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Abstract

Machine Translation among Indian languages is a challenging problem, owing to multiple
factors like their morphological complexity and diversity, in addition to lack of sufficient parallel
data for most language pairs. Recent advances in the past have employed rule-based and statis-
tical techniques to approach the problem of Indian language MT. Neural Machine Translation is
an emerging technique depicting impressive performance, better than traditional MT methods
in multiple aspects. This thesis demonstrates the application of Neural Machine Translation
(NMT) techniques for Indian languages, with an emphasis in two important directions:-
1. Usage of specific linguistic features belonging to Indian languages to improve translation
quality.
2. Building a robust NMT model which delivers efficient performance across different domains
with a limited parallel corpus.
We create NMT systems for 110 Indian language pairs utilizing various morphological and syn-
tactic features to improve translation quality. We observe that although NMT models have
a strong efficacy to learn language constructs, the usage of specific features further help in
improving the performance. We also propose a three-phase integrated approach which helps
in improving robustness across domains as well as translation quality in the absence of large
parallel corpora. The three-phase training shows a significant improvement in accuracy as well
as coverage over a baseline NMT model.
This is the first effort towards developing Neural Machine Translation for Indian languages to
the best of our knowledge.
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Chapter 1

Introduction and Related Work

This chapter lays out a brief introduction to the thesis, touching upon four main aspects -
the significance of Indian Language MT and its challenging nature, related work done so far
in the field, our motivation behind employing Neural Machine Translation techniques for this
task and finally our contributions to the field of Indian Language MT.

Figure 1.1 Indo-European languages occupy a major portion of world language families. Statis-
tics from https://www.ethnologue.com/statistics/family
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1.1 Machine Translation among Indian Languages - Significance

and Challenges

1.1.1 Significance of Indian Language MT

Indian languages have a prominent presence in the languages spoken across the world, both
in terms of the linguistic characteristics as well as the socio-cultural aspects. Figure 1.1 shows
the language families of the world according to the percentage of speakers.

Figure 1.2 Most spoken languages of the world. Image Source : https://goo.gl/vt0ahm
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It can be noted that the Indo-European languages make up the largest percentage among
the world language families. Indian languages further form a significant portion of the Indo-
European languages. Figure 1.2 lays out a chart depicting the most common languages in the
world. It can be observed that three among the top ten most spoken languages and seven
among the top 25 most spoken languages are Indian languages.

Apart from the major Indian languages, there are a multitude of dialects spoken across the
country, employing different scripts and belonging to different typologies. With the presence of
such a large number of languages with diverse characteristics, communication across different
linguistic groups can be facilitated to a great extent with the help of the technology of Machine
Translation. Owing to the above factors, there is a lot of scope for work which can be done in
the direction of Indian language MT - a field with many potential applications in domains like
education, business, government, tourism, communication and so on.

1.1.2 Characteristics of Indian languages

As stated above, Indian languages are extremely diverse, belonging to various language
families, employing various scripts and spanning across a multitude of dialects. They are broadly
classified into the following language families : Indo-Aryan languages, Dravidian languages,
Austroasiatic languages and Munda languages. For the purpose of this study, we choose some
of the Indian languages, which are described in Table 1.1 along with their ISO codes. The ISO
codes are used to denote the languages in the tables and graphs in further chapters to maintain
brevity.

Table 1.1 ISO-639-2 codes and language families for Indian languages. IA : Indo-Aryan, DR
: Dravidian, IE : Indo-European

Hindi hin IA Gujarati guj IA
Urdu urd IA Marathi mar IA

Punjabi pun IA Konkani kon IA
Bengali ben IA Tamil tam DR
Telugu tel DR Malayalam mal DR
English eng IE

The majority of Indian languages are morphologically rich and depict unique characteristics,
which are significantly different from languages such as English. Some of these characteristics
are the relatively free word-order with a tendency towards the Subject-Object-Verb (SOV) con-
struction, a high degree of inflection, usage of reduplication, converbs, relative participal forms
and correlative clause constructions. These unique characteristics coupled with the caveats of
evaluation metrics described in Section 1.1.3 pose interesting challenges to the field of Indian
Language MT - both in terms of development of efficient systems as well as their evaluation.
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Table 1.2 Different Hindi translations corresponding to the English sentence - “Shyam has
given the book to Manish.” (Due to word order)

Hindi Transliteration
Sent : 1 मनीष को श्याम ने िकताब दे दी । maneesh ko shyaam ne kitaab de dee
Sent : 2 श्याम ने मनीष को िकताब दे दी । shyaam ne maneesh ko kitaab de dee

For example, in Hindi, a sentence s containing the words w1,w2,..,wn can be formulated with
multiple variants of word ordering. This behavior is depicted in Table 1.2, which shows two
Hindi translations of the following English sentence :
‘Shyam has given the book to Manish.’ Although they use different word-order, both of them
are semantically equivalent and correct translations of the source sentence.
Similarly, for the sentence ‘The sun has set’, there can be multiple valid translations, as shown
in Table 1.3. (We use the WX notation 1 for transliteration. This is used further throughout
the paper). It can be noted that ‘सूयर् ’ and ‘सूरज ’ are synonyms of ‘Sun’ in Hindi.

Table 1.3 Two different translations corresponding to the English sentence - “The sun has set.”
(Due to many-to-many mapping between vocabulary)

Hindi Transliteration
Sent : 1 सूयर् डूब चुका है । soorya doob chuka hai
Sent : 2 सूरज डूब चुका है । sooraj doob chuka hai

In addition to these, there are many subtle differences in the ways different Indian languages
encode information. For example, Hindi has two genders for nouns whereas Gujarati has three.
There are also many ambiguities introduced in language (both at lexical as well as sentence lev-
els) due to the socio-cultural reasons and partial encoding of information in discourse scenario.
In addition to this, the majority of Indian languages encode a significant amount of linguistic
information in their rich morphological structures, and often lexemes can have multiple senses.
All these factors like linguistic conventions, socio-cultural knowledge, context and highly in-
flectional morphology combined together with the lack of resources make Indian languages a
challenging terrain for Machine Translation.

1.1.3 Caveats of evaluation metrics

A key aspect in developing efficient MT systems is addressing the issue of effective metrics for
automatic evalution of translations, since manual evaluation is expensive and time-consuming.
There has been significant interest in this area, both in terms of development as well as eval-
uation of MT metrics. The Workshop on Statistical Machine Translation (Callison-Burch et

1http://bit.ly/2pDgALn
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al., 2007; Callison-Burch et al., 2008; Callison- Burch et al., 2009) and the NIST Metrics for
Machine Translation 2008 Evaluation 1 have both collected human judgement data to evaluate
a wide spectrum of metrics. However, the problem of reordering has not been addressed much
so far. The primary evalutaion metrics which exist currently for scoring translations are BLEU,
METEOR, RIBES and NIST.
BLEU [44] measures the number of overlapping n-grams in a given translation when com-
pared to a reference translation, giving higher scores to sequential words. METEOR [35] scores
translations using alignments based on exact, stem, synonym, and paraphrase matches between
words and phrases2. RIBES [25] is based on rank correlation coefficients modified with preci-
sion. NIST [18] is a variation of BLEU; where instead of treating all n-grams equally, weightage
is given on how informative a particular n-gram is. We report the BLEU score as a measure
to test accuracy for the 110 NMT systems to maintain brevity. However, for the language-pair
English -> Hindi; we report all of the above scores. We also describe the challenges in evaluat-
ing MT accuracy keeping this language pair in consideration, however it should be noted that
the same or similar challenges are faced when dealing with other language pairs as well. We
use the MT-Eval Toolkit3 to calculate all these metrics.
It can be noted that most of the above-mentioned metrics employ some concept of word-order
as well as word similarity using n-grams to score translations, which makes evaluating Hindi
translations a tedious task. In addition to this, there exists a many-to-many mapping of vo-
cabulary between English and Hindi which makes all of these scoring mechanisms less effective.
For example, both translations shown in Table 1.3 are valid. However; since the current MT
metrics rely heavily on lexical choice, there is no mechanism which takes into account the phe-
nomena described above, which is which is quite common in Indic languages like Hindi. Hence,
in addition to the metric scores, we also show sample examples with their descriptions in the
following section, in order to demonstrate translation quality in a more comprehensive manner.
These are described in detail in Chapter 5.

1.2 Related Work

Indian language MT is a challenging problem, owing to multiple reasons including mor-
phological complexity and diversity, in addition to a lack of resources for many languages.
Advances in the recent past mainly employ statistical and rule based methods for MT. Some
of these systems include [2], [34], [1], [20] and [7].[34] uses statistical phrase based machine
translation for Indian Languages using Moses [32] for phrase extraction as well as lexicalized
reordering. Sampark [2] is a transfer based system for translation between 18 Indian language
pairs, which uses a common lexical transfer engine, whereas minimum structural transfer is

2We have tuned the Meteor to score English - Hindi Translation using parallel corpus.
3http://bit.ly/2p5C2FB
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required between Indian languages. [33] use orthographic features along with SMT to reach
state of the art results in SMT for related languages.
This thesis is novel in the application of NMT techniques for translation among Indian lan-
guages. Since the majority of Indian languages lack large parallel corpora, we we have worked
on building effective NMT models inspite of low training corpora. To achieve this, we propose
the use of monolingual corpus to create synthetic data. The use of monolingual data to improve
translation accuracy in NMT was first proposed by [22]. Monolingual models were trained in-
dependently and then were integrated to decoder module either through rescoring of the beam
(shallow fusion), or by adding the recurrent hidden state of the language model to the decoder
state of the encoder-decoder network, with an additional controller mechanism that controls
the magnitude of the LM signal (deep fusion).
[24] shows use of SMT features improved NMT. [51] proposed use of synthetic data, a par-
allel data corpus generated using back-translation along with parallel corpus to increase the
translation accuracy.

Our method differs from them since it is three-phased. In the first phase, we train our
model over a synthetic corpus generated using a suboptimal MT technique, and then fine tune
it further on gold data. This allows better control over training during various stages - leading
to better translation quality for Indian languages. Our second phase is inspired from [62]. They
use transfer learning to increase translation quality between resource scarce language pairs by
incorporating the weights learnt during training for high resource language pairs. It was also
found that languages having similar structure, like Fr ←→ En (French - English) showed bet-
ter improvement in performance as compared to other languages having little similarity, like
Uz ←→ En (Uzbek - English). Our approach is based on the intuition that transfer learning
between the same language pair should perform better than its multilingual counterpart. The
experimental results described in Chapter 5 demonstrate that the above intuition stands cor-
rect. During fine-tuning, the change in weights in each epoch learnt through transfer learning
allows the model to align more towards the correct model.
[42] proposed using self-training for the task of parsing. We have experimented with its use in
Neural machine translation.

