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Abstract

Location-Based Services (LBSs) have become increasingly prevalent in today’s mobile technology
sector, delivering tailored information relevant to the users’ precise locations. These services grant
users access to location-centric information like the proximity of hospitals, restaurants, or other points
of interest, thereby facilitating routine tasks. However, such LBSs can pose significant concerns about
user privacy. Consider a user querying, “What are the directions to the best cancer hospital from the
current location?”. Such queries expose the user’s current location information to the LBS provider
and other intermediate nodes (intruders) in the mobile network. Query location information can reveal
sensitive information about the user, such as relationships, health, religion, and nightlife habits. In this
thesis, we propose two improved approaches to preserve the privacy of users’ query location in the
mobile environment.

As the first approach, we propose an improved dummy generation approach for better privacy. In
a dummy generation approach, the user sends additional dummy locations along with the user’s actual
location in its query, thereby confusing the LBS provider and the other nodes. The existing approaches
have the issue of generating dummies in regions with more infeasible regions (inaccessible regions).
Moreover, the existing approaches do not consider the presence of time-dependent infeasible regions.
For example, consider a supermarket with opening and closing times as 9am and 9pm, respectively.
From 9am to 9pm, this supermarket can be considered a feasible region; otherwise, this area can be
regarded as an infeasible region. Furthermore, if the intruder estimated the centre of cloaking region
(CR) using the dummy locations, it would become more accessible for the intruder to know a given
user’s actual location. To improve the performance, we propose an Annulus-based Gaussian Dummy
Generation (AGDG) approach. AGDG introduces the concept of a virtual cloaking region to generate
cloaking regions. In AGDG, unlike traditional methods, the user’s location is not fixed at a fixed dis-
tance from the centre of the cloaking region. Additionally, AGDG considers the infeasible regions and
query probability in the surrounding environment when generating dummy locations. The approach also
incorporates the concept of time-dependent infeasible regions and ensures that the generated dummy lo-
cations abide by these time-dependent constraints.

As the second approach, we propose a cloaking-based approach to improve the privacy of spatial
range queries. In distributed spatial cloaking-based approaches, the user’s query location information
is cloaked using the distributed mobile network around the user (e.g., the p2p network). Existing ap-
proaches do not preserve the user’s intent privacy. For example, suppose a user queries all the cancer
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hospitals near her. In that case, her location and health information (searching for intent, which is about
cancer hospitals) must be preserved from both LBS providers and peers in the surrounding. Moreover,
the existing approaches require a large number of peers to be employed to cloak the user query location.
Maintaining such structures in a highly dynamic mobile network is challenging. We propose the notion
of ijkCloak framework to improve existing distributed spatial cloaking-based approaches. The ijkCloak
framework introduces the notion of ijk-anonymity to protect both the user’s query location and intent
information. This method divides the user’s query location information into multiple fragmented loca-
tions. This process helps keep the user’s query location private from their peers and the LBS provider.
Additionally, dummy intents are sent to the LBS provider along with the user’s actual query to protect
the user’s query intent. The proposed approach ijkCloak, adopts ijk-anonymity in a mobile network
environment. Because of the efficiency of ijk-anonymity, this proposed method requires fewer peers to
maintain user privacy, making it more practical in a highly dynamic mobile network environment.

For each approach, the theoretical analyses and comprehensive experimental study exhibits its po-
tential to preserve location privacy in different scenarios. We hope this research encourages further
research and leads to the development of improved privacy preserving approaches in mobile networks.
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Chapter 1

Introduction

With the advancement of mobile communications technology and the widespread use of GPS de-
vices, location-based services (LBSs) have gained significant popularity. These services enable mobile
users to obtain location-specific information by requesting LBS providers to retrieve the desired data.
However, one major issue with this type of service is the possibility of malicious entities analyzing a
user’s requested location (query location) to track user movements illegally or leak their data [33, 17].
Consider a user querying, “What are the directions to the cancer hospital from the current location?”
Such queries expose the user’s current location. Moreover, malicious entities may infer the location of
any given user by analyzing their query location data [19]. In addition, query location information can
reveal sensitive information about the user, such as relationships, health, religion, and nightlife habits,
further compromising the user’s privacy [23]. Therefore, developing an approach to provide location-
based services to mobile users is crucial while reducing the risk of violating user location privacy.

In this thesis, we have focused on improving the performance of existing dummy generation and
distributed spatial cloaking-based privacy preservation schemes. In the following sections, we first
provide background information on these approaches and the research gaps. Next, we summarize the
proposed approaches. Subsequently, we list the contributions and present the thesis’s organization.

1.1 Background on dummy generation approaches

Consider a real-life scenario where a user wants to request a location-based query to a given Location-
Based Service (LBS) provider. In such scenarios, sending a request with the user’s location to the LBS
provider would expose the user’s location to adversaries (including the LBS provider). In such cases, the
user can choose an application that uses a dummy generation approach, which generates fake locations
(dummies). The application will take the user’s location and the number of dummy locations required
as input. After completing on-device computations, the application will output dummy locations. The
user can now use these dummy locations to send multiple requests to the LBS provider. Once the user
receives the result of all the location-based queries, she can prune the results with her location as the
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final result. This way, it is possible to preserve the user’s location privacy using dummy generation
approaches.

Overview of existing approaches and issues: In the literature, multiple dummy generation ap-
proaches [9, 53, 44, 18] have been proposed. The challenge lies in generating realistic dummies while
considering environmental factors like hard-to-reach areas or population density. Incidentally, exist-
ing dummy generation approaches are inadequate for regions with more infeasible regions [9, 53]. A
geographical region is defined as an infeasible region for an entity if an entity cannot possibly be phys-
ically present at that location. Examples include locations without road or transportation infrastructure,
restricted government facilities or military zones and forest areas to preserve endangered species. Un-
derstandably, a higher number of infeasible regions decreases the area of CR, thereby increasing the
probability of violation of user location privacy. The presence of time-dependent infeasible regions is
not considered in past works like [18]. For example, consider a supermarket with opening and closing
times as 9am and 9pm, respectively. From 9am to 9pm, this supermarket can be considered a feasible
region; otherwise, this area can be regarded as an infeasible region. Additionally, if an intruder success-
fully determines the centre of the CR based on dummy locations, it can potentially expose the user’s real
location. This is because in the case of existing approaches such as [44], the user’s location is always at
a fixed distance from the centre of CR.

1.2 Spatial range queries and privacu issues

u
c

5km

d11

d10

d5 d9

d6
d7

d4

d8

d13

d2

d12

d1

d3

Figure 1.1: Spatial Range Query

Generating accurate and realistic dummy data
to deceive adversaries may not always be feasi-
ble. As a result, spatial cloaking-based distributed
approaches utilize nearby peers to conceal the
user’s location information [11]. Here, users
are self-organized into a distributed network as
peers and collaborate to generate cloaked regions.
These approaches preserve the location privacy
of mobile users querying for different queries.
Among other queries, mobile users issue spatial
range queries (SRQs) [30], which are location-
dependent queries to determine the user’s desired
objects within a (spatial) range restriction. For
example, consider Figure 1.1. Here, uc is a mobile user and uc’s spatial region contains 13 cancer hos-
pitals: {d1, d2,. . ., d13}. A sample SRQ Q1 of uc is as follows: “What are the cancer hospitals within
5km of my current location?”.

Challenges in SRQs: For SRQs, in addition to the user’s query location privacy, protecting the
privacy of the user’s query intent is also a major concern [54]. Understandably, the user would prefer
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to maintain the confidentiality of her intent information and not disclose the intent to any unauthorized
parties. In Figure 1.1, we have to preserve uc’s location, which is “my current location” and the user’s
intent, which is “cancer hospitals”. The result for the spatial range query Q1, requested by a user
uc, would be {d4, d5, d6, d7, d8}, i.e., the cancer hospitals within 5km of uc’s location. Note that the
location information of SRQ may not be the user’s current location. For example, suppose uc possesses
the following query: “Where is the best mental institution within 20 km of the gala area?”. In such a
case, the issue is to preserve the query location, which is “the gala area” and the intent, which is “best
mental institution”.

Overview of existing approaches and issues: In addition to intent and location privacy, privacy-
preserving approaches for SRQs should also consider the presence of infeasible regions in the user’s
surroundings. Such infeasible regions can decrease the Cloaking Region (CR) area, thereby increasing
the probability of violating user location privacy. The user’s information should be protected from both
the LBS provider and peers. Moreover, existing spatial cloaking-based approaches [15, 14, 31] use a
sizeable distributed network around them to preserve users’ location information. However, consistently
maintaining such large clusters of peers in a dynamic mobile network is challenging.

1.3 Research gaps

Following are the research gaps in existing dummy generation and spatial cloaking-based distributed
approaches for preserving privacy:

• Dummy generation approaches: Previous dummy generation approaches are vulnerable to an
adversary who can determine the centre of the cloaking region. Additionally, these approaches
need to consider time-dependent infeasible regions.

• Distributed spatial cloaking approaches: Existing distributed spatial cloaking approaches for
preserving location privacy rely on a high number of peers to cloak the user’s location information.
Moreover, these approaches do not preserve the user’s intent information.

