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Abstract

In the recent past, math word problem solvers have received wide attention from the NLP community
at large. With the advancement of deep learning techniques, solvers have started to show better perfor-
mance than traditional rule based semantic parsing techniques. Standard accuracy metrics have shown
that math word problem solvers have achieved high performance on benchmark datasets. However,
these performances are based on datasets that have limited problem statements and equation templates,
thus providing very limited diversity and a low probability of generalization on different word problems
for practical purposes. Hence, the extent to which existing MWP solvers truly understand natural lan-
guage problem statements and its relationship with numerical quantities is still unclear. In this work, we
first generate adversarial attacks to evaluate the robustness of state-of-the-art MWP solvers. We propose
two methods Question Reordering and Sentence Paraphrasing to generate adversarial attacks. We con-
duct experiments across three neural MWP solvers over two benchmark datasets. On average, our attack
method is able to reduce the accuracy of MWP solvers by over 40 percentage points on these datasets.
Our results demonstrate that existing MWP solvers are sensitive to linguistic variations in the problem
text. We verify the validity and quality of generated adversarial examples through human evaluation.
These results showcase that math word solvers do not generalize well and rely on superficial cues to
achieve high performance.

Next, we conduct experiments to showcase that this behaviour is mainly associated with the limited
size and diversity present in existing MWP datasets. We modify the problem statements by altering
the text in different settings such that either the problem statement does not make much sense or no
question has been asked in the problem statement. The preliminary results from these analysis did not
show significant drop in accuracy metric as was expected. Then, we propose several data augmenta-
tion techniques broadly categorized into Substitution and Paraphrasing based methods to mitigate the
issues found by our analysis. By deploying data augmentation methods we increase the size of existing
datasets by five folds. Extensive experiments on two benchmark datasets across three state-of-the-art
MWP solvers show that the proposed methods increase the generalization and robustness of existing
solvers. On average, the proposed methods significantly increase the state-of-the-art results by over five
percentage points on benchmark datasets. Further, the solvers trained on the augmented dataset performs
comparatively better on the challenge test set. We also show the effectiveness of proposed techniques
through ablation studies and verify the quality of augmented samples through human evaluation.
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Chapter 1

Introduction

1.1 Motivation

Developing mathematical reasoning in machines has been a long standing problem. This problem has
been considered as the key to solve artificial general intelligence. Early works which aim to solve this
task can be traced back to 1960s [7] [8] [17] . Mathematical understanding has always been seen as
a necessary skill which machines should have in order to execute other complex tasks such as robotic
manipulations, self driving cars, human-like chat bots among others. Particularly, having the ability
to understand numerical quantities along with world knowledge is an essential and very desired skill.
This is extremely challenging because we need to make the machines understand the world-view and let
them infer the numerical quantities with their legitimate mathematical operations. The recent advances
in the field of natural language processing can be attributed to the introduction of deep learning and
availability of large amounts of text data with enhanced computing infrastructure that has enabled ma-
chines to understand natural language well. AI systems have been able to execute complex NLP tasks
like machine translation, question answering, dialogue systems and paraphrase generation among others
with a fair degree of effectiveness.

Original Problem

Problem: 348 teddy bears are sold for Rs 23 each. There are total 470 teddy bears in a store and the remaining

teddy bears are sold for Rs. 17 each. How much did the store earn after selling all the teddy bears ?

Solution Equation: x = 348 ∗ 23 + (470− 348) ∗ 17

Table 1.1: A sample math word problem statement

1



1.2 Problem Description

Solving math world problems which are school level algebra problems is a natural extension to extend
the capabilities and understanding of NLP systems. These problems have a natural language text which
narrates a world view with numerical quantities. These world views are narrated to perform mathemat-
ical manipulations on the quantities. Later, a question is asked to find out the value of some unknown
quantities. Table 1.1 shows a sample math word problem statement. Here, after describing a narrative
involving numerical quantities and certain transactions involving them, a question is asked about finding
out the value of one of the quantities. A solution expression is the answer that a solver must generate.
This expression when solved for the unknown variable should return the correct value for the desired
quantity.

Recently, math word problem solvers is gaining a lot of attention. Many solvers have been proposed that
attempt to tackle this challenging problem [72][77][82]. They show high performance on the limited
size labelled datasets that are available (Question - Equation pair). Gathering large number of high
quality Question - Equation pairs with relevant meta-data is in itself a huge annotation task. However, it
is still not understood what are the factors that affect the performance of math solvers. It is important to
address this question as the dataset size is limited and we want to make sure that the solvers are able to
generate new equations, solve other categories of problems and generalize well on the problem solving
task. In this work, we propose to probe the robustness of the existing solvers by generating adversarial
math problems and test the performance of existing solvers on these perturbed problem statements. We
further, showcase techniques using which we can increase the robustness of existing solvers.

1.3 Thesis Contribution

Following are the key contributions made in this work:

• To the best of our knowledge, this is the first work that evaluates the robustness of MWP solvers
against adversarial attacks. We propose two methods to generate adversarial examples on three
MWP solvers across two benchmark datasets.

• This is the first work that extensively evaluates data augmentation techniques for MWP solving.
This is the first attempt to generate MWP problems automatically without manual intervention.

• On average, the generated adversarial examples are able to reduce the accuracy of MWP solvers
by over 40 percent points. Further, we experiment with different type of input embeddings and
perform adversarial training using our proposed methods. We also conducted human evaluation to
ensure that the generated adversarial examples are valid, semantically similar and grammatically
correct.
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• Accuracy of the state of the art solvers increases after training on the proposed augmented dataset.
This demonstrates the effectiveness of our methods. To verify the validity of generated augmen-
tations we conduct human evaluation studies.

• We increase the diversity of the training dataset through augmentations and obtain comparatively
better results than state-of-the art solvers on the SVAMP [52] challenge set.

1.4 Thesis Layout

The thesis is organized in the following manner:

• Chapter 2 gives a detailed overview about the background and recent trends in Math Word Prob-
lems. We discuss in detail three of the baseline papers, their architectural choices, their merits
and demerits. Further, we also take a deep dive to understand the background and related work in
data augmentation techniques for text and adversarial attacks for text inputs.

• In Chapter 3, we introduce our first agenda, that is to probe existing solvers by generating adver-
sarial examples. We take a deep look at the novel strategies used to generate adversarial examples
by overcoming the challenges posed by the task setup. We further perform human validation and
other experiments to showcase the effectiveness of our proposed method.

• In Chapter 4, we identify the issues that cause low robustness in solvers. We propose an hypothesis
and attempt to prove it empirically through a set of well designed experiments. Further, we
propose set of data augmentation techniques to enhance the diversity and count of training samples
in existing datasets.

• Finally, we conclude our thesis with an overview of the work that we have done and the possible
future works that can enhance the performance of solvers.

3



Chapter 2

Background and Related Works

2.1 Math Word Problem Solvers

In this section, we will go through the background and related works for math word problem solvers.
We will go through the key ideas, challenges involved and discuss about three key baseline papers that
have shaped the area of math word problem solving.

2.1.1 Deep Neural Solver for Math Word Problems

Motivation: This work [72] introduced the use of deep neural networks for solving math word
problems automatically compared to previously described statistical approaches. In this work, the au-
thors attempt to map math word problems to equation templates using a recurrent neural network based
model. The authors also implement a similarity-based retrieval model and compare its performance
with the sequence to sequence based model. The observations show that sequence based models out-
performs retrieval based models on an average. However, the retrieval model is able to correctly answer
many questions for which sequence model produces incorrect results. The findings also show that the
accuracy of the similarity based retrieval model correlates positively with the maximal similarity score
between the problems in training data and the target question. It implies that higher the similarity score,
more is the accuracy.

Based on their observations, the authors proposed a hybrid model which combines both the sequence
based and retrieval based models. In the hybrid model, the retrieval model is selected only if the simi-
larity score returned by the retrieval model is greater than a set threshold, else sequence based model is
chosen to solve the problem. To facilitate the development of future math word solvers, a large dataset
in Chinese language is developed. This dataset Math23K [72] comprises of over 23, 000 math word
problems in one variable.

4



Methodology:

Number Mapping: For a math word problem P which has m known numbers, a number mapping Mp

maps the numbers in the problem statement P against numerical token identifiers {n1, ..., nm} as per
their occurrence in the problem statement.

Template Creation: A template represents a general form of an equation where true numbers are
represented by their respective numerical variables. For any problem statement P with equation Ep and
number mapping list Mp, its equation template is derived by mapping numbers in the solution equation
Ep to a list of number token identifiers {n1, ..., nm} according to Mp. Let’s understand both number
mapping and template creation through an example illustrated in Table 2.1.

Problem Statement:

Text: Dan has 5 pens and 3 pencils, Jessica have 4 more pens and 2 less pencils than him. How many pens and pencils does Jessica have in total ?

Solution Equation:

Equation: X = 5 + 4 + 3− 2

Number Mapping

M : {n1 = 5, n2 = 3, n3 = 4, n4 = 2}

Equation Template

X = n1 + n3 + n2 − n4

Table 2.1: A MWP problem and the process of number mapping and equation template creation.

2.1.1.1 RNN Based Sequence to Sequence Model

Significant Number Identification (SNI): In a math word problem, not all the numbers present in
the problem statement are required in the equation for solving the problem. An example is shown in
Table, where the numbers “1” in “1 day, 1 girl” and number “2” in “She has 2 types of” should not be
used in equation construction. A number is assumed to be significant if the number should be included
in the equation to solve the problem; otherwise it is insignificant. For the problem in Table 4, significant
numbers are 9, 3, and 5, while 1 and 2 are insignificant numbers. Identifying significant and insignificant
numbers is important for constructing correct equations. For this purpose, the authors have proposed
to build a LSTM-based binary classification model to determine whether a number in a problem text is
significant or insignificant.