1.3 Motivation

As mentioned in Section 1.2, MT for Indian languages has been explored using either rule-
based or statistical approaches in the past. In this thesis, we present the application of Neural
Machine Translation techniques to deal with the challenging problem of MT among Indian lan-
guages. Neural Machine Translation (NMT) [55, 13, 4] has shown promising results for various
language pairs and is an emerging alternative to phrase-based Statistical Machine Translation
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Figure 1.3 Progress in performance of Machine Translation in recent years
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(SMT). The primary appeal of NMT lies in its ability to employ algorithms which learn linguis-
tic rules on their own from the parallel corpus, thus making it conceptually simple and elim-
inating the need for complex feature engineering by providing end-to-end translation. Since
the training is done end-to-end, all of the training parameters are optimized simultaneously
to achieve a minimum loss function on the output of the neural network, thereby removing
the need of having separate components (like lexicalized re-ordering model, distortion model,
transliteration model, and so on) during the intermediate stages of the translation process. The
end-to-end nature of the training phase is also very conducive when dealing with sequences of
unknown lengths beforehand, thereby making neural models an appropriate choice for other
tasks like chatbots, speech recognition, dialogue systems, time series, question-answering and
image captioning as well. The distributed representations in the form of dense vectors em-
ployed by NMT enable the sharing of statistical strength between similar words and similar
phrases and better predictions can be obtained by exploiting these similarities. NMT systems
are also adept at exploiting the context information as opposed to traditional n-gram models,
where the language models on the target side incorporate a very short context. The context
incorporation is made easier due to the distributed representations mentioned above, unlike
traditional systems where one-hot representations of words is more commonly used, resulting
in data sparsity and thereby inability to incorporate a large context window. Due to all the
above-mentioned reasons, NMT generates more fluent translation as compared to phrase based
SMT systems especially on lexically rich texts. Furthermore, it eliminates the need for complex
feature engineering by providing end-to-end translation. Bentivogli [6] demonstrates that NMT
output contains lesser lexical errors (-17%), lesser morphology errors (-19%), and significantly
lesser word order errors (-50%) than its closest competitor MT paradigms for each error type.
NMT systems have achieved competitive accuracy scores under large-data training conditions
for language pairs such as En → Fr (English - French) and En → De (English - German) [59].
However, on the other hand, NMT models are unable to extract sufficient language constructs
like morphology, syntax and word semantics in low resource scenario.

The majority of Indian languages depict a high degree of agglutination and rich morphology.
These factors coupled with unavailability of a large parallel corpora makes translation among
Indian languages especially challenging. Also, due to the unavailability of large parallel corpora,
the vocabulary size tends to be low, due to which any word which is not included in the
vocabulary is mapped to a special token representing an unknown word [UNK], also called as
out-of-vocabulary word (OOV ). This causes a large number of OOV ’s in the target sentence,
which results in a drastic drop in the translation quality. Also, current NMT models do not
make employ linguistic information like explicit syntax / semantics directly. Both of these issues
are addressed to a certain extent in our proposed approaches, which are described in detail in
Chapter 4.
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1.4 Contributions

In this thesis, we explore different techniques to build robust and accurate NMT systems for
Indian languages. The proposed techniques do not require any modification to the underlying
neural network architecture during various training phases. Hence, we believe it can be applied
to other languages which have a traditional Machine Translation system and a small parallel
corpus but lack in availability of large parallel corpora with little to no modifications. The
proposed methods could serve as a baseline for further improving NMT for Indian languages in
the future.
The major contributions of this thesis are summarized below:-

• We propose a method which employs linguistic features specific to Indian languages to
improve translation quality by leveraging their shared characteristics. We create NMT
systems for 110 language pairs using this method and compare their performance with
state-of-the-art phrase-based SMT systems trained over the same corpus.

• We propose a technique for synthetic data generation using an existing MT technique and
a large monolingual corpus of the source language.

• We propose a three-phase approach which employs synthetic data to improve translation
quality . We show results comparable to the state-of-the-art for 10 language pairs in terms
of accuracy as well as domain coverage using this approach.

• We compare the effect of weak supervision and semi-supervision across various language
pairs with relation to domain coverage and accuracy.

• We propose a method to deal with the problem of Out-of-Vocabulary (OOV) words.

1.5 Thesis Organization

The rest of this thesis is organized as follows: Chapter 3 gives the details of our NMT
architecture. It also describes the datasets and resources employed in our experiments. Chapter
4 gives a detailed explanation of our proposed methods and the experiments conducted using
them. A summary of the methods is also provided at the end of this chapter. We report the
results obtained by our models and analyse them in Chapter 5. We conclude the paper and
discuss future work in Chapter 6.
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Chapter 2

Preliminary - Neural Machine Translation

In this chapter, we lay out a concise description of the theoretical background needed to
understand the thesis in depth. The thesis proposes the use of Neural Machine Translation
techniques for the task of Indian Language MT. Neural Machine Translation (NMT) is a novel
approach to MT which utilizes deep neural networks to generate end-to-end translation. The
theoretical background behind NMT is described in the following sections. We begin with a brief
introduction to NMT, followed by a comparison with statistical machine translation, followed
by a description of Recurrent Neural Networks and end with a description of the attention
mechanism - a recent but valuable addition to NMT.

2.1 Neural Machine Translation - Introduction and Brief His-

tory

2.1.1 The Basic Framework

Artificial Neural Networks are an inevitable building block for recent advances using deep
learning for Natural Language Processing. Simplistically, a neural network is a program which
is designed to work in a manner similar to that of the human brain. When we employ a single
artificial neural network to build a model for the task of end-to-end Machine Translation, the
resulting approach is termed as Neural Machine Translation. Figure 2.1 shows a simple block
diagram of a Neural MT system.

It can be seen that the model comprises of two main components - the encoder and the
decoder. The encoder encodes the source sentence by reading it one symbol at a time and
storing the hidden state into a vector representation using a recurrent activation function.
These recurrent activation functions could vary depending upon the architecture employed for
training the model. Some examples of resulting encoder architectures are Hyperbolic tangent
(tan) , Convolutional Network (CNN) , Gated Recurrent Unit (GRU) or Long Short Term
Memory (LSTM).
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Figure 2.1 A simple NMT model with an encoder-decoder architecture
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The decoder can be visualized as a conditional recurrent Language Model (LM) where the
conditioning is being done based on the source sentence, i.e. one can think of the final hidden
state as a representation which summarizes all the information present in the complete source
sentence.
Thus the entire process can be understood as passing information in time steps to the encoder
which generates a hidden state representation, passes it on to the decoder which then uses this
information for prediction of the next correct step in the translation process. The goal of NMT
can be described as designing a model which can be completely trained with the components
being able to be fully tuned using training corpora to generate end-to-end translations. This
implies that NMT does not rely on feature specifications which are pre-designed and fed into
the model by the user; rather it learns its own set of features from the training corpus itself. It
should be noted that neural MT systems are known to require large amounts of training data
to perform well, primarily due to the factors mentioned above.

2.1.2 A Brief History of NMT

Figure 2.2 Recent advances in the usage of neural networks in MT. Image inspired from [38]

The usage of large neural networks for Natural Language Processing (NLP) tasks was ini-
tially proposed by [5] in his feed-forward neural language model. The neural LM is very similar
to the current existing LMs. The input n-gram is projected into an embedding space for each
word and then we have a big output layer. This novel idea was then used by several researchers
who tried to integrate it with Machine Translation systems ([3] and [13]).
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[17] proposed the usage of a neural network joint model as an additional technique to improve
SMT performance. [55] was a breakthrough for MT, introducing the ”seq2seq” (Sequence to
sequence) model which was the first model based completely on NN’s and achieving accuracy
comparable to the State-of-the-Art SMT systems. They proposed the usage of an RNN (LSTM
or GRU) over the source sentence, producing a hidden state and then running another RNN to
generate the output one word at a time. The bottleneck to this approach was that the entire
translation is a fixed sized vector.

[4] proposed the attention mechanism in NMT, which is employed currently in most State-
of-the-Art MT systems. The decoder computes a relevant score for each annotation at each
timestep and uses the weighted sum of the annotations as a context. The attention mechanism
enables the model to choose which part of the sentence to pay ”attention” to in a differentiable
way.

Figure 2.3 Architecture of GNMT[59] - Google’s NMT model

2.1.3 Why RNNs?

Neural MT generally uses some form of a Recurrent Neural Network (RNN) for its encoder
and decoder components, rather than a normal neural network. The motivation behind this
comes from a variety of reasons. Traditional neural networks have a huge RAM requirement
and are not quite feasible in their best settings where they achieve their highest accuracies.
This is done because RNN’s facilitate the preservation as well as processing of information that
has a temporal aspect involved, for eg, a sequence of words has an order, and hence a time
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element inherent in it. This is not possible if we employ normal neural networks.

Figure 2.4 A comparison of feedforward neural networks with Recurrent Neural Networks

One important property of machine translation, or any task based on natural languages, is
that we deal with variable-length input and output. In other words, T and T’ are not fixed.
On the other hand, one of the major assumptions in feedforward neural networks is the idea
of fixed length, i.e. the size of the input layer is fixed to the length of the input sequence.
The other major assumption is the idea of independence - that different training examples (like
images) are independent of each other. However, we know of sequences such as sentences or
speech, where there are short and long temporal dependencies that have to be accounted for.
To deal with these types of variable-length input and output, we need to use a recurrent neu-
ral network (RNN). Widely used feed-forward neural networks, such as convolutional neural
networks, do not maintain internal state other than the network’s own parameters. Whenever
a single sample is fed into a feed-forward neural network, the network’s internal state, or the
activations of the hidden units, is computed from scratch and is not influenced by the state
computed from the previous sample. On the other hand, an RNN maintains its internal state
while reading a sequence of inputs, which in our case will be a sequence of words, thereby being
able to process an input of any length.

The RNN’s thus help in converting the input sequence to a fixed size feature vector that
encodes primarily the information which is crucial for translation from the input sentence, and
ignores the irrelevant information.

Long Short Term Memory (LSTM) units are a type of RNN’s which are very good at
preserving information through time-steps over a period of time. One key advance in LSTMs in
recent years has been the concept of bi-directional encoder and decoder framework. When we
employ bidirectional LSTMs, we end up with two hidden states - one in the forward direction
and one in the backward direction. This allows the network to learn from the text. Often, even
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more than two layers are used. Thus there will be multiple layers stacked on top of each other
- this is generally only in huge training data conditions. Each one of these has a set of weights
inside it. Each one learns and affects one above it. The final state represents everything that
is in the source words. Bi-directional generally work the best specially when added with the
attention mechanism.

After the encoding process, we are left with a Context vector - which is like a snapshot of
the entire source sequence and is used further to predict the output. We have a dense layer
with softmax similar to a normal NN, but the difference is that it is time distributed i.e. we
have one of these for each time step. The top layer thus will have one neuron for every single
word in the vocab, and hence the top layer will be huge in size.

