempts. Some of the important directives of CSP and their restrictions are listed below. A complete
list of directives can be found at W3C’s CSP specification [70].

• connect-src: restricts network activity (e.g., XHR, Web sockets etc.) only to whitelisted origins.

• default-src: sets source list for unspecified directives

• form-action: restricts form submissions

• frame-ancestors: restricts embedding content via iframes

• script-src: allows JavaScripts files to load only from whitelisted origins

Not specifying CSP directives (say, img-src) is equivalent to specifying img-src: ‘*’. This way CSP en-
sures that it does not break existing web applications by not being draconion. Figure 4.2 shows a mashup
which utilizes these new security paradigms to achieve privilege separation and adding additional layers
of defense.

Though the newer browser security model and the APIs greatly enhance the security of web appli-
cations, certain insecure usage patterns of these APIs introduce newer vulnerabilities into web applica-
tions. These are discussed next.

4.3 Insecure Usage of HTML5 APIs

HTML5 APIs were designed giving highest priority to security. They provide options of varying
degree for web developers to tighten or relax the security of web applications. However, certain inse-
cure usages of these APIs open doors to newer vulnerabilities. Though the HTML5 specification warns

25

https://apis.google.com

Figure 4.2 An interactive web mashup with privilege separation. Sandboxed iframes restrict JavaScript
activity across widgets. PostMessage channel (depicted by a pipe) enables inter-widget communication.
CSP enforces restrictions on HTTP traffic (e.g., blocking request to Ox.com in the figure).

against the insecure usage, even reputed development teams fail to follow the guidelines while devel-
oping web applications [26]. In this section, we explain how the insecure usage of postMessage and
sandbox APIs can result in several vulnerabilities in web applications.

4.3.1 Security Considerations in Sandbox

The HTML5 sandbox API is an important DOM security feature which helps in completely switching
off JavaScript’s activity to completely switching it on, providing various options in between. Both the
extremes can be used by attackers to cause undesirable consequences.

4.3.1.1 Sandbox Flags and Privilege Escalation

One of the security warnings in the HTML5 sandbox specification [67] highlights that if the framed
page and its parent page belong to the same origin, then the flags “allow-same-origin” and “allow-
scripts” should not be used together. This is because the “allow-same-origin” flag relaxes the unique
origin treatment of sandboxed iframe while the “allow-scripts” flag enables script execution within the
iframe. Due to this, the JavaScript code in the iframe can access the parent page, mutate its DOM
and remove the sandbox restriction on the iframe altogether. As a result JavaScript code in the iframe
achieves complete privileges on the mashup, which defeats the purpose of having privilege separation
primitives.

26

4.3.1.2 Disabling Frame Busting Defense

Clickjacking or UI-Redressing is an attack technique discovered only in 2008 by Jeremiah Grossman
and Robert Snake [27]. In this, an attacker loads a genuine webpage (say http://G.com/index.
php) in an iframe and sets the CSS properties of the iframe such that it is invisible and positioned on
top of a fake, attractive button (e.g., “Claim this lottery”). If a user who is already authenticated to
the genuine site visits the attacker’s page and unwittingly clicks on the fake button, the user’s click is
hijacked (i.e., intercepted by the hidden iframe), thereby leading to dangerous consequences. There
are two popular approaches to defend against Clickjacking attacks. One approach is to disable the
presentation of the page using JavaScript and enable it only if it opens in the topmost window (proposed
by Rydstedt et al. [57]). This technique is called frame busting and can be achieved using the code
snippet in Listing 4.5.

<style> body{display:none;} </style>

<script>

if(self == top) {

document.getElementsByTagName("body")[0].style.display=’block’;

} else { top.location = self.location; }

</script>

Listing 4.5 Defeating Clickjacking using JavaScript

Frame busting is only a work around and is not considered as a standard defense against Clickjacking.
The other approach is to add an HTTP response header called X-Frame-Options [50] on webpages.
When browsers load any page having this header, they prevent rendering of the page in an iframe.
Though most browsers support the enforcement of this header, very few developers use this and rely
on frame busting as Clickjacking defense. We have seen in Section 4.2.2 that sandbox prevents script
execution inside an iframe. Leveraging this, an attacker can create a fake page having sandboxed iframe
and attempt a Clickjacking attack on a genuine page. If the genuine page relies only on frame busting,
the defense will be broken since sandbox disables execution of the frame busting code. Since web
standards recommend the usage of sandboxed iframes to build safer mashups, pages which are loaded
as widgets will be vulnerable to clickjacking if frame busting is the only defense used. Therefore, it
is very important that developers use X-Frame-Options header with allow-from directive to configure a
whitelist of origins that are allowed to frame the page. Unfortunately, in some cases it is not possible
to provide a whiltelist of allowed origins (e.g., social plugins such as Facebook Like which are used by
millions of websites) and they continue to remain vulnerable to Clickjacking.

27

http://G.com/index.php
http://G.com/index.php

Figure 4.3 Attacks on postMessage API. (1) postMessage communication with targetOrigin set to ‘*’.
(2) Attacker redirecting a frame via descendant policy. (3)Attack on confidentiality. (4) Attack on
integrity.

4.3.2 Security Considerations in PostMessage

With respect to postMessage API, the HTML5 specification warns developers against the usage of
‘*’ in the targetOrigin property and also suggests to verify authenticity of messages before replying.
Unfortunately, developers ignore these guidelines, which are also not mandated by design.
In 2009, Barth et al. [11] showed that browsers implement a policy different from Same Origin Policy
to determine whether a frame is allowed to reset the location of another frame. This is called frame
navigation. Historically, browsers implemented frame navigation policies such as Permissive policy and
Window policy which were too liberal and hence vulnerable to dangerous attacks. Modern browsers
follow a stricter policy called Descendant policy, which says that a frame can navigate only its descen-
dants. It is important to note that the policy is not dependent on origins i.e., a frame can navigate any
of its descendant frames even though belong to different origins. This loophole is used by attackers
to exploit applications that use the HTML5 postMessage API insecurely. The following subsections
explain the attacks that can be launched due to insecure usage of postMessage API.

4.3.2.1 Attack on Confidentiality

Confidentiality refers to preventing disclosure of information to unauthorized entities. Using postMes-
sage API, a frame can send a message that can be read only by an authorized recepient (i.e., a frame
belonging to the origin specified in the targetOrigin property). This ensures that confidentialty is main-
tained. However, developers often set the targetOrigin property to ‘*’, which allows any unauthorized
recepient to read the message. Combining this insecure configuration with the loophole in descendant
policy, attackers can hijack and steal the information being exchanged between frames. Figure 4.3 ex-

28

plains the sequence of steps involved in the attack. Step 1 shows the case where a mashup integrator uses
postMessage insecurely to communicate with its widget. To hijack the communication in the mashup,
an attacker loads the integrator in an iframe and navigate its child widget to an attacker-controlled evil
widget (Step 2 in the figure). If the integrator sends any message to its widget (which was redirected to
an evil widget in Step 2), the attacker will be able to receive the message (Step 3 in the figure). This
way, an attacker can compromise the confidentiality of the communication with the insecure usage of
postMessage API.

4.3.2.2 Attack on Integrity

Integrity refers to ensuring that data is not tampered by unauthorized entities in transit. postMessage
API provides a way of verifying the origin of the received messages (i.e., verifying authenticity), thereby
ensuring that integrity of messages is not lost. However, developers often miss verifying the origin of
the received messages, thereby opening a vulnerability. To make use of this vulnerability, an attacker
frames the mashup integrator and redirects its widget to an evil widget (Steps 1 and 2 as in the previous
attack). Apart from stealing the integrator’s message (Step 3), the attacker replies with a malicious piece
of JavaScript code (e.g., a Cross Site Scripting (XSS) attack vector). Since the integrator does not verify
the sender of the message and executes the incoming data, it will be prone to dangerous consequences.

Though a majority of modern browsers already support the new security model and HTML5 security
APIs, their adoption by web developers has not picked up the expected pace. Hanna et al. [26] showed
that Facebook Connect and Google Friend Connect, two new client-side protocols that are built using
postMessage, were vulnerable to confidentiality and integrity attacks. To use these APIs effectively, a
web developer is expected to understand the problems in traditional browser security architecture and
the need for newer APIs (Section 4.1.1). A developer may not know how these APIs work in tandem
with the newer browser model and how to compose them to build safer mashups. As we have explained,
each of these APIs come with certain security precautions, failing to adhere to which results in a weak
security configuration. Therefore, there is a need to simplify the task of developers and encourage them
to embrace the new web standards while building complex web applications like mashups, in the era of
open APIs.

4.4 Implementation of SafeMash

To assist web developers in utilizing the newer security model implemented by most browsers and
creating safer mashups, we have developed SafeMash, a JavaScript API library. SafeMash exposes
an API for creation of isolated widgets (using HTML5 Iframe sandbox), exchanging information be-
tween them (via HTML5 postMessage API) and impose content restrictions on the widgets (via CSP).
It incorporates security checks which developers often miss while using direct HTML5 APIs. Also, it

29

educates developers by throwing useful warning messages as exceptions, in case certain configurations
are missed.

To use SafeMash, developers need to embed the library “SafeMash.js” in the mashup page as well as
widget pages and invoke the library’s API methods in their JavaScript code. The library was designed
following the design pattern of jQuery, a popular JavaScript library. It exposes a single global variable
“$m” and accepts CSS selectors for querying DOM elements. However, it has no dependency on any
JavaScript library.

4.4.1 SafeMash API

To embed third party content as widgets, developers should use the createWidget method (see List-
ing 4.6). It accepts a mandatory loadPage property which expects a widget’s URL as its value and an
optional sandboxFlags property, which expects a space-separated whitelist of HTML5 sandbox’s flags
(refer Section 4.2.2).

<script src="safemash.js"></script>

<script>

$m(‘widgetContainer’).createWidget({

loadPage: ‘http://domainName/gmaps’,

sandboxFlags: ‘allow-scripts allow-forms’ });

</script>

Listing 4.6 Widget creation using safeMash

To send a message to a widget (i.e., iframe/window), developers should use the send method by
passing a CSS selector of the target widget (see Listing 4.7). The send method accepts a mandatory
message property, which expects a message string as its value and an optional targetOrigin property,
which expects the origin of the receiver as its value.

<script>

$m(targetWidget).send({message: ‘Hello’});

$m.receive({from: ‘http://domainName’,

callback: receiveMessage});

function receiveMessage(event){

console.log(‘Data received: ’, event.data);

}

</script>

Listing 4.7 Frame communication using safeMash

30

To receive a message from a widget, the receive method should be used. It accepts a mandatory,
developer-supplied callback function which will be triggered once a message is received. It also ac-
cepts an optional property from, which expects the sender’s origin as its value. A mashup’s parent
page and its widgets can leverage SafeMash and configure Content Security Policy (CSP) rules using
the applyCSP method (see Listing 4.8). Internally, this method adds a HTML Meta tag to the corre-
sponding page and applies the CSP rule as its value. Applying CSP via meta tags becomes handy when
developers do not have permissions to set response headers.

<script>

$m.applyCSP(‘img-src http://*.flickr.com’);

</script>

Listing 4.8 Applying CSP using SafeMash

4.4.2 Security Checks Built into SafeMash

Apart from simplifying the usage of modern security APIs, SafeMash comes with certain built-in
security checks. As we have seen in Section 4.3, the HTML5 specification issues security warnings
to developers against the usage of certain configurations. However, browsers do not give any hints to
developers if such configurations exist in code. SafeMash checks for insecure configurations and warns
developers by throwing exceptions.

4.4.2.1 Sandbox Related Checks

The createWidget method of SafeMash creates a sandboxed iframe with the flag “allow-scripts” by
default, which allows JavaScript execution within the iframe. To constrain or relax the privileges of
content in the iframe, developers can set the property “sandboxFlags” and pass the desired flags, which
override the default flag. We have seen in Section 4.3 that the flags “allow-scripts” and “allow-same-
origin” should not be used together since they neutralize the effect of the sandbox attribute by removing
it completely. SafeMash issues warnings if developers configure these two flags together in their code,
thereby reducing the scope of privilege escalation attack on sandboxed iframes.

4.4.2.2 PostMessage Related Checks

The postMessage API’s specification [66] too comes with certain security warnings. While sending
a message (line 1 in Listing 4.7), specifying the “targetOrigin” (which is optional) ensures that the
message is sent only to a specific origin, which otherwise defaults to ‘*’ (any origin). Browsers do
not complain if the “targetOrigin” is not configured, which could result in the leakage of sensitive
information. If SafeMash’s “send” method is used, it warns the developer if the target origin is missing.

31

Also, before responding to a request using postMessage API, it is important to verify the origin of
the sender. If this authentication is not performed, any random frame can send a message and invoke
undesirable consequences. If SafeMash’s “receive” method is used, it warns the developer if the sender’s
origin i.e., the “from” property is missing. If it is configured, SafeMash internally checks if sender’s
origin (retrieved from the browser’s message event) matches with the configured origin and rejects the
message if there is a mismatch. This is an important authentication check which developers often miss
while using the HTML5 postMessage API and hence it is included in the library.

