
Hardware Acceleration of YOLOv3-tiny Object Detection

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science
and Engineering by Research

by

V.V.S.Prithvi
2018900104

prithvi.velicheti@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA

April 2023

Copyright © V.V.S.Prithvi, 2023

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled Hardware Acceleration of YOLOv3-tiny
Object Detection, has been carried out under my supervision and is not submitted elsewhere for a
degree.

Date Adviser: Dr Suresh Reddy Purini

To my parents V. Jhansi Vijaya Lakshmi & V. Sri Krishna Baba

Acknowledgments

I am deeply grateful to everyone who made this journey possible and enjoyable. I sincerely thank
my supervisor, Dr Suresh Purini, for entrusting me with a great deal of freedom and, at the same time
providing continuous guidance, support, and encouragement. I learned much from him at the technical,
personal, and research levels. He transformed me from a very anxious individual to a calm, curious
researcher. I am forever indebted to my manager at Indian Space Space Research Organisation (ISRO),
Dr G Prasad, whose unconditional support helped me to groom my career. I am incredibly privileged
to work under him. I also want to thank my colleague M.Srikanth Yadav at ISRO, for introducing me
to the world of FPGAs and building an incredible infrastructure, creating an excellent growth-oriented
work environment. I am also grateful to my wonderful mentor Dr Lavanya Ramapantulu, who gave
me incredible support and guidance during the most needed times. I feel fortunate to work with my
coauthor Sivani, a very dedicated friend and researcher. I am grateful to work under my new manager
Mythili, who provides excellent opportunities to learn and evolve. I am very thankful to my friends
and colleagues at ISRO, Vaibhav, Ankit, Santoshi, Rohit, Venkatesh and Suma, particularly Vaibhav,
from whom I learnt a lot technically and personally and Santoshi, who is always present to hear me out.
Finally, I would like to thank my mother, Jhansi, and nothing would have been possible without her love
and support and my late father Sri Krishna Baba, whom I am always proud of and look up to.

v

Abstract

FPGAs are increasingly significant for deploying convolutional neural network (CNN) inference
models because of performance demands and power constraints in embedded and data centre applica-
tions. The compute intensity of these models makes prototyping highly complex and time-consuming
with traditional RTL approaches. The release of new generation high-level synthesis tools (HLS), such
as Intel FPGA SDK for OpenCL, and Xilinx’s VITIS Unified Software Development platform, have
significantly reduced the time and complexity of prototyping complex designs on FPGA. This work in-
volves building custom FPGA accelerators for image recognition systems using OpenCL-HLS. Object
detection and classification are vital steps in building image recognition systems. The first part of the
work concerns building an FPGA accelerator for the Traffic Sign Classification problem, a vital step
in building traffic sign recognition (TSR) systems that employ vehicle-mounted cameras that identify
traffic signs while driving on the road. However, the CNNs for the classification still need the ability to
be spatially invariant to the input data. Spatial Transformers are learnable modules that, upon integra-
tion with CNN, would allow the spatial manipulation of data within the network, making it invariant to
affine transformations. Generic Matrix multiply (GEMM) methods that express convolution as matrix
multiplication are widely used in deep-learning frameworks like Caffe, Theano, and Torch with GPU
support. im2row is one of the commonly used GEMM methods. In this work, we built a GEMM-based
accelerator for a CNN with a Spatial transformer module. We proposed the channel adaptive im2row
method, with a lesser on-chip memory footprint than im2row. The system attains a latency of 202 ms (5̃
fps), running at 202 MHz on Intel Arria10 GX FPGA, and attains a speedup of (> 5 X) compared to the
CPU. The performance is not state-of-the-art and calls for more FPGA-specific optimizations. Further,
from the learnings, we designed a Systolic Array accelerator with a novel load pattern for accelerat-
ing the widely-used object detector YOLOv3-tiny optimized explicitly for embedded applications. We
build the accelerator for multiple precisions (FIXED8, FIXED16, FLOAT32) of YOLOv3-tiny. The
architecture uses a homogenous systolic array architecture with a synchronized pipeline adder tree for
convolution, allowing it to be scalable for multiple variants of YOLO with a change in the host driver.
It is a deeply pipelined architecture that also exploits three-dimensional spatial parallelism. We evalu-
ated the design on Terasic DE5a-Net-DDR4. The Fixed point (FP-8, FP-16) implementations attain a
throughput of 57 GOPs/s (> 23 %) and 46.16 GOPs/s (> 340 %) running at 234 MHz and 227 MHz.
We synthesized the first FLOAT32 implementation attaining 11.22 GFLOPs/s, running at 172 MHz.
Keywords: FPGA, OpenCL, CNN, Spatial Transformer, GEMM, Systolic Array, YOLOv3-tiny

vi

Contents

Chapter Page

1 Introduction . 1
1.1 Object Detection and Classification . 1
1.2 Motivation . 2
1.3 Thesis Contributions . 4

2 FPGA Design with High Level Synthesis . 5
2.1 Field Programmable Gate Arrays . 5

2.1.1 FPGA Architecture . 6
2.1.2 Logic Synthesis . 7

2.2 Hardware-Software Co-Design with OpenCL . 8
2.2.1 CPU-FPGA interconnect . 8
2.2.2 OpenCL for CPU-FPGA Platforms . 8
2.2.3 Memory Model . 10

2.3 Overview of Intel FPGA SDK for OpenCL . 11
2.3.1 Intel FPGA SDK flow . 11
2.3.2 OpenCL channels . 11
2.3.3 Autorun Kernels . 12

2.4 HLS optimizations . 12

3 FPGA based Accelerator for Traffic Sign Recognition using Spatial Transformer Networks . . 13
3.1 Traffic Sign Recognition . 13
3.2 Spatial Transformer Networks . 14

3.2.1 Localization Network . 14
3.2.2 Grid Generator . 15
3.2.3 Sampler . 15
3.2.4 Bilinear Interpolation . 15

3.3 Model Architecture . 16
3.4 Related Work . 16
3.5 Methodology . 17

3.5.1 Convolution . 18
3.5.2 IM2ROW: . 18
3.5.3 Our Algorithm . 19

3.6 Hardware Architecture . 19
3.6.1 Spatial Transformer Module . 19
3.6.2 Bilinear Sampling Kernel . 20

vii

viii CONTENTS

3.6.3 Convolution Engine . 20
3.6.4 Matrix Multiplier Engine for FC layers . 21

3.7 Experimental Setup and Results . 21
3.8 Conclusion . 24

4 Systolic Array based FPGA Accelerator for YOLOv3-tiny 25
4.1 Introduction . 25
4.2 Background and Relevant Work . 26

4.2.1 Review of YOLOv3-tiny . 27
4.2.2 Previous Research . 28

4.3 Analytical Modelling . 28
4.3.1 Architecture Abstraction . 28
4.3.2 Resource Utilisation Model . 29

4.4 Micro Architecture . 31
4.4.1 Mapping to Systolic Array . 31
4.4.2 Internals of the Architecture . 32

4.4.2.1 Feature map Read Unit (FRU) . 32
4.4.2.2 Filter Fetch Unit (FFU) . 33
4.4.2.3 Processing Element . 33
4.4.2.4 Feature map Write Unit (FWU) 34
4.4.2.5 YOLO block . 34
4.4.2.6 Additional Units . 34
4.4.2.7 Host Interface . 35

4.5 Experimental Setup and Results . 35

5 Conclusions . 38

Bibliography . 40

List of Figures

Figure Page

2.1 Arria10 GX FPGA architecture [30] . 6
2.2 Structure of Adaptive Logic Module [30] . 7
2.3 Structure of DSP block [30] . 7
2.4 CPU-FPGA bus interface . 8
2.5 OpenCL Platform . 9
2.6 OpenCL execution model with Context and Command Queues 10
2.7 OpenCL memory model . 10
2.8 BSP overview . 11
2.9 Intel FPGA SDK for OpenCL flow . 11

3.1 Spatial Transformer Networks . 14
3.2 Bilinear Interpolation Technique . 15
3.3 Model Architecture of the Traffic Sign Classification System 16
3.4 Localization network . 16
3.5 Hardware Architecture of the accelerator . 20
3.6 Hardware Architecture of Convolution Engine . 21
3.7 Intel Arria10 GX FPGA development kit . 22
3.8 System Latency of STN-ConvNet . 23

4.1 YOLOv3-tiny architecture . 27
4.2 Hardware Architecture of the accelerator. 32
4.3 Data loading strategy of IFmap with xpar = 3,K = 3 33
4.4 Overview of the Processing Element (PE) Architecture. 34
4.5 Terasic DE5anet DDR4 FPGA . 35
4.6 System Latency for Float32 precision . 36
4.7 System Latency for Fixed16 precision . 36
4.8 System Latency for Fixed8 precision . 36
4.9 Peak Bandwidth measured using Vtune profiler . 36

ix

List of Tables

Table Page

3.1 Specifications of Arria 10GX 1150 . 22
3.2 Execution cycles for each layer of the network . 22
3.3 Resource Utilization . 23
3.4 Comparision with CPU . 23

4.1 Comparison with existing implementations . 37

x

Chapter 1

Introduction

1.1 Object Detection and Classification

Computer vision has many applications in self-driving cars, robotics, video surveillance, sports an-
alytics, etc. In recent years, the landscape of computer vision has been drastically altered and driven
forward by adopting a fast, scalable, end-to-end learning framework, the Convolutional Neural Network
(CNN) [22]. We now see a plenitude of CNN-based models achieving state-of-the-art results in clas-
sification, localisation , semantic segmentation , and action recognition tasks, amongst others. Object
detection and classification are essential in computer vision applications, specifically for autonomous
driver assistance systems (ADAS) and video surveillance. Object detection technology deals with the
problem of detecting instances of objects in images and videos. Accurate object detection is often re-
quired to form the basis for the rest of the computational pipeline. Recent advances in deep learning
(DL) give rise to efficient approaches for extracting features from images. Existing DL-based models
can be categorized into two categories: two-stage detectors based on region proposals and one-stage
detectors based on regression/classification. Two-stage detectors follow the traditional approach by
scanning the whole image and focusing on regions of interest. The first stage generates region proposals
known as candidate bounding boxes, and the second stage extracts the features from each bounding
box to perform classification and bounding box regression. The most popular two-stage detectors are
R-CNN [13], Fast R-CNN [12], R-FCN [10], Faster R-CNN [36], and Mask R-CNN [14]. How-
ever, these approaches fail to achieve real-time speed due to the expensive running process and the
inefficiency of region propositions. To provide object detectors with lower computational requirements
, research has focused on the one-step approach, where the bounding boxes around the objects are pre-
dicted directly through the DNN rather than having a separate region proposal step . One-stage detectors
treat object detection as a regression/classification problem using a unified framework to obtain the la-
bels and locations. These detectors map straightly from image pixels to bounding box coordinates and
class probabilities. Two of the most famous such frameworks are the Single Shot MultiBox Detector
(SSD) [27] and the YOLO (You only look once) [33]. The most well-known one-stage detector is You
Only Look Once (YOLO) and its successors YOLOv2, YOLOv3 and YOLOv4. SSD is based on a