2.1.4 A Comparison with Phrase-based Statistical Machine Translation

Human languages are extremely elegant, flexible, efficient and very complex. As an example,
one word can have multiple meanings, and one meaning can be expressed by multiple words.
Thus, there is a many-to-many mapping between form and function - a scenario not very fa-
vorable for machine learning. Meaning depends on context leading to overloading of certain
symbols, literal and figurative meanings of an utterance might be different, and so on. All these
factors make Machine Translation in general a very challenging task.
When we deal with Indian languages, there are additional complexities which have been dis-
cussed in Chapter 1. Rule-based MT is a direct, transfer-based approach to MT, giving rea-
sonable performance. RBMT translates a source sentence using lexical transfer and in some
cases a bit of local reordering in the target side. This is done using a large set of rules which
employs a bilingual dictionary and some grammatical properties of the source and the target
language. The dictionary can be of the order of 10 power 5, which is quite large. Limitations
of this approach include the need of highly skilled experts, the time-consuming and expensive
nature of building the system, the rule interaction complexity due to the large size of rules,
inability to efficiently incorporate local context on the source side, and inability to integrate
smoothly into engineering applications.
Machine learning is a robust and scalable approach to this task in the presence of data. Phrase-
based Statistical Machine Translation, belonging to the latter category, has been the state-of-
the-art paradigm for MT, honed and optimized for a long period of time. In WMT 2016, for
the first time in 15 years, Statistical MT was outperformed by Neural MT for three-fourths of
the shared tasks. For a comparison, Statistical MT has been around for more than 25 years,
whereas Neural MT has been proposed two years back. In such a short span of time, Neural
MT has been producing better results than Statistical MT.

Statistical approaches to MT employ predictive algorithms to create models using bilingual
parallel corpora. They provide the most probable output on the basis of the examples from
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the bilingual training corpora. Thus, using an already translated dataset, a statistical model
generates prediction of the translated output in the target language. There can be various
approaches within Statistical MT : like word-based approach, syntax-based approach, phrase-
based approach and hierarchical phrase-based approach. The phrase-based SMT (Also called
PBSMT) has been producing the state-of-the-art results before the advent of Neural Machine
Translation (NMT).

Although statistical approaches provide the advantage of automation, there are a variety of
drawbacks of this approach. These include the following :

• Multitude of local decisions and independence assumptions, leading almost to ”translation
in isolation”

• Weak re-ordering and a lot of Out-of-Vocabulary tokens

• Inability to caputre non-local phenomena

• Dependence on heterogenous technologies, i.e. the components are individually estimated
rather than joint optimization as done in NMT

Neural MT is a radically different approach to MT, which uses artificial neural networks
to generate end-to-end translation. Recent experiments have demonstrated NMT is able
to generate significantly better translations than SMT in terms of accuracy and fluency,
especially on lexically rich data and in presence of large training corpora. One big benefit
of NMT is the removal of the need for extensive feature engineering, since NMT is capa-
ble of learning linguistic rules from the data itself by employing various algorithms. The
benefits of NMT include :

– Small memory footprint as opposed to SMT which has large phrase tables

– Faster learning and convergence

– Support for end-to-end training

– Self-learning capability, no feature design and engineering required

– Ability to combine supervised as well as unsupervised learning approaches

– Joint optimization of all components against the same loss function, making it ho-
mogeneous

– Many possible extensions - like sub-word based or character based translation
Figure 2.5 shows the performance obtained by NMT and SMT on some standard
language pairs.
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Figure 2.5 Comparison of performance of NMT and SMT for standard language-pairs by [36]
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2.2 Summary

In his chapter, we discussed the theory and history of NMT briefly and compared
it with Phrase Based SMT, the current state-of-the-art for Indian languages. We
showed that NMT is a promising direction to pursue for the task at hand and hence
we employ the same in this study. We describe our system architecture and experi-
mental setup in the next chapter.
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Chapter 3

System Architecture and Experimental Setup

In this chapter, we desribe the complete experimental setup required for building
the NMT systems. We begin by the description of the datasets and resources em-
ployed for our experiments, followed by a discussion on the selection of optimal NMT
architecture, and conclude the chapter with the details of the selected architecture.

3.1 Datasets and Resources

The normal requirement for efficient NMT performance is a large parallel training
corpus. However, for this study, we deal with the less-resourced scenario for majority
of the languages. We tweak our system architecture to deliver optimum performance
in such scenario, described in detail in Section 3.2. The following subsections describe
the datasets and resources employed for our experiments.

3.1.1 Datasets

We employ a small parallel corpus and large monolingual corpora for training. For
the former, we use the multilingual Indian Language Corpora Initiative (ILCI) corpus
1, which contains 50,000 sentences from the health and tourism domains aligned
across eleven Indian languages. We employed manual preprocessing to eliminate
misalignments - the resultant dataset has a size of 47,382 sentences. These are split
randomly into training set, validation set and test set containing 44,000, 1382 and
2000 sentences respectively.
The statistics for the ILCI corpus are given in Table 3.1. We use the EMILLE
monolingual corpora [43] for five languages 2 and the UrMonoCorp [26] for Coarse

1This corpus is available on request from TDIL : https://goo.gl/VHYST
2The corpora for the remaining languages are insufficient in size.
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Table 3.1 Corpus statistics - ILCI
Tokens Vocabulary

hin 850968 39170
pan 849679 849679
guj 759380 62780
tam 849679 86462
ben 715886 50553
urd 832776 36738
tel 632995 86997
kon 643605 70030
eng 808370 35134
mar 663597 77057
mal 599422 101869

Learning detailed in Chapter 4.3. These statistics are given in Table 3.2. In addition
to these, we extract samples from the EMILLE [43] parallel corpus for the Housing
and Legal domains. These datasets are used as test sets to show coverage of our
NMT model. Details are given in Table 3.3.

Table 3.2 Monolingual Corpora statistics - EMILLE and *UrMonoCorp
Sentences Tokens Vocabulary

hin 612705 11986152 321356
pan 488985 14285063 272771
tam 827439 17170697 1285031
guj 272526 12766111 660465
ben 259145 2671369 243531
urd* 500000 8744825 157133

3.1.2 Resources

For our experiments, we use synthetic data in addition to the gold data (described
in detail in Chapter 4) to compensate for the relatively lower size of our gold corpus.
The generation of synthetic data from the monolingual corpora is done using the
Sampark [2] systems, which are available for 9 Indian language pairs4. Sampark is a
multipart machine translation system developed under the Indian Language Machine
Translation project. It uses a transfer-based engine and has a huge repository of rules
for dealing with Indian language specific constructs. The motivation behind this

3We extract a sample containing 500,000 sentences from UrMonoCorp
4https://goo.gl/yu7KUT
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Figure 3.1 The output obtained after shallow parsing a Hindi sentence

choice for synthetic data generation stems from the quality of performance obtained
using Sampark for Coarse Learning. This is described in detail in Chapter 5.
The features used in Section 4.1 are generated from the intermediate outputs of
Sampark [2] and the shallow parsers. The shallow parsers are available for nine
Indian languages5. Figure 3.1 shows the shallow parsed output for the Hindi sentence
: "ěरतेश कĢ अिंतम इच्छा थी कĢ वह चार धाम कĢ यातर्ा कर सके |" .
Detailed information on feature extraction and addition is provided in Chapter 4.

3.2 System Architecture

3.2.1 Fundamental Skeleton of the Network

The main component of our NMT model is a single neural network trained jointly to
provide end-to-end translation [28, 55, 13, 4]. Our main architecture consists of an
encoder-decoder framework, comprising of bidirectional Long Short Term Memory
(LSTM) units, a type of bidirectional Recurrent Neural Network (RNN) [47] as shown
in Figure 3.2.

5https://goo.gl/Dt3zHi
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Table 3.3 Parallel Corpus Statistics - EMILLE. H: Housing, L: Legal
Sentences Tokens Vocabulary

hin H 1183 23178 3131
L 1321 27700 3880

ben H 1109 17815 3310
L 1288 21690 4567

guj H 1113 17537 4405
L 1382 21377 5689

pan H 1308 20729 3771
L 1368 24971 3763

urd H 1327 22691 2871
L 1386 27207 3945

The encoder encodes the source sentence into a vector from which the decoder ex-
tracts the target translation sentences. This facilitates learning of long-distance
dependencies, thereby enabling the system to learn an end-to-end model.
Specifically, we model the conditional probability p(y|x) of translating a source sen-
tence x = x1, x2...xu to a target sentence y = y1, y2, ...yv. Let ’s’ be the representation
of the source sentence as computed by the encoder. Based on the source representa-
tion, the decoder produces a translation, one target word at a time and decomposes
the conditional probability as :

log p(y|x) =
v∑

j=1

log p(yj |y1 : j -1, x, s) (3.1)

The entire model is jointly trained to maximize the (conditional) log-likelihood of the
parallel training corpus (via a softmax layer) with back-propagation through time
[57].

max
θ

1

N

N∑
n=1

log pθ(y(n)|x(n)) (3.2)

where (y(n), x(n)) represents the nth sentence in parallel corpus of size N and θ

denotes the set of all tunable parameters.
We also use an attention mechanism [4] that allows the target decoder to look back
at the source encoder.

This is the fundamental skeleton of our architecture. We select the individual com-
ponents after experimentation with different possible architectures. We describe the
experiments and the detailed formulation specifying the RNN type, number of lay-
ers, attention mechanism etc. selected after the experimentation in the following
subsections.

22



Figure 3.2 A two-layered encoder-decoder based NMT architecture as proposed by [55]. ‘EOS’ denotes
the end of the sentence.

3.2.2 Selection of optimal NMT architecture

In order to train the RNNs (encoders and decoders) mentioned in Section 3.2.1,
we take the cost function and obtain its derivative with respect to the weight in
question. We then move this derivative through the nested layer of computations
using the chain rule.
In other words, the output of the previous layer is multipled by the weight matrix
and added to a bias and then passed on to an activation function.

yk = g(Wyk−1 + b) (3.3)

We use a recurrent connection to convert the linear unit of feed-forward neural
network to a recurrent unit so that now the activity of the unit ht not only depends
on xt (the input) multiplied by the weight matrix, but also on its activity at the
previous timestep. The following equation shows this phenomenon :

h(t) = gh(W1x
(t) +WRh

(t−1) + bh) (3.4)

The second term WRh
(t−1) depends on the activity at the previous timestep multi-

plied by a recurrent weight matrix. We also want to be able to retrieve an output
from this unit and this is done by adding a linear operation as described in the fol-
lowing equation :
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y(t) = gy(Wyh
(t) + by) (3.5)

Here, y(t) is a function of h(t) multiplied by weight matrix w and passed through
a non-linear activation function. This is the basic element of the recurrent neuron
which we employ in the RNN architectures described further. The encoding process
can be visualized as the input sequence being compressed by the RNN into an inter-
mediate representation in the form of a fixed dimensional vector. So, if the vector
ht−1 describes the history of the sequence at timestep t, the new internal state (the
updated vector) ht will be computed by the network, effectively compressing the
preceding symbols (x1, x2, . . . , xt−1) as well as the new symbol xt. The following
equation shows this :

ht = ϕθ(xt, ht−1) (3.6)

Here, ϕθ is a function which takes the new information unit xt and the hidden state
ht−1 as input. (h0 can be assumed to be a vector containing zeroes).
We employ an affine transfer passed through a nonlinear function for the imple-
mentation of the recurrent activation function ϕ. This is shown by the following
equation:

ht = tanh(Wxt + Uht−1 + b) (3.7)

Here, W is the input weight matrix, U is the recurrent weight matrix and b denotes
the bias vector.
Now, we let our basic RNN model p(xt | x<t) at each time t to be described by

p(xt|x<t) = gθ(ht−1) (3.8)

ht−1 = ϕθ(xt−1, ht−2) (3.9)

gθ outputs a probability distribution which is conditioned on the entire history up to
the (t-1)-th token via ht−1. Thus, the RNN tries to predict the next token at each
time step given the history of the input tokens.