1. The model architecture for significant number identification is showcased in Figure 2.1. The
key idea is to leverage the sequential capability of LSTMs and perform a forward over the problem
text to generate a representation of the text. The authors view this problem as a binary classification
problem. The training data for SNI model is extracted from the math word problems. Each number and
its context in problems is a training instance of SNI. Each problem text is divided into chunks of text

5



Figure 2.1: The significant number identification model architecture.

having a numerical quantity and the labels ”True” or ”False” are derived form the solution equation of
the training data. If the numerical quantity present in the chunk is used in the solution equation then
they label it as true else they label it as false. The performance of SNI is very high with the accuracy
reported around 99.3%.

2. A sequence to sequence model with GRU based encoder and LSTM based decoder is chosen as
the model architecture. The activation function at decoder side has been modified with the rules to adapt
to math word problem. Following modifications were incorporated:

• Rule 1: If rt−1 in {+,−, ∗, /}, then rt will not be in {+,−, ∗, /, ),=};

• Rule 2: If rt−1 is a number, then rt will not be a number and not in {(,=};

• Rule 3: If rt−1 is ” = ”, then rt will be not in {+,−, ∗, /,=, )};

• Rule 4: If rt−1 is ”(”, then rt will not be in {(, ),+,−, ∗, /,=};

• Rule 5: If rt−1 is ”)”, then rt will not be a number and not in {(, )};

Directly generating equation templates by a soft-max function can lead to the generation of some
erroneous equations, such as: ′x = n1 + +n2′ and ′x = (n1 ∗ n2′. To make sure that the final
output equations are mathematically correct, the authors need to enforce the above rules which basically
constraint the generation of certain characters based on previously generated characters.

2.1.1.2 Retrieval Model

Figure 2.3 showcases the percentage distribution of problems solved by retrieval model and seq2seq
model. As we can see retrieval model augments the type of problems correctly solved by seq2seq
model. Hence, their ensemble is desired and will result in overall higher performance. The retrieval
model attempts to solve the math problems by calculating the lexical similarity between the test prob-
lem against each problem in the training data. The equation template of the most similar problem is

6



Figure 2.2: Seq2Seq architecture of Deep Neural Solver.

Figure 2.3: Correctly solved problems distribution between retrieval and Seq2Seq models.
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Figure 2.4: Step by step algorithm of hybrid model.

then retrieved and applied to the test problem statement. Jaccard similarity is used to compute the sim-
ilarity between the test problem and train equation templates.The overall algorithm of hybrid model is
showcased in figure 2.4.

2.1.1.3 Results

Figure 2.5 showcases the accuracy results of the Seq2Seq model, retrieval model and hybrid model
with and without SNI. These results testify the effectiveness of SNI and hybrid model. Overall, with
the help of results and experiments the authors conclude that with larger training data they witness an
increase in model accuracy, the hybrid model improves performance by over 22 percent on the baselines
and have the capability to generate new templates apart from those already present in the training set.

2.1.2 GTS : A Goal-Driven Tree-Structured Neural Model for Math Word Problems

Motivation: This work [77] is an improvement over the RNN based sequence to sequence method for
solving MWP. It attempts to conceptualize human behaviour while solving math word problems. When
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Figure 2.5: Results of hybrid model in different settings on Math23k and Alg514 datasets.

a human reads the problem statement of a MWP, they first figure out which target quantity needs to be
set as the goal, and after that they start paying attention to the relevant information present in the prob-
lem statement. If the goal can be achieved by the relevant information, the problem solving has been
completed; otherwise, human needs to further decompose the goal into sub-goals and combine them
together by a required operator to solve the MWP. The major issue with Seq2Seq-based models is that
they may generate invalid expressions which are mathematically incorrect. For instance, it is difficult to
determine exactly how many consecutive left parentheses would be required before the inside operations
are handled, this may sometimes lead to the wrong expressions.

Inspired by the goal-driven mechanism in human math problem solving, the author’s create a model
to generate an expression tree from the given problem statement. The generated expression tree follows
a top-down goal decomposition method, the model initializes the root goal vector which represents the
ultimate goal of the problem, and then a context vector is utilized to summarize the relevant information
from the problem statement. Using the goal vector and its context vector, a token is predicted which
implicitly helps in deciding whether the goal should be broken down into further sub goals or not. If
the predicted token is a numeric value or constant quantity, the goal is realized directly; otherwise (i.e.,
the predicted token is an operator), two new sub-goal vectors (one for left sub-goal and the other for the
right) will be generated. Similarly, the prediction and goal decomposition process are repeated for them.
However, for a commutative operator such as “+” or “×”, its right sub-goal may be the same as the left
one, due to its commutative property. To address this issue, the model completes the construction of the
left sub-tree before generating the right sub-goal. The generation of right sub-goal takes the information
of its left sibling sub-tree into consideration, which is encoded as a sub-tree embedding by a recursive
neural network.

Methodology:
The overall methodology is explained below:
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Figure 2.6: GTS Goal Decomposition Workflow.

• Goal Decomposition: The goal decomposition method workflow is depicted in the figure 2.6.
Each node n present in the expression tree T consists of the following components: a goal vector
qn, a token ŷ, and a sub-tree embedding t of node n. The goal vector qn is used for instructing how
to construct the sub-tree root from node n, and the generated sub-tree is then used to realize the
goal. To do so, the method first predicts the token ŷ from the goal vector qn. In turn, the predicted
token determines whether the goal should be broken down into further sub-goals or not. If the pre-
dicted token is a mathematical operator, the goal will be further decomposed into two sub-goals,
a left sub-goal ql and a right sub-goal qr. The left sub-goal along with the sub-tree embedding
is utilized to construct the right sub-tree of n. If the predicted token is a constant or a numerical
quantity the goal will be simply realized by the predicted token. This goal decomposition process
is conducted recursively similar to the depth-first traversal.

• Sub-Goal Generation: Before understanding left and right sub-goal generation we must first
understand how a context vector is computed and then used to calculate the predicted tokens.
Given the input query, we first extract the embeddings of each token using a trainable matrix
representation. These embeddings are then passed down through a GRU based bi-directional
encoder to compute the hidden states corresponding to each token position. The bidirectional
outputs at each position are summed up to obtain the absolute hidden states. The context vector c
is a weighted summation over these hidden states. The weights are calculated as attention weights
between the goal vector qn and position wise hidden state hp. Output token ŷ is computed as the
arg-max of the probability distribution vector obtained from soft-max in the vocabulary dimension
space. We transfer the context vector and goal vector in the vocabulary space using a feed-forward
fully connected layer.
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Figure 2.7: Accuracy comparison of different models with GTS.

Figure 2.8: Some MWP examples showcasing effectiveness of GTS.

After computation of the context vector c, the left sub-tree node ql is computed on the basis of
context vector c and output token ŷ, with gating functions and a 2−layer feed forward neural
network.The right child qr takes into account the left child sub-tree ql, which has been generated
prior to the right child due to pre-order traversal. The left sub-tree is encoded bottom up as tl

according to the recursive neural network. Then the right goal vector qr of the right child is
calculated as a combination of the gating functions and feed-forward neural networks.

Results:
Figure 2.7 reports the answer accuracies to compare and highlight the effectiveness of goal decompo-
sition and sub-tree methods. Figure 2.8 showcases examples illustrating the effectiveness of GTS over
Seq2Seq models. However, despite promising results over Seq2Seq models, GTS suffers when the tree
expression lengths or solution equation length is larger. This is intuitive as the complexity of solving
the expression tree will increase with expression length.

2.1.3 Graph2Tree: Graph-to-Tree Learning for Solving Math Word Problems

Motivation: With the introduction of GTS, it became evident that tree-based neural decoder mod-
els have a positive impact on the performance of existing math word solvers, however, most of these
models are unable to represent the order and relationship information between the quantities present
in the problem statement. This results in poor quantity representations and generation of incorrect and
ambiguous solution expressions. Graph2Tree [82] attempts to combine the advantages of a graph based
encoder and a tree based decoder to improve the performance of math word solvers. They introduce two
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Figure 2.9: Examples of solving math word problems with Graph2Tree model.

graph quantities namely quantity cell graph and quantity comparison graph. These graphs are designed
to mitigate the limitations and drawbacks of existing solvers by effectively representing the order and
relationship information between the different quantities present in the problem statement.

To enhance the overall representation of a quantity, the relationship between the textual content associ-
ated with a quantity needs to be captured and represented in the quantity embeddings. However, such
relationships cannot be effectively modeled using recurrent neural networks, which are commonly used
in the existing math word solvers having deep learning methods. Graph2Tree introduces quantity cell
graph and quantity comparison graph to capture and include these latent representations. The Quantity
Cell Graph is built to associate informatively expressive words to quantity. The authors first extract
associated verbs, nouns, adjectives, rates and units that describe a quantity in the problem statement.
Next, a graph is constructed where the extracted expressive words are represented as neighbor nodes
linked directly with the quantity. Finally, a neural network based model is used to learn the enhanced
latent representation of the quantities based on the constructed Quantity Cell Graph.

The intuition behind introducing Quantity Comparison Graph is to retain the numerical qualities of
the quantity. As we generally replace numerical quantities with their placeholders we tend to lose out
on magnitude specific information which affects the order representation. The idea is to leverage certain
heuristics to represent the relationships among quantities such that solution expression reflects a more
realistic arithmetic order.

Methodology: Figure 2.10 shows the Graph2Tree framework. Graph2Tree first encodes the problem
text input using bidirectional LSTM network and simultaneously constructs Quantity Cell Graph and
Quantity Comparison Graph. The output of Bi-LSTM are seen as word-level representations and are
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Figure 2.10: Overview of the Graph2Tree model architecture.

used for the representation of graph nodes. For both the constructed graphs, the node representations are
together fed as input into a graph transformer to learn the graph representation of given math problem
statement. The multi graph convolution network component of the graph transformer is slightly altered
and modified to learn the graph representation based on the Quantity Cell Graph and Quantity Com-
parison graph. The final graph representation is enriched with the relationship information between the
quantities and their numerical qualities. Pooling is then utilized to collect all nodes into a pool-based
graph embedding vector as the output of the graph transformer. Finally, the output graph representation
and the updated node representations are used as input to a tree-structure decoder to infer the final solu-
tion expression tree.