1

VGG16 network and has been extended by custom convolution layers to generate bounding boxes. SSD
uses a set of predefined anchor boxes for detection at various scales impacting the framework’s precision
and computational load. The YOLO framework relies on a single DNN, DarkNet [32], to predict both
the position of the objects (i.e. bounding boxes) and their classification. Early versions of the YOLO ap-
proach exhibited low computational loads by trading the classification precision for low latency, which
led to their deployment in embedded systems. YOLOv3-tiny is a lightweight version of YOLOv3 [35]
with fewer layers to optimize for edge computing applications. The ultimate goal of autonomous vehi-
cle research is to develop a fully automated system that would perform well in all kinds of scenarios.
The system should understand the intricate traffic patterns and make real-time decisions based on the
visual data from cameras and information from other sensors like LIDAR. Traffic sign recognition sys-
tems are vital in autonomous driving environments and advanced driver assistance systems (ADAS).
Traffic Sign Classification is an essential step in building traffic sign recognition (TSR) systems that
employ vehicle-mounted cameras which identify traffic signs while driving on the road. Building a
Convolutional Neural Network for the classification task would be an optimal approach. However, they
are still limited by the lack of ability to be spatially invariant to the input data. Spatial Transformers
[16] are learnable modules that, upon integration with CNN, would allow the spatial manipulation of
data within the network, making it invariant to affine transformations. In this thesis, firstly, we build
an FPGA-based accelerator for a Traffic Sign Classification System using Convolution Neural networks
with Spatial Transformer Networks. Further, we accelerate the most commonly used Yolov3-tiny for
efficient deployment and acceleration on edge.

1.2 Motivation

Deep learning is driving a technological and societal revolution. Deep Neural Networks (DNNs) are
now the foundation for many modern artificial intelligence (AI) applications. Due to the tremendous
accuracy obtained by these models in image and speech recognition, the trend has motivated researchers
to use DNN algorithms in a myriad of applications, from self-driving cars to detecting cancer, to playing
complex games, in finance. The superior accuracy of DNNs comes at the cost of high computational
complexity. To date, general-purpose compute engines, especially Graphics Processing Units (GPUs),
have been the mainstay of much DNN inference. GPU is a CPU-like architecture with a specialized par-
allel structure that allows them to have more cores than traditional CPUs. However, a single CPU core
is more capable than a GPU core. Unlike CPUs which are general purpose, GPUs are designed for spe-
cific functions like graphics rendering. GPUs are ideal for accelerating programs implemented in Single
Instruction Multiple Data fashion and can be programmed with software developer environments like
CUDA [29] and OpenCL [18]. GPUs are power-hungry devices, and their power efficiency improve-
ments are reaching their limits. With power consumption and efficiency being the main bottleneck in
designing and employing large High-performance computing (HPC) and embedded applications, the us-
ability of GPU is subject to many power and cooling limitations, especially in embedded environments.

2

In these dwindling days of Moore’s era, there is a need for more specialized hardware to improve
compute performance and energy efficiency. Field Programmable Gate Array (FPGA) is a reconfig-
urable device with programmable interconnects. A programmer can configure its logic to adopt any
architecture i.e. pipelined, systolic [20], dataflow, SIMD/Multiple Instruction Multiple Data (MIMD)
etc. With appropriate hardware design, FPGAs can attain higher power efficiency (Performance/Watts)
over a GPU. They can attain high Performance for sequential programs using deeply pipelined architec-
tures. FPGAs are usually programmed using Hardware Description languages (HDL), mainly Verilog
and VHDL, which has an entirely different programming model compared to standard software pro-
gramming languages like C and Python, which usually makes them tougher to adopt among software
programmers. However, the advent of High-Level Synthesis (HLS) tools, which allow software pro-
grammers to express their FPGA design in the standard software programming language, enabled rapid
programmability on FPGA. The release of the new generation HLS tools, such as Intel FPGA SDK for
OpenCL and Xilinx’s VITIS Unified Software Development Platform, significantly reduced the time
and complexity of prototyping complex designs on FPGA.

Over the past few years, there has been a significant amount of research on the efficient processing
of Deep Neural networks (DNNs). DNN inference is a very compute-intensive task. It is challenging
to meet performance metrics such as latency and throughput while optimizing power. Special-purpose
ASICs and FPGAs are suitable candidates to simultaneously meet these power and performance bud-
gets. FPGAs are becoming increasingly significant for deploying deep neural network (DNN) inference
models both on the server side in the data centres and at the edge. Rapidly evolving CNN architectures
involve novel convolution operations such as point convolutions, depth separable convolutions, etc. This
leads to substantial variation in the computational structure across CNNs and layers within a CNN. Be-
cause of this, FPGA reconfigurability provides an attractive tradeoff compared to ASICs. FPGA-based
hardware designs can address the structural variability issue by generating a network-specific accelerator
for a single network or a class of networks. Unfortunately, the vast majority of FPGA implementations
of CNNs have only been implemented in the convolutional layers limiting the benefit of the approach
since other layers may quickly become the bottleneck of the neural network.

This work focuses on building efficient architectures for accelerating Convolution Neural Network
(CNN) based object classification tasks with specialized layers like Spatial Transformer and Yolo layer.
Spatial Transformers are learnable modules that, upon integration with CNN, would allow the spatial
manipulation of data within the network, making it invariant to affine transformations. They are widely
used in Traffic Sign Recognition systems for Traffic Sign Classification. We built a specialized architec-
ture for traffic sign classification CNN with a spatial transformer network in this work. Further, we built
a custom accelerator for the widely used YoloV3-tiny network. We built the CPU and FPGA heteroge-
neous computing architectures using Intel FPGA SDK for OpenCL. We use Intel Arria10 GX / Terasic
DE5Net-DDR4 FPGAs and the workstation-class Intel Xeon x86-64 CPU with 64 GB RAM to evaluate
our designs.

3

1.3 Thesis Contributions

The thesis is majorly focused on building FPGA-based accelerators for image recognition problems.
It comprises two parts. The first part concerns building an accelerator for a Convolution Neural network
with a Spatial Transformer module for Traffic Sign Classification. Further, we develop a Systolic Array
based FPGA Accelerator for the widely used YOLOv3-tiny object detector. The thesis contributions are
as follows.

FPGA Accelerator for Traffic Sign Recognition using Spatial Transformer networks

1. Built a Generic Matrix Multiply (GEMM) based accelerator for a CNN with a spatial transformer
module for Traffic Sign Classification. The method uses a channel adaptive im2row approach,
with a lesser memory footprint than the traditional im2row.

2. Evaluated the design on Intel Arria10 GX FPGA. The system attains a latency of 202 ms (5̃fps),
running at 202 MHz with a speedup of (>5X) compared to the multithreaded CPU implementa-
tion.

Systolic Array based FPGA Accelerator for YOLOv3-tiny

1. Proposes a deeply pipelined 1D Systolic array accelerator with a novel load pattern for accel-
erating the convolution of YOLOv3-tiny to reduce global interconnects and large multiplexers,
thereby reducing data movements to obtain high throughputs.

2. The design exploits 3D spatial parallelism using specialized MAC tree architecture, allowing mul-
tiplications to run synchronously with a pipelined adder tree. We use the Intel OpenCL framework
for the architecture design, which is scalable for multiple variants of YOLO.

3. Evaluated the design on the Terasic DE5anet-DDR4 FPGA for multiple precisions (FIXED-8,
FIXED-16, FLOAT32). While running YOLOv3-tiny for 416x416 RGB image, the fixed point
(FP-8) attains a throughput of 57 GOPs/s with a framerate of 10.2 fps running at 234 MHz. Fixed
point (FP-16) attains 46.16 GOPs/s with a framerate of 8.278 fps, running at 227.78 MHz. The
floating-point (FLOAT32) design achieves 11.22 GFLOPs/s running at 172.92 MHz.

4

Chapter 2

FPGA Design with High Level Synthesis

Heterogeneous computing is proliferating in data centres and the cloud. Microsoft uses FPGAs to
speed up search engines and machine learning for cloud services for power efficiency [8]. AWS provides
EC2 F1 [5] instances which comprise FPGAs as custom hardware accelerators. FPGAs are usually pro-
grammed using Hardware Description languages (HDL), mainly Verilog and VHDL, which has entirely
different programming model compared to standard software programming languages, usually mak-
ing them tougher to adopt among software programmers.For many years, High-Level Synthesis (HLS)
tools have been developed to make FPGAs usable by software developers. Such tools allow software
programmers to describe their FPGA design in a standard software programming language and then con-
vert this high-level description to a low-level description based on Verilog or VHDL. Many such tools
have been developed since the inception of HLS. Altera (now Intel FPGA) introduced their Intel FPGA
SDK for OpenCL to provide a similar possibility for software programmers based on the open-source
and royalty-free OpenCL programming language. Eventually, Xilinx followed suit and introduced their
OpenCL SDK named SDAccel, now called Vitis Unified development software platform. With official
HLS tools being directly developed and supported by FPGA manufacturers, a sudden shift in the HLS
ecosystem happened that enabled more widespread adoption of FPGAs among software programmers.
This chapter presents critical concepts involved in developing heterogeneous FPGA accelerators with
the Open Computing Language (OpenCL).

2.1 Field Programmable Gate Arrays

FPGA is an integrated circuit that can be reconfigurable after manufacturing. They are generally
regarded as a middle ground between ASICs and general-purpose processors. This notion comes from
their reconfigurability, making them more flexible than ASICs and power efficient than general-purpose
processors. FPGAs are primarily composed of SRAM cells arranged in the form of Loop-Up Tables
(LUT), a plethora of registers, and programmable routing. The devices can be rapidly reconfigured
to implement different logic just by changing the content of the LUTs and the routing configuration.
Apart from the soft-logic LUTs, modern FPGAs also include hard-logic components such as Digital

5

Signal Processors (DSP), large memory blocks (Block RAMs) and different I/O controllers (DDR PCI-
E, network, etc.). These components implement specialized logic that would otherwise take up too
much space if implemented using LUTs.