4.4.3 Evaluation

To evaluate SafeMash, we have built a widget-style toy mashup inspired by DropThings [73], a
personalizable Web2.0 AJAX start page. With the growth of open APIs, this mashup architecture is still
relevant and has manifestated into social widgets (e.g., Tweet, Like buttons), discussion systems (e.g.,
Disqus comments), dashboards etc. Our toy mashup consists of three widgets: a map widget, a gallery
widget and a custom search widget. On submitting a search query for a location (e.g, “Hyderabad”) in
the search widget, the map widget uses Google Map’s API to update the map and the gallery widget uses
Flickr’s API to fetch photos corresponding to the search query. Though the functionality is intact, there is
no privilege separation in the mashup (as explained in Figure 4.1). To achieve privilege separation using
state-of-the-art browser security mechanisms, we have rebuilt this mashup using SafeMash without
losing any functionality. One of the key observations from this exercise is that web developers tend
to focus primarily on achieving the desired functionality, with little or no thought about the Principle
of least privilege [72]. Live demonstration of both the versions of the toy mashup, the source code of
SafeMash and attacks on the insecure usage of postMessage API are available on GitHub and can be
accessed at [62].

32

Chapter 5

Enhancing Browser Security Policies

In Chapter 2, the current security model of web browsers has been explained in detail. As mentioned
in Section 2.2, the Same Origin Policy is insufficient to meet the security requirements of the modern
web. In summary, the following are the limitations of the current browser security model:

1. Cross Origin Content Inclusion

2. Cross-Site Scripting (XSS)

3. Data-Exfiltration

4. Cross-Site Request Forgery (CSRF)

5. Clickjacking

6. Cross-Site Timing Attacks

Content Security Policy (CSP), introduced in 2010 [58] improves on SOP in mitigating the first three
limitations in the above list, by restricting the sources of external content and disabling inline scripts.
However, the problem of cross-origin requests from a malicious website to a genuine website i.e., the
last three limitations in the above list, was left unanswered by SOP and CSP.

5.1 Web Infiltration attacks

Our work on enhancing browser security policies begins by seeking a common thread between CSRF,
clickjacking and cross-site timing attacks with the goal of understanding the limitations of CSP in ad-
dressing these attacks. We label these attacks as Web Infiltration attacks. The root of web infiltration is
a request initiated from an evil page to a genuine but unsuspecting server (Figure 5.1). In web infiltra-
tion attacks, a victim who is already logged in to a genuine site, G.com, unwittingly visits an attacker’s
site, A.com in a separate browser instance (or tab). The web page obtained from A.com triggers state-
changing requests to G.com either through an automatic form submission initiated by a script or via an

33

Figure 5.1 Exfiltration vs. Infiltration attacks

 tag, or through other similar vectors. The request to G.com goes from the victim’s browser and
uses the victim’s credentials. G.com is unable to discriminate between genuine and forged requests.
Web infiltration is complementary to exfiltration. Exfiltration is caused by XSS and can be controlled
by CSP. Infiltration, on the other hand, cannot be controlled by CSP.

5.1.1 Observations and Inferences

We propose a novel approach to prevent web infiltration, based on the following observations:

• Observation 1: Irrespective of how a network event (HTTP request) is initiated, a web server
responds with a resource. Therefore, any network event, e.g., loading an image can infiltrate and
potentially change the server’s state e.g., delete a resource.

• Observation 2: The prevention and detection techniques for web infiltration attacks that we
have investigated are triggered too late. They apply either after an HTTP request leaves the
browser [55, 13] or after the browser has already received the response [50, 48].

• Observation 3: Client side state information (cookies) of a website is shared across all tabs of
a browser or multiple instances of the same browser, even though its access by other websites is
restricted by Same Origin Policy.

• Observation 4: Website developers or administrators segregate the paths of various resources on
the server, as a good engineering practice.

From Observation 1, we infer that a policy which monitors the initiator of web interactions is re-
quired. From Observation 2, we infer that every request must be subjected to the policy before it leaves
the browser. From Observation 3, we infer that the policy should be available to and enforced by all
tabs of the browser. From Observation 4, we infer that segregation of resource paths can be used as an
important factor in the design of the policy.

34

Based on the above inferences, we propose a simple security policy, Cross-Origin Request Policy
(CORP), to prevent web infiltration attacks. The policy is a 3-way relation defined over the sets browser
event types, origins, and the set of resource paths derived from the server’s origin. CORP may therefore
be seen as a policy that controls who, i.e., which site or origin, can access what, i.e., which resource on a
cross-origin server, and how, i.e., through which browser event. CORP is declarative; it can be added as
an HTTP response header to the landing page of a website. To implement the policy, web administrators
need to segregate resources on the server based on the intended semantic effect of the resource. For
example, all public resources could be in the path /public, while all state changing resources could
be sequestered in a different path. Thus the semantics of resources is mapped to paths. Fortunately,
as discussed in Section 5.4, most website administrators already segregate resources along the lines
proposed by the policy.

A web browser enforcing CORP would receive the policy and store it in memory accessible to all
tabs or browser instances similar to the cookie storage mechanism. Assume that a tab tA contains a page
pA from a server sA. Along with the page pA, the browser also receives a CORP policy c(sA) from sA.
Assume that the browser now opens a page pB received from sB in tab tB and pB attempts to make a
cascading cross-origin request to sA. The cross-origin request from pB to sA will be intercepted and
allowed only if it complies with the permissions c(sA).

Threat Model: Throughout the work, we take into consideration only the threats that come under
the capabilities of a web attacker. The threat model under consideration has been explained in Sec-
tion 1.2. A web attacker has root access on at least one web server and can generate HTTP requests
against any web server. However, the attacker has no special network privileges, which means threats
like man-in-the-middle cannot be realized and HTTP headers generated by the browser or server cannot
be tampered.

Contributions: Our contributions in this work are as follows: (1) We have identified a class of web
infiltration attacks that include CSRF, clickjacking and cross-site timing attacks and designed a uniform
browser policy to mitigate all of them. Recently, we have discovered that CORP can also be used to
defend against application-level DDoS attacks. (2) We have formalized our proposal in Alloy [34], a
finite state model checker, and verified that it is sound. (3) We have built two websites - one playing the
role of a genuine website and the other a malicious website (a test suite) triggering malicious calls to
the first. We have collected a large number of attack vectors from literature and incorporated them into
the test suite. (4) We have implemented our proposal as an extension for Google Chrome web browser.
We have evaluated the extension by configuring CORP on the genuine site and verified that infiltration
attacks by the malicious site are blocked by the extension. (5) We have configured CORP on three
popular open source web applications in our test environment to verify the effectiveness and ease of
deployment on real world websites. (6) We have analyzed the home page traffic of over 15,000 popular
websites and confirmed that the burden on web administrators to deploy CORP will be minimum.

We observe that CSRF, clickjacking and cross-site timing attacks have a common root, which is a
cross origin HTTP request triggered by a malicious client to a genuine server without any restrictions.

35

We attempt to mitigate these attacks by devising a uniform browser security policy explained in detail
in Section 5.2.

Organization of the chapter: The rest of the chapter is organized as follows: Section 5.2 explains
the design of CORP and the security guarantees provided by it. Section 5.3 gives a brief introduction
to Alloy and validates the soundness of CORP. Section 5.4 describes the implementation of CORP as a
Chrome extension and the experimental methodology to evaluate its effectiveness.

5.2 Cross Origin Request Policy

In this section, we first explain the core idea behind Cross Origin Request Policy (CORP) and its im-
portance in mitigating web infiltration attacks. Next, we explain the model of a browser which receives
CORP and enforces it. Finally, we explain the directives which make the policy, with examples.

5.2.1 Core Idea Behind CORP

Based on our clear understanding of various types of web infiltration attacks (Section 5.1), we realize
the need for a mechanism that enables a server to control cross origin interactions initiated by a browser.
Precisely, a server should have fine-grained control on Who can access What resource on the server and
How. By specifying these rules via a policy on the server and sending them to the browser, requests can
be filtered/routed by the browser such that infiltrations attacks will be mitigated. This is the core idea
behind CORP. Formally speaking, Who refers to the set of origins that can request a resource belonging
to a server, What refers to the set of paths that map to resources on the server, How refers to the set of
event-types that initiate network events (HTTP requests) to the server. We identify HTML tags such as
, <script>, <iframe> etc., and window events such as redirection, opening popups etc., as event-
types (explained in Section 5.2.3). Therefore, CORP is a 3-way relation defined over the sets Who, What
and How, as shown in Equation (1).

CORP ⊆ Origin×ResourcePath× EventType (5.1)

Equation (2) shows an example of a policy which is a subset of the 3-way relation.

Origin = {O1, O2, O3}

ResourcePath = {P1, P2, P3}

EventType = {Img, Script, Form}

CORP,Cp = {(O1, P1, Img), (O2, P2, Form), (O2, P3, Script)} (5.2)

Let us say a website belonging to the origin O0 sets this policy and a CORP-enabled browser receives it.
Then, only the cross origin requests that satisfy the tuples in the policy will be allowed by the browser

36

Figure 5.2 Browser model showing exfiltration & infiltration and how they are mitigated by CSP &
CORP

and rest will be blocked. E.g., A webpage belonging to the origin O1 will be allowed to request for
images only under the path P1, from a server belonging to the origin O0 (refer to the first tuple in
Equation (2)). Similarly, a webpage belonging to the origin O1 will not be allowed to submit a form to
the server belonging to O0, since it is not defined in the policy.

5.2.2 Browser Model with CORP

Figure 5.2 shows the model of a browser which supports CORP. It shows the difference between
exfiltration and infiltration attacks, thereby explaining how CORP differs from CSP. The figure shows
a genuine server G, with origin http://G.com, an attacker’s server A, with origin http://A.com
and a browser with two tabs - t1 and t2. A general browsing scenario, which is also the sufficient
condition for a cross origin attack, where a user logs in at G.com in t1 and (unwittingly) opens A.com in
t2 is depicted in the model.

5.2.2.1 Setting the Policy

Once a user requests the genuine site G.com by typing its URL in the address bar of t1, an HTTP
request is sent from t1 to G. In response, along with content, CORP is sent via HTTP response headers
by G (shown by arrows 1 and 2 in the figure). The tab t1 receives the policy and sends it to a shared
policy store Ps where Ps ensures that CORP is available to every tab or instance (arrows 3 and 4 in the
figure) of the browser. Now, when a user unwittingly visits a malicious page from A in t2 (arrows 5 and
6 in the figure), every HTTP request initiated by the page in t2 to G will be scrutinized and restrictions
in CORP will be enforced (location 7 in the figure). Requests from t2 to G will be allowed only if they
comply with the configuration in the policy. As per the guidelines in Section 5.2.3, web administrators

37

http://G.com
http://A.com

will be able to configure rules in a way that web infiltration attacks will be prevented. It is sufficient
to configure CORP on the login page/home page of a website. It is not a per-page policy like CSP and
adding CORP on every page only overrides the policy.

5.2.2.2 Deleting the Policy

As users visit multiple websites, their browsers keep accumulating CORP policies and therefore, a
mechanism to delete the policies is required. In CSP and HTML5 CORS, policies will be stored in the
browser only till the participating websites remain open in browsers. The same mechanism cannot be
used in CORP, because if a CORP-enabled website is closed accidentally by a user while being logged
in and the policy is destroyed, malicious websites will be able to trigger infiltration attacks. To prevent
this, it is important for the policy to be persistent in the browser. At the same time, its life-time in the
browser should be under the control of the server. To meet both these objectives we follow the expiry
mechanism of HTTP Strict Transport Security (HSTS) policy [29] and mandate the server to send a
max-age attribute along with CORP directives. This attribute sets the amount of time (in seconds) for
which CORP should be active in the browser. For example, a max-age value of 2592000 seconds ensures
that the policy is active for 30 days, while a max-age of 0 deletes the policy immediately. If a user visits
the website before the expiration time, the timer will be reset to the new time configured in max-age.

It is important to note that policy’s set, get and delete operations are subjected to same origin checks
on the browser, to prevent websites overwriting each other’s policies. Also, since CORP aims to filter
cross origin interactions, adding it to a website does not break the site’s existing same origin HTTP
transactions.

5.2.2.3 CORP and CSP - How They Differ

CORP and CSP together complement SOP and help in fixing exfiltration and Infiltration. CSP was
designed to enforce restrictions on HTTP traffic leaving a genuine webpage, as shown by location 8 in
Figure 5.2. CORP was designed to enforce restrictions on HTTP traffic sent by a malicious web page
to a genuine server (location 7 in the figure). Also, CSP expects origins as directive values as they
are sufficient to control exfiltration. CORP specifies a 3-way relation defined over the sets event-types,
paths and origins. In a nutshell, CORP configured on a website A.com defines who (i.e., which origins)
can probe what (i.e., which resource) on A.com and how (i.e., through which event).

5.2.3 Abstract Syntax of CORP

Listing 5.1 shows the abstract syntax of CORP.

policy ::= rule *...

rule ::= pattern permission

pattern ::= origin-list eventType-list path-list

38

permission ::= ALLOW | DENY

origin-list ::= origin +... | ANY

eventType-list ::= eventType +... | ANY

path-list ::= path +... | ANY

origin ::= RFC 6454

eventType ::= img | media | style

| font | script | iframe

| form-action | xhr | hyperlink

| window | object

path ::= RFC 2396

Listing 5.1 Abstract syntax of CORP

For path, an additional pattern “resourcePath/*” is allowed to simplify the configuration of CORP.
The wild card ‘*’ in the pattern provides a way to refer to any resource under a specific resource path.
E.g., Access to all paths under “admin” directory can be controlled using the pattern “/admin/*”.

5.2.3.1 Order of Precedence for CORP rules

CORP rules are processed from top to bottom, till the default rule is reached. When a cross origin
request is made by a website against a CORP-enabled site, the request is scrutinized by the first rule in
the policy. If a match is found, the first rule is executed and rest of the rules are not evaluated. Else, the
request is scrutinized by the next rule and the process continues till the last rule.