Addressing these research gaps is essential because of the growing use of Location-Based Services
(LBSs). This need is what motivated our research. We aim to improve the current methods, ensuring
people can utilize LBSs while preserving their location information from an external entity.

1.4 Overview of the proposed approaches

In this section, we present the overview of the proposed approaches.
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1.4.1 Improved dummy generation approach

The issue is to protect the user’s location information even if an adversary somehow knows the
centre of CR. For this, we propose the concept of virtual cloaking region. Our proposed approach,
Annulus-based Gaussian Dummy Generation (AGDG), randomizes the distance between the user
and the centre of cloaking region (CR) by predetermining the user’s placement using a virtual cloaking
region. The virtual cloaking region is computed such that the dummies have a similar query probability
to the actual users. Moreover, in the case of areas with a higher number of infeasible regions, we propose
an annulus-based cloaking region with a Gaussian probability distribution for placing the candidates
such that the distance between the candidates is increased.

Moreover, to preserve user location privacy at varying times of the day, we present the concept of
time-dependent infeasible regions. To illustrate, consider a supermarket operating from 9am to 9pm.
During its operational hours, this supermarket represents a feasible region; outside these hours, it is
treated as an infeasible region. Our approach is well-equipped to consider these changes and generate
appropriate dummy locations even in such dynamic scenarios.

1.4.2 Improved spatial cloaking-based approach for spatial range queries

The issue with the spatial cloaking-based distributed approaches is to preserve the user’s query lo-
cation and intent information from the LBS provider and the peers while using fewer peers. To address
these issues for SRQ, we present the concept of ijk-anonymity. In ijk-anonymity, the user’s SRQ
is fragmented into j fragmented Spatial Range Queries (fSRQs) by handling the case of infeasible
regions. Each fSRQ is sent to a peer, which further forwards it to the LBS provider through peers.
Typically, an adversary (an LBS provider, peers or someone accessing LBS server data) could receive
k (k ≥ j) SRQs generated by multiple users. As a result, the j number of fSRQs obfuscates the actual
location information of the user among the k SRQs received by the adversary. As a result of fragmen-
tation, location information is also preserved from the peers. To preserve the user’s query intent, i − 1

dummy intents are sent along with the user’s actual query intent to the LBS provider. The proposed
approach, which we term as ijkCloak, adopts ijk-anonymity in a mobile network environment. The
proposed approach is more practical for a highly dynamic mobile network environment as it employs
fewer peers to preserve the user location and intent privacy.

1.5 Contribution of the thesis

The major contributions of the thesis are as follows:

1. We proposed an improved dummy generation approach that considers the presence of time-
dependent infeasible regions termed as AGDG.
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2. We proposed an improved distributed cloaking-based approach for spatial range queries, termed
ijkCloak. This approach introduces the concept ijk-anonymity to achieve improved location and
intent privacy.

3. We conduct theoretical analysis and experiments to demonstrate that our proposed approaches are
more effective than existing approaches.

1.6 Organization of the thesis

The rest of the thesis is organized as follows:

• In Chapter 2, we discuss the related work.

• In Chapter 3, we present Enhanced Dummy Generation Approach.

• In Chapter 4, we present Improved Location and Intent Privacy for Spatial Range Queries.

• In Chapter 5, we conclude the thesis with a summary and discuss future research directions.
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Chapter 2

Related work

This chapter discusses the literature on location privacy-preserving techniques. The work in [26] un-
derlines scenarios where unauthorized location data disclosure can lead to privacy invasion and misuse
of sensitive information. Studies have also examined the challenges LBS providers face in balancing
utility and privacy, emphasizing the need for privacy-preserving mechanisms to maintain user trust and
promote LBS adoption [13, 42]. Recent works [48, 1] have delved into the legal and ethical aspects of
location privacy, stressing the importance of privacy-by-design and a comprehensive regulatory frame-
work. To preserve users’ location privacy, various approaches have been proposed in the literature.
These methods can be broadly categorized into three types: obfuscation, dummy generation, and spa-
tial cloaking. Section 2.1 provides an overview of obfuscation-based approaches. Section 2.2 covers
research on dummy generation-based approaches, while Section 2.3 discusses spatial cloaking-based
approaches.

2.1 Obfuscation-based approaches

Obfuscation-based approaches, such as those proposed in [3, 2, 7, 12, 24, 47, 40, 50, 22], aim to
protect the privacy of location-based service (LBS) users by substituting their real locations with nearby
landmarks or intersections. However, this method may not be effective if the user is in an area with
a limited number of appropriate landmarks or intersections, resulting in significant degradation of the
quality of LBS. Additionally, as described in [12], spatial transformation methods may be used to distort
actual user locations by adding random noise. However, as shown in [25], the amount of noise required
to prevent tracking attacks can be quite large, potentially diminishing the usefulness of the LBS.

The work in [32] proposes a game-theoretic model for location obfuscation in LBS, aiming to bal-
ance the trade-off between privacy protection and the quality of LBS. The works of [4] introduce a
model based on application zones, representing geographic areas with similar interests, and mix zones,
areas where user tracking is inhibited. Here, identities within these mixed zones become blended and
unidentifiable, disrupting the linkage between users entering and exiting.
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2.2 Dummy-generation approaches

Dummy generation approaches [18, 53, 9, 44] involve the generation of dummy locations, which
are mixed with the user’s actual location and provided to the LBS provider as a list of indistinguishable
locations in a query. The user can then filter out the dummy locations and select only the information
relevant to their actual location.

The work in [18] proposes a method for generating dummies that behave like real humans to im-
prove further the effectiveness of the dummy generation approach for mobile users. A technique, des-
ignated as Circle-divided Dummy Generation (CDG) [53], generates dummies by considering an angle.
Moreover, the Obstacle-based Dummy Generation (ODG) approach, which considers the surrounding
environment, was proposed in [9]. Furthermore, the Efficient Dummy Generation (EDG) approach [44]
created dummies not on the circumference of the circle, but rather on a thick strip of a circle (forming
an annulus) to reduce the probability of exposing the users’ location in areas with a high density of in-
feasible regions. These approaches use k-anonymity to hide the user’s actual location. The k-anonymity
approach [46] guarantees that an individual’s location data remains indistinguishable from the informa-
tion of k - 1 other users via the process of generalization. Consequently, adversaries have a probability
of 1/k in accurately identifying the user’s actual location.

2.3 Spatial cloaking-based approaches

Further, the existing spatial cloaking approaches based on their architecture can be categorized into
centralized and distributed.

2.3.1 Centralized cloaking approaches

In centralized architecture [16, 28, 29, 36], an anonymizer is used for mixing a given user’s actual
location with at least k − 1 other users. Consequently, the LBS provider cannot identify the actual
user location with a more than 1/k probability. However, this could pose a scalability issue because it
requires all mobile users to periodically report their locations to the anonymizer. Moreover, the central-
ized architecture assumes a trusted third-party server to mediate interactions between the users and the
LBS server.

Centralized architecture-based approaches relying on certification authorities face a similar issue of
deploying a safe and practical third-party server. In [38], particular peers run as serving nodes respon-
sible for caching all data for the other peers. This might also act as a pseudo-anonymizer and can be
attacked by an adversary. An approach proposed in [54] attempts to remove the linkage between users’
identity and the issued query to prevent privacy breaches on the user’s intent. However, in this case,
such personalization is performed on the server side.
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2.3.2 Distributed cloaking approaches

For the distributed architecture model, the work in [11] first proposes a mobile-P2P model, which
we refer to as CloakP2P. Here, users are self-organized into a P2P network as peers and collaborate to
generate cloaked regions. Mobile users can work together to blur their locations without using any fixed
communication infrastructure or centralized/distributed servers. When a peer wants to get its cloaked
region, it must find another k − 1 nearest peer. Then it needs to exploit the minimum region covering
these k peers as its cloaked region to achieve k-anonymity. However, this approach assumes that the
peers are trusted entities. This assumption may not always hold good in practice because the peers can
expose the shared information to an adversary.

The works in [15, 14, 31] adopt a distributed architecture on a P2P network. Within these schemes,
Privé [15], and MobiHide [14] use fixed communication infrastructure to maintain location anonymiza-
tion in a P2P network. Moreover, in these schemes, each user is assigned an index based on a Hilbert-
space curve [35], and the peers are organized in a structured topology such as Chord [45]. However,
these complex data structures [35] make it challenging for these models to be applied in highly dynamic
mobile applications. Furthermore, these models assume that the communication cost between any two
users in the network is the same; this may not necessarily hold good in practice. Additionally, these
schemes assume that peers are trustworthy and share information like true locations. This assumption
may also not necessarily be true for real-world scenarios.

To solve the trustworthiness of peers, the authors in work [20] distributively computes the cloaking
region for peers without revealing the precise location information to other peers. However, the proxim-
ity information used in cloaking is measured by peers through the received signal strength or the time
difference of arrival of beacon signals among the peers themselves. This information still poses a risk
of exposing the user location data since the same method is also used for positioning technologies.

