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Abstract

In developing the infrastructure facilities such as irrigation canals and road networks, topography
acts as a significant enabler or constraint. Contour maps and low resolution DEMs have been used
by Irrigation engineers and planners to assess the canal routing options which is time consuming and
requires repeated evaluations. So, there is a need to develop robust path planning algorithms, including
least cost routing, that takes the topographic and engineering constraints while providing potential canal
routing paths. Some recent works have attempted to develop algorithms on synthetic data sets but have
not been scaled up on high-resolution data sets, limiting their practical use. This article discusses the
problem of canal route analysis and proposes a least-cost route model (LCRM) for canals between two
points, given the grid-based Digital Elevation Models (DEMs), a unit cost of construction per length,
cost of lift to raise water along the surface of the terrain up to a height of 10 meters, set of coordinates
the resultant flow needs to pass-through.

This work develops two generic models namely, Gravitational Flow Model (GFM) where the flow
is unidirectional and under the force of gravity; and Lift Based Flow Model (LBFM) where anti-
gravitational force or pumping is used to lift the water along the surface of the terrain. We present
an optimised version of Lift based flow model as well to reduce the number of computations. By im-
plementing and verifying the algorithms on real-world data sets, the correctness of these algorithms
will be based on the Digital Chart of the World (DCW) data sets. The algorithm correctness values for
1KM resolution stand at 82.10%, whereas for 90 meters resolution stands at 82.08%. The average value
stands out to be 82.09% proving that both the GFM and LBFM algorithms are very effective in practice.

The study also advances the problem of LCRM by introducing a more complex problem that balances
cost and distance considerations that is a trade-off between the cost and the distance. Multiple use-cases
will be examined to explore this problem and establish its boundaries. The results of the trade-off
between the cost and the distance show that for various cases of the terrain and the spatial scale of the
data, the patterns tend towards the elliptical bounds, though they can have different patterns at some
other parametric combinations.
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Chapter 1

Introduction

The construction of canals and roads is one of the most commonly utilized utility infrastructure ser-
vices in the world. Topography often acts as a significant constraint when planning potential routes for
canals and roads. While traditionally contour based path planning was done, in the last few decades the
availability of Digital Elevation Models has helped to understand the terrain features better and is well
suited for computational models. A gridded Digital Elevation Model (DEM) is a common format for
digital representation of terrain elevation. It is widely used to extract hydrological and geomorphologi-
cal information for numerous purposes, such as flow direction, flow accumulation, and stream network
delineation, etc. [3, 21, 23, 24, 15].

There are two approaches for evaluating the flow path from the DEM: the single-flow direction
method and the multiple-flow direction method. In the single-flow direction method, each cell only
drains to one neighboring cell based on the principle of steepest slope. The D8 method, which uses
the descent direction as a flow direction for a cell, is the most widely adopted single-flow direction
method. In the multiple-flow direction method, each cell can flow to more than one neighboring cell
that is at a lower elevation than the current cell. While the most common application of a DEM may
be drainage and watershed modelling, the DEMs can be used for many other applications like viewshed
analysis, cut and fill volume estimation and other engineering works. One such engineering application
of significance is the routing of canal to move the water for irrigation and other purposes. Irrigation
canals are not just routing problems but also need to consider many other factors like reachability, land
use, minor changes in elevation, irrespective of whether it is a gravitational flow based canal or lift-
irrigation system with intermediate lifts over the path.

Consider the Figure 1.1, which describes the NSP Right canal area. Figure 1.2 depicting the profile
cross-section of the NSP Right Canal path. This figure provides a two-dimensional view of the terrain’s
elevation along a specific line, illustrating how the elevation changes over distance. It is evident that the
elevation decreases progressively along this path.

The manual task of drawing a path and visualizing its profile each time and then to determine the
canal cost construction is time taking and requires repeated evaluations which is susceptible to errors.
And moreover, due to the lack of any clear method, irrigation engineers and planners tend to adopt
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Figure 1.1 NSP Right Canal

Figure 1.2 Elevation profile of NSP Right Canal area
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the conventional approach. Although a few studies addressed the least-cost path for canals, there are
several challenges with the existing solutions that limit its applicability like (i) the existing algorithms
are sensitive to the data, i.e., specific to the data, and not modeled to perform on real-world data sets;
and (ii) are challenging to scale up to perform on high resolutions of data such as 90-meters, 30-meters,
10-meters, 5-meters.

1.1 Research Question

As mentioned earlier, method for determining canal paths involves a manual process that necessitates
repetitive profile visualizations, consuming considerable effort and being susceptible to errors. Despite
some studies attempting to devise models for identifying the least-cost path for canals, these efforts have
predominantly utilized synthetic datasets rather than real-world data. Consequently, the applicability
and accuracy of such models in practical canal routing scenarios remain uncertain. Therefore, there is
a need to focus on developing canal routing models considering real-world data to enhance reliability
and applicability in diverse geographical contexts. As we move forward, the following questions will
be answered:

• Identify the least-cost path for canals.

• Given a cost parameter, identify the possible paths and vice-versa

1.2 Research Objectives

Objectives of the study are as follows:

• Propose computational models to determine the least-cost path for canals

• The proposed solution should be independent of the data resolution

• The proposed solution should demonstrate consistent and dependable performance

• Evaluate the trade-off between cost and distance problem

1.3 Thesis Overview

We define two terminologies, gravitational irrigation, and lift irrigation. The gravitational irrigation
is a method of irrigation where the movement of water is under the influence of gravity. Lift irrigation is
a method of irrigation where the water is lifted along the surface of the terrain by using external force.
Considering the example as shown in Figure 1.3, the path from α to β1 is defined as gravitational flow
where the elevation difference between any cell, ρ and its next neighboring cell, ω is greater than or

3



Figure 1.3 Elevation profile of a path

equal to zero, i.e., ∆H(ρ, ω) ≥ 0. The path from β1 to β is defined as lift based flow where at least one
cell exists such that elevation difference between the current cell, ρ and its next neighboring cell, ω is
less than zero, i.e., ∆H(ρ, ω) < 0. In other terms, we define a gravitational flow where the length from
α to β1, l1 ≥ 0 and l2 = 0 and the elevation difference between any cell, ρ and its next neighboring cell,
ω i.e., ∆H(ρ, ω) ≥ 0. Similarly, lift based flow is defined where l1 ≥ 0 and the length from β1 to β,
l2 > 0 and there exists at least one cell such that elevation difference between the current cell, ρ and its
next neighboring cell, ω i.e., ∆H(ρ, ω) < 0. Similarly, you can see in Figure 1.4, a hillshade of a DEM
terrain with grey-scale indicating relative elevation, with darker areas, i.e., the black color being lower.
The path from α to β1 indicating gravitational flow path. The path from β1 to β indicating lift based
flow path due to green polygonal region indicating higher elevation.

In this study, we propose two algorithms to determine the least cost route model for canals. Between
any two coordinates on the terrain, multiple trajectories are possible. The selected route should be a rea-
sonable approximation of the one with the least cost. In the first algorithm, we discuss the gravitational
flow path where the flow movement is based entirely on the gravitational force. In this algorithm, we
define a cost function that relates elevation and distance to move from one cell to its neighboring cell.
Later we discuss the lift based flow model where the water is lifted along the surface of the terrain. In
this lift based flow model algorithm, we first define a lift elevation function that is used to define the
elevation that needs to be raised at a cell. We use this lift elevation function to define the cost function
that relates elevation and distance. As we now consider lifting the water along the surface, a vast num-
ber of combinations are possible between two coordinates. With several such combinations, we try to
narrow down the combinations by identifying scenarios that cause the least number of computations and
combinations. We also discuss the methodology that is necessary to describe the possible coordinates
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where the lifts are considered. Considering all the different functions that are defined, in a worst-case
scenario, the lift based route model runs in O(nm2 log n) time, where m is the set of coordinates the
resultant path has to flow through. To the best of our knowledge, this is the first study that proposes the
lift irrigation method for the LCRM for Canals problem.

Figure 1.4 Hillshade of a DEM terrain

We run both the algorithms on various real-world terrains with varying inputs belonging to different
resolutions and discuss the results. We then conduct an experimental evaluation on both the algorithms,
discussing the execution time of the algorithm. We also verify the algorithm correctness using the real-
world DCW (Digital Chart of the World) data. Our results also prove that the algorithm is applicable
independent of the resolution and scales linearithmically based on the resolution data.

1.3.1 Thesis Structure

The thesis is structured as follows:

• An overview of related work is explained in Section 2.

• Defining the Least Cost Route Model problem in Section 3.

• Solutions to the Gravitational flow model, the lift based flow model and the trade-off between two
parameters will be presented in Section 4

5



• Data and results in Section 5

• Conclusions in Section 6
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Chapter 2

Related work

2.1 Types of flow directions

2.1.1 Single flow-direction

Single Flow Direction defines that the total amount of flow should be received by a single neighbour-
ing cell which has the maximum downhill slope with the current cell.

2.1.2 Multi flow-direction

Multiple Flow Direction (MFD) algorithms defines that the flow from the current cell should be
distributed to all lower neighbouring cells according to a predetermined rule.

2.2 Applications of flow-direction algorithms

2.2.1 Single flow-direction algorithms

1. Deterministic eight-node algorithm: Deterministic eight-node (D8) algorithm was reported by
O’Callaghan and Mark in 1984 [17]. On a 3 x 3 local window of a DEM, the slopes between
the centre cell and its eight neighbouring cells are computed. The flow direction of the centre
cell points to the centre of the neighbouring cell with the maximum downhill slope, and that
single neighbour will receive all flow accumulated in the centre cell. Figure 2.1 describes the
single flow direction. The algorithm is the most popular one, particularly in commercial GIS
software, because of its simple and efficient computation, and strong capability in dealing with
local depressions and flat areas (Tarboton 1997 [21]). One major weakness of the D8 algorithm is
that although the centre cell can receive upstream flow from several sources, the downstream flow
can only be in one direction. Thus it is not suitable for areas where divergent flow occur, such as
convex slopes and ridges (Costa-Cabral and Burges 1994 [2, 22], Wilson and Gallant 2000 [24])
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Figure 2.1 The single flow direction for D8

2. Random eight-node algorithm: Random eight-node (Rho8) algorithm (Fairfield and Leymarie
1991 [6]) recognises that the flow over a grid DEM can be arbitrary thus introduced randomness
into D8. It is a stochastic version of D8 that aims to break up parallel flow paths that may be
resulted from D8, and produces a mean flow direction equal to the aspect. However, it still cannot
model flow dispersion (Wilson and Gallant 2000 [24]).

2.2.2 Multi flow-direction algorithms

Multiple flow direction (MFD) algorithms recognise flow divergence over a natural landscape. Thus
on a 3 x 3 local window, the flow from the centre cell dose not necessarily point to a single neigh-
bouring cell, but rather, it may flow into all or part of downstream neighbours refer figure 2.2. Based
on this principle, a number of algorithms have been developed with various ways of distributing flow
proportionally.