The last (default) rule is set to “* * * Allow”, which means “Allow everything”. If a server sends an
empty policy, it is the same as not configuring CORP at all. In such cases, the default rule is evaluated
and all cross origin requests are allowed. This approach ensures that CORP does not break existing
cross origin interactions on a website. Also, it enables web administrators to incrementally build stricter
rules and tighten the security of their servers. We demonstrate a few example policies in the following
discussion.

5.2.3.2 Example Policies

• Deny all: A banking site may want to completely block all cross origin requests to its site. It may
achieve this by setting the simple policy shown in Listing 5.2.

* * * DENY

Listing 5.2 Block all cross origin requests

39

• Selective content: A photo sharing site may want to respond only to authenticated cross origin
requests involving scripts, images (from any site) and block any other authenticated cross origin
request. It may set the policy shown in Listing 5.3.

* img /img ALLOW

* script /scripts ALLOW

* * * DENY

Listing 5.3 Allow access to selective content

• Partners only: An e-commerce website might expose state-changing web services and expects
only its partner sites, say P1.com, P2.com, to do a form submission to its services. It can set the
policy shown in Listing 5.4.

{P1.com, P2.com} form {/update, /delete} ALLOW

* * * DENY

Listing 5.4 Allow selective access to selective origins

5.2.4 Security Guarantees Provided by CORP

CORP helps website administrators use browser’s capabilities in adding additional security to their
sites. The following are the security guarantees provided by CORP:

5.2.4.1 Fine Grained Access Control

Through CORP, websites can decide who (i.e., which set of origins) can trigger cross origin requests
to what resources on their sites and more importantly how (i.e., through which mechanism). Having
such a fine grained access control helps web administrators selectively allow/deny cross origin requests,
thereby enhancing the security of their site.

5.2.4.2 Combating CSRF

By binding various event types e.g., to paths serving their corresponding resources e.g.,
http://A.com/images/ via CORP, the semantics of request initiators is maintained. The im-
plication of this binding is that active HTML elements can no longer be used as vectors for cross origin
attacks. Also, by whitelisting sensitive paths and defining which origins can request them, automated re-
quests triggered by scripts through various techniques can be blocked. If CORP is properly configured,
CSRF attacks can be eliminated completely.

40

http://A.com/images/

Figure 5.3 Browser model showing the enforcement of Clickjacking defense in CSP/XFO and CORP

5.2.4.3 Early Enforcement of Clickjacking Defense

As discussed in Section 3.2.2, XFO and CSP-UI-Security directives are two important proposals
to mitigate clickjacking. Figure 5.3 explains how enforcement of clickjacking defense takes place in
XFO/CSP and CORP. The workflow in the figure is similar to the workflow depicted Figure 5.2. As
explained in Section 5.2.2, consider the normal browsing scenario where a user (victim) opens a genuine
site G.com in tab t1 and unwittingly opens an attacker’s site A.com in tab t2. In this case, the evil page
(belonging to A.com) embeds an iframe, which loads a page belonging to G.com, with an intention
to hijack the victim’s click. The iframe makes an HTTP request to the genuine server (G) and gets
the HTML response along with HTTP headers. If the page is configured with either X-Frame-Options
header or CSP clickjacking directive, browsers enforce XFO/CSP and do not render the HTML response
(location 7 in the figure), thereby preventing clickjacking. However, since the request triggered by the
iframe has already reached the server G, CSRF attack has already taken place. Also, due to this delayed
enforcement, Clickjacking bypasses such as Double Clickjacking [31], Nested Clickjacking [43] and
Login detection using XFO [36] arise. CORP mitigates these problems by ensuring that clickjacking
enforcement take place even before a cross origin request is triggered. If the genuine site G.com in t1
is configured with CORP, the policy will be stored in a shared policy store Ps, which is accessible to
all instances of the browser. As soon as the iframe in the evil page (loaded in t2) triggers an HTTP
request to G.com, CORP’s enforcement triggers (location 5 in the figure), thereby blocking the request
altogether. Since the request is blocked at the browser itself, CSRF is mitigated. The same logic applies
to other bypasses for clickjacking. Hence, CORP is the right way to eliminate clickjacking completely.
Listing 5.5 shows CORP configuration to mitigate clickjacking.

* iframe * DENY

Listing 5.5 Defeating clickjacking with CORP

41

5.2.4.4 Controlling Social Engineering Attacks

Attackers attempt several social engineering tricks on end users by leveraging popups [60], iframes [51,
42] and hyperlinks. Spam emails having hyperlinks that point to sensitive web pages (e.g., delete.php)
continue to be a common menace. Today, there are no standard defenses against these attacks as there
is no mechanism for a server to instruct how a cross origin request should originate to itself. By config-
uring CORP, website administrators can block requests initiated by frames, popup windows, hyperlinks
for all or specific paths. This ensures that end users do not succumb to most of the common social
engineering tricks.

* href /non-sensitive ALLOW

* {href, window, iframe} * DENY

Listing 5.6 Controlling social engineering attacks

Listing 5.6 shows a sample CORP configuration, which blocks some of the vectors used in social en-
gineering attacks. The configuration allows hyperlinks to navigate only to non-sensitive pages, denies
requests which open popups or navigate to any location via window object and denies framing.

5.2.4.5 Defeating Cross-Site Timing Attacks

The vectors for cross-site timing attacks are same as that of CSRF, as discussed in Section 2.2.6.
They use the onload and onerror event handlers of HTML elements for measuring the time taken for
a resource to load under various conditions, thereby leaking sensitive information such as login status.
One of the suggested defenses is to disable these event handlers for cross origin requests. This not
only stops the attack but also breaks genuine scenarios. Website administrators who are cautious about
cross-site timing attacks can configure CORP such that cross origin requests are allowed only to public
resources i.e., resources which do not need authentication. CORP blocks cross origin requests to au-
thenticated resources such as private pictures and URLs before they leave the browser, thereby defeating
cross-site timing attacks. Listing 5.7 shows a sample CORP configuration for the same.

* img /public/images/* ALLOW

* * * DENY

Listing 5.7 Defeating cross-site timing with CORP

5.2.4.6 Mitigating Application-level DDoS Attacks

On March 27, 2015, Github has witnessed a massive DDoS (distributed denial of service) attack,
the largest in Github’s history till date [2, 1]. As per the analysis of security researchers [3], the attack
is an application-level DDoS attack caused by continuous cross origin JavaScript calls to Github from

42

Figure 5.4 Understanding an application-level DDoS attack

several thousands of users. This variant of cross origin attacks were neither reported nor analyzed in
any of the earlier studies (see Section 3). Also, we did not consider this variant when we defined the
scope of Web infiltration attacks (see Section 5.1). Intuitively, it appeared that CORP can be enhanced
to mitigate such attacks and we were interested in exploring this possibility further. In this attempt, we
have generalized the attack on Github and came up with the flow diagram shown in Figure 5.4. The
steps involved in the attack, which correspond to the numbers in the figure, are as follows:

1 A genuine user browses a website http://site1.tld in a browser (tld stands for Top Level
Domain e.g., .com, .org).

2 An HTTP request is made to the server site1.tld

3 The server site1.tld responds with a web page, which is loaded in the user’s browser.

4 The loaded web page references a third party analytics JavaScript file, which is hosted under
http://analytics.tld.

5 While the server analytics.tld responds with a genuine analytics file, a malicious man-in-the-
middle device intercepts the response and tampers the script with malicious content. The tampered
script gets embedded in the web page in the user’s browser. As explained in Section 2.2.1, the
script inherits the origin http://site1.tld.

43

http://site1.tld
http://analytics.tld

6 The tampered script continuously triggers cross origin HTTP requests to the server target-site.tld
for every few seconds using JavaScript’s SetTimeOut function. Therefore, the site http://

site1.tld launches a Denial of Service (DoS) attack on the server target-site.tld. If the analyt-
ics JavaScript file is embeded by multiple sites (e.g., http://site2.tld, http://site3.
tld etc.), then the users browsing those sites will unwittingly launch the DoS attack on target-
site.tld. This makes the attack an application-level Distributed DoS (DDoS) attack.

Irrespective of the motive behind the attack on Github, we were interested in finding if CORP can help
a server in mitigating against such application-level DDoS attacks. To explore this, we have simulated
the DDoS attack in a lab environment. The setup has an analytics site which serves JavaScript content,
a vector site which references the analytics JavaScript and a victim site which receives DDoS requests.
For the sake of simplicity, instead of tampering the analytics script, we have injected the malicious
script in the analytics script itself. We have enabled the victim site to monitor the incoming requests and
maintain a threshold (say 10 requests/second). Once this threshold is reached, which is an indicative of
a DDoS attack, the victim site responds with CORP that denies all cross origin requests to the site. Thus,
by setting CORP dynamically, a server can protect itself from application-level DDoS attacks. Note that
DDoS attacks can be launched even from outside a browser and CORP will not be able to prevent them.
CORP only addresses the application-level DDoS attacks arising due to cross origin web interactions.

5.3 Validating the Soundness of CORP

Analyzing the security of the web platform is a daunting task, since it based on several complicated
web specifications which are often written and implemented manually. Over the years, researchers have
used formal verification to analyze the security of network protocols. Akhawe et al. [5] built a formal
model of web security based on an abstraction of the web platform. They used Alloy [34], a finite state
model finder, to build their formal model and showed that their model is useful in identifying well-known
as well as new vulnerabilities in web specifications. Following this work, several researchers used Alloy
to formalize security aspects of the web. They used it to verify the soundness of both existing security
aspects as well as newer proposals. Inspired by the wide-spread application of Alloy in verifying web
specifications and architectures, we have used it to formalize and verify the soundness of CORP.

5.3.1 A Brief Introduction to Alloy

Alloy is a model specification language based on first-order logic, used for creating relational models.
Using Alloy, developers can write and test the specifications of their software designs by creating formal
models. Alloy Analyzer is a tool used for analyzing and exploring the models created using the Alloy
language. It takes the constraints written in Alloy language and reduces them to satisfiability (SAT)
problem. It then uses built-in SAT solvers to find models satisfying or violating the constraints. To
ensure that the model-finding problem is decidable, the Alloy Analyzer performs model-finding over a

44

http://site1.tld
http://site1.tld
http://site2.tld
http://site3.tld
http://site3.tld

restricted scope. The Alloy Analyzer can be used for simulation as well as counterexample generation.
In simulation, Alloy tries to find instances of the model that satisfies all the constraints specified in
the Alloy logic. In counterexample generation, Alloy tries to find instances of the model that violates
an assertion. Together, Alloy’s simulation and counterexample generation tests assist in verifying the
soundness of a model.

5.3.1.1 Alloy specifications

All structures in Alloy models are built from atoms and relations. An atom is a primitive entity
that is indivisible, immutable and uninterpreted. A signature (type) describes an entitiy that is reasoned
about. It introduces a set of atoms. A signature can be created as an extension of another signature,
thereby forming subsignatures (subtypes or subsets). A signature that does not extend another signature
is called a top-level signature. For example, the declaration sig Member in Listing 5.8 introduces a new
set named Member. The signatures Faculty and Student extend the signature Member. They are the
subsets of the set Member and are mutually disjoint. When a signature is declared as abstract, it will
have no atoms except those belonging to its extensions.

1 abstract sig Member{}

2 sig Faculty extends Member{}

3 sig Student extends Member{}

Listing 5.8 Alloy Signatures

Relations are declared as fields of Alloy signatures, and multiplicities help in constraining the size of
signatures. A multiplicity keyword prefixing a signature constraints the number of elements in the
signature’s set. There are four multiplicities in Alloy. The multiplicity set says that the signature can
contain any number of elements; some says that the set contains at least one element; lone says that the
set contains at most one element; and one says that the set contains exactly one element. In an Alloy
declaration, the default multiplicity constraint is one.

1 sig Class {

2 taughtBy: Faculty,

3 attendedBy: some Student

4 }

Listing 5.9 Alloy Relations and Multiplicities

The declaration in Listing 5.9 introduces a relation taughtBy whose domain is Class and whose image
is Faculty. The relation says that each class is taught by exactly one faculty. The attendedBy relation
says that each class is attended by at least one student.

45

Alloy has various forms of quantified constraints as shown in Listing 5.10. In the listing, F is a
formula, a constraint, which contains the variable x, e is an expression bounding x, and the keywords
preceding x are quantifiers.

1 all x:e | F // F holds for every x in e.

2 some x:e | F // F holds for at least one x in e.

3 no x:e | F // F holds for no x in e.

4 lone x:e | F // F holds for at most one x in e.

5 one x:e | F // F holds for exactly one x in e.

Listing 5.10 Alloy Quantification

Alloy has several set, logical and relational operators. The union (+), intersection (&), difference (-),
subset (in) and equality (=) operators are the standard set operators. The not (negation), and (conjunc-
tion), or (disjunction), implies (implication), iff (bi-implication) are the standard logical operators. They
can also be written in shorter form (!, &&, ||, =>, <=>). While there are several relational operators, the
dot join (.) operator is used more frequently. It is used to compose relations. E.g., if p and q are two
relations, the join p.q is the relation obtained by taking every combination of a tuple from p and a tuple
from q and adding their join if it exists. Listing 5.11 shows an example of composing relations using
the join (.) operator.

1 p = {(a,b)}, q = {(b,c)}, r = {(a,c)}

2 p.q = {(a,c)} // The matching element (b) from p and q is omitted

3 p.r = {} // The last element of p and first element of r do not match

4 ~p.r = {(b,a)}.{(a,c)} = {(b.c)} // ~p is transpose of p

Listing 5.11 Composing relations using Alloy’s dot join operator

A fact in Alloy is a set of constraints that are assumed always to hold. A predicate is a named
constraint, with zero or more declaration parameters. It evaluates to true if the inputs satisfy all of the
constraints in its body, and evalutes to false otherwise. An assertion is a constraint that is intended to be
followed from the facts of the model. If an assertion does not follow from the facts, the Alloy analyzer
produces a counterexample, thereby proving that the design of the model has a flaw. To analyze a model,
the run command is used. It tells the Alloy analyzer to search for an instance of a predicate. The check
command tells the analyzer to search for a counterexample of an assertion. The scope command bounds
the size of instances or counterexamples that will be considered to make model finding feasible. If scope
is omitted, the analyzer will use the default scope in which each top-level signature is limited to three
elements.

