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Abstract

In the field of robotics, the accurate modeling of uncertainty in the robot’s motion and
perception is crucial for effective collision avoidance. Many commodity sensors exhibit non-
Gaussian noise characteristics, yet existing approaches often assume Gaussian uncertainty to
ensure computational tractability. This thesis addresses the gap between non-Gaussian un-
certainty and collision avoidance by developing a framework that leverages the distributional
characteristics of motion and perception noise.

We propose a novel approach that interprets reactive collision avoidance as a distribution
matching problem between collision constraint violations and the Dirac Delta distribution. To
ensure fast reactivity, we embed each distribution in a Reproducing Kernel Hilbert Space and
reformulate the distribution matching as the minimization of the Maximum Mean Discrepancy
(MMD). By exploiting the insight that evaluating the MMD reduces to matrix-matrix products,
we develop a simple control sampling approach for reactive collision avoidance with dynamic
and uncertain obstacles.

Furthermore, this thesis advances the state-of-the-art in two key aspects. Firstly, we con-
duct an extensive empirical study to demonstrate that our planner can effectively infer distribu-
tional bias from sample-level information. This insight enables the planner to guide the robot
towards good homotopy, utilizing the distributional characteristics of motion and perception
noise. In contrast, we highlight how a Gaussian approximation of uncertainty can lead to loss
of bias estimation and guide the robot towards unfavorable states with high collision proba-
bilities. Secondly, we compare our proposed distribution matching approach with previous
non-parametric and Gaussian approximated methods of reactive collision avoidance. Through
tangible comparative advantages, we showcase the superior performance of the distribution
matching approach.

In summary, this thesis presents a comprehensive framework that addresses the challenge
of non-Gaussian uncertainty in collision avoidance. By leveraging the distributional charac-
teristics of motion and perception noise, our approach provides a more accurate and effective
method for reactive collision avoidance with dynamic and uncertain obstacles. The empiri-
cal study and comparative evaluations demonstrate the advantages of the proposed distribution
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matching approach over previous methods. This research contributes to advancing the un-
derstanding and applicability of collision avoidance strategies, particularly in the context of
non-holonomic motion and non-Gaussian uncertainty.
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Chapter 1

Introduction

Robotics, as a multidisciplinary field, has witnessed significant advancements in recent
years. From industrial automation to healthcare assistance, robots have become increasingly
prevalent in various domains, revolutionizing the way tasks are performed and challenging
traditional notions of human-machine interaction. The quest for intelligent, autonomous ma-
chines capable of perceiving, reasoning, and acting in complex environments has fueled rapid
progress in robotics research.

One key area of focus within robotics is the development of autonomous systems. These
systems aim to imbue robots with the ability to operate independently, making decisions and
executing tasks without continuous human intervention. Autonomy enables robots to adapt to
dynamic environments, handle uncertainties, and accomplish complex missions with precision
and efficiency.

Within the realm of autonomous systems, a significant application area is autonomous vehi-
cles. The emergence of self-driving cars, unmanned aerial vehicles, and autonomous underwa-
ter vehicles has garnered considerable attention and investment. The promise of autonomous
vehicles lies in their potential to transform transportation systems, offering increased safety,
improved mobility, and reduced environmental impact.

However, the realization of autonomous vehicles is not without challenges. One of the
foremost concerns is ensuring collision avoidance, a critical aspect for safe and reliable oper-
ation. In dynamic and unpredictable environments, autonomous vehicles must be capable of
detecting and responding to obstacles, pedestrians, and other vehicles in real-time. Effective
collision avoidance strategies are essential to mitigate the risk of accidents and enable seamless
integration of autonomous vehicles into existing transportation networks.

In the pursuit of robust collision avoidance, researchers have explored various techniques
and algorithms. Traditionally, many approaches have relied on assumptions of Gaussian noise
and linear models, providing tractability but potentially oversimplifying the true complexity
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of real-world scenarios. Acknowledging the non-Gaussian noise characteristics exhibited by
many commodity sensors, recent research has sought to leverage the distributional properties
of motion and perception noise to improve collision avoidance performance.

By considering the biases and unequal spreads in uncertainty distributions, novel approaches
have emerged that can guide robots towards favorable states while avoiding collisions. These
advancements not only enhance the safety and efficiency of autonomous systems but also have
broader implications for the field of robotics as a whole.

In this thesis, we contribute to the ongoing research in collision avoidance by investigating
the impact of non-Gaussian uncertainty and distributional characteristics on the performance of
robotic systems. Our work aims to improve the understanding of how biases and non-Gaussian
noise affect collision avoidance outcomes in diverse robotics applications. We develop novel
algorithms that leverage distribution matching and Reproducing Kernel Hilbert Space to enable
efficient reactive collision avoidance with dynamic and uncertain obstacles.

Through empirical studies and comparative analyses, we demonstrate the advantages of
our proposed methods over traditional approaches that rely on Gaussian approximations. Fur-
thermore, we highlight the broader significance of our findings in the context of autonomous
vehicles, where collision avoidance is of paramount importance for safe and reliable operation.

