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Abstract

Medical imaging plays a pivotal role in modern healthcare, providing clinicians with crucial insights
into the human body’s internal structures. However, extracting meaningful information from medical
images, such as X-rays and Computed Tomography (CT) scans, remains a challenging task, particularly
in the context of accurate segmentation. This thesis presents a novel two-stage Deep Learning (DL)
pipeline designed to address the limitations of existing single-stage models and improve segmentation
performance in two critical medical imaging tasks: pneumothorax segmentation in chest radiographs
and multi-organ segmentation in abdominal CT scans.

The first stage of the proposed pipeline focuses on localizing target organs or lesions within the
image. This initial localization stage utilizes a specialized module tailored to the specific organ/lesion
and image type. This stage outputs a “localization map” highlighting the most probable regions where
the target resides, guiding the next step. The second stage, fine-grained segmentation, precisely delin-
eates the organ/lesion boundaries. This is achieved by combining UNet, known for its ability to capture
both general and detailed features, with Dynamic Affine Feature-Map Transform (DAFT) modules that
dynamically adjust information within the network. This combined approach leads to more accurate
boundary delineation, meticulously outlining the exact borders of the target organ/lesion after roughly
locating it in the first stage.

An application of the proposed pipeline focuses on pneumothorax segmentation, leveraging not only
the image data but also the accompanying free-text radiology reports. By incorporating text-guided
attention and DAFT, the pipeline produces low-dimensional region-localization maps, significantly re-
ducing false positive predictions and improving segmentation accuracy. Extensive experiments on the
CANDID-PTX dataset demonstrate the efficacy of the approach, achieving a Dice Similarity Coeffi-
cient (DSC) of 0.60 for positive cases and 0.052 False Positive Rate (FPR) for negative cases, with DSC
ranging from 0.70 to 0.85 for medium and large pneumothoraces.

Another application of the proposed pipeline involves multi-organ segmentation in abdominal CT
scans, where accurate delineation of organ boundaries is crucial for various medical tasks. The pro-
posed Guided-nnUNet leverages spatial guidance from a ResNet-50-based localization map in the first
stage, followed by DAFT-enhanced 3D U-Net (nn-UNet implementation). Evaluation on the AMOS
and Beyond The Cranial Vault (BTCV) datasets demonstrates a significant improvement over baseline
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models, with an average increase of 7% and 9% on the respective datasets. Moreover, Guided-nnUNet
outperforms state-of-the-art (SOTA) methods, including MedNeXt, by 3.6% and 5.3% on the AMOS
and BTCV datasets, respectively.

Overall, this thesis proposes a novel two-stage deep learning pipeline for medical image segmen-
tation, demonstrating its effectiveness in handling a wide range of anatomical structures and image
modalities (2D X-ray, 3D CT) for both single-organ (e.g., pneumothorax segmentation in chest radio-
graphs) and multi-organ segmentation tasks (e.g., abdominal CT scans). This comprehensive approach
offers significant advancements and contributes to improved medical image analysis, potentially leading
to better healthcare outcomes.
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Chapter 1

Introduction

Medical imaging has revolutionized healthcare, providing unparalleled insights into the human body.
From X-rays to Magnetic Resonance Imaging (MRI), these technologies enable visualization of inter-
nal structures, aiding in diagnosis, treatment planning, and monitoring disease progression. However,
extracting meaningful information from these images often requires further processing. In this context,
medical image segmentation emerges as a powerful tool.

1.1 Introduction to Medical Image Segmentation

Medical image segmentation is a computer vision task that delineates Regions of Interest (ROI)
within an image. By segmenting structures like organs, tissues, or lesions, clinicians gain a deeper
understanding of the underlying anatomy and pathology. Inaccurate segmentation can lead to misdiag-
nosis, ineffective planning, and hampered disease monitoring.

The importance of medical image segmentation extends far beyond individual patient care. Improved
segmentation algorithms have the potential to significantly impact healthcare systems economically and
socially. By automating tedious manual segmentation tasks, these algorithms can free up valuable clin-
ician time, leading to increased efficiency and potentially lower healthcare costs. Furthermore, accurate
segmentation can enable the development of more precise diagnostic tools and personalized treatment
plans, ultimately improving patient outcomes and quality of life.

1.2 Challenges in Medical Image Segmentation

Achieving accurate medical image segmentation encounters several challenges that go beyond the
general difficulties of image segmentation. These challenges arise from the inherent complexities of
medical images themselves and the crucial role segmentation plays in downstream clinical applications.
They can be broadly categorized into three areas:
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• Image characteristics: Medical images present inherent challenges for segmentation due to sev-
eral factors. These include:

– Variability: Images can vary significantly due to factors like acquisition device, patient po-
sitioning, and pathology itself.

– Noise and artifacts: Images can be corrupted by noise from the imaging device or artifacts
caused by patient movement or metal implants.

– Low contrast: The boundaries between structures of interest may be faint or indistinct, mak-
ing segmentation difficult.

• Anatomical complexity: Unlike everyday objects, the human body presents challenges like:

– Varying organ shape and size: Organs and tissues can have complex, irregular shapes that
vary significantly between individuals.

– Overlapping structures: Organs and tissues can be closely packed, making it difficult to
distinguish their boundaries.

– Lesion heterogeneity: Disease manifestations can vary greatly in size, shape, and intensity,
making it difficult to differentiate lesions from healthy tissue.

• Data limitations: Training robust segmentation algorithms requires a large amount of accurately
labeled data, which can be a significant hurdle:

– Annotation cost: Labeling medical images requires expertise from medical professionals,
making it a time-consuming and expensive process.

– Data privacy: Patient privacy regulations can restrict access to large datasets of medical
images.

– Class imbalance: In some cases, the disease of interest may be rare, leading to an imbalanced
dataset where healthy tissue dominates. This can make it difficult for algorithms to learn to
segment the less frequent disease class.

1.3 Deep Learning for Medical Image Segmentation

Medical image segmentation traditionally relied on manual techniques or rule-based algorithms, each
with its own advantages and limitations. Common approaches include thresholding (Otsu’s method and
adaptive thresholding), edge detection (Sobel filter, Prewitt filter, and Canny edge detection), region-
based techniques (region growing, seeded region growing, and watershed segmentation), and active
contours (snakes and level sets) [1]. Thresholding segments images based on pixel intensity, while edge
detection aims to identify boundaries between different regions. Region-based techniques group pix-
els based on shared characteristics like intensity or texture. Active contours use deformable models to

2



Figure 1.1 This diagram illustrates the U-Net architecture, a convolutional neural network commonly
used for image segmentation tasks. It consists of a contracting path (encoder) that captures contex-
tual information and a symmetric expanding path (decoder) that refines the features for segmentation.
(source: www.towardsdatascience.com)

fit object boundaries iteratively [2]. While these methods have played a significant role, they require
extensive preprocessing, parameter tuning, and can be sensitive to noise, intensity variation and spatial
ambiguity within medical images [1].

The emergence of Artificial Intelligence (AI), particularly the field of DL, has offered promising
solutions to these challenges. DL algorithms can learn intricate patterns and relationships within vast
amounts of medical image data. This allows them to automatically segment images with high accuracy
and efficiency. DL models can handle the inherent challenges of medical images by learning from large
datasets, continuously improving their segmentation abilities over time. As a result, DL offers immense
potential to revolutionize medical image segmentation. By improving accuracy, speed, and consistency,
DL-powered segmentation can equip clinicians with the insights they need, to make more precise diag-
noses, ultimately leading to better patient care.

One prominent approach within DL is Fully Convolutional Network (FCN). These architectures form
the foundation for many segmentation techniques. FCNs utilize convolutional layers throughout the net-
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work, allowing them to process entire images and produce pixel-wise segmentation masks. Examples
include traditional FCN [3], SegNet [4], and DeepLab [5]. While efficient, FCNs can struggle with
capturing long-range dependencies within the image. This limitation highlights the ongoing exploration
of various DL techniques to address specific challenges in medical image segmentation.

Building upon the foundation of FCNs researchers have explored various techniques to address spe-
cific challenges in medical image segmentation. One such approach is Encoder-Decoder Networks.
These architectures separate feature extraction and segmentation tasks. The encoder network extracts
high-level features from the image, while the decoder network upsamples and refines these features to
generate a detailed segmentation map. Popular examples include U-Net [6] (Figure 1.1), DeepMedic [7],
nnU-Net [8], and H-DenseUNet [9]. While these models excel at producing detailed segmentation
boundaries, they may require more training data compared to FCNs.

To further improve segmentation accuracy, particularly in scenarios with overlapping structures or
class imbalances, Attention-based Networks have emerged. These models focus on informative regions
within the image during segmentation. Examples include Transformers [10] adapted for medical images
and Attention U-Net [11]. Additionally, the Convolutional Block Attention Module (CBAM) [12] can
be integrated into various architectures to enhance focus on relevant features. However, incorporating
attention mechanisms can result in increased model size and training time [13].

While, DL offers significant promise, existing single-stage models face inherent limitations. Unlike
isolated objects, organs within the body exhibit well-defined spatial relationships. For instance, the liver
consistently sits next to the right kidney. However, single-stage models often overlook these crucial
spatial cues. This necessitates algorithms to reason about the anatomical structures and integrate this
knowledge into the segmentation process, posing a challenge for single-stage architectures.

Furthermore, these models attempt to perform both coarse and fine-grained segmentation simultane-
ously. Coarse segmentation involves identifying general organ areas, while fine-grained segmentation
focuses on accurately delineating boundaries. This dual task can create an information bottleneck within
the model, leading to inaccurate boundaries, particularly when dealing with structures like pneumotho-
rax, where collapsed lung regions can have subtle intensity variations and poorly defined edges [14].

Finally, single-stage frameworks may lack sufficient computational capacity, especially when han-
dling multiple anatomical structures within a single image. Additionally, they can struggle with class
imbalances that are common in medical imaging tasks. For example, in pneumothorax segmentation,
the collapsed lung region might be a much smaller area compared to healthy lung tissue. Single-stage
models might prioritize the dominant class (healthy lung) and compromise the segmentation accuracy
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of the less frequent class (pneumothorax).