5.3.1.2 Sample model

Appendix A explains in detail a sample Alloy model for a basic academic time table.

46

5.3.2 Design considerations of CORP Alloy model

This section explains in detail the formal models we created to validate the soundness of CORP.
After a thorough analysis of the Alloy browser security model developed by Akhawe et al. [5], we have
built a simpler model, which captures only the details required for web infiltration attacks. Below are
the design considerations of our formal model:

5.3.2.1 Simpler Abstraction

Akhawe’s Alloy model captures an abstraction of the web platform and could have been used as
a baseline for our model. However, we have observed that it gets complicated when it is extended
with DOM (Document Object Model) elements and the HTTP transactions initiated by them. Since the
problem we are solving is related to cross origin intereactions, instead of extending Akhawe’s model,
we have borrowed the basic signatures and captured only the relevant details, thereby building a simpler
abstraction of the web platform.

5.3.2.2 Non-empty browser context

In a general browsing scenario, when a user opens a new browser window, there is no initial context
(we refer to this as “Empty context”). In such a context, the user initiates the first HTTP request by
typing a URL in the address bar. Once the request gets a successful HTTP response, a document is
constructed, which is the state of the browser. Subsequent HTTP requests occur in the context of this
document, which we refer to as “Non-empty context”. Our model assumes that a non-empty context of
a victim website is available and a user has logged into the site. It does not model the HTTP transactions
that built this context. Similarly, it assumes that a non-empty context of an evil website is available. In
a typical web infiltration attack, the following steps take place:

Step 1 A user logs into a genuine website in one tab of a browser

Step 2 The user (unintentionally) opens an evil website in another tab

Step 3 The evil site generates malicious cross origin HTTP requests to the genuine site’s server

By making the “Non-empty context” assumptions, the steps 1 and 2 above are eliminated from the
model. These assumptions will not impact the depiction of cross origin interactions. Moreover, they
will make the model simpler to analyze. The focus of our Alloy models will be in depicting the malicious
cross origin requests in Step 3 initially, and later mitigating them with CORP.

5.3.2.3 Single browser instance

Since we are assuming non-empty contexts, we have restricted our model to contain only a single
instance of a browser. As explained in the previous section, the intent of the model is to depict a

47

web infiltration attack, a cross origin HTTP request from an evil site to a genuine site’s server, and
to mitigate it. So it is sufficient to have a single browser window/tab (synonymous to the signature
Browser in our model), which loads a document from an evil server. The contents of the document
(HTML elements/JavaScript) initiate cascading HTTP requests to a genuine server.

For easier analysis and understanding, we have created two Alloy models: Pre-CORP and Post-
CORP. The Pre-CORP model captures the current state of the web platform, where unrestricted cross
origin requests are possible. The Post-CORP model is an extension of the Pre-CORP model wherein
we add additional signatures, facts and predicates to describe CORP and the constraints it enforces on
cross origin requests.

5.3.3 Modelling cross-origin requests in the web platform (Pre-CORP.als)

Figure 5.5 shows the meta model of Pre-CORP model. The core components of this model are:
HTTPTransaction, Origin and HTTPEventInitiator. The relations and constraints around these compo-
nents are explained in this section.

5.3.3.1 HTTP Transactions

The code in listing 5.12 shows our abstraction of an HTTP transaction. A HTTPTransaction is a
type which consists of exactly one HTTPRequest and exactly one HTTPResponse. An HTTP request
is initiated from a Browser and sent to a Server, while an HTTP response is initiated from a server and
sent to a browser.

1 abstract sig HTTPTransaction{

2 req: HTTPRequest,

3 resp: HTTPResponse

4 }

5 sig HTTPRequest {

6 from: Browser,

7 to: Server,

8 host: Origin

9 }

10 sig HTTPResponse{

11 from: Server,

12 to: Browser,

13 host: Origin

14 }

Listing 5.12 Basic HTTP Transactions in the Pre-CORP model

48

Figure 5.5 Meta model of the Pre-CORP Alloy model

49

Figure 5.6 An instance of an HTTP transaction in the Pre-CORP model

Requests and responses are tied to their respective end points (i.e., browsers and servers) via the Origin
signature. Figure 5.6 shows Alloy’s instance of an HTTP transaction, projected over multiple signatures
for simplicity.

5.3.3.2 Origin

As explained in Section 2.1.1, Origin is represented by the 3-tuple (scheme, host, port). The code in
listing 5.13 shows the basic web model, which depicts how an origin is related to a browser and a server.
A browser consists of exactly one active document i.e., the document with which a user interacts at any
point of time. Each document has exactly one origin, whose host resolves to the server from which
the document has loaded. Figure 5.7 depicts this relation. It is produced by Alloy when the predicate
showBasicModel shown in Listing 5.14 is run. The predicate asks Alloy to generate an instance of the
model without any HTTP transactions.

1 sig Origin{

2 pointsTo: Server

3 }

4 one sig Browser{

5 activeDoc: Document

6 }

7 abstract sig Server {}

8 sig Server1, Server2 extends Server{}

9 sig Document{

10 docOrigin: Origin,

50

Figure 5.7 An instance of the predicate showBasicModel

11 elements: set ActiveHTMLElement,

12 activeCode: set JavaScriptCode

13 }

Listing 5.13 Relation between browser, origin and server

1 pred showBasicModel{

2 no HTTPTransaction

3 }

4 run showBasicModel

Listing 5.14 Predicate: showBasicModel

5.3.3.3 HTTP Event Initiators

The code in listing 5.15 shows our classification of components of a web page (document). A
HTTPEventInitiator is any component that can trigger an HTTP transaction, and is associated with
an origin. JavaScriptCode and ActiveHTMLElement are modelled as HTTP event initiators. DOM ele-
ments in a document are classified based on their capability to trigger HTTP requests. Those that cannot
trigger HTTP calls are called as passive HTML elements (e.g., Div, Span, Textbox etc.), while those that
can trigger HTTP calls are called as active HTML elements. For keeping the model concise, only active
HTML elements have been included in our specification. ActiveHTMLElements are further classified
as LoadingElements - elements that automatically trigger HTTP requests as soon as they get added to
the DOM tree (e.g., img, script, iframe etc.) and ActionElements - elements that require an action by
humans to trigger HTTP requests (e.g., hyperlinks, forms).

51

1 abstract sig HTTPEventInitiator{

2 httpTrans: lone HTTPTransaction,

3 initiatorOrigin: Origin

4 }

5 sig JavaScriptCode extends HTTPEventInitiator{}

6 abstract sig ActiveHTMLElement extends HTTPEventInitiator {}

7 abstract sig LoadingElement, ActionElement extends ActiveHTMLElement {}

8 sig ScriptElement, ImageElement, CssElement, Iframe extends

LoadingElement {}

9 sig Hyperlink, Form extends ActionElement{}

Listing 5.15 HTTP Event Initiators

The next sections show facts that are built into the Pre-CORP model. These are the constraints that
are assumed to be true, to ensure that the Pre-CORP model conforms to the fundamentals guidelines of
the W3C specifications [71].

5.3.3.4 Fact: EventInitiatorsInheritParentOrigin

The fact EventInitiatorsInheritParentOrigin in Listing 5.16, explains how Origin is inherited by
HTTPEventInitiator.

1 fact EventInitiatorsInheritParentOrigin{

2 all elem: ActiveHTMLElement | elem.initiatorOrigin = elem.~elements.

docOrigin

3 all js: JavaScriptCode | js.initiatorOrigin = js.~activeCode.

docOrigin

4 }

Listing 5.16 Fact: OriginInheritence

It expresses the following constraints:

Line 2: The origin (elem.initiatorOrigin) of every active HTML element must be the same as the origin
(elem. elements.docOrigin) of the document that contains the element.

Line 3: The origin (js.initiatorOrigin) of every JavaScript code in a document must be the same as the
origin (elem. elements.docOrigin) of the document that contains the code.

As shown in Listing 5.15, ActiveHTMLElement and JavaScriptCode form the set HTTPEventInitiator
i.e., they are capable of triggering HTTP transactions. Since these HTTP event initiators inherit their

52

parent document’s origin, any HTTP transaction initiated by them will be tagged with their parent
document’s origin. An understanding of this constraint is crucial in understanding XSS attacks outlined
in Section 2.2.1 and mashup security problem outlined in Section 4.1.1.

5.3.3.5 Fact: TransactionRules

The fact TransactionRules, shown in Listing 5.17, lists the set of constraints that ensure the sanity of
HTTP transactions in the model.

1 fact TransactionRules{

2 all t:HTTPTransaction, b:Browser, s:Server| {

3 t.req.host = t.resp.host

4 t.req.host = t.req.to.~pointsTo

5 s=t.req.to => s = t.resp.from

6 b = t.req.from => b = t.resp.to

7 t in HTTPEventInitiator.httpTrans

8 }

9 all disj t1,t2: HTTPTransaction | {

10 no (t1.req & t2.req)

11 no (t1.resp & t2.resp)

12 }

13 }

Listing 5.17 Fact: TransactionRules

The fact says that for all instances of HTTPTransaction, Browser and Server, the following rules should
hold:

Line 3: The request and the response of a transaction must belong to the same origin

Line 4: An HTTP request’s origin must be the same as the origin whose host resolves to the request’s
destination (i.e., a server).

Line 5: If a request is sent to a server, then its corresponding response should be received from the same
server

Line 6: If a request is sent from a browser, then its corresponding response should be received by the
same browser

Line 7: Every HTTP transaction must be triggered by an HTTP event initiator (i.e., either an active HTML
element or JavaScript code).

Line 9-12 : Requests and responses belonging to any two transactions must be disjoint.

53

5.3.3.6 Fact: Disjointness

The fact Disjointness, shown in Listing 5.18, lists the constraints which ensure that multiple instances
of each signature do not interfere with each other.

1 fact Disjointness {

2 all disj b1,b2: Browser | {

3 no (b1.activeDoc & b2.activeDoc)

4 no (b1.activeDoc.docOrigin & b2.activeDoc.docOrigin)

5 }

6 all disj o1,o2:Origin | no (o1.pointsTo & o2.pointsTo)

7 all disj e1, e2: ActiveHTMLElement | no (e1.httpTrans & e2.httpTrans

)

8 no GenuineServer.resourcePath & EvilServer.resourcePath

9 }

Listing 5.18 Alloy Fact - Disjointness

5.3.3.7 Pred: SameOriginTransaction

The predicate sameOriginTransaction shown in Listing 5.19 asks Alloy to produce an instance of
the model where there is only one server and at least one HTTP transaction. Figure 5.8 shows an
instance of the model generated by Alloy, when this predicate is run. The figure shows a browser
having a document, whose origin points to Server2. The document has a ScriptElement that initiates an
HTTP transaction. An HTTP request is made from the browser to the server, and an HTTP response is
returned from the server to the browser. Since the origin of the HTTP event initiator (ScriptElement)
and the origin of the request’s destination (GenuineServer) is the same, the transaction is said to be a
same origin transaction.

1 pred sameOriginTransaction{

2 some HTTPTransaction

3 one Server

4 }

5 run sameOriginTransaction

Listing 5.19 Pred: sameOriginTransaction

54

Figure 5.8 An instance of the predicate sameOriginTransaction

5.3.3.8 Pred: CrossOriginTransaction

The predicate crossOriginTransaction shown in Listing 5.20 asks Alloy to produce an instance of
the model where the following constraints hold good for at least one HTTP transaction:

Line 3: The request must originate from Server1

Line 4: The request must be made to Server2

1 pred crossOriginTransaction{

2 some t:HTTPTransaction|{

3 t.req.from.activeDoc.docOrigin.pointsTo=Server1

4 t.req.to=Server2

5 }

6 }

7 run crossOriginTransaction

Listing 5.20 Pred: crossOriginTransaction

Figure 5.9 shows an instance of the model generated by Alloy, when this predicate is run. The figure
shows a browser having a document, whose origin Origin1 points to Server1. The document has a

55

Figure 5.9 An instance of the predicate crossOriginTransaction

JavaScriptCode that initiates an HTTP transaction. An HTTP request is made from the browser to
Server2, whose origin is Origin0. Since the origin of the HTTP event initiator (JavaScriptCode) and
the origin of the request’s destination (Server2) are different, the transaction is said to be a cross origin
transaction.

5.3.4 Modelling restrictions introduced in CORP (Post-CORP.als)

We have extended our Pre-CORP model, which depicts unrestricted cross origin HTTP requests,
with new signatures and constraints. The resultant model shows how a server can use CORP in imposing
restrictions on cross origin transactions made to it, thereby mitigating web infiltration attacks.

Figure 5.10 shows the meta model of Post-CORP model.

5.3.4.1 Key idea of CORP

As explained in Section 5.2.1, a server should have fine-grained control on Who can access What
resource on the server and How. Who refers to the set of origins that can request a resource belonging
to a server, What refers to the set of paths that map to resources on the server, How refers to the set of
event-types that initiate network events (HTTP requests) to the server. To capture these constraints, we
have extended the Pre-CORP model with a few signatures and facts, as outlined in the next sections.