A quantity cell in a problem statement P consists of the following properties:

• Quantity: The numeric value associated with a quantity.

• Associated Nouns: The nouns related to the quantity in the dependency parse tree. Associated
nouns are the nouns related by the number and preposition of relations.

• Associated Adjectives: Associated Adjectives are the adjectives related to quantity or associated
nouns with the a modifier relation, which is detected by the dependency parser.

• Associated Verbs: For each quantity, the related verbs, associated Verbs, according to nsubj and
dobj relations.

• Units and Rates: The nouns related to the associated nouns by preposition ”of” as the Unit. The
nouns related with associated nouns which own the key words such as “each”, “every” and “per”
are regarded as rates.
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Figure 2.11: Accuracy comparison between Graph2Tree and various baselines. Math23K* denotes

5-fold cross-validation.

If the quantity cell detection process is unable to identify any attributes, they use a window that is
centered around the quantity to select neighboring words as the attributes.

Results: Table 2.11 compares the accuracy metric between Graph2Tree and other various baselines. The
observations reflect that Graph2Tree outperforms all baselines in both MaWPS and Math23K. Table 2.9
through some examples illustrates the supremacy of Graph2Tree over GTS. This allows establishes the
benefits of using a graph based encoder over standard Bi-LSTM based encoders.

2.2 Data Augmentation Methods

Data Augmentation refers to a set of techniques which are used to add additional training samples with-
out creating new data [5]. These samples are created synthetically by modifying or altering existing
samples. Data augmentation techniques were first explored in the field of computer vision where new
image samples are augmented by adding noise and transforming them through primitive operations like
rotation and changing colour channels [80]. These intuitive and straight forward operations are helpful
as these are invariant to model outputs. However, data augmentation techniques are challenging to adapt
for NLP tasks due to the discrete nature of textual data. In NLP, the input space is discrete and it is less
obvious on how to modify samples to induce required diversity without modifying the target labels.

The purpose of performing data augmentation is to enhance the number of samples which can help in
training and fine-tuning machine learning models on many downstream or low resource tasks where
the number of training samples is very low and expensive to generate. These techniques are extremely
helpful in the age of deep learning models where the number of model parameters are very high. We
require large amounts of data to prevent over-fitting and developing the ability to handle diverse samples
at inference time in the models.
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Figure 2.12: Categories of Data Augmentation methods for NLP Tasks.

Let’s go through some of the popular text augmentation methods, particularly in the data space and
also look at the filtration mechanism to filter out augmentations which do not meet the criteria.

2.2.1 Data Space

Augmentation in data space deals with transforming the input data in its original form that is, the
readable textual form.

• Character Based: Character based augmentations are generally of two types: Noise based In-
ductions [6] and Rule based [13] inductions. In noise based inductions, artificial and natural noise
is added to the words present in a sentence. Operations like random switching of letters, arbitrary
deletion of letters, generating a permutation of the letters with initial and end letters fixed are
utilized to augment the words. Natural noise covers misspelled words that commonly occur in
natural language. Each word that is associated with a common error is replaced with the mis-
spelled word and if there is more than one such errors, the mistake is then randomly sampled.
Rule based inductions utilize regular expressions to create a template for changing the order of
letters in words. These rules are not easy to create as they require deeper transformations to pre-
serve the grammatical correctness, further these transformations are dependent on the language
and its structure. The transformations of acronyms and short forms to their longer versions and
vice - versa is a neat trick to achieve good augmentation results as shown in [13].

• Word Based: Word level transformations can further be categorized into the following types:
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– Synonym Replacement: The use of synonym substitution is a common method for para-
phrasing, which involves replacing certain words in text inputs with synonyms. One of the
first applications of this technique in the field of data augmentation was introduced by [32],
who substituted temporal expressions with potential synonyms from WordNet [47]. The au-
thors argue that replacing a single token in a sentence typically preserves the semantics, and
they propose replacing the headword (since temporal trigger words are often found there)
in the context of a time expression recognition task. Synonym substitution can be a useful
method for generating diverse but semantically similar variations of a text, which can be
helpful for tasks such as data augmentation and evaluation.

– Embedding Replacement: Replacement methods for embedding aim to find words that fit
as closely as possible into the textual context while also preserving the meaning of the text.
To do this, the words in the instances are transformed into a latent representation space,
where words with similar contexts are closer together. These latent spaces are based on
the distributional hypothesis of distributional semantics, which is commonly implemented
using embedding models. These models seek to capture the meaning of words based on their
distribution or occurrence in a text corpus [22], [19], which is currently mostly implemented
in the form of embedding models.

– Noise Induction: Noise induction methods can also be used in word replacement-based
methods. For example, the method proposed in [79] includes two noise patterns: ”uni-gram
noising,” in which words in the input data are replaced by another word with a certain prob-
ability, and ”blank noising,” in which words are replaced with an underscore. The authors
found that using both of these patterns resulted in improved results in their experiments.
Noise induction can be used to introduce variations in the input data, which can help to
improve the robustness and generalization ability of the model.

– Language model Replacement: Language models represent language by predicting subse-
quent or missing words based on the previous or surrounding context (classical and masked
language modeling, respectively). These models can be used, for example, to filter out unfit-
ting words, as described in the work of [2]. The authors generate similar words using GloVe
embeddings [53] and a counter-fitting method, and then use a language model to select only
words with a high probability of fit. In contrast to embedding replacements that consider
the global context, language models allow for more localized replacement [44]. Language
models can also be used as the main augmentation method, as in the case of [31], who uses
an LSTM language model to identify substitution words. However, it’s worth noting that
language models may not only substitute words with similar meaning, but also with words
that fit the context in principle [31].

• Phrase and Sentence Level:
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– Structure Based: Structure-based approaches for data augmentation may use certain fea-
tures or components of a structure to generate altered texts. These structures can be based
on grammatical formalities, such as dependency and constituent grammars or POS-tags.
These approaches are therefore more limited to specific languages or tasks. For example,
[85] focuses on augmenting datasets for POS-tagging in low-resource languages. They use
a technique called ”cropping” to shorten sentences by focusing on subjects and objects.
Structure-based approaches can be useful for generating syntactically and semantically valid
variations of a text, and they may be particularly useful in tasks where the structure of the
language is important, such as in POS-tagging or parsing.

– Interpolation Based:

In numerical analysis, interpolation is a method of constructing new data points from ex-
isting points [63]. While it is difficult to define interpolation in the data space of text, the
substructure substitution (SUB²) method proposed by [62] can be considered as a form of in-
terpolation in this context due to its similarity to interpolation methods in the feature space.
SUB² substitutes substructures (such as dependents, constituents, or POS-tag sequences) of
the training examples if they have the same labeled tag (for example, ”a [DT] cake [NN]” in
one instance can be replaced with ”a [DT] dog [NN]” from another instance). The variant
of SUB² adapted for classification views all text spans of an instance as structures and is
constrained by replacement rules that can be combined or omitted altogether. This method
can be used to generate diverse but semantically similar variations of a text, which can be
helpful for tasks such as data augmentation and evaluation.

• Document Level:

– Translation Based: Round-trip translation is a method of generating paraphrases using
translation models. It involves translating a word, phrase, sentence, or document into an-
other language (forward translation) and then translating it back into the source language
(back translation) [1]. This approach is based on the idea that translations of texts can be
variable due to the complexity of natural language [13], leading to multiple possibilities in
terms of word choice and sentence structure. Round-trip translation has been found to be
effective in preserving labels and producing high-quality paraphrases. When text is trans-
lated, the content is preserved while only stylistic features based on the author’s style are
excluded or changed [56]. This technique can be used to generate diverse variations of a text
while preserving its meaning, which can be helpful for tasks such as data augmentation and
evaluation.

– Generation Based:

Generative methods are becoming increasingly popular in recent data augmentation re-
search. As the capabilities of language generation have significantly improved, current mod-
els are able to create very diverse texts and can therefore incorporate new information. [55]
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introduce a variational autoencoder (VAE) based method for text generation in their system.
VAEs are probabilistic neural network structures that consist of an encoder network, which
transforms input data into a latent representation, and a decoder network, which transforms
the latent representation back into the original data space. The authors differentiate between
unconditional and conditional VAEs. With unconditional VAEs, separate text generation
models are trained for each class, while with conditional VAEs, label information is fed into
the model as an additional input. They also distinguish between sampling from the prior
distribution, which leads to highly diverse instances, and sampling from the posterior dis-
tribution, which produces text that is more semantically similar to the training data. [42]
also investigate VAEs for augmentation using the unconditional VAE and sampling from the
prior distribution. VAEs can be a powerful tool for generating diverse and semantically rich
variations of a text, which can be useful for tasks such as data augmentation and evaluation.

2.2.2 Filtering Mechanism

Filtering mechanisms are important for methods that are not perfectly label preserving. For exam-
ple, [37] use a simple mechanism of removing generated instances based on the overlap of uni-gram
words with the original equivalents. Other metrics, such as the Levenshtein distance, Jaccard similarity
coefficient, or Hamming distance, could also be used for this purpose. [69] uses a similarity discrimi-
nator, originally proposed by [51], to measure the similarity of two sentences. The generative methods
proposed by [12] filter instances using a classifier trained on the class data, which reduces the diversity
of the samples. [5] improve this approach by using embeddings to measure the quality of the generated
instances in relation to the class, and by incorporating human experts to determine the correct thresh-
old. However, [81] propose a different filtering mechanism that does not require human assistance and
is more sophisticated due to the inclusion of two perspectives. In general, [81] propose a generative
method that is suitable for increasing the dataset size for question answering tasks. Filtering mecha-
nisms can be useful for ensuring that generated instances are semantically similar to the original text
and are suitable for the intended task.