To address these issues, strategies such as Cascaded/Ensemble Models have been explored [15].
This approach combines multiple DL models with different architectures, leveraging their complemen-
tary strengths for potentially improved segmentation performance. However, such ensembles require
careful selection and integration of individual models. Hybrid Models are also explored [9, 11], which
combine elements from various categories, such as FCNs, encoder-decoder structures, and attention
mechanisms. These models aim to benefit from the strengths of each technique, but their design and
optimization can be complex. As research continues to evolve, these hybrid approaches hold significant
promise for the future of medical image segmentation.

1.4 Thesis Focus

Recognizing the limitations of single-stage models, alternative approaches are crucial for achieving
more robust medical image segmentation. Building on the established strengths of DL in this field, this
thesis proposes a novel two-stage hybrid DL pipeline designed to improve segmentation performance.
The research investigates distinct yet complementary challenges in two areas:

• Pneumothorax Segmentation in Chest Radiographs: Accurately identifying pneumothorax, a
collapsed lung region, in chest X-rays is crucial for timely diagnosis and treatment. However,
the subtle and variable appearance of pneumothorax can be challenging to detect solely based
on image data. To address this limitation, this thesis introduces a novel two-stage approach that
leverages additional information beyond the X-ray itself. This approach incorporates not only the
image data but also the associated free-text radiology report, aiming to achieve more accurate and
robust segmentation of pneumothorax compared to traditional methods.

• Multi-Organ Segmentation in Abdominal CT Scans: Precise segmentation of multiple organs
within abdominal CT scans plays a vital role in various medical tasks. However, achieving ac-
curate segmentation can be challenging due to the intricate spatial relationships between organs
and the variations in their shapes and sizes. These complexities can lead to difficulties in cor-
rectly delineating boundaries, particularly when organs are close together or when some organs
are significantly larger than the others. To address these challenges, we propose Guided-nnUNet,
a two-stage segmentation framework that decomposes abdominal multi-organ segmentation into
organ localization, followed by localization-guided fine segmentation.

This thesis comprehensively addresses the challenge of medical image segmentation. It demonstrates
the ability of the proposed two-stage segmentation pipeline to handle a diverse range of anatomical struc-
tures and image characteristics. The research investigates segmentation in various scenarios, including
single-organ segmentation in 2D X-ray images (e.g., pneumothorax) and multi-organ segmentation in
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3D CT volume data (e.g., abdominal organs). By encompassing both 2D and 3D modalities along with
single and multiple organs, this work highlights the versatility and generalizability of the approach. This
paves the way for its potential application in various medical image segmentation tasks.

1.5 Summary of Contributions

This thesis addresses the challenges of medical image segmentation by proposing a novel two-stage
DL pipeline that improves performance and overcomes limitations of existing single-stage models. The
key contributions of this research are:

• Introducing a novel two-stage DL pipeline for improved segmentation performance.

• Application of the pipeline for pneumothorax segmentation from chest radiographs and associated
free-text radiology reports.

• Cross attention-based rough localization of pneumothorax which leverages free-text radiology
reports and using DAFT for fine segmentation based on rough localization information.

• Application of the pipeline for accurate multi-organ segmentation in abdominal CT scans.

• Using DAFT to fuse the organ localization information as spatial guidance to improve fine-grained
segmentation.

1.6 Organisation of the Thesis

This thesis is organized into five chapters to provide a comprehensive exploration of medical image
segmentation using a novel two-stage DL pipeline.

• Chapter 1: Introduction lays the groundwork by introducing the importance of medical imaging
and the role of image segmentation. It then discusses the challenges of traditional segmentation
techniques and highlights the potential of DL. Finally, it provides a brief overview of the research
focus and the two-stage pipeline.

• Chapter 2: Two-Stage Segmentation Pipeline presents the core of the research - the novel two-
stage DL pipeline. This chapter details the architecture of the pipeline, explaining the functional-
ities of each stage and how they work together to achieve improved segmentation performance.

• Chapter 3: Pneumothorax Segmentation with Text-Guided Attention focuses on the applica-
tion of the two-stage pipeline for pneumothorax segmentation in chest radiographs. This chapter
describes the specific modifications made to the pipeline for this task, including the use of text-
guided attention to incorporate additional information beyond the X-ray image itself. The chapter
then presents the methodology, results, and evaluation of the pipeline for pneumothorax segmen-
tation.
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• Chapter 4: Abdominal Multi-Organ Segmentation with Guided-nnUNet explores the appli-
cation of the two-stage pipeline for segmenting multiple organs within abdominal CT scans. This
chapter details the adaptations made to the pipeline for multi-organ segmentation, potentially us-
ing techniques like Guided-nnUNet. It then presents the methodology, results, and evaluation of
the pipeline for multi-organ segmentation.

• Chapter 5: Conclusion summarizes the key findings of the thesis. It reiterates the contributions
of the research, highlighting the development and effectiveness of the two-stage pipeline. The
chapter also discusses limitations of this work and potential future directions for research in this
area.
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Chapter 2

Two-Stage Segmentation Pipeline

2.1 Introduction

Section 1.3 explored the limitations of single-stage DL models in medical image segmentation.
These limitations stemmed from their inability to effectively leverage spatial relationships between or-
gans, perform coarse and fine-grained segmentation simultaneously, and handle computational demands
and class imbalances within medical images.

In response to these challenges, this chapter introduces a two-stage hybrid DL pipeline specifically
designed to overcome the shortcomings identified in single-stage models. This pipeline addresses the
need for anatomical reasoning and integration of spatial context by incorporating a dedicated localiza-
tion stage. Furthermore, by separating coarse and fine-grained segmentation into distinct stages, the
pipeline aims to improve overall segmentation accuracy, particularly for structures with subtle intensity
variations and poorly defined edges.

This chapter delves into the details of this pipeline, outlining its two key stages: organ/lesion local-
ization and fine-grained segmentation. We will explore the rationale behind this structure and how it
addresses the limitations discussed previously. Additionally, we will examine the specific deep learning
architectures employed in each stage and the reasoning behind their selection.

2.2 Workflow

The pipeline proposed in this chapter follows a two-stage workflow designed to address the limita-
tions of single-stage models. This section details the two key stages and their interaction:

• Localization: The first stage of the pipeline focuses on identifying the presence and approximate
location of the target organ or lesion within the medical image. An application-specific local-
ization module is employed for this purpose. The specific architecture of this module will differ
based on the targeted organ/lesion and the properties of the medical images for each application.
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Figure 2.1 This diagram depicts the two-stage pipeline. Stage 1 performs localization, and Stage 2
utilizes this information for segmentation.

For instance, a Convolutional Neural Network (CNN) pre-trained on a large dataset of similar
medical images might be suitable for some applications. In other cases, a lighter weight archi-
tecture or a different approach altogether might be more efficient, depending on the specific task.
Regardless of the chosen architecture, the output of this stage is a localization map. This map
highlights the most likely regions within the image that contain the organ or lesion of interest,
providing valuable guidance for the subsequent segmentation stage.

• Fine-grained segmentation: The second stage of the pipeline tackles the precise delineation of
the organ/lesion boundaries. It leverages a combination of UNet and DAFT modules. While UNet
is employed in this work due to its well-established performance in medical image segmentation,
it is important to note that DAFT can be integrated with other segmentation architectures as well.
UNet is renowned for its ability to capture both high-level and low-level features from the medical
image, a crucial aspect for achieving accurate segmentation. DAFT modules further enhance
UNet’s performance by dynamically modifying feature maps within the network.

2.3 Localization

The first stage of the pipeline employs a grid-based localization approach to identify the presence
and approximate location of the target organ or lesion within the medical image. This section delves
into the details of this method and explores the impact of grid resolution on its performance.

2.3.1 Grid Partitioning

Grid-based localization leverages a user-defined grid structure superimposed on the entire medical
image (either 2D or 3D, depending on the application). This grid partitions the image into smaller
sub-regions, essentially creating a coarse spatial map. The specific grid resolution is determined by
a parameter denoted by n. A higher value of n translates to a finer grid with more numerous and
smaller sub-regions, allowing for more precise localization of the target within the image. Conversely,
a lower value of n results in a coarser grid with fewer and larger sub-regions, providing a less granular
localization output.

9



2.3.2 Localization with the Grid

The entire medical image is fed into the chosen localization module (for example, CNN). This mod-
ule then analyzes the image features and predicts a binary localization map L̂ with the same dimensions
as the grid O × ndim, where O represents the number of target organs/lesions and dim represents the
image dimensionality (2 for 2D images and 3 for 3D images). Each element within this binary map
corresponds to a specific sub-region in the grid and signifies the presence of containing the target or-
gan/lesion.

For instance, in a 2D image with a target organ and a grid resolution of n = 4, the localization module
would output a binary map of size 1 × 16. Each of the 16 values in this map is either 1 (indicating the
presence of the organ) or 0 (indicating the absence of the organ) for the corresponding sub-region (out
of the 16 created by the 4×4 grid). Similarly, for a 3D image with a grid resolution of n = 8, the output
binary map would have dimensions 1× 512 (8× 8× 8), with each element being 1 if the corresponding
sub-region contains the target lesion within the 3D volume and 0 otherwise.

2.3.3 Impact of Grid Resolution

The choice of grid resolution n plays a crucial role in the effectiveness of grid-based localization. A
higher resolution grid (larger n) offers several advantages:

• Improved Localization Accuracy: With a finer grid, the localization module can provide more
precise spatial information about the target’s location within the image. This finer granularity
can be particularly beneficial for smaller organs or lesions that might occupy only a portion of a
sub-region in a coarser grid.

• Enhanced Differentiation: A higher resolution grid allows for a more nuanced differentiation
between neighbouring sub-regions. This can be crucial for situations where multiple organs or
lesions are located in close proximity within the image.