56

Figure 5.10 Meta model of the Post-CORP Alloy model

57

5.3.4.2 Resource Paths

Every resource on the web is identified by a unique path. As a good engineering practice, web ad-
ministrators often organize different types of resources (e.g., images, scripts etc) under different directo-
ries (e.g., http://A.com/images, http://A.com/js etc.) on the server hosting the resources.
Based on this observation, we have defined the signature Path in the Post-CORP model. It has various
subtypes as shown in listing 5.21. The subtype NonSensitivePagesPath refers to pages that do not con-
tain any sensitive content, while the subtype SensitivePagesPath refers to pages that contain sensitive
content and need utmost protection.

1 abstract sig Path{}

2 one sig ImgPath, JsPath, CssPath, NonSensitivePagesPath,

SensitivePagesPath extends Path{}

3 abstract sig Server {

4 resourcePath: set Path

5 }

Listing 5.21 Resource Paths

5.3.4.3 Pred: maliciousXOriginTransaction

The predicate maliciousXOriginTransaction is an enhancement to the predicate crossOriginTrans-
action defined in Section 5.3.3.8. The type Server has been extended with the subtypes EvilServer and
GenuineServer. Listing 5.22 shows the contraints for this predicate.

1 sig EvilServer, GenuineServer extends Server{}

2 pred maliciousXOriginTransaction{

3 some t:HTTPTransaction|{

4 t.req.from.activeDoc.docOrigin.pointsTo=EvilServer

5 t.req.to=GenuineServer

6 t.req.reqPath = SensitivePagesPath

7 }

8 }

9 run maliciousXOriginTransaction for 3 but exactly 1 HTTPTransaction

expect 1

Listing 5.22 Predicate: maliciousXOriginTransaction

Figure 5.11 shows an instance of the model generated by Alloy when this predicate is run. The figure
shows a browser having a document, whose origin Origin2 points to EvilServer. The document has

58

http://A.com/images
http://A.com/js

Figure 5.11 An instance of the predicate maliciousXOriginTransaction

an Iframe that initiates an HTTP transaction. An HTTP request is made from the browser to Genuine-
Server, whose origin is Origin1. Since the origin of the HTTP event initiator (Iframe) and the origin
of the request’s destination (GenuineServer) are different, the transaction is said to be a cross origin
transaction. Since the request is initiated by an evil server and is sent to a sensitive page on a genuine
server, the transaction is said to be a malicious cross origin transaction.

5.3.4.4 Pred: corpCompliantTransaction

The predicate corpCompliantTransaction shown in Listing 5.23 takes three arguments o, ev, pt which
are of the type Origin, HTTPEventInitiator and Path respectively. It asks Alloy to produce an instance
of the model where the following constraints hold good for at least one HTTP transaction:

Line 3: The request must originate from EvilServer

Line 4: The request must be made to GenuineServer

Line 5: The origin of the HTTP event initiator must be the same as the predicate’s argument o.

59

Line 6: The HTTP event initiator that triggers an HTTP transaction must be the same as the predicate’s
argument ev

Line 7: The path to which the HTTP request is made must be the same as the predicate’s argument pt

1 pred corpCompliantTransaction[o:Origin, ev: HTTPEventInitiator, pt: Path

] {

2 some t:HTTPTransaction {

3 t.req.from.activeDoc.docOrigin.pointsTo=EvilServer

4 t.req.to=GenuineServer

5 t.req.from.activeDoc.docOrigin = o

6 httpTrans.t= ev

7 t.req.reqPath= pt

8 }

9 }

10 pred restrictImagesWithCorp{

11 corpCompliantTransaction[origin2, ImageElement, ImgPath]

12 }

13 pred restrictScriptsWithCorp{

14 corpCompliantTransaction[origin2, ScriptElement, JsPath]

15 }

16 pred restrictJsCodeWithCorp{

17 corpCompliantTransaction[origin2, JavaScriptCode,

NonSensitivePagesPath]

18 }

19 run restrictImagesWithCorp for 3 but exactly 1 HTTPTransaction expect 1

20 run restrictScriptsWithCorp for 3 but exactly 1 HTTPTransaction expect 1

21 run restrictJsCodeWithCorp for 3 but exactly 1 HTTPTransaction expect 1

Listing 5.23 Predicate: corpCompliantTransaction

The listing 5.23 also shows three more predicates-restrictImagesWithCorp, restrictScriptsWithCorp and
restrictJsCodeWithCorp. Each of them in-turn invoke the predicate corpCompliantTransaction with var-
ious arguments. For example, the predicate restrictJsCodeWithCorp asks Alloy to produce an instance
where an HTTP request is made to a GenuineServer by a JavaScriptCode from a document having an
origin origin2. It also mandates the request to be made only to the path NonSensitivePagesPath on the
GenuineServer. Figure 5.12 shows an instance of the model when this predicate is run.

60

Figure 5.12 An instance of the predicate restrictJsCodeWithCorp

5.3.4.5 Assert: showMaliciousTransactionWithJsCode

The predicate restrictJsCodeWithCorp shows an instance of the model where a cross origin HTTP
transaction initiated by a JavaScript code can be restricted through CORP to non-sensitive pages only.
While the instances produced by Alloy show that the predicate is consistent, it is equally important to
assert the negation. i.e., Can there exist a cross origin HTTP transaction triggered by JavaScript to the
genuine server, where the predicate corpCompliantTransaction is violated?

1 assert showMaliciousTransactionWithJsCode {

2 no t:HTTPTransaction |{

3 corpCompliantTransaction[origin2, JavaScriptCode,

NonSensitivePagesPath]

4 t.~httpTrans.initiatorOrigin = origin2

5 t.~httpTrans=JavaScriptCode

6 t.req.reqPath! = NonSensitivePagesPath

7 }

8 }

9 check showMaliciousTransactionWithJsCode for 20

Listing 5.24 Assert: showMaliciousTransactionWithJsCode

61

Figure 5.13 Checking the post-CORP assertion showMaliciousTransactionWithJsCode

The assertion showMaliciousTransactionWithJsCode shown in Listing 5.24 verifies if such a possibility
exists. As shown in Figure 5.13, Alloy fails to produce a counterexample when the assertion showMa-
liciousTransactionWithJsCode is checked.

Thus, with the results shown by the predicate restrictJsCodeWithCorp and the assertion showMali-
ciousTransactionWithJsCode, it can be said that the post-CORP model is sound. Appendix B shows the
complete code for Pre-CORP and Post-CORP models.

5.4 Experimentation and Analysis

In this section, we explain about the implementation of CORP as a Chrome extension, its evaluation
and the results of our analysis.

5.4.1 Implementation

We have developed an extension for Google Chrome web browser to implement a prototype of
CORP. When a user installs the extension and loads a CORP-enabled website, the extension receives
the CORP header, parses it and stores it in the browser’s memory using HTML5 localstorage API. The
storage is accessible across all the tabs of the browser and the policies set by multiple websites are stored
and retrieved using the origin of the site as the key.
Let us consider a genuine CORP-enabled website, http://G.com and an attacker’s website, http:
//A.com. Assume that they are opened in two tabs of a browser that has the CORP extension
enabled. They trigger HTTP transactions to the servers G and A respectively. When the http:

//A.com attempts to trigger a cross origin request to G, the extension intercepts every outgoing re-
quest from the web page at http://A.com. It checks if the request is made to the origin of G
i.e., http://G.com and fetches the policy associated with http://G.com. Only if the request
complies with the policy set by G, the extension will allow the request, else it will block it. The
chrome.webRequest.onHeadersReceived event of Chrome extension API helps in receiving HTTP re-
sponse headers. The chrome.webRequest.onBeforeRequest [25] event helps in the interception process.
This event is fired before any TCP connection is made and can be used to cancel requests.

62

http://G.com
http://A.com
http://A.com
http://A.com
http://A.com
http://A.com
http://G.com
http://G.com

5.4.2 Experiments

Apart from validating the soundess of CORP using Alloy (see Section 5.3), we have conducted
several experiments to evaluate the effectiveness and ease of deployment of CORP.

5.4.2.1 Evaluating CORP Against a Corpus of Attacks

We have built two websites to evaluate CORP against a corpus of attacks. One of them is a victim
site that is vulnerable to web infiltration attacks, and the other is a malicious site that can launch attacks
on the victim site. We have referred to the test suite created by De Ryck et al. [18] and added their
CSRF attack vectors to the malicious website. We have also added vectors for clickjacking and timing
to the malicious site. If a genuine user logs in at the victim site in one tab and opens the malicious site
in another tab, malicious requests (GET and POST) will be triggered against the victim site’s server. On
configuring CORP headers on the victim website and enabling the CORP extension, all malicious cross
origin calls to the victim website will be blocked.

The chrome extension, the vulnerable and malicious websites can be accessed online and the attacks
discussed in the paper can be replayed before and after installing the extension. The source code for
these is available on Github [61].

5.4.2.2 Configuring CORP on Open Source Web Applications

To understand how CORP performs on real world websites, we have deployed three popular open
source web applications (Table 5.1) and CORP-enabled them. Instead of deploying vulnerable versions

Table 5.1 Summary of open source web applications we experimented with
Application Type Version # of source files Lines of code # of CORP rules
Wordpress Blog/CMS 3.9.1 2288 23.9K 14

Moodle LMS 2.5.6 11950 92.9K 84
Mediawiki Wiki software 1.15.5-7 1338 99K 11

of these applications and fixing them with CORP, we chose to deploy their respective latest versions. Our
idea is to verify that CORP is at least as good as the previous defenses and additionally conforms to the
security guarantees promised in Section 5.2.4. We first confirmed that these applications implement at
least one of the popular defenses against each of the web infiltration attacks (Section 3.2). As we have
seen that these defenses insufficiently deal with infiltration attacks, we started afresh by completely
disabling them. Then we started enabling CORP on each of these applications and verified that they
are resilient to infiltration attacks. Our analysis shows that the effort required to CORP-enable large
applications greatly depends on how resources are organized on the server e.g., all images placed under
a single“/images” directory as against being scattered along multiple directories. Table 5.1 shows the
number of rules needed to enable CORP on each of the applications, without reorganizing resources on

63

Figure 5.14 Bar chart showing adherence of Alexa Top 15,000 websites to CORP.

the server. With proper segregation of resources, the number of rules can be brought down to less than
10 per application.

5.4.2.3 Analyzing Adherence of Top Websites to CORP

We have analyzed the home page traffic of Alexa [7] Top 15,000 websites, to find if they adhere to
CORP by segregating their content based on their type. The following content types were considered
for analysis - images, css, scripts, html and flash. Figure 5.14 shows the results of the analysis. We find
that more than 70% of sites already have an adherence greater than 60%. This is a positive indicator
for the deployment of CORP, showing that website administrators can immediately use CORP on their
existing sites and control their susceptibility to infiltration attacks.

64

Chapter 6

Conclusions and Future Work

The World Wide Web is undergoing changes faster than ever, with the demand for rich Internet
applications that mimic desktop applications. Along with the evolution of richer capabilities (e.g., web
mashups), the web has also seen the evolution of newer web-borne security threats (see 5.2.4.6). As
explained in Section 2.2, the root cause of majority of these web-borne threats lie in the weak design of
the core browser security model. Also, in a race to meet the growing demand, developers build several
complex web applications without a proper understanding of the changing browser security model. The
outcome of this are web applications that are inherently insecure by design (e.g., vulnerable to web
infiltration attacks), and need multiple mitigations (e.g., CSRF tokens, frame busting etc.). Even if the
mitigations are well known, developers often miss them (see 3.2.1) or use them insecurely (see 4.3).

6.1 Research Contributions

In this thesis, we have attempted to gain a deeper understanding of the security model of web
browsers. We have studied that the existing model insufficiently protects web users against several
web-borne threats (see 2.2), and observed certain gaps in the model (see 5.1.1). We have attempted to
fix the gaps at a fundamental level, by enhancing the security model in a way that does not break the
existing interactions on the web. In this process, we also came up with a developer-friendly library,
which encapsulates certain security related intricacies from developers and makes the implementation
of the modern web APIs less error-prone. The following are the key contributions of this thesis:

• To clearly understand the security model of web browsers and its limitations (see 2.2), we have
created a corpus of web attacks (see 5.4). The source code for these attacks is available on
Github [61]. Demonstrating these attacks practically was the starting point of our research. We
believe this would be of immense help to researchers who wish to understand the security aspects
of the web.

• We have identified a class of web attacks (CSRF, Clickjacking and Cross-Site Timing attacks)
that are left unanswered in spite of the recent enhancements to the security model (via HTML5

65

APIs, CSP). We named them as Web Infiltration Attacks and found that they have a common root
- a cross origin HTTP request triggered by a malicious client to a genuine server, without any
restrictions. We attempted to mitigate these attacks by devising a uniform browser security policy
called CORP (Cross Origin Request Policy). We have enforced CORP through an extension for
Chrome browser, and evaluated it against the aforementioned corpus of web attacks.

• We have built a light weight formal model of a web browser in Alloy (Pre-CORP.als) to demon-
strate our understanding of cross origin web interactions. We have enhanced this model to validate
that our proposal, CORP, is sound (Post-CORP.als). Similar to the corpus of attacks, these formal
models will serve as a starting point for researchers who are interested in formalizing the security
aspects of the modern web.

• In an attempt to encapsulate browser security features from developers, we have built a developer-
friendly library called “SafeMash”. SafeMash enables developers to utilize modern browser se-
curity APIs (HTML5) and reduces the learning curve required to understand the intricacies of
browser security. It ensures the development of secure web mashups. The source code of Safe-
Mash and its accompanied demonstrations are available on GitHub and can be accessed at [62].

We believe that CSP and CORP together solve a large majority of exfiltration and infiltration attacks.
The truth of this conjecture will, however, depend on the acceptance of CORP by browser vendors and
its widespread adherence by web administrators.