By advancing the knowledge and techniques in collision avoidance with non-Gaussian un-
certainty in robotics, this thesis contributes to the broader field of autonomous systems, paving
the way for more capable and intelligent robots in various domains.

1.1 Collision Avoidance Under Uncertainty

Collision avoidance in robotics is a critical task that involves ensuring the safe navigation of
robots in dynamic environments, avoiding collisions with obstacles and other agents. However,
real-world scenarios often introduce uncertainties in the robot’s motion and perception, making
collision avoidance a challenging problem. The literature on collision avoidance under uncer-
tainty has been extensive, with many studies assuming Gaussian perturbations for estimating
the robot and obstacles’ states, as well as the robot’s motion commands [1–3]. The Gaussian
approximation is commonly employed due to its computational tractability and the resulting
efficient convex structures in the problem [4].

While Gaussian approximations are suitable for many cases, they may not accurately capture
the complexities of uncertainty when the underlying noise deviates significantly from Gaussian
distributions. In such instances, the reliance on Gaussian assumptions can lead to conservative
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Figure 1.1: Examples of Non-Gaussian distribution and their Gaussian approximations. The majority

of the mass of the true distribution is shifted with respect to the mean of the Gaussian approximation.

We refer to it as the distribution bias.

estimates of the feasible space, adversely affecting the efficiency of collision avoidance plan-
ning.

Recent advancements have been made to address the limitations of Gaussian-based ap-
proaches by considering non-Gaussian noise models for motion and perception [5, 6]. These
works enable planning and control under more realistic non-Gaussian noise, offering the poten-
tial for more accurate collision avoidance strategies. Additionally, specific attention has been
given to reactive collision avoidance [2, 7, 8], where strategies aim to avoid collisions in real-
time while maintaining efficiency and control effort. These approaches highlight the benefits
of adopting more sophisticated views of underlying uncertainty, leading to reduced collision
probabilities and optimized control actions.

However, despite these notable contributions, existing approaches have not provided a fine-
grained analysis of how distributional characteristics, such as bias, impact collision avoidance
and how this knowledge can be leveraged to further reduce collision probabilities. Bias, as
exemplified in 1.1 with a bi-modal distribution from a commodity GPS, can result in unequal
spread on either side of the mean, deviating from the Gaussian approximation. This unequal
spread inherently creates a notion of favorable and unfavorable homotopies, as depicted in 1.2,
where regions with less overlap between robot and obstacle uncertainties are perceived as fa-
vorable homotopies. To the best of our knowledge, current methods have not explicitly ensured
that robots consistently choose favorable homotopies with high probability while avoiding ob-
stacles.
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Figure 1.2: Left figure shows collision avoidance under non-Gaussian motion and perception noise.

The goal position is shown in red. The robot (blue) can choose to avoid the obstacle (orange) from

either left or right. However, due to the presence of bias in the motion and perception noise, one of the

homotopies shown in blue becomes more favorable. Our objective in this paper is to develop reactive

planners than can guide the robots towards favorable homotopies. The right figure presents the situation

under Gaussian approximation of the noise. In this case, either homotopy erroneously appear equally

good (or worse). Thus, it is quite likely that Gaussian approximation will lead the robot unfavorable

positions with high collision probability
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Table 1.1

Symbol Description

(xt, vt) Position and linear velocity of the robot at time t

(θt, ωt) Heading and angular velocity of the robot at time t

(xo,t, vo,t) Position and velocity of the obstacle at time t

ut Control input to the robot at time t

f(·) ≤ 0 VO constraints for jth obstacle

pf Distribution of f(.) under motion and perception uncertainty

η Probability of collision avoidance

In this thesis, we aim to bridge this knowledge gap and enhance the understanding of col-
lision avoidance under non-Gaussian uncertainty. Our approach involves analyzing in diverse
ways why specific control actions are chosen for given obstacle configurations and how these
decisions are influenced by the nature of the underlying uncertainty and any approximations
made. By considering the distributional characteristics, particularly bias, we seek to develop
novel algorithms that can effectively infer the favorable homotopies, guiding robots to make
safer and more efficient collision avoidance decisions in real-world environments.

Through extensive empirical studies and comparative evaluations, we demonstrate the ef-
ficacy of our proposed approach, providing valuable insights into collision avoidance under
uncertainty. Our research contributes to the advancement of robotics and autonomous systems,
fostering safer and more reliable robot navigation in complex and uncertain environments. By
addressing the challenges posed by non-Gaussian uncertainty, we aim to pave the way for the
seamless integration of robots into real-world applications and propel the field of collision
avoidance to new heights of performance and innovation.

1.2 Preliminaries

Symbols and Notations: We represent scalars as normal case small font letters and use the
bold font variant for vectors. We use bold-font upper case letters to denote matrices. We use
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subscript t to denote the time-stamp of a variable. The notation ∥·∥ denotes the Euclidean norm
of vector/matrices. We use c to denote some nominal/noise-free value of a random variable c.
The symbol Pr(·) denotes the probability of an event, while p(.) represents the probability
distribution function. Some of the commonly used symbols and notations are summarized in
the table 1.1 while some are also defined in their first place of use.