However, there are also drawbacks to consider with a higher grid resolution:

• Increased Computational Cost: Processing a finer grid with a larger number of sub-regions de-
mands more computational resources from the localization module. This can potentially increase
the training time for the entire pipeline.

• Potential for Overfitting: With a very high grid resolution, the localization module might struggle
to generalize well during training, potentially leading to overfitting on the training data. In such
cases, the model might not perform as well on unseen images with slightly different characteris-
tics.

Therefore, selecting an optimal grid resolution requires careful consideration of the trade-off between
localization accuracy, computational efficiency, and the risk of overfitting. In practice, the choice of n
can be informed by factors such as the typical size of the target organ/lesion relative to the image
dimensions, the desired level of localization precision, and the available computational resources.
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2.4 Fine Grained Segmentation

Stage 2 of the pipeline tackles the task of precisely delineating the boundaries of the target organ
or lesion localised in Stage 1. This stage leverages a combination of two deep learning architectures -
U-Net and DAFT modules.

2.4.1 U-Net for Accurate Segmentation

The core architecture employed in this stage is the U-Net [6, 16]. Known for its efficiency in medi-
cal image segmentation tasks, U-Net excels at capturing both high-level semantic information (like the
overall shape and location of organs) and low-level detailed features (like textures and boundaries) from
the medical image. This ability to extract features across different scales is crucial for achieving accurate
segmentation of organs and lesions with intricate structures and potentially subtle variations in intensity.

U-Net follows an encoder-decoder architecture. The encoder pathway progressively down-samples
the input medical image, capturing high-level features essential for understanding the broader anatom-
ical context. The decoder pathway then upsamples the encoded features and merges them with high-
resolution features extracted earlier in the encoder path.

2.4.2 Incorporating Spatial Guidance with DAFT

While U-Net is a powerful segmentation architecture, it can sometimes struggle to incorporate spa-
tial context into the segmentation process, particularly when dealing with complex anatomical struc-
tures [17]. To address this limitation, this work introduces DAFT modules within the U-Net framework.

DAFT [18] acts as a bridge, effectively fusing the rich visual features extracted from the raw medical
image volume by U-Net with the coarse spatial guidance provided by the localization map generated in
Stage 1. This localization map highlights the probable regions containing the target organ/lesion within
the image. By incorporating this additional spatial information, DAFT empowers U-Net to focus its
segmentation efforts on the most relevant image areas.

Its core lies in predicting scale (αd) and shift (βd) parameters for each feature map Fd of the decoder’s
d-th block:

F ′
d = αd ∗ Fd + βd (2.1)

where F ′
d is the modified feature map. Scaling and shifting parameters are calculated as below:

αd = f(Fd, L̂) (2.2)

βd = g(Fd, L̂) (2.3)
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Figure 2.2 This diagram showcases the functionality of DAFT modules. DAFT analyzes the localization
map and predicts adjustments (scaling and shift factors) for feature maps, ultimately refining them for
more accurate segmentation.

Here, L̂ denotes the grid-level localization, while f and g represent functions learned by a single auxil-
iary fully connected network.

Essentially, DAFT modulates the decoder’s understanding of the image by conditioning it on the ad-
ditional context provided by the previous stage. This conditioning is achieved through the predicted
scaling and shifting parameters, effectively amplifying or suppressing specific features. Mathematically,
these parameters control the extent to which the original features Fd are scaled and shifted, leading to
a modified feature map F ′

d incorporating weak localization information. By focusing on relevant image
regions, DAFT guides the decoder towards a more accurate segmentation.

2.4.3 Combining U-Net and DAFT

The Stage 2 workflow can be summarized as follows:

• The original medical image and the localization map generated in Stage 1 are fed as inputs to the
U-Net with DAFT modules.

• U-Net extracts feature maps from the medical image, capturing informative details at various
scales.
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• Within each decoder block, DAFT modules analyze the localization map and predict scaling and
shift factors for the corresponding feature maps.

• These factors are applied to the feature maps, effectively modulating them based on the spatial
guidance from the localization map.

• The modified feature maps are then processed through the decoder pathway of U-Net, allowing
for precise localization and boundary delineation.

• The final output of Stage 2 is a binary segmentation mask that accurately delineates the boundaries
of the target organ or lesion within the medical image.

2.5 Conclusion

This chapter details the two-stage pipeline that serves as the foundation for the tasks explored in fur-
ther chapters. The rationale behind this structure lies in its ability to address the inherent limitations of
single-stage models. Single-stage models often struggle to effectively reason anatomical relationships
between organs, perform coarse and fine-grained segmentation simultaneously, and handle computa-
tional demands and class imbalances within medical images.

The two-stage approach separates localization from segmentation, allowing dedicated modules to
excel at their respective tasks. Stage 1 identifies the target structure, while Stage 2 leverages this in-
formation to perform precise segmentation using a U-Net with DAFT modules. By employing dedi-
cated modules for organ/lesion localization and segmentation, the pipeline promotes a more robust and
efficient approach to medical image segmentation, laying the groundwork for particular applications
investigated in the following chapters.
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Chapter 3

Pneumothorax Segmentation with Text-Guided Attention

3.1 Introduction

Pneumothorax is a critical condition that occurs when air accumulates between the parietal and vis-
ceral pleura, leading to lung compression and hindering oxygen intake [19]. If left unnoticed, it can
progressively worsen, potentially affecting other organs in the chest cavity (mediastinum), including the
heart. Figure 3.1(a) shows the labelled diagram depicting pneumothorax.

Chest X-rays are often the first line of defence in diagnosing pneumothorax due to their cost-
effectiveness, accessibility, and quick analysis time, making them especially valuable in severe situ-
ations. While any radiation exposure should be minimized, compared to CT scans, chest X-rays use
much lower radiation doses. This is especially crucial for certain groups of patients who might need
frequent monitoring or who have strict radiation limits to consider.

Although chest X-rays are frequently used for diagnosing pneumothorax, they do have limitations.
The characteristic sign of a thin, sharp line representing the displaced lung can sometimes be faint and
mistaken for normal anatomical structures or folds. This misinterpretation can occur due to the inherent
limitations of two-dimensional imaging. Other structures, such as air-filled sacs (emphysematous bul-
lae), skin folds, and even wrinkles in clothing, can also appear similar to pneumothorax on the X-ray.
This can lead to potentially inappropriate pneumothorax management. Additionally, chest X-rays may
not accurately assess the severity of pneumothorax, which is crucial for treatment decisions. Deter-
mining the size of the air leak and the extent of lung collapse is key to choosing the right intervention.
However, accurately segmenting the collapsed lung region on X-rays can be challenging for clinicians
due to overlapping anatomical structures like blood vessels and ribs. As illustrated in Figure 3.1(b), the
pleural faint line can be barely discernible, making visual diagnosis challenging.

To overcome these hurdles, AI offers a powerful tool to complement the expertise of experienced
clinicians. AI excels at pattern recognition, being able to discern subtle pneumothorax signatures that
might elude human observation, such as faint pleural lines or minimal lung displacement. While ex-
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(a) (b)

Figure 3.1 (a) A labelled diagram comparing a collapsed (pneumothorax-affected) lung to a nor-
mal lung (source: www.geeksforgeeks.org) (b) Chest X-ray section highlighting a collapsed lung
(pneumothorax). Red arrows point to a thin white line, the visceral pleura. This single line is the
key indicator of air trapped between the lung and chest wall, signifying a pneumothorax (source:
www.learningradiology.com)

perienced clinicians are ultimately responsible for making final diagnoses, AI can be a valuable tool
to enhance their expertise. By overcoming the limitations of chest radiographs, AI has the potential
to significantly enhance patient outcomes while optimizing resource allocation in the management of
pneumothorax.

Recent advancements in DL, such as multi-scale convolutional networks and U-Net architectures [6],
have shown promising results in pneumothorax segmentation. These models can identify both subtle
and prominent signs of a collapsed lung by extracting features at multiple scales. However, relying
solely on image data has its limitations. One major drawback of image-based models is the lack of se-
mantic information like the pneumothorax’s location (‘left apical region’), size (‘small pneumothorax’),
shape (‘crescent-shaped’), and other features. Radiology reports provide valuable insights into these
features. Without this rich textual data, image-based models may struggle with subtle characteristics or
differentiating between pneumothorax and other lung pathologies.

To address this limitation, recent studies use multimodal approaches that combine chest X-rays and
radiology reports [20,21]. By incorporating textual descriptions’ rich semantic information, these mod-
els can potentially achieve more accurate and robust pneumothorax segmentation. However, integrating
image and text data presents its own set of challenges. The differences in representation and structure
between images and text must be efficiently bridged for effective information fusion. Accurately match-
ing corresponding image regions with relevant textual descriptions is also a crucial step in guiding the

15

https://www.geeksforgeeks.org/difference-between-pneumothorax-and-tension-pneumothorax/
https://learningradiology.com/notes/chestnotes/tensptxcorrect.html


model and improving its understanding of the findings.

Although existing models like ConVIRT [20] and GLoRIA [21] achieved promising results in down-
stream classification tasks by pre-training vision models on image-report pairs, they did not integrate text
to guide image analysis. Other approaches [22] employed image and text encoders to identify instances
of pneumonia and placed bounding boxes around them but did not provide pixel-level segmentation.
Additionally, LAVT [23] was developed for referring-image segmentation of household items rather
than medical images.

Although LVIT [24] achieved promising results with chest X-ray segmentation for COVID-19 pa-
tients, it still utilized synthesized text instead of real free-form radiology reports. Synthetic text lacks the
nuance and richness of real reports, potentially hindering the model’s ability to handle complex cases
or variations in clinical language. The performance of another model, CPAM [25], relies heavily on the
quality and specificity of the textual descriptions, giving misleading segmentation results in inaccurate
or ambiguous reports. Despite ConTEXTualNet’s [26] success in identifying pneumothorax with the
aid of free-text reports, its exclusive training on positive samples creates a potential bias towards pneu-
mothorax cases.