6.2 Future Work

We have captured some of the interesting ideas that came up during our research group meetings
and presentations. They are some of the directions in which the work presented in this thesis can be
extended. They are as follows:

1 HTTP works at a level of abstraction that cannot anticipate the semantics of the transaction or
of the resource sought by a client. CORP attempts to fill this semantic gap by conveying to the
browser who (origins) can access what (resources) and how (events) as a result of a transaction.
As new web standards emerge, declarative policies like CSP and CORP will need to carry richer
semantic intent. Such information could, for example, be used to control other types of browser
events like user interactions e.g., “no copy-paste” while visiting https://bank.com or force
the browser to a canonical configuration e.g., disable browser extensions while visiting https:
//bank.com. It would be interesting to explore and expand the class of browser event types
specifiable by declarative policies and study their impact on usability, security, and browsers for
other form factors like mobiles and tablets.

2 To enforce CORP in a browser, we have created an extension for Chrome browser, as a proof of
concept. The APIs exposed by Chrome extensions were sufficient to receive CORP via response

66

https://bank.com
https://bank.com
https://bank.com

headers and enforce it on some of the requests leaving the browser. However, these APIs do not
provide fine grained details such as the origin of all available types of HTTP event initiators. E.g.,
It is not possible to differentiate between the following two events via the APIs exposed by a
browser extension: (1) A web page opened by a user by clicking on a hyperlink in an email client,
(2) A web page opened by a user by typing its URL in the browser. This segregation is important
to differentiate between cross origin HTTP requests triggered due to a social engineering attack,
versus those triggered by a user’s conscious action. To achieve such a fine grained control, ac-
cess to low level browser APIs is required. Instead of enforcing CORP via a browser extension,
modifying the source code of Chrome browser and incorporating CORP into it will provide finer
control in restricting various types of HTTP events. This will also provide deeper insights that
could potentially help in exploring newer possibilities while designing browser security policies.

3 The CORP Alloy models that we built capture only the details that are required for simulating/mit-
igating web infiltration attacks (see 5.3.2). They can be extended to capture complex cross origin
web transactions e.g., federated authentication, OAuth handshake etc. Building a formal browser
model that captures such interactions, along with CSP, CORP and the security policies in HTML5,
will be a good direction of work that can validate the soundess of the modern web specifications.

4 To restrict the access privileges of JavaScript to a document’s DOM, several solutions were pro-
posed (see 3.1). Of all, Content Security Policy (CSP), which enforces restrictions on HTTP
traffic leaving a genuine webpage, has gained wider acceptance. Though CSP mitigates XSS and
exfiltration to a great extent, it does not help if the whitelisted script is compromised. E.g., In
the case of the application-level DDoS attack explained in Section 5.2.4.6, the tampered analytics
script would still have complete access to the news site’s DOM, even if the site whitelisted the an-
alytics script through CSP. This shows the need for a fine-grained access control model, where in
a server can control the capabilities of third party scripts that are embedded in a document. Solv-
ing this problem, keeping in mind the complex interactions made by modern day web mashups,
will be an interesting line of research.

5 JavaScript, in spite of its shortcomings as a language (e.g., single global namespace, dynamic
typing etc.), has become ubiquitous on the modern web. While it is difficult for another program-
ming language to replace JavaScript, it would be interesting to design a light weight browser that
interprets a statically typed language instead. Various resources in a document such as DOM ele-
ments containing sensitive data (e.g., passwords, credit card information), cookies, non-sensitive
data etc. may be defined as types, and type-safety rules may be defined such that third party code
cannot access sensitive information.

While we have spent significant amount of time in analyzing various attacks and understanding the
browser model, we would like to acknowledge that these contributions are merely the tip of the iceberg.
Web security is a vast as well as a rapidly evolving area, with several novel attacks and bypasses to ex-
isting mitigations evolving on a regular basis. It is important for researchers in web security to track the

67

work of contemporary researchers in both academic as well as industry oriented security conferences.
Also, it is important for the researchers to take feedback from developer communities as well. This is to
ensure that the solutions they design stay relevant even to the most complicated scenarios on the web,
while respecting backward compatibility.

Conference Publications

• Telikicherla, Krishna Chaitanya, and Venkatesh Choppella. “Enabling the development of safer
mashups for open data." Proceedings of the 1st International Workshop on Inclusive Web Programming-
Programming on the Web with Open Data for Societal Applications. ACM, 2014.

• Telikicherla, Krishna Chaitanya, Venkatesh Choppella, and Bruhadeshwar Bezawada. “CORP:
A Browser Policy to Mitigate Web Infiltration Attacks." Information Systems Security. Springer
International Publishing, 2014. 277-297.

Conference Submissions

• Telikicherla, Krishna Chaitanya, Venkatesh Choppella, and Bruhadeshwar Bezawada. “CORP: A
Browser Policy to Mitigate Web Infiltration Attacks." WWW 2014.

Technical Reports

• Krishna Chaitanya Telikicherla and Venkatesh Choppella. “Alloy model for Cross Origin Request
Policy (CORP)". Technical Report IIIT/TR/2013/31, IIIT-Hyderabad, August 2013.

68

Appendix A

Sample Alloy Model

A.1 A basic academic time table Alloy Model

The specification in Listing A.1 shows how Alloy can be used to model a basic academic time
table. The model has the signatures Faculty and Student, who together form Members. Each Class is
taughtBy exactly one faculty and is attendedBy at least one student. A Slot is associatedWith at least
one class. If there is more than one class in a slot, then those classes are said to be in parallel. Two
constraints must always hold in this model - A faculty can teach only one class in a slot; A student
can attend only one class in a slot. Accordingly, these two constraints are modelled as the Alloy facts-
facultyCannotTeachParallelClasses and studentCannotAttendParallelClasses respectively.

1 abstract sig Member{}

2 sig Faculty extends Member{}

3 sig Student extends Member{}

4 sig Class {

5 taughtBy: one Faculty,

6 attendedBy: some Student

7 }

8 sig Slot{

9 allocatedWith: some Class

10 }

11 /* pred parallelClassesInASlot [c1: Class, c2: Class] -> Bool */

12 /* If the inputs satisfy all of the constraints listed in the body,

then the predicate evaluates to true. Else it evaluates to false. */

13 pred parallelClassesInASlot [c1: Class, c2: Class] {

14 /* Classes are parallel if they are allocated to the same slot. */

15 allocatedWith.c1 = allocatedWith.c2

69

16 }

17 /* If two classes c1 and c2 are in the same slot, i.e., parallel classes

, then they should not be taught by the same faculty */

18 fact facultyCannotTeachParallelClasses{

19 no disj c1, c2: Class | {

20 parallelClassesInASlot[c1, c2] => some c1.taughtBy & c2.taughtBy

21 }

22 }

23 /* If two classes c1 and c2 are in the same slot, i.e., parallel classes

, then they should not be attended by the same student */

24 fact studentCannotAttendParallelClasses{

25 no disj c1, c2: Class | {

26 parallelClassesInASlot[c1, c2] => some c1.attendedBy & c2.

attendedBy

27 }

28 }

29 /* There must not be classes left out without being allocated to a slot.

*/

30 fact allClassMustBeAllocatedToASlot{

31 no Class - Slot.allocatedWith

32 }

33 /* There must not be students who do not attend any class */

34 fact allStudentsMustAttendClasses{

35 no Student - Class.attendedBy

36 }

37 /* There must not be faculty who do not teach any class */

38 fact allFacultyMustTakeClasses{

39 no Faculty-Class.taughtBy

40 }

41 /* A class can be taught in two different time slots. A student can

prefer to attend the same class in two different slots. */

42 pred studentCanAttendSameClassInDifferentSlots {

43 some disj s1, s2: Slot, s: Student| {

44 /* class attended by student s is allocated to slot s1 */

45 s.~attendedBy = s1.allocatedWith

70

46 /* class attended by student s is allocated to slot s2 */

47 s.~attendedBy = s2.allocatedWith

48 }

49 }

50 assert studentCannotAttendDifferentClassesInSameSlot {

51 no disj c1, c2: Class | {

52 /* Disjoint classes c1, c2 are in same slot */

53 c1.~allocatedWith = c2.~allocatedWith

54 /* There is some student who attends both the classes c1 and c2

*/

55 some c1.attendedBy & c2.attendedBy

56 }

57 }

58 pred showTimeTable{}

59 run showTimeTable for 3 but exactly 1 Slot expect 1

60 run showTimeTable for 5 but exactly 1 Slot expect 1

61 run studentCanAttendSameClassInDifferentSlots for 3 but exactly 1

Student expect 1

62 check studentCannotAttendDifferentClassesInSameSlot for 20 expect 0

Listing A.1 Modelling academic time table using Alloy

Listing A.1 has three tests (two predicates and one assertion) to validate the soundness of the time table
model. The predicate showTimeTable asks the Alloy analyzer to show an instance of the model with
no additional constraints apart from the listed facts, for scopes 3 and 5. When this predicate is run, the
Alloy analyzer generates the model instances shown in Figure A.1. The nodes in the directed graph
represent the atoms that belong to a signature, while the edges represent the relation between the nodes
that they connect. Each of the instances show a slot which is associated with at least one class. Each
class is taught by exactly one faculty and is attended by at least one student. These are valid instances
and are as per the envisioned design.

The predicate studentCanAttendSameClassInDifferentSlots asks the Alloy analyzer to show an in-
stance of the model where a student can attend the same class in different slots. When this predicate
is run, the Alloy analyzer generates the model instances shown in Figure A.2. The instance shows two
slots associated with a single class. The class is taught by one faculty and attended by one student. Since
the faculty and the student are involved only in a single class in a given slot, this is a valid instance.

The assertion studentCannotAttendDifferentClassesInSameSlot verifies the assumption that a student
cannot attend parallel classes in a slot. When this assertion is checked, the Alloy analyzer fails to

71

Figure A.1 Model instances generated by Alloy analyzer for the predicate showTimeTable

Figure A.2 Model instance generated by Alloy analyzer for the predicate studentCanAttendSame-
ClassInDifferentSlots

72

Figure A.3 No counterexample is found for the assertion studentCannotAttendDifferentClassesIn-
SameSlot

produce a counterexample even for a scope as large as 20, as shown in Figure A.3. This shows that the
assertion is valid.

These tests establish the soundness of the sample academic time table model.

73

Appendix B

CORP Alloy Models

B.1 Pre-CORP Alloy Model

The specification in Listing B.1 shows the complete Pre-CORP Alloy model, which was explained
in Section 5.3.3

1 abstract sig HTTPTransaction{

2 req: HTTPRequest,

3 resp: HTTPResponse

4 }

5 sig HTTPRequest {

6 from: Browser,

7 to: Server,

8 host: Origin

9 }

10 sig HTTPResponse{

11 from: Server,

12 to: Browser,

13 host: Origin

14 }

15 /****************************

16 END POINTS

17 ****************************/

18 sig Origin{

19 pointsTo: Server

20 }

21 one sig Browser{

74

22 activeDoc: Document

23 }

24 abstract sig Server {}

25 sig Server1, Server2 extends Server{}

26 sig Document{

27 docOrigin: Origin,

28 elements: set ActiveHTMLElement,

29 activeCode: set JavaScriptCode

30 }

31 abstract sig HTTPEventInitiator{

32 httpTrans: lone HTTPTransaction,

33 initiatorOrigin: Origin

34 }

35 sig JavaScriptCode extends HTTPEventInitiator{}

36 /****************************

37 ELEMENTS

38 ****************************/

39 abstract sig ActiveHTMLElement extends HTTPEventInitiator {}

40 abstract sig LoadingElement, ActionElement extends ActiveHTMLElement {}

41 sig ScriptElement, ImageElement, CssElement, Iframe extends

LoadingElement {}

42 sig Hyperlink, Form extends ActionElement{}

43 /****************************

44 FACTS

45 ****************************/

46 //Fact:: EventInitiators inherit parent document’s origin

47 // elements = (Document, HTMLElement)

48 // ~elements = (HTMLElement, Document)

49 fact EventInitiatorsInheritParentOrigin{

50 all elem: ActiveHTMLElement | elem.initiatorOrigin = elem.~elements.

docOrigin

51 all js: JavaScriptCode | js.initiatorOrigin = js.~activeCode.

docOrigin

52 }

53 fact TransactionRules{

75

54 all t:HTTPTransaction, b:Browser, s:Server| {

55 //Request and response must belong to the same origin

56 t.req.host = t.resp.host

57 //A Http request’s hostname and its destination server’s origin

must be the same

58 t.req.host = t.req.to.~pointsTo

59 //If a request is sent to a server, response should be received

from the same server

60 s=t.req.to => s = t.resp.from

61 //If a request is sent from a browser, response should be

received by the same browser

62 b = t.req.from => b = t.resp.to

63 //All HTTPTransactions should be due to HTTP event initiators (i

.e., active HTML elements or JS code)

64 t in HTTPEventInitiator.httpTrans

65 }

66 // Two transactions should not interfere with each other’s request/

response

67 all disj t1,t2: HTTPTransaction | {

68 no (t1.req & t2.req)

69 no (t1.resp & t2.resp)

70 }

71 }

72 fact noOrphanElements{

73 // Ensures no unrelated/hanging elements exist

74 no (ActiveHTMLElement - Browser.activeDoc.elements)

75 no (Document - Browser.activeDoc)

76 no (Server - Origin.pointsTo)

77 //No orphan Request/Responses.