24



Figure 3.3 Structure of a bi-directional Recurrent Neural Network. Image Source :
https://goo.gl/spMC3J

3.2.2.1 Bidirectional RNN and Stacking

The Bidirectional recurrent neural network has two recurrent cells which scan the
information in different ways, i.e. one in forward direction and one in backward
direction. The output is obtained by addition / concatenation depending upon
the application. Figure 3.3 shows the structure of a bidirectional recurrent neural
network.
The RNN cells can also be stacked on top of each other as shown in Figure 3.5

Figure 3.4 Performance comparison on different layered architectures
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generating a deep neural network. We show the results obtained using unidirectional
and bidirectional RNNs obtained on two and four layers of encoder and decoder in
Figure 3.4. Since the two-layered architecture shows the best performance, we employ
it for our experiments described in Chapter 4.

Figure 3.5 A neural network model with stacked Recurrent Neural Networks. Image Source :
https://goo.gl/U1fdqA

Figure 3.6 Structure of a Gated Recurrent Unit. Image Source : goo.gl/D848d8
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Figure 3.7 Structure of an LSTM unit. Image Source : https://goo.gl/WpDh9Y

3.2.2.2 LSTM and GRU cells

The LSTM cells are an improvement over vanilla RNN units. The structure of an
LSTM cell is shown in Figure 3.7. In addition to introduction of hidden layers,
there is a gating mechanism consisting of an input gate, forget gate and an output
gate. We have an inner memory, which is linear to time backwards. The forget and
the input gate control what we want to keep from the past as an information and
what we want to accept new from the input. [4] use a Gated Recurrent Unit, whose
structure is shown in Figure 3.6.

The equations for the formulation of LSTM as well as GRU are described in Figure
3.8. Here, W, Wr and Wu are the input weight matrices; U, Ur and Uu are the
recurrent weight matrices and b, br and bu are the bias vectors. The main difference
between a GRU and LSTM is how the ut works. So rather than having a forget
gate and an input gate that are both different to get the information inside the inner
state, we have the ut which takes the past hidden value and we have ( 1 - ut ) which
lets the entering of new information. Since ut is vectorial, it is a combination of
many neurons, and the computation is neuron wise, unlike a typical dot product.
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Figure 3.8 Mathematical formulation of LSTM and GRU architectures

3.2.2.3 Encoders and Decoders

We have many time-steps for an encoder. The input vector x is encoded into a
state ”thought vector” Si as shown in the Figure 3.2. Decoders, in turn, decode
the state, ”thought vector” through time, thereby generating a sequence-to-sequence
architecture when pipelined with the encoder. The thought vector which we use
in our experiments is of the of the dimension of 1000. One bottleneck using this
approach is the handling of long sequences. The backpropagation offset through
time with the backward link makes the neural network more resilient to learning,
correcting its errors as it goes forward.
One common technique to improve accuracy is the reverse the input sequence and
feed the reversed sequence to the encoder. This makes the related words closer to
each other in the encoder and the decoder.

3.2.3 Add ons

3.2.3.1 Lookup Tables and Embeddings

We pass on the numbers as input to the neural network rather than plain words.
This also helps the model to learn related concepts easily. Lookup tables are used for
this. Words that occur with very low frequency are discarded and replace with an
<UNK> (UNK stands for Unknown) token. This is done to reduce the size of the
vocabulary, since the computational power and complexity increases linearly with
increase in the vocabulary size. For example, if there we have a vocabulary size of
200000, there has to be a dense layer of 200000 neurons at the top, which goes into

28



a softmax to predict the word output. To avoid this, we use lookup tables and word
embeddings.
Word embeddings allow us to extract more semantic information from the words.
Often, pre-trained embeddings like word2vec or GlOVe are used. Since the embed-
dings are generally trained across billions of words, they are able to spot relationships
and leverage semantic information in the neural network.

3.2.3.2 Padding

A sequence to sequence model generally has a fixed length for the sequence, for
example 30 time steps. To achieve a common length across input sequences, we use
padding. We pad the sequence with special tokens to achieve the desirable length.
All the input sequences must have a common length and all output sequences must
have a common length, however the input sequence length need not be the same as
the output sequence length.
The padding tokens employed by us belong to the following categories (make a table):
<PAD> denotes a padded zero input , <EOS> denotes end of sentence, <GO> tells
the decoder to start functioning, <OOV> represents an out-of-vocabulary token,
<UNK> represents an unknown token and <ES2> specifies the target language.
These tokens thus can be thought of as giving conditional information to the network
as to what it should be doing.

3.2.4 Challenges in “pure” NMT

A major limitation in NMT is that it is not able to incorporable larger contextual
information efficiently. Vanilla sequence to sequence models work well on short sen-
tences but not on long ones. LSTMs can remember up to about 30 time steps,
dropping off quite quickly after 30. So it cannot go back in time across some para-
graphs and use that contextual information to produce output. One work-aoround
to this is that we can flip the input sentence and feed it to the seq2seq model thus
training it backwards. ie. backwards going in forwards coming out, thereby making
the gap between the end words significantly lesser. Some other approaches to use
this are attention mechanism, peeking, teacher forking, and beam search. Attention
mechanism looks at the whole thing and works out ”Which word is most important
for this word” i.e. it computes a score for every word in the sentence and with that
it is able to get a sense that there are certain words which rely much more on other
words than other words. With attention mechanism the performance for short sen-
tences is improved as well. Without the attention mechanism, NMT often ends up
producing sentences with correct grammatical structures but sometimes with many
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repetitions (for example : Ram bought five five five kilograms of mangoes).
Attention can be thought of as a memory module which sits above the network,
looks at the words and finds out which are the most important. Another method
is teacher forcing - When training the network; instead of letting the decoder pass
its predictions to the next layer, we pass the correct word/state. So when it makes
the prediction, we check whether it is right or wrong and use it when we are back-
propoagating the network, but we dont feed it to the next timestep, rather we feed
the correct answer to the next timestep. Thus we are forcing the decoder to not
just use the output (last hidden state) but we are forcing it to use the correct an-
swers. Obviously this cannot be used when dealing with real predictions. Often we
can train with teacher forcing, and save the weights of the model and load them in
the model and train without teacher forcing and then use it for normal predictions.
Teacher forcing can enable faster and more accurate learning.
Next technique is peeking - Normally we feed the hidden state of our context vector
straight through every step of the next RNN or LSTM. Generally, each of these steps
the context vector gets changed. For peeking we also give the version just outputted
by the encoder along with the current vector so that checking and correction can be
done.
Out of these methods, we employ attention mechanism in combination with input
feeding, briefly described in the following subsections.

3.2.5 Attention mechanism

The attention mechanism was proposed by [4]. It can be applied to a wide variety
of deep learning applications like control problems, image captioning, speech recog-
nition and machine translation. Their intuition was “why encode a single thought
vector between the encoder and the decoder when we can have everything?” At-
tention mechanism is depicted in Figure 3.9. In normal RNN architectures, the
entire input sequence is used for prediction of the output. However, we know that
some words are more important and some words are not so important when dealing
with the task of Machine Translation. Attention mechanism is based on this idea
- it gives ”attention”, i.e. weightage to specific parts of the input which are more
significant for the task at hand, thereby helping to bring down the computational
complexity of the model. This is especially helpful when dealing with long sentences.

The traditional encoder-decoder framework at first encodes the source sentence into a
single vector representation which is used by the decoder to predict every single word
in the output. In other words, each input word is used equally used for translating
the sentence, and all words are used by the decoder at each timestep.
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Figure 3.9 Attention mechanism in RNNs.

With the attention mechanism, the decoder computes a set of attention weights
which is applied at the input sequence at each timestep. The set of attention weights
changes over time. A weighted sum using the attention weights of the input gener-
ates each word. Since the attention weights change with time, the model can ”focus”
in different places as the translation process moves forward.

The attention model keeps track of the source hidden states as a memory pool.
The reference is then done to the words according to the weights assigned to them.
Various extensions have been proposed to the attention mechanism. [40] proposed
local attention to have focused attention. Instead of looking at the entire source
hidden states (also called Global Attention or soft attention), they look at a subset
of source states at each timestep. Global attention is shown in Figure 3.10. In
order to compute the alignment weight vector at, a scoring mechanism is needed to
compare the target hidden state ht with the source hidden state hs. Different scoring
functions can be used for this. The last one is the one proposed by [4]. Once the
alignment vector is obtained, the context vector can be obtained by performing a
weighted average of source hidden states. Given the context vector and the target
hidden state history, the attentional vector (h̃t) can be computed by a small feed-
forward neural network.
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Figure 3.10 Global Attention Mechanism

Figure 3.11 Input-feeding in Attention Mechanism
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Figure 3.12 Local Attention Mechanism

An example for this is :
h̃t = tanh(Wc[ct;ht]) (3.10)

Given the attentional vector, we can give the predictions to generate the next output
word yt.
For local attention, the structure is similar, but now we try to predict the aligned
position pt, which defines a focused attention. This implies that we look only at a
context window of (pt - D, pt + D) rather than looking at entire source hidden state.
[60] proposed a combination of soft as well as hard attention - the advantage of this
method is that it is differentiable, unlike hard attention where we need to employ
reinforcement learning or ensembling based techniques.
We also employ Input-feeding, an effective extension to attention mechanism where
the attentional vectors are fed to the next timesteps as shown in Figure 3.11.
We perform preliminary experiments with different RNN architectures and the re-
sults are shown in Figure 3.13. We select the optimal architecture after this experi-
mentation. The final resultant architecture of our model is shown in Figure 3.14 and
Figure 3.15.

3.3 Summary

In this chapter, we described the dataset and resources employed in this study along
with the detailed formulation of the system architecture employed. The architecture
is finalized after preliminary experimentation on different RNN architectures and the
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Figure 3.13 Performance of different RNN architectures for Eng ↔ Hin

Figure 3.14 Our detailed architecture (a)
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Figure 3.15 Our detailed architecture (b)

one producing the best results is chosen for the main experiments described in the
next chapter.
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Chapter 4

Approaches and Experiments

In this chapter, we describe our two proposed methods to generate efficient transla-
tions and deal with the challenges mentioned in Chaper 1. Both of the methods use
certain additional information to aid a baseline NMT system trained over the ILCI
corpus. The first method employs linguistic features specific to Indian languages in
addition to some generic features to improve translation quality. The second method
comprises of three-phase training, leading to better accuracy as well as domain cov-
erage. It employs a large monolingual corpus of the source language in addition to
an existing MT system to generate a robust NMT model. The second method can
be pipelined with the first method or employed independently in case of absence
of quality feature generators needed for the first method. We show results using
the pipelined approach. We use the NMT architecture as described in Section 1 of
Chapter 3. The datasets and resources used for training are detailed in Section 2
of Chapter 3. We employ the tool OpenNMT [30] for the implementation of the
architecutre. The parameters are tuned using grid search. These are discussed in
detail in Section 4.3. The two methodologies along with the experiments are de-
scribed in the following subsections. We report the results obtained on each method
in Chapter 5 using BLEU score [44] as the evaluation metric.