Building upon the two-stage segmentation pipeline detailed in Chapter 2, this chapter explores its
application for pneumothorax segmentation in chest X-rays. By leveraging this pipeline alongside free-
text radiology reports, we aim to overcome the limitations of existing models and achieve improved
accuracy in pneumothorax segmentation.

3.2 Proposed Method

3.2.1 Workflow

In the two stage network (Figure 3.2), the first stage - Report-Guided Region Localization, aims to
identify potential regions containing a pneumothorax. It starts by processing the free-text report using
a language encoder to extract relevant text features (denoted as Rt). These text features are then com-
bined with features (denoted as Ri) extracted from the chest X-ray image using ConTEXTualNet [26].
The resulting output is further analyzed by dividing it into quadrants and applying max-pooling to each
quadrant. This step allows the network to infer the presence of pneumothorax in different image re-
gions. Finally, this stage generates a localization map L̂, highlighting the most likely areas containing
pneumothorax.

The second stage, Region-Aware Pneumothorax Segmentation, leverages L̂ generated in the first
stage, to guide the segmentation process by highlighting potential pneumothorax regions within the
chest X-ray. The 2D U-Net with DAFT modules, as detailed in Chapter 2, utilizes this localization
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Figure 3.2 A schematic illustration of the proposed approach. Given a chest radiograph I and its
corresponding free-text radiology report R, we first obtain a region localization map L̂, leveraging text-
guided attention. In the subsequent stage, we modulate the feature maps of the segmentation network at
multiple scales using L̂ to accurately segment pneumothorax.

information to refine its focus on these specific areas. This targeted approach allows for more precise
delineation of the pneumothorax boundaries, resulting in a finely-segmented mask as the final output.

3.2.2 Report-Guided Region Localization

The first stage leverages a specialized model, ConTEXTualNet, to process the free-text radiology
report. This model comprises cross-attention layers that combine information from both the input im-
age and the accompanying text. To achieve this, a language encoder is employed to extract a set of
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text features, labeled as Rt ∈ RNR×DR , from the report. Here, NR represents the number of chan-
nels, and DR denotes the dimension of the embeddings. Later, a fully connected layer projects Rt into
Rd ∈ RNR×Dd , where Dd indicates the depth of the feature map of the d-th block of the decoder. The
text embeddings, enriched with knowledge about pneumothorax, interact with visual features to create
a pixel-wise attention map A, which highlights relevant image regions based on the textual information.
To ensure compatibility between the two types of features, the query vectors derived from upsampled
image features undergo projections alongside the key and value vectors from the text embeddings. The
resulting contextualized feature maps are merged with encoder feature maps using skip connections in
each decoder layer. The detailed implementation of cross attention is explained in Section 3.2.2.1.

After generating the attention map using the ConTEXTualNet, the next step is to obtain a rough
localization map at the output of the decoder. To achieve this, the method is guided by semi-quantitative
visual assessment methods [27] applied to chest radiographs. This involves dividing the image into
four quadrants, two along each dimension (n = 2). Using a max-pooling layer on the final decoder
feature map, the presence or absence of pneumothorax in each region (quadrant) can be inferred. This
information is then summarized in a low-dimensional localization map L̂ ∈ 1× {0, 1}4.

3.2.2.1 Language Cross Attention

To generate the pixel-wise attention map A, the ConTEXTualNet [26] uses multihead cross-attention
mechanisms [13] that involve flattened query vectors Q̄ from the upsampled feature map Q, and pro-
jecting key K and value V vectors from the text embeddings. This projection is carried out with the
help of weights WQ, WK , and WV , which facilitate the alignment of these vectors in the same space.
The mathematical formula to calculate A is given in Equation 3.1.

A = softmax
(
Q̄WQ(KWK)T√

dk

)
VWV (3.1)

where, dk represents dimension of Q and K. After generating the attention map A, it is normalized
using the Tanh activation function, which confines its values between -1 and 1. The normalized map is
then applied pixel-wise to the query feature map Q using Equation 3.2, resulting in Q∗ which helps to
highlight the image regions that are relevant to the textual information.

Q∗ = tanh(A) ∗Q (3.2)

Figure 3.3 illustrates the complete workflow of Language Cross Attention module described above.

3.2.3 Region-Aware Pneumothorax Segmentation

Leveraging the information from the first stage, this final stage meticulously segments the pneumoth-
orax region within the chest X-ray. It employs UNet architecture fused with DAFT modules specifically
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Figure 3.3 This illustration depicts the workflow of the Language Cross Attention module. It takes
decoder features (visual information) and text embedding (textual information) as input. The output,
denoted by Q∗, highlights the image regions most relevant to the provided text.
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designed to incorporate additional contextual information. The technical details of this architecture are
presented in Section 2.4.

3.3 Dataset and Experimental details

3.3.1 Dataset

CANDID-PTX is a public dataset that contains 19,237 X-rays and corresponding anonymized free-
text radiology reports from adult patients (aged 16 and above) collected at Dunedin Hospital, New
Zealand. Each image has precise annotations marking pneumothoraces (collapsed lungs), acute rib
fractures, and intercostal chest tubes. As part of this work, we have only used the annotations for
pneumothorax. The dataset has annotations for 3,561 cases of collapsed lungs (pneumothorax) across
the dataset. With a 1:5 positive-to-negative case ratio, the dataset provides a balanced mix of both
healthy and pneumothorax-affected lungs, promoting robust training of algorithms.

3.3.2 Augmentations

To diversify the training data and improve model robustness, we employed a variety of image aug-
mentation techniques inspired by previous pneumothorax segmentation research.

• Color and Light Adjustments: Randomly applying either contrast, gamma, or brightness changes
30% of the time.

• Geometric Distortions: Randomly applying elastic, grid, or optical distortions 30% of the time.

• Affine Transformations: Randomly scaling, rotating, and shifting images.

Horizontal flipping was discovered to disrupt the consistency between images and the accompany-
ing text data. Therefore, it was excluded from all experiments. All augmentations were efficiently
implemented using the Albumentations library [28].

3.3.3 Implementation Details

The chest radiographs were resized to a standard 224 × 224 dimension. Our experimental setup
involved a stratified (by size of pneumothorax) five-fold cross-validation. Each fold included a des-
ignated testing set, while the remaining data was split into 75% for training and 25% for validation.
The training process utilized the AdamW optimizer with an initial learning rate and weight decay of
1e−4, implemented in PyTorch. The 2D U-Net with a pre-trained ResNet-50 backbone was utilized
for segmentation. A frozen pre-trained T5-Large model was used to extract language embeddings from
free-text reports. The two stages were trained sequentially and employed the weighted combination of

20



Methods PTX-
Positive ↑

Small PTX ↑ Medium
PTX ↑

Large PTX ↑ PTX-
Negative ↓

U-Net 0.550± 0.019 0.398± 0.015 0.635± 0.033 0.791± 0.046 0.738± 0.081
LViT 0.549± 0.010 0.378± 0.020 0.635± 0.012 0.798± 0.033 0.453± 0.095
CPAM 0.507± 0.031 0.343± 0.028 0.598± 0.038 0.751± 0.041 0.295± 0.201
ConTEXTualNet 0.566± 0.008 0.403± 0.020 0.657± 0.018 0.806± 0.029 0.037 ± 0.011
Proposed 0.601 ± 0.013 0.429 ± 0.024 0.697 ± 0.011 0.851 ± 0.017 0.052± 0.011

Table 3.1 Comparison of pneumothorax (PTX) segmentation on the CANDID-PTX dataset. Five-fold
average DSC (positive images) and false positive rate (negative images), with standard deviation, are
listed for baseline and SOTA.

binary cross-entropy and Dice loss. The experiments were conducted on two NVIDIA GeForce RTX-
2080Ti Graphics Processing Units (GPU). The training was limited to a maximum of 100 epochs with
a batch size of 8.

3.3.4 Evaluation Metrics

The performance of the segmentation methods was evaluated using the DSC, given by

DSC =
2× |Ppred ∩ Pgt|
|Ppred| ∪ |Pgt|

(3.3)

where Ppred and Pgt are the predicted segmentation mask and ground truth reference mask, respectively.
The positive cases were subdivided into three classes based on the size of the pneumothorax in the im-
age: small, medium and large, determined by thresholding. These thresholds were chosen based on the
frequency histogram of the collapsed lung area on the chest radiograph. The performance was evaluated
for each class.

For negative cases, the FPR was also calculated, focusing on correctly identifying the absence of
pneumothorax. FPR is defined as:

FPR =
FP

FP + TN
(3.4)

where False Positive (FP) and True Negative (TN) represent the number of false positive predictions
and true negative cases, respectively. A lower FPR signifies a better performance, indicating fewer false
alarms or misclassifications of negative images as positive.
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3.4 Results and Discussion

3.4.1 Comparison with baseline U-Net model

This section compares our proposed solution, which leverages a two-stage approach to a baseline
U-Net model. U-Net relies solely on the chest X-ray images for pneumothorax segmentation without
any prior localization step.

As shown in Table 3.1, U-Net achieves a mean DSC of 0.550 for positive cases (cases with pneu-
mothorax). It also has an FPR of 0.738, indicating a high number of false positives. Our proposed
significantly outperforms the U-Net baseline. In positive cases, our method achieves a 9.3% improve-
ment in DSC, indicating a more accurate segmentation of the pneumothorax region. We can also see
improvement in detection of false positives due to decrement in FPR by 93%. The improvement in
DSC is consistent across varying pneumothorax sizes, highlighting the robustness of our approach. Our
pipeline achieves a minimum improvement of 7.6% and a maximum improvement of 9.8% over the
U-Net across different sizes.

3.4.2 Comparison with state-of-the-art methods

This section delves into the segmentation performance of our proposed two-stage approach compared
to existing methods. Table 3.1 compares the segmentation performance of our proposed solution with
baseline U-Net and the SOTA medical vision-language frameworks - LViT [24], ConTEXTualNet [26]
and CPAM [25]. The mean DSC and FPR and the standard deviation across five folds are provided in
Table 3.1.