1.2.1 Motion Model

In our investigation, we consider a discrete-time stochastic motion model for the robot,
where ∆t denotes the time interval between consecutive steps.

xt+1 = xt + vt∆t, θt+1 = θt + ωt∆t, (1.1)

vt =

[
vt cos(θt + ωt∆t)

vt sin(θt + ωt∆t)

]
, (1.2)

[
vt

ωt

]
=

ut︷ ︸︸ ︷[
vt

ωt

]
+ϵ (1.3)

In the stochastic setting, xt, θt, vt, ωt are all random variables with unknown probability dis-
tribution. To simplify the technical exposition, we assume that these variables have a nominal
noise-free value corrupted by an additive disturbance. For example, as shown in (1.3), the
control consists of deterministic command of linear (vt) and angular (ωt) velocity corrupted by
ϵ. Although, the probability distribution of the disturbance is not known, we assume to have
access to the samples drawn from it. We also assume that a Particle filter like set-up is in place
that bounds the uncertainty in position at each time step.

We represent obstacles’ motions through the following piece-wise straight line trajectory.
Similar to robot motion model, we treat xoj,t, voj,t as random variables and we have access to
only small number of sample realizations of these random variables.

xo,t+1 = xo,t + vo,t∆t (1.4)

1.2.2 Velocity Obstacle

In a deterministic noise-less scenario, reactive collision avoidance between disk-shaped
robots and obstacles is frequently expressed using velocity obstacle(VO) [9] constraints, de-
fined as follows:
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f(·) ≤ 0 :
(rTv)2

v2
− r2 +R2 ≤ 0,∀j (1.5a)

r = xt − xo,t, v = vt − vo,t (1.5b)

Here, R represents the combined radii of the robot and the obstacle. For clarity in subse-
quent sections, we formulate the VO constraints for a single obstacle, but extending to multiple
obstacles is straightforward. However, in the stochastic setting, where the positions and veloci-
ties of the robot and obstacle are all random variables, the function f(.) effectively characterizes
a distribution. As a result, we must appropriately modify the application of VO constraints to
accommodate this situation, which will be elaborated on in the following discussion.

1.3 Navigating Uncertainties: Advancements in Non-Gaussian

Collision Avoidance

1.3.1 Motivation

Handling non-parametric noise in robotics and autonomous systems is of paramount impor-
tance due to the inherent complexities and uncertainties present in real-world environments. In
many practical scenarios, the motion and perception noise encountered by robots and sensors
do not conform to simple Gaussian models. Assuming Gaussian noise distributions can lead
to suboptimal decision-making, as it may overlook critical information contained within the
true non-Gaussian noise characteristics. Embracing non-parametric noise models allows us to
capture more realistic and intricate behaviors, enabling robots to make informed and adaptive
decisions in dynamic and unpredictable surroundings as seen in Fig 1.3. By acknowledging
the non-Gaussian nature of noise, we can design algorithms that effectively handle uncertain-
ties, leading to more robust and reliable autonomous systems capable of navigating complex
environments with higher levels of precision and safety.

Moreover, the consideration of non-parametric noise contributes to the identification of fa-
vorable homotopies in collision avoidance scenarios. Non-Gaussian noise distributions of-
ten exhibit unequal spreads and biases, resulting in non-symmetric distributions. As a conse-
quence, certain regions in the environment may have less overlap between robot and obstacle
uncertainties, creating favorable homotopies that allow safer and more efficient navigation. By
leveraging distributional characteristics, such as bias, in the collision avoidance process, robots
can intelligently select trajectories that increase the probability of avoiding collisions while
optimizing their path to the goal. This fine-grained analysis of the underlying uncertainty and
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Figure 1.3: Examples showing the consequence of Gaussian approximation on homotopy selection.

As we can see, on Gaussian approximation, the unfavourable homotopy is selected. This is because

overapproximation of noise in a specific direction makes the favourable homotopy infeasible

its impact on decision-making allows robots to navigate around obstacles with higher success
rates, ultimately leading to more favorable and efficient trajectories in complex and uncertain
environments.

1.3.2 Related Works

Chance constrained optimization has emerged as a widely adopted paradigm and frame-
work for addressing collision avoidance under conditions of uncertainty [1, 2]. While diverse
variants of this problem exist, typical formulations seek to reformulate the initially intractable
chance constraints into surrogate counterparts. In specific cases, such as demonstrated in [10],
closed-form solutions are attainable. Often, these formulations model the original distribution
as Gaussian and resort to linearization [1] or manage closed-form solutions when the colli-
sion avoidance constraints can be formulated as convex or affine constraints [11, 12]. Certain
methods, like [13–15], have devised surrogates that provide tight approximations to chance
constraints defined over non-linear inequalities (which may even be non-convex). Addition-
ally, [3] proposes a Bayesian Decomposition framework for multi-robotic settings. However,
all these algorithms share a fundamental assumption concerning the nature of uncertainty of
the random variables involved (e.g., state and actuation of the robot), relying on Gaussian dis-
tributions for closed-form surrogates.