4.1 Exploiting Linguistic Information to aid NMT

Large parallel corpora for Indian languages are not easily available. In order to com-
pensate for the lack of large parallel corpora needed for NMT training, we propose
the usage of specific linguistic features as additional information to improve trans-
lation. This helps in leveraging characteristics of Indian languages - like a relatively
free word order paradigm (with the Subject-Object-Verb (SOV) structure commonly
used) where constituents of a sentence can occur in any order without affecting the
overall meaning; high degree of inflection like syncretism, agglutination and allomor-
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phism; usage of converbs; reduplication; relative participial forms and correlative
clause constructions.
We extract the following features specific to Indian languages using the tools de-
scribed in Section 3.1.2. We provide examples for each feature in Hindi and Tamil,
languages belonging to two different language families (Indo-Aryan and Dravidian
respectively). This helps in understanding the encoding of linguistic knowledge which
these features provide.

1. Part-of-Speech tags : Indian languages have several unique POS tags; like
the following:

* Quotative
· 'माने' (‘maane’, meaning ‘means’)
· 'எæÁ' (‘eṉṟu’, A quotative particle)

* Demonstrative
· 'वहाँ' (‘wahaan’, meaning ‘there’)
· 'அåத' (‘anta’, meaning ‘that’)

* Noun denoting spatial and temporal expressions (NST)
· 'आगे' (‘aage’, meaning ‘ahead’ or ‘further’)
· 'பிæபு' (‘piṉpu’, meaning ‘after/behind/later’)

* Reduplication (RDP)
· 'छोटे-छोटे' (‘chhote (JJ) chhote (RDP)’, where ‘chhote’ means ‘small’ and

reduplication implies the meaning ‘all of the small ones’)
· 'धीरे धीर'े (‘dheere (RB) dheere (RDP)’, where ‘dheere’ means ‘slow’ and

the reduplication implies the meaning ‘slowly, slowly’)
· 'பாêäது பாêäது' (‘pār-tt-u (VB) pār-tt-u (RDP)’, where ‘pār-tt-u’ means

‘see’ (PST-CONJ) and reduplication adds emphasis).
2. Vibhakti - ‘Vibhakti’ is a Sanskrit term for inflecting nouns and verbs, more

generally used for case markers for nouns. Indian languages depict different
behavior in how nouns mark their cases. Some languages have suffixes (surface
case endings); some, such as Hindi, use post positions and some use a combition
of the two. For example:

Vibhakti in Hindi
(a) मनीष ने दीपा को िकताब दी ।

Manish ne Deepa ko kitaab di.
manish -ne deepa -ko book give.
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(Manish gave the book to Deepa.)
.

(b) दीपा को मनीष ने िकताब दी ।
Deepa ko Manish ne kitaab di.
Deepa -ko Mansh -ne book give.
(Manish gave the book to Deepa.)
.

Vibhakti in Tamil
(a) மனீð தீபாÅÝகு புäதகäைதÝ ெகாடுäதாæ.

Manish deepaavukku puttakattai koduttaan.
Manish deepaavu-kku puttakatt-ai koduttaan
(Manish gave the book to Deepa.)

(b) தீபாÅÝகு புäதகäைதÝ மனீð ெகாடுäதாæ.
deepaavukku puttakattai maneesh koduttaan.
deepaavu-kku puttakatt-ai maneesh koduttaan
(Manish gave the book to Deepa.)

In the Hindi sentences, ‘ne’ and ‘ko’ act as the vibhakti markers. In the Tamil
sentences, ‘kku’ and ‘ai’ act as the vibhakti markers. The Vibhakti information
helps in mapping of semantic relations. This phenomenon allows the language to
have a relatively free word-order. It can be seen that both sentences convey the
same meaning, possibly with a different emphasis - which is clarified only from
context. The difference in the way the markers attach to the words in Hindi and
Tamil should also be noted. These subtle phenomena make translation between
languages from different language families especially challenging. We specifi-
cally discuss the challenges faced when translation between an Indo-Aryan and
a Dravidian language in more detail in Chapter 5.

3. Sandhi - This is a particular characteristic which leads to merging of words into
a composite word. For example:
(a) 'िहमालय' (‘Himalaya’, meaning ‘Abode of snow’) is a composite of 'िहम'

(‘Heem’, meaning snow) and 'आलय' (‘Aalay’, meaning abode).
(b) 'योगासन' (‘Yogasana’, meaning ‘A yogic posture’) is a composite of 'योग'

(‘Yoga’, meaning union) and 'आसन' (‘Asana’, meaning posture).
(c) 'ெசாகுசுçேபÀåது' (‘Cokucuppēruntu’, meaning ‘Luxury bus’) is a com-

posite of 'ெசாகுசு' (‘cokucu’, meaning comfort) and 'ேபÀåது' (‘pēruntu’,
meaning bus).
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(a) and (b) are compounds and may not pose much problem. However,
for highly agglutinative languages such as Dravidian languages (c); any two
words can combine if the conditions for Sandhi are met, making it much
more challenging to handle.

4. Verbal inflections - Indian languages depict significantly rich verbal inflec-
tions, which represent important grammatical information like person, number,
gender, case and so on. For example, The following sentences depict the infor-
mation represented by the inflections 'ता' (‘tā’), 'गा' (‘gā’) and 'í' (‘āḷ’) :

* मैं खेलता हĩ ँ |
main khel-tā hoon.
I play.
Here, ‘tā’ represents the following information : singular, male and partici-
ple.

* वह नाचेगा |
vaha naache-gā.
He will dance.
Here, ‘gā’ represents the information of singular, male and future tense.

* அவí வåதாí
avaḷ vantāḷ.
She came.
Here ’t’ represents past aspect and ’āḷ’ indicates that the subject of the ac-
tion is female, singular.

Apart from the above-mentioned features, we also use two generic features - lemma
and chunk heads. We train an NMT model over the ILCI corpus for 110 language
pairs after performing features addition to the corpus. This helps in easier extraction
of language constructs from the corpus, leading to faster learning and convergence.
We call the resultant model as NMTf . We observed significant gain in performance
over a baseline NMT model (NMTBase) trained over the same corpus. In order to
compare our results with the state-of-the-art, we train a phrase based SMT model
using the same corpus. The SMT model is trained using Moses [32] for phrase ex-
traction and lexicalized reordering as described in [34]1. We call this model SMTSA.
Table 5.1 compares the results obtained by NMTf and SMTSA on the ILCI test set.
We discuss these in Chapter 5.

1We train our own SMT model since the training, validation and testing sets used by Sata-Anuvadak are
unavailable to us.
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Figure 4.1 Three-phase approach to improve robustness and accuracy. The entire cycle is
repeated until the increase in accuracy is minimal. We conduct three self-training iterations.

4.2 Three-phase Training to improve Domain Coverage

and Accuracy

AlthoughNMTf shows significantly better performance thanNMTBase on in-domain
data, the scores drop significantly when dealing with data from other contextually
distant domains (discussed more in Chapter 5). In this section, we describe a three-
phase integrated approach which leverages a large monolingual corpus of the source
language and an existing MT tool to improve translation accuracy as well as domain
coverage.

Figure 4.1 shows the block diagram of this approach. The entire process is divided
into three stages : Coarse learning, Fine-tuning and Self-training. We begin
by Coarse Learning, which can be thought of as providing the neural model with
some information about grammatical constructs of the target language. The second
phase employs Fine-tuning to enrich the linguistic knowledge of the model with the
help of a hand-annotated gold parallel corpus. This is then followed by self-training,
where the fine-tuned model is employed to generate a synthetic corpus again, on
which we perform Coarse Learning for the next training iteration. Thus, this is a
cyclical process, which is stopped when further increase in accuracy is observed to
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be negligible.
The following sections explain the three phases in detail :

4.2.1 Coarse Learning

Coarse Learning is a form of weak supervision, which is a machine learning paradigm
where the model learns from noisy data or prior knowledge. [23] used rich syntactic
and semantic features to induce prior knowledge for the task of coreference resolution.
[46] uses an ensemble of weak learners using rules to identify biomedical entities from
medical documents.
Large annotated parallel corpora are not easy to obtain for Indian languages. How-
ever, it is easier to use an existing MT system to generate a sub-optimal translation
of a monolingual corpus, which is referred to as synthetic data.
Building upon this insight, we generate a synthetic corpus for 10 language pairs2

using Sampark [2] to translate the EMILLE monolingual corpora. We use this tool
rather than Sata − Anuvadak [34] due to its uniform domain coverage - a trait
desirable for synthetic data generation when dealing with multiple domains
We train an NMT model over this synthetic corpus after performing feature addi-
tion as described in Section 4.1. This helps the model to learn significant linguistic
information about the target language in the form of syntax, word order and mor-
phology, along with the vocabularies, although with certain noise. The resulting
model would naturally not perform with high accuracy, but it adds sufficient vo-
cabulary and serves as a baseline to improve upon in further phases. We call the
resulting model as NMTCoarse. NMTCoarse including both the encoder and decoder
is jointly trained to maximize the conditional log likelihood of the synthetic corpus
as shown in Equation 3.

max
θw

1

Nw

Nw∑
j=1

log pθw(y(n)w |x(n)w ) (4.1)

where (y
(n)
w , x

(n)
w ) represents the n − th sentence in the weak corpus of size Nw and

θw denotes the set of all tunable parameters. The dropout and learning rate are
kept high whereas the number of epochs is kept low since the primary motive for
coarse learning is to learn only the general characteristics of the target language
from the synthetic corpus, thereby making it easier to fine-tune the model. Detailed
parameters used are provided in Table 4.1.
[45] proposes a rule-based MT system using bigram dictionaries. As part of future

2Language pairs for which both large monolingual corpora and Sampark were available.
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work, this method can be employed in addition to our method to generate synthetic
corpora for languages in which there is no existing MT tool available.