2.1.1 FPGA Architecture

Figure 2.1 Arria10 GX FPGA architecture [30]

Figure. 2.1 presents the hardware architecture of the Intel Arria10 GX architecture. FPGAs con-
sist of soft logic and hard logic. The soft logic inside Arria10 GX consists of Adaptive Logic Mod-
ules (ALM), and the hard logic consists of DSPs, Block RAMs, multiple controllers, Transceivers and
Phase-Locked Loops (PLL). Each ALM consists of multiple-input LUTs, adders and carry logic, and
registers (Flip-Flops). ALM contains various LUT-based resources that can be divided between two
combinational adaptive LUTs (ALUTs) and four registers. With up to eight inputs for the two combi-
national ALUTs, one ALM can implement various combinations of two functions. Figure. 2.2 presents
the internal structure of ALM. Multiply Accumulate (MAC) operations are crucial for most numeri-
cally compute-intensive tasks. DSP blocks are critical in performing these operations. Intel provides
optimized variable precision DSP blocks to support higher bit precision in high-performance DSP appli-
cations. Each DSP can implement an IEEE-754-compliant [1] single-precision floating-point addition,
multiplication, Fused Multiply and Add (FMA) operation, or one 27-bit-by-27-bit integer or fixed-point
multiplication or two 18-bit fixed point multiplication/additions. Furthermore, multiple DSPs can be
chained to implement dot products or other complex operations. Figure 2.3 gives the structure of the
variable precision DSP block. BlockRAM (BRAM), also called embedded memory (EBR), is the on-
chip memory on FPGA. Block RAMs come in a finite size usually, 4/8/16/32 kb (kilobits). They have a

6

customizable bit width and depth. Each Block RAM in the Intel Arria 10 device, called an M20K block,
is capable of storing a maximum of 20 Kbits of data.

Figure 2.2 Structure of Adaptive Logic Module [30]

Figure 2.3 Structure of DSP block [30]

The BRAM has two ports that operate independently and can satisfy one read and one write operation
simultaneously. Data can be stored in each block with a maximum width of 40 bits, in which case the
address size will be 9 bits (512 addresses). Apart from implementing multiple-ported RAM or ROMs,
each M20K can also be used to implement First-In, First-Out buffers (FIFO) or shift registers. Multiple
M20K blocks can also be chained to implement larger buffers. The BRAMs can operate in Single-port
or Dual-port configurations.

2.1.2 Logic Synthesis

Hardware Description languages (HDLs) define FPGA designs and are tool-independent. Logic
synthesis converts a high-level description using HDL to an optimized gate-level netlist. The synthesis
tools are part of the standard EDA toolchain for ASICs and FPGAs provided by the vendor. First, the

7

hardware description is synthesized into a netlist. This step determines all coding errors. In the next
step, the mapping process maps all functions in the netlist to functions available as the hard logic on
the FPGA. Soft Logic (LUTs) implement other functions that cannot be synthesized. Further, the netlist
undergoes placement and route (P & R). Place-and-route (P &R) describes several processes where the
netlist elements are physically placed and mapped to the FPGA resources to create a bitstream file that
can be downloaded into the FPGA chip. Placement will fail if a design requires more instances of a
specific function than are available on the FPGA. In the next step, the routing process will determine
routing resources and routes to meet timing constraints. Since routing resources are limited, routing
could also fail in case of routing congestion. Finally, the tool generates the bitstream, and the device is
programmed or flashed through the JTAG chain or PCIe interface.

2.2 Hardware-Software Co-Design with OpenCL

2.2.1 CPU-FPGA interconnect

Traditionally CPUs and FPGAs are coupled using bus interconnect. Figure. 2.4 presents the two
possible bus interfaces in current CPU-FPGA heterogeneous systems used for hardware acceleration.
Figure 2.4.a presents System-On-Chip(SOC) based system where CPU and FPGA are fabricated on the
same chip, generally used in low-power embedded systems. In contrast, FPGAs can be connected with
an external bus such as PCI-express(PCIe) with high bus transfer rates, typically for high bandwidth
communication. These systems are usually used for high-performance computing in data centres and
the cloud, with no power constraints. FPGA boards come with features like external memory like DDR4
or High Bandwidth Memory (HBM) and I/Os: PCIe, ethernet etc.

Figure 2.4 CPU-FPGA bus interface

2.2.2 OpenCL for CPU-FPGA Platforms

OpenCL is C based API that allows designers to perform computation on the host CPU, communi-
cation between the host and devices through Direct Memory Access (DMA) and computation on the
accelerators (GPU, FPGA, etc.). Typically, HLS tools generate the datapath for the algorithm inside the
FPGA but do not build the circuits for the interface between the algorithm (OpenCL kernel) and exter-

8

nal memory (DDR), DDR and CPU. HLS with OpenCL solves these issues by providing an end-to-end
solution. The OpenCL platform comprises the host (CPU) and accelerators (devices), and its execution
model comprises two components: kernels and host programs. The host code orchestrates the computa-
tion on the device. Kernels are the executable programs on the device and can be data- or task-parallel, or
deeply pipelined. A processing element is a unit of kernel execution.Figure. 2.5 depicts the abstraction
of computation running on the OpenCL platform. A device can comprise multiple compute units with
multiple processing elements running within. The host program executes on the host system, defines
devices context, and queues kernel execution instances using command queues. Context provides the
environment for host-device communication, memory management and device control. The host issues
three types of commands: kernel execution, memory (read, write), and synchronisation. Kernels are
queued in order but can be executed in order or out of order. OpenCL exploits parallel computation on
compute devices by defining the problem into an N-dimensional index space. An index space is defined
when a kernel is queued for execution by the host program.

Figure 2.5 OpenCL Platform

Each independent element of execution in this index space is called a work-item. There are two
variants of OpenCL kernels, NDRange (GPU-like SIMD) kernels and single-work-item (CPU-like task
) kernels. NDRange kernels are defined by an N-dimensional index space, where multiple work items
operate along the N dimensions, sharing the on-chip memory. Single work-item kernels share data
among multiple loop iterations. Multiple work items can be grouped into work-groups. Figure 2.6
presents the OpenCL execution model. The host program is responsible for setting up the devices,
program objects (usually bitstream or collection of kernels), and memory objects (memory buffers
mapped common to the host and device).

9

Figure 2.6 OpenCL execution model with Context and Command Queues

Figure 2.7 OpenCL memory model

2.2.3 Memory Model

OpenCL memory model defines four regions of memory accessible to work items when executing a
kernel. Host memory is the memory of CPU.Figure 2.7 presents the OpenCL memory model.

• Global Memory: This memory space resides on the device’s off-chip (external) memory. The
content of this memory space is visible to all work-items of all workgroups. Global memory
consistency is only guaranteed after a kernel is executed entirely. The host can allocate it only
during run time.

• Local Memory: This memory space resides on the on-chip memory of the OpenCL device. Each
work group has its own memory space and can be shared with its work items, and cannot be
accessed by other work groups. Local memory is usually in the order of a few Megabytes, and its
consistency is secured through barriers.

• Constant Memory: Region of global memory that stays constant throughout the execution. Work
items have only read access to this region.

• Private Memory: Region of memory that is private to a work-item.

10

2.3 Overview of Intel FPGA SDK for OpenCL

OpenCL for FPGA platforms use board support packages (BSPs), custom-made or provided by the
vendor. BSPs comprise IP cores that support interfaces with external memory controllers (DDR3/DDR4/ethernet),
PCIe and enable DMA. In the compilation phase, the kernel partition is merged with the BSP partition,
enabling kernels to access I/O. Since the kernel code is able to be detached from the BSP, it can be
used for multiple boards provided by the vendor within some resource constraints. Intel FPGA SDK for
OpenCL provides the necessary APIs and run-time to program and use PCIe-attached or SoC-FPGAs.
Figure. 2.8 presents the BSP overview.

Figure 2.8 BSP overview

2.3.1 Intel FPGA SDK flow

Figure. 2.9 defines the compiler flow of Intel FPGA SDK for OpenCL. The host-side C compiler
compiles your host program and links it to the Intel FPGA SDK for OpenCL runtime libraries. The host
compiler is typically g++. Altera offline compiler (AOC) is the FPGA compiler that uses LLVM back
end and is used to generate the bitstream (.aocx).

Figure 2.9 Intel FPGA SDK for OpenCL flow

2.3.2 OpenCL channels

The Intel FPGA SDK for OpenCL channels [31] extension allows kernels to communicate directly
with each other through FIFO buffers. They can be used for communication and synchronization. Imple-

11

mentation of channels decouples data movement between concurrently executing kernels. Data written
to a channel remains in a channel provided that the kernel program remains loaded on the FPGA device.
In other words, data written to a channel persists across multiple workgroups and NDRange invocations.

2.3.3 Autorun Kernels

Autorun kernels [31] are special kernels used whenever we omit communication between the host
and the kernel. As a result, the compiler need not generate the logic required for the communication
between them, thereby reducing the logic utilization. Autorun kernel starts automatically without any
explicit invocation by the host. And it restarts as soon as it finishes its execution. They are typically
used whenever the kernel reads data from one or more kernel-to-kernel channels, processes the data and
writes the results to one or more kernel-to-kernel channels.

2.4 HLS optimizations

Intel provides many standard HLS optimizations like loop unrolling, loop coalescing, loop fusion,
disabling pipeline etc., that can be directed using #pragma directives. Loop fusion fuses adjacent loops
of the iteration. By default, loops are inherently pipelined unless in the case of loop-carried dependency
or data dependency from the previous iteration. Loop unrolling is used to increase the degree of spatial
parallelism. Unrolling loops allow multiple data segments to process in one clock cycle in a SIMD
fashion. Multiple hardware units are generated, thereby increasing resource utilization. By default, if
we do not mention the unroll factor, loops are fully unrolled, which often does not allow the circuits
to be synthesized, due to resource constraints. Loops can be unrolled by using an unrolling factor that
defines the extent of parallelism. If we do not want loop unrolling, the #pragma unroll 1 is used. In
FPGAs, unrolling is not just removing the loop index operations. It significantly changes the structure of
a kernel by applying more parallel operations. As a result, although the performances are increased, the
resource utilization can be substantially extended. The optimal solution can be obtained through design
space exploration. Merging multiple memory access transactions into one is called memory access
coalescing. Coalescing is required for efficient memory access. In addition, coalescing simplifies the
datapath of the memory access, thereby reduce in resource utilization, and resulting in higher clock
frequency. Coalescing is usually possible when there is no random access to off-chip memory. The
#pragma loop coalesce can be used to coalesce nested loops

12

Chapter 3

FPGA based Accelerator for Traffic Sign Recognition using Spatial

Transformer Networks

3.1 Traffic Sign Recognition

The ultimate goal of autonomous vehicle research is to develop a fully automated system that would
perform well in all kinds of scenarios. The system should understand the intricate traffic patterns and
make real-time decisions based on the visual data from cameras and information from other sensors like
LIDAR. Traffic sign recognition systems play a vital role in autonomous driving environments and for
advanced driver assistance systems [49]. The traffic sign recognition problem involves two steps: traffic
sign detection and Traffic Sign Classification. Traffic sign detection modules localize targets in the pic-
tures, which is handled with computationally-inexpensive algorithms such as colour thresholding [37].
Traffic Sign Classification is a vital step in building traffic sign recognition (TSR) systems that employ
vehicle-mounted cameras which identify traffic signs while driving on the road. Building a Convolu-
tional Neural Network for the classification task would be an optimal approach to identifying the type
of targets detected. Nevertheless, the classification task provides inherent challenges due to distortions
caused by adverse variations like motion blurs, occlusions, and bad-view points. Their performance
also gets affected even when the input has undergone affine transformations. Jaderberg [16] introduced
Spatial Transformer Network, a learnable module that can be embedded into ConvNets, making them
invariant to translation, scale, rotation, and warping. However, they are still limited by the inability to be
spatially invariant to the input data. Spatial Transformers are learnable modules that, upon integration
with CNN, would allow the spatial manipulation of data within the network, making it invariant to affine
transformations. With specially designed hardware, FPGA-based neural network inference accelerators
have shown promising results in achieving energy-efficient processing. We propose an OpenCL-based
FPGA accelerator for Convolutional Neural Networks with a Spatial Transformer module for traffic sign
classification using the German Traffic Sign Recognition Benchmark (GTSRB) dataset.