1. QMFD: Quinn et al. (1991) [18] proposed a flow distribution equation according to slope and
contour length (flow width).

Fi =
Li tanβi
n∑
i=1

Li tanβi

(tanβ > 0, n ≤ 8)

where Fi is the proportional flow to be distributed into the ith neighbouring cell; Li is the flow
width; and tanβi denotes the slope between centre cell and the ith neighbouring cell. On a grid
DEM, Li =

√
2
4 4d (4d = cellsize) for diagonal cells, while Li = 1

24d for others.
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Figure 2.2 The multiple flow direction

2. FMFD: Freeman(1991) [8] took a similar approach but did not consider the flow width.

Fi =
(tanβi)

ρ

n∑
i=1

(tanβi)
ρ
(tanβ > 0, n ≤ 8)

Based on the test on a conical surface, Freeman found that ρ = 1.1 produced the most accurate
results. This model was later tested by Pilesjö and Zhou (1997) on a spherical surface and it was
found that ρ = 1.0 would be more appropriate for the spherical surface case.

3. DEMON: In Digital Elevation Model Networks (DEMON) [2], flow is generated at each cell
(source cell) and routed down a stream tube until the edge of the DEM or a local depression is
reached. The stream tubes are formed from the points of intersections of a line drawn in the aspect
and a cell edge. The amount of flow, expressed as a fraction of the area of the source cell, is added
to the flow accumulation value of the downstream cell, thus the source cell will provide an impact
value on each of the cell along the stream tube. After flow has been generated on all cells and its
impact on each of its ‘stream tube’ cells has been added, the canal flow accumulation value is the
total upslope area contributing runoff to each cell, i.e. Specific Catchment Area.

2.3 Grid vs Graph algorithms

In a graph structure, there will be a set of nodes namely the vertices, and the nodes are connected
by edges which represent the relationship between the nodes. The graph algorithms are widely used
in network routing, transportation planning, and telecommunications, where the relationships between
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entities are dynamic and require efficient routing decisions based on various criteria such as distance,
cost, or capacity. In case of grid structure, each cell represents a node. And each cell has 8 neighbours
representing 8 edges with weight equivalent to the distance between the nodes. Grid-based algorithms
simplify complex environments into a structured grid, allowing for efficient traversal and path finding
using algorithms like A* or Dijkstra’s algorithm.

2.4 Least-cost path algorithms for canals

In this section, we provide a detailed review of the current state of research related to flow routing
algorithms.

Single flow-direction algorithms: The earliest and most straightforward method for specifying flow
directions is to assign flow from each grid to one of its eight neighbors, either adjacent or diagonal. The
steepest descent algorithm is one of the most frequently used algorithms. After the calculation of the
gradients between the central cell and all its neighboring cells, all flow is directed into the neighboring
cell corresponding to the highest gradient. This method, designated D8 (eight flow directions), was
introduced by O’Callaghan and Mark [17]. Fairfield and Leymarie [6] modified this algorithm to include
a stochastic, quasi-random component. Gardner [20] and Drayton calculated the aspect of direction
using a surface fitting procedure, and the neighboring cell is selected based on the closest direction
of the receiving cell. Lea [13] proposed an aspect-driven routing algorithm, whereby flow is moving
kinematically along the aspect direction from the center of the source cell until it reaches a cell perimeter
point. Once at the perimeter, flow is transferred to the coincident perimeter of the receiving cell. From
there, it is routed to one of the other edges of the receiving cell, implying that the flow from a single
cell generally follows a unique path to the outlet. The contributing area for a given grid cell can then be
calculated as the number of flow lines passing through that cell multiplied by the grid-cell area. Scoging
[9] used the gradients of the four grid cell borders to calculate the resultant outflow direction. The
cardinal neighbor corresponding as close as possible to this direction is selected as being the receiving
cell.

Flow-routing algorithms: Earlier, network algorithms were adapted to solve the raster data structure
type of problems. Douglas [4] has proposed an algorithm for least-cost paths which is broken down into
the computation of an accumulated cost surface integrated about a destination, and the generation of
slope lines taking into consideration of isotropic values. Lee [14] then proposed the least-cost paths by
integrating viewshed information computed from digital elevation models. These algorithms are limited
to situations where the cost of passage is the same for all movement directions. Walter Collischonn and
Jorge Victor Pilar [1] proposed a solution considering a function relating slope, distance, and cost. The
algorithm is based on the accumulated cost. The run time complexity of the algorithm isO(kn2), where
k is a number of repeated iterations to compute the result and is proportional to the path complexity, and
n is the number of cells of the terrain. The evaluation of the algorithm is conducted on a grid of 60x70

nodes and artificial data sets. Because of this limited usage of the existing algorithm, we try to provide
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an optimal solution to determine the least-cost route model that is better in terms of time complexity, is
independent of the resolution, and applicable to real-world data sets.
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Chapter 3

Problem Statement and Proposals

3.1 LCRM Problem Statement

In this section, we will define the problem statement for the Least-cost route model. We will describe
the definitions and notations that will be necessary as we go proceed.

3.1.1 Terrain

Definition 1. A terrain τ is modeled by a tuple (BL, TR, R, C, h) where

• BL→ Bottom left coordinates

• TR → Top right coordinates

• R→ Number of rows

• C→ Number of columns

• h→ Elevation of a cell, given a row and a column

Definition 1 describes about the data attributes that will be used as one of the inputs for this problem.
This input is a terrain data that is represented as a series of points along X-Y axis generally termed as
longitude and latitude respectively. A Z-axis is associated to this X-Y axis determining the elevation at a
given point. The data is represented in the form of a 2D-matrix where rows corresponds to the longitudes
and the columns corresponds to the latitudes. The value of a particular row and column determines the
elevation at that coordinate.

3.1.2 What is LCRM problem

Definition 2. The LCRM problem is defined by the tuple (τ , SC, EC, γ, Cl, ξ, ψ) where

• τ → Terrain
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• SC → Start coordinates

• EC → End coordinates

• γ → Cost of construction per unit length

• Cl → Cost of raise to lift water to an elevation of 10 meters

• ξ→ Set of coordinates the resulting flow needs to pass through

• ψ→ Set of polygonal areas where flow is restricted

Definition 2 formally defines the Least-cost route model. The problem is to find a least-cost path
from start coordinate to end coordinate given the parameters for a terrain as described in Definition 1,
the cost of construction over the terrain for a unit length being γ, the cost of raise to lift the water along
the surface of the terrain up to an elevation of 10 meters being Cl, the resultant flow path passing through
the defined set of coordinates ξ and the resultant path that the flow needs to be avoided is ψ.

3.1.3 Solution to the LCRM problem

Definition 3. The solution to the LCRM problem (τ , SC, EC, γ, Cl, ξ, ψ) is defined by a sequence of
coordinates 〈P0,P1,P2,....,Pk〉 where

• Pi ∈ τ , ∀ i={0,1,2,3,....,k}

• 〈Pi1 , Pi2 ,....,Pi|ξ|〉 = ξ ∈ τ

• P0 = SC

• Pk = EC

1. In a gravitational flow path, the sequence of coordinates would be such that
h(P0) ≥ h(P1) ≥ h(P2) ≥ .... ≥ h(Pk)

2. In a non-gravitational path, i.e., lift based flow path, the sequence of coordinates would be such
that
〈P0,P1,P2,....,Ps0 ,....,Pe0 ,....,Ps1 ,....,Pe1 ,....,Psj ,....,Pej ,....,Pk〉 where

• h(P0) ≥ h(P1) ≥ h(P2) ≥ .... ≥ h(Ps0)

• h(Pej) ≥ h(Pej+1) ≥ h(Pej+2) ≥ .... ≥ h(Pk)

• ∀x, h(Pex) ≥ h(Pex+1) ≥ h(Pex+2) ≥ .... ≥ h(Psx+1)
where x={0,1,2,....,j-1}

• h(Ps0) < h(Ps0+1) < h(Ps0+2) < .... < h(Pe0)
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• ∀y, h(Psy) < h(Psy+1) < h(Psy+2) < .... < h(Pey)
where y={0,1,2,....,j}

〈Ps0 ,Ps1 ,Ps2 ,....,Psj〉 are the set of coordinates where a lift occurs. 〈Pe0 ,Pe1 ,Pe2 ,....,Pej〉 are the set
of coordinates from where a gravitational flow occurs.

Definition 3 defines the solution to the LCRM problem. The solution to this LCRM problem
would be a sequence of coordinates 〈P0,P1,P2,....,Pk〉 where each coordinate belongs to the terrain.
The solution also contains the set of coordinates that the resultant flow must pass through i.e., 〈Pi1 ,
Pi2 ,....,Pi|ξ|〉 = ξ ∈ τ .

As we have described earlier that we would be proposing two new methodologies to solve this
LCRM problem namely Gravitational Flow path and Lift Based Flow path. In the gravitational flow
path solution, the sequence of coordinates of solution would be such that the elevation of the current
cell is always greater than or equal to its next neighbouring cell i.e., h(Pi) ≥ h(Pj) where i < j and Pi

represents the point in the resultant flow path. The resultant flow path for the gravitational flow path
would be of sequence h(P0)≥ h(P1)≥ h(P2)≥ .... ≥ h(Pk) where P0 corresponds to the start coordinate
and Pk corresponds to the end coordinate.

In the Lift Based Flow path, the solution isn’t always guaranteed to be as that of Gravitational Flow
path. In this method, the solution would be a combination of several intermediate gravitational flow
paths as well as several intermediate lift paths. Combining these intermediate paths would result in the
lift based flow cost. The path can be described as 〈P0,P1,P2,....,Ps0 ,....,Pe0 ,....,Ps1 ,....,Pe1 ,....,Psj ,....,Pej ,....,Pk〉.
Here the paths from P0 to Ps0 and Pej to Pk determines the gravitational flow paths. Its corresponding
height elevation difference would be described as h(P0) ≥ h(P1) ≥ h(P2) ≥ .... ≥ h(Ps0) and h(Pej) ≥
h(Pej+1) ≥ h(Pej+2) ≥ .... ≥ h(Pk). There are certain intermediate paths in the resultant flow path that
determines the gravitational flow paths such that ∀x, h(Pex) ≥ h(Pex+1) ≥ h(Pex+2) ≥ .... ≥ h(Psx+1)
where x={0,1,2,....,j-1} where the elevation of the current cell is always greater than or equal to its
neighbouring cell. The remaining paths determine the lifts that are necessary for the flow from start co-
ordinate to end coordinate. The height elevation of these paths are of the sequence h(Ps0) < h(Ps0+1) <
h(Ps0+2) < .... < h(Pe0) and ∀y, h(Psy) < h(Psy+1) < h(Psy+2) < .... < h(Pey) where y={0,1,2,....,j}. The
sequence describes that the elevation at the current cell is always less than its subsequent neighbouring
cell. As a whole, the resultant path in a lift based flow model would be a combination where gravita-
tional flow as well as lifting the water along the surface of the terrain occurs. The solution also conveys
a pattern describing the coordinates where the lift occurs. The set of coordinates 〈Ps0 ,Ps1 ,Ps2 ,....,Psj〉
describes where the lift occurs since its preceding cell’s elevation is greater than or equal to that of the
current cell’s elevation which is less than its succeeding neighbouring cell’s elevation. It also conveys
from where the gravitational flow occurs as well. The set of coordinates 〈Pe0 ,Pe1 ,Pe2 ,....,Pej〉 describes
where the gravitational flow occurs since its preceding cell’s elevation is less than that of the current
cell’s elevation which is greater than its succeeding neighbouring cell’s elevation.
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3.1.4 Optimal solution to the LCRM problem

Definition 4. The optimal solution to the LCRM problem (τ , SC, EC, γ, Cl, ξ, ψ) is by minimizing the
below function:

Sol(LCRM) = GFMC(LCRM) + LFMC(LCRM)

where GFMC(LCRM) is the gravitational flow path cost and LFMC(LCRM) is the lift based flow path
cost.