In recent times, there has been a growing inclination towards non-parametric chance con-
straints [2, 7, 8], recognizing that many sensor noises frequently exhibit non-parametric char-
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acteristics [6, 7]. These methods often present chance constraint optimization as a distribution
matching problem, employing techniques such as the popular Kullback-Leibler (KL) distance
or computing distances between distributions in their Hilbert Space embeddings. While show-
casing promising outcomes in terms of various metrics, these methods have yet to delve into
a thorough analysis that precisely identifies the reasons and implications of non-parametric
modeling’s benefits and the potential inadequacies associated with Gaussian approximations,
particularly when it comes to control actions and resulting outcomes.

In this paper, we undertake the task of bridging this knowledge gap by conducting a de-
tailed empirical analysis, exposing how inherent bias inherent in non-parametric distributions
can pose challenges when approximated by parametric Gaussian noise. Moreover, we extend
previous work [7] by circumventing the need to estimate the desired distribution in the dis-
tribution matching interpretation of chance-constrained optimization (CCO). Furthermore, our
contributions include extending the scope of [16] to encompass reactive navigation in dynamic
environments, thereby enhancing the applicability and practicality of our approach in real-
world scenarios. Through comprehensive analysis and meticulous experimentation, we aim to
shed light on the merits and limitations of non-parametric modeling, ultimately paving the way
for more effective and reliable collision avoidance strategies in uncertain and dynamic robotic
environments.

1.3.3 Contribution

Our research encompasses groundbreaking contributions rooted in the chance-constrained
optimization (CCO) framework, encapsulating core advancements as follows.

Algorithmic Contribution: The fundamental premise of our work lies in harnessing bias in
motion and perception noise to enhance planning efficiency. This necessitates the integration of
reactive planners capable of operating amidst non-parametric uncertainty, inspired by our prior
work [7], [8], [9], which reinterprets CCO as a distribution matching problem. Specifically,
we reformulate CCO to identify suitable control inputs that minimize the discrepancy between
the violation of velocity obstacle (VO) constraints and Dirac-Delta distributions. Leveraging
distribution embedding in Reproducing Kernel Hilbert Space (RKHS), we devise the distri-
bution matching cost using the Maximum Mean Discrepancy (MMD) measure. Additionally,
leveraging the kernel trick, we streamline MMD evaluation to entail only a few matrix-matrix
products, facilitating an uncomplicated control sampling approach for real-time reactive navi-
gation.

Empirical Contribution: Our research elucidates the profound significance of retaining the
true non-parametric nature of the distribution when computing motion plans. Importantly,
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we demonstrate that with an appropriate planner, such as the one proposed in this research,
leveraging distributional bias substantially augments collision probability and control effort by
deftly guiding robots towards favorable homotopies. By contrast, approximating uncertainty as
Gaussian yields a planner’s homotopy selection with an arbitrary nature, leading to heightened
collision probabilities.

Benchmarking Contribution: A comprehensive benchmarking analysis of our planner against
diverse baselines highlights substantial improvements in collision probabilities and control
costs. The first baseline [10] adopts Gaussian approximation of motion and perception un-
certainty, allowing for tractable reformulation of chance constraints. The second baseline
follows the same distribution matching interpretation of CCO as ours but employs Gaussian
Mixture Model for uncertainty fitting and utilizes Kullback Liebler Divergence (KLD) to con-
struct distribution matching cost. Our final baseline constitutes an ablation study wherein our
MMD-based approach is employed, but with Gaussian approximation of uncertainty.

In conclusion, our research not only introduces novel insights into non-Gaussian collision
avoidance but also establishes a cutting-edge framework for integrating distributional charac-
teristics into robotic motion planning. The empirical analysis and benchmarking comparisons
underscore the superiority of our proposed approach, paving the way for more robust and
efficient collision avoidance strategies in real-world autonomous systems. By embracing non-
parametric noise models and leveraging distributional characteristics, our research pushes the
boundaries of autonomous robotics, revolutionizing collision avoidance capabilities in complex
and uncertain environments.

1.4 Organization of the Thesis

The thesis is organized into four chapters, each contributing to a comprehensive understand-
ing of collision avoidance under non-parametric uncertainty and its benefits in robotic motion
planning.

• Chapter 1: This introductory chapter serves as the foundation, starting with an introduc-
tion to the problem of collision avoidance and the significance of handling non-Gaussian
noise. Preliminary concepts, including the motion model and velocity obstacle, are dis-
cussed to establish a solid basis for the subsequent chapters. The chapter delves into
related works, highlighting existing approaches in collision avoidance and their limita-
tions. The motivation behind the research and the specific contributions of the thesis are
also presented, setting the stage for the subsequent investigations.
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• Chapter 2: The chapter is dedicated to the problem formulation and the proposed novel
approach for reactive collision avoidance. It elaborates on how chance-constrained op-
timization (CCO) is reformulated as a distribution matching problem to handle non-
parametric noise effectively. The Maximum Mean Discrepancy (MMD) cost and the
reduced sets method are detailed as crucial components of the proposed approach. A
key innovation involves introducing Dirac Delta as the desired distribution to guide the
robot towards favorable homotopies. This chapter lays the technical groundwork for the
empirical evaluations presented later in the thesis.