The authors in work [31] propose a distributed negotiation algorithm to address the issue of user
privacy. This method helps users conduct negotiations among themselves to find their cloaked regions
without exposing their precise locations to peers. In [31], decentralized P2P architecture Kademlia
[34] is used to achieve location privacy. However, maintaining Kademlia in a highly dynamic mobile
network is challenging. Moreover, the intent of the user’s query is not protected from an adversary in
this approach.

In the field of location-based queries, an extensive amount of research has been done, with a particu-
lar focus on four types of queries that are primarily used by mobile users: spatial range queries, nearest
neighbour (NN) queries, K nearest neighbours (KNN) queries, and multidimensional range queries.

The paper cited as [30] provides an in-depth investigation into applying and optimizing spatial range
queries. It presents a novel methodology and highlights the importance of density-based techniques.
The study offers insights into improving the accuracy and efficiency of results compared to existing
approaches.
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The study in [52] delves into these types of queries, particularly focusing on the reduction of com-
putational and communication cost in mobile computing environments. The paper proposes innovative
methods to increase the efficiency of NN queries, making it a pivotal piece of research in the field.

The K-nearest neighbours (KNN) query is extensively researched in work cited as [49]. This paper
proposes an efficient algorithm that uses the power of spatial networks to perform KNN queries. This
study’s results underscore spatial networks’ potential to enhance the performance of KNN queries.

Lastly, the multidimensional range query is the focus of the research paper [41]. This paper proposes
an innovative index structure to optimize range queries in a spatial database, particularly multidimen-
sional ones. The novel indexing structure discussed in this research significantly reduces query latency
and enhances performance, significantly contributing to this field.

Although NN and KNN queries offer viable solutions to identify the nearest objects to a specific
location, they cannot replace spatial range queries, as each serves a unique purpose in different scenarios.
Occasionally, a multidimensional range query can replace a spatial range query, especially when the
desired results are within a rectangular region rather than a circular one. However, accuracy is a crucial
factor. Thus, compromising on precision is not desirable.

Given this scenario, ensuring privacy in spatial range queries becomes a significant concern, warrant-
ing the need to explore and develop privacy-preserving methodologies. Hence, this thesis proposes a
robust privacy-preserving approach to protect the intent and location information associated with spatial
range queries.

In the landscape of dummy generation approaches, protection of a user’s location privacy against
an adversary aware of the center of the cloaking region is a challenging task. Our proposed approach,
AGDG, aims to enhance privacy safeguards in this context,

Meanwhile, distributed cloaking-based methods often face a balance between using fewer peers and
preserving the user’s query intent. Our novel solution, the ijk-anonymity concept for spatial range
queries, is designed to address these challenges, enhancing the security of both the user’s query location
and intent privacy.

2.4 Differences with the existing approaches

In the existing dummy generation approaches, protection of a user’s location privacy against an ad-
versary aware of the centre of the cloaking region is a challenging task. The proposed approach (AGDG)
improves the privacy performance by proposing the notion of time-dependent infeasible regions.

Moreover, none of the existing distributed spatial cloaking-based approaches protects the user’s
query location and intent information while using fewer peers. Our novel concept ijk-anonymity ad-
dresses these challenges, enhancing the user’s security. The proposed approach ijkCloak adopts ijk-
anonymity in a mobile network environment.
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2.5 Summary

In this chapter, we have provided an overview of existing research on obfuscation-based, dummy
generation, and spatial cloaking-based approaches for protecting the privacy of LBS users. In the next
chapter, we present the improved dummy generation approach.
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Chapter 3

Enhanced Dummy Generation Approach

In this chapter, we present our proposed approach for improving the efficiency of existing dummy
generation approaches. In Section 3.1, we present the problem background. In Section 3.2, we outline
the basic idea of the proposed algorithm. Section 3.3 provides a detailed explanation of the AGDG
approach. In Section 3.4, we incorporate time-dependent infeasible regions into the AGDG approach.
Experimental results demonstrating the superiority of AGDG compared to existing approaches are pre-
sented in Section 3.5. Finally, in Section 3.6 we conclude the chapter with a summary.

3.1 Problem Background

In this section, we introduce the concept of a dummy generation. We will then define essential terms,
provide the problem statement, and discuss the issues encountered with previous methods concerning
this problem statement.

Consider a mobile user, who desires to obtain services from a given LBS provider by providing their
current location. Any dummy generation approach aims to obtain services from LBS providers without
disclosing the users’ real location by sending an additional k-1 dummy locations. Observe how the
user’s privacy is enhanced, albeit at the cost of increased communication costs. We shall explain the
following terms relevant to our problem statement.

k-anonymity: A release of data is said to have the k-anonymity property if the information for each
user contained in the release cannot be distinguished from at least k-1 (dummy or real) users whose
information also appears in the release. Many location-based privacy preservation algorithms (including
dummy generation approaches) use the notion of k-anonymity.

Cloaking Region (CR): The region in which LBS providers cannot identify the exact location of a
given user is designated as the cloaking region [53] of that user. Users can choose the area of CR based
on the desired level of location privacy. Intuitively, relatively small cloaking regions make it easier for
adversaries to cause user location privacy violations. However, large cloaking regions will increase the
query cost. Notably, privacy preservation schemes should set the maximum and minimum bounds for
CR based on this trade-off.
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Infeasible Region (IR): A geographical region is defined as an infeasible region for a user if the user
cannot be physically present [9] at that location, i.e., the location is essentially inaccessible to users. Ex-
amples include locations without road or transportation infrastructure, restricted government or military
zones, and forest areas to preserve endangered species.

Time-dependent infeasible region: A region can be considered as an infeasible region for a while and a
feasible region for the rest of the time. For example, a school’s premises can be considered an infeasible
region when the school is closed (i.e., during holidays and nighttime when the school is closed). We call
such regions time-dependent infeasible regions. Note that this time dependency need not be consistent
for different regions at different times. For example, the closing time for a school might be different
from the closing time of a movie theatre. Moreover, the closing times for different schools might also
be different.

Query probability: Query probability of a location is the probability that a user from that location
has issued a query to the LBS provider in the past [37]. It is based on querying history. Each possible
location’s query probability is typically used towards constructing the entropy-based privacy metric.

Problem statement: Consider a user, who wants to hide his/her location by sending k-1 extra
dummy locations 〈l1, l2, · · · , lk − 1〉 to the LBS provider along with his/her real location lk with the
purpose of achieving k-anonymity. Consider that we are given geographical information about the sur-
rounding environment, like time-dependent and non-dependent infeasible regions and query probability
at each point in the vicinity. The problem is to obtain services from the LBS provider without disclosing
the users’ real location to the LBS provider by placing dummies in locations similar to that of the real
user. Here, the LBS provider is considered an untrusted entity with information on the locations of the
infeasible regions and the respective query probabilities of the surrounding environment. Here, the LBS
provider can also predict the cloaking region’s center by evaluating all locations 〈l1, l2, · · · , lk〉 sent by
the user.

User

Dummy

Figure 3.1: CDG

User

Dummy

Figure 3.2: ODG

User

Dummy

Rma

x

Rmin

Figure 3.3: EDG

With reference to the above context of the problem, we shall now explain about the drawbacks of
existing dummy generation approaches w.r.t. the preservation of user location privacy.
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• The Circle-Divided Dummy Generation (CDG) approach [53] does not consider the placement of
infeasible regions (grey shaded region), as depicted in the Figure 3.1. Hence, if the dummies are
generated in the infeasible regions, the k-anonymity property cannot be appropriately satisfied.
Observe that crosses denote the dummies in the infeasible regions in Figure 3.1. An adversary
can remove the dummies placed in the infeasible regions from the list of k locations, thereby
increasing the probability of finding the real users’ locations.

• The Obstacle-Based Dummy Generation (ODG) approach [9] creates dummies on the arc of the
circle (indicated by the dashed line) by excluding the area with the infeasible regions (indicated
by the bold solid line), as depicted in Figure 3.2. However, if there are many infeasible regions,
using this technique would lead to high-density cluster formation, which would make the users’
location vulnerable to attack.

• The Efficient Dummy Generation (EDG) approach [44] creates dummies on a thick strip of a
circle (forming annulus), as shown in Figure 3.3. It reduces the probability of exposing users’
locations in areas with a higher number of infeasible regions. However, in [44] dummies are
deployed randomly, thus leaving room for improvement. Moreover, the placement of the user
in EDG is always at a fixed distance of Rmax/2 from the center of the cloaking region. Thus,
if an adversary knows the center of the cloaking region, he/she would be able to find the user’s
location with high probability. Additionally, the construction of the annulus in EDG is such that
its thickness can only range from Rmax/2 to Rmax.

3.2 Proposed Approach: Basic Idea

Existing dummy-generation approaches fail to preserve the user’s location privacy if an adversary
somehow knows the centre of the cloaking region. Moreover, these approaches generate less realistic
dummies in areas with more significant infeasible regions. Furthermore, these approaches need to con-
sider the presence of infeasible regions that can change with time. For example, consider a supermarket
with opening and closing times as 9 am and 9 pm, respectively. From 9 am to 9 pm, this supermarket
can be considered a feasible region; otherwise, this area can be regarded as an infeasible region.