13

3.2 Spatial Transformer Networks

Initially, Convolution Neural Networks used in object classification could not be spatially invariant
to the input data in a computationally efficient manner. Spatial transformer networks allow spatial data
manipulation within the network. It is a differential module which applies a spatial transformation to
a single feature map during a single forward pass, where transformation is conditioned to a particular
input U, producing a warped single output feature map V. For multichannel inputs, similar warping is
applied to each channel. This differentiable module can be inserted into the standard neural network
architectures, allowing them to spatially transform feature maps without any extra training supervi-
sion or modification to the optimization process—the usage results in models which learn invariance
to transition, scale, rotation and warping. Spatial transformers condition individual data samples with
appropriate behaviour learnt during training. The module is a dynamic mechanism that can actively
transform an image (or feature map) by producing appropriate transformations for each input. Notably,
spatial transformers can be trained with standard back-propagation, allowing for end-to-end training of
the models we inject. They achieve spatial invariance by adaptively transforming their input to a canon-
ical, expected pose, thus leading to better classification performance. Figure 3.1 gives the architecture
of the spatial transformer module.

The input feature map U is streamed to the localization network, which regresses the transformation
parameters θ. Grid generator transforms the spatial grid G over output feature map V to sampling grid
τθ(G), that is applied to the input U to generate warped output feature map V. This combination of
localization network and sampler defines a spatial transformer. Following sections elaborate on the
internals of spatial transformers.

Figure 3.1 Spatial Transformer Networks

3.2.1 Localization Network

The localization network generates θ, the parameters of the transformation τθ, from the input feature
map U ∈ RHXWXC , where H, W, and C stand for the height, width and number of channels. The
size of θ can vary based on the transformation type. For affine transformations θ is 6-dimensional. The

14

localization network function Floc() can take any form, such as a fully-connected network or a convo-
lutional network, but should include a final regression layer to produce the transformation parameters
θ : θ = Floc(U).

3.2.2 Grid Generator

Grid Generator applies transformations τθ on regular grid G, a set of points with target coordinates.
It warps the grid according to the affine transformation parameters θ. After the transformation τθ(G), it
outputs the coordinates to the sampler.

3.2.3 Sampler

Based on warped target coordinates received sampler projects the output feature map V onto a mesh
grid. The spatial Transformer uses a bilinear transformation resampling technique.

Figure 3.2 Bilinear Interpolation Technique

3.2.4 Bilinear Interpolation

Bilinear Interpolation based sampler is used to estimate intensity at the transformed location. It
calculates the intensity as the weighted sum of weighted sum of the intensities of the four nearest pixels
in the grid as shown in Figure 3.2. The approximation for output intensity Iout is given by the following
equation

Iout = (wa ∗ Ia) + (wb ∗ Ib) + (wc ∗ Ic) + (wd ∗ Id) (3.1)

Where Ia, Ib, Ic, Id are the pixel intensities at the 4 nearest locations in the grid. The values of
weights are given by:

wa = (x1 − x) ∗ (y1 − y) (3.2)

wb = (x1 − x) ∗ (y − y0) (3.3)

wc = (x− x0) ∗ (y1 − y) (3.4)

wd = (x− x0) ∗ (y − y0) (3.5)

15

3.3 Model Architecture

In this work, we used a model [19] that consists of one spatial transformer module at the beginning
of the network, which transforms the input image and forwards it to CNN for the classification task.
Figure 3.3 presents the model architecture of the traffic sign classification model with a spatial trans-
former network. The localization network learns the transformation parameters which are to be applied
to the input image. It can be another standalone CNN or Fully Connected Network (FCN), which takes
in the feature map and outputs the transformation parameters. We have implemented a four-layered
CNN, which consists of two convolutional layers, two fully connected layers and a max pooling layer
in between the convolutional layers. Figure 3.4 represents the design of the Localization Network.

Figure 3.3 Model Architecture of the Traffic Sign Classification System

Figure 3.4 Localization network

Due to high throughput, reconfigurability, and energy efficiency, FPGA-based accelerators play a sig-
nificant role in the inference of convolutional neural networks targeting embedded applications. FPGA
implementation of Convolutional Neural Networks can be seen in [6, 47, 43] where various algorithms
were used to perform convolution effectively. This paper presents an FPGA-based inference engine
for CNN with Spatial Transformer Module for Traffic Sign Classification. Section. 3.4 presents the
background and related work.

3.4 Related Work

With rapid advances in Deep Learning, Convolutional Neural Network-based classifiers have sur-
passed traditional learning methods for traffic sign classification. German Traffic Sign Recognition

16

Benchmark (GTSRB) [39] is one of the most popular and widely used datasets for testing and val-
idating traffic sign classification algorithms. The dataset contains traffic sign samples with different
resolutions and image distortions extracted from 1-second video sequences. The training set has 39,209
images, and the validation set consists of 12,630 images belonging to one of 43 existing classes. Cire-
gan et al. [9] proposed a Multi-Column Deep Neural Network comprising a committee of 25 CNN’s
achieved the highest accuracy of 99.46% in the GTSRB challenge. Sermanet et al. [38] proposed a
multi-scale CNN and achieved an accuracy of 98.31%. Markl et al. [2] implemented a CNN for traffic
sign classification based on Lenet [23] and attained an accuracy of 97.65 %.

Arcos-Garcı́a Á et al. [50] proposed a traffic recognition system based on a Convolution Neural net-
work that includes three Spatial Transformer modules. They obtained 99.71% accuracy for the GTSRB
dataset. The spatial transformer module improves CNN’s performance by making them invariant to
translation, scale, rotation, and warping. We have used a model [19] that consists of one spatial trans-
former module at the beginning of the network, which transforms the input image and forwards it to
CNN for the classification task. Reviewing the past literature, we have found out that FPGA implemen-
tations for traffic sign recognition were focused more on detection and classification using traditional
methods. In [21], a binary neural network is used to classify only 10 classes of the GTSRB benchmark
with 96.1% accuracy. In contrast, our implementation can classify images belonging to all 43 classes
of the GTSRB data set with an accuracy of 99.2%. Usage of a Spatial Transformer with CNN enabled
us to obtain a higher accuracy than the existing benchmark [26] deployed on Arria10 FPGA using the
OpenVino toolkit, and also, there has been a significant reduction in the number of parameters making
it more efficient to be implemented on embedded devices. Various methods have been proposed to ef-
fectively perform convolutions on FPGA. A scalable convolution block was implemented by mapping
3-D convolutions into matrix multiplication by flattening and rearranging the input features in [40]. An
FPGA accelerator based on systolic arrays for implementing GEMM-based methods on FPGA can be
seen in [48]. Kala et al [17] proposed a Generic Matrix Multiply GEMM-based accelerator based on
Unified Winograd Algorithm. The im2col/im2row [7] is one of the GEMM-based methods for imple-
menting convolutions and is widely used in deep-learning frameworks like Caffe, Theano, and Torch.
The explicit im2row approach utilizes an extra memory, which is (K2 − 1) times larger than the input,
where K is the size of the filter, making it challenging to implement on FPGA due to on-chip memory
constraints. To address this, we propose a channel-adaptive approach of im2row/im2col in order to han-
dle the memory constraints and achieve high throughput. Section 3.5 gives the methodology followed
in implementing the accelerator.

3.5 Methodology

The model uses three sets of CONV-ELU-MP layers for feature extraction for the transformed image
obtained after passing the input image through the spatial transformer module. The output of the feature
extractor is passed to fully connected layers and a soft-max wrapper to obtain the class of the input

17

image. The convolutional layer is the most compute-intensive layer in the neural network. Accelerating
the convolutional layer is crucial in building neural network accelerators.

3.5.1 Convolution

The convolution operation is essentially a 2D multiply-accumulate (MAC) operation that can be
defined by

F (i, j) =

C∑
c=1

k−1∑
kx=0

k−1∑
ky=0

Ic(i− kx, j − ky) ∗K(kx, ky) (3.6)

The input feature map of size (H1,W1, C) is fed into the convolutional layer with M filters, each of
size (k,k,C) is used to generate an output feature map of size (H2,W2,M). All the convolutions are
performed with a stride of one and with valid padding. A great majority of computations in CNN’s are
from the 2D convolutional layers. Various methods have been proposed to efficiently perform convolu-
tions in-order to reduce the compute time by exploiting the parallelism provided by various hardware
accelerators like GPUs and FPGA’s. General Matrix Multiply (GEMM) based methods are widely used
to perform convolutions due to their ease of parallelization. Many deep learning frameworks such as
Pytorch, Theano, and Caffe also use GEMM based approaches like im2row, im2col to perform Multi-
Channel Multi-Kernel (MCMK) convolution on GPU. The key idea in GEMM based methods is to
express 2D convolution as matrix multiplication. We followed an im2row based GEMM method in our
implementation.

3.5.2 IM2ROW:

The im2row stands for image to row, which reflects the process of reshaping the image tensor into a
matrix form that can be multiplied with the filter. In im2row, the filter kernel is slid over the input feature
map, extracting a patch of pixels that defines the spatial extent of the input tensor used to compute the
activation of a neuron in the output feature map. These patches of pixels are transformed into row
vectors stacked to form an input patch matrix, which has to be multiplied with the filter patch matrix to
generate the output matrix. For example, if an input feature map of dimensions (H x W x C) is to be
convolved with M filters of size (k x k x C) where C is the number of channels, with stride ’s’, we would
first need to compute the number of patches (num patches) that can be extracted from the input tensor
given by (H − k+1)/s ∗ (W − k+1)/s. Then the input patch matrix will be formed with dimensions
(num patches , (k x k x C)) by stacking the row vectors vertically. To compute the output of the
convolution operation, we would reshape the filter tensor into a filter patch matrix with dimensions ((k x
k x C) , M). Then matrix multiplication will generate an output matrix with dimensions (num patches,
M) that can be reshaped to the desired form. The im2row method can be computationally efficient
for small filter sizes and large input tensors, as it allows for efficient matrix multiplication operations
instead of expensive convolution operations. However, it may be less efficient for larger filter sizes,
as the resulting patch matrix can be huge and may require a large amount of memory to store. So we

18

slightly modified im2row and designed channel adaptive-im2row, where the patch matrices are tiled
channel-wise, to support low-memory devices.