2.3 Adversarial Attacks on Text

Adversarial samples are strategically generated examples that aim to alter a deep neural network’s pre-
dictions. These samples are generated such that the modifications are imperceptible to the common user
but will make the intelligent models modify their predictions or lead them to generate erroneous pre-
dictions. The process of constructing adversarial samples to fool an AI model is known as adversarial
attacks. These type of attacks are generally used to test the robustness of an AI model. Adversarial
samples are generally constructed by modifying the test samples. Broadly text adversarial attack can be
categorized into:
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Figure 2.13: Categories of Adversarial attacks

• White Box Attacks: A white-box attack requires the access to the model’s information, including
its architecture, parameters, loss functions, activation functions, input and output data. White-box
attacks typically approximate the worst-case attack for a particular model and input, incorporating
a set of perturbations. This attack strategy is often very effective.

• Black Box Attacks: Black-box attack does not require the details of the neural networks, but can
access the input and output. This type of attacks often rely on heuristics to generate adversarial
examples, and it is more practical as in many real-world applications the details of the deep neural
nets is a black box to the attacker.

• Hard Label Attacks: Hard label attacks are derived from black box attacks. These category of
attacks do not have even the output layer distributions, but only know about the final predictions.
These type of attacks are considered the toughest to execute and are extremely challenging to
design.

2.3.1 Adversarial Attacks on common NLP Tasks

• Natural Language Inference: Natural Language Inference (NLI) [49] is a task that involves
determining the relationship between two sentences (e.g., whether one sentence is entailed by
the other). [21] sampled incorrectly classified examples and analyzed their potential sources of
errors, which were then grouped into a typology of common error types. These error types served
as the basis for constructing a stress test set to further evaluate whether NLI models can make
real inferential decisions, or if they rely on sophisticated pattern matching. Previous research
has found that current NLI models tend to identify the label by relying only on the hypothesis
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[54], and similar results have been obtained by [59], who showed that a hypothesis-only model
can outperform a set of strong baselines. [29] also asked humans to generate counterfactual NLI
examples to better understand the causal features that encourage models to learn those features.
NLI is an important task in natural language processing and understanding the potential sources
of error and the features that influence performance can help improve the performance of models.

• Question Answering: [25] proposed generating adversarial question answering examples by
concatenating an adversarial distracting sentence at the end of a paragraph. [48] constructed four
new test sets for the Stanford Question Answering Dataset (SQuAD) and found that most question
answering systems fail to generalize to this new data, suggesting the need for new evaluation
metrics to better handle natural distribution shifts. Adversarial examples and shifts in the data
distribution can be challenging for question answering systems and finding ways to better evaluate
and address these issues can improve the performance and robustness of these systems.

• Machine Translation: [6] found that character-based neural machine translation (NMT) models
are brittle under noisy data, such as typos or misspellings. Data augmentation techniques that
introduce artificially generated grammatical errors [4] or synthetic noises [67] [28] can make these
systems more robust to these types of patterns. However, [70] proposed a different approach by
limiting the input space of characters so that the models are more likely to correctly handle data
typos and erroneous spellings. These approaches aim to improve the robustness of NMT models
to noisy data, which can be important for practical applications where the input may not always
be clean and error-free.

• Natural language Generation: Existing research has found that text generation models can
be vulnerable to robustness issues, such as positional bias [27] and layout bias [34] in text sum-
marization models, and a lack of faithfulness and factuality [34]. Data-to-text models can also
generate texts that are not supported by the data [51]. [82] pointed out the limitations of current
automatic evaluation metrics and proposed new metrics to better align the quality of generation
with human judgments. These issues highlight the importance of addressing robustness in text
generation models, as well as the need for more effective evaluation methods to accurately assess
the quality of generated text.

20



Chapter 3

Adversarial Examples for Evaluating Math Word Problem Solvers

3.1 Introduction

A Math Word Problem (MWP) consists of a natural language text which describes a world state
involving some known and unknown quantities. The task is to parse the text and generate equations
that can help find the value of unknown quantities. Solving MWP’s is challenging because apart from
understanding the text, the model needs to identify the variables involved, understand the sequence of
events, and associate the numerical quantities with their entities to generate mathematical equations. An
example of a simple MWP is shown in Table 3.1. In recent years, solving MWPs has become a problem
of central attraction in the NLP community. There are a wide variety of MWPs ranging from simple
linear equations in one variable [33, 46] to complex problems that require solving a system of equations
[24, 60]. In this chapter, we consider simple MWPs which can be solved by a linear equation in one
variable.

Existing MWP solvers can be categorized into statistical learning based [23, 36] and deep learning
based solvers . However, recent deep learning based approaches [72, 78, 82] have established their su-
periority over statistical learning based solvers. Here, we will briefly review some recent MWP solvers.
Initially, [72] modelled the task of MWP as a sequence to sequence task and utilized Recurrent Neural
Nets (RNNs) to learn problem representations. Building upon this, [10] focused on learning repre-
sentations for mathematical operators and numbers, [78, 71] utilized tree structure to develop decoders
for MWP solvers. More recently, to learn accurate relationship between numerical quantities and their
attributes [82] modelled encoder as a graph structure.

All such MWP solvers have achieved high performance on benchmark datasets. However, the extent
to which these solvers truly understand language and numbers remains unclear. Prior works on various
NLP tasks have shown that Deep Neural Networks (DNNs) attend to superficial cues to achieve high
performance on benchmark datasets. Recently, [52] proposed a challenge test set called SVAMP which
demonstrate that existing MWP solvers rely on shallow heuristics to achieve high performance. Instead
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Original Problem

Text: Tim has 5 books. Mike has 7 books.

How many books do they have together?

Equation: X = 5+7

Question Reordering

Text: How many books do they have together

given that Tim has 5 books and Mike has 7 books.

Equation: X = 5*7

Sentence Paraphrasing

Text: Tim has got 5 books. There are 7 books in

Mike’s possession. How many books do they have?

Equation: X = 5*5

Table 3.1: A MWP and generated adversarial examples by our methods. Red and blue color denote the

subject and the entity respectively of numerical values.

of relying on standard accuracy metrics, many works have used adversarial examples [64, 50] to evaluate
the robustness of neural NLP models. Adversarial examples are generated by making small changes to
the original input such that the adversarial example is (1) semantically similar to the original input, (2)
is grammatically correct and fluent and (3) deceives the DNNs to generate an incorrect prediction.

In [25] authors crafted adversarial attacks to test the robustness of QA systems. Prior works in [20,
45] uses adversarial examples to show deficiencies of NLI models. Similarly, [15, 9] uses adversarial
examples to develop robust dialogue and neural machine translation models. Recently, there has been a
plethora of work [16, 2, 26, 41, 40] to evaluate text classification systems against adversarial examples.
Although adversarial examples are commonly used for various NLP tasks, there has been no work that
uses adversarial examples to evaluate MWP solvers. In this chapter, we bridge this gap and evaluate the
robustness of state-of-the-art MWP solvers against adversarial examples.

Generating adversarial attacks for MWP is a challenging task as apart from preserving textual se-
mantics, numerical value also needs to be preserved. The text should make mathematical sense, and the
sequence of events must be maintained such that humans generate the same equations from the prob-
lem text. Standard adversarial generation techniques like synonym replacement [2] are not suitable for
MWP as the fluency of the problem statement is not preserved. Similarly, paraphrasing techniques like
back-translation [43] are not ideal as they generate syntactically uncontrolled examples.
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We propose two methods to generate adversarial examples on MWP solvers, (1) Question Reorder-
ing — It transforms the problem text by moving the question part to the beginning of the problem and
(2) Sentence Paraphrasing — It paraphrases each sentence in the problem such that the semantic mean-
ing and the numeric information remains unchanged. Our results demonstrate that current solvers are
not robust against adversarial examples as they are sensitive to minor variations in the input. We hope
that our insights will inspire future work to develop more robust MWP solvers. Our contributions are as
follows:

1. To the best of our knowledge, this is the first work that evaluates the robustness of MWP solvers
against adversarial attacks. We propose two methods to generate adversarial examples on three
MWP solvers across two benchmark datasets.

2. On average, the generated adversarial examples are able to reduce the accuracy of MWP solvers
by over 40%. Further, we experiment with different type of input embeddings and perform adver-
sarial training using our proposed methods. We also conducted human evaluation to ensure that
the generated adversarial examples1 are valid, semantically similar and grammatically correct.

3.2 Proposed Approach

3.2.1 Problem Definition

A MWP is defined as an input of n tokens, P = {w1, w2..wn} where each token wi is either
a numeric value or a word from a natural language. The goal is to generate a valid mathematical
equation E from P such that the equation consists of numbers from P , desired numerical constants
and mathematical operators from the set {/, ∗,+,−}. The above problem can also be expressed as
P = {S1, S2..Sk, Q} where Q is the question, {S1, S2..Sk} are the sentences constituting the problem
description.
Let F : P → E be a MWP solver where E is the solution equation to problem P . Our goal is to craft an
adversarial text input P∗ from the original input P such that the generated sequence is (1) semantically
similar to the original input, (2) preserves sequence of events in the problem, (3) preserve numerical
values and (4) makes the MWP solver F to generate an incorrect equation E∗ for the unknown variable.
We assume a black-box setting in which we have no access to the parameters, architecture or training
data of the MWP solver. We only have access to the input text and equations generated by the solver.

3.2.2 Question Reordering

To examine whether existing MWP solvers are sensitive to the order of the question in the problem
text, we moved the question Q at the start, followed by the rest of the problem description {S1, S2..Sk}.