Given these issues with the existing dummy generation approaches, we present an improved dummy
generation approach which aims to address these issues. We designate this approach as Annulus-based
Gaussian Dummy Generation (AGDG). To randomize the distance between the user and the centre of
CR we introduce the concept of virtual cloaking region to predetermine the user’s placement in the CR.
Hence, even if an adversary somehow knows the centre of CR, it would not be able to know the user’s
actual location. The virtual CR is computed such that the dummies have a similar query probability to
that of real user. Moreover, under our proposed AGDG approach, dummies are placed such that users’
location privacy is maintained even in locations with a higher number of infeasible regions. For this
purpose, we propose a notion of an annulus-based cloaking region with a Gaussian probability distribu-
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tion for placing the candidates such that the distance between candidates is increased. Furthermore, our
proposed approach is more flexible with constructing its CR w.r.t. existing approaches. Moreover, to in-
corporate the presence of a time-dependent infeasible region, we use a multi-layered structure to obtain
an infeasible region’s layout at any particular time. The workflow of AGDG is depicted in Figure 3.4.

Step 2: Determining the placement of the 
user in VCR 

Step 1: Constructing the virtual cloaking
region (VCR)

Step 3: Computing the final cloaking region

Step 4: Determining the placement of
dummies in Final Cloaking Region

NO

YES
Has Geographic 

or Time-dependent
Infeasible Region?

Figure 3.4: Workflow of AGDG

3.3 AGDG approach

The AGDG comprises the following steps:

1. Constructing the virtual cloaking region (VCR)

2. Determining the placement of the user in VCR

3. Computing the real cloaking region

4. Determining the placement of dummies

Now we shall discuss each of these steps in detail.

3.3.1 Step 1: Constructing the virtual cloaking re-

gion:

We construct a virtual cloaking region (VCR) to make
AGDG independent of the users’ placement. Using a vir-
tual cloaking region, we can predetermine the user place-
ment w.r.t. the virtual cloaking region by randomizing the
distance between the center of the VCR and the user.

Rmin

Rmax

𝜃7= 2π/7

S1

S2

S3

S4

S5

S6
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C

ES1ES7
ES6

ES5

ES4
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Figure 3.5: Sectors of annulus

Construction of the virtual cloaking region proceeds as fol-
lows. A virtual circle with center C is constructed using a user-
defined cloaking areaAmin. The radiusRmax of the virtual circle
should satisfy πR2

max ≥ Amin. In our case, we simply choose

Rmax =
√

Amin
π .

Another circle with radius Rmin at the same center C is con-
structed, thereby forming an annulus (ring shape) with Rmax and
Rmin as the outer radius and the inner radius, respectively. Here,
Rmin is a user-specified constant. Since the virtual circle is used
to create a virtual cloaking region, we have more control over the
range of Rmin, which can range from 0 to Rmax.

To achieve k-anonymity, this annulus is divided into k equal
sectors. These k sectors are denoted as 〈S1, S2, · · · , Sk〉. Either the real user or one of the dummy users
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would later be placed in each sector. In the illustrative example in Figure 3.5, k = 7 and 〈S1, S2, · · · , S7〉
represent the sectors of the annulus. In this case, the angle projected by any sector is 2π/7.

3.3.2 Step 2: Determining the placement of the user in VCR:

Figure 3.6: Gaussian distr. Φ

Using the virtual cloaking region, we are free to predetermine
the users’ placement w.r.t. the center of VCR. The users’ place-
ment must be independent of the distance from the center of the
cloaking region. To this effect, a probability distribution at each
point in the cloaking region is formed using a Gaussian distribu-
tion. This ensures that the user in Si is placed closer to ESi as
depicted in Figure 3.5. Here Si is a sector of the VCR, andESi is
at the edge of Si. This randomizes the distance between the cen-
tre of CR and the user while maximizing the distance between
any two candidates. Thereby maximizing the cloaking region.
Let (x, y) be a point in sector Si. The probability distribution
Φi(x, y) is given as follows:

Φi(x, y) =
1

σ
√

2π
e
− 1

2

(
dist((x,y),ESi)

σ

)2

(3.1)

Here, dist((x, y), ESi) is the distance between the point (x,y) and ESi. Figure 3.6 shows the prob-
ability distribution Φ, where white represents a higher probability of placing the user, while black indi-
cates a lower probability of placing the user. Then a random sector is selected, and the users’ placement
is determined in the virtual cloaking region using the Φ distribution. Then we superimpose our vir-
tual cloaking region onto the real-world map with the determined users’ placement coinciding with the

𝜃 = 90°

Figure 3.7: Multiple cloaking regions af-
ter rotation

actual geographical location of the real user on the map.

3.3.3 Step 3: Computing the final cloaking region:

Since the virtual cloaking region is placed in a geograph-
ical layout, we now have to consider all the infeasible re-
gions in its neighborhood and select the real final cloaking
region.

To place the annulus in the best possible region, we now
rotate this annulus n times with an angle of θ= 2π/n with
the real users’ position as the pivot, as shown in Figure 3.7.
In Figure 3.7, n = 4 and θ = 90◦. Here, the shaded regions
are considered as the infeasible regions, and n is constant.
Then we deal with all the infeasible regions using Equation
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Figure 3.10: Final dummies

3.2 below and select the final cloaking region with the least
amount of infeasible regions, as depicted in Figure 3.8.

CRf = (CRRmax − CRRmin)− CRir (3.2)

Here, CRf is the area of the cloaking region after removing all the infeasible regions. CRRmax is the
area covered by the larger circle and is equal to πR2

max. CRRmin is the area covered by the smaller circle
and is equal to πR2

min. CRir is the region occupied by infeasible regions. After selecting the cloaking
region with the least amount of infeasible regions as the final cloaking region, we now re-adjust the sizes
of the sectors in the final cloaking region by using the following equation:

θf × (i− 1) ≤ Si < θf × i (3.3)

where θf is given as follows:

θf =
2π − θir

k
(3.4)

where θir is the total angle projected by the infeasible region at the center of annulus C, as shown in
Figure 3.9.

3.3.4 Step 4: Placing dummies in the final cloaking region:

Once the final cloaking region has been selected, we compute the appropriate placement of dummies
in the final cloaking region. We normalize Φ such that the sum of all probabilities of valid cells (locations
with no infeasible regions) in a sector Si equals 1.

Φ̄i(x, y) =
Φ(x, y)∑

(xj ,yj)⊂Si Φ(xj , yj)
(3.5)
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Any privacy preservation scheme is supposed to maximize the similarity between the dummy and the
real users’ location. To this accord, a new Gaussian distribution is required to increase the chance of
dummies being placed at locations with query probability closer to that of the real user. Let (x, y) be
a point in sector Si and Px,y be the query probability at (x, y). Let (xr, yr) be the location of the real
user and Pxr,yr be the query probability at (xr, yr). Then the probability distribution Ψi(x, y) is given
as follows:

Ψi(x, y) =
1

σ
√

2π
e
− 1

2

(
− |Pxr,yr−Px,y |

σ

)2

(3.6)

To consider all the infeasible regions and also to ensure that the sum of the values of Ψ in a given
sector is equal to 1, we normalize as follows:

Ψ̄i(x, y) =
Ψ(x, y)∑

(xj ,yj)⊂Si Ψ(xj , yj)
(3.7)

We then combine the two probability distributions as follows:

Ω =
aΨ̄ + bΦ̄

a+ b
(3.8)

Here, a and b are constants, which are the weight coefficients for each distribution.

Figure 3.11: Multiple infeasible layers

Using probability distribution Ω, we now deploy dum-
mies at each sector 〈S1, S2, · · · , Sk − 1〉 at locations
〈l1, l2, · · · , lk − 1〉, as shown in Figure 3.10. Since we use
virtual cloaking regions to determine the real users’ place-
ment, AGDG would still be relatively safe from attackers
with knowledge of the location of the cloaking region’s cen-
ter. Additionally, since we have used the annulus-based
cloaking regions, AGDG has better privacy-preserving per-
formance even in locations with more infeasible regions.
Moreover, since we have made an effort to maximize both
CR and similarity between the user and the dummies’ query
probability, AGDG can be reasonably expected to perform
better than existing approaches.

3.4 Incorporating Time-dependent In-

feasible Regions

In the previous approaches, infeasible regions are fixed
and do not change with time. However, this is not true in
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real-life situations. For example, a school region can be considered an infeasible region from 8 pm to 5
am since school will be closed at that time. Thus if a dummy is placed at this location at that particular
time, it can be pruned out with a higher probability. To this end, we propose an improvement to the
above approach to incorporate these time-dependent infeasible regions. The main idea is to incorporate
a multi-layered structure [6] to obtain an infeasible region’s layout at any particular time. Let Lg be
the geography-based infeasible region layer as shown in Figure 3.11. Let Lt1 be the time-dependent
infeasible region layer at time t1 as shown in the Figure 3.11. The final infeasible region layer, as shown
in Figure 3.11 can be calculated as:

Lf = Lg ∧ Lt1 (3.9)

This multi-layered approach can be used to find the final infeasible region layer even if there are
more than two layers. For example, areas like the movie theatre will be closed on a particular day. Even
those areas can be considered infeasible regions for that day Ld.

Lf = Lg ∧ Ld ∧ Lt1 (3.10)

Thus, this approach can be used for both periodic and non-periodic time-dependent infeasible re-
gions.