3.5.3 Our Algorithm

• Create an input patch lookup matrix of size (num patches , (k x k)) which contains the lookup
addresses for a patch matrix corresponding to one channel.

• Create filter patch matrix corresponding to filters belonging to the channel with dimensions ((k x
k), M).

• Perform GEMM operation with the given feature map with the addresses from patch lookup
matrix and filter patch matrix.

• Repeat the process for all channels.

3.6 Hardware Architecture

This section presents the overall hardware architecture as shown in Figure. 3.5. The hardware archi-
tecture consists of 4 major modules: The transformer module, which performs localization, transforma-
tion, and bilinear interpolation. The convolution engine performs convolution, max-pooling and ELU
activation. The Batch normalizer normalizes convolution output, and Fully connected layers perform
the matrix-vector multiplication using loop tiling. The data is transferred from the host CPU to DDR
using the PCIe interface. The on-chip memory and DDR are interfaced with Avalon Memory Mapped
interconnect (Avalon MM). We implement the Convolution engine, Spatial Transformer module, batch
normalizer and FC module as independent OpenCL kernels, which we schedule using a host driver
based on the network architecture.

3.6.1 Spatial Transformer Module

The Localization net consists of 2 convolution kernels and 2 Fully Connected kernels. It outputs the
transformation parameter theta, which is placed in an OpenCL pipe. The Intel FPGA SDK for OpenCL
provides channel extension as an abstraction of OpenCL pipes for passing data between kernels and
synchronizing kernels with high efficiency and low latency. Two separate channels were used to pass
the image and theta to the transformer module, which applies the transformation to the input image with
the value of theta. The bilinear sampling kernel is integrated with the transformer module to compute
intensities at the transformed locations.

19

Figure 3.5 Hardware Architecture of the accelerator

3.6.2 Bilinear Sampling Kernel

After obtaining the transformed coordinates, we pass them through the nearest neighbour calculator,
which calculates the four nearest integer coordinates for the given point. Weights are calculated based
on the distance of the given point from its neighbours. We estimate the output pixel value by performing
MACC operation with these weights and intensities. The transformed image is sent to the classifier
using the channel.

3.6.3 Convolution Engine

The convolution engine has a direct interface with global memory where all the input feature maps
are stored. Upon invoking the kernel, we create an address-lookup matrix containing the addresses of
data corresponding to one channel’s patch matrix in the input feature map. The same lookup matrix
is reused with a load of new channel data to create the corresponding patch matrix. This method re-
duces the computational cost of executing multiple transformations to generate the patch matrix for the
following channel load. Results from each iteration are stored in the local memory and accumulated
over the total number of channels in the input feature map. We apply ELU activation to the output.
To perform max-pooling, we similarly create an address-lookup matrix for convolution that stores the
addresses corresponding to one pooling operation for a kernel of size 2 and stride 2. We create this to
parallelize various pool operations, as each row of the lookup matrix contains data that can be processed
concurrently. We use a tree-based sorter to find the maximum of four elements, as shown in Figure. 3.6.

20

Figure 3.6 Hardware Architecture of Convolution Engine

3.6.4 Matrix Multiplier Engine for FC layers

The hardware architecture implements the Fully Connected (FC) Layer as a matrix multiplication
problem. The output of the feature extractor (Conv) is flattened and multiplied by the weight matrix
of the fully connected layer. The data is streamed from global memory in tiles one after the other, and
the results from these computations accumulate to generate the output. For an input of size (M, N) and
(N,1), data is loaded in chunks of size (M1, N1) and (N1, 1) where M1 and N1 represent the size of tile
loaded. We used NDRange kernels for matrix multiplication, which are suitable for SIMD processing.
The output size defines the total number of work items (global size). The work items are organized into
work groups, where a work item represents a single execution thread of the kernel.

3.7 Experimental Setup and Results

The accelerator design is implemented using Intel FPGA SDK for OpenCL. The built ConvNet-STN
was trained using PyTorch for 40epochs on Nvidia GeForce GTX 1080 Ti GPU. We used the Intel
Arria10GX FPGA development kit shown in the Figure 3.7 with 2GB DDR4 for our experiments.
The specifications of the device are presented in Table 3.1. The Host-machine is equipped with Intel
Xeon CPU E5- 2630 v4 CPU with 64GB DDR4-2133 SDRAM runs RedHat Linux 7.5. We compare
the result with the output obtained from the PyTorch model to verify the functional correctness. The
GTSRB dataset is used for evaluation, and we achieved 99.5 % accuracy. Host interface schedules each
layer sequentially. Table 3.2 gives the scheduled execution cycles for each layer.

The Intel FPGA dynamic profiler [31] for OpenCL uses performance counters to collect kernel per-
formance data during the design’s execution. The Profiler instruments and connects performance coun-
ters in a daisy chain throughout the pipeline generated for the kernel program. The host then reads the
data collected by these counters. Figure 3.8 presents the system latency captured using the Intel dynamic
profiler. Table 3.3 gives the resource utilization for the network.

21

Figure 3.7 Intel Arria10 GX FPGA development kit

Table 3.1 Specifications of Arria 10GX 1150

Logic Elements 854k

DSP blocks 1518

M20K RAM 2713

External memory 2 GB DDR4

Table 3.2 Execution cycles for each layer of the network

Module Execution Cycles

LocNet-Conv1 398

LocNet-Conv2 499

LocNet-FC1 375

LocNet-FC2 305

STN-Transformer 385

Conv1+MP+ELU 400

Batch Norm1 75

Conv2+MP+ELU 575

Batch Norm2 75

Conv3 522

Batch Norm3 75

FC3 380

Batch Norm4 75

FC4+Softmax 279

22

Table 3.3 Resource Utilization
Frequency 202MHz

Logic used 21%

DSP 8%

BRAM 87%

Figure 3.8 System Latency of STN-ConvNet

Table 3.4 Comparision with CPU

Accelerator Latency

STN-CNN (20nm) 202 ms

CPU (40 core) 1.12 sec

Compared to CPU implementation, the design attains a speedup of (> 5X). The latency obtained
is not state-of-the-art. This is due to the inefficient use of available DSP resources. Another design
bottleneck is the formation is Toeplitz matrices. This involves random access to external memory and
causes an off-chip bandwidth constraint for the schedule generated. Existing GEMM-based methods are
mainly focused on accelerating matrix multiplication using systolic arrays, loop-tiling etc. Even though
kn2row-acc [41] could address the extra memory issue concerned with im2col, it suffers from off-
chip bandwidth constraints. The performance of all the GEMM-based methods are generally context-
dependent, with methods having excellent performance in some contexts and poor performance in others
[48]. Hence these GEMM approaches can be ideal for SIMD devices like GPUs, where multiplications
can be hugely parallelized in a vector fashion. FPGAs usually generate deeper pipelines, so the ap-
proaches of GPUs may only be optimal in some contexts.

23

3.8 Conclusion

This project explores High-Level Synthesis and observes the behavioural patterns of code generated
in developing Convolution neural networks. It uses a modified GEMM approach im2row that is typ-
ically used in GPUs and Embedded CPUs for convolution. We synthesize a traffic sign classification
neural network with a spatial transformer network. The system latency is 202 ms, around 5 fps, which
usually makes it suitable for real-time implementations. However, the traffic sign classification task is
generally accompanied by traffic sign detection for traffic sign recognition. Even though we attained a
considerable throughput compared to a CPU (> 5X), the performance can be improved further. Hence,
the project further explores FPGA-specific optimizations like deeper pipelining and systolic arrays with
increased spatial parallelism, efficient DSP usage, and off-chip memory bandwidth.

24

Chapter 4

Systolic Array based FPGA Accelerator for YOLOv3-tiny

4.1 Introduction

Object detection is an important area of research in computer vision. It is widely used in aerospace,
robotics, video surveillance, industrial detection, autonomous driving, etc. because it significantly re-
duces human efforts by detecting, locating, identifying, and classifying target objects. Through con-
tinuous effort in research, deep learning algorithms are proliferating with improved object detection
performance. There are two types of object detection algorithms. Object detection algorithms using
region proposal include RCNN [13], Fast RCNN [12], and Faster RCNN [36]. Two-stage detectors
provide adequate accuracy but come with high computational latency. Therefore, one-stage detectors
are proposed to process in less time by managing sufficient accuracy. Typical one-stage object detec-
tion models are Single Shot Multi-box Detector (SSD) [27], YOLO [33], and its successors YOLOv2,
YOLOv3, YOLOv4. YOLO models concurrently predict bounding box coordinates and associated class
probabilities without a complex pipeline resulting in high efficiency. YOLO, an accurate end-to-end al-
gorithm, uses a convolutional neural network structure which inputs a complete image and directly
outputs the target’s location box position and category. It divides the image into a certain number of
grids and predicts the target for each grid. YOLOv2 [34] introduces a new backbone called DarkNet-
19 that is pre-trained on ImageNet and removes the fully connected layer and the last pooling layer
in YOLO, which performs faster, achieves higher accuracy and recognizes more categories (more than
9,000). Besides, it uses anchors obtained by K-means clustering to predict bounding boxes for the first
time. YOLOv3 [35] design a new backbone of DarkNet-53 and combines the Feature Pyramid Network
(FPN) [25] to achieve better detection accuracy of small objects. YOLOv3-tiny is a lightweight version
of YOLOv3 with fewer layers to optimize for edge computing applications. This work addresses the
challenge of deploying multiple-precision YOLOv3-tiny implementations on an FPGA device, making
it suitable for the data centre and edge applications. One of the first works related to YOLOv3-tiny
uses a hardware-software co-design approach [4] , with convolutions handled by a parallel pipelined
hardware design and the rest of the layers processed by the Microblaze softcore processor. However, it
needs a large number of multiplexers to collect the output, which increases the fan-out. The study in

25

[3] expresses convolution as matrix multiplication using the im2col Generic Matrix Multiply (GEMM)
approach; however, the design suffers from random memory accesses to transform the input and filter
data into matrix forms. The authors in [46] propose a parametric architecture which performs computa-
tions concurrently within a layer batch, with parallelism along input, output channels and filter kernel’s
surface. However, the design suffers from low latency (< 2 fps), which doesn’t make it suitable for
real-world applications. In this work, we adopt a homogeneous 1-D systolic array architecture for con-
volution to reduce the global interconnect and the usage of large multiplexers, thereby minimizing the
data movements to attain high throughput. The key contributions of this work are as follows.

1. We propose a deeply pipelined 1D Systolic array accelerator with a novel load pattern for accel-
erating the convolution of YOLOv3-tiny to reduce global interconnects and large multiplexers,
thereby reducing data movements to obtain high throughputs.