GFMC(LCRM) = µ ∗ γ (3.1)

where µ is the total flow path length covered between SC and EC.

LFMC(LCRM) =

j∑
u=0

⌈
|h(Psu)− h(Peu)|

10

⌉
∗ C l

After defining the resultant path in Definition 3, we now discuss about the optimal to the resultant
path. The cost of the LCRM problem would be defined as the sum of gravitational flow path cost and
the lift based flow path cost. In order to determine the optimal path, the solution would be formed by
minimizing the function, Sol(LCRM) = GFMC(LCRM) + LFMC(LCRM). The cost for the
gravitational flow is determined by the total distanced covered to the times i.e., GFMC(LCRM) =

µ ∗ γ, where µ is the total flow path length covered from start coordinate and end coordinate. As the
elevation of current cell is always greater than or equal to its succeeding neighbouring cell, no external
force is required for the water to flow and so the cost function for the gravitational flow is based on the
distance and the cost of construction.

The cost for lift based flow model is based on the number of lifts present in the resultant flow path
times the cost of lift for a single lift of up to 10 meters. The number of lifts is calculated based on the
elevation difference along the resultant flow path. As described in Definition 3, the lift based flow paths
would be of sequence ∀y, h(Psy) < h(Psy+1) < h(Psy+2) < .... < h(Pey) where y={0,1,2,....,j}. Using
this sequence we determine the elevation difference. The elevation difference would be h(Pey) - h(Psy)
for y={0,1,2,....,j}. So, the number of lifts would be the ceil of difference of the elevation for lift based
paths. Since number of lifts will be an integer, it is necessary to round it to the nearest integer. The
number of lifts is based on the difference between the start point where the lift occurs and the end point
where the lift ends. Number of lifts isn’t based on its subsequent neighbouring cells as an external force
can lift the water along the surface of the terrain up to 10 meters. Due to this external force, we divide
the elevation difference by 10 to determine the lifts that are necessary from start to the end. The lift is
then multiplied by the cost of lift. So, this gives us the cost of lift from Psy to Pey . Since multiple such
lifts can occur in the resultant path, summation is applied for all the paths where a lift is necessary and
so, the lift based cost function is defined as

LFMC(LCRM) =

j∑
u=0

⌈
|h(Psu)− h(Peu)|

10

⌉
∗ C l

The optimal solution to the LCRM problem can be obtained by minimizing both the functions
GFMC(LCRM) and LFMC(LCRM).
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3.2 Parameterized Paths problem

In this section, we will define the problem statement for the Parameterized Paths problem. We will
describe the definitions and notations that will be necessary as we go proceed.

3.2.1 What is parameterized paths problem

Definition 5. The parameterized paths problem is defined by the tuple (τ , SC, EC, γ, Cl, ξ, ψ, Nl) where

• Nl→ Number of lifts

Definition 5 formally defines one of the variation of the parameterized paths problem. The problem
is to find different resultant flow paths where the number of lifts along the path lifts equivalent to Nl

from start coordinate to end coordinate given the parameters a terrain as described in Definition 1, the
cost of construction over the terrain for a unit length being γ, the cost of raise to lift the water along the
surface of the terrain up to an elevation of 10 meters being Cl, the resultant flow path passing through
the defined set of coordinates ξ and the resultant path that the flow needs to be avoided is ψ.

Definition 6. The parameterized paths problem is defined by the tuple (τ , SC, EC, γ, Cl, ξ, ψ, Dt) where

• Dt→ Distance travelled

Definition 6 defines the other variation of the parameterized paths problem. The problem is to find
different resultant flow paths where the distance travelled by the resultant flow path is equivalent to Dt

from start coordinate to end coordinate given the parameters a terrain as described in Definition 1, the
cost of construction over the terrain for a unit length being γ, the cost of raise to lift the water along the
surface of the terrain up to an elevation of 10 meters being Cl, the resultant flow path passing through
the defined set of coordinates ξ and the resultant path that the flow needs to be avoided is ψ.

3.2.2 Solution to the parameterized paths problem

Solution to the parameterized paths problem would be a set of paths from start coordinate SC to end
coordinate EC. Contrary to the LCRM problem, the parameterized paths problem doesn’t consider the
cost as one of the important factors. In the paramterized paths problem, if the parameter is the number
of lifts, then for the set of resultant paths from SC to EC, the range of distances would be from distmin to
distmax where distmin corresponds to minimum distance travelled for one of the resultant paths. Similarly,
distmax corresponds to maximum distance travelled for one of the resultant paths. The distance ranges
would be of disteuc ≤ distmin ≤ distmax ≤ distgra; where disteuc is the Euclidean flow path distance from
SC to EC. And distgra is the minimal gravitational flow path distance from SC to EC.

If the parameter is the distance travelled, then for the set of resultant paths from SC to EC, the range
of lifts would be from liftmin to liftmax where liftmin corresponds to minimum number of lifts required for
one of the resultant paths. Similarly, liftmax corresponds to maximum number of lifts required for one
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of the resultant paths. The lift ranges would be of lifteuc ≤ liftmin ≤ liftmax ≤ liftgra; where lifteuc is the
Euclidean flow path lifts from SC to EC. And liftgra is the minimal gravitational flow path lifts from SC

to EC.

3.3 Proposals

In this section we describe the proposals. To solve LCRM problem, we will be proposing two new
methodologies namely Gravitational Flow Model and Lift Based Flow Model.

3.3.1 Gravitational Flow Model

According to the definition of gravitational flow, the flow of water is under the force of gravity. In
simple terms, we define the flow to be always downstream. For the resultant path to be a downstream
flow, the elevation difference between the current cell and its succeeding neighbouring cell should al-
ways be greater than or equal to zero. Let CC be the current cell, and NC be the succeeding neighbouring
cell in the resultant flow. For the flow to be gravitational, the elevation difference between CC and NC

should be such that h(CC) ≥ h(NC). So, at any given point Pi in the resultant flow path, the elevation
difference would be of sequence h(Pi-1) ≥ h(Pi) ≥ h(Pi+1).

3.3.2 Lift Based Flow Model

In the gravitational flow model, water flow will always be a downstream flow. If a gravitational flow
cannot be found from start coordinate to end coordinate, we propose a new methodology named Lift
Based Flow Model. In this model, water is lifted is along the surface of the terrain by using an external
force such as lift pumps. Due to elevation being higher in its succeeding neighbour, the water has to
flow upstream. By gravitational flow definition, water flow is always downstream. In order for the water
to flow upstream, lift pumps would be used to lift the water along the surface of the terrain that can lift
the water up to a height of 10 meters. A lift is necessary when elevation difference between CC and NC

is such that h(CC) < h(NC). There would always be at least one cell whose elevation is lower than its
succeeding neighbour in case of lift based flow model.
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Chapter 4

Flow Models

In this chapter we will discuss the solutions to both the proposals mentioned earlier. We will first
discuss the base model solution which doesn’t contain any constraints that are applicable to the model
and then we extend this base model to consider the constraints.

4.1 Unconstrained flow

In this unconstrained flow, we will discuss how to solve the model by considering only certain pa-
rameters as inputs such as start coordinate, end coordinate and the cost of construction per unit length.
Discussions on both Gravitational Flow Model as well as Lift Based Flow Model would be discussed.

Assumption: In the resultant flow path, a node once visited cannot be revisited. The resultant flow
path won’t be a meandering flow.

4.1.1 Gravitational Flow Model

According to the definition of gravitational flow, the flow of water is under the force of gravity. In
simple terms, we define the flow to be always downstream. Consider the example shown in Figure 1.4;
it is a hillshade which is a 3D representation of a terrain surface. The path from α to β1 can be termed
as a gravitational path as the surface is smooth. The surface of the terrain is smooth from α to β1, and
the path identification can be a gravitational flow as no irregularities are present in between.

As the gravitational flow is always downstream, the flow from current cell, CC to its neighboring
cell, NC is possible only when h(CC) ≥ h(NC); i.e., an edge exists between CC and NC only when h(CC)
≥ h(NC). Let (φ1, φ2) be the latitudes of CC and NC respectively. Similarly, (λ1, λ2) be the longitudes of
CC and NC respectively. The distance between CC and NC is calculated by using the Haversine formula
[11], defined by d(CC, NC) is described as

2 ∗R ∗ sin−1

(√
sin2

(
φ1 − φ2

2

)
+ cos(φ1) cos(φ2) sin2

(
φ1 − φ2

2

))
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where, R is the radius of the Earth. The distance from center cell to its neighbouring cell isn’t constant.
It varies based on the coordinates from which the flow tries to pass through.

We now determine the cost function that relates elevation and distance for the gravitational flow to
move from CC to NC as

ζ(CC, NC) =

d(CC, NC) ∗ γ, if h(CC) ≥ h(NC)

NA, otherwise

The cost function is calculated based on the elevation difference from CC to NC. The flow is possible
only when the center cell’s elevation is greater than or equal to its neighbouring cell.

As mentioned earlier, in a Gravitational Flow Model, the resultant path would be such that the pre-
ceding cell’s elevation should always be greater than or equal to the current cell’s elevation which is
greater than or equal to the succeeding cell’s elevation. Based on this analysis, we will define the al-
gorithm. In a typical graph data structure, the set of nodes and the edges are the inputs. In a grid data
structure, each cell is a node. The edges of these nodes are its neighbouring cells i.e., the cell surround-
ing the nodes are its edges. In total, for a node, only 8 edges are possible. Our solution is to find out the
least cost path given a grid data structure, a start coordinate, an end coordinate and cost of construction
per unit length. The edge weight for a center cell to its neighbouring cell would e the cost fucntion that
we have described earlier i.e., ζ(CC, NC).