Algorithm 1 depicts the steps for determining the location of k-1 dummies. We construct the vir-
tual annulus-based cloaking region and divide it into sectors (see Lines 1-7). Then we determine the
placement of the real user in the virtual cloaking region (see Lines 8-11). The virtual cloaking region
is placed on a real map, and multiple annuli are constructed to determine the final real annulus with the
least infeasible regions (see Lines 12-18). Sizes of the sectors in CR are re-adjusted to consider all the
infeasible regions in the surrounding regions (see Lines 19-25). Probability distribution Φ is constructed
to consider entropy and then we normalize both Φ and Ψ after removing all the infeasible regions (see
Lines 26-28). We then construct probability distribution Ω using Φ and Ψ and then determine the loca-
tion of k − 1 dummies (see Lines 29-36).

3.5 Performance Evaluation

This section reports our performance evaluation. Our experiments are performed using a computer
having a fifth-generation Intel Core-i5 2.7 GHz processor with 8 GB RAM using Python 3.0.
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Algorithm 1 AGDG Approach
Input : Amin: User defined cloaking region; k: total number of candidates; Lg: geo-based infeasible regions;

Lt1: time-dependent infeasible regions;
Output : list of k − 1 dummy locations;

1: Construct virtual annulus A with inner radius Rmin ←
√

Amin

π ;
2: 〈S1, S2, · · · , Sk〉 ← {}; {sectors of the virtual annulus}
3: for Si ∈ 〈S1, S2, · · · , Sk〉 do
4: for (x, y) ∈ Si with ‘angle at center’ in range ( 2π(i−1)

k , 2π(i)
k ) do

5: Si.append((x, y));
6: end for
7: end for
8: Select a sector Su randomly from 〈S1, S2, · · · , Sk〉;
9: for (x, y) in Su do

10: (x, y)← Φi(x, y) {using Equation 3.1}
11: end for
12: Select (xu, yu) from Su using Φ distribution;
13: Place virtual annulus such that (xu, yu) co-inside with users’ real location on the map;
14: 〈A1, A2, · · · , An〉 ← {}; { multiple annuli with user’s location as pivot}
15: for Ai ∈ 〈A1, A2, · · · , An〉 do
16: Ai ← rotate A by 2π/k with (xu, yu) as an anchor point
17: end for
18: Lf = Lg ∧ Lt1; {final infeasible region layer}
19: Select annulus A with the least amount of infeasible region in Lf ; {using Equation 3.2}
20: Readjust size of sectors {using Equation 3.3}
21: for Si ∈ 〈S1, S2, · · · , Sk〉 do
22: for (x, y) with ‘angle at center’ in range (θeff × (i− 1), θeff × (i)) do
23: Si.append((x, y)) {readjust size of sectors}
24: end for
25: end for
26: Create probability distribution Ψ to consider Entropy {using Equation 3.6};
27: Normalize Ψ {using Equation 3.7};
28: Normalize Φ {using Equation 3.5};
29: Combine two distribution Ω = aΨ̄+bΦ̄

a+b ;
〈l1, l2, · · · , lk−1〉 ← {}; {location of dummies}

30: for Si ∈ 〈S1, S2, · · · , Sk〉 do
31: for (x, y) in Si do
32: li ← Φi(x, y) {using Equation 3.1}
33: end for
34: end for
35: return 〈l1, l2, · · · , lk − 1〉;

Our experiments consider a two-dimensional layout with 1000 × 1000 cells. Each cell has a dimen-
sion of 10 × 10 square meters. We assume Rmax = 25 meters hence, the basic CR requested by the user
was assumed to be 1963.4 as (π × 25 × 25) cells. Infeasible regions were randomly arranged in the
layout, depending on the infeasible region ratio (IRR), which ranged from 0 to 0.9. Time-dependent in-
feasible regions (TIR) were randomly arranged in the layout. The ratio of TIR in the layout ranged from
0 to 0.3 of the entire layout. Our performance study parameters were adopted from the existing work in
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[44]. Table 3.1 summarizes all the performance study parameters. Each experiment was conducted 100
times; hence the results presented here represent the average values over 100 runs of each experiment.

Table 3.1: Parameters used in our experiments

S.N. Parameter Default Values Variations
1 k 10 [2, 3, · · · , 29, 30]
2 IRR 0.3 [0,0.1, · · · , 0.8, 0.9]
3 TIR 0.1 [0,0.1, · · · , 0.3]
4 Rmin 15 -
5 Rmax 25 -
6 n 4 -
7 a 1 -
8 b 1 -
9 σΦ 0.001 -

10 σΨ 2 -

3.5.1 Comparative Theoretical Analysis

The user’s location privacy must hold against an adversary, which can detect the center of the cloak-
ing region using the k locations sent by the user to the LBS provider. It is crucial to evaluate the
robustness of AGDG in such scenarios. Figure 3.12 shows our experimental results w.r.t. such an ad-
versary. In Figure 3.12, the x-axis represents the number of candidates (k), while the y-axis represents
PFind, which is the negative log of the probability that the adversary finds the real user.

Observe that in case of CDG and EDG approaches, value of PFind is close to zero. This implies
that an adversary can find the real user with a very high probability. In case of CDG, the real user is
at the center of the cloaking region. Thus, an adversary, which knows the center of CR, would know
the user’s real location. In contrast, in case of EDG approach, the real user’s location always lies at
a distance of Rmax/2 from the center of the cloaking region. Hence, an adversary, which knows the
center of CR, can select all the locations at a distance of Rmax/2 and find the real user’s location with
a very high probability.

On the other hand, the ODG approach has non-zero value of PFind because all the candidates are at
a fixed distance from the cloaking region center. However, in the ODG approach, value of PFind is not
close to the value of k. Because in areas with more infeasible regions, the ODG approach forms dense
clusters of candidates, thus degrading the quality. It can be observed from the results in Figure 3.12 that
the AGDG approach shows PFind close to the value of k. The AGDG uses a virtual cloaking region to
predetermine the real user’s location on the map. Hence, it makes the location of real users and dummies
similar w.r.t. the distance from the center of the cloaking region. Thus, in AGDG, even if the adversary
knows the center of the cloaking region, the k-anonymity property still holds good, thereby protecting
the user’s location privacy.

20



3.5.2 Experimental Evaluation

To evaluate the performance of AGDG, we use two metrics namely (a) Effective Cloaking Region
(ECR) and (b) Entropy (H). They are defined as follows:
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Figure 3.13: Effective Cloaking Region

(a) Effective Cloaking Region (ECR): Effective Cloaking Region is a widely used metric [37] to
compare the effectiveness of a privacy preservation algorithm. As shown in Figure 3.13, it measures
the maximum area covered by k location points (k-1 dummy locations and a real user location). We
have computed ECR based on adding the area of triangles formed by all the adjacent locations and the
centre of the cloaking region as follows:

ECR =

k∑
i=1

Area(li, l(i+1)%(k+1), C) (3.11)

Here, the Area function returns the area of a triangle, given three vertices. Thus, ECR is equal to 0
for k ≤ 2.

(b) Entropy (H): Entropy is widely used to measure the degree of anonymity in location-based
services [39]. It indicates the uncertainty in determining the reallocation of an individual from all
the candidates. Usually, the query probability (p) of each possible location is used as supplemental
information to construct the entropy-based privacy metric. We thus assign each possible location a
query probability, denoted by pi, and the sum of all probabilities pi is 1. As a result, the entropy of
identifying the real user from the k candidate set can be computed as follows:

H =

k∑
i=1

− pi∑k
i=1 pi

log2

(
pi∑k
i=1 pi

)
(3.12)
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Thus, maximum entropy Hmax = log2k is achieved when all the k locations have same probability of
1/k.

We compare AGDG using these performance metrics with the CDG [53], ODG [9] and EDG [44]
approaches, which we had discussed earlier in Section 2.2. We adapt these reference approaches with
essentially the same setup as AGDG in the interests of meaningful comparison.