4.2.2 Fine-Tuning

This is the second and most important phase of our three-phase training approach.
During this phase, a gold parallel corpus is needed.
This phase comprises of improving performance by fine-tuning the pre-trained model
NMTCoarse using the gold parallel corpus. This allows the model to be initialized
with the weights learnt by the coarse model, rather than random weights.
In this phase, we employ the ILCI parallel corpus (with added linguistic features) for
fine-tuning the pre-trained model - NMTCoarse. This means that the low-data NMT
model is not initialized with random weights, but with the weights learnt by the
coarse model. The coarse model contains some amount of linguistic knowledge, in
terms of lexical and semantic structure, word order and vocabulary. This information
is imparted to the new model being trained using transfer learning. [62] uses trans-
fer learning to increase translation quality between resource scarce language pairs
by incorporating the weights learnt during training for high resource language pairs.
It was also found that languages having similar structure, like Fr ←→ En (French -
English) showed better improvement in performance as compared to other languages
having little similarity, like Uz←→ En (Uzbek - English). Our approach is based on
the intuition that transfer learning between the same language pair should perform
better than its multilingual counterpart. Our experiments confirm this (Chapter
5). During fine tuning, the change in weights in each epoch learnt through transfer
learning allows the model to align more towards the correct model. This is because
the quality of the corpus employed during this phase is significantly better than the
quality of the corpus employed for phase 1, i.e. Coarse Learning. However, since the
size of this corpus is lesser, it is not a good idea to train the model directly on this
corpus. This is evident from the scores obtained by BaseNMT , the baseline NMT
model trained only on the ILCI corpus.
We call the model generated after fine-tuning NMTFT . Table 5.2 gives the results
obtained by NMTFT . Our experiments demonstrate that the quality of translation
obtained using this technique is significantly better than SMTSA as well as NMTf .
The hyper-parameters for training the model are carefully tweaked to achieve opti-
mum performance. For example:
We use lower dropout and learning rate but considerably higher number of epochs in
this phase as compared to Coarse Learning. This is done since the emphasis in this
phase is to fine-tune the already learnt language characteristics and further learn
new ones from the gold data.
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Coarse Learning and Fine Tuning combined can be visualized as weakly supervised
learning for our NMT model. Weak supervision is a technique of learning from noisy
data or prior knowledge. [23] used rich syntactic and semantic features to induce
prior knowledge for the task of coreference resolution. [46] uses an ensemble of weak
learners using rules to identify biomedical entities from medical documents.

4.2.3 Self-Training

Self-training is a form of semi-supervised learning, which is a technique of using
both labelled and unlabelled data to improve the performance of a machine learning
system. Self-training [11] involves iteratively classifying unlabelled data using a clas-
sifier trained on labelled data. The unlabelled data classified with highest confidence
is used to further create the classifier along with the labelled data.
As part of the self-training stage, we generate a synthetic corpus using the fine-tuned
model from the previous cycle. For example: NMTFT from the first cycle is now
used to translate the monolingual corpus rather than Sampark [2]. Coarse learning
is then performed using this synthetic corpus as training data. This leads to better
accuracy during coarse learning for the second cycle as compared to the previous it-
eration due to lesser noise in the synthetic corpus. The coarse model thus generated
is again fine-tuned using the ILCI corpus. This forms one iteration of self-training.
This entire cycle is repeated until there is minimal increase in translation accuracy.

This is an effective method specially when employed in the proposed three-phase
training pipeline, since the quality of the synthetic data generator used during the
first phase heavily influences the trasnlation accuracy. Since the fine-tuned model
has a better quality than a rule-based or statistical MT system, we see significant
gains on employing self-training. The effect of the quality of synthetic data generator
is discussed in more detail in Chapter 5.
The number of cycles to be performed for Self-Training (and in effect three-phase
training) depends on the sizes of the monolingual corpus employed in the first phase
as well as the parallel corpus employed in the second phase. If the latter is espe-
cially large in size, more self-training iterations can be performed. The size of our
parallel corpus is 50,000 sentences. We perform three self-training iterations for our
experiments since there was minimal to no increase in BLEU scores after that. The
resultant model after three iterations is called NMTST . The results obtained by
NMTST are given in Table 5.2 and discussed in Chapter 5.
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Confidence estimation : OpenNMT [30] generates a prediction score for each
translation, which is the cumulated log likelihood of the generated sequence. We use
a threshold of -5.0 to filter out the low confidence translations. This ensures that
the synthetic corpus employed for Coarse Learning in Training iteration 2 is of much
better quality than the previous iteration. We observe improvement in scores by 2-5
percentage on employing this method, as opposed to using the same size of synthetic
corpus in each training iteration.

4.3 Parameter Tuning

We conduct experiments with different set of parameters and choose the ones pro-
ducing optimum results for the experimentation tracks described in the paper.

4.3.1 Bidirectional RNN vs Unidirectional RNN

We experiment with unidirectional as well as bidirectional RNN’s and oberve that
better results are produced by the latter, as can be seen from Figure 4.2.

Figure 4.2 Results obtained on Unidirectional and Bidirectional RNN’s.

We performed grid search to obtain best set of hyper-parameter with validation
data for each phase including learning rate, learning decay-rate and drop out. We
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did hyper-parameter tuning for Hindi-Gujarati language pairs and used the same
parameters values for corresponding to each phases for all the other language pairs.
Some of the parameters like optimisation function, word vector size and brnn pa-
rameters were set to the default values. Detailed set of parameters used is provided
in Table 4.1.

Table 4.1 Detailed parameters for training the NMT models
Phase Parameters

Sample WordVecSize Layers Dropout Learning rate LR decay Start Decay at End Epoch
Baseline 80% 500 2 0.2 0.76 0.325 10 60

Baseline+Features 80% 500 2 0.2 0.8 0.25 10 60
Coarse Learning 60% 500 2 0.55 0.9 0.75 5 30
Fine Tuning 80% 500 2 0.3 0.5 0.15 10 60
Coarse ST1 50% 500 2 0.55 0.9 0.75 5 30
Fine ST1 80% 500 2 0.2 0.8 0.25 10 60

Coarse ST2 50% 500 2 0.4 0.8 0.6 5 30
Fine ST2 80% 500 2 0.15 0.3 0.326 10 60

Coarse ST3 50% 500 2 0.4 0.8 0.6 5 30
Fine ST3 80% 500 2 0.3 0.5 0.15 10 60

4.3.2 Number of epochs

For NMTbase, NMTFT , NMTf and NMT , 4.4. It can be observed that performance
reaches peak after 50. Thus we kept the number of epochs to 60.
Also, it can be observed from Figure 4.3, the value of perplexity reaches optimum
minimum at 30 for coarse training. The reason behind this is that during coarse
learning, we want only strong linguistic features of target langauge to be learnt by
the model Hence, we train it for smaller epochs, where increase in perplexity is
reduced to a threshold, which was 5 here.

4.3.3 Number of layers

We observe that the best translation quality is obtained using two layers of encoder-
decoder architecture. Although increasing the number of layers allows learning of
more complex higher level representation for language translation, it induces increase
in the number of parameters exponentially. With increase in the number of param-
eters, the quantity of corpus required for training increases proportionately. It was
observed from the size of our dataset that the best balance between the level of
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Figure 4.3 Perplexity curve for 2-layered and 4-layered architecture vs. Number of Epochs

Figure 4.4 Effect of number of epochs on translation performance.
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representation for language translation and number of parameters of neural network
was obtained with two layers. Hence we use a two-layered architecture throughout
the experimentation.

4.4 Summary

In this chapter, we described the major theoretical contributions of this study. We
proposed two methods to increase the effectiveness of Neural Machine Translation in
the scenario of Indian language to Indian language translation. The training method
can be chosen (or combined) depending upon the language pair under consideration.
We analyze the effectivess of both methods in the next chapter.
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Chapter 5

Evaluation - Results and Analysis

This chapter discusses the evaluation of our models. We report our results using
the BLEU[44] metric. We see a gradual improvement in scores as we move from the
baseline NMT model to Method 1 (Incorporating linguistic information) and finally
the best results are obtained using Method 2 (Three-phase training).

5.1 Results on the ILCI test set

Table 5.1 shows that the results obtained by NMTf are comparable to SMTSA,
although NMT systems are more data hungry. We observe that although NMT
models are good at learning language constructs from the parallel corpus itself, ex-
ploiting additional linguistic information in the form of features - specially in low
data conditions, provides further improvement in performance.
The scores obtained by NMTf follow a general trend - better performance for Indo-
Aryan Languages and considerably poor performance for Dravidian Languages. The
primary reason behind this can be attributed to larger structural similarity among
Indo-Aryan Languages as well as lesser inflections as compared to Dravidian Lan-
guages, which are much more agglutinative in nature.
We can observe from Table 5.2 that a significant gain in scores is observed on employ-
ing three-phase training. Figure 5.1 shows the incremental increase in performance
with number of epochs. We can see that NMTST shows faster convergence owing to
better initializations. The performance of NMTST is comparable to [33], the state-
of-the-art in phrase-based SMT for language pairs involving related languages. We
obtain either nearly equal or higher gain in scores over SMTSA as they obtain over
Sata-Anuvadak [34].
Table 5.3 shows the results obtained by SMTSA, NMTBase, NMTf , NMTFT and
NMTST on test sets from different domains. We see improvement in accuracy as

48



Table 5.1 Comparison of NMTf with SMTSA in terms of BLEU score
hin urd pan ben guj mar kok tam tel mal eng

SMTSA hin - 50.1 70.13 36.69 53.45 33.5 35.63 11.64 21.54 10.4 27.87
NMTf - 51.04 71.01 36.34 53.65 33.74 35.07 10.61 20.57 8.86 27.76
SMTSA urd 57.51 - 52.3 26.36 39.08 20.7 24.84 8.36 14.9 7.92 20.64
NMTf 58.91 - 53.81 26.04 40.43 20 24.55 7.11 13.62 6.15 19.85
SMTSA pan 70.83 44.75 - 30.25 46.33 25.55 29.87 9.25 18.03 7.25 24.21
NMTf 71.59 44.87 - 29.38 46.63 24.86 30.14 7.47 16.82 5.86 24.3
SMTSA ben 36.4 24.67 31.61 - 31.13 19.84 23.18 8.68 13.6 8.94 18.44
NMTf 37.56 25.31 32.31 - 31.62 19.75 23.36 7.21 12.03 7.96 17.89
SMTSA guj 52.98 34.33 47.61 28.99 - 26.51 29.17 9.35 16.57 7.64 19.42
NMTf 53.32 34.88 48.75 28.85 - 25.83 29.3 7.86 14.59 6.04 19.62
SMTSA mar 41.97 24.99 34.51 23.89 33.54 - 27.77 8.34 12.34 7.63 16.11
NMTf 43.02 26.38 35.44 24.37 34.77 - 27.9 6.82 10.96 6.11 16.01
SMTSA kok 38.59 25.86 33.26 24.68 31.44 23.31 - 7.41 13.25 8.41 16.93
NMTf 39.15 26.01 33.53 23.87 32.76 23.4 - 5.55 11.51 7.39 17.46
SMTSA tam 21.87 15.96 19.19 14.94 17.09 11.21 14.18 - 9.13 6.61 10.7
NMTf 20.52 14.27 17.91 13.35 15.78 9.45 12.44 - 8.17 5.93 10.2
SMTSA tel 27 19.24 24.89 16.98 22.02 13.06 17.09 7.08 - 6.76 11.98
NMTf 25.98 18.19 23.65 15.36 20.24 11.81 16.13 5.97 - 5.89 10.48
SMTSA mal 13.9 10.44 12.08 10.31 10.64 7.03 8.83 4.98 6.7 - 8.2
NMTf 12.56 9.28 10.81 8.96 9.61 5.93 7.27 4.13 6 - 7.88
SMTSA eng 26.84 17.53 22.4 14.24 17.14 10.47 13.14 4.18 5.96 5.15 -
NMTf 27.24 18.94 23.19 14.76 17.83 10.56 13.31 2.95 4.34 3.76 -

well as coverage - discussed below:
Two-phase vs. Three-phase Training : Accuracy vs. Coverage
Since the large monolingual corpus contains data from a variety of domains, NMTCoarse

develops a significantly big vocabulary, which leads to lesser number of Out of Vo-
cabulary (OOV) words on out-of-domain data, as compared to NMTf and SMTSA.
The word order and lexical constructs learnt during coarse learning are retained and
improved upon fine-tuning on the gold corpus.