In positive cases, our proposed solution outperforms LViT by 9.5%, ConTEXTualNet by 6.2%, and
CPAM by 18.5%. The superior performance is sustained across varying sizes of the pneumothorax, as
seen from the best performance (shown in bold font) being achieved by our method for all sizes. Specif-
ically, our approach yields a min/max boost of 6.6%, to 13.5% over LViT; 13.3% to 25.1% over CPAM;
and 5.6% to 6.5% over ConTEXTualNet.

The improvement in the performance of our method in positive cases over all these three methods can
be attributed to the two-stage design. Additionally, the boost in segmentation performance for medium
and large pneumothoraces directly addresses a critical need in clinical practice [29]. Our two-stage
approach aligns with the priorities of human experts and provides a valuable tool for more efficient and
accurate pneumothorax diagnosis.
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Figure 3.4 Qualitative results of pneumothorax segmentation by different methods.
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Variants Architecture Text PTX-Positive ↑ PTX-Negative ↓
V1 Unet - 0.590 ± 0.010 0.686 ± 0.005
V2 - Variable 0.591 ± 0.011 0.814 ± 0.005
V3 ConTEXTualNet Constant 0.591 ± 0.013 0.786 ± 0.072
V4 ConTEXTualNet Variable 0.601 ± 0.013 0.052 ± 0.011

Table 3.2 Comparison of stage 1 variants of our model for pneumothorax (PTX) segmentation on the
CANDID-PTX dataset. Five-fold average Dice similarity coefficient (positive images) and false positive
rate (negative images), with standard deviation.

3.4.3 Qualitative Analysis

Figure 3.4 provides a visual comparison of segmentation results using our method and four other
approaches. It includes sample chest X-ray images, corresponding radiology reports, and the generated
segmentation masks.

By analyzing the segmentation outputs, we can observe the strengths of our proposed method. No-
tably, U-Net and LViT suffer from under-segmentation in some cases and gives incorrect segmentation
output (for example showing right pneumothorax instead of left). This suggests that these models might
miss critical areas of the collapsed lung region. Conversely, ContextualNet, which incorporates text
reports, exhibits over-segmentation. This indicates that it might be including irrelevant image regions in
the segmentation mask.

In contrast, our method demonstrates a more balanced segmentation performance. This visual com-
parison highlights the potential of our approach to overcome limitations observed in other existing meth-
ods.

3.5 Ablation Studies

3.5.1 Stage 1

These experiments focus on evaluating the contribution of different design choices in Stage 1, re-
sponsible for generating the localization vector. The results are shown in Table 3.2:

3.5.1.1 Using U-Net for Stage 1 instead of ConTEXTualNet

This experiment replaces the original Stage 1 architecture (ConTEXTualNet, referred to as V4) with
a simpler U-Net model (V1). We see that V4 outperforms V1 for positive as well as negative cases. It
suggests that the text guidance provided by ConTEXTualNet is beneficial for capturing crucial details
for localization as well as reducing false positives, in our pipeline.
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Variants DAFT- n Mask or L̂ Localization PTX-Positive ↑ PTX-Negative ↓
placement
(B/D/E+D)

V1 B 4 L̂ Variable 0.598 ± 0.009 0.053 ± 0.013
V2 D 4 L̂ Variable 0.601 ± 0.013 0.052 ± 0.011
V3 E+D 4 L̂ Variable 0.581 ± 0.012 0.082 ± 0.018
V4 B 6 L̂ Variable 0.600 ± 0.013 0.067 ± 0.018
V5 - - Mask - 0.567 ± 0.008 0.076 ± 0.010
V6 B 4 L̂ Constant 0.587 ± 0.010 0.698 ± 0.086

Table 3.3 Comparison of stage 2 variants of our model for pneumothorax (PTX) segmentation on the
CANDID-PTX dataset. Five-fold average Dice similarity coefficient (positive images) and false positive
rate (negative images), with standard deviation.

3.5.1.2 Extracting Vector from Text instead of Stage 1

This ablation removes Stage 1 entirely (V2) and extracts an embedding vector directly from the
text report. Since the baseline model (V4, with Stage 1) outperforms V2 (no Stage 1), it strongly
suggests that the dedicated processing in Stage 1 plays a crucial role. Stage 1 likely generates a more
informative localization vector that effectively guides Stage 2 for accurate segmentation compared to a
simple embedding from the raw text.

3.5.1.3 Giving Constant Text in Stage 1 ConTEXTualNet

This variation (V3) explores the model’s dependence on textual cues for localization. In V3, Stage 1
(ConTEXTualNet) receives a constant and generic text input that doesn’t mention pneumothorax (‘The
heart size is normal. The lungs are clear. There is a focal eventration of the right hemidiaphragm. No
mediastinal abnormality is seen’). The performance drop seen from V4 (actual reports) to V3 as shown
in Table 3.2 strongly supports the hypothesis that textual information plays a crucial role in Stage 1.

3.5.2 Stage 2

These experiments focus on evaluating the impact of specific components within the Stage 2 seg-
mentation framework. The results are shown in Table 3.3:

3.5.2.1 DAFT Placement

DAFT is a key component in Stage 2 that modulates the decoder’s understanding of the image based
on the localization information. This experiment explores the effectiveness of DAFT placement. We
test three scenarios:

• DAFT only in the bottleneck layer (B) of the encoder-decoder architecture (V1)
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• DAFT only in the decoder layers (D) (V2)

• DAFT included in both encoder (E) and decoder (D) layers (V3)

As shown in Table 3.3, V2 achieves superior performance compared to V1 and V3 which suggests
that decoder-centric modulation might be more effective. The encoder extracts general image features,
while the decoder refines them for segmentation. Placing DAFT in the decoder allows it to directly target
this refinement process based on the localization information, leading to more accurate segmentation.

3.5.2.2 Varying Grid Resolution

This experiment investigates the influence of the grid resolution n used in the Stage 2 segmentation
process. The grid resolution defines the granularity of the segmentation output. By testing different grid
resolutions, we can find the optimal balance between capturing details and computational efficiency. We
have experimented with n = 4 (V1) and n = 6 (V4).

By examining the performance metrics of V1 and V4 on the segmentation task, shown in Table 3.3,
we see that V4 shows improvement in performance for positive cases. This suggests that capturing finer
details can be beneficial for accurate segmentation of these positive cases. However, V4 also exhibits
a decrease in performance for cases where there is no pneumothorax (negative cases). A possible rea-
son for this is that higher resolution grid might have led to the model overfitting to the positive training
examples with pneumothorax. This could result in the model being too focused on specific features asso-
ciated with pneumothorax, potentially causing it to misclassify some negative cases (no pneumothorax)
that have subtle differences from the training data.

3.5.2.3 Appending Mask in Stage 2 Bottleneck instead of Localization Vector

In this experiment, instead of feeding the localization vector into the bottleneck layer of Stage 2
(V1), we directly append the segmentation mask obtained from Stage 1 (V5). This allows us to assess
if directly providing the segmentation mask as guidance is more effective than the learned localization
vector. The results are shown in Table 3.3

Since V1 outperforms V5, it suggests that the model can learn more informative representations
from the localization vector through Stage 1. This learned localization vector might be more effective in
guiding the segmentation process in Stage 2 compared to a potentially noisy or inaccurate segmentation
mask directly obtained from Stage 1.

3.5.2.4 Constant Localization

Here, we provide a constant localization vector (all ones) (V6) to Stage 2. This helps us understand
how the model performs when the localization information from Stage 1 is not informative or missing.
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The results are shown in Table 3.3.

Since V6 exhibits a decrease in segmentation accuracy compared to the normal performance, it
strongly suggests that the model heavily relies on the localization information from Stage 1. The learned
localization vector helps the model focus on the relevant image regions during segmentation, leading to
more accurate results.

3.6 Conclusion

This chapter presents an application of the two-stage pipeline introduced in Chapter 2 for accurate
segmentation of pneumothorax in chest radiographs. The free-text radiology reports have been used
only in [26] to aid segmentation. The presented results highlight the efficacy of our proposed approach
for pneumothorax segmentation, as well as provide insights into the impact of different design choices
within each stage. Our method outperforms baseline models like U-Net and SOTA medical vision-
language frameworks like LViT, ConTEXTualNet, and CPAM in terms of DSC for positive cases and
FPR for negative cases.

In the ablation studies, we systematically analyzed the contributions of various components in each
stage of our pipeline. In Stage 1, we found that leveraging contextual information from radiology re-
ports (ConTEXTualNet) significantly improves localization performance compared to simpler architec-
ture like U-Net. Moreover, the importance of text guidance is underscored by the drop in performance
when constant or no text is provided.

In Stage 2, we investigated the effects of different configurations of the DAFT and varying grid res-
olutions. Our findings suggest that placing DAFT in the decoder layers is more effective, and a grid
resolution of 4 achieves a good balance between detail capture and computational efficiency. Further-
more, the learned localization vector from Stage 1 is shown to be more effective than directly using
segmentation masks.

Overall, our two-stage approach demonstrates superior segmentation performance, particularly in
accurately localizing and segmenting the pneumothorax. By effectively integrating image and text in-
formation, our method provides a promising solution for improving pneumothorax diagnosis in clinical
settings. Future work could explore further refinements and extensions of our approach, such as incor-
porating additional modalities or refining the attention mechanisms.
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Chapter 4

Abdominal Multi-Organ Segmentation with Guided-nnUNet

4.1 Introduction

Multi-organ segmentation, a fundamental task in medical image analysis, involves delineating vari-
ous organs simultaneously from imaging modalities such as CT and MRI. This process plays a crucial
role in computer-aided diagnosis, treatment planning, and disease monitoring. However, multi-organ
segmentation presents unique challenges not commonly encountered in general segmentation tasks.
These challenges include navigating intricate spatial relationships between organs, where one organ
may partially obscure the other, resulting in ambiguous boundaries. The varying shapes and sizes of or-
gans within the same image, along with their proximity, also make it difficult to separate them accurately.