3.5.3 Effect of Varying the Number of Candidates

We first evaluate the relationship between k and the entropy (H). In Figure 3.16, the x-axis represents
the number k of candidates, while the y-axis represents entropy H . Results without time-dependent
infeasible regions (TIR) are shown in Figure 3.14. In contrast, Figure 3.15 considers the presence
of TIR. We can observe from the results in Figure 3.14 that in all the approaches, H increases with an
increase in k. Since the greater the number of dummies, the more challenging it will be for the adversary
to find the real user. Observe that EDG and CDG have poor performance because they do not consider
the query probability. On the other hand, ODG and AGDG have higherH than EDG and CDG. Because
in ODG and AGDG, query probability is considered when placing candidates.
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Figure 3.16: Effect on entropy H with variations in k

It can be observed that AGDG has better performance than ODG. Moreover, H in AGDG is close
to the best possible value because, in AGDG, we use Φ distribution to place dummies such that query
probabilities of the locations are close to that of the real user. In practice, we can find many regions
that will be closed or not accessible to the public for specific periods, thus forming a time-dependent
infeasible region TIR. Results of AGDG in the presence of such time-dependent infeasible regions
are shown in Figure 3.15. We can see that for all the previous approaches compared to the results in
Figure 3.14, the results in Figure 3.15 have inferior performance. This is because only AGDG considers
time-dependent infeasible regions. In contrast, the other approaches may place their dummies on a TIR,
thereby rendering them ineffective.
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Figure 3.17: ECR without TIR
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Figure 3.19: Effect on effective-cloaking region ECR with variations in k

Since the user’s location privacy is closely related to the cloaking region, we evaluate the privacy
area provided by different schemes with increasing k. Our experimental results at IRR = 0.3 are
shown in Figure 3.19. In Figure 3.19, the x-axis represents the number of candidates (k), and the y-axis
represents the effective cloaking region (ECR) formed by these k candidates. It can be observed in the
results from Figure 3.17 that ECR increases with variations in k. This occurs because the greater the
number of candidates, the more area they will cover in a given region. It can be observed that CDG has
poor performance because CDG does not consider the placement of infeasible regions. Hence, there
is a chance of dummies being placed in the infeasible regions, thereby rendering them ineffective for
location privacy preservation. Observe that EDG has lower CR than that of ODG at IRR = 0.3 because
in EDG, dummies are placed using a random distribution. However, in case of ODG, dummies are
placed on the circle’s circumference. Since there are fewer infeasible regions (IRR = 0.3), dummies can
be placed far from each other on the circumference.

On the other hand, AGDG has better performance than the other approaches because we place dum-
mies using the Ψ distribution, thereby making candidates far apart. In practice, time-dependent infeasi-
ble regions can be formed when certain areas are closed or not accessible to the public for some time.
Results of AGDG in the presence of such time-dependent infeasible regions are shown in Figure 3.18.
We can see that for all the previous approaches compared to the results in Figure 3.17, the results in
Figure 3.18 have the worst performance. This is because none of the previous approaches consider the
placement of time-dependent infeasible regions in their vicinity. Hence, the existing approaches place
dummies on the infeasible regions, thereby rendering them ineffective.
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Figure 3.22: H with variations in IRR

3.5.4 Effect of Varying the Ratio of Infeasible Regions

Privacy preservation schemes should ensure that their dummy location closely resemble the real
user’s location, even in locations with a higher number of infeasible regions. Hence, we evaluate the
entropy (H) with an increasing infeasible region ratio (IRR). Figure 3.22 depicts the results of our ex-
periments. In Figure 3.22, the x-axis represents the probability of placing infeasible regions on the
layout (IRR), while the y-axis represents the system’s entropy formed by k candidates. It can be ob-
served from the results in Figure 3.20 that CDG has a significant decrease in H as IRR increases. This
occurs because, CDG approach does not consider the placement of infeasible regions, thereby placing
dummies in infeasible regions, making them useless. All of the other approaches have nearly constant
H throughout the experiment. These schemes consider only feasible regions, thereby making them im-
mune to any changes in IRR. It can be observed that EDG has less H as compared to that of ODG and
AGDG because EDG does not consider the query probability of its environment.

On the other hand, AGDG has better performance than ODG because AGDG uses the Φ distribution
to place dummies in locations such that their query probabilities are close to that of a real user’s location.
Since the public cannot access certain regions for some period, time-dependent infeasible regions TIR
will be formed. Results of AGDG in the presence of such time-dependent infeasible regions are shown in
Figure 3.21. We can observe that for all the previous approaches compared to the results in Figure 3.20,
the results in Figure 3.21 have the worst performance. This is because none of the previous approaches
consider the placement of time-dependent infeasible regions in its surrounding. Hence, all the previous
approaches may place dummies on these time-dependent infeasible regions, thereby rendering them
ineffective.
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Figure 3.23: ECR without TIR
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Figure 3.25: ECR with variations in IRR

Privacy preservation schemes should function in locations with various amounts of infeasible regions.
Hence, we evaluate the effective cloaking region with an increase in the infeasible region ratio (IRR).
Figure 3.25 shows the results of our experiments. In Figure 3.25, the x-axis represents the IRR, while the
y-axis represents theECR formed by k candidates. It can be observed in Figure 3.23 that AGDG, ODG
and CDG have similar ECR when there are no infeasible regions. Because in AGDG, ODG and CDG
candidates are placed at the circumference of the cloaking region when there are no infeasible regions.
In the case of EDG, at locations with fewer infeasible regions, EDG has less ECR than AGDG, ODG
and CDG since in EDG, dummies are placed in the annulus randomly.

Observe that CDG has a significant decrease in ECR as IRR increases. This occurs because CDG
does not consider infeasible regions hence, it places dummies in infeasible regions. Similarly, even in
ODG, ECR is greater when IRR is less, but with an increase in IRR, ECR decreases. Because in
ODG, candidates are placed only on the circumference of the circle, as IRR increases, candidates from
clusters on the circumference, thus reducing ECR. On the other hand, both AGDG and EDG show a
smaller decrease in ECR as IRR ratio increases. This is because dummies are placed in the annulus in
case of AGDG and EDG.

Moreover, AGDG has better ECR than EDG because, in AGDG, we use Ψ probability distribution
for the placement of candidates. In contrast in EDG approach, candidates are placed randomly on the
annulus. In practice, we can find many regions that will be closed or not accessible to the public for a
certain period, thus forming a time-dependent infeasible region TIR. Results of AGDG in the presence
of such time-dependent infeasible regions are shown in Figure 3.24. We can observe that for all the
previous approaches, the results in Figure 3.23 have better performance than the results in Figure 3.24.
This is because only AGDG considers time-dependent infeasible regions. On the other hand, previous
approaches may place their dummies on a TIR, thereby rendering them ineffective.
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Figure 3.28: variations in TIR

3.5.5 Effect of Varying the Time-dependent Infeasible Regions

Privacy preservation schemes should protect users’ location privacy at all times of the day. In dif-
ferent parts of the day, some areas can be considered infeasible regions (i.e., time-dependent infeasible
regions). We evaluate the entropy with an increasing time-dependent infeasible region. Figure 3.26
depicts the results of our experiments. In Figure 3.26, the x-axis represents the probability of placing
time-dependent infeasible regions on the layout (TIR), while the y-axis represents the system’s entropy
(H).

It can be observed from the results in Figure 3.26 that in all the previous approaches, entropy de-
creases as TIR increases. In all the previous approaches, the dummies are placed at locations that might
be considered infeasible regions; since these approaches do not consider the time-dependent infeasi-
ble region. In contrast, the entropy in AGDG is nearly constant since AGDG considers the placement
of time-dependent infeasible regions in its surroundings. AGDG places dummies only in the feasible
region, thereby making it immune to any changes in the amount of time-dependent infeasible regions.

Since the privacy preservation scheme should function in locations with various amounts of time-
dependent infeasible regions. We evaluate the effective cloaking region with varying amounts of the
TIR. Figure 3.27 shows the results of our experiments. In Figure 3.27, the x-axis represents the proba-
bility of placing time-dependent infeasible regions on the layout, while the y-axis represents the effective
cloaking region (ECR) formed by k candidates.

It can be observed from the results in Figure 3.27 that CDG, ODG and EDG have a substantial
decrease in the effective cloaking region. As in these, the location of dummies might be in a time-
dependent infeasible region. This decreases the effective cloaking region since dummies at time-
dependent infeasible regions can be pruned out from the entire candidate set. On the other hand, AGDG
shows only a slight decrease in ECR as the time-dependent infeasible region increases. This is because
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AGDG evaluates dummies’ placement by considering time-dependent infeasible regions in the user’s
surroundings.

3.6 Summary

In this chapter, we addressed the issue of location privacy in the context of dummy generation and
proposed the Annulus-based Gaussian Dummy Generation (AGDG) approach as a solution for effi-
ciently protecting users’ location information. Through theoretical analysis and extensive performance
evaluation, we demonstrated that our proposed AGDG approach effectively improves location privacy,
including in regions with time-dependent infeasible regions, compared to existing approaches. Our re-
sults highlight the potential of AGDG as a promising method for protecting users’ location privacy in
location-based services. In the next chapter, we propose the improved privacy preserving approach for
Spatial Range Queries.
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Chapter 4

Enhancing Location and Intent Privacy for Spatial Range Queries

In this chapter, we present our proposed approach to improve the efficiency of distributed spatial
cloaking-based approaches. In Section 4.1, we present our problem background. Section 4.2 explains
the basic idea of the proposed algorithm. Section 4.3 explains the proposed ijkCloak approach. In
Section 4.4, we conduct theoretical analysis to show the superiority of our approach compared to the
previous approaches. In Section 4.5, experimental results are reported and show that the ijkCloak is
more efficient than the existing approaches. Finally, Section 4.6 concludes the chapter with a summary.

4.1 Problem Background

In this section, we explain the problem background. We will then define essential terms, and provide
the problem statement.

Consider a mobile user, present in distributed mobile network environment and has access to other
mobile users around it. A distributed location-based privacy-preserving approaches leverage their mo-
bile network [11] to hide the location of the user. We shall explain the following terms relevant to
distributed location-based privacy-preserving approaches followed by our problem statement.