1Adversarial Examples and Code is available at: https://github.com/kevivk/MWP Adversarial
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Formally, given the original input P = {S1, S2...Sk, Q} we transformed this to P∗ = {Q,S1, S2...Sk}.
We keep the rest of the problem description {S1, S2..Sk} unaltered. Also, to ensure that the generated
problem text P∗ is grammatically correct and fluent, we added phrases like ”Given that” or ”If” after the
end of the question Q and before the start of the sentences {S1, S2..Sk}. An example of this is shown
in Table 3.1. We additionally, make use of co-reference resolution and named entity recognition2 to
replace pronouns with their co-referent links. Note that placing the question Q at the start rather than
any other position ensures that the generated problem P∗ has the same sequence of events as the original
problem P . Moreover, this method is better than randomly shuffling the sentences in P as it can change
the sequence of events in the problem, resulting in a completely different equation.

3.2.3 Sentence Paraphrasing

To check whether MWP solvers generate different equations to semantically similar inputs, we gen-
erate paraphrases of each sentence in the problem text. Sentence Paraphrasing ensures that solvers do
not generate equations based on keywords and specific patterns. Formally, given a problem statement
P we obtain top m paraphrases for each sentence Si as {Si,1, Si,2, ..., Si,m} and for question Q as
{Qi,1, Qi,2, ..., Qi,m} by passing it through a paraphrasing model M. For sentences with numerical
values present in them, we need to ensure that each paraphrase candidate associates the numeric values
with the same entity and subject as it is present in the original sentence Si. To ensure this, we follow the
approach used in [23] to segregate each sentence Si into entities and its subject. These are collectively
labeled as head entity hi,orig for the original sentence Si and hi,k for the paraphrase candidates Si,k.
This methodology ensures that each numeric value is still associated correctly with its attributes even
after paraphrasing.

Paraphrased sentences that do not have matching head entities for any of the numeric values are
filtered out. The remaining paraphrases of Si and question Q are combined to generate all possible
combinations of problem texts. The input combination for which the MWP solver generates an incorrect
or invalid equation is selected as the final adversarial problem text P∗. Sentence Paraphrasing generates
inputs containing small linguistic variations and diverse keywords. Therefore, it is used to evaluate
whether existing MWP solvers rely on specific keywords or patterns to generate equations. Figure 3.1
shows all the steps followed by the proposed algorithm above to generate paraphrases.

2https://spacy.io/
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Figure 3.1: Algorithm showcasing the set of steps to perform sentence paraphrasing.

3.3 Experiments

3.3.1 Datasets and Models

We evaluate the robustness of three state-of-the-art MWP solvers: (1) Seq2Seq [72] having an LSTM
encoder and an attention based decoder. (2) GTS [78] having an LSTM encoder and a tree based decoder
and (3) Graph2tree [82] consists of a both a tree based encoder and decoder. Many existing datasets
are not suitable for our analysis as either they are in Chinese [72] or they have problems of higher
complexities [24] . We conduct experiments across the two largest available English language datasets
satisfying our requirements: (1) MaWPS [33] containing 2, 373 problems (2) ASDIV-A [46] containing
1, 213 problems. Both datasets have MWPs with linear equation in one variable.

3.3.2 Experimental Setup

We trained the three MWP solvers from scratch as implemented in baseline paper [72] on the above
two datasets using 5-fold cross-validation as followed in [82]. The original accuracies obtained on the
datasets are shown in Table 2. We used [83] to generate paraphrases of each sentence in the problem
text. Same hyperparameter values were used as present in the original implementation of the paraphrase
model. We conducted a human evaluation (Section 3.4.3) to verify the quality of generated adversarial
examples.
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Dataset Evaluation Type Seq2Seq GTS Graph2Tree

MaWPS

Original 53.0 82.6 83.7

Question Reordering 18.2 32.3 35.6

Sentence Paraphrasing 10.5 22.7 25.5

ASDIV-A

Original 54.5 71.4 77.4

Question Reordering 17.5 30.5 33.5

Sentence Paraphrasing 13.2 21.2 23.8

Table 3.2: Results of MWP Solvers on adversarial examples.

3.3.3 Implementation Details

For conducting our experiments we have used two Boston SYS-7048GR-TR nodes equipped with
NVIDIA GeForce GTX 1080 Ti computational GPU’s . The number of parameters ranged from 20M to
130M for different models. Hyper-parameter values were not modified, and we follow the recommen-
dations of the respective models. We chose the number of candidate paraphrases m used in Algorithm
in Figure 3.1 to be 7. Generating adversarial examples using Question Reordering took around 3 min-
utes on average for both MaWPS and ASDiv-A dataset. Sentence Paraphrasing took around 10 minutes
on average for generation of adversarial examples on both the datasets. These experiments are not
computation heavy as the generation technique is of linear order and number of examples are moderate.

3.3.4 Results

Table 3.2 shows the results of our proposed methods. On average, the generated adversarial examples
can lower the accuracy of MWP solvers by over 40 percentage points. Across both datasets, Graph2Tree,
the state-of-the-art MWP solver achieves only 34% and 24% accuracy on Question Reordering and Sen-
tence Paraphrasing respectively. Sentence Paraphrasing is around 10 percentage points more successful
in attacking MWP solvers than Question Reordering. These results verify our claim that current MWP
solvers are sensitive to small variations in the input. Table 1 shows an MWP problem and its adversarial
counterparts generated by our method.
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Dataset Evaluation Type Seq2Seq GTS Graph2Tree

MaWPS

Adv (Question Reordering) 32.4 52.3 54.9

Adv (Sentence Paraphrasing) 27.6 40.7 42.3

BERT (Question Reordering) 45.3 63.0 65.6

BERT (Sentence Paraphrasing) 32.5 43.5 45.5

ASDIV-A

Adv (Question Reordering) 34.5 48.4 54.8

Adv (Sentence Paraphrasing) 28.8 31.6 33.0

BERT (Question Reordering) 41.3 59.8 62.7

BERT (Sentence Paraphrasing) 30.6 40.0 42.6

Table 3.3: Accuracy of MWP solvers with adversarial training on our proposed methods. Adv and

BERT represent models trained from scratch and BERT embeddings respectively.

3.4 Analysis

3.4.1 BERT Embeddings

We trained the solvers using pre-trained BERT embeddings and then generated adversarial examples
against them using our proposed methods. Results obtained are shown in Table 3.3. We see that using
BERT embeddings, the original accuracy of MWP solvers increases by 5 percentage points, and they
are more robust than solvers trained from scratch. Specifically, these solvers do well against Question
Reordering because of the contextualized nature of BERT embeddings, but for examples generated
using Sentence Paraphrasing methods these models do not perform well. However, on average, our
adversarial examples can lower the accuracy by 30 percentage points on both datasets.

3.4.2 Adversarial Training

To examine the robustness of MWP solvers against our attacks, we generated adversarial examples
on the training set of both the datasets using our proposed methods and then augmented the training
sets with the generated adversarial examples. We then retrained the MWP solvers and again attacked
these solvers using our methods. Table 3 shows that the MWP solvers become more robust to attacks.
Specifically, the solvers perform well against Question Reordering but are still deceived by Sentence
Paraphrasing. Nevertheless, our proposed attack methods are still able to lower the accuracy of MWP
solvers by 25 percentage points.
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3.4.3 Human Evaluation

To verify the quality and the validity of the adversarial examples, we asked human evaluators (1)

To check if the paraphrases will result in the same linear equation as that of the original problem, (2)
Evaluate each adversarial example in the range 0 to 1 to check its semantic similarity with the original
problem and (3) On a scale of 1 to 5 rate each adversarial example for its grammatical correctness. We
also explicitly check for examples which do not satisfy our evaluation criteria and manually remove
them from adversarial examples set. Three different human evaluators evaluate each sample, and the
mean results are shown in Table 3.4.

Evaluation criteria MaWPS ASDIV-A
Same Linear Equation 85.7% 86.2%
Semantic Similarity 0.88 0.89

Grammatical Correctness 4.55 4.63

Table 3.4: Human Evaluation scores on MaWPS and ASDiv-A datasets.

3.5 Conclusion

Standard accuracy metrics have shown that Math Word Problem (MWP) solvers have achieved high
performance on benchmark datasets. However, the extent to which existing MWP solvers truly un-
derstand language and its relation with numbers is still unclear. In this paper, we generate adversarial
attacks to evaluate the robustness of state-of-the-art MWP solvers. We propose two methods Question
Reordering and Sentence Paraphrasing to generate adversarial attacks. We conduct experiments across
three neural MWP solvers over two benchmark datasets. On average, our attack method is able to reduce
the accuracy of MWP solvers by over 40 percentage points on these datasets. Our results demonstrate
that existing MWP solvers are sensitive to linguistic variations in the problem text. We verify the valid-
ity and quality of generated adversarial examples through human evaluation.

The experiments in this paper showcase that NLP models do not understand MWP entirely and are
not robust enough for practical purposes. Our work encourages the development of robust MWP solvers
and techniques to generate adversarial math examples. We believe that the generation of quality MWP’s
will immensely help develop solvers that genuinely understand numbers and text in combination. Future
works could focus on creating more such techniques for adversarial examples generation and making
robust MWP solvers.
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Chapter 4

Data Augmentation for Math Word Problem Solvers

4.1 Introduction

In recent years, the challenge of solving MWP has gained much attention in the NLP community
as it needs the development of commonsense multi step reasoning with numerical quantities. With the
rise of deep learning, performance of math solvers has also increased significantly over the years [72,
82]. However, recent analysis conducted in [52] show that these deep learning based solvers rely on
shallow heuristics to solve vast majority of problems. They curated adversarial examples and SVAMP
challenge set respectively to infer that MWP solvers (1) do not understand the relationship between
numbers and their associated entities, (2) do not focus on the question text and (3) ignore word order
information. In this chapter, we first conduct experiments to establish that the above drawbacks are due
to the limited size and diversity of problems present in the existing MWP datasets. Next, we propose
various augmentation methods to create diverse and large number of training examples to mitigate these
shortcomings. Our methods are focused on: (1) Increasing the number of problems in the existing
datasets and (2) enhancing the diversity of the problem set.