NMTFT exhibits best domain coverage results as can be seen from Table 5.3. This
suggests that two-phase training obtains best results on out-of-domain data. Three-
phase training includes self-training as well - it produces best results on in-domain
data as can be observed from Table 5.2). Since the fine-tuned model is used to
generate the synthetic corpus for the next self-training iteration, the quality of syn-
thetic corpus thus obtained is higher than the one used during the previous iteration.
Better synthetic data leads to better fine-tuning. This explains overall increase in
accuracy after self-training over the ILCI test set. However, the coverage is affected
a little. The reason can be attributed to a slight development of bias towards the
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Table 5.2 Performance Comparison during various phases over ILCI test set in terms of BLEU
scores

urd pan ben guj tam
NMTFT hin ⇒ 52.93 72.57 37.75 54.87 11.94
NMTST 53.95 73.71 38.77 55.52 12.27
NMTFT hin ⇐ 60.22 73.2 38.97 54.64 22.04
NMTST 61.33 73.63 39.31 55.14 22.37

Figure 5.1 Performance gain observed using three-phase approach in terms of BLEU scores. Self-
training results are shown for the third iteration.

health and tourism domains due to iterative fine-tuning. The domain coverage of
three-phase training is still significantly better than SMTSA and NMTf .
We conclude that the two-phase approach (Coarse Learning + Fine-Tuning) is more
suitable for out-of-domain data, whereas the three-phase approach is better suited
to translate in-domain data.

5.2 Results on test sets from different domains

We test the coverage of our model after three-phase training on test sets from different
domains. We extract data samples from Education and Social domains respectively
from the EMILLE parallel corpus. We use these samples as test sets to evaluate
the coverage of our models. We show the results of our models an these domains in
Figure S2 and Figure S3.
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Figure 5.2 Effect of size of monolingual corpus used during Coarse Learning on accuracy of NMTFT

for the language pair hin<->urd in terms of BLEU score
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Figure 5.3 Effect of size of monolingual corpus used during Coarse Learning on accuracy of NMTFT

for the language pair hin<->pun in terms of BLEU score
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Figure 5.4 Coverage results on education domain

Figure 5.5 Coverage results on social domain
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Table 5.3 Robustness comparison of models over different domains (in terms of BLEU scores)
Housing Legal

pan guj urd ben pan guj urd ben
SMTSA

hin ⇒

16.45 11.46 18.11 3.62 15.13 8.93 17.75 1.83
NMTf 17.48 13.23 19.53 4.74 16.42 11.35 19.02 2.89
NMTFT 23.71 17.62 24.49 13.22 22.27 14.07 25.41 7.7
NMTST 22.69 16.92 22.23 11.03 19.13 13.29 23.69 6.1
SMTSA

hin ⇐

13.85 12.73 14.78 3.0 12.45 11.93 15.63 2.72
NMTf 15.09 14.52 15.72 3.88 13.9 14.07 17.0 3.5
NMTFT 20.7 17.52 20.88 9.41 19.6 17.26 24.16 11.18
NMTST 19.65 16.71 18.03 8.11 18.05 16.09 22.54 9.52

Table 5.4 Two different translations corresponding to the same English sentence - from ILCI
test data (Many-to-many mapping between vocabulary)
ILCITest ताजा साँसें और चमचमाते दाँत आपके व्यिक्त्व को िनखारते हैं ।

T l taaja saansen aur chamachamaate daant aapake vyaktitv ko nikhaarate hain
Ts Fresh breath and shining teeth enhance your personality .

NMTFT ताजी साँस और चमकदार दाँत आपके व्यिक्त्व में चार चाँद लगाते हैं ।
Ts taajee saans aur chamakadaar daant aapake vyaktitv mein chaar chaand lagaate hain
T l Fresh breath and shining teeth enhance your personality.

5.3 Effect of quality of synthetic data generator

We experiment the usage of different MT systems (NMTf , SMTSA and Sampark) to
generate the synthetic data from the monolingual corpus used during coarse learning.
We show the results in Figure S4. We note that although SMTSA has the best
performance over the ILCI test set, Sampark has the most uniform domain coverage
- leading to significantly higher increase in performance over NMTf after fine-tuning.
SMTSA and NMTf do not perform good - owing to the limited parallel corpora on
which they are trained, leading to domain-specific accuracy but lesser coverage.

5.4 Fluency comparison using sample translations

We observe on manual inspection of samples that there is a significant improve-
ment in the vocabulary as well as linguistic knowledge after coarse learning and
fine-tuning, thereby producing quality translation as shown by the use of seman-
tically correct synonyms. For example, Table 5.8 and Table 5.9 show the Tamil
and Gujarati translations generated by the models for the input sentence "ताजा साँसें
और चमचमाते दाँत आपके Ąव्यक्त्व को िनखारते हैं ।" (Transliteration : Taaja saansein aur
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Table 5.5 Evaluating output quality : Coarse learning vs. Fine tuning
ILCITest इसका उपचार सभी अस्पतालƁ में है ।

T l isaka upachaar sabhee aspataalon mein hai
Ts Its treatment is available in all hospitals.

NMTCoarse इसके Ùलए अब उपलब्ध भी एक गोली है ।
T l isake lie ab upalabdh bhee ek golee hai
Ts For this, there is now available also a pill.

NMTBase इसका िनदान सभी सभी अस्पतालƁ में उपलब्ध है ।
T l isaka nidaan sabhee sabhee aspataalon mein upalabdh hai
Ts The solution for this is available in all all hospitals.

NMTFT उसका इलाज सभी अस्पतालƁ में उपलब्ध है ।
Ts usaka ilaaj sabhee aspataalon mein upalabdh hai
T l The treatment for that is available in all hospitals.

NMTST इसका उपचार सभी अस्पतालƁ में उपलब्ध है ।
T l isaka upachaar sabhee aspataalon mein upalabdh hai
Ts The treatment for this is available in all hospitals.

Table 5.6 Evaluating output quality : Fine tuning vs. Self-Training
ILCITest अपनी रोज कĢ िदनचयार् में व्यायाम को जŷर शािमल करें ।

T l apanee roj kee dinacharya mein vyaayaam ko jaroor shaamil karen
Ts Do include exercise in your daily routine.

NMTFT एक्सरसाइज को अपने दिैनक िदनचयार् में शािमल करें ।
T l eksarasaij ko apane dainik dinacharya mein shaamil karen
Ts Include exercise in your everyday routine.

NMTST व्यायाम को अपनी दिैनक िदनचयार् में शािमल करें ।
T l yaayaam ko apanee dainik dinacharya mein shaamil karen
Ts Include exercise in your everyday routine.

chamchamaate daant aapke vyaktitva ko nikhaarte hain; Translation: Fresh breath
and shining teeth enhance your personality) during different training phases. An
incremental improvement in translation quality can be observed. The fine tuned
output for Gujarati displays an impressive usage of the phrase "સુશોિભત કરી દે છે" -
- a contextually suitable and semantically correct idiom in Gujarati which conveys
“enhancing of personality”. However, since the words used are different from the test
sentence, this translation will be heav- ily penalised by the scoring mechanism, al-
though it is correct. Apart from this, the model learns the correct gender for 'તાĮ'
(fresh), which is Masculine in Gujarati, unlike Hindi (Feminine) ( 'ताजी' ). This is
in alignment with the expectation of better grammar learning through three-phase
learning.

55



Table 5.7 Evaluating output quality : Two layers vs. Four layers
ILCITest 40 साल से अÙधक आयु के सभी व्यिक्यƁ कĢ वािषर्क जाँच अवश्य कĢ जानी चािहए ।

T l 40 saal se adhik aayu ke sabhee vyaktiyon kee vaarshik jaanch avashy kee jaanee chaahie
Ts An annual check-up of everybody above the age of 40 years must be done .

NMTCoarse2l 40 वषƂ ं कĢ उमर् के ऊपर पर्त्येक व्यिक् कĢ वािषर्क जाँच करनी होगी ।
T l 40 varshon kee umr ke oopar pratyek vyakti kee vaarshik jaanch karanee hogee
Ts An annual checkup of each person above 40 years of age will have to be done.

NMTCoarse4l 40 वषƂ ं कĢ उमर् के ऊपर पर्त्येक व्यिक् का वािषर्क जाँच िकया जाना चािहए ।
T l 40 varshon kee umr ke oopar pratyek vyakti ka vaarshik jaanch kiya jaana chaahie
Ts An annual check-up of each person above 40 years of age should be done.

NMTFT2l
40 वषर् कĢ उमर् से अÙधक पर्त्येक व्यिक् कĢ वािषर्क जांच िनĄश्चत ŷप से कĢ जानी चािहए ।

T l 40 varsh kee umr se adhik pratyek vyakti kee vaarshik jaanch nishchit roop se kee jaanee chaahie
Ts After 40 years of age, every year an annual checkup should be done.

NMTFT4l
40 वषर् कĢ उमर् से अÙधक पर्त्येक व्यिक् कĢ वािषर्क टेस्ट करनी चािहए ।

T l 40 varsh kee umr se adhik pratyek vyakti kee vaarshik test karanee chaahie
Ts After 40 years of age, every one annual test should be done.

For Tamil, although the output quality is not completely comparable to a human
translation, we observe that the incorrect grammar is corrected on incorporating
features (Sentence 1 to Sentence 2). The usage of a more apt phrase "உÞகí
ஆÃைமைய ேமèபடுäதுè" (Sentence 2 to Sentence 3) suggests the increased
coverage of the NMT model after coarse learning and fine-tuning. The output after
self-training uses a similar phrase to “enhancing your personality” which conveys -
“You become an altogether new person”, which is the closest way to express the idea
of “personality enhancement” in Tamil. NMTST ’s output is close to an good trans-
lation of the input sentence, showcasing the effectiveness of three-phase training -
some grammar still needs to be corrected to reach human translation quality. This
general trend is observed - Translation quality for IA languages is consistently better
than Dravidian languages. We discuss the reasons behind this in Section 5.5.