Mobile user: A mobile user refers to a GPS-enabled mobile phone user, who is capable of communicat-
ing with other mobile users through a multi-hop routing protocol [10, 27] without the need for support
from fixed communication infrastructure or centralized servers. A mobile user, who desires to request
SRQ from the LBS provider, is termed as the request originator or query originator, denoted by uc.

Peer: Let uc be a mobile user. All the other mobile users are termed peers to uc. The peers are capable
of communicating with each other mobile users and LBS provider.

Spatial range query: Spatial Range Query (SRQ) is a location-based query used to retrieve objects
within a specific spatial range around a given location [30]. The SRQ can be represented as 〈l, r, q〉,
where l represents the query location. This location can either be the user’s current location or a specific
location of interest. The notation r is the spatial range around l within which the user wants to retrieve
desired objects, and q denotes the intent of the user. For example for a query “What are the cancer
hospitals within 5 km of my current location?” the user’s intent would be a string “cancer hospitals”.
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Location-based service provider: The Location-Based Service (LBS) provider is an online service
that provides responses to given SRQs. The result for the SRQ query 〈l, r, q〉 from the LBS provider
is a set of all the desired objects within r distance around l, represented as R〈l,r,q〉. LBS provide can
communicate with peers and mobile user.

In this thesis, we consider that the mobile peers and the LBS provider are not trusted entities. As
a result, both user query location and intent information can be compromised. Moreover, the mobile
peers in the network can also collude with each other and, as a result, both the user’s query location
and intent information could be compromised. This implies that sending the exact query directly to the
mobile peers in its surroundings would violate the user query location and intent privacy.

Problem Statement: Consider a mobile network environment where the LBS provider and mobile
peers can potentially act as adversaries, a mobile user uc seeks to obtain the result of an SRQ 〈lc, rc, qc〉
from the LBS provider. The problem is to process SRQ by protecting its location and intent privacy.

4.2 Proposed Approach: Basic Idea

In a mobile network environment, the issue is to get the results of user SRQ while protecting the user
query location and intent information from the LBS provider and peers.

Existing location-based privacy protection approaches often assume that all peers are trustworthy,
which makes the user vulnerable to attacks from malicious peers. Few other approaches often reveal
the user’s actual location in the final request sent to the peers or LBS provider, which compromises the
user’s privacy. Some approaches also rely on a central server, which can create a single point of failure.
Finally, many existing approaches fail to adequately protect the user’s intent adequately. Some works
have attempted to address these issues by using large clusters of peers to hide the user’s information.
Still, these solutions might not be feasible for a highly dynamic mobile network environment.

We now present the notion of ijk-anonymity to preserve the user’s query location and intent infor-
mation while getting results for SRQ.

About ijk-anonymity: We first explain about i, j, and k parameters. Consider the query “What are
the top four cancer hospitals within 5 km of my current location?”. For such a query to hide the query
intent (which is “top four cancer hospitals”), i−1 dummy intents (such as “best gyms”, “jogging park”,
and “nearest children’s hospitals”) are added to the query intent information q. To hide the location of
the query (which is “my location” in this case), we fragment the given location into j fragments queries
to obscure the user’s actual location. During the processing time of the j queries, k denotes the total
number of queries received by any adversary. Note that the LBS provider may receive several queries
from different users. Some of the queries are the j fragment queries. It can be noted that (k > j). The
notion of ijk-anonymity is defined as follows.

ijk-anonymity: Let K be a set of SRQ queries received by LBS provider (|K| = k). Let J ⊂ K
and |J | = j. Let I is the set of intents where |I| = i. We say a spatial range query 〈l, r, q〉 /∈ K is said
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to possess ijk-anonymity with set K if l can be calculated from set K if and only if set J is selected
from K. Moreover, the query intent q cannot be distinguished from at least i− 1 intents in set I.

In the case of ijk-anonymity, it can be noted that the probability of finding the user’s query intent
and the location from K is Pijk ≤ 1

i·(kj)
.

The basic idea is to improve the location and intent privacy of the SRQ based on ijk-anonymity. The
user’s SRQ is fragmented into j SRQ (referred to as fSRQ) queries to hide the actual location in the
user’s query. Moreover, i− 1 dummy intents are added to the fSRQs to hide the actual query intent. We
term the proposed approach as ijkCloak. Note that, in ijkCloak, the query is processed with significant
improvement in privacy due to ijk-anonymity using the concepts of query fragmentation and insertion
of dummy user intents. This is because selecting correct j SRQs from k received queries is challenging.

4.3 ijkCloak Approach

In this section, we first explain an overview of network communication in the proposed approach.
Next, we present the proposed ijkCloak approach.
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Figure 4.1: Illustrative example of query processing in ijkCloak

Overview of communication: Figure 4.1 depicts an illustrative example of network communications
in ijkCloak approach. Consider mobile user uc, who wants to find the result of its SRQ 〈lc, rc, qc〉.
Firstly, mobile user uc computes j number of fSRQ Q = {〈l1, r1, q1〉, 〈l2, r2, q2〉, ...〈lj , rj , qj〉} based
on user query location lc and intent information qc. Next, mobile user uc uses a multi-hop routing
protocol to request peers in the surrounding environment to join the network (See Figure 4.1 Step 1).
Next, the peers in the surrounding environment willing to help user uc will send an acknowledgement
to uc (See Step 2 here peers {u2, u3, u4, u5} have sent an acknowledgement to uc). Among the the
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acknowledged peers, the user uc selects j peers J = {ua1 , ua2 ...uaj} at random (In Figure 4.1, we
consider j=3, and peers {u3, u4, u5} are selected by the user at random). These j peers are termed as
the brokers. Each of the j brokers will receive one fSRQ query chosen at random from Q (See Step 3).
These j brokers send their corresponding fSRQ to the LBS provider (See Step 4). The LBS provider
sends results of these queries {R〈l1,r1,q1〉, R〈l2,r2,q2〉...R〈lj ,rj ,qj〉} to corresponding brokers (See Step 5).
Next, all the brokers send back their results to user uc (See Step 6). Finally, the user uc computes the
final result to his SRQ R〈lc,rc,qc〉 using the results of the fSRQ sent by the brokers.

Algorithm 1: ijkCloak(lc, rc, qc, i, j, IR, δ, Is)
Input : lc: query location of uc; rc: range of the query; qc: user’s query intent; i: number of intents

added in the user’s query (i-1 dummy intent and query intent); j: number of fragmented SRQ
required; IR: set of infeasible regions in the surrounding; δ: location randomization constant;
Is: set of dummy intents; h: hop distance (initially set to zero);

Output : R〈lc,rc,qc〉: result for the SRQ;
Variable : fSRQ: list of fragment spatial range query; ackPeers: peers who have sent acknowledgement;

LBS results: results received from brokers;
fSRQ = fSRQ Computation(lc, rc, qc, i, j, IR, δ, Is);1
ackPeers = NEED PEERS Originator(h, j);2
LBS results = DATA TRANSFER Originator(ackPeers, fSRQ);3
R〈lc,rc,qc〉 = Collect(LBS results);4

Phase 1: fSWQ computation

Atleast one
location in fSWQ
is on an infesible

region

Phase 2: Peer Searching

Phase 3: Data Transmission

Phase 4: Data Deconstruction

Yes

No

Figure 4.2: Workflow of our approach

Algorithm 1 depicts the steps involved in the
proposed ijkCloak approach. The algorithm takes
the following inputs to perform a spatial search
while ensuring the location and intent privacy of
the query originator’s uc query. The first input is
the location, denoted by lc, which serves as the
centre of the spatial search (xc, yc). The range of
the query is specified by rc, representing the max-
imum distance from lc within which uc is search-
ing for desired objects. Another input to the algo-
rithm is the intent of the user’s query, denoted by
qc, representing the specific place or category of
interest for uc. A user-defined constant i specifies
the number of dummy intents added to the user’s
query intent information to protect the user’s in-
tent privacy. The number of fragmented queries
generated is specified by j. The algorithm also
takes a set of infeasible regions in the surround-
ing area, denoted by IR. To further protect the user’s privacy, a constant, denoted as δ, randomizes the
user query location. A set of dummy intents, denoted as Is, adds noise to the search queries, making it
difficult for an attacker to determine the user’s query intent. Finally, the hop distance, denoted as h, is
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the number of hops required to be made by the peers. Initially, the hop distance is set to zero. The output
to the algorithm is the set of desired objects that satisfy the user’s actual query, denoted as R〈lc,rc,qc〉.

The workflow of our approach is depicted in Figure 4.2. It comprises the following four phases as
follows:

1. Fragmented SRQ computation phase

2. Peer Searching phase

3. Data Transmission phase

4. Data Deconstruction phase

Now, we shall discuss each phase in detail.