78 (no HTTPRequest-HTTPTransaction.req) and (no HTTPResponse-

HTTPTransaction.resp)

79 no Origin - (HTTPRequest.host + HTTPResponse.host+Document.docOrigin

)

80 no JavaScriptCode - Document.activeCode

81 no ActiveHTMLElement - httpTrans.HTTPTransaction

76

82 no JavaScriptCode - httpTrans.HTTPTransaction

83 }

84 fact Disjointness {

85 all disj b1,b2: Browser | {

86 no (b1.activeDoc & b2.activeDoc)

87 no (b1.activeDoc.docOrigin & b2.activeDoc.docOrigin)

88 }

89 //Two distinct origins do not point to the same server

90 all disj o1,o2:Origin | no (o1.pointsTo & o2.pointsTo)

91 all disj e1, e2: ActiveHTMLElement | no (e1.httpTrans & e2.httpTrans

)

92 }

93 /****************************

94 PREDICATES

95 ****************************/

96 pred showBasicModel{

97 no HTTPTransaction

98 }

99 pred sameOriginTransaction{

100 some HTTPTransaction

101 one Server

102 }

103 pred crossOriginTransaction{

104 some t:HTTPTransaction|{

105 t.req.from.activeDoc.docOrigin.pointsTo=Server1

106 t.req.to=Server2

107 }

108 }

109 run showBasicModel

110 run sameOriginTransaction //for 10

111 run crossOriginTransaction for 3 but exactly 1 HTTPEventInitiator

Listing B.1 Pre-CORP Alloy Model

77

B.2 Post-CORP Alloy Model

The specification in Listing B.2 shows the complete Post-CORP Alloy model, which was explained
in Section 5.3.4.

1 abstract sig HTTPTransaction{

2 req: HTTPRequest,

3 resp: HTTPResponse

4 }

5 sig HTTPRequest {

6 from: Browser,

7 to: Server,

8 host: Origin,

9 reqPath: one Path

10 }

11 sig HTTPResponse{

12 from: Server,

13 to: Browser,

14 host: Origin

15 }

16 /****************************

17 END POINTS

18 ****************************/

19 sig Origin{

20 pointsTo: Server

21 }

22 one sig Browser{

23 activeDoc: Document

24 }

25 abstract sig Server {

26 resourcePath: set Path

27 }

28 sig EvilServer, GenuineServer extends Server{}

29 sig Document{

30 docOrigin: Origin,

31 elements: set ActiveHTMLElement,

78

32 activeCode: set JavaScriptCode

33 }

34 abstract sig HTTPEventInitiator{

35 httpTrans: lone HTTPTransaction,

36 initiatorOrigin: Origin

37 }

38 sig JavaScriptCode extends HTTPEventInitiator{}

39 /****************************

40 ELEMENTS

41 ****************************/

42 abstract sig ActiveHTMLElement extends HTTPEventInitiator {}

43 abstract sig LoadingElement, ActionElement extends ActiveHTMLElement {}

44 sig ScriptElement, ImageElement, CssElement, Iframe extends

LoadingElement {}

45 sig Hyperlink, Form extends ActionElement{}

46 abstract sig Path{}

47 one sig ImgPath, JsPath, CssPath, NonSensitivePagesPath,

SensitivePagesPath extends Path{}

48 one sig origin1, origin2 extends Origin{}

49 /****************************

50 FACTS

51 ****************************/

52 //Fact:: EventInitiators inherit parent document’s origin

53 // ~elements = (HTMLElement, Document)

54 fact EventInitiatorsInheritParentOrigin{

55 all elem: ActiveHTMLElement | elem.initiatorOrigin = elem.~elements.

docOrigin

56 all js: JavaScriptCode | js.initiatorOrigin = js.~activeCode.

docOrigin

57 }

58 fact TransactionRules{

59 all t:HTTPTransaction, b:Browser, s:Server| {

60 //Request and response must belong to the same origin

61 t.req.host = t.resp.host

79

62 //A Http request’s hostname and its destination server’s origin

must be the same

63 /*pointsTo=(Origin, Server).

64 t.req.to.~pointsTo= (t.req.to).(Server, Origin) -> (

Server. (Server, Origin)) -> Origin */

65 t.req.host = t.req.to.~pointsTo

66 //If a request is sent to a server, response should be received

from the same server

67 s=t.req.to => s = t.resp.from

68 //If a request is sent from a browser, response should be

received by the same browser

69 b = t.req.from => b = t.resp.to

70 //All HTTPTransactions should be due to HTTP event initiators (i

.e., active HTML elements or JS code)

71 t in HTTPEventInitiator.httpTrans

72 //Request path and server’s resource path must be the same

73 some (t.req.to.resourcePath & t.req.reqPath)

74 }

75 // Two transactions should not interfere with each other’s request/

response

76 all disj t1,t2: HTTPTransaction | {

77 no (t1.req & t2.req)

78 no (t1.resp & t2.resp)

79 }

80 }

81 fact noOrphanElements{

82 // Ensures no unrelated/hanging elements exist

83 no (ActiveHTMLElement - Browser.activeDoc.elements)

84 no (Document - Browser.activeDoc)

85 no (Server - Origin.pointsTo)

86 no (Path - (Server.resourcePath + HTTPRequest.reqPath))

87 //No orphan Request/Responses.

88 (no HTTPRequest-HTTPTransaction.req) and (no HTTPResponse-

HTTPTransaction.resp)

80

89 no Origin - (HTTPRequest.host + HTTPResponse.host+Document.docOrigin

)

90 no JavaScriptCode - Document.activeCode

91 no ActiveHTMLElement - httpTrans.HTTPTransaction

92 no JavaScriptCode - httpTrans.HTTPTransaction

93 }

94 fact Disjointness {

95 all disj b1,b2: Browser | {

96 no (b1.activeDoc & b2.activeDoc)

97 no (b1.activeDoc.docOrigin & b2.activeDoc.docOrigin)

98 }

99 //Two distinct origins do not point to the same server

100 all disj o1,o2:Origin | no (o1.pointsTo & o2.pointsTo)

101

102 all disj e1, e2: ActiveHTMLElement | no (e1.httpTrans & e2.httpTrans

)

103

104 no GenuineServer.resourcePath & EvilServer.resourcePath

105 }

106 /****************************

107 PREDICATES

108 ****************************/

109 pred maliciousXOriginTransaction{

110 some t:HTTPTransaction|{

111 t.req.from.activeDoc.docOrigin.pointsTo=EvilServer

112 t.req.to=GenuineServer

113 t.req.reqPath = SensitivePagesPath

114 }

115 }

116 run maliciousXOriginTransaction for 3 but exactly 1 HTTPTransaction

expect 1

117 run maliciousXOriginTransaction for 5

118

119 // httpTrans = (HTTPEventInitiator, HTTPTransaction)

81

120 pred corpCompliantTransaction[o:Origin, ev: HTTPEventInitiator, pt: Path

] {

121 some t:HTTPTransaction {

122 t.req.from.activeDoc.docOrigin.pointsTo=EvilServer

123 t.req.to=GenuineServer

124 t.req.from.activeDoc.docOrigin = o and

125 httpTrans.t= ev and

126 t.req.reqPath= pt

127 }

128 }

129 pred restrictImagesWithCorp{

130 corpCompliantTransaction[origin2, ImageElement, ImgPath]

131 }

132 pred restrictScriptsWithCorp{

133 corpCompliantTransaction[origin2, ScriptElement, JsPath]

134 }

135 pred restrictJsCodeWithCorp{

136 corpCompliantTransaction[origin2, JavaScriptCode,

NonSensitivePagesPath]

137 }

138 assert showMaliciousTransactionWithImage {

139 no t:HTTPTransaction |{

140 //restrictImagesWithCorp

141 corpCompliantTransaction[origin2, ImageElement, ImgPath]

142 t.~httpTrans.initiatorOrigin = origin2

143 t.~httpTrans=ImageElement

144 t.req.reqPath! = ImgPath

145 }

146 }

147 assert showMaliciousTransactionWithJsCode {

148 no t:HTTPTransaction |{

149 corpCompliantTransaction[origin2, JavaScriptCode,

NonSensitivePagesPath]

150 t.~httpTrans.initiatorOrigin = origin2

151 t.~httpTrans=JavaScriptCode

82

152 t.req.reqPath! = NonSensitivePagesPath

153 }

154 }

155 run restrictImagesWithCorp for 3 but exactly 1 HTTPTransaction expect 1

156 run restrictScriptsWithCorp for 3 but exactly 1 HTTPTransaction expect 1

157 run restrictJsCodeWithCorp for 3 but exactly 1 HTTPTransaction expect 1

158 check showMaliciousTransactionWithImage for 20 // but exactly 1

HTTPTransaction expect 0

159 check showMaliciousTransactionWithJsCode for 20 // but exactly 1

HTTPTransaction expect 0

Listing B.2 Post-CORP Alloy Model

83

Bibliography

[1] GitHub hit by DDoS attack-Hacker News, Mar 2015. https://news.ycombinator.com/item?

id=9275041.

[2] Large Scale DDoS Attack on github.com, Mar 2015. https://github.com/blog/

1981-large-scale-ddos-attack-on-github-com.

[3] Pin-pointing China’s attack against GitHub, Mar 2015. http://blog.erratasec.com/2015/04/

pin-pointing-chinas-attack-against.html#.ViObwfkrKhc.

[4] AdBlockPlus. HTTP Referer, 2008. http://adblockplus.org/blog/

http-referer-header-wont-help-you-with-csrf.

[5] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song. Towards a formal foundation of web security. In

Computer Security Foundations Symposium (CSF), 2010 23rd IEEE, pages 290–304. IEEE, 2010.

[6] D. Akhawe, P. Saxena, and D. Song. Privilege separation in HTML5 applications. In Proceedings of the

USENIX Security Symposium, 2012.

[7] Alexa. Alexa top sites, Oct 2013. http://www.alexa.com/topsites.

[8] M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and C. Kruegel. A solution for the automated detection of

clickjacking attacks. ASIACCS ’10, pages 135–144, New York, NY, USA, 2010. ACM.

[9] A. Barth. RFC 6454 - The Web Origin Concept. Technical report, 2011. tools.ietf.org/search/

rfc6454.

[10] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site request forgery. In Proceedings of

the 15th ACM conference on Computer and communications security, pages 75–88. ACM, 2008.

[11] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame communication in browsers. Communications of

the ACM, 52(6):83–91, 2009.

[12] T. Berners-Lee and D. Connolly. Hypertext Markup Language – 2.0. Technical Report RFC1866, W3C,

1995. http://tools.ietf.org/html/rfc1866.

[13] A. Bortz and D. Boneh. Exposing private information by timing web applications. In Proceedings of the

16th international conference on World Wide Web, pages 621–628. ACM, 2007.

[14] D. Crockford. Rfc4627: The application/json media type for javascript object notation (json), July 2006.

http://tools.ietf.org/html/rfc4627.

84

https://news.ycombinator.com/item?id=9275041
https://news.ycombinator.com/item?id=9275041
https://github.com/blog/1981-large-scale-ddos-attack-on-github-com
https://github.com/blog/1981-large-scale-ddos-attack-on-github-com
http://blog.erratasec.com/2015/04/pin-pointing-chinas-attack-against.html#.ViObwfkrKhc
http://blog.erratasec.com/2015/04/pin-pointing-chinas-attack-against.html#.ViObwfkrKhc
http://adblockplus.org/blog/http-referer-header-wont-help-you-with-csrf
http://adblockplus.org/blog/http-referer-header-wont-help-you-with-csrf
http://www.alexa.com/topsites
tools.ietf.org/search/rfc6454
tools.ietf.org/search/rfc6454
http://tools.ietf.org/html/rfc1866
http://tools.ietf.org/html/rfc4627

[15] A. Czeskis, A. Moshchuk, T. Kohno, and H. J. Wang. Lightweight server support for browser-based CSRF

protection. In Proceedings of the 22nd international conference on World Wide Web, pages 273–284, 2013.

[16] P. De Ryck, M. Decat, L. Desmet, F. Piessens, and W. Joosen. Security of web mashups: a survey. In

Information Security Technology for Applications, pages 223–238. Springer, 2012.

[17] P. De Ryck, L. Desmet, T. Heyman, F. Piessens, and W. Joosen. CsFire: Transparent client-side mitigation

of malicious cross-domain requests. In Engineering Secure Software and Systems, pages 18–34. Springer,

2010.

[18] P. De Ryck, L. Desmet, W. Joosen, and F. Piessens. Automatic and precise client-side protection against

csrf attacks. In Computer Security–ESORICS 2011, pages 100–116. Springer, 2011.

[19] F. et al. Rfc 2616, content negotation in http/1.1, June 1999. http://www.w3.org/Protocols/

rfc2616/rfc2616-sec12.html.

[20] T. B.-L. et al. Uniform Resource Locators (URL). Technical Report RFC1738, IETF, 1994. https:

//www.ietf.org/rfc/rfc1738.txt.

[21] Facebook. Facebook, Washington State AG target clickjackers. Blog, Jan

2012. https://www.facebook.com/notes/facebook-security/

facebook-washington-state-ag-target-clickjackers/10150494427000766.

[22] R. T. Fielding and R. N. Taylor. Principled design of the modern Web architecture. ACM Transactions on

Internet Technology (TOIT), 2(2):115–150, 2002.

[23] M. Finifter, J. Weinberger, and A. Barth. Preventing Capability Leaks in Secure JavaScript Subsets. In

NDSS, 2010.

[24] J. J. Garrett. AJAX: A New Approach to Web Applications, Feb 2005. https://web.archive.org/

web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/

000385.php.

[25] Google. Life cycle of requests in Chrome.webRequest API, 2013. http://developer.chrome.

com/extensions/webRequest.html.