Multiple graph algorithms are currently in use. We will describe the type of algorithm that will be
prefect for our use case .The Breadth First Search(BFS) and Depth First Search(DFS) algorithms are
applicable when the weights are equal for all edges. In the LCRM problem, the edge cost isn’t equal for
all nodes. Because of this edge cost difference in the grid data structure, the BFS and DFS algorithms
can’t be applied to the grid data structure. Dijkstra’s algorithm is used to find the shortest path between
nodes in a graph. As Dijkstra’s algorithm suits our approach, we will be implementing this approach
in LCRM problem. By using Fibonacci heap min-priority queue, we can further optimize the time
complexity of the algorithm.

After choosing the best fit algorithm, we need to modify the algorithm to suit the problem. As the
data would be a gird data structure and not a graph data structure which depicts the cost from one node
to another. Fist, we define the cost of source to zero and for the remaining nodes to infinity. Keep track
of all the nodes that are being visited. At the Initial step, all the nodes would be unvisited. Create a
priority queue that will be used to traverse the nodes whose distance is the shortest from the current set of
vertices in the queue and populate this queue with start node. For the top element in the priority queue,
mark the node as visited and calculate the cost from this center cell node to its 8 neighbouring nodes. A
neighbouring node will be added to queue when the path isn’t deviating from the destination coordinate.
The cost can be calculated by using the cost function defined earlier as ζ(CC, NC) from center cell to its
neighbouring cell. If the cost from start coordinate to the current cell’s neighbouring coordinate is less
than the current cost, update the cost to the calculated cost from current cell to this neighbouring cell in
addition with the cost from start coordinate to the center cell’s coordinate and update the priority queue
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for the neighbouring node of this center cell’s node such that the key value for the neighbouring cell’s
node is of high priority. Iterations will be continued until the priority queue is empty. And finally, we
return the cost and path for the unconstrained Gravitational flow model. As mentioned in the algorithm,
the path traversed shouldn’t be deviated from the destination coordinate. By definition the canal stream
movement will always be forward. If the path is deviated, then the result won’t be a canal path [16].
Several boundaries have been setup to determine the definition of deviated canal paths. The boundaries
are set as follows:

• The path traversal from start coordinate should tend towards the end coordinate

• The path traversal shouldn’t violate directional constraints

• The path length covered shouldn’t exceed the limited threshold value

The pseudo code of the algorithm explained is described in Algorithm 1

Algorithm 1 Gravitational Flow Path algorithm

1: procedure LEAST COST PATH(terrain, costOfConstruction)
2: Cost[src node] = 0;Cost[rest nodes] =∞;
3: create priority queue<customData> Q; add start node to the queue;
4: while Q is not empty do
5: curr center node← Get the minimum element from the Queue
6: for each neighbour of curr center node do
7: if neighbour node is in boundary then
8: Calculate the cost from curr center node to this neighbouring node
9: if Cost[curr center node] + ζ(CC, NC) < Cost[this neighbour node] then

10: Cost[this neighbour node]← Cost[curr center node] + ζ(CC, NC)
11: Update the priority queue Q
12: end if
13: end if
14: end for
15: end while
16: Return the least cost path from SC to EC
17: end procedure

After applying the Dijkstra’s algorithm using priority queue min-heap, the resultant coordinates
would be of sequence 〈P0,P1,P2,....,Pk〉 and the relation between the points can be described as h(P0) ≥
h(P1) ≥ h(P2) ≥ .... ≥ h(Pk) where P0 corresponds to the start coordinate SC, Pk corresponds to the end
coordinate. The set of other points are the coordinates of how path should flow from one point to the
another.

The time complexity of the algorithm would beO(nlogn), where n is the total number of cells/nodes
in the terrain.

20



4.1.2 Lift Based Flow Model

It is not necessary to have gravitational flow from start coordinate to end coordinate. The gravita-
tional flow path cannot be achieved when there are coordinates along the path from the start coordinate
whose elevation is less that that of its neighbouring nodes i.e., h(Pm) < elevation of neighbours of Pm.

Figure 4.1 Lift flow case1

In order to identify the path model for canals when gravitational flow path cannot be achieved, the
concept of lift irrigation, i.e., lifting the water along the surface of the terrain, is considered. In other
terms, there exists at least one coordinate in the resultant flow path where h(CC) < h(NC). Considering
the example shown in Figure 1.4, the path from β1 to β can be termed as a lift based path as the surface
isn’t smooth throughout. Along the path, there exists an area where the surface has a higher elevation,
meaning that an external force or pumping is necessary for the flow to reach β.

Four different use cases were identified to determine the lifts for lift based flow model

1. Gravitational path till the elevation of EC and then use a lift

2. Gravitational path to the possible extent and then use a lift

3. Gravitational path above the elevation of EC and then use a lift

4. Lift at the start i.e., SC

4.1.2.1 Case1

Considering the example shown in Figure 4.1, there is a gravitational path from SC to Pk. We
define the point Pk where the elevation of its previous point Pk-1 is equivalent to the elevation of the
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Figure 4.2 Lift flow case2

Figure 4.3 Lift flow case3
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Figure 4.4 Lift flow case4

end coordinate EC i.e., h(Pk-1) = h(EC). In this case, we consider the lift possibility at Pk so that, we
won’t continue further. There are 2 points that are possible from this case. One of them is that we
are restricting the elevation to not lower below Pk and the other is depending on the terrain, it may or
may not require multiple lifts. So, we will be using lift model at Pk and from there once again traverse
through using the gravitational path model.

4.1.2.2 Case2

Considering the example shown in Figure 4.2, there is a gravitational path from SC to Pkearth . We
define the point Pkearth where the gravitational path exists through out. In this case, we consider the lift
possibility at Pkearth as there is no other possibility. The possibility of this use case is that, the path may
be stretched due to the gravitational path to the extent that there is no possibility to flow further. So, we
will be using lift model at Pkearth and from there once again traverse through using the gravitational path
model.

4.1.2.3 Case3

Considering the example shown in Figure 4.3, there is a gravitational path from SC to Pk. We define
the point Pk where the gravitational path exists through out. And moreover, the elevation of Pk is higher
that the elevation of EC i.e., h(Pk) > h(EC). In this case, we consider the lift possibility at Pk to consider
a different path. The necessity of this use case is that, a lift at this point may results in a better path
which may not require a lift from here on and will most likely be a least-cost path. So, we will be using
lift model at Pk and from there once again traverse through using the gravitational path model.
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4.1.2.4 Case4

Considering the example shown in Figure 4.4, there is no gravitational path from SC. Here, the
elevation of SC is less that the elevation of EC i.e., h(SC) < h(EC). In this case, the only possibility is to
consider a lift at the start itself. This is a case where no gravitational flow path exists. So, we will be
using lift model at SC and from there once again traverse through using the gravitational path model.

We now define the lift elevation function that determines the elevation difference that needs to be
lifted from CC to NC in order for the flow to pass. The lift elevation function for lift based flow model
from CC to NC is:

δ(CC, NC) =

| h(CC) - h(NC) | + δ(NC
′, CC), if h(CC) < h(NC)

NA, otherwise

where δ(NC
′, CC) is the lift elevation from NC

′ to CC and NC
′ is one of the neighbouring cells of CC

and NC
′ 6= NC.

The lift elevation function is calculated based on the elevation difference from the center cell to its
neighbouring cell. If the elevation of the current cell is greater than or equal to its neighbouring cell,
then it isn’t necessary to lift the water as the water flow can occur due to gravitational force where flow
will be a downstream flow. If the elevation of the current cell is less than its neighbouring cell, then the
gravitational flow wouldn’t work as the elevation is higher and in order for the water flow to continue
through this neighbouring cell, it is necessary to lift the water. And so, the lift raise for this center cell to
its neighbouring cell would be its height difference i.e., | h(CC) - h(NC) |. The cumulative heights lifted
for this neighbour cell would be the summation of the center cell’s lift elevation. So, the lift elevation
function from center cell to its neighbour cell would be | h(CC) - h(NC) | + δ(NC

′, CC). As mentioned
earlier, we use the lift technique method that can lift the water up to a height of 10 meters. Considering
the scenario explained, this cumulative summation is necessary to determine the lifts.

We now determine the cost function for the lift based flow to move from CC to NC. This cost function
relates the lift elevation function, elevation and distance from CC to NC as

ζ(CC, NC) =



⌈
δ(CC,NC)−δ(NC

′,CC)
10

⌉
∗ C l + d(CC, NC) ∗ γ, if

⌈
δ(NC

′,CC)+δ(CC,NC)
10

⌉
>
⌈
δ(NC

′,CC)
10

⌉

d(CC, NC) ∗ γ, if
⌈
δ(NC

′,CC)+δ(CC,NC)
10

⌉
=
⌈
δ(NC

′,CC)
10

⌉

d(CC, NC) ∗ γ, if h(CC) ≥ h(NC)

where δ(NC
′, CC) is the lift elevation from NC

′ to CC and NC
′ is one of the neighbouring cells of CC

and NC
′ 6= NC

The primary attributes required to calculate the cost function for the lift based model is based on lift
elevation function and the height elevation. If the elevation of the current cell is greater than or equal to
its neighbouring cell, then the lift elevation function isn’t applicable and in this scenario, the cost would
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be the equivalent to the distance travelled times the cost of canal construction which is d(CC, NC) ∗ γ.
If the elevation of the current cell is less than its neighbouring cell, then a lift is necessary in this case.
However, the necessity of one more lift is dependent on the lift elevation function reason being that the
external force used to lift the water along the surface of the terrain can lift up to a height of 10 meters.
So, it isn’t necessary to lift the water along the surface at each cell. The lift technique will consider this
lift height mechanism. To determine if an additional lift is necessary, we compare the number of lifts
using lift elevation from the current cell to its neighbouring cell to the number of lifts at the center cell
which are

⌈
δ(NC

′,CC)+δ(CC,NC)
10

⌉
and

⌈
δ(NC

′,CC)
10

⌉
. If no additional lift is necessary from current cell to

its neighbouring cell, then the cost would be equivalent to the distance travelled times the cost of canal
construction which is d(CC, NC) ∗ γ. If additional lift is necessary then the cost function would be the
summation of the cost for the number of lifts and the cost of canal construction. So, the cost for the
lifts would be the number of lifts times the cost of each lift. The cost function if a lift is necessary is
evaluated as

⌈
δ(CC,NC)−δ(NC

′,CC)
10

⌉
∗ C l + d(CC, NC) ∗ γ.

Remark. The number of lifts is the primary constraint for the cost calculation rather than the summa-

tion of lifted heights. (For Ex. Lifts of (5,5) are considered over lifts of (2,3,4). Since 5+5 requires two

different lifts whereas 2+3+4 requires three different lifts)

For a lift to occur, the condition h(CC) < h(NC) needs to be satisfied. There will be a huge number
of cases where the condition could be satisfied. We now discuss different scenarios that are possible for
lifting the water for coordinates from σi to σi+1 which results in determining least-cost path.