Training deep neural models effectively requires large number of data points [38]. Constructing large
datasets which are annotated, labeled and have MWPs of similar difficulty level is a very expensive and
tedious task. To address these key challenges, we resort to data augmentation techniques. Our motiva-
tion behind generating augmentations is that humans require sufficient practice to understand MWPs.
Humans learn to solve MWPs by going through a variety of similar examples and slowly become capa-
ble enough to tackle variations of similar difficulty levels. We aim to generate augmentations such that
sufficient linguistic variations of a similar problem are present in the dataset. These variations will make
the solver more robust in tackling MWP, increase their reasoning ability and numerical understanding.

Data augmentation for MWPs is a challenging task as we need to preserve the equation labels while
generating new samples. The generated samples should be (1) semantically similar to their original
counterpart, (2) must have the same numerical values and preserve relationship with their respective
entities and (3) should maintain the same sequence of events in the problem text. Existing augmentation
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Original Problem

Problem: Nancy grew 8 potatoes. Sandy grew 5 potatoes.How many potatoes did they grow in total ?

True Equation: X = 8+5

Paraphrasing Method

Problem: How many potatoes did they grow in all given that nancy grew 8 potatoes and sandy grew 5 potatoes.

Equation Label: X = 8+5

Substitution Method

Problem: Dwight grew 8 potatoes. Juliette grew 5 potatoes.

How many potatoes did they grow together ?

Equation Label: X = 8+5

Table 4.1: A MWP and its augmentation examples generated by our methods with preserved equation

labels. Blue and Violet colours denote the changes made after the primary stage and secondary stage

respectively.

methods [73] cannot be directly applied due to the above mentioned reasons. Our methods can be
broadly classified as follows:

• Paraphrasing Methods: It generates variations of the question text by re-statement such that the
semantic and syntactic meaning along with the equation labels is preserved.

• Substitution Methods: These methods generate variations of the problem statement by identi-
fying and substituting some of the keywords such that the augmentations are semantically and
syntactically correct.

To ensure high quality augmentations, we propose a selection algorithm which selects samples that have
high similarity with original problem and incur high loss values when tested on existing solvers. This
algorithm helps selecting only those samples that can make existing solvers more robust. Further, we
also verify the validity and the quality of generated augmentations through human evaluation.

Most of the existing MWP datasets are either in languages other than English or contain problems
of varying difficulty levels [33, 72, 24, 3, 46]. We focus on strengthening existing English language
datasets which can facilitate the development of better MWP solvers. We consider datasets containing
MWP that can be solved using linear equations in one variable. These datasets include MaWPS [33] and
ASDiv-A [46] both having 2, 373 and 1, 213 problems respectively. Following are the key contributions
made in this chapter:

30



• To the best of our knowledge, this is the first work that extensively evaluates data augmentation
techniques for MWP solving. This is the first attempt to generate MWP problems automatically
without manual intervention.

• Accuracy of the state of the art solvers increases after training on the proposed augmented dataset.
This demonstrates the effectiveness of our methods. To verify the validity of generated augmen-
tations we conduct human evaluation studies.

• We increase the diversity of the training dataset through augmentations and obtain comparatively
better results than state-of-the-art solvers on the SVAMP challenge set.

4.2 Related Work

Text Data Augmentation: To effectively train deep learning models, large datasets are required. Data
augmentation is a machine learning technique that artificially enlarges the amount of training data by
means of label preserving transformations [66]. [38] hypothesize that textual data augmentation would
only be helpful if the generated data contains new linguistic patterns that are relevant to the task and have
not been seen in pre-training. In NLP, many techniques have been used for generating augmentations,
[73] introduced noise injection, deletion, insertion and swapping of words in text. [59] used recurrent
neural networks and generative adversarial networks for short-text augmentation. Other frequently used
methods include inducing spelling mistakes [6], synonym replacement [84], identifying close embed-
dings from a defined search space [2], round trip translations [61], paraphrasing techniques [35] and
words predicted by language model [31] among many others. These methods are specific to the task at
hand and needs to be adapted such that the generated augmentations bring diversity in the concerned
dataset.

4.3 Proposed Augmentation Approach

Data augmentation generates new data by modifying existing data points through transformations
based on prior knowledge about the problem domain. We introduce carefully selected transformations
on well known text augmentation techniques to develop examples suited for the task of MWP. These
transformations help in increasing the diversity and size of problem set in existing datasets.

4.3.1 Problem Definition

A MWP is defined as an input of n tokens, P = {w1, w2..wn} where each token wi is either a
numeric value or a word from a natural language. The goal is to generate a valid mathematical equation
EP from P such that the equation consists of numbers from P , desired numerical constants and math-
ematical operators from the set {/, ∗,+,−,=, (, )}. Let F : P → EP be an MWP solver where EP is
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Dataset Eval Type Seq2Seq GTS Graph2Tree

MaWPS

True 84.6 87.5 88.7

Word Deletion 80.2 81.5 77.3

Question Reordering 77.4 82.0 80.2

Sentence Shuffling 77.0 60.4 66.4

Word Reordering 54.9 34.8 39.3

ASDiv-A

True 70.6 80.3 82.7

Word Deletion 60.2 61.3 56.7

Question Reordering 58.7 52.4 54.1

Sentence Shuffling 56.2 59.3 60.7

Word Reordering 47.1 32.3 34.6

Table 4.2: Performance of solvers on modified test sets. True represents unaugmented test set.

the equation to problem P . Our task is to generate augmented problem statement P∗ from the original
input P such that P∗ is: (1) semantically similar to the initial input P , (2) preserves the sequence of
events in the problem statement, (3) keeps the numerical values intact and (4) the solution equation is
same as EP .

4.3.2 Deficiencies in Existing Models

As showcased by [52], existing MWP solvers trained on benchmark datasets like MaWPS and
ASDiv-A focus their attention only on certain keywords in the problem statement and do not pay much
heed to the question text. We further show that even after performing significant transformations on
the test set such as (1) dropping the question text, (2) randomly shuffling the sequence of sentences,
(3) random word deletion, and (4) random word reordering, the solvers are still able to produce correct
equations. Upon introducing these transformations we should expect a very high drop in accuracy values
as the transformed problems are now distorted. Surprisingly, the decrease in accuracy scores is relatively
very less than expected as shown in Table 4.2. We only observe a relatively moderate drop for word re-
ordering. From this analysis, we can say that instead of focusing on the sequence of events, question text
and semantic representation of the problem, solvers pick word patterns and keywords from the problem
statement. We hypothesize that the drop in accuracy for word reordering experiment indicates that the
solvers try to identify a contiguous window of words having some keywords and numbers in them, and
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generates equation based on these keywords. We further probe on this hypothesis by visualizing the
attention weights in the experiment section.

4.3.3 Augmentation Methods

A MWP can also be expressed as P = (S1, S2..Sk, Q) where Q is the question and (S1, S2..Sk)

are the sentences constituting the problem description. To mitigate the deficiencies in MWP solvers,
we propose a two stage augmentation paradigm consisting of primary and secondary stage. In primary
stage, we generate base augmentation candidates which then proceed to the secondary stage and get
modified accordingly to become potential candidates. After identifying the potential candidates, we
filter out the best candidates using proposed candidate selection algorithm. Table 4.1 shows changes in
MWP after primary and secondary stage. Following are the details:
Primary Stage: In the primary stage, our focus is on inducing variations in the question text Q of a
given problem statement P . For this, we first generate n base candidates {b1, b2, ..., bn} from Q using
T5 paraphrasing model [57]. The key intuition behind this step is to ensure that each augmentation of
a given problem has a different question text. This will empower the solver to learn variations from the
question text as well.
Secondary Stage: After the generation of base candidates, we implement augmentation methods to
generate potential candidates. These methods although well known, require careful tuning to adapt for
MWP generation. Table 4.3 showcases MWP examples and their generated augmentations. Detailed
description of these techniques follow.

4.3.3.1 Paraphrasing Methods

Paraphrasing has proved to be an effective way of generating text augmentations [74]. It generates
samples having diverse sentence structures and word choices while preserving the semantic meaning
of the text. These additional samples guide the model to pay attention to not only the keywords but its
surroundings as well. This is particularly beneficial for the task of MWP solving, where most of the
problem statements follow a general structure.
Problem Reordering: Given original problem statement P = (S1, S2, ...Sk, Q), we alter the order of
problem statement such that P∗ = (Q,S1, S2, ..., Sk). To preserve the semantic and syntactic meaning
of problem statement we use filler phrases like ’Given that’ and ’If-then’. To make these paraphrases
more fluent, we use named entity recognition and co-reference resolution to replace the occurrences
of pronouns with their corresponding references. Please note that this method is better than random
shuffling of sentences as it preserves the sequence of events in the problem statement.
Round Trip Translations: Round trip translations, more commonly referred as back-translation [76]
is an interesting method to generate paraphrases. This idea has evolved as a result of the success of
machine translation models [75]. In this technique, sentences are translated from their original language
to foreign languages and then translated back to the original language. This round trip can be between
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Category Augmentation Method Example

Paraphrasing

Methods

Round trip Translation
Original: The schools debate team had 4 boys and 6 girls on it. If they were

split into groups of 2, how many groups could they make ?

Augmented: The school discussion group consisted of 4 boys and 6 girls. If

they are divided into groups of 2 . How many groups could they have created ?

Problem Reordering
Original: Lucy has an aquarium with 5 fish . She wants to buy 1 more fish .

How many fish would Lucy have then ?

Augmented: If lucy has an aquarium with 5 fish and she wants to buy 1 more

fish then how many fish would lucy have ?

Substitution

Methods

Fill Masking
Original: There are 8 walnut trees currently in the park . Park workers will

plant 3 more walnut trees today . How many walnut trees will the park have

when the workers are finished ?

Augmented: There are 8 walnut trees currently in the park . Park workers will

plant 3 more walnut trees soon . How many walnut trees will the park have

after the workers are finished ?

Named-Entity Replacement
Original: Sally found 7 seashells , Tom found 12 seashells , and Jessica found

5 seashells on the beach . How many seashells did they find together ?