2. The design exploits 3D spatial parallelism using specialized MAC tree architecture, allowing mul-
tiplications to run synchronously with a pipelined adder tree. We use the Intel OpenCL framework
for the architecture design, which is scalable for multiple variants of YOLO.

3. We evaluated the design on the Terasic DE5anet-DDR4 FPGA for multiple precisions (FIXED-8,
FIXED-16, FLOAT32). While running YOLOv3-tiny for 416x416 RGB image, the fixed point
(FP-8) attains a throughput of 57 GOPs/s with a framerate of 10.2 fps running at 234 MHz. Fixed
point (FP-16) attains 46.16 GOPs/s with a framerate of 8.278 fps, running at 227.78 MHz. The
floating-point (FLOAT32) design achieves 11.22 GFLOPs/s running at 172.92 MHz.

4.2 Background and Relevant Work

Convolutional Neural Networks are a vital class of deep neural networks most commonly applied to
analyze visual imagery. In many applications, it is desirable to have the CNN inference processing at
the edge near the sensor. FPGAs play a significant role in these implementations because of the high
performance per watt they can deliver. The convolutional layers dominate the computation and storage
in a CNN model. Therefore, the performance given by the architectural components associated with the
convolutional layers majorly influences the overall performance of a CNN inference accelerator.

The input feature map IFmap of a convolution layer is a cuboid with dimensions ⟨H,H,Nd⟩ where
Nd is the number of channels depth-wise. The dimensions of each channel are H×H . The convolution
layer consists of applying Nf filters each of dimension ⟨K,K,Nd⟩. This results in generating an output
feature map OFmap which is again a cuboid of dimensions ⟨H −K + 1, H −K + 1, Nf ⟩. The output
pixel in the position (p, q) of the nth channel, denoted by OFmap[n, p, q] is defined as follows.

OFmap[n, p, q] =

Nd∑
d=1

K∑
r=1

K∑
c=1

IFmap[d, p+ r, q + c] ∗ F [n, d, r, c] (4.1)

26

where F [n, d, r, c] denotes the (r, c)th filter coefficient from the depth channel d in filter Fn. It can
be noted that computing an output pixel is nothing but dot product involving Multiply-And-Accumulate
(MAC) operations. Many studies [6, 44, 11, 48, 40, 42] have proposed FPGA based CNN accelerators
due to the increased customizability and reconfigurability of FPGAs. Early works [6] exploited the par-
allelism in computation to utilise the abundant DSP resources on FPGA. Afterwards, the focus shifted to
transforming memory bound convolutional kernels to compute bound by increasing data reuse, thereby
reducing the traffic to the external memory [40, 42]. For achieving higher computer throughput, along
with data reuse, the corresponding data fan-out increases. This results in congestion in routing paths and
adversely affects the clock speed. Homogeneous systolic array architectures [44, 11, 48] with a standard
layout, low global data transfer and high clock frequency enable us to address such challenges, making
them suitable for large-scale parallel design on FPGAs. In this work, we present a deeply pipelined
1D-systolic array architecture for YOLOv3-tiny CNN, with a novel load pattern enabling us to exploit
three-dimensional spatial parallelism.

4.2.1 Review of YOLOv3-tiny

YOLOv3-tiny is a faster and lighter version of YOLOv3 with fewer layers, allowing its deployment
to resource-constrained devices. The reduced computational load comes with a penalty on the object
detection precision. The original backbone network of YOLOv3 is Darknet53. Darknet-53 includes 52
fully convolution layers, in which 46 layers are divided into 23 residual units with 5 different sizes. The
residual units are designed to avoid the vanishing-gradient problem inspired by the Resnet [15].

Figure 4.1 YOLOv3-tiny architecture

YOLOv3-tiny is a simplified version of YOLOv3. Its backbone network only includes 7 convolu-
tional layers and 6 max-pooling layers. Out of 3 branches in the FPN, one branch (maximum scale
prediction) is removed, and the number of convolutional layers in the other 2 branches is reduced.
YOLOv3-tiny accepts an RGB image of 416 × 416 resolution as input and predicts bounding boxes at
two feature map scales (13x13, 26x26). The framework divides the input image into 13x13 and 26x26
grid cells and generates outputs for three anchors in each cell. The network outputs a 3D tensor contain-
ing information on the bounding box dimensions, objectness confidence and class predictions for each

27

scale. The network constitutes convolutional, max pooling, concatenation, upsampling and Yolo lay-
ers. Figure 4.1 gives the data flow of Yolov3-tiny architecture along with the floating-point operations
needed at each convolutional layer.

4.2.2 Previous Research

Many studies have focused on customised designs for deploying various versions of the YOLO net-
work onto FPGAs. Some perform an accurate mapping of YOLO, while others introduce certain approx-
imations to tailor the hardware. The authors in [28] presented an FPGA architecture for YOLOv2-tiny
and attained an inference throughput of 19 FPS in a Zynq 7035 FPGA. The study in [45] uses 16-bit
Fixed-point representation for inputs and outputs of YOLOv2-tiny attained 69FPS using Arria10GX
1150 FPGA. The implementation in [4] uses hardware-software co-design for accelerating YOLOv3-
tiny. Only the convolutions are handled in hardware, and all the other layers and activation functions are
implemented in software. The architecture uses an 18-bit Fixed-point data type to allow one multipli-
cation per clock cycle per DSP. It attains high throughput for the convolution on Virtex 7 VC707 using
2304 DSP blocks. However, there is no information on the overall latency and throughput for all the
layers. The authors in [3] adapt the Generic Matrix Multiply (GEMM) based approach for accelerating
convolutional layers of YOLOv3-tiny. They used low precision 8-bit Fixed-Point representation and
attained a throughput of 31.50 GOPs on the Zynq ZU3EG device for all the layers. The study in [46]
implements a parametrized FPGA-tailored architecture specifically for YOLOv3-tiny. The architecture
exploits parallelism along the input channel, output channel, and filter kernel’s surface dimensions. It
uses a 16-bit Fixed Point precision and attained a throughput of 10.45 GOPs on the Zynq 7000 Soc
device with a frame rate of 1.88 fps.

4.3 Analytical Modelling

In this section, we devise the strategy for mapping the CNN onto a resource-constrained FPGA
device and detail the methodology followed to extract parallelism, improve data reuse and thus achieve
overall performance measured in terms of GFlops/second, along with other metrics.

4.3.1 Architecture Abstraction

There are several properties of CNNs that the hardware can leverage to optimize, thus improving
the throughput and design efficiency. The fundamental property here is that the computations in CNN
involve many MAC operations which have no restriction on their order of execution. Another essential
property that addresses the data movement and storage costs is that the same piece of data is often used
for multiple MAC operations. Further, the OFmap[i] corresponding to the ith filter Fi is equivalent to
the summation of 2D convolutions of IFmap with the corresponding depth slices of Fi. This can be
expressed as

28

OFmap[i] =

Nd−1∑
d=0

IFmap[d]⊛ Fi[d] (4.2)

Data Reuse: For convolutional layers, the filter surface ⟨K × K⟩ is smaller than the size of the input
feature map surface ⟨H ×H⟩, and the filter slides across different positions in the input feature map to
generate an output feature map. As a result, each filter weight and input activation are further reused
(H −K + 1)2 and K2 times respectively.

In our proposed methodology, we extracted three forms of parallelism from these properties.

1. Depthwise Parallelism ⟨nd⟩ : From the above equation (4.2), the depth slices of the filter and in-
put feature map can be independently convolved, enabling channel parallelism. Let the parameter
nd denote the number of 2D convolutions computed parallelly across the channels of IFmap.

2. Filter Parallelism ⟨nf ⟩: We define the filter parallelism nf as the number of output depth chan-
nels from OFmap that can be generated in parallel corresponding to the same input.

3. Filter Reuse ⟨FR⟩ : As mentioned above, the filter weight is reused (H −K + 1)2 to compute
a surface of an output feature map. We define the parameter FR, 0 ≤ FR ≤ (H − K + 1)2

as the number of times the filter weight is reused to generate FR elements of output feature map
concurrently. Let xpar and ypar denote the parallelism along X and Y directions of the surface of
the output feature map where FR = xpar × ypar. In our methodology, we chose ypar = 1 giving
rise to FR = xpar, the number of elements which are computed parallelly in the X-direction of
the output feature map.

Methodology – Three Dimensional Tiling:
The convolutional layer is optimized with three modelling parameters nd, nf and xpar. The output

computation has been split into Nf

nf
batches which exploits filter parallelism. To generate xpar outputs

within a OFmap depth channel in parallel, an input feature map sub-volume of dimensions (K+xpar −
1,K,Nd) needs to be convolved with Nf filters each of dimension (K,K,Nd). Each of the xpar × nf

convolutions are computed in Nd
nd

stages. Thus the number of parallel multiplication operations in each
clock cycle will be nf × xpar × nd.This leads to higher DSP utilization. Overall this strategy is nothing
but three-dimensional volume tiling.We present the pseudocodes ⟨Algorithm.1, Algorithm.2⟩ which
map our methodology to the HLS framework. The former gives the inner loops of the HLS pseudocode,
which map to the computational units. The latter partitions the whole input volume of IFmap and
filters into batches, and feeds data to the computational units. Loops L1, L2, and L3 are fully unrolled,
asserting 3-D spatial parallelism.

4.3.2 Resource Utilisation Model

Since the computation is mainly floating-point MAC operations, the DSP blocks and on-chip Block
RAM (BRAM) are the two critical resource types. xpar×nd multiplications are performed concurrently

29

corresponding to each filter Fi. nf filters are processed parallelly, giving rise to a total of nf ×nd×xpar

parallel multiplications that are accumulated channel-wise to generate nf ×xpar outputs. If the number
of DSPs on the FPGA are NDSP , then we get the following constraint.

nf × nd × xpar < NDSP (4.3)

We use separate OpenCL kernels for data loading and computation, connected using blocking FIFOs
(OpenCL channels). Data is prefetched by the loader kernels, while computation is performed in the
processing elements, and FIFOs handle synchronization between them. Hence to enable this, twice the
size of input memory (feature map, filter) needed for computation needs to be buffered in BRAM. To
generate xpar × nf outputs per clock cycle, xpar × nd feature map data is convolved with nf × nd

elements of filter data. The constraint model on BRAM can be given by (4.4), where NBRAM gives the
total number of available BRAMs.