• Let Pk,E be the gravitational path from σi to Pk. We define a coordinate Pk, where h(Pk) is just less
than h(σi+1) i.e., h(Pk) < h(σi+1) and h(Pk-1) ≥ h(σi+1). We consider this coordinate, Pk, suitable
for lifting along the surface of the terrain.

• Let Pkearth,E be the gravitational path from σi to Pkearth . We define a coordinate Pkearth , such that
h(Pkearth) is less than all of its neighboring cells i.e., there is no such neighbouring coordinate Pz

of Pkearth where a gravitational flow from Pkearth to Pz exists; i.e., h(Pkearth-1) < h(σi+1), h(Pkearth) <
h(σi+1) and h(Pkearth-1) ≥ h(Pkearth). We consider this coordinate, Pkearth , suitable for lifting along
the surface of the terrain.

• Let Pk,E be the gravitational path from σi to Pk. We define a coordinate Pk, such that h(Pk) is
less than all of its neighboring cells but greater than the elevation of σi+1 i.e., there is no such
neighbouring coordinate Pz of Pk where a gravitational flow from Pk to Pz exists; i.e., h(Pk-1) ≥
h(σi+1), h(Pk) ≥ h(σi+1) and h(Pk-1) ≥ h(Pk). We consider this coordinate, Pk, suitable for lifting
along the surface of the terrain.

• If h(σi) < h(σi+1), then we consider the coordinate σi suitable for lifting along the surface of the
terrain.
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By defining the scenarios above, the aim is to reduce the cost complexity for every scenario where
the elevation difference is higher i.e., h(CC) < h(NC).

Lemma 4.1.1. Let A, B ∈ σ and h(A) > h(B). If a gravitational flow least cost path exists from A to B,

it isn’t necessary that the gravitational flow path would be of the least cost from A to B.

Proof. Let the gravitational flow least cost from A to B be GFC(A,B), C be a coordinate such that C

∈ τ and h(C) < h(A), the lift based flow least cost from A to B be LFC(A,B), D be a coordinate on

the gravitational flow path from A to B such that D ∈ τ where h(A) > h(D) and h(D) > h(B). Let

LFC(A,C) be less than the GFC(A,D) and GFC(D,B) = LFC(C,B). The gravitational flow cost from A

to B is given by:

GFC(A,B) = GFC(A,D) +GFC(D,B)

The lift based flow cost from A to B is given by

LFC(A,B) = LFC(A,C) + LFC(C,B)

Since GFC(C,B) = LFC(D,B), we rewrite the above statement as

LFC(A,B) = LFC(A,C) +GFC(D,B)

Since LFC(A,C) < GFC(A,D), we can rewrite the above statement as

LFC(A,B) < GFC(A,D) +GFC(C,B)

Since GFC(A,B) = GFC(A,D) +GFC(D,B), the statement translates to

LFC(A,B) < GFC(A,B)

Hence, if a gravitational flow least-cost path exists from A to B, it is not necessary that the gravitational

flow path would be of the least cost from A to B.

Remark. The higher the lift elevation, the higher the coverage is possible, depending on the terrain.

When doing so, the number of lifts needs to be maintained in memory. (For Ex. Let 400 be the elevation

of the center cell, 403 and 409 be the elevations of neighbors of the center cell. It may be necessary that

cell having an elevation of 409 might have higher coverage when estimated the impact using viewshed

analysis. [14, 12])
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After defining the lift elevation function and cost functions for the lift based flow model, the least
cost path algorithm needs to be defined. The input parameters for the lift based flow model are the same
as the input parameters for the gravitational flow model. Due to the same grid data structure as the input,
we will be reusing the Algorithm 1 to solve the Lift Based Flow Model based on these requirements. The
procedure almost remains the same except that the based on whether the current cell is recommended to
lift at this cell. If it is recommended to lift for the center cell, then calculate the lift elevation value and
its corresponding cost for the path from center cell to its neighbouring cell.

Algorithm 2 Lift Based Flow Path algorithm

1: procedure LEAST COST PATH(terrain, costOfConstruction)
2: Cost[src node] = 0;Cost[rest nodes] =∞;
3: create priority queue<customData> Q; add start node to the queue;
4: while Q is not empty do
5: curr center node← Get the minimum element from the Queue
6: for each neighbour of curr center node do
7: if neighbour node is in boundary then
8: if current node needs to be lifted then
9: Calculate the lift elevation value and cost value

10: else
11: Calculate the cost from curr center node to this neighbouring node
12: end if
13: if Cost[curr center node] + ζ(CC, NC) < Cost[this neighbour node] then
14: Cost[this neighbour node]← Cost[curr center node] + ζ(CC, NC)
15: Update the lift elevation value
16: Update the priority queue Q
17: end if
18: end if
19: end for
20: end while
21: Return the least cost path from SC to EC
22: end procedure

The resultant flow path in a Lift Based Flow Model can be described as
〈P0,P1,P2,....,Ps0 ,....,Pe0 ,....,Ps1 ,....,Pe1 ,....,Psj ,....,Pej ,....,Pk〉. Here the paths from P0 to Ps0 and Pej to
Pk determines the gravitational flow paths. Its corresponding height elevation difference would be de-
scribed as h(P0) ≥ h(P1) ≥ h(P2) ≥ .... ≥ h(Ps0) and h(Pej) ≥ h(Pej+1) ≥ h(Pej+2) ≥ .... ≥ h(Pk). There
are certain intermediate paths in the resultant flow path that determines the gravitational flow paths such
that ∀x, h(Pex) ≥ h(Pex+1) ≥ h(Pex+2) ≥ .... ≥ h(Psx+1) where x={0,1,2,....,j-1} where the elevation of
the current cell is always greater than or equal to its neighbouring cell. The remaining paths determine
the lifts that are necessary for the flow from start coordinate to end coordinate. The height elevation of
these paths are of the sequence h(Ps0) < h(Ps0+1) < h(Ps0+2) < .... < h(Pe0) and ∀y, h(Psy) < h(Psy+1)
< h(Psy+2) < .... < h(Pey) where y={0,1,2,....,j}
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4.2 Constrained Flows

What is a constrained flow? A constrained flow is represented as the flow where the resultant flow
path is found to be controlled due to certain restrictions provided by the user. Why is a constrained
flow necessary? In an ideal world, one would consider that constraints wouldn’t be part of it. Whereas,
in a real-world scenario, multiple factors play significant roles in determining the problem’s outcome.
Among multiple constraints applicable in the real-world, we define two predominant constraints that
significantly impact our problem’s development. One of the parameters is the restricted polygon regions
where the canal’s construction is restricted in the areas defined. The canal construction is dependent on
term Land use. Land use describes land usage, such as agriculture, industrial, residential, commercial,
transport, etc. For example, industrial and commercial types of land use regions cannot be used for
canal construction. The other parameter is the set of pass-through coordinates. As canal construction is
viewed as utility infrastructure, it is necessary to determine the best outcome for longer lengths canal,
keeping in view that this utility infrastructure will be accessible for vast regions. By defining these
predominant constraints, the proposed algorithms can determine the optimal path on the basis of cost.
We will discuss each of the parameters in detail and update the current models to achieve the least cost
paths.

4.2.1 Pass through coordinates

As described earlier, pass through coordinates describes the set of coordinates that the resultant flow
needs to visit these coordinates. The set of pass through coordinates is defined as ξ. The resultant flow
path starting from SC to EC should pass through all the coordinates of ξ.

4.2.2 Restricted Polygonal Regions

As described earlier, restricted polygonal regions defines the set of polygonal regions where the flow
is restricted. We define the set of polygonal regions as ψ. The resultant flow path starting from SC to EC

should avoid polygonal regions ψ.

4.2.2.1 Gravitational Flow Model

In an unconstrained flow, the least cost route model path needs to be identified from SC to EC. In a
constrained flow, the path needs to be found from SC to EC covering all the pass through coordinates ξ
as well as avoiding the restricted regions ψ.

In order to determine the set of coordinates that belong to the restricted polygonal regions, we use
the Ray Casting algorithm [19] to determine if a coordinate belongs to one of the restricted polygons.
Ray Casting algorithm is based on how often a ray starts from the point and goes in any fixed direction,
intersecting polygon’s edges. The Ray Casting algorithm can be used for each cell of the terrain, τ to
determine if the cell is restricted for the water flow. The time complexity of this would be O(n*|ψ|).
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As the bounded regions increase, the time complexity increases. To optimize the number of computa-
tions, coordinates data is cached when calculating for the first time a row. This helps in evaluating if
a coordinate belongs to the bounded regions while calculating for subsequent cells of a row. The time
complexity for calculating a row while visiting for the first time is O(|ψ|). For all the rows of a terrain τ ,
is O(R*|ψ|*w) where |ψ| is the total number of vertices of all polygons and w is the average number of
points of all polygons ψ. For the subsequent iterations of a row, identifying if a cell belongs to bounded
regions of ψ can be identified in a constant time.

After determining whether a coordinate Pq ∈ τ is in bounded regions of ψ, the elevation of Pq is set
to∞; i.e., h(P q) =∞ as we can no longer route the model through this coordinate.

Theorem 4.2.1. Let A, B ∈ ξ and h(A) > h(B). If a gravitational flow path from A to B doesn’t exist,

then there is no gravitational flow path from SC to EC passing through all coordinates of ξ

Proof. Consider two arbitrary coordinates U, V ∈ ξ � h(U) > h(A) and h(B) > h(V). No gravitational

flow path exists between the coordinates U and V passing through A; otherwise there would be gravita-

tional flow path from U to V passing through A and B as {A,B} ∈ ξ. Hence if there is no gravitational

path from U to V, then there is no gravitational path from SC to EC passing through all coordinates of ξ

as the resultant flow path must start from SC and end with EC covering all the coordinates of ξ.

We define the union of start coordinate, the set of coordinates to that the resultant flow path needs to
pass through ξ and the end coordinate as σ such that σ = {SC} ∪ {ξ} ∪ {EC}. We reuse the Gravitational
flow model algorithm that was explained earlier to determine the least cost model by considering these
additional parameters. The Gravitational Flow Model algorithm will be remodeled to satisfy the new
requirements. We first try to preprocess the restricted polygonal regions to identify the set of coordi-
nates that will be updated in the model to avoid traversing through these coordinates. As mentioned in
Theorem 4.2.1, if there is no gravitational flow path from σi to σi+1, then there is no gravitational flow
path from SC to EC; in such cases we just abort the algorithm execution. We use the Gravitational Flow
Model algorithm to identify the resultant flow path that passes through each coordinate defined in ξ.