These challenges necessitate the use of automated and semi-automated segmentation approaches.
DL techniques play a crucial role in multi-organ segmentation by harnessing the capabilities of neu-
ral networks to automatically delineate organs from medical images. Simple DL architectures, such
as U-Net [6, 16] and V-Net [30] have been widely adopted for multi-organ segmentation because of
their effectiveness in feature extraction. However, these methods often face challenges such as imbal-
anced classes and difficulty in distinguishing boundaries between adjacent organs, leading to under or
over-segmentation. Moreover, the increased number of input and output channels necessary to repre-
sent various organs in the segmentation of 3D medical images aggravates the computational load and
memory constraints, thereby affecting the efficacy and scalability of the algorithms. In addition, these
models exhibit size bias, favoring larger organs in segmentation [31].

Patch-based training approaches such as nnUNet [8] address the issue of handling a large number
of channels in medical images but still face limitations in handling complex anatomical structures and
accurate segmentation, especially for organs in close proximity. More recent approaches like Label
Conditioned Segmentation (LCS), address the challenge of segmenting images with a very large num-
ber of classes [32]. It achieves segmentation through a single-channel output regardless of the number of
classes. LCS introduces an additional input, the conditioned label which is appended to the bottleneck
layer of the model. During inference, this conditioned label acts as a guide and specifies the class of
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Figure 4.1 This illustration depicts the 15 abdominal organs included in the AMOS22 dataset for seg-
mentation tasks.

interest for the segmentation. However, LCS is limited by its reliance on an explicit atlas designed for a
set of classes, and segmenting multiple organs requires running inferences for each organ individually,
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leading to significant computational overhead.

To overcome the challenges particular to anatomy, alternative approaches to explicit conditional
modelling have been explored to improve segmentation accuracy. Topological Interaction Module pro-
posed in [33] focuses on capturing spatial relationships like enclosing (one class being inside another)
and exclusion (certain classes never appearing together) between organs. While effective for certain
relationships, it may not cover some organ interactions like relative positioning, leading to potential
segmentation inaccuracies and size bias. Conditional shape-location priors and unsupervised intensity
priors [34] have been used to address shape, location and intensity variations. Despite the potential, it
uses atlases and can struggle with complex anatomical structures or images with poor quality due to
limitations in their ability to adapt to unseen variations.

In multi-organ segmentation, understanding the global context and relationships between all organs,
not just immediate neighbors, is crucial. Therefore, transformers, known for their ability to capture
long-range dependencies in data, are gaining attraction in medical image segmentation tasks [35–37].
However, their effectiveness is limited by the typically smaller medical image datasets compared to other
domains. MedNeXt [38] proposes a bridge between DL and transformers by leveraging the strengths
of both architectures, achieving state-of-the-art performance in multi-organ segmentation benchmarks.
It utilizes ConvNeXt [39], a novel CNN architecture inspired by transformers. ConvNeXt incorporates
transformer modules to capture long-range dependencies while retaining the efficient feature extraction
capabilities of traditional CNNs.

While DL offers promise in multi-organ segmentation, existing single-stage models face inherent
limitations. Unlike isolated objects, organs possess well-defined spatial relationships – the liver al-
ways sits next to the right kidney, for example. Single-stage models often overlook these crucial spatial
cues, requiring complex algorithms to reason about the 3D layout and integrate this knowledge into the
segmentation process. Furthermore, these models attempt to perform both coarse (identifying general
organ areas) and fine-grained segmentation (accurately delineating boundaries) simultaneously, which
can result in an information bottleneck leading to inaccurate boundaries, particularly when dealing with
complex structures. In addition, single-stage frameworks may lack sufficient computational capacity for
multiple complex anatomical structures and struggle to address class imbalances. Figure 4.1 shows the
organs considered for this study.

Our proposed two-stage approach - Guided-nnUNet, overcomes these limitations by decomposing
segmentation into two distinct stages. This allows the model to explicitly focus on the efficient local-
ization of organs in the first stage and leverage this information for precise boundary delineation in
the second stage. This division of tasks alleviates the information bottleneck and allows the model to
better handle complex anatomical structures, ultimately leading to more accurate multi-organ segmen-
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Figure 4.2 The proposed approach is illustrated in the schematic diagram. Initially, a coarse region
localization map L̂ is predicted from the abdomen CT volume. Next, the feature maps of the segmenta-
tion network are modulated at various scales using L̂ to precisely segment the organs in the abdominal
cavity.

tation. In the first stage, the model analyzes the input image and generates a low-dimensional map.
This map highlights the approximate locations of the objects of interest within the image. This stage is
computationally lighter as it deals with a simpler task. Next, in the second stage, we incorporate prior
region maps at multiple scales within the encoder-decoder segmentation framework through DAFT [18].
DAFT predicts the scales and shifts to excite and suppress image feature maps of a convolutional layer
by conditioning them on both the image and the map. To summarize, the key contributions of our work
are:

• A novel, two-stage 3D segmentation framework, Guided-nnUNet, for accurate multi-organ seg-
mentation in abdominal CT scans

• Using DAFT to fuse the organ localization information as spatial guidance to improve fine-grained
organ segmentation
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Axial Sample Slice (Liver Segmentation) Localization Map (Liver - 2D)

Figure 4.3 This figure shows a 2D illustration of a 3D localization map (n=4) generated in stage 1 for an
axial sample slice for the liver. Similar localization maps are obtained, flattened and stacked organwise.

4.2 Proposed Method

The proposed Guided-nnUNet (shown in Figure 4.2) follows the pipeline introduced in Chapter 2,
operating in two stages to achieve accurate and efficient organ segmentation in abdominal CT scans.

• Stage 1: Organ Localization - A ResNet-50 model [40] is employed to predict the presence or
absence of each organ within individual image blocks (like a grid) across the entire scan. This
initial step generates a low-dimensional localization map that functions as a spatial guide for the
second stage, highlighting potential locations of each organ within the abdominal cavity.

• Stage 2: Fine-grained Segmentation - A 3D U-Net architecture equipped with DAFT is utilized
in this stage. DAFT plays a vital role for effectively merging the rich visual features extracted
from the CT volume with the broader spatial context provided by the localization map from stage
1. This combined information allows the network to focus its segmentation efforts on the most
likely organ regions within the image, leading to improvements in segmentation performance.

4.2.1 Organ Localization

In the first stage of the framework, a simple classification architecture (ResNet [40]) is utilized to
generate a preliminary map, guiding the subsequent segmentation stage. We feed the entire 3D image
volume (abdominal CT scan) into the ResNet. The model then outputs a localization map L̂ with di-
mensions O × n3. The image volume is segmented into a 3D grid with a total of n × n × n smaller

32



blocks. The localization map serves as a preliminary guide, highlighting potential regions where each
organ might be located during the subsequent segmentation stage. Figure 4.3 shows a 2D illustration of
the localization map generated in stage 1 for an axial sample slice for the liver.

Since this stage is formulated as a classification problem (predicting whether each block contains a
specific organ or not), the network is trained using a cross-entropy loss function. Minimizing the cross-
entropy loss function during training, trains the model to learn feature representations that effectively
distinguish organ-containing regions from background areas and other organs within the CT volume.
By learning these informative features, the ResNet model can generate a localization map that provides
spatial context for the 3D U-Net architecture in the subsequent segmentation stage.

4.2.2 Fine-Grained Segmentation

This stage accurately segments the individual organs within the abdomen region. To achieve this,
it leverages both the CT volume and the grid-level localization information obtained from the previous
stage. The core architecture employed here is a 3D U-Net (specifically, the nnUNet implementation).
nnUNet [8] is a well-established framework specifically designed for medical image segmentation tasks.
It offers the benefits of a U-Net for accurate segmentation while leveraging pre-processing steps, a well-
defined training pipeline, and pre-tuned hyperparameters, all provided by the framework. To further
enhance segmentation performance, we incorporate DAFT modules [18] within the segmentation frame-
work, as detailed in Section 2.4.2. DAFT guides the decoder towards a more accurate segmentation.

This stage utilizes a combination loss function. The loss function leverages the strengths of both
Dice loss and Cross-Entropy loss. It addresses class imbalance concerns with Cross Entropy (CE) loss
while promoting accurate segmentation boundary prediction through Dice loss, ultimately leading to a
robust segmentation model for abdominal CT scans.

4.3 Experiments and Results

4.3.1 Dataset and Experimental Settings

4.3.1.1 Dataset

We evaluated all experiments using two publicly available datasets for abdominal multi-organ seg-
mentation: AMOS22 [41] and BTCV. AMOS22 presents a rich collection of 500 CT scans and 100
MRI scans, sourced from various hospitals, scanner models, imaging modalities, and disease condi-
tions. Each scan is meticulously segmented at the voxel level, covering a comprehensive list of 15
abdominal organs. Our focus for this study was solely on the CT scans from the AMOS22 dataset.
The BTCV dataset, on the other hand, is specifically tailored for CT-based segmentation of abdominal
organs. While smaller in size with only 30 CT volumes, BTCV offers meticulous segmentation for 13
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Organs nnUNet Guided- MedNeXt Guided-
nnUNet MedNeXt

Spleen 0.917± 0.019 0.965± 0.003 0.954± 0.008 0.961± 0.010
R Kidney 0.926± 0.015 0.960± 0.005 0.948± 0.003 0.959± 0.006
L Kidney 0.937± 0.016 0.964± 0.002 0.955± 0.005 0.963± 0.005
Gall Bladder 0.735± 0.027 0.826± 0.058 0.775± 0.046 0.876± 0.041
Esophagus 0.723± 0.005 0.848± 0.011 0.792± 0.026 0.804± 0.078
Liver 0.961± 0.007 0.971± 0.003 0.963± 0.004 0.974± 0.005
Stomach 0.850± 0.018 0.882± 0.013 0.866± 0.009 0.903± 0.027
Aorta 0.925± 0.008 0.946± 0.005 0.932± 0.005 0.937± 0.025
Postcava 0.846± 0.017 0.909± 0.002 0.882± 0.009 0.899± 0.019
Pancreas 0.914± 0.0.15 0.923± 0.024 0.833± 0.014 0.876± 0.008
R Adrenal Gland 0.729± 0.036 0.724± 0.010 0.720± 0.052 0.738± 0.016
L Adrenal Gland 0.655± 0.037 0.762± 0.013 0.738± 0.028 0.782± 0.026
Duodenum 0.649± 0.020 0.825± 0.009 0.788± 0.021 0.827± 0.026
Bladder 0.832± 0.024 0.867± 0.057 0.809± 0.031 0.893± 0.019
Prostate/Uterus 0.776± 0.014 0.855± 0.026 0.809± 0.042 0.855± 0.020

Average 0.825± 0.006 0.882± 0.009 0.851± 0.010 0.883± 0.003

Table 4.1 Comparison of segmentation performance with (Guided-nnUNet, Guided-MedNeXt) and
without (nnUNet, MedNeXt) localization guidance on the AMOS dataset. Five-fold average Dice scores
along with standard deviation is reported.

abdominal organs. In our experiments, we employed a 5-fold cross-validation strategy on both datasets
instead of utilizing the leaderboards.