2× (xpar × nd + nf × nd) + xpar × nf < NBRAM (4.4)

Algorithm 1 Outer Loops of HLS Pseudocode
//no. of filter batches

for (0 ≤ n1 < Nf/nf) do

// no. of channel batches

for (0 ≤ d1 < Nd/nd) do

//no. of segments along X

for (0 ≤ p1 < (H −K + 1)/xpar) do

//no. of segments along Y

for (0 ≤ q < (H −K + 1)) do

//along filter row

for (0 ≤ r < K) do

//along filter col

for (0 ≤ c < K) do

< Inner Loops of HLS code >

end
end

end
end

end
end

30

Algorithm 2 Inner Loops of HLS Pseudocode
#pragma unroll ▷ L1: nf filters in parallel

for (0 ≤ n2 < nf) do

#pragma unroll ▷ L2: nd elements in parallel

for (0 ≤ d2 < nd) do

#pragma unroll ▷ L3: xpar outputs in parallel

for (0 ≤ p2 < xpar) do

output[n1*nf + n2, p1 ∗ xpar + p2, q] +=

input[d1*nd + d2, p1 ∗ xpar + p2 + r, q + c] * filter[n1*nf + n2, d1 ∗ nd + d2, r, c]
end

end
end

4.4 Micro Architecture

In this section, we present the hardware architecture of the accelerator. The proposed architecture
is tailored to execute YOLOv3-tiny DNN, providing architectural support for accelerating the YOLO
layer. The throughput is an essential performance indicator in accelerator design. There are multiple
methods to improve the throughput

1. Exploiting parallelism in computation to utilise abundant logic resources.

2. Minimising data movements for efficient use of bandwidth.

3. Increasing the operating frequency of the overall system.

Exhaustive reuse and interaction between DSP blocks increase the fan-out. Also, large multiplexes
are needed to collect the output. Adapting a homogeneous systolic array architecture can solve some
of these issues. The global and large fan-out interconnect is split into local interconnects between
neighbouring Processing Elements (PEs). With small interconnects, systolic arrays can attain high
frequency with massive parallelisation.

4.4.1 Mapping to Systolic Array

We propose a deeply pipelined 1-D systolic array architecture to accelerate the CNN on FPGA.
Figure 4.2 provides a high-level picture of the proposed architecture. The accelerator consists of data
load/store units: Feature Map Read unit, Filter Fetch Unit for loading the input feature map (IFmap)
data, filter data from external DDR memory, and Feature Map Write unit for writing back the results to
DDR. The core of our architecture is a 1-D systolic processing element (PE) array that performs MAC
operations in each PE. The Feature Map Read unit caches the IFmap in a shift register-based buffer
and streams it to the first PE using the OpenCL channel (FIFO). Each PE receives different weights

31

Figure 4.2 Hardware Architecture of the accelerator.

from the Filter Fetch Unit and IFmap data from adjacent PE. The partial OFmap rendered by the PE are
accumulated and cached in its internal registers.

The MAC-tree engine within the PE uses this memory to sum up all the partial OFmaps corresponding
to the input volume channels to produce the output feature map. Once the results are generated, data
is sent to the Feature Map Write unit, which writes the generated OFmaps to off-chip memory. In the
following section, we discuss the architectural internals of the accelerator.

4.4.2 Internals of the Architecture

4.4.2.1 Feature map Read Unit (FRU)

The FRU is responsible for fetching the IFmap data from the off-chip memory. The overall compu-
tation is performed block by block sequentially using loop tiling optimization. The input feature map is
segmented blockwise, each block comprising xpar vectors. We fetch the data block from off-chip mem-
ory and cache it in a shift register-based buffer. Figure 4.3 gives the loading scheme of IFmap vectors.
To generate xpar outputs, (xpar +K − 1)×K input vectors needs to be convolved with K ×K filter
vectors. xpar vectors are loaded in the first cycle, and the inputs are shifted K times, with the loading
of a new vector for the next K cycles. Depthwise channel parallelism is given by nd and thereby, the
size of an input vector is given by nd. Every clock cycle, xpar vectors are streamed to the first PE. The
size of shift register shift reg size is given by

shift reg size = xpar × nd (4.5)

After computation of the current block of vectors, the load window propagates along the channel
dimension. Once we exhaust the first batch of nf filters, we process the next batch of filters. Further,
the load window propagates along surface dimensions to process the entire IFmap. With this imple-
mentation, we can reuse all the elements in the buffer till we flush them out. It also eliminates the need

32

Figure 4.3 Data loading strategy of IFmap with xpar = 3,K = 3

for using wide multiplexers to feed the data into PEs and significantly simplifies the interconnections
between the memory, reducing the critical path delay and improving the clock frequency.

4.4.2.2 Filter Fetch Unit (FFU)

The Filter Fetch Unit (FFU) is responsible for fetching the weight data from external memory to
each processing element (PE). In the proposed architecture, the filter parallelism is nf , i.e. nf filters
are processed at a time. Each PE processes a filter, which implies that the total number of processing
elements will be nf . Each PE receives a weight vector of dimension nd from the FFU via a FIFO
(OpenCL Channel). The data loaders FRU and FFU run concurrently, sharing the same configuration,
enabling the suitable weight vector to load for convolution with the corresponding input.

4.4.2.3 Processing Element

The Processing Element (PE) forms the core of our architecture,which carries out the convolution.
Figure 3.4 shows an overview of single PE hardware. The PE is a fully pipelined structure. It consists
of MAC-tree engines for performing MAC operations on input vectors and registers for storing partial
OFmap sums. In our proposed architecture, xpar number of OFmaps are processed at a time within a PE
and reuse the same filter vector. Hence xpar number of MAC-tree engines are present within a PE, and
each MAC-tree processes a vector of channel parallelism factor (nd) elements at a time. Hereby each
MAC-tree engine consists of nd MAC units, that process MAC operations on shifted inputs. Further,
we perform depth-wise accumulations using a pipelined adder tree as given in the Figure 4.4. Once we
generate the OFmaps, we flush the outputs to Feature Map Write Unit (FWU) using channels.

33

Figure 4.4 Overview of the Processing Element (PE) Architecture.

4.4.2.4 Feature map Write Unit (FWU)

The FWU is responsible for writing the generated OFmaps to off-chip memory. The Batch Nor-
malization (BN) layer follows a convolutional layer that requires complicated floating-point arithmetic
operations and consumes many logic and DSP resources. This paper follows a BN folding technique,
where we fuse the BN and bias addition giving rise to updated weights and bias in the training phase.
We carry out the bias addition process in the FWU. Before feeding the results to the off-chip memory,
an activation function Leaky Rectified Linear Unit (ReLU), with a negative slope of 0.1, is applied to
each pixel of OFmap.

4.4.2.5 YOLO block

The YOLO block implements the functionality of the YOLO layer, which is majorly composed
of sigmoid activation. It fetches the outputs of both the 13 × 13 and 26 × 26 grids from external
memory. Our architecture uses piece-wise linear approximation based on curvature analysis [24] for
the sigmoid function to avoid expensive floating-point DSPs for synthesizing division operations and
exponent module. The decoded information of bounding box coordinates, confidence values and class
probabilities for all the three anchors is written to DDR.

4.4.2.6 Additional Units

The max-pooling, upsample and concatenation units are designed as independent OpenCL kernels
scheduled by the host driver. The Maxpool Unit fetches IFmap data using FRU through FIFOs. The

34

other two fetch input data directly from off-chip memory. We use the nearest neighbourhood upsampling
technique for this CNN, and the Concat kernel performs depth-wise concatenation.

4.4.2.7 Host Interface

We use the Intel OpenCL framework for the development of the accelerator. The host driver is
responsible for the data transfer of the image and weights for each layer. The data load/store units
(FRU, FFU, FWU) are launched concurrently by the host interface using different command queues.
Free-running autorun kernels are used to design processing elements (PEs) and to share configuration
information among kernels. The host invokes the computation for each layer sequentially with the layer
parameters.

4.5 Experimental Setup and Results

To run our experiments, we have used a Terasic DE5-anet DDR4 board with 4GB of external memory
(DDR4). The board has Intel Arria10 GX FPGA. It complies with the PCIe Gen3 standard and has
OpenCL BSP support. Intel FPGA SDK for OpenCL 20.2 compiles host code and device kernels. The
host system is an HP Z640 workstation that contains Intel(R) Xeon(R) CPU E5-2630 with 40 cores.
Data is transferred from the CPU to FPGA through the PCIe interface using Direct Memory Access
(DMA). The target of our CNN accelerator is to fully utilize the available DSP blocks to maximize the
parallel computations that would enable the CNN accelerator to achieve maximum performance.

Figure 4.5 Terasic DE5anet DDR4 FPGA

The three architectural parameters defined for the accelerator, namely nf , xpar, and nd, can be used
to scale up the DSP utilization. However, scaling up the architectural parameters xpar and nd increases
the size of the input shift register-based buffer Equation. (4.5) and corresponding weights buffer, thereby
increasing the on-chip memory utilization. Raising the nf increases the number of DSPs. However, the
exhaustive reuse of DSP blocks increases the system fan-out, at times, will make it unable to serve the
timing requirements. Based on Equations (4.3) and (4.4), and empirical timing analysis,we chose the
values of nf , nd and xpar to be ⟨16, 16, 3⟩ to obtain optimized throughputs. We synthesized the designs
for multiple precisions (Fixed-8, Fixed-16 and FLOAT32) and obtained latencies of 98ms (57 GOPs/s),

35

120.79 ms (46.16 GOPs/s) and 497 ms (11.22 GFLOPs/s) operating at 234.38 MHz, 227.78 MHz and
172.92 MHz respectively. Filter weights are quantized accordingly.

Figure 4.6 System Latency for Float32 precision

Figure 4.7 System Latency for Fixed16 precision

Figure 4.8 System Latency for Fixed8 precision

Figure 4.9 Peak Bandwidth measured using Vtune profiler

36

- [3] [46] Our Work

Platform Ultra96 V2 Zynq 7000 Soc Terasic DE5Anet-DDR4

Precision FIXED 8 FIXED 16 FLOAT 32 FIXED16 FIXED8

Clock Freq 250MHz 100 MHz 172.92 MHz 227.78 MHz 234 MHz

Logic Util 27.3K(17%) 25.9K(49 %) 337K (79 %) 212.5K (49.7

%)

122K (28 %)

BRAM 248 (61%) 185 (66%) 1075 (39.6 %) 693 (26.6 %) 555 (21.3 %)

DSP 242 (67%) 160 (72%) 957 (63 %) 477 (31.4 %) 477 (31.4 %)

Latency 121 ms 532 ms 497 ms 120.79 ms 98 ms

Throughput 31.50 GOPs/s 10.45 GOPs/s 11.22

GFLOPs/s

46.16 GOPs/s 57 GOPs/s

Table 4.1 Comparison with existing implementations

Figures. 4.6, 4.7, 4.8 present the latencies obtained for the accelerator for the corresponding preci-
sions collected using Dynamic Profiler. Figure. 4.9 gives the average bandwidth measured using the Intel
Vtune profiler. It can be observed that the system attains a peak bandwidth of 9.472 GBps. Table. 4.5
gives the resource utilization and comparison of the proposed design with the existing state-of-the-art
implementations. One of the first works, [4], used a hardware-software co-design approach and at-
tained a high parallelism factor of 2304 for convolutions using many DSPs. All the other layers are
processed sequentially using a soft-core MicroBlaze. However, the overall latency and actual through-
put are not reported. Hence the work cannot be considered for comparison. The authors in [3] adapt
the im2col-based Generic Matrix Multiply (GEMM) for accelerating convolutional layers. They used
Fixed-8 precision and attained a latency of 121 ms (31.50 GOPs/s) at 250 MHz. The study in [46] ex-
ploits parallelism along the input channel, output channel, and filter kernel’s surface dimensions. It used
a 16-bit Fixed Point precision and attained a latency of 532ms (10.45 GOPs/s). Knowing that works
in [3] and [46] used smaller boards than us, it is impossible to have a faircomparison. However, the
critical constraint in [3] is it converts convolution operations into matrix multiplication forms. Convert-
ing the input feature map and filter data into Toeplitz matrix forms usually involves complex memory
access patterns. Also, expressing convolutions as matrix multiplication alters overall MAC operations
for convolutions. Hence, with the increased number of layers, the architecture is not scalable for denser
variants of YOLO. The work in [46] only attains 10.45 GOPs/s, with a framerate (< 2 fps) which does
not make the architecture suitable for real-time implementations. Our implementations exceed works in
[3] and [46] by 23% and 340% as shown in Table. 4.5.