• Chapter 3: This chapter focuses on the validation results and empirical analysis. The
proposed method is put to the test through various simulations and experiments in dy-
namic environments. The chapter provides insights into homotopy selection and the
impact of distributional characteristics on collision avoidance. Qualitative results are
presented to demonstrate the efficacy of the proposed approach compared to traditional
Gaussian-based methods and other non-parametric methods. The analysis showcases
the superiority of the proposed approach in terms of collision probabilities and control
efforts

• Chapter 4: This chapter concludes the thesis, summarizing the key findings and contri-
butions. The implications of the empirical results and the significance of the novel Dirac
Delta approach are discussed. The chapter also outlines potential future directions for
research, suggesting ways to enhance and extend the proposed methodology. This final
chapter brings the thesis to a close while paving the way for further advancements in the
field of collision avoidance under non-parametric uncertainty.
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Chapter 2

Leveraging Distributional Bias For Reactive Collision

Avoidance under Uncertainty: A Kernel Embedding

Approach

2.1 Problem Formulation

We present a formulation for one-step reactive navigation in uncertain environments as a
chance-constrained optimization problem (CCO):

min
ut

w1∥vt − vd∥22 + w2ut
2 (2.1a)

Pr(f(xt, θt,ut, xo,t, vo,t) ≤ 0) ≥ η, ∀j, ut ∈ C (2.1b)

vt =

[
vt cos(θt + ωt∆t)

vt sin(θt + ωt∆t)

]
, (2.2)

The cost function (2.1a) involves two key terms. The first term ensures alignment of the
nominal velocity with a desired velocity vector vd, which is typically designed to induce move-
ment towards the goal [17]. Additionally, a control input regularizer is included in the cost
function (2.1a). The user-defined weights w1 and w2 are used to strike a balance between each
cost term. The set C represents the collection of feasible control inputs, assumed to be convex
and formed by affine constraints on vt, ωt. Meanwhile, the inequalities (2.1b) correspond to
the so-called chance constraints [8], guaranteeing that the probability of satisfying the velocity
obstacle (VO) constraints is greater than or equal to a specified threshold η. The standard form
of chance constraints can be seen in the FIg 2.1
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Figure 2.1: Plot depicting the chance constraints. The green part shows the samples which satisfy the

constraints, whereas the orange part shows the samples with constraint violation

Solving (2.1a)-(2.1b) presents the main computational challenge, primarily due to the pres-
ence of chance constraints. Existing research has largely focused on replacing (2.1b) with
alternative, computationally tractable options. A particular approach is discussed in Section V.
Notably, many of the existing reformulations assume that the underlying uncertainty follows
a Gaussian distribution [4]. In contrast, our objective in this paper is to analyze the impact
of Gaussian approximation. Consequently, we introduce our reactive planner, capable of op-
erating with arbitrary uncertainty distributions, ensuring a comprehensive investigation of the
effects of different uncertainty models.

2.2 Reformulation as a Distribution Matching Problem

At an intuitive level CCO (2.1a)-(2.1b) has the following interpretation [8]. We seek to compute
a nominal control ut that modifies the shape of the distribution of f(.) in a way that most of its
mass lies on the left of the line fj(.) = 0. An alternate interpretation can be derived by defining
a function h in the following manner.

h(xt, θt,ut, xo,t, vo,t) = max(0, f(xt, θt,ut, xo,t, vo,t)) (2.3)
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Figure 2.2: These plots depict distribution matching with the Dirac-Delta distribution. The green area

represents the samples which are coinciding with the Dirac-Delta distribution. The orange part represent

the remaining samples

As clear, h(.) measures constraint violation. It is zero if the VO constraints are satisfied and

equal to f(.) otherwise. In the stochastic setting where xt,ut, xoj,t, voj,t are random variables,

h(.) defines the distribution of constraint violations.

With respect to (2.3), we can interpret CCO as the problem of finding an appropriate control

input ut such that the distribution of h(.) becomes similar to that of a Dirac-Delta. Using this

interpretation, we can reformulate (2.1a)-(2.1b) in the following manner:

min
ut

ldist(ph, pδ) + w1∥vt − vd∥22 + w2ut
2 (2.4)

ut ∈ C, (2.5)

where ph, pδ represents the probability distribution of h(.) and Dirac-Delta respectively. The

function ldist measures the similarity between ph, pδ and it decreases as the distribution be-

comes similar. One possible option for ldist is the KL divergence. However, it cannot operate

at purely sample level and requires the parametric form of the distributions to be known. Thus,

we define ldist as MMD between ph and pδ defined in the following manner.
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ldist(ut) =

MMD︷ ︸︸ ︷
∥µph(ut)− µpδ∥22, (2.6)

where, µph and µpδ represent the RKHS embedding of ph and pδ respectively.

We solve (2.4)-2.5 through a simple control sampling approach. We draw several samples

of ut from a uniform distribution and then evaluate the cost (2.4) on them. Subsequently,

we choose the sample corresponding to the lowest cost. This control input tries to match the

constraint violation distribution with the Dirac-Delta distribution as seen in Fig 2.2. Our control

sampling relies on efficient evaluation of MMD term to retain online performance. Thus, in

the next section, we show how MMD evaluation for a given ut can be reduced to computing

matrix-matrix products.