Augmented: Edd found 7 seashells , Alan found 12 seashells , and Royal

found 5 seashells on the beach . How many seashells were found together ?

Synonym Replacement
Original: Katie ’s team won their dodgeball game and scored 25 points total .

If Katie scored 13 of the points and everyone else scored 4 points each , how

many players were on her team ?

Augmented: Katie’s group won their rumble game and scored 25 points total

. If Katie scored 13 of the points and all else scored 4 points each, How many

players was on her group ?

Table 4.3: Augmentation examples from all proposed methods. Coloured text represents the changes in

problem statement.
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multiple languages as well. The motivation behind using this technique is to utilize the different struc-
tural constructs and linguistic variations present in other languages.
Back-translation is known to diverge uncontrollably [65] for multiple round trips. This may lead to
change in the semantics of the problem statement. Numerical quantities are fragile to translations and
their order and representation may change. To overcome these challenges, we worked with languages
that have structural constructs similar with English. For instance, languages like Finnish which are
gender neutral, can become problematic as they can lead to semantic variance in augmented examples.
To preserve numerical quantities, we replace them with special symbols and keep a map to restore
numerical quantities in the generated paraphrases. We have used the following round trips:

English - Russian - English: Although Russian is linguistically different from English, we still chose it
as word order does not affect the syntactic structure of a sentence in Russian language [68]. For single
round trip, we preferred Russian as it has the potential to generate different paraphrase structures.

English - German - French - English: German and French are structurally similar to English language
[30], we chose them for multiple round trips to both maintain semantic in-variance and induce minor
alterations in the paraphrases.

4.3.3.2 Substitution Methods

In this class of methods, the focus is on generating variations of the problem statement by identifying
and substituting some of the keywords such that the augmentations are semantically and syntactically
correct, with the equation labels preserved. Substitution is effective for MWP solving as it guides the
solvers focus away from certain keywords, allowing it to distribute its attention and generalize better.
We propose the following methods:
Fill-Masking: In this technique, we model the challenge of generating candidates as a masked lan-
guage modelling problem. Instead of randomly choosing words for masking, we use part of speech tags
to focus on nouns and adjectives, preferably in the vicinity of numerical quantities. We replace these
identified keywords with mask tokens. These masked candidate sentences are then passed through a
masked language model [14] and suitable words are filled in masked positions to generate our candidate
sentences.
Synonym Replacement: In this method, after stop-word removal, we select keywords randomly for
substitution. Unlike fill-mask technique, where masked language models were deployed, here we use
Glove embeddings [53] to find the top k candidates that are close synonyms of the keywords. To ensure
syntactic correctness in candidate sentences, we maintain the part of speech tags for the substitute can-
didates. These synonyms are then used to substitute the keywords in the problem statement and generate
augmented candidates.
Named-Entity Replacement: A common occurrence in MWP is the usage of named entities. These
entities play a crucial role in stating the problem statement, but the solution equations do not change
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on altering these entities. Following this insight, we first identify the named entities1 such as person,
place and organizations present in the problem statement. Then we replace these named entities with
their corresponding substitutes, like a person’s name is replaced by another person’s name to generate
the potential candidates.

Table 4.4 reports the statistics of augmented datasets on both MaWPS and ASDiv-A. All the tech-
niques described in paraphrasing and substitution methods are used for generating the potential candi-
dates for a problem statement. After generation of the potential candidates for augmenting a problem
statement, the best possible candidate is selected by using the algorithm depicted in figure 4.1. Key mo-
tivation behind developing this algorithm is to select candidates on which the solver does not perform
well and which are similar to the original problem statement.

We use negative log likelihood as the loss function L and Sentence-BERT [58] fine tuned on MWP
equation generation task as sentence embedding generator S. We calculate the similarity of each can-
didate embedding with the original problem representation using cosine similarity as shown in Line
3 of the algorithm. Further, for each candidate sentence, we evaluate their loss values and select the
candidate with the maximum mean normalized loss and similarity score.

Dataset Problem Size Vocabulary Size

MaWPS 2,373 2,632

ASDiv-A 1,213 2,893

Paraphrase 5,909 3,832

Substitution 6,647 3,923

Combined-MaWPS 10,634 5,626

Combined-ASDiv 5,312 6,109

Table 4.4: Statistics of augmented dataset compared with MaWPS and ASDiv-A. Combined-Dataset

represents combination of Paraphrase and Substitution methods.

4.4 Experiments

Datasets and Models: To showcase the effectiveness of proposed augmentation methods, we select
three state-of-the-art MWP solvers: (1) Seq2Seq [72] having an LSTM encoder and an attention based

1https://www.nltk.org/
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Figure 4.1: Algorithmic steps showcasing the procedure for performing candidate selection algorithm.

decoder. (2) GTS [78] having an LSTM encoder and a tree based decoder and (3) Graph2tree [82] con-
sists of a both tree based encoder and decoder. Seq2Seq serves as our base model for experimentation.
Many existing datasets are not suitable for our analysis as either they are in Chinese [72] or they have
problems of higher complexities [24] . We conduct experiments across the two largest available English
language datasets satisfying our requirements: (1) MaWPS [33] containing 2, 373 problems (2) ASDiv-
A [46] containing 1, 213 problems. Both datasets have MWPs with linear equation in one variable.

Experiment Setup: We train and evaluate the three solvers on both MaWPS and ASDiv-A using five
fold cross validation. Evaluation is conducted on both original and augmented datasets. We use the same
hyperparameter values as recommended in the original implementation of these solvers. Further, each
solver has been trained from scratch and by using BERT embeddings [14]. We also evaluate the models
on SVAMP [52] challenge set. This test set has been designed specifically to examine the robustness and
adaptability of the solvers. Ablation studies have been conducted to assess the effectiveness of candidate
selection algorithm and augmentation techniques.

4.4.1 Results and Analysis

Table 4.5 shows the result of proposed methods. These results have been reported on BERT em-
beddings. Table 4.11 shows a comparison between training from scratch and using BERT embeddings.
By training these state-of-the-art models on the augmented dataset we achieve better results for both
MaWPS and ASDiv-A. On average, we were able to increase the accuracy significantly by more than
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Dataset Eval Type Seq2Seq GTS Graph2Tree

MaWPS

True 84.6 87.5 88.7

Paraphrasing 88.3 90.4 92.6

Substitution 89.2 89.7 91.7

Combined 91.3 92.6 93.5

ASDiv-A

True 70.6 80.3 82.7

Paraphrasing 75.6 84.2 83.6

Substitution 73.2 83.3 84.1

Combined 78.2 85.9 86.3

Table 4.5: Results of augmentation methods. True is unaugmented dataset, Combined is combination

of Paraphrasing and Substitution methods.

Problem 1: Ricardo was making baggies of cookies with 5 cookies in each bag. If he had 7 chocolate chip

cookies and 3 oatmeal cookies, how many baggies could he make ?

Solution Equation: X = (7+3)/5

Pre Augmentation Equation: X = (7/3)/3

Post Augmentation Equation: X = (7+3)/5

Problem 2: For halloween Destiny bought 9 pieces of candy. She ate 3 pieces the first night and then her sister

gave her 2 more pieces. How many pieces of candy does Destiny have now ?

Solution Equation: X = 9-3+2

Pre Augmentation Equation: X = ((9+3-3

Post Augmentation Equation: X = (9+3-2)

Problem 3 : Audrey needs 6 cartons of berries to make a berry cobbler. She already has 2 cartons of strawberries

and 3 cartons of blueberries. How many more cartons of berries should Audrey buy ?

Solution Equation: X = 6-2-3

Pre Augmentation Equation: X = (6-(2)+3)

Post Augmentation Equation: X = 6-(2+3)

Table 4.6: Examples illustrating equation results before and after training on the full augmented dataset.
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five percentage points. Both paraphrasing and substitution methods have performed well independently
and in combination. Further, we conduct ablation studies to analyze the performance of each augmen-
tation method. In Table 4.6 we illustrate some examples on which existing models generate incorrect
equations. However, after being trained with augmented dataset they generate correct equations. Addi-
tionally, in Problem 2 the base model generates syntactically incorrect solution, but post augmentation
it generates syntactically correct equation. These examples show the increased robustness and solving
abilities of solvers.

Attention Visualizations: Through this investigation, we aim to ascertain our hypothesis that to gen-
erate equations MWP solvers focus only on certain keywords and patterns in a region. They ignore
essential information like semantics, sequence of events and content of the question text present in the
problem statement. In Table 4.7, we show some sample problem statements with their attention weights.
These weights are generated during the decoding process using Luong attention mechanism [39]. More-
over, to illustrate the effectiveness of our augmentation techniques, we show the distribution of attention
weights for models trained on the augmented dataset. We can infer from the examples showcased in
Table 4.7 that before augmentation the focus of the solver is limited to a fixed region around numerical
quantities and it does not pay heed to the question text. However, after training on the augmented dataset
the solver has a better distribution of attention weights, the weights are not localised and and the model
is also able to pay attention on the question text.

Ablation Studies: To assert the effectiveness of our methods, we conduct the following ablations:

• Candidate Selection Algorithm: For testing the usefulness of candidate selection algorithm, we
compare it with a random selection algorithm. In this, we randomly select one of the possible
candidates as augmented problem statement. We evaluate the accuracy of models trained on the
augmented datasets, generated using both the algorithms.Result in Table 4.8, shows that candidate
selection algorithm performs better than random selection algorithm and this demonstrates the
effectiveness of our algorithm.

• Augmentation Methods: To examine the effectiveness of proposed augmentation techniques, we
evaluate the models on each of the proposed techniques independently and report the results in
Table 4.9. Although, all the methods contribute towards increase in accuracy but Round trip
translations and synonym replacement perform marginally better than others. This behaviour
can be linked to the structural diversity and keyword sensitivity that round trip translations and
synonym replacement bring respectively [18].