5.4.1 Error Analysis

Since the evaluation metrics do not capture how well different linguistic phenomena
are handled by our model, we perform a manual investigation and error analysis
with the help of linguists. In order to have a clear insight of NMT performance as
compared to SMT on various aspects, we do a side-by-side comparison of the output
sentences generated by the SMT and the NMT models respectively. The linguists
were asked to identify the strengths and weaknesses of NMT and SMT by ranking
200 output sentences produced by the respective models in terms of the following
parameters:
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Tag Meaning
ADJ Adjective
SG Singular
PL Plural

PRES Present tense
PST Past tense
FUT Future tense
N.PST Non past aspect
1P First person
2P Second person
3P Third person
ACC Accusative case
PRT Particle

R.PART Relative participial
CONJ Conjunctive participial
AUX Auxiliary verb
NH Non human
INF Infinitive

Figure 5.6 Effect of quality of synthetic data generator. Best results are obtained using Sampark
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Variant Outputs of the NMT model at different training stages

T

O புäதுணêßசியான சுவாசè மëÁè பளபளçபான பëகí தÞகளிæ ேதாëறäைத ேமèபடுäதுகிறது.
Tl puttuṇarcciy-āṉa cuvācam maṟṟum paḷapaḷapp-āṉa paṟ-kaḷ taṅkaḷiṉ tōṟṟatt-ai mēmpaṭuttu-kiṟ-atu
G new-feeling-ADJ. breathing and glitter-ADJ. tooth-PL your appearance-ACC enhance-PRES-3.NH.SG
Ts Fresh breath and shining teeth enhances your appearance

P1

O புதிய Ñßசு மëÁè பளபளÝகுè பëகைள உÞகíஆÃைமஅதிகரிÝக ¾டி¿è
Tl putiya mūccu maṟṟum paḷapaḷa-kk-um paṟ-kaḷ-ai uṅkaḷ āḷumai atikari-kka muṭiyum
G new breath and glitter-N.PST-R.PART tooth-PL-ACC your personality increase-INF possible
Ts Your personality can increase new breath and shining teeth

P2

O புதிய சுவாச¾è பிரகாசிÝகுè பëகÃè உÞகíஆÃைமைய ேமèபடுäதுகிæறன.
Tl putiya cuvācam-um pirakāci-kk-um paṟ-kaḷ-um uṅkaḷ āḷumaiy-ai mēmpaṭuttu-kiṉṟ-aṉa
G new breath-PRT shine-N.PST-R.PART tooth-PL-also your personality-ACC enhance-PRES-3.NH.PL
Ts New breath and shining teeth enhance your personality

P3

O புäதè புதிய சுவாச¾è பளபளçபான பëகÃèஆைளேய மாëறி விடுேம.
Tl puttam-putiya cuvācam-um paḷapaḷapp-āṉa paṟ-kaḷ-um āḷaiyē māṟṟi viṭumē.
G newish-new breath-PRT glitter-ADJ tooth-PL-PRT person-ACC-PRT change-CONJ AUX
Ts Fresh breath and shining teeth changes the persona totally

Table 5.8 Outputs of our model at different stages : Tamil. T: Test sentence, O : Model
Output, G : Gloss, Tl : Transliteration, Ts : Translation

Variant Outputs of the NMT model at different training stages

T

O તાઞી સૠાસ અને ચમગૠતા દાંત તમારા ષૠયિગૠતદૠવને િનખારે છે.
Tl Tāja śvāsa anē camakatā dānta tamārā vyaktitvanē nikhare chē
G fresh-ML breath and shining-ADJ teeth-PL-ACC your personality enhance-INF is
Ts Fresh breath and shining teeth enhance your personality

Base

O તાઞૂ સૠાસ અને ચમકદાર દાંત તમારી ષૠયિગૠતદૠવ સુધારે છે.
Tl Tājī śvāsa anē camakadāra dānta tamārī vyaktitva sudhārē chē.
G Fresh-FL breath and shiny-ADJ teeth-PL your-FL personality-ACC improve is
Ts Fresh breath and shiny teeth improves your appearance

P1

O તાઞૂ સૠાસ અને ચમકતા દાંત થી તમારી ષૠયિગૠતતવ સુધરે છે.
Tl Tājī śvāsa anē camakatā dānta thī tamārī vyaktitava sudharē chē.
G Fresh-FL breath and shining-ADJ teeth-PL due-to your-FL personality improve-INF is
Ts Your personailty is improved by fresh breath and shining teeth

P2

O તાĮ સૠાસ અને ચમકતા દાંત તમારા ષૠયિગૠતદૠવ ને િનખારે છે.
Tl Tājō śvāsa anē camakatā dānta tamārā vyaktitva nē nikhārē chē.
G Fresh-ML breath-PRT and shining-ADJ teeth-PL your-ML personality enhance PRES-3.NH.PL is
Ts Fresh breath and shining teeth enhance your personality

P3

O તાĮ સૠાસ અને ચમકતા દાંત તમારા ષૠયિગૠતદૠવ ને સુશોિભત કરી દે છે.
Tl Tājō śvāsa anē camakatā dānta tamārā vyaktitva nē suśōbhita karī dē chē.
G Fresh-ML breath and shining-ADJ teeth-PL your-ML personality pleasing does make-FV
Ts Fresh breath and shining teeth enhances your personality

Table 5.9 Outputs of our model at different stages : Gujarati. T: Test sentence, G : Gloss,
O : Model Output, Tl : Transliteration, Ts : Translation
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* Word order

* Morphology :

· How appropriate is the surface form selection

· Usage of correct syntactic structures

· Morphological agreement between words

* Phrase handling :

· Non-translated phrases / phrases missing in the output

· Additional phrases - Phrases occuring in the output but not in the input
source sentence

* Lexical Choice - Quality and appropriateness of content words and terminology
errors

We show the results in Figure 5.7.

Figure 5.7 Manual Error Analysis of performance of NMT with SMT
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It can be observed from Figure 5.7 that SMT produces about twice as more errors in
word order and almost thrice as more errors in syntactic and morphological structures
and agreement than NMT. Thus the NMT model is able to perform significantly
better than SMT for these phenomena. This results in much more fluent translations
produced by the NMT model - making it a better choice in most scenarios. At the
same time, the errors made in terms of lexical choice are much more in NMT than
SMT. NMT also produces slightly greater number of errors in terms of missing or
additional phrases. On deeper investigation, it is made clear that a majority of the
lexical choice errors are due to the noise present in the training data. This leads
to the insight that NMT is more prone to greater sensitivity to training noise than
SMT.
To summarize, NMT performs better than SMT in most linguistic aspects, particu-
larly in the presence of a high quality training corpus.

5.5 Comparison of performance on Indo-Aryan and Dra-

vidian languages

We calculate the average percentage increase in BLEU score for both approaches
with respect to the following three categories:
1. Indo-Aryan to Indo-Aryan language translation (IA-IA)
2. Indo-Aryan to Dravidian language translation (IA-DR)
3. Dravidian to Dravidian language translation (DR-DR)
These are detailed in Table 5.101.

Table 5.10 Average percentage increase in scores for the proposed methods on different lan-
guage families

Language Families Method 1 (NMTf ) Method 2 (NMTST )

IA-IA 2.45 2.67
IA-DR 1.79 1.86
DR-DR 1.98 -

Even though Indian languages are all typologically SOV, there are distinct syntac-
tic peculiarities in Dravidian languages (DR) that makes MT challenging between
Indo-Aryan (IA) and Dravidian languages. Two such phenomena are shown by the
examples below:

1. * Hindi Sentence : राम ने बोला िक वह घर जा रहा था
1Method 2 scores for the third category are unavailable, as mentioned in Chapter 3
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* Transliteration : rām nē bōl-ā ki vah ghar jā rahā thā
* Gloss : Ram ERG tell-PST S.CONJ 3.SG.D.PRON home go AUX1-CONT

AUX2-PST
* Meaning : Ram said that he is going home.

2. * Telugu Sentence : Ƽ̢͠Ʊơ ఇంǐǆ Ȭ͛˽న́ƚ˸Ƥ ȓƶ̢̂
* Transliteration : rāmuḍu tānu iṇṭi-ki veḷ-tunn-aṭṭugā cepp-ā-ḍu
* Gloss : Ram 3P.REFL.PRON home-DAT go-PRES-MANNER.ADV tell-
PST-3.M.SG

3. * Tamil Sentence : ராமæ தாæ வீâடுÝகு ெசìவதாக Æறினாæ

* Transliteration : rāmaṉ tāṉ vīṭṭu-kku cel-vat-āka kūṟ-iṉ-āṉ
* Gloss : Ram 3P.REFL.PRON home-DAT go-NPST.R.PART-MANNER.ADV
tell-PST-3.M.SG

Above example shows that in Hindi the main clause is followed by subordinate clause
and both the clauses are connected by a subordinating conjunction ’ki’. in Telugu
and Tamil (Dr), the subordinate clause is embedded within the main clause and con-
nection between them is established morphologically through adverbial inflections or
sometimes a quotative marker is used to connect the two clauses. These phenom-
ena explain the relatively lower performance on Dravidian languages as compared to
Indo-Aryan languages.

5.6 Summary

This chapter analyses the results obtained by our models on multiple test sets from
different domains. We observe that three-phase training is an effective method
which produces good performance in terms of accuracy as well as domain coverage.
The scores obtained thus are either nearly equal or bettter than the state-of-the-art
method.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion and Future work

We conclude that Neural Machine Translation is a favourable method to approach
the challenging problem of translation among Indian languages. We demonstrate
two methods to leverage NMT techniques for Indian language translation.

The first method exploits linguistic information specific to Indian languages to im-
prove NMT performance. We observe significant improvement over a baseline NMT
model. This suggests that although NMT is good at learning language constructs
from the training data itself; addition of linguistic information to aid learning is not
redundant, especially in low-sized parallel corpora conditions.

The second method employs a three-phase approach for NMT training which in-
creases the domain coverage of the model as well as produces better translations.
We achieve comparative scores to the state-of-the-art for multiple language pairs.
We propose that this is a effective method in the presence of an existing MT system
and large monolingual corpora but inadequate parallel corpora. We show by filtering
out manual samples from the model outputs and providing a linguistic analysis of
these samples that the three-phase training approach works well in most of the cases
and shows better performance than other experimental approaches.

As part of future work, we would like to work on further improving the coverage
of NMT models and enabling Zero Shot Machine Translation of Indian languages
like Manipuri, Dogri and Maitheli which do not have any parallel corpora. Also,
this thesis uses the same set of features for all language pairs for Method 1. In the
future we would like to experiment with tailor-designed features designed keeping the
language pair in mind. We would also like to experiment with using different atomic
units for NMT, for eg Orthographic syllables as units when dealing with translation

62



among closely related languages OR subword-level units to ensure lesser number of
OOV words.
The usage of monolingual corpora to learn morphological information in combina-
tion with the exploitation of similar characteristics like word order and syntactic
structures among linguistically similar languages is a promising research direction.
This method can be applied to say, North East Indian languages, which especially
lack large parallel corpora, but have similar word order and other grammatical con-
structs. Usage of paragraphs as units can also be explored, specially since that would
enable the usage of popular books and their translations as parallel corpora for train-
ing. We would like to explore the usage of source as well as target translations for
coarse learning and fine-tuning, in addition to exploring methods for vocabulary
compression.
It is a general observation that discourse performance in NMT is not very good. We
would like to work on this by using longer (more than a single sentence) atomic units
of information on the encoder and the decoder side of the neural network. Multilin-
gual training using a single model can also be explored. The attention mechanism
which we employed in this thesis is a standard one proposed by . We would like
to tweak the attention mechanism to cater to the linguistic phenomena depicted by
Indian languages. Our intuition is that this would help significantly in improving
translation performance between languages belonging to different language families.
In addition to these, NMT also struggles to deal with the translation of idioms - a very
challenging aspect in any Machine Translation system. To approach this problem, we
propose building of a parallel set containing idiom mappings across Indian languages
as a starting point. Lookup and morphological variation depending upon context
can then be performed for a good quality translation. We are currently working on
the dataset, which can be used for better idiom translation in the future.
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