Algorithm 3 Constrained Gravitational Flow Path algorithm

1: procedure LEAST COST PATH(terrain, costOfConstruction, ξ, ψ)
2: Compute the polygonal regions ψ and modify the elevation if Pq ∈ ξ such that h(Pq) =∞
3: for each coordinate i in σ do
4: if h(σi) < h(σi+1) then
5: Return no gravitational path from SC to EC

6: end if
7: Calculate Gravitational Flow Model Least cost path from σi to σi+1
8: end for
9: Return the least cost path from SC to EC

10: end procedure
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After applying the Gravitational Flow Model algorithm using priority queue min-heap for the defined
set of new parameters, if a resultant flow path exists, then the resultant flow path coordinates would be of
sequence 〈P0,P1,P2,....,Pξ0 ,....,Pξ1 ,....,Pξ|ξ| ,....,Pk〉 and the relation between the points can be described
as h(P0) ≥ h(P1) ≥ h(P2) ≥ .... ≥ h(Pξ0) ≥ .... ≥ h(Pξ1) ≥ .... ≥ h(Pξ|ξ|) ≥ .... ≥ h(Pk) where P0

corresponds to the start coordinate SC, Pk corresponds to the end coordinate. 〈 Pξ0 , Pξ0 , ...., Pξ|ξ| 〉 ∈ ξ.
The set of other points are the coordinates of how path should flow from one point to the another.

Let n be the number of cells of the terrain τ , R be the total number of rows of the terrain τ , w is
the average number of points of all polygons ψ, m is |ξ|+1. The time complexity for processing the
restricted polygons is O(|R| ∗ |ψ| ∗ w) whereas the time complexity for finding out the path between
σi and σi+1 is O(n log n) by using Dijkstra’s algorithm with Fibonacci heaps [7]. The overall time
complexity for Least Cost Route Model for Gravitational Flow is O(|R| ∗ |ψ| ∗ w + nmlogn+ n).

4.2.2.2 Lift Based Flow Model

The preprocessing for the Lift Based Flow Model would the equivalent to that of the Gravitational
Flow Model. We use the earlier defined Lift Based Flow Model algorithm to identify the resultant flow
path that passes through each coordinate defined in ξ and avoids the restricted polygonal regions ψ.

Algorithm 4 Constrained Lift Based Flow Path algorithm

1: procedure LEAST COST PATH(terrain, costOfConstruction, passThroughCoordinates)
2: Compute the polygonal regions ψ and modify the elevation if Pq ∈ ξ such that h(Pq) =∞
3: for each coordinate i in σ do
4: Calculate Lift Based Flow Least cost path from σi to σi+1
5: end for
6: Return the Lift Based Flow least cost path from SC to EC
7: end procedure

The path can be described as 〈P0,P1,P2,....,Ps0 ,....,Pe0 ,....,Ps1 ,....,Pe1 ,....,Psj ,....,Pej ,....,Pk〉. Here the
paths from P0 to Ps0 and Pej to Pk determines the gravitational flow paths. Its corresponding height
elevation difference would be described as h(P0) ≥ h(P1) ≥ h(P2) ≥ .... ≥ h(Ps0) and h(Pej) ≥ h(Pej+1)
≥ h(Pej+2) ≥ .... ≥ h(Pk). There are certain intermediate paths in the resultant flow path that determines
the gravitational flow paths such that ∀x, h(Pex) ≥ h(Pex+1) ≥ h(Pex+2) ≥ .... ≥ h(Psx+1)
where x={0,1,2,....,j-1} where the elevation of the current cell is always greater than or equal to its
neighbouring cell. The remaining paths determine the lifts that are necessary for the flow from start
coordinate to end coordinate. The height elevation of these paths are of the sequence h(Ps0) < h(Ps0+1)
< h(Ps0+2)< .... < h(Pe0) and ∀y, h(Psy)< h(Psy+1)< h(Psy+2)< .... < h(Pey) where y={0,1,2,....,j}. The
sequence describes that the elevation at the current cell is always less than its subsequent neighbouring
cell. The resultant flow path also contains the set of coordinates where 〈Pi1 , Pi2 ,....,Pi|ξ|〉 = ξ ∈ τ . As
a whole, the resultant path in a lift based flow model would be a combination where gravitational flow
as well as lifting the water along the surface of the terrain occurs. The solution also conveys a pattern
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describing the coordinates where the lift occurs. The set of coordinates 〈Ps0 ,Ps1 ,Ps2 ,....,Psj〉 describes
where the lift occurs since its preceding cell’s elevation is greater than or equal to that of the current
cell’s elevation which is less than its succeeding neighbouring cell’s elevation. It also conveys from
where the gravitational flow occurs as well. The set of coordinates 〈Pe0 ,Pe1 ,Pe2 ,....,Pej〉 describes where
the gravitational flow occurs since its preceding cell’s elevation is less than that of the current cell’s
elevation which is greater than its succeeding neighbouring cell’s elevation.

The time complexity for processing the restricted polygons is O(|R| ∗ |ψ| ∗ w) whereas the time
complexity for finding out the path between σi and σi+1 is O(n log n) by using Dijkstra’s algorithm with
Fibonacci heaps [7]. The overall time complexity for Least Cost Route Model for Lift Based Flow is
O(|R| ∗ |ψ| ∗ w + nmlogn+ n).

The Dijkstra’s algorithm will work to certain extent but may not scale for very high resolution data
sets as the number of computations for a single grid will take a lot of time where the number of nodes
will be very large. In order for our models to perform on high resolution data sets, we will be using Ter-
raCost algorithm [10], that is highly scalable for massive grid-based terrains. Main steps of TerraCost
algorithm is as follows:

Step1: Intra-Tile Dijkstra, partition the grid into tiles and run Dijkstra from the source and the bound-
aries.

Step2: Sort the boundary stream created in Step1.

Step3: Inter-Tile Dijkstra, compute the least-cost paths to all the boundary vertices.

Step4: Final Dijkstra, for each tile, compute the least-cost paths to all internal points by running
Dijkstra starting at the boundary points along with any internal source points.

Using the above process, the algorithm will be mostly as follows:

Algorithm 5 Lift Based Flow Path algorithm

1: procedure LEAST COST PATH(Terrain, Costofconstruction)
2: With the help of TerraCost algorithm, where the grid divided into tiles, at each point, calculate

the cost using the function ζ(ρ, ω) defined along with the canal boundaries defined earlier.
3: Return the least cost path from start coordinate to end coordinate
4: end procedure
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4.3 Parameterized Paths

In this section, we will discuss about the parameterized paths problem. We will discuss what is the
worst case solution, the base case solution and how to interpret the solution from input parameters.
Finally, we will discuss the trade-off between cost and distance.

4.3.1 Worst case and best case solution

Given two coordinates on a plane, multiple paths are possible. In the LCRM problem, we try to find
the best possible path from SC to EC based on the cost function. Shortest path between two points, is
a straight line is a known fact. We use this concept to describe the worst case solution. In a geodetic
system, this distance is termed as euclidean distance. Considering the multiple paths that are possible,
gravitational flow path is the longest distance and the euclidean distance is the shortest distance. Con-
sidering the general scenario, if we analyze the cost of the path for gravitational and euclidean paths,
the cost to build the gravitational flow path will be less than the euclidean flow path. The number of
lifts required for gravitational flow path will always be zero as the elevation from the center cell to its
neighbouring cell will always be greater than or equal to zero, whereas, for the euclidean flow path the
number of lifts will always be greater than or equal to zero. If the number of lifts in the resultant flow
path is considered as a basis for worst case scenario, the euclidean flow path would be the worst case
solution as it contains the maximum number of lifts. One may argue that euclidean need not be the
worst case as one of the worst case scenarios is visiting all the nodes of the terrain. However, to build
a canal certain guidelines needs to be followed. One of the main guidelines is to avoid meandering
wherever applicable. In this worst case scenario, flow path length is the shortest of all possible resultant
flow paths. Similarly, the gravitational flow path would be the best case scenario as the number of lifts
is zero in the gravitational flow path. However, the length covered by the gravitational flow path would
be the largest.

4.3.2 Interpretation from Worst case and Best case scenarios

From the worst case and best case scenarios explained earlier, in terms of number of lifts, euclidean
flow path is the worst case and the gravitational flow path is the best case scenarios. We will now discuss
the problem of identifying the different paths given either the number of lifts or the distance covered by
the resultant paths. As explained earlier, the resultant flow path in any flow would be of sequence 〈 P0,
P1, P2, .... , Pk 〉. Let the resultant path be an euclidean path from SC to EC. Let Peu be one of the points
of the euclidean resultant path. Let Peu-1 be the predecessor and Peu+1 be its succeeding paths of Peu.
If there exists a point Peu such h(Peu-1) < h(Peu), then at least one lift is required to lift the water along
the surface of the terrain. If no such point exists, then the euclidean flow path is the gravitational flow
path as the elevation of predecessor cell’s is greater than or equal to the center cell’s elevation which is
grater than or equal to its succeeding neighbour’s cell elevation. The possibility of reducing a lift can
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be achieved if the flow from Peu-1 can be diverted to one of its neighbours whose elevation is less than
or equal to the current cell i.e., h(P eu-1) > h(P eu-1

n); where P eu-1
n is one of the neighbours of Peu-1

and n 6= eu − 1. If h(P eu-1) ≥ h(P eu-1
n), then a possibility of gravitational path exists. Let k be the

number of cells along the resultant path from SC to EC.

4.3.3 Trade-off between cost and distance

We have discussed two models that tries to determine the least-cost path. If we refine the problem
a bit more, given a cost parameter, are there a set of paths that are possible for the mentioned cost and
vice-versa.

Consider the use cases shown in Figure 4.5. Let

• G be the starting point

• H an intermediate point along the Euclidean path

• D be the destination point

• k-n be the kth n point with distance k-n from the intermediate point H

• k-max be the threshold point from the intermediate point H where the flow path cannot exceed
the triangular route of G, D and k-max.

There are three different use cases identified. They are explained as follows:

• Case-1: Gravitational flow is present between G and D. A gravitational path is within the bounds
of G, D and k-max. So, one of the bounds will be the gravitational flow path. We will discuss the
bound as we move on.

• Case-2: Gravitational flow is partially present between G and D, meaning the gravitational path
exceeds the k-max(threshold) point. Let N be the point along the gravitational path within the
bounds of k-max. We use the gravitational path from G to N to identify the remaining paths for
this use case. We try to find another gravitational path from N to D. This process is repeated until
a path is found.

• Case-3: Partly gravitational flow exists between G and D within the k-max point. In this case, we
use the partly gravitational flow. Let k-L be the point where the first point of the lift is required.
We will use the water lifting along the surface approach to get to the destination point. At k-L, lift
the water along the surface and then the same gravitational flow path algorithm is repeated. This
procedure is applied throughout until a solution is found.

We define a function f(gc + lc) where gc is the gravitational path cost and lc is the lift-based path
cost. The problem we solved earlier is the case where f(gc + lc) is minimum. For any given two points,
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Euclidean path is the shortest path. So, we will be using that principle to determine the set of paths. But
before that, we need to set the lower and the upper boundaries.

• f(gc + lc) is maximum when the path is a Euclidean path considering the canal boundaries.

• f(gc + lc) is minimum when the path either has a gravitational path or has the least number of lifts
considering the canal boundaries.