SVAMP Challenge Set: SVAMP [52] is a manually curated challenge test set consisting of 1, 000 math
word problems. These problems have been cherry picked from MaWPS and ASDiv-A, then altered
manually to modify the semantics of question text and generate additional equation templates. This
challenge set is suitable for evaluating a solver’s performance as it modifies problem statements such
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Original Problem: A magician was selling magic card decks for 2 dollars each . If he started with 25 decks and

by the end of the day he had 4 left, how much money did he earn ?

Mean attention values: 0.34 0.11 0.09

Augmented Problem: A magician was selling magic card decks for 2 dollars each. If he started with 25 decks and

by the end of the day he had 4 left, how much money did he earn ?

Augmented mean attention values : 0.19 0.18 0.15

Original Problem: There are 18 pencils in the drawer and 6 pencils on the desk. Dan placed 4 pencils on the desk.

How many pencils are now there in total ?

Mean attention values: 0.21 0.16 0.06

Augmented Problem: There are 18 pencils in the drawer and 6 pencils on the desk. Dan placed 4 pencils on the desk.

How many pencils are now there in total ?

Augmented mean attention values : 0.29 0.19 0.12

Original Problem: Dan has 12 violet marbles, he gave Mary 4 of the marbles .How many violet marbles

does he now have ?

Mean attention values: 0.23 0.21 0.17

Augmented Problem: Dan has 12 violet marbles , he gave Mary 4 of the marbles. How many violet marbles

does he now have ?

Augmented mean attention values : 0.23 0.18 0.11

Original Problem: Angela has 7 tickets. Annie gives Angela 5 more . How many tickets does Angela have in all ?

Mean attention values: 0.30 0.19 0.15

Augmented Problem: Angela has 7 tickets. Annie gives Angela 5 more . How many tickets does Angela have in all ?

Augmented mean attention values : 0.29 0.21 0.14

Original Problem: Maria had 5 bottles of water in her fridge . If she drank 1 of them and then bought 2 more,

how many bottles would she have ?

Mean attention values: 0.48 0.14 0.04

Augmented Problem Maria had 5 bottles of water in her fridge . If she drank 1 of them and then bought 2 more ,

how many bottles would she have ?

Augmented mean attention values : 0.23 0.17 0.11

Table 4.7: Examples illustrating distribution of top three attention weights before and after training on

the full augmented dataset.
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Method Evaluation Type Seq2Seq GTS Graph2Tree

Random Selection Algorithm

True 84.6 87.5 88.7

Paraphrasing 85.3 88.1 89.2

Substitution 86.8 87.3 87.9

Combined 87.0 89.2 89.5

Candidate Selection Algorithm

True 84.6 87.5 88.7

Paraphrasing 88.3 90.4 92.6

Substitution 89.2 89.7 91.7

Combined 91.3 92.6 93.5

Table 4.8: Ablation Study for Random Selection Algorithm and Candidate Selection Algorithm.

that solver’s generalization can be checked. The results are shown in Table 4.10. Although, our proposed
augmented dataset has very limited equation templates, still it performs comparatively better than state-
of-the-art models on SVAMP challenge set. This result signifies the need for a larger and diverse dataset
with enhanced variety of problems. Further, it demonstrates the effectiveness of our method which is
able to perform better on SVAMP test set and increase model’s accuracy despite the challenges.

BERT Embeddings: We train the solvers in two different settings, using pre-trained BERT base em-
beddings and training from scratch. We chose BERT specifically as we require contextual embeddings
which could be easily adapted for the task of MWP. Moreover, existing models have also shown results
using BERT and it would be fair to compare their performances when trained using similar embeddings.
Results obtained are shown in Table 4.11. We observe that for solver’s trained using BERT, accuracy is
higher than models trained from scratch.

Human Evaluation: To verify the quality of augmented examples, we conduct human evaluation. The
focus of this evaluation is: (1) To check if the augmentations will result in the same linear equation as
present in the original problem statement, (2) To evaluate if the numerical values for each augmentation
example is preserved, (3) Evaluate each sample in the range 0 to 1 for its semantic similarity with the
original problem statement, (4) On a scale of 1 to 5 rate each augmented example for its grammatical
correctness. We conduct the human evaluations on randomly shuffled subsets consisting of around 40%

of the total augmented examples for both the datasets. This process is repeated three times with different
subsets, five human evaluators evaluate each example in all subsets, and the mean results are computed
as shown in Table 4.12.
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Augmentation Seq2Seq GTS Graph2Tree

True 84.6 87.5 88.7

Round trip Translations 86.5 89.1 91.6

Problem Reordering 85.9 88.4 90.7

Fill Masking 84.8 87.2 89.1

Synonym Replacement 85.2 90.1 91.2

Named Entity Replacement 86.1 88.3 89.7

Table 4.9: Result of Ablation study for each augmentation method. True represents unaugmented

MaWPS dataset.

Augmentation Seq2Seq GTS Graph2Tree

True 37.5 39.6 41.2

MaWPS(P+S) 39.2 40.1 42.3

ASDiv-A(P+S) 37.8 40.4 42.1

Combined 40.2 41.3 43.8

Table 4.10: Result of augmentations on SVAMP Challenge Set. P and S represent paraphrasing and sub-

stitution methods. Combined represents augmented MaWPS and ASDiv-A. True is combined MaWPS

and ASDiv-A.

4.5 Future Work and Conclusion

We showcase that the existing MWP solvers are not robust and do not generalize well on even simple
variations of the problem statement. In this paper, we first conduct experiments to showcase that this
behaviour is mainly associated with the limited size and diversity present in existing MWP datasets.
Next, we propose several data augmentation techniques broadly categorized into Substitution and Para-
phrasing based methods. By deploying these methods we increase the size of existing datasets by five
folds. Extensive experiments on two benchmark datasets across three state-of-the-art MWP solvers
shows that proposed methods increase the generalization and robustness of existing solvers. On aver-
age, proposed methods significantly increase the state-of-the-art results by over five percentage points
on benchmark datasets. Further, the solvers trained on the augmented dataset performs comparatively
better on the challenge test set. We also show the effectiveness of proposed techniques through ablation
studies and verify the quality of augmented samples through human evaluation. Future works could
focus on developing techniques to generate data artificially and making robust MWP solvers.
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Augmentation

Method

MaWPS ASDiv-A

Scratch BERT Scratch BERT

True 77.2 84.6 53.2 70.6

Paraphrasing 79.8 88.3 58.1 75.6

Substitution 81.3 89.2 57.3 73.2

Combined 82.7 91.3 60.4 78.2

Table 4.11: Performance comparison of baseline model trained from scratch and trained using BERT

embeddings. True represents unaugmented dataset.

Evaluation

Criteria

MaWPS ASDiv-A

Para Sub Para Sub

Preserves Equation 92.3% 89.5% 93.6% 90.1%

Preserves Numbers 88.4% 91.2% 87.3% 90.3%

Semantic Similarity 0.96 0.89 0.91 0.87

Syntactic Similarity 4.67 4.36 4.59 4.33

Table 4.12: Human Evaluation scores on augmentated dataset. Para and Sub represents paraphrasing

and substitution methods respectively.
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Chapter 5

Conclusion and Future Works

The proposed methods and experiments in this work showcase that the existing math word solvers do
not understand a math problem statement entirely and they are not robust enough for practical purposes.
We devised automated adversarial attacks of high quality by utilizing and adjusting several key NLP
techniques to fit our domain. Performance of existing solvers on these attacks showed a massive drop of
40 percent points. To understand the causes, why a solver is unable to perform well on the adversarial
attacks, we conduct some experiments and based on the results of these experiments we hypothesize that
the solvers do not pay heed to the question text, they are over-fitting to text in the vicinity of numerical
quantities, and they are unable to generate new templates if the structure of the problem statement is
modified. To counter this issue, we introduced several data augmentation techniques which focus on
enhancing the diversity and overall size of the training dataset. These augmentations are curated auto-
matically by ensuring that domain constraints are preserved. By performing training on the augmented
datasets we observe an overall increase in the performance of existing solvers by 5 percent points on av-
erage. Also, on average the performance has now improved by 25 percent points on adversarial attacks.

With the advent of pretrained models, we believe that solvers will now be able to tackle word problems
of higher complexities as well [11]. However, developing a fine tune dataset of considerable size is
still a challenging task. Some of the approaches that can be used is by focusing on generating diversity
rewrites for existing problem statements and ensuring that the solution expression still remains same.
Further, we should also have a closer look at similarity measures for comparing two word problems.
Another major area of focus could be on developing a unified metric which can rate the solution ex-
pressions generated by the solvers. We should induce mechanisms which can differentiate between a
partially incorrect generation and mathematically incorrect generations as well.

To conclude this work tackles the task of enhancing the diversity and data size of math word datasets.
The focus is to develop more robust and generalized math word solvers.
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[79] Z. Xie, S. I. Wang, J. Li, D. Lévy, A. Nie, D. Jurafsky, and A. Y. Ng. Data noising as smoothing in neural

network language models, 2017.

[80] M. Xu, S. Yoon, A. Fuentes, and D. S. Park. A comprehensive survey of image augmentation techniques

for deep learning, 2022.

[81] Y. Yang, C. Malaviya, J. Fernandez, S. Swayamdipta, R. Le Bras, J.-P. Wang, C. Bhagavatula, Y. Choi,

and D. Downey. Generative data augmentation for commonsense reasoning. In Findings of the Associa-

tion for Computational Linguistics: EMNLP 2020, pages 1008–1025, Online, Nov. 2020. Association for

Computational Linguistics.

[82] J. Zhang, L. Wang, R. K.-W. Lee, Y. Bin, Y. Wang, J. Shao, and E.-P. Lim. Graph-to-tree learning for solving

math word problems. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 3928–3937, Online, July 2020. Association for Computational Linguistics.

[83] J. Zhang, Y. Zhao, M. Saleh, and P. Liu. Pegasus: Pre-training with extracted gap-sentences for abstractive

summarization. In International Conference on Machine Learning, pages 11328–11339. PMLR, 2020.

[84] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification, 2016.
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