4.3.1.2 Implementation

Our experiments utilized a two-stage approach. For stage 1, we resized the image volumes to a
standard size of 64 × 64 × 64 and employed a random five-fold cross-validation strategy. Within each
fold, a designated test set was chosen, while the remaining data was further split into a 75% training
set and a 25% validation set. The training process for stage 1 leveraged the AdamW optimizer with an
initial learning rate and weight decay of 1e-4 each, implemented within the PyTorch framework. For
stage 2, we transitioned to the default nnUNet pipeline with the 3d fullres configuration. We reused
the train-val-test split used in stage 1. The two stages were trained sequentially, with a maximum of
100 epochs for stage 1 and 1000 epochs for stage 2. Both stages utilized a batch size of 2 and were
conducted on a system equipped with two NVIDIA GeForce RTX-2080Ti GPUs.

4.3.2 Results and Discussion

This study compares the segmentation performance of our two-stage pipeline with a baseline U-Net
(nnUNet implementation) on two datasets: AMOS and BTCV.
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Organs nnUNet Guided- MedNeXt Guided-
nnUNet MedNeXt

Spleen 0.900± 0.046 0.964± 0.021 0.913± 0.040 0.917± 0.044
R Kidney 0.917± 0.019 0.961± 0.023 0.913± 0.043 0.929± 0.023
L Kidney 0.746± 0.020 0.953± 0.031 0.910± 0.040 0.915± 0.043
Gall Bladder 0.718± 0.067 0.770± 0.021 0.738± 0.022 0.767± 0.024
Esophagus 0.823± 0.021 0.858± 0.028 0.807± 0.018 0.825± 0.014
Liver 0.907± 0.005 0.970± 0.019 0.945± 0.019 0.950± 0.018
Stomach 0.882± 0.057 0.947± 0.016 0.879± 0.032 0.911± 0.016
Aorta 0.846± 0.017 0.936± 0.019 0.920± 0.009 0.929± 0.003
Postcava 0.852± 0.023 0.896± 0.002 0.869± 0.014 0.876± 0.016
Veins 0.732± 0.007 0.835± 0.044 0.753± 0.004 0.768± 0.041
Pancreas 0.750± 0.015 0.865± 0.032 0.825± 0.018 0.840± 0.015
R Adrenal Gland 0.757± 0.038 0.796± 0.006 0.747± 0.003 0.760± 0.028
L Adrenal Gland 0.767± 0.018 0.815± 0.034 0.754± 0.034 0.760± 0.034

Average 0.815± 0.018 0.889± 0.015 0.844± 0.023 0.857± 0.019

Table 4.2 Comparision of segmentation performance with (Guided-nnUNet, Guided-MedNeXt) and
without (nnUNet, MedNeXt) localization guidance on the BTCV dataset. Five-fold average Dice scores
along with standard deviation is reported.

Fusing DAFT with nnUNet resulted in significant improvements in organ segmentation performance
across the two datasets as shown in Tables 4.1 and 4.2. The relative average Dice score increase was
7% for AMOS and 9% for BTCV. However, the impact of DAFT varied by organ size and complex-
ity. In both datasets, the improvement was generally more pronounced for smaller organs with intricate
features. For example, in AMOS, the increase ranged from a minimal 0.9% for the liver (a large and
well-defined organ) to a maximum of 27% for the duodenum (a smaller and more challenging struc-
ture). This suggests that DAFT’s spatial guidance from the localization map is particularly helpful
for segmenting smaller organs where precise delineation is crucial. Although a similar pattern did not
emerge in BTCV, with the improvement ranging from 4% for the esophagus to 27% for the left kidney
(large organ), positive results were still observed.

This variation can be attributed to the information available in the CT scan and organ size. For larger
organs with distinct features, nnUNet might perform well on its own. However, for smaller organs with
limited visual cues in the CT scan, DAFT’s additional spatial guidance becomes essential, leading to
more significant accuracy gains. The larger and more diverse AMOS dataset provides a more compre-
hensive picture of this effect compared to the potentially limited size of the BTCV dataset.

In Table 4.3, we see that the improvement was most significant for the duodenum (27.096%), esoph-
agus (17.294%), and left adrenal gland (16.265%) in AMOS, which are all smaller organs with less
prominent features in CT scans. Organs like the liver (0.978%) and aorta (2.291%) showed a smaller
improvement due to their larger size and distinct features. An interesting exception to this trend is the
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Organs % of Voxels % Improvement
over nnUNet

R Adrenal Gland 0.045 −0.714
L Adrenal Gland 0.050 16.265
Esophagus 0.207 17.294
Gall Bladder 0.416 12.415
Prostate/Uterus 0.642 10.178
Duodenum 0.782 27.096
Postcava 0.935 7.450
Pancreas 1.05 1.007
Bladder 1.537 4.233
Aorta 1.61 2.291
Liver 1.87 0.978
R Kidney 2.110 3.649
L Kidney 2.185 2.883
Spleen 2.110 3.649
Stomach 4.58 3.765

Average - 6.911

Table 4.3 Percentage of average voxels occupied by each organ in the AMOS dataset and the average
Dice score improvement achieved by Guided-nnUNet compared to nnUNet for each organ.

right adrenal gland. Medical literature confirms that the right adrenal gland is inherently smaller and
more challenging to identify compared to the left one, due to its anatomical position behind a large
blood vessel and potential obscuration by the liver [42, 43]. As a result, the model’s performance with
or without DAFT shows minimal variation for this specific gland.

4.3.2.1 Comparison with state-of-the-art method

As shown in Table 4.1 and Table 4.2, our analysis of Guided-nnUNet and the SOTA MedNeXt for ab-
dominal organ segmentation reveals a clear advantage for Guided-nnUNet. On both AMOS and BTCV
datasets, Guided-nnUNet achieves a higher average Dice score compared to MedNeXt. This improve-
ment ranges from 3.6% on the AMOS dataset to 5.3% on the BTCV dataset, and is particularly notable
for smaller organs, such as the pancreas (10.81%), esophagus (7.07%), and gallbladder (6.58%). Even
for organs like the liver and kidneys, there is a clear advantage for Guided-nnUNet. It is worth noting
that the right adrenal gland, a small and inherently difficult organ to segment, shows the least improve-
ment (0.56%).

Building on the success of MedNeXt, a SOTA method for abdominal organ segmentation, we in-
vestigated the impact of incorporating DAFT. Adding DAFT into MedNeXt (referred to as Guided-
MedNeXt) demonstrates improvement in segmentation performance across various organs. Overall, it
improves upon MedNeXt on AMOS by 3.7% and on BTCV by 1.5%. Notably, the improvement is more
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Organs nnUNet Guided-nnUNet
(fixed loc)

Guided-nnUNet

Spleen 0.900± 0.046 0.912± 0.002 0.964± 0.021
R Kidney 0.917± 0.019 0.898± 0.010 0.961± 0.023
L Kidney 0.746± 0.020 0.737± 0.034 0.953± 0.031
Gall Bladder 0.718± 0.067 0.727± 0.016 0.770± 0.021
Esophagus 0.823± 0.021 0.819± 0.008 0.858± 0.028
Liver 0.907± 0.005 0.920± 0.012 0.970± 0.019
Stomach 0.882± 0.057 0.897± 0.029 0.947± 0.016
Aorta 0.846± 0.017 0.828± 0.010 0.936± 0.019
Postcava 0.852± 0.023 0.833± 0.019 0.896± 0.002
Veins 0.732± 0.007 0.741± 0.013 0.835± 0.044
Pancreas 0.750± 0.015 0.750± 0.027 0.865± 0.032
R Adrenal Gland 0.757± 0.038 0.744± 0.027 0.796± 0.006
L Adrenal Gland 0.767± 0.018 0.760± 0.022 0.815± 0.034

Average 0.815± 0.018 0.813± 0.002 0.889± 0.015

Table 4.4 Comparison of segmentation performance (Dice similarity coefficient) on the BTCV dataset,
showing nnUNet, Guided-nnUNet (fixed loc) with fixed localization, and Guided-nnUNet with dynamic
localization.

pronounced for smaller organs like the pancreas, gallbladder, duodenum, and left adrenal gland, ranging
from 4.95% to 13%.

4.3.3 Ablation Studies

4.3.3.1 Impact of Localization

In the standard Guided-nnUNet approach, stage 1 generates a localization map that provides spatial
information about the target organs. However, in this experiment, a constant vector with all 1s was fed
into stage 2 instead of the stage 1 output. This essentially bypasses the stage 1 localization step and pro-
vides no specific guidance about organ location. Table 4.4 compares the performance of three models:

• nnUNet: Baseline model without DAFT.

• Guided-nnUNet (fixed loc): This version uses Guided-nnUNet with the constant localization vec-
tor.

• Guided-nnUNet: This refers to the standard Guided-nnUNet model with the localization map
generated by stage 1.