[26] S. Hanna, R. Shin, D. Akhawe, A. Boehm, P. Saxena, and D. Song. The Emperor’s New APIs: On the

(In)Secure Usage of New Client-side Primitives. In Proceedings of the Web, volume 2, 2010.

[27] R. Hansen and J. Grossman. Clickjacking. Blog, Dec 2008. http://www.sectheory.com/

clickjacking.htm.

[28] M. Heiderich. CSRFx, 2007. https://code.google.com/p/csrfx/.

[29] Hodges. RFC 6797, HTTP Strict Transport Security (HSTS), November 2012. http://tools.ietf.

org/html/rfc6797.

[30] J. Hodges, A. Steingruebl, et al. The need for a coherent web security policy framework. Web.

[31] L. Huang and C. Jackson. Clickjacking attacks unresolved. White paper, CyLab, 2011. http:

//mayscript.com/blog/david/clickjacking-attacks-unresolved.

85

http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html
https://www.ietf.org/rfc/rfc1738.txt
https://www.ietf.org/rfc/rfc1738.txt
https://www.facebook.com/notes/facebook-security/facebook-washington-state-ag-target-clickjackers/10150494427000766
https://www.facebook.com/notes/facebook-security/facebook-washington-state-ag-target-clickjackers/10150494427000766
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://developer.chrome.com/extensions/webRequest.html
http://developer.chrome.com/extensions/webRequest.html
http://www.sectheory.com/clickjacking.htm
http://www.sectheory.com/clickjacking.htm
https://code.google.com/p/csrfx/
http://tools.ietf.org/html/rfc6797
http://tools.ietf.org/html/rfc6797
http://mayscript.com/blog/david/clickjacking-attacks-unresolved
http://mayscript.com/blog/david/clickjacking-attacks-unresolved

[32] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schechter, and C. Jackson. Clickjacking: Attacks and Defenses.

In USENIX Security Symposium, 2012.

[33] C. Jackson and H. J. Wang. Subspace: Secure Cross-Domain Communication for Web Mashups. In Pro-

ceedings of the 16th international conference on World Wide Web, pages 611–620. ACM, 2007.

[34] D. Jackson. Software Abstractions: Logic. Language, and Analysis, The MIT Press, 2006.

[35] K. Jayaraman, W. Du, B. Rajagopalan, and S. J. Chapin. Escudo: A fine-grained protection model for web

browsers. In Distributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference, pages

231–240. IEEE, 2010.

[36] G. Jeremiah. Introducing the ‘I Know ...’ series. Blog, October 2012. https://blog.whitehatsec.

com/introducing-the-i-know-series/.

[37] T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks with browser-enforced embedded

policies. In Proceedings of the 16th international conference on World Wide Web, pages 601–610. ACM,

2007.

[38] M. Johns and J. Winter. RequestRodeo: Client side protection against session riding. In Proceedings of the

OWASP Europe 2006 Conference, 2006.

[39] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site request forgery attacks. In Securecomm and

Workshops, 2006, pages 1–10. IEEE, 2006.

[40] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: a client-side solution for mitigating cross-site

scripting attacks. In Proceedings of the 2006 ACM symposium on Applied computing, pages 330–337. ACM,

2006.

[41] R. Kotcher, Y. Pei, and P. Jumde. Stealing cross-origin pixels: Timing attacks on css filters and shaders.

2013. www.robertkotcher.com/pdf/TimingAttacks.pdf.

[42] K. Kotowicz. Cross domain content extraction with fake captcha. http://blog.kotowicz.net/

2011/07/cross-domain-content-extraction-with.html.

[43] S. Lekies, M. Heiderich, D. Appelt, T. Holz, and M. Johns. On the fragility and limitations of current

browser-provided clickjacking protection schemes. In Woot 2012, USENIX Security Symposium. USENIX,

2012.

[44] W. Maes, T. Heyman, L. Desmet, and W. Joosen. Browser protection against cross-site request forgery. In

Proceedings of the first ACM workshop on Secure execution of untrusted code, pages 3–10. ACM, 2009.

[45] J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-based approach to mashup security. In Proceedings

of the 5th ACM symposium on information, computer and communications security, pages 15–23. ACM,

2010.

[46] Z. Mao, N. Li, and I. Molloy. Defeating cross-site request forgery attacks with browser-enforced authenticity

protection. In Financial Cryptography and Data Security, pages 238–255. Springer, 2009.

[47] G. Maone. Hello ClearClick, goodbye clickjacking! Blog, October 2008. http://hackademix.net/

2008/10/08/hello-clearclick-goodbye-clickjacking/.

86

https://blog.whitehatsec.com/introducing-the-i-know-series/
https://blog.whitehatsec.com/introducing-the-i-know-series/
www.robertkotcher.com/pdf/TimingAttacks.pdf
http://blog.kotowicz.net/2011/07/cross-domain-content-extraction-with.html
http://blog.kotowicz.net/2011/07/cross-domain-content-extraction-with.html
http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/
http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/

[48] G. Maone, D. L.-S. Huang, T. Gondrom, and B. Hill. User Interface Security Directives for Content Security

Policy, September 2013. https://dvcs.w3.org/hg/user-interface-safety/raw-file/

tip/user-interface-safety.html.

[49] L. A. Meyerovich and B. Livshits. Conscript: Specifying and enforcing fine-grained security policies for

javascript in the browser. In Security and Privacy (SP), 2010 IEEE Symposium on, pages 481–496. IEEE,

2010.

[50] Microsoft. Combating ClickJacking With X-Frame-Options. Blog, March

2010. http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/

combating-clickjacking-with-x-frame-options.aspx.

[51] A. Nafeez. Stealing Facebook Graph API Access Token : Yet Another UI Redressing Vector, September

2011. http://blog.skepticfx.com/2011/09/facebook-graph-api-access-token.

html.

[52] T. Oda and A. Somayaji. Enhancing web page security with security style sheets, 2011.

[53] T. Oda, G. Wurster, P. van Oorschot, and A. Somayaji. SOMA: Mutual approval for included content in

web pages. In Proceedings of the 15th ACM conference on Computer and communications security, pages

89–98. ACM, 2008.

[54] OWASP. OWASP Top Ten Project. https://www.owasp.org/index.php/Category:OWASP_

Top_Ten_Project.

[55] OWASP. CSRF Guard, 2007. https://www.owasp.org/index.php/CSRF_Guard.

[56] M. Pilgrim. Dive into HTML5. Technical report. http://diveintohtml5.info/past.html#

history-of-the-img-element.

[57] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson. Busting frame busting: a study of clickjacking

vulnerabilities at popular sites. In in IEEE Oakland Web 2.0 Security and Privacy (W2SP 2010), 2010.

[58] S. Stamm, B. Sterne, and G. Markham. Reining in the web with content security policy. In Proceedings of

the 19th international conference on World wide web, pages 921–930. ACM, 2010.

[59] P. Stone. Pixel perfect timing attacks with html5. 2013. http://contextis.com/files/

Browser_Timing_Attacks.pdf.

[60] K. C. Telikicherla. Analyzing the new social engineering spam on facebook - lady with an axe. Blog post,

June 2013. http://bit.ly/FBSpamAxe.

[61] K. C. Telikicherla. CORP repository. http://iiithyd-websec.github.io/corp/, Oct 2013.

[62] K. C. Telikicherla and V. Choppella. Source code and live demonstration of SafeMash, Feb 2014. https:

//github.com/iiithyd-websec/safemash.

[63] K. C. Telikicherla and V. Choppella. Source code and live demonstration of web security concepts, Feb

2014. http://iiithyd-websec.github.io/.

[64] M. Ter Louw and V. Venkatakrishnan. Blueprint: Robust prevention of cross-site scripting attacks for

existing browsers. In Security and Privacy, 2009 30th IEEE Symposium on, pages 331–346. IEEE, 2009.

87

https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating-clickjacking-with-x-frame-options.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating-clickjacking-with-x-frame-options.aspx
http://blog.skepticfx.com/2011/09/facebook-graph-api-access-token.html
http://blog.skepticfx.com/2011/09/facebook-graph-api-access-token.html
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/CSRF_Guard
http://diveintohtml5.info/past.html#history-of-the-img-element
http://diveintohtml5.info/past.html#history-of-the-img-element
http://contextis.com/files/Browser_Timing_Attacks.pdf
http://contextis.com/files/Browser_Timing_Attacks.pdf
http://bit.ly/FBSpamAxe
http://iiithyd-websec.github.io/corp/
https://github.com/iiithyd-websec/safemash
https://github.com/iiithyd-websec/safemash
http://iiithyd-websec.github.io/

[65] W3C. HTML5 CORS-W3C Candidate Recommendation 16 Jan 2014. Technical report. http://www.

w3.org/TR/cors/.

[66] W3C. HTML5 Web Messaging-W3C Candidate Recommendation 1 May 2012. Technical report. http:

//www.w3.org/TR/webmessaging/.

[67] W3C. Iframe sandbox-W3C Candidate Recommendation 6 August 2013. Technical report. http://

www.w3.org/TR/html5/embedded-content-0.html#the-iframe-element.

[68] W3C. Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/soap/.

[69] W3C. History of the World Wide Web. Technical report, 1989. http://www.w3.org/Consortium/

facts#history.

[70] W3C. Content Security Policy 1.1-W3C Working Draft 11 February 2014. Technical report, 2014. http:

//www.w3.org/TR/CSP11/#directives.

[71] W3C. HTML5-W3C Candidate Recommendation 6 August 2013. Technical report, 2014. http://www.

w3.org/TR/html5/.

[72] Wikipedia. Principle of least privilege. http://en.wikipedia.org/wiki/Principle_of_

least_privilege.

[73] O. A. Zabir. Dropthings, 2014. https://code.google.com/p/dropthings/.

88

http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/webmessaging/
http://www.w3.org/TR/webmessaging/
http://www.w3.org/TR/html5/embedded-content-0.html#the-iframe-element
http://www.w3.org/TR/html5/embedded-content-0.html#the-iframe-element
http://www.w3.org/TR/soap/
http://www.w3.org/Consortium/facts#history
http://www.w3.org/Consortium/facts#history
http://www.w3.org/TR/CSP11/#directives
http://www.w3.org/TR/CSP11/#directives
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
https://code.google.com/p/dropthings/

	Introduction
	Anatomy of HTTP transactions
	HTTP end points
	URL
	HTTP Transaction
	HTML elements, DOM and Origin
	Cascading HTTP requests

	Threat Model
	Organization of The Thesis

	Web-borne Security Threats
	Browser Security Model
	Origin
	Same Origin Policy (SOP)

	Limitations of the browser security model
	Cross Origin Content Inclusion
	Cross-Site Scripting (XSS)
	Data-Exfiltration
	Cross-Site Request Forgery (CSRF)
	Clickjacking
	Cross-Site Timing Attacks

	Related Work
	Security of Web Mashups
	Fragment Identifier Messaging
	Subspace
	Safe JavaScript Subsets
	HTML5 Enabled Privilege Separation

	Mitigating Web Infiltration Attacks
	Approaches to Mitigate CSRF
	Approaches to Mitigate Clickjacking
	Approaches to Mitigate Cross-Site Timing Attacks

	Building Secure Web Mashups
	Evolution of Mashups
	Security concerns in mashups
	Security versus Interactivity

	Newer Browser Security Model
	PostMessage API
	Iframe Sandbox
	Relaxing Sandbox Restrictions

	Content Security Policy

	Insecure Usage of HTML5 APIs
	Security Considerations in Sandbox
	Sandbox Flags and Privilege Escalation
	Disabling Frame Busting Defense

	Security Considerations in PostMessage
	Attack on Confidentiality
	Attack on Integrity

	Implementation of SafeMash
	SafeMash API
	Security Checks Built into SafeMash
	Sandbox Related Checks
	PostMessage Related Checks

	Evaluation

	Enhancing Browser Security Policies
	Web Infiltration attacks
	Observations and Inferences

	Cross Origin Request Policy
	Core Idea Behind CORP
	Browser Model with CORP
	Setting the Policy
	Deleting the Policy
	CORP and CSP - How They Differ

	Abstract Syntax of CORP
	Order of Precedence for CORP rules
	Example Policies

	Security Guarantees Provided by CORP
	Fine Grained Access Control
	Combating CSRF
	Early Enforcement of Clickjacking Defense
	Controlling Social Engineering Attacks
	Defeating Cross-Site Timing Attacks
	Mitigating Application-level DDoS Attacks

	Validating the Soundness of CORP
	A Brief Introduction to Alloy
	Alloy specifications
	Sample model

	Design considerations of CORP Alloy model
	Simpler Abstraction
	Non-empty browser context
	Single browser instance

	Modelling cross-origin requests in the web platform (Pre-CORP.als)
	HTTP Transactions
	Origin
	HTTP Event Initiators
	Fact: EventInitiatorsInheritParentOrigin
	Fact: TransactionRules
	Fact: Disjointness
	Pred: SameOriginTransaction
	Pred: CrossOriginTransaction

	Modelling restrictions introduced in CORP (Post-CORP.als)
	Key idea of CORP
	Resource Paths
	Pred: maliciousXOriginTransaction
	Pred: corpCompliantTransaction
	Assert: showMaliciousTransactionWithJsCode

	Experimentation and Analysis
	Implementation
	Experiments
	Evaluating CORP Against a Corpus of Attacks
	Configuring CORP on Open Source Web Applications
	Analyzing Adherence of Top Websites to CORP

	Conclusions and Future Work
	Research Contributions
	Future Work

	Appendix A: Sample Alloy Model
	A basic academic time table Alloy Model

	Appendix B: CORP Alloy Models
	Pre-CORP Alloy Model
	Post-CORP Alloy Model

	Bibliography