2.2.1 Matrix Representation for MMD

The algebraic expression for µph can be derived in the following manner

µph =
i=N∑
i=0

j=N∑
j=0

αiβjk(hij, .) (2.7)

where

hij = h(xi
t, θ

i
t,ut, xj

o,t, vj
o,t) (2.8)

and αi, βj are constants. Typically, if we draw I.I.D samples, then we have αi = βj = 1
n

.

However, as shown in [8], [7], these constants can be chosen in a clever way to re-weight the

importance of each samples leading to sample efficiency. The function k(., .) is the so-called

kernel operator, which in our implementation as Radial Basis Function. That is, k(c1, c2) =

−γ∥c1 − c2∥22 for some arbitrary vectors c1, c2.

As clear, µph is formed by first drawing n samples each of robot position/heading (xi
t, θ

i
t) and

obstacle position/velocity ((xj
o,t, vj

o,t)) distribution and then evaluating h(.) over all the possible
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sample pairs. The function k(.) represents the feature map associated with the RBF kernel. We

can represent (2.7) in the following more compact form, wherein ap denotes the pth element of

the vector a

µph =

p=N2∑
p=1

apk(hp, .),hp =


h11

h12

...

hnn

 , a =


α1β1

α1β2

...

αnβn

 (2.9)

Following a similar approach, we can define µpδ as

µpδ =

q=N2∑
q=1

bqk(0, .) (2.10)

for some constant vector b. Note that (2.10) exploits the fact that the samples from a Dirac-

Delta distribution are all zeros.

With respect to the above definition, we can expand (2.6) as

µph − µPδ

2
2 = Mcc − 2Mc0 + M00 (2.11a)

where, Mcc = ⟨µph , µph⟩ (2.11b)

Mc0 = ⟨µph , µPδ
⟩ (2.11c)

M00 = ⟨µPδ
, µPδ

⟩ (2.11d)

From equation 2.9 and 2.10, we get the following

Mcc = ⟨
p=N2∑
p=1

apk(hp, .),

p=N2∑
p=1

apk(hp, .)⟩ (2.12a)

Mc0 = ⟨
p=N2∑
p=1

apk(hp, .)

q=N2∑
q=1

bqk(0, .)⟩ (2.12b)

M00 = ⟨
q=N2∑
q=1

bqk(0, .),

q=N2∑
q=1

bqk(0, .)⟩ (2.12c)
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Applying kernel trick on the above equations, we get

Mcc = aT
k Kccak (2.13a)

Mc0 = aT
k Kc0bk (2.13b)

M00 = bT
k K00bk (2.13c)

ldist(ph, pδ) = aT
k Kccak + aT

k Kc0bk + bT
k K00bT

k
(2.13d)

Kcc, Kc0 and K00 are the kernel matrices and are defined as:

Kcc =


k(h11, h11) k(h11, h12) . . . k(h11, hnn)

k(h12, h11) k(h12, h12) . . . k(h12, hnn)
...

...
...

...

k(hnn, h11) k(hnn, h12) . . . k(hnn, hnn)

 (2.14a)

Kc0 =


k(h11, 0) k(h11, 0) . . . k(h11, 0)

k(h12, 0) k(h12, 0) . . . k(h12, 0)
...

...
...

...

k(hnn, 0) k(hnn, 0) . . . k(hnn, 0)

 (2.14b)

K00 = 1N2xN2 (2.14c)

The computation time of evaluating MMD or ldist depends mainly on the computation time of

the upper triangle of the symmetric matrix Kcc as the matrix K00 is a set of ones, and Kc0 is a

column matrix.
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Chapter 3

Simulation Results

Implementation Details: All the simulations were carried out on a desktop in Python. The

CPU and GPU used were AMD Ryzen 5 3500 and NVIDIA 1660 Super respectively. We

queried 100 samples each of robot and obstacle’s position and velocity from their distribution to

construct the MMD ldist term in optimization (2.4)-(2.5). We reiterate that we don’t assume any

knowledge on the parametric form for the underlying distribution. We used a fixed set of 625

discrete control inputs to compute the one that led to the lowest value for the cost (2.4). We used

γ = 0.1 in RBF kernel definition. In all the plots demonstrating qualitative results in the form of

robot and obstacle trajectories, the blue circle represents the robot’s actual position, the yellow

circle represents the obstacles’ position, and the lighter shade circles surrounding both of them

represent the underlying uncertainty in position. Extensive qualitative results and the code can

be found at https://github.com/anishgupta31296/MMD-with-Dirac-Delta-Distribution.

Baselines: We call our approach MMD Non-Gaussian when comparing against the following

baselines:

• MMD-Gaussian: This baseline follows the same approach of distribution matching in

RKHS through MMD. The only difference with our approach is that it computes a Gaus-

sian approximation of the motion and perception noise.

• KLD: This baseline from [7] also follows the interpretation of CCO as a distribution

matching problem. But it differs from our approach in the following respects. First,
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it fits a Gaussian Mixture Model to the noise distribution. Second, it works with the

distribution of VO constraints, while our approach uses the distribution of violations.