In other terms, we defined the above statements as, if the path cost is maximum, then the length of
the canal is the shortest and has a high number of lifts. Similarly, if the path cost is minimum, then either
the path is a gravitational path or has the least amount of lifts. So, within these bounds, cost ranging
from minimum to maximum, there could be numerous paths that are possible. We will identify these
sets of paths and plot it on a graph.
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Figure 4.5 Use-cases to determine possible paths
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Chapter 5

Data and Results

In this section, we first describe the data which is used for terrain analysis. Then, we will demonstrate
the usage of algorithm by using an example which helps in understanding of the flow of algorithm. We
then proceed on to the environment settings that was used to run the data that was specified earlier.
Followed by applying the proposed algorithms on the real-world data sets that was described in the data
section. And finally we will discuss the results after applying the proposed algorithms on the data sets.

5.1 Data

There are multiple different types of terrain data models. They are Digital Elevation Model (DEM),
Digital Terrain Model (DTM), Digital Surface Model (DSM) and Triangulated Irregular Network (TIN).
In a DEM data, each cell represents an elevation value of the surface above the sea level. DTM describes
not only the elevation but also the geographical elements. DSM contains the elevation which includes
the surface objects such as trees, buildings etc. TIN is a 3D surface model derived from irregularly
spaced points and break line features. Since multiple types of data models are present, we will pick
up DEM data model as it has data that represents only the elevation data with respect to the sea level.
DEM data model contains different types of data sets and data resolution. A data resolution is a measure
used to determine the size of each cell. DEM data models contains multiple resolutions ranging from
1 meter to several Kilometers. Multiple sources are available related to DEM data models; they are
SRTM, ASTER, LiDAR and Bhuvan. For the ease of understanding, we have used the publicly available
data sets. We used two resolutions of data in our experiments. The first data is of resolution 1KM
belonging to Indian terrain covering roughly 6000KM by 4800KM (data courtesy of USGS). The terrain
model consists of about 28.8 million grid points having a wide variety of topologies such as mountains,
riverbeds, flatlands, highlands, etc. This data contains the elevation ranges from 0 to 7804. The second
data is a higher-resolution 90-meter grid covering a 540KM by 540KM region in Indian terrain (data
courtesy of SRTM). The data has 36 million grid points. Multiple data sets of the 90-meter resolution
were considered having unique topology.
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5.2 Demonstration using an example

Considering Figure 5.1 as an example where each cell value represents the elevation, we need to
identify the least cost-path from (0,0) to (4,4). From (0,0), there are only2 possibilities for gravitational
path to (0,1) and (1,0). And from there on, the current cell elevation is lower than its neighbours. In this
case, we must use a lift to solve this example. So, lifts can be used at multiple points, (0,2), (1,1) and
(2,0). And from then on, the gravitational path exists from (0,2), (1,1) and (2,0). To reach (2,2), 1 more
lift is required in any case, as the elevation of that cell is higher than its neighbours. This process will
be repeated until the (4,4) cell is reached. So, the least-path would be from (0,0) –> (1,0) –> (2,1) –>
(3,2) –> (3,3) –> (4,4)

5.3 Environment Settings

To run our experiments, we have considered the following environment settings. The implementation
of both of our algorithms in C++, using the GNU g++ compiler, version 5.4.0. The experiments that
we conducted were run on a workstation with an Intel Core i5-2450 CPU. This is a four-core processor
with 2.50GHz per core, and the main memory of this computer is 7.6 Gigabytes. Our implementations
run on a Linux Ubuntu operating system, release 16.04.

5.4 Applying algorithms on real-world data sets

We have implemented the algorithms in two phases. The first phase is Unconstrained flow and
the other being constrained flow. We will discuss the procedure that was followed while applying the
proposed algorithms on real world data sets.

5.4.1 Unconstrained flow

In the unconstrained flow, initially Gravitational Flow Model algorithm is executed on data sets
mentioned earlier for inputs SC, EC and γ. For the same set of inputs, algorithms are run on different
resolutions. The data which was considered has various start and end coordinates containing different
topologies, as shown in Table 5.2. Distinct SC and EC values are considered ranging from a Euclidean
distance of 25KMs to 300KMs. The input for the gravitational flow algorithm is applied where the
elevation difference is always positive, i.e., ∆H(SC, EC) > 0. If a gravitational flow path can be found
from SC to EC, the result would be a sequence of points on how the flow needs to be built. Following
this, Lift Based Flow Model algorithm is executed for the same data sets that was mentioned earlier with
the addition of cost of lift parameter that can raise the water up to a lift of 10 meters is Cl. Lift Based
Flow model is applied when Gravitational Flow Path doesn’t exist or when the cost of construction is
too high to built for the gravitational flow. Based on these conditions, Lift Based Flow model is applied.
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Figure 5.1 Elevation profile data example

Figure 5.2 Cost analysis for the elevation profile
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The cost to move from CC to NC, ζ(CC, NC) is calculated at each step. The lift elevation cost, which
is applicable only for lift based flow, is calculated when applicable, i.e., when h(CC) < h(NC). The
cumulative cost is calculated at each subsequent point. Based on the cumulative path cost, an optimal
solution is considered. Table 5.2 shows the results of applying both the gravitational flow model and lift
based flow model algorithms.

5.4.2 Constrained flow

In the constrained flow, additional parameters, set of pass through coordinates ξ and restricted polyg-
onal regions ψ are taken into account. Instead of random values for these additional parameters, based
on an analysis, distinct values of ξ are based on some coordinates along the hillshade path of the terrain
from start start coordinate to end coordinate. The polygonal areas, ψ are considered based on the land
use data. We have considered the commercial and residential regions, ψ for this data. First, Gravita-
tional Flow Model algorithm is executed for inputs (SC, EC, γ, Cl, ξ, ψ). The Gravitational Flow Model
algorithm is applied for each of the coordinates σi and σi+1. The execution of the algorithm will be
skipped when elevation difference from σi and σi+1 is higher; i.e., h(σi) < h(σi+1). For the same set of
inputs, Lift Based Flow Model algorithm is applied. As mentioned, this algorithm is applied for each
consecutive pair of coordinates σi and σi+1. The resultant path would be a sequence of points on how
the flow needs to be built containing the pass through coordinates for both these flows. The results on
applying both the algorithms can be viewed in Table 5.2.

5.5 Results

Table 5.1 describes the different regions that are considered for evaluating the algorithm where OC
represents the number of overlapped cells visited with respect to DCW data along the resultant path; RC
represents the number of cells of the DCW data along the path. Figure 5.3 describes the hill shade area
of the NSP Right Canal, the bounded region represents the NSP Right Canal area that we will discuss
in detail. Figure 1.1 describes the origination of the NSP. Figure 5.4 describes the height vs distance
profile of the NSP Right Canal for the Euclidean path. Whereas Figure 5.5 describes the height vs
distance profile of the NSP Right Canal on applying the proposed algorithm.

By considering the Euclidean path as the canal path, the distance travelled will be minimum but
the cost may vary depending on the elevations that the flow passes along this Euclidean path. So, by
considering the Euclidean path, the distance travelled will be minimum but the cost will be high as
the height variation is irregular as can be seen in Figure 5.4. Considering the elevations in Figure
5.4, the gravitational flow won’t be possible for the canal construction. The only feasible solution is
to clear the path such that the elevation profile from the start point to the end point will always be
lower from a cell to its succeeding cell. To follow the above procedure it will be expensive as the
elevation clearance increases. In order to avoid high costs for canal construction, we have proposed the
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gravitational flow model algorithm. So, on applying the gravitational flow model algorithm, the distance
may be a bit higher but the cost of construction would be minimal as the flow of water will always be
gravitational force and the elevation profile will be such that it supports gravitational flow. For the use
case defined earlier, the elevation values ranges from 164 to 125 as can be seen in Figure 5.4. In the
case of the Euclidean path, the elevation along the path is irregular which requires elevation clearance
for gravitational flow resulting in expensive canal construction. The total distance covered along the
path is around 20 KM. In case of applying the algorithm, the elevation along the path is smooth where
the center cell’s elevation is greater than or equal to its neighboring cell as can be seen in Figure 5.5.
The total distance covered along the path is around 23 KM.

Table 5.2 reports the results obtained by running the algorithms described above. The first six
columns present our main parameters: the start coordinate SC, the end coordinate EC, the cost of con-
struction per unit length γ is 100 units, the cost to raise the water along the surface of the terrain say
10 meters is Cl is 2500 units, the collection of coordinates to pass through ξ and the polygonal areas
to evade ψ. The next two columns present the number of cells in the optimal resultant flow path over-
lapped with respect to reference data, i.e., DCW in the resultant path. Followed by the two columns
representing the number of lifts from SC to EC and followed by the next two columns presenting the
number of cells of the reference data, i.e., DCW along the path from SC to EC. Finally, the two columns
representing the accuracy of applying algorithms for the set of specified parameters. For each of the
input, the results for both 1KM resolution as well as 90 meters resolution are published. The results are
combinations of both Gravitational Flow Model as well as Lift Based Flow Model.

Figure 5.6 and 5.10 demonstrates the results on applying gravitational flow path algorithm on some
of the parameters defined for 1KM resolution data set, whereas Figure 5.8 and 5.12 represents the result
for the same set of parameters but on 90 meters resolution data set. They denote the resultant flow
path on applying the gravitational flow algorithm from SC to EC. Figure 5.14 demonstrates the results
on applying both gravitational flow path algorithm and lift based flow path algorithm for one of the
parameters defined on the 1KM resolution data set. It denotes the resultant flow path on applying the
algorithm from SC to EC. It also describes the point where the shade of green denoting that lift is
necessary to achieve the least-cost path. Figure 5.16 represents the result for the same set of parameters
but on 90 meters resolution data set.

Figure 5.18 to 5.24 demonstrates the results of the trade-off problem between two parameters
i.e., lifts and distance. The blue line indicates the minimum values and the orange line indicates the
maximum values. So, for each of the result, the lift and distance graph varies. As the distance increases,
the number of lifts required is decreasing.

5.6 Experimental Evaluation

This section is mostly about the analysis based on the results from the previous section. First, we
discuss the main aspect of the algorithm, which is running time and the algorithm comparison with
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Figure 5.3 Hill shade of the study area

the existing least cost for canal model algorithms. Later we discuss the correctness of the algorithm,
describing what is the data and why is the data needed for comparison and how the resultant data will
be compared with the proposed algorithm results.