The results in Table 4.4 show a mixed effect of using the constant localization vector. For organs
like the spleen (0.912), liver (0.920), and stomach (0.897), the Guided-nnUNet (fixed loc) achieved a
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Organs nnUNet Guided-nnUNet Guided-nnUNet Guided-nnUNet
(n=2) (n=3) (n=4)

Spleen 0.900± 0.046 0.932± 0.008 0.943± 0.008 0.964± 0.021
R Kidney 0.917± 0.019 0.932± 0.016 0.942± 0.016 0.961± 0.023
L Kidney 0.746± 0.020 0.893± 0.043 0.937± 0.043 0.953± 0.031
Gall Bladder 0.718± 0.067 0.735± 0.025 0.761± 0.025 0.770± 0.021
Esophagus 0.823± 0.021 0.856± 0.012 0.858± 0.012 0.858± 0.028
Liver 0.907± 0.005 0.944± 0.022 0.959± 0.022 0.970± 0.019
Stomach 0.882± 0.057 0.934± 0.003 0.937± 0.003 0.947± 0.016
Aorta 0.846± 0.017 0.852± 0.008 0.912± 0.008 0.936± 0.019
Postcava 0.852± 0.023 0.857± 0.008 0.882± 0.008 0.896± 0.002
Veins 0.732± 0.007 0.739± 0.036 0.818± 0.019 0.835± 0.044
Pancreas 0.750± 0.015 0.754± 0.036 0.845± 0.036 0.865± 0.032
R Adrenal Gland 0.757± 0.038 0.750± 0.024 0.790± 0.024 0.796± 0.006
L Adrenal Gland 0.767± 0.018 0.770± 0.044 0.788± 0.044 0.815± 0.034

Average 0.815± 0.018 0.842± 0.013 0.875± 0.022 0.889± 0.015

Table 4.5 Comparing segmentation performance (Dice similarity coefficient) on BTCV dataset using
Guided-nnUNet with different grid block configurations (n=2, 3, 4)

slight improvement compared to the baseline nnUNet. This suggests that even without specific local-
ization information, DAFT might still provide some benefit by incorporating additional features from
the localization map. Whereas for organs like the kidneys (right and left), esophagus, aorta, and adrenal
glands, the constant localization vector resulted in either similar or slightly worse performance com-
pared to nnUNet alone. This indicates that the spatial guidance from the localization map in the standard
Guided-nnUNet is crucial for accurate segmentation for these organs.

The average Dice score for Guided-nnUNet (fixed loc) (0.813) is lower by 8.55% compared to the
standard Guided-nnUNet (0.889). This highlights the importance of the stage 1 localization step in the
overall performance of the model, especially for organs where precise delineation is necessary.

4.3.3.2 Impact of Grid Resolution

Table 4.5 explores how the parameter n affects the performance of our segmentation model (Guided-
nnUNet) on the BTCV dataset. As discussed in Section 4.2.2, n controls the number of squares (grid
blocks) used to divide each image. A higher number of grid blocks (larger n) creates a finer grid. The
results show that increasing n from 2 to 3 generally leads to better segmentation accuracy, as measured
by Dice score, for most organs. This suggests that a finer grid allows the model to capture the details of
these organs more effectively.

However, the impact of n is not uniform across all organs. Some organs like the esophagus exhibit
no significant change in performance even with a finer grid (n=4). This suggests that for these organs,
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Volume Slice Ground Truth nnUNet Guided-nnUNet MedNeXt Guided-MedNeXt

Spleen
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Liver
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Bladder

Prostate/Uterus

Figure 4.4 The performance of various segmentation algorithms on abdominal organs in CT scans is
compared qualitatively. Specifically, the liver and gallbladder are the focus of this analysis. The image
slice, ground truth, nnUNet, Guided-nnUNet, MedNeXt, and Guided-MedNeXt results are displayed in
each row.

a finer grid might not be advantageous. There are two possible explanations: (i) Diminishing return:
excessively small grid blocks might become less informative for capturing the relevant features of these
organs, (ii) Overfitting: with a higher number of grid blocks (n=4), the model might be focusing on
irrelevant details in the training data, leading to a decrease in generalizability on unseen test data.

Considering these factors, a range of n=3 to 4 appears to be ideal. This range allows the model
to capture detailed features while keeping the number of parameters in check and reducing the risk of
overfitting. However, optimal n can vary depending on the specific dataset and organs being analyzed.
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4.3.3.3 Qualitative Analysis

Figures 4.4 and 4.5 offer some insights into the segmentation performance of different approaches for
challenging abdominal organ structures. For this analysis, two specific pairs of organs are highlighted:
(i) liver and gall bladder and (ii) stomach and spleen. These closely located organs often exhibit intricate
boundaries and similar intensities in CT scans, making segmentation difficult. As seen in Figure 4.4 and
Figure 4.5, visual inspection reveals that nnUNet struggles to differentiate between them, potentially
leading to under-segmentation of the gallbladder. Guided-nnUNet, on the other hand, appears to achieve
clearer separation due to the guidance provided by the localization map. Similarly, MedNeXt might
exhibit challenges in accurately delineating the gallbladder, while Guided-MedNeXt could offer a more
precise segmentation.

4.4 Conclusion

This work investigated an application of the two-stage segmentation framework introduced in Chap-
ter 2 - Guided-nnUNet, for abdominal organs in CT scans. Guided-nnUNet decomposes the segmenta-
tion process into two steps: organ localization and then localization-guided fine-grained segmentation.
Guided-nnUNet incorporates a spatial guidance module (DAFT) that significantly improves segmenta-
tion accuracy, especially for small and intricate organs, compared to the baseline nnUNet. The benefit of
DAFT was more pronounced in the larger and more diverse AMOS dataset. Ablation studies confirmed
the importance of DAFT’s guidance and grid resolution for precise segmentation. Notably, Guided-
nnUNet outperformed MedNeXt on both datasets, highlighting its effectiveness. While this study fo-
cused on Guided-nnUNet, combining DAFT with other models like MedNeXt shows scope for further
improvements, requiring future exploration.
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Volume Slice Ground Truth nnUNet Guided-nnUNet MedNeXt Guided-MedNeXt
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Figure 4.5 The performance of various segmentation algorithms on abdominal organs in CT scans is
compared qualitatively. Specifically, the stomach and spleen are the focus of this analysis. The image
slice, ground truth, nnUNet, Guided-nnUNet, MedNeXt, and Guided-MedNeXt results are displayed in
each row.
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Chapter 5

Conclusion

This thesis proposes a novel two-stage DL pipeline for medical image segmentation, addressing the
challenges posed by single-stage models. The thesis demonstrates the efficacy of the pipeline in improv-
ing segmentation performance by separating the tasks of localization and segmentation. In the first stage,
the pipeline focuses on localizing target organs/lesions. The second stage utilizes DAFT-enhancement
to perform fine-grained segmentation, focusing on the most relevant image areas. This method results
in a more robust and efficient approach to medical image segmentation, particularly for complex tasks
involving anatomical variations and overlapping organs.

The effectiveness of this two-stage approach has been demonstrated through two applications. One
application involved accurate pneumothorax segmentation in chest radiographs. It was shown to out-
perform existing methods like U-Net, LViT, ConTEXTualNet and CPAM through a novel approach that
leverages additional information sources, such as free-text radiology reports, which was introduced to
enhance the accuracy of pneumothorax segmentation. The ablation studies highlighted the importance
of contextual information from radiology reports and the effectiveness of DAFT modules in the decoder
layers.

Another application of the pipeline for abdominal organ segmentation in CT scans was demon-
strated. Guided-nnUNet, which incorporates DAFT modules, achieved superior segmentation accuracy
compared to the baseline nnUNet, particularly for small and intricate organs. This further emphasizes
the benefits of the two-stage approach and DAFT modules in improving segmentation performance. Ab-
lation studies confirm the importance of DAFT’s guidance and the choice of grid resolution in achieving
precise segmentation. The findings suggest that the integration of DAFT with other models could lead
to further enhancements in segmentation accuracy.

The versatility of the proposed two-stage pipeline is further highlighted by its successful application
in tasks dealing with both 2D and 3D medical images. One application focused on accurate pneumoth-
orax segmentation in chest radiographs, which are inherently 2D images. In contrast, the other applica-
tion focused on abdominal organ segmentation in CT scans, representing 3D volumes. This adaptability
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showcases the pipeline’s ability to achieve accurate segmentation regardless of image dimensionality,
further strengthening its potential for broader applications in diverse medical image analysis tasks.

5.1 Limitations

While the two-stage pipeline offers a robust approach to medical image segmentation, inherent lim-
itations exist within each stage. Its increased complexity compared to single-stage models, requires
careful optimization for both stages to ensure efficient and accurate segmentation. The pipeline incurs
a higher computational cost due to running two separate stages, which could be a concern for real-time
applications or resource-constrained environments. Grid-based localization in Stage 1 can be computa-
tionally expensive with high resolutions and susceptible to overfitting with very fine grids. Furthermore,
the effectiveness of the pipeline relies on the quality and availability of training data, as insufficient data
or data with significant noise might hinder the performance of both localization and segmentation stages.

5.2 Future work

Overall, the research contributes to the field of medical image analysis by providing a scalable and
effective solution for complex segmentation tasks. Building upon the pipeline’s success, future work
can delve into several directions to enhance its capabilities and broaden its applications. Explainable AI
(XAI) techniques could be integrated to understand how the model leverages information and makes pre-
dictions. Alternative localization methods like heatmap regression or keypoint detection hold promise
for richer localization information. The framework’s generalizability to diverse tasks like multi-task
learning scenarios can be investigated. Furthermore, seamless clinical integration through user inter-
faces and electronic health record incorporation could be explored. Finally, leveraging unsupervised
or weakly supervised learning, incorporating additional modalities like clinical notes or other imaging
techniques, could further enhance segmentation performance and understanding. The two-stage pipeline
holds promise for future applications in medical diagnostics, treatment planning, and disease monitor-
ing, potentially revolutionizing the way medical images are interpreted and utilized in healthcare.
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