• PVO : This baseline from [18] proposed a deterministic reformulation of the chance

constraints over VO presented in (2.1b). However, it requires computing the Gaussian

approximation of motion and perception noise.

(a) Beginning of collision avoidance. The VO constraint

violation distribution is very far from Dira-Delta.

(b) Some part of the VO constraint violation distribution

coincides with the Dirac Delta Distribution

Figure 3.1: Validation of distribution matching interpretation of CCO.
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(c) Towards the end of the collision avoidance maneuver,

the distribution of the VO constraint violations becomes

close to that of the Dirac-Delta

Figure 3.1: Validation of distribution matching interpretation of CCO.

3.0.1 Validating Distribution Matching Interpretation

Fig.3.1 shows a simple scenario where a robot has an imminent head-on collision with an

obstacle. Fig.3.1a shows at the start of the collision avoidance maneuver, the distribution of VO

constraint violation is entirely on the right of zero. As the robot computes collision avoidance

maneuver by solving (2.4)-2.5, the constraint violations (almost) converge to the Dirac-Delta

distribution.
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(a) Favorable homotopy chosen by the robot (b) Un-favorable homotopy chosen by the robot

(c) Corresponding VO constraint violation distri-

bution

(d) Corresponding VO constraint violation dis-

tribution

(e) Corresponding VO constraint violation distri-

bution under Gaussian approximation

(f) Corresponding VO constraint violation distri-

bution under Gaussian approximation

Figure 3.2: These figures illustrate how better favourable homotopy selection will lead to better distri-

bution matching and hence, larger number of samples will be avoided
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(a) Distribution 1 (b) Distribution 2

(c) Distribution 3 (d) Distribution 4

(e) Distribution 5 (f) Distribution 6

(g) Distribution 7 (h) Distribution 8

Figure 3.3: Gaussian to Multimodel Transition of Distributions
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(a) This bar plot depicts the frequency of choosing favor-

able homotopy with our approach MMD Non-Gaussian

in a single obstacle benchmark shown in Fig.3.2c,3.2e

under the noise distributions from Figure 3.3. We can

observe the increasing likelihood of choosing the favor-

able homotopy as we move towards non-Gaussian noise

distributions

(b) This bar plot depicts the frequency of choosing

favourable homotopy for MMD Gaussian in case of sin-

gle obstacle benchmark shown in Fig.3.2c,3.2e using the

noise distributions in Figure 3.3. We can see the proba-

bility of choosing the correct side remains similar even

when the noise distribution becomes increasingly non-

Gaussian.

(c) Effect of non-gaussian nature on number of samples

colliding

(d) Effect of non-gaussian nature on control costs. The

x-axis shows the distribution number from Fig.3.3

Figure 3.4: Quantitative Analysis on non-gaussian nature of distribution. The x-axis shows the distri-

bution number from Fig.3.3
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3.0.2 Analyzing the Choice of Homotopies

This section presents the most important empirical result of our paper. We consider a bench-

mark with a single obstacle as shown in Fig.3.2 to analyze two key questions. First, how

is the choice of homotopy related to the distribution of constraint violations for a biased non-

Gaussian distribution and its Gaussian approximation. Second, we intend to study the effective-

ness of our MMD Non-Gaussian approach in ensuring the selection of favorable homotopies

during collision avoidance. To these ends, we sampled two control actions for the scenario

shown in Fig.3.2 which results in the robot passing the obstacle from different sides. Clearly,

Fig.3.2a is the favorable homotopy in this scenario while that shown in Fig.3.2b leads to a large

overlap between the robot and obstacle position uncertainty. Fig.3.2c shows the distribution of

constraint violations for the control input that leads to the favorable homotopy for the true non-

Gaussian distribution. It can be seen that the distribution of violation is very close to the ideal

Dirac-Delta distribution. Now, contrast this with Fig.3.2d that recreates the constraint violation

distribution for the control input leading to unfavorable homotopy. We can clearly see a stark

difference between Fig.3.2c and 3.2d. Now, we hypothesize that any planner that can cap-

ture the true distribution of constrint violation for a given control input can easily distinguish

between a favorable and unfavorable homotopy. We will soon discuss how our MMD Non-

Gaussian planner in fact fits this description. But before that, we turn our attention to Fig3.2e

and 3.2f that presents the distribution of constraint violations under Gaussian approximation of

the noise. As it can be seen, both favorable and un-favorable homotopy shows similar spread

of the distribution mass to the right of zero. In other words, the Gaussian approximation erro-

neously has made both homotopies equally bad/good. As a result, it is not possible to reliably

distinguish between favorable and unfavorable homotopies.