5.6.1 Evaluating algorithms

As described earlier, the time complexity of gravitational flow path isO(|R|∗|ψ|∗w+nmlogn+n).
Where n is the number of cells of the terrain τ , |R| is the total number of rows in the terrain τ , w is
the average number of points of all polygons ψ, m is |ξ|+ 1 and m � n. On different data sets taken,
the total execution time of the gravitational flow algorithm is from 6 minutes to 8 minutes. Around
5 minutes 30 seconds of the time taken is consumed by I/O stream because of the massive grid size.
The remaining time is for the model algorithm to run. The time complexity of lift based flow path is
O(|R| ∗ |ψ| ∗ w + nmlogn + n). On different data sets taken, the running time of the lift based flow
algorithm is from 6 minutes to 10 minutes. The execution time values are based on the Environment
Settings specified earlier. As compared to the existing algorithm proposed by Walter et al. [1], which
is of O(kn2), where k is a number of repeated iterations to compute the result and is proportional to
the path complexity. Our proposed solution for gravitational flow is computationally better, which
is linearithmetic compared to polynomial order. So, from the time complexity point of view, both
our algorithms perform well when compared with Walter et al. [1]. Walter’s solution avoid higher
slopes i.e, if a neighbouring cell’s elevation is higher than the center cell’s elevation, the algorithm
doesn’t consider the path. In short terms, if h(CC) < h(NC), Walter’s algorithm stops finding path in
that particular direction. So, Walter’s algorithm is just restricted to gravitational flow model only. Based
on this, Walter’s algorithm can only be compared to our Gravitational Flow Model algorithm. Since
Walter’s study is evaluated on the synthetic data sets instead of real-world data sets, it is hard to provide
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Figure 5.4 Euclidean path elevation profile for the study area

Figure 5.5 Gravitational path elevation profile for the study area
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Figure 5.6 Case1: Resultant path on 1KM resolution

Figure 5.7 Case1: Comparison with DCW data on 1KM resolution
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Figure 5.8 Case1: Resultant path on 90 meters resolution

Figure 5.9 Case1: Comparison with DCW data on 90 meters resolution
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Figure 5.10 Case2: Resultant path on 1KM resolution

Figure 5.11 Case2: Comparison with DCW data on 1KM resolution
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Figure 5.12 Case2: Resultant path on 90 meters resolution

Figure 5.13 Case2: Comparison with DCW data on 90 meters resolution
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Figure 5.14 Case3: Resultant path on 1KM resolution

Figure 5.15 Case3: Comparison with DCW data on 1KM resolution
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Figure 5.16 Case3: Resultant path on 90 meters resolution

Figure 5.17 Case3: Comparison with DCW data on 90 meters resolution
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Figure 5.18 Case1: Trade-off graph

Figure 5.19 Case2: Trade-off graph
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Figure 5.20 Case3: Trade-off graph

Figure 5.21 Case4: Trade-off graph
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Figure 5.22 Case5: Trade-off graph

Figure 5.23 Case6: Trade-off graph
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Figure 5.24 Case7: Trade-off graph
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an honest comparison against our technique. In addition to that, the factors such as datasets, overhead,
and preprocessing weren’t described while developing the algorithm. So, it is even hard to compare
the algorithms computationally. Due to multiple reasons mentioned above, we do not compare our
algorithm against Walter et al. [1].

5.6.2 Algorithm correctness

In order to verify the correctness, the results need to be verified on a valid reference data set. This
section discusses the reference data that was used for comparison and proceed onto the comparison of
our results against the reference data set.

5.6.2.1 DCW Data

For the comparison of the results, we use Digital Chart of the World, DCW data. DCW is a compre-
hensive digital map of Earth which is freely available and is a standard reference for the real-world data
set generated at 1KM using a vector contour-to-grid approach. As the grid size is larger than than the
original vector contours the positional grid accuracy for rivers and channels is good to a grid/pixel. It
was produced by USGS. The data contains different thematic layers, of which we are most interested in
the hydrography and drainage system.

5.6.2.2 Comparing resultant data with DCW data

As the data is a vector line data, which is not quite a replica of the real-world data. To replicate the
real-world data, we have used the concept of a buffer zone [5] replicating the real-world data. A buffer
is useful for proximity analysis. The buffer distance is based on the resolution of the input data that we
have considered. For a 1KM resolution data, we have used a buffer of 100 meters, whereas, for a 90
meters resolution data, we have used a buffer of 9 meters. In short, 10% of the resolution of the data is
considered as a buffer zone. By including the 10% buffer zone, the vector contour data is converted to
a raster data of different resolutions. For our problem, as resolutions of 90 meters and 1 Kilometer are
considered, we will be comparing our resultant data with its DCW resolution data sets.

Figure 5.7 and 5.11 demonstrates the results on applying gravitational flow path algorithm on some
of the parameters defined for 1KM resolution data set in addition to the overlap of DCW data, whereas
Figure 5.9 and 5.13 represents the result for the same set of parameters but on 90 meters resolution
data set in addition to the overlap of DCW data. They denote the resultant flow path on applying the
gravitational flow algorithm from SC to EC. Figure 5.15 demonstrates the results on applying both
gravitational flow path algorithm and lift based flow path algorithm for one of the parameters defined
on the 1KM resolution data set. It denotes the resultant flow path on applying the algorithm from SC

to EC. It also describes the point where the shade of green denoting that lift is necessary to achieve
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Table 5.1 Different regions of study areas
Region Map Extent (UL, LR) Length of the Canal OC RC Accuracy

Part of the river along
Krishna River

(16.4371, 75.5885),
(16.1892, 76.3044)

87 Kms 62 90 68.88%

Canal along Ganga basin
(20.5737, 78.2699),
(20.29971, 78.7992)

78 Kms 50 72 69.44%

Canal along Bembla Dam
(15.2583, 76.3283),
(15.5943, 76.8328)

72 Kms 51 67 76.11%

Canal along Krishna Sagar Dam
(12.4226, 76.629),
(12.2152, 76.9129)

42 Kms 42 44 95.45%

Canal along Nagarjuna Dam
(NSP Right Canal)

(16.5696, 79.3107),
(16.4761, 79.5242)

23 Kms 26 26 100%

the least-cost path. Figure 5.17 represents the result for the same set of parameters but on 90 meters
resolution data set in addition to the overlap of DCW data.

We define correctness as the percentage of the number of resultant path cells overlapped with respect
to DCW data to the total number of cells that are present from SC to EC in DCW data. By using this
definition, we calculate the correctness of the algorithm. As seen in Table 5.2, the columns, number
of overlapped cells visited with respect to the reference data, i.e., DCW in the resultant path and the
total number of cells of the reference data are necessary to calculate the correctness. We calculate the
correctness for each set of input parameters provided. On an average, the algorithm correctness values
for the 1KM resolution stand at 82.10%, whereas for 90 meters resolution stands at 82.08%. The average
value stands out to be 82.09%. The results are a combination of both algorithms, i.e., gravitational flow
and lift based flow algorithms. If we look into the range of values for 1KM resolution, they stand from
68.83 to 100, whereas, the range for 90 meters resolution on different data sets stands from 70.92 to
96.61. The difference in range values might be because not all Earth’s terrestrial parameters are taken
into account.

The research shows that an engineering planning problem, where trade-offs between two or more
key parameters for determining the choice of the final path is challenging. By theory, the results are
supposed to lie between an upper bound and lower bound, and this design presents an elliptical graph
across these parameters. The set of all plausible options will lie within these bounds. In our work, this
was clearly demonstrated in 2 cases, while in other cases, there were deviations. We anticipate that this
can be due to the complexity of the terrain, which is currently not explicitly considered in our approach.
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Table 5.2 Results on applying algorithms on multiple data sets of different resolutions
Parameters OCV No. of lifts RC Accuracy(%)

Resolution Resolution Resolution Resolution
SC EC PT PI 1KM 90 M 1KM 90 M 1KM 90 M 1KM 90 M

(15.2583, 76.3283) (15.7593, 76.9412) 0 0 53 678 0 0 77 903 68.83 75.08

(20.5737, 78.2699) (20.2997, 78.7992) 0 0 50 656 0 0 72 872 69.44 75.22

(22.3511, 76.7838) (22.7969, 77.7787) 0 0 94 1330 0 0 129 1845 72.86 72.08

(16.1892, 76.3044) (16.3463, 77.6861) 0 0 137 1828 0 2 182 2467 75.27 74.09

(15.2583, 76.3283) (15.5943, 76.8328) 0 0 51 693 0 0 67 884 76.11 78.39

(16.4371, 75.5885) (16.1892, 76.3044) 0 0 62 844 0 0 90 1190 68.88 70.92

(12.4226, 76.6290) (12.2152, 76.9129) 0 0 42 447 0 0 44 545 95.45 82.01

(27.1000, 81.4825) (26.7940, 82.1018) 0 0 61 953 0 0 74 1045 82.43 91.19

(27.1000, 81.4825) (26.8371, 81.8339) 3 2 36 479 0 0 46 573 78.26 83.59

(21.7242, 82.7340) (21.6977, 83.2507) 0 0 61 700 0 0 62 711 98.38 98.45

(18.3517, 80.4596) (17.5638, 81.2596) 2 2 144 1856 0 2 145 1921 99.31 96.61

(11.5762, 77.7446) (11.4020, 77.6986) 0 0 22 275 1 1 22 315 100 87.30

OCV: Number of overlapped cells visited with respect to DCW data along the resultant path from SC
to EC; RC: Number of cells of the DCW data along the path from SC to EC; PT: Number of

coordinates to pass through ξ; PI: Number of restricted polygons ψ;
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Chapter 6

Conclusions

This study proposed models for the least-cost route for canals. The models are built using the DEM
data considering multiple parameters such as cost of construction, cost to lift the water along the surface
of the terrain, the pass through points and the restricted regions.

The first algorithm is the gravitational flow model algorithm. This flow algorithm discusses flow
where the movement of water is under the force of gravity and the cost is proportional to the length of
the resultant path. TerraCost algorithm is used where it internally uses the Dijkstra’s algorithm along
with the canal properties defined. A path is identifiable with this algorithm only when a gravitational
path exists. This algorithm runs in O(|R| ∗ |ψ| ∗ w + nmlogn+ n) complexity.

The second algorithm is the lift based flow algorithm. This flow algorithm discusses the flow where
the water is lifted by using an external force such as motors, but along the surface of the terrain and
the cost function is related to lift elevation function and the length of the resultant path. Similar, to the
gravitational flow algorithm, this also uses the TerraCost algorithm. However, one change is how the
cost function is defined. This algorithm runs in O(|m| ∗ 2m + nm2logn) complexity.

The results of the trade-off between the cost and the distance show that for various cases of the terrain
and the spatial scale of the data, the patterns tend towards the elliptical bounds, though they can have
different patterns at some other parametric combinations.

Using DCW data, we compared our results by applying the algorithms on different resolutions of
multiple real-world data sets. The results proved to have an accuracy of 82.09%. It also proves that
the algorithm scales linearithmically according to the resolution data and also efficient in terms of time
complexity with respect to the existing algorithm.

For future work, we plan to improve the accuracy by involving several new parameters such as cost
function related to land covers and further optimizing the lift based flow model. Although we have
mentioned these models are for Canals, it isn’t limited to just canals. It can be extended to drainage
networks and many other networks as well. One more interesting problem that can be considered is
applying these algorithms on different utility infrastructures such as roads.
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