37

Chapter 5

Conclusions

This work presents a systolic array-based FPGA accelerator for accelerating Yolov3-tiny. The Intel
OpenCL framework for synthesizing the design on Terasic-DE5a-Net DDR4 FPGA is used for our
design. The proposed accelerator is instantiated and tested for (Fixed-8, Fixed-16, and FLOAT32)
precisions. The architecture is scalable to other versions of YOLO with minor changes in the host
driver. The thesis is mainly concerned with building accelerators for deep learning inference. Most of
the work is comprised of optimizing the basic block for extracting the performance.

While working on OpenCL, there are two questions for which the complete answers have yet to be
found.

1. Can the exact architectural idea be implemented without the intervention of the compiler?

2. How does the DRAM scheduler work? How to control the arbitration logic with which the com-
piler handles memory requests?

The system’s performance deteriorates drastically when the compute engines perform irregular accesses
to an off-chip memory (DRAM). It is observed that the performance of the OpenCL kernels decreases
with increased communication (blocking channels). Also, the compiler generates the schedule to handle
the worst-case outcome, especially in the case of loop-carried dependencies, memory dependencies,
variable loop bounds, and scenarios in which the compiler cannot determine the latency at compile
time. Working on the behavioural pattern of the compiler for a long time transitioned my research
interest towards compiler design of High-Level Synthesis. In future, we aim to write LLVM-based
optimization passes for efficient burst-coalesced accesses of DRAM memory and optimize blocking
FIFO-based communication between kernels. Also, the possibility of integrating workload-specific
constraints into the hardware generated by the compiler will be explored.

38

Related Publications

P. Velicheti, S. Pentapati and S. Purini, ”Systolic Array based FPGA accelerator for Yolov3-tiny,” 2022
IEEE High Performance Extreme Computing Conference (HPEC), 2022, pp. 1-2, doi:
10.1109/HPEC55821.2022.9926371.

39

Bibliography

[1] Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70, 2008.

[2] Efficient implementation of neural networks on field programmable gate arrays. RARC, Proceedings, 2020.

[3] T. Adiono, A. Putra, N. Sutisna, I. Syafalni, and R. Mulyawan. Low latency yolov3-tiny accelerator for

low-cost fpga using general matrix multiplication principle. IEEE Access, 9:141890–141913, 2021.

[4] A. Ahmad, M. A. Pasha, and G. J. Raza. Accelerating tiny yolov3 using fpga-based hardware/software

co-design. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5, 2020.

[5] Amazon Web Services. Amazon EC2 Instance, 2022.

[6] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu. An opencl(tm) deep learning accelerator

on arria 10. CoRR, abs/1701.03534, 2017.

[7] S. Chetlur, C. Woolley, P. Vandermersch, J. M. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer. cudnn:

Efficient primitives for deep learning. ArXiv, abs/1410.0759, 2014.

[8] D. Chiou. The microsoft catapult project. In 2017 IEEE International Symposium on Workload Character-

ization (IISWC), pages 124–124, 2017.

[9] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In

2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 3642–3649, 2012.

[10] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via region-based fully convolutional networks.

In Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16,

page 379–387, Red Hook, NY, USA, 2016. Curran Associates Inc.

[11] A. Dua, Y. Li, and F. Ren. Systolic-cnn: An opencl-defined scalable run-time-flexible fpga accelerator archi-

tecture for accelerating convolutional neural network inference in cloud/edge computing. In 2020 IEEE 28th

Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pages

231–231, 2020.

[12] R. Girshick. Fast r-cnn. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 1440–

1448, 2015.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages

580–587, 2014.

40

[14] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 2980–2988, 2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[16] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu. Spatial transformer networks. In C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing

Systems, volume 28. Curran Associates, Inc., 2015.

[17] S. Kala, B. R. Jose, J. Mathew, and S. Nalesh. High-performance cnn accelerator on fpga using uni-

fied winograd-gemm architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

27(12):2816–2828, 2019.

[18] Khronos OpenCL Working Group. The OpenCL Specification, Version 1.1, 2011.

[19] B. Kim. wolfapple/traffic-sign-recognition: First release, Sept. 2020.

[20] H. T. Kung. Why systolic architectures? Computer, 15(1):37–46, 1982.

[21] M. Lechner, A. Jantsch, and S. M. P. Dinakarrao. Resconn: Resource-efficient fpga-accelerated cnn for traf-

fic sign classification. In 2019 Tenth International Green and Sustainable Computing Conference (IGSC),

pages 1–6, 2019.

[22] Y. Lecun, P. Haffner, and Y. Bengio. Object recognition with gradient-based learning. 08 2000.

[23] Y. LeCun, L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S. Denker, H. Drucker, I. M. Guyon, U. Muller,

E. Sackinger, P. Y. Simard, and V. N. Vapnik. Comparison of learning algorithms for handwritten digit

recognition. 1995.

[24] Z. Li, Y. Zhang, B. Sui, Z. Xing, and Q. Wang. Fpga implementation for the sigmoid with piecewise linear

fitting method based on curvature analysis. Electronics, 11(9), 2022.

[25] T. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for object

detection. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 936–944,

Los Alamitos, CA, USA, jul 2017. IEEE Computer Society.

[26] Z. Lin, M. Yih, J. M. Ota, J. D. Owens, and P. Muyan-Özçelik. Benchmarking deep learning frameworks and

investigating fpga deployment for traffic sign classification and detection. IEEE Transactions on Intelligent

Vehicles, 4(3):385–395, 2019.

[27] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox

detector. In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, Computer Vision – ECCV 2016, pages

21–37, Cham, 2016. Springer International Publishing.

[28] D.-T. Nguyen, T. N. Nguyen, H. Kim, and H.-J. Lee. A high-throughput and power-efficient fpga implemen-

tation of yolo cnn for object detection. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

27:1861–1873, 2019.

[29] NVIDIA, P. Vingelmann, and F. H. Fitzek. Cuda, release: 10.2.89, 2020.

[30] PSG. Intel® Arria® 10 Core Fabric and General Purpose I/Os Handbook. Intel, 2022.

41

[31] PSG. Intel® FPGA SDK for OpenCL™ Programming Guide. Intel, 2022.

[32] J. Redmon. Darknet: Open source neural networks in c. http://pjreddie.com/darknet/, 2013–

2016.

[33] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection.

pages 779–788, 06 2016.

[34] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 6517–6525, 2017.

[35] J. Redmon and A. Farhadi. Yolov3: An incremental improvement, 2018.

[36] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal

networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems

- Volume 1, NIPS’15, page 91–99, Cambridge, MA, USA, 2015. MIT Press.

[37] S. S. M. Sallah, F. A. Hussin, and M. Z. Yusoff. Road sign detection and recognition system for real-time

embedded applications. In International Conference on Electrical, Control and Computer Engineering

2011 (InECCE), pages 213–218, 2011.

[38] P. Sermanet and Y. LeCun. Traffic sign recognition with multi-scale convolutional networks. In The 2011

International Joint Conference on Neural Networks, pages 2809–2813, 2011.

[39] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The german traffic sign recognition benchmark: A

multi-class classification competition. In The 2011 International Joint Conference on Neural Networks,

pages 1453–1460, 2011.

[40] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s. Seo, and Y. Cao. Throughput-

optimized opencl-based fpga accelerator for large-scale convolutional neural networks. In Proceedings of

the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA ’16, page

16–25, New York, NY, USA, 2016. Association for Computing Machinery.

[41] A. Vasudevan, A. Anderson, and D. Gregg. Parallel multi channel convolution using general matrix multi-

plication. CoRR, abs/1704.04428, 2017.

[42] S. I. Venieris and C.-S. Bouganis. fpgaconvnet: A framework for mapping convolutional neural networks

on fpgas. In 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 40–47, 2016.

[43] D. Wang, K. Xu, and D. Jiang. Pipecnn: An opencl-based open-source fpga accelerator for convolution

neural networks. In 2017 International Conference on Field Programmable Technology (ICFPT), pages

279–282, 2017.

[44] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong. Automated systolic array

architecture synthesis for high throughput cnn inference on fpgas. In 2017 54th ACM/EDAC/IEEE Design

Automation Conference (DAC), pages 1–6, 2017.

42

[45] K. Xu, X. Wang, and D. Wang. A scalable opencl-based fpga accelerator for yolov2. In 2019 IEEE 27th

Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pages

317–317, 2019.

[46] Z. Yu and C.-S. Bouganis. A parameterisable fpga-tailored architecture for yolov3-tiny. In F. Rincón,

J. Barba, H. K. H. So, P. Diniz, and J. Caba, editors, Applied Reconfigurable Computing. Architectures,

Tools, and Applications, pages 330–344, Cham, 2020. Springer International Publishing.

[47] J. Zhang and J. Li. Improving the performance of opencl-based fpga accelerator for convolutional neural

network. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, FPGA ’17, page 25–34, New York, NY, USA, 2017. Association for Computing Machinery.

[48] W. Zhang, M. Jiang, and G. Luo. Evaluating low-memory gemms for convolutional neural network in-

ference on fpgas. In 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), pages 28–32, 2020.

[49] Z. Zheng, H. Zhang, B. Wang, and Z. Gao. Robust traffic sign recognition and tracking for advanced driver

assistance systems. In 2012 15th International IEEE Conference on Intelligent Transportation Systems,

pages 704–709, 2012.

[50] Álvaro Arcos-Garcı́a, J. A. Álvarez Garcı́a, and L. M. Soria-Morillo. Deep neural network for traffic sign

recognition systems: An analysis of spatial transformers and stochastic optimisation methods. Neural Net-

works, 99:158 – 165, 2018.

43