To further strengthen our claims, we design one more experiment. In Fig.3.3, we take a

Gaussian distribution and then gradually make it more and more biased and multi-modal. We

simulate the single obstacle avoidance benchmark of Fig.3.2 for all these noise distributions

added to motion and perception. We perform 100 Monte-Carlo runs for each noise distri-

bution using our MMD Non-Gaussian planner. Fig.3.4a shows the percentage of times the
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Table 3.1

Method Computation Time(s) Success-Rate(%)

MMD Non-Gaussian 0.06 95.5

MMD Gaussian 0.07 72

PVO 0.03 89

KLD(GMM-fit) 0.06(1.44) 82

robot chooses homotopy of Fig.3.2a over that of Fig.3.2b. When the actual noise is Gaus-

sian, the robot randomly chooses either homotopy. In fact for Gaussian noise, there is no real

benefit provided by one homotopy over another. But as the noise becomes more and more

non-Gaussian, we can clearly see a pattern emerge where the favorable homotopy is overly

preferred by our planner. In contrast when we make a Gaussian approximation of the true un-

certainty, this pattern is lost, as shown in Fig.3.4b. Under Gaussian approximation, the robot

always chooses the homotopies randomly.

Fig.3.4c and 3.4d co-relates the right choice of homotopy to collision percentages and con-

trol cost. When the underlying noise is Gaussian, both MMD Non-Gaussian and MMD Gaus-

sian performs similar. But as the distribution departs from Gaussian assumptions, the former

outperforms the latter in both collision-rate and control costs.

3.0.3 Quantitative Comparisons

In this section, we compare our MMD Non-Gaussian formulation with MMD Gaussian,

KLD and PVO baselines defined in the beginning of section 3. The comparisons are shown in

the bar plots of Figure 3.6. Fig.3.5 presents the trajectories observed in a 5 obstacle benchmark

for all the approaches. Our MMD Non-Gaussian is able to leverage the bias of the distribution

and guide the robot towards homotopies that goes between the obstacles but yet has minimal

overlap of robot and obstacle position uncertainty. In contrast, both MMD Gaussian and PVO

that works with Gaussian approximation of noise forces the robot to take a larger detour. This is
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because the Gaussian approximation over-approximates the spread of the uncertainty on either

side of the robot mean position. The KLD method shows a very similar approach since it can

fits a complicated a GMM to the motion and perception noise.

Figure 3.6a compares over L2 norm of control change over two consecutive instances ∥ut−

ut−1∥22 which can be used to infer the smoothness of a collision avoidance maneuver. Our

approach has the lowest change while all other baselines have similar trends. Fig.3.6b shows

the comparison between the deviation that the robot exhibits from an optimal straight line path

to the goal. On an average our approach is 72.84% better than all the other baselines. Finally,

we compare how many of the drawn position samples from the robot uncertainty collide with

that of the obstacles for all the baselines. This metric serves as a proxy of collision probability.

Our approach consistently maintains the percentage value at 5 or less. All other baselines

performance varies over the benchmarks and lies between 11− 28%. This is further reiterated

in Table 3.1

Table 3.1 compares the computation time for our approach and all the baselines. The PVO

approach is the fastest while the rest of the approaches have comparable run-times.
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(a) MMD Non-Gaussian (b) MMD Gaussian

(c) PVO (d) KLD

Figure 3.5: Collision avoidance using MMD Non-Gaussian and various baselines for 5 obstacle case
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(a) Control Costs comparison (b) Deviation from optimal path comparison

(c) Number of colliding samples

Figure 3.6: Quantitative comparison with baselines. Our approach MMD Non-Gaussian outperforms

other approaches in smoothness (a), deviation from straight-line path (b) and collision probability (c)

metric.
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Chapter 4

Conclusion and Future Work

This thesis extensively utilizes the distribution matching interpretation of chance-constrained

optimization (CCO) to propose a novel approach for reactive dynamic obstacle avoidance. The

central focus is on minimizing the deviation of the distribution of constraint violations from

Dirac-Delta, enabling a detailed analysis of how bias in non-Gaussian motion and percep-

tion noise can be leveraged to strategically choose favorable homotopies for efficient collision

avoidance. Moreover, a crucial aspect of this research is the investigation of the Gaussian

approximation of uncertainty, which tends to treat all homotopies as equally good or bad, ulti-

mately compelling the planner to select sub-optimal motions. By revealing this limitation, our

study emphasizes the importance of adopting non-parametric models to achieve more accurate

and reliable collision avoidance strategies.

This thesis marks the first presentation of a comprehensive analysis of non-Gaussian mo-

tion and perception noise and its influence on homotopy selection for collision avoidance.

The insights gained from this research hold significant implications for advancing autonomous

robotic systems in uncertain environments. Furthermore, our work not only uncovers the po-

tential of bias in non-parametric distributions but also identifies the drawbacks of Gaussian

approximations, shedding light on crucial considerations for future robotic motion planning.

Building on the foundation laid by this thesis, our future research endeavors will extend

the proposed reactive approach into a full-fledged multi-step Model Predictive Control (MPC)

setting. This strategic expansion will enable us to address complex and multi-dimensional
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planning scenarios, enhancing the overall performance and adaptability of our approach in

real-world dynamic environments.

In summary, this thesis presents a groundbreaking exploration into the realm of collision

avoidance under non-parametric uncertainty, unveiling the potential of bias in non-Gaussian

distributions for more effective homotopy selection. The empirical findings, computational

analyses, and theoretical contributions presented herein contribute significantly to the advance-

ment of autonomous robotics and pave the way for further developments in motion planning in

challenging and uncertain conditions.
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