4.3.1 Fragmented SRQ computation phase

The proposed approach incorporates the notion of ijk-anonymity in a mobile network to hide both
location and intent of the user’s query. In this regard, the mobile user uc calculates j fragmented spatial
range queries (fSRQ) from its actual SRQ. All the calculations in this phase are performed on the user’s
uc mobile device. For computing fSFQs, we have to consider the presence of infeasible regions, location
randomization, and intent randomization.
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As an example, consider a mobile network environment with 23 desired objects {d1, d2, . . ., d23}
represented as a hollow square in Figure 4.3. Moreover, there are 19 mobile users, {u1, u2, . . ., u19}
represented as solid circles. The dotted circles represent the spatial range of the query. Suppose the
user uc wants to get the result of her SRQ 〈lc, rc, qc〉. Here, lc is the location of the user’s query uc
represented as (xc, yc), rc is the spatial query range, and qc is the user’s query intent. The result of SRQ
〈lc, rc, qc〉 is a set of desired objects R〈lc,rc,qc〉 = {d4, d5, d6, d7, d8}.
Methodology to compute fSRQs: The method to compute the j number of fSRQs Q = {〈l1, rc, qc〉,
〈l2, rc, qc〉, . . . 〈lj , rc, qc〉} is as follows. First, we calculate the fragmented locations (l1, l2, . . . lj) in
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the fSRQs. In this approach, j fragmented locations are set at a distance of rc units from uc and are
equidistant from each other as shown in Figure 4.4. The fragmented locations are calculated as follows:

ln =
(
xc + rc cos((n− 1)2π

j ), yc + rc sin((n− 1)2π
j )
)

Here, n ∈{1, 2, . . . j} corresponding to each fragmented location {l1, l2, . . . lj}. Figure 4.5 depicts
the results of fSRQs. In the example, the result of fSRQ R〈l1,rc,qc〉 is {d8, d9, d10, d13} because these
destinations are at a spatial range of rc from l1. Similarly, the result of R〈l2,rc,qc〉 and R〈l3,rc,qc〉 are {d2,
d4, d5} and {d7, d8, d11, d21, d22} respectively. Once user uc gets all the results of fSRQs, he will select
all the intended destinations within a distance of rc from query location lc. Here, the destinations d4, d5,
d6, d7, d8 are within a range of rc from lc and thus will be the result of 〈lc, rc, qc〉. Observe in Figure 4.5
that this is the expected result. This is because the union of all the areas covered by j fSRQs will always
cover the user’s SRQ range area [51].

Algorithm 2: fSRQ Computation(lc, rc, qc, i, j, IR, δ, Is)
Input : lc: query location of uc; rc: range of the query; qc: user’s query intent; i: number of intents

added in the user’s query (i-1 dummy intent and query intent); j: number of fragmented SRQ
required; IR: set of infeasible regions in the surrounding; δ: location randomization constant;
Is: set of dummy intents;

Output : R: list of fSRQs;
Variable : mapIR: hash map of infeasible regions in the layout;
mapIR = [];1
for l in IR do2

mapIR[l] = true3

repeat4
for n in 1, 2, . . . j do5

αn, βn ← rand(0, δ);6
a← rand(0, 1);7
ln calculated using Equation 4.1;8
rn calculated using Equation 4.2;9
qr ← randomly select i− 1 intents from Is;10
qn ← qc ∪ qr;11
R← 〈ln, rn, qn〉 ∪R12

until !(mapIR[l1] or mapIR[l2] . . . or mapIR[lj]);13
return R14

Methodology to handle infeasible regions: In the preceding case, we have not considered the presence
of infeasible regions in the geographical area in which mobile user is located. Recall that a geographic
area is considered an infeasible region if it is unlikely that a mobile user will physically be present at the
location [43]. Given a set of infeasible regions in a spatial environment, we pre-compute and map them
to our spatial environment using the steps in Algorithm 2 Lines 1-3. Now, consider a scenario shown
in Figure 4.6, where the fragmented query location l1 is on an infeasible region. To handle such cases,
we recalculate the fragmented locations such that none of the fragmented locations are in the infeasible
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region. The new fragmented locations can be computed as follows:

ln =
(
xc + rc cos

(
(a+ n− 1)2π

j

)
, yc + rc sin

(
(a+ n− 1)2π

j

))
Here, a is a random number ranging from 0 to 1. As shown in Figure 4.6, the fragmented location l1 can
move in an arc from A to B while a varies from 0 to 1. Similarly, l2 and l3 can move from B to C and
C to A, respectively. Figure 4.7 depicts the new fragmented query locations. Note that this will change
the results of all the fSRQs.

Methodology for location randomization: Note that the fragmented locations computed so far are
always on the circumference, as depicted in Figure 4.7. Hence, we add a randomization phase to ran-
domize the fragmented locations further, as depicted in Figure 4.8. Due to the randomization phase, the
fragmented location is moved horizontally by α units and moved vertically by β units. Computation of
fragmented location with randomization phase is given below.

ln =
(
xc + αn + rc cos

(
(a+ n− 1)2π

j

)
, yc + βn + rc sin

(
(a+ n− 1)2π

j

))
(4.1)

Here, α, β ∈ (0, δ), where δ is the location randomization constant defined by the user. Since the
fragmented location is modified, the query radius in the fSRQs will also change (see Algorithm 2 Lines
6-9). The new query range is calculated as follows:

rn = rc +
√
α2
n + β2

n (4.2)

Because of location randomization, the actual location of user uc is protected, even in the case of k =

j (i.e., when the number of queries received by LBS adversary is equal to j fSWQ). To further improve
privacy increasing the value of δ would be beneficial, as it would further randomize the locations of the
fSWQs.
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Methodology for intent randomization: Recall that it is also important to hide the user’s query intent
information along with the location information. For this, we assume the data set of dummy intents Is.
The set Is can have multiple intents such as the names of all the hospitals, the names of all hotels, all
the parks and so on. We modify each fSRQ by picking multiple dummy intents within the range of the
query to the user’s query intent information. The dummy intents are picked randomly from Is) (Line 10,
Algorithm 2). The modified intent in an fSRQ is qn, where qn is a set of multiple intents i.e., qj = {qc,
q1, q2, · · · , qi−1}). Here, i is the number of intents added in an fSRQ (Refer Line 11-12, Algorithm 2).

Adding dummy intents in all the fSRQs will not increase the number of messages exchanged between
peers. However, the size of the message might increase. This is because the result of the fSRQ with
all the intents, can be transmitted at a time in a single message. Note that this phase will increase
computation costs for the location-based service (LBS) provider, as LBS will now have to respond to
fSRQs with multiple intents.

Finally, the new fSRQ after considering the presence of infeasible regions, location randomization,
and intent randomization is 〈l1, r1, q1〉, 〈l2, r2, q2〉, . . . 〈lj , rj , qj〉.

Algorithm 3: NEED PEERS Originator(h, j)
Input : h: hop distance; j: number of brokers required;
Output : T: the set of peers that sent acknowledgement;
T← {∅};1

number of peers found j
′

= |T|;2

while j
′
< j do3

Broadcast NEED PEERS with 〈uc, h,mID, pKc〉;4

T
′
← set of peers that responded back;5

if j
′
< j-1 then6

if T = T
′

then7
Suspend the request;8

h← h+ 1;9

T← T
′
;10

return T;11

4.3.2 Peer Searching phase

After computing fSRQs, uc searches for the peers in its surroundings spatial environment using a
multi-hop routing protocol (refer Algorithm 3. The user uc acts as the request originator and request its
surrounding peers to act as brokers. A broker is a peer acting as a mediator between uc and LBS. For
searching the set of brokers, the request originator uc broadcasts the NEED PEERS request message to
its neighboring peers along with a tuple 〈request originator ID (uc), hop distance (h), message sequence
ID (mID), public key of the originator (pKc)〉. Here, uc iteratively increases the number of hops (h)
from 0 until the required number of brokers is found (see Algorithm 3 Lines 1-4). Among all the
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responded peers, uc selects j number of peers at random and such j peers, which have responsed, are
referred to as brokers.

Having received the NEED PEERS request from request originator, the surrounding peers take the
following steps (Algorithm 4). A mobile peer up responds to the NEED PEERS request from either the
request originator uc or the peer forwarding the request ur. First, up checks if it is a duplicate request
based on the message sequence ID. If it is a duplicate request, it simply replies with an ACK message
without processing the request (Lines 1-2). Otherwise, up processes the request based on the value of
h:

Algorithm 4: NEED PEERS Receiver(h)
Input : h: hop distance;
Output : send tuple Tp to ur;
if request is duplicate then1

Reply ur with an ACK message;2

if h=1 then3
Send the tuple 〈up, h, mID, pKp〉 to ur4

else5
h← h-1;6
Broadcast NEED PEERS with 〈up, h, mID, pKp〉;7
Tp ← set of peers that responded to the above request;8
for Ti in Tp do9

Ti.h← Ti.h + 110

Tp ← Tp ∪ 〈up, h, mID, pKp〉;11
Send Tp back to ur12

Case I: When h = 1, up returns a tuple 〈request receiver ID (up), hop distance (h) (which is set to one
in this case), message sequence ID (mID), public key of the receiver (pKp)〉 to ur (see Lines 3-4).

Case II: When h > 1, up decrements h and broadcasts the NEED PEERS request with a tuple 〈request
receiver ID (up), (h − 1), mID, public key of the receiver (pKp)〉. The peer up keeps listening to
the network until it collects the replies from its neighboring peers. Next, up increments the h of each
collected tuple, and then it appends its own tuple to the collected tuples Tp. Finally, it sends Tp back to
ur (refer, Lines 6-12, Algorithm 4).

When uc collects the tuples (T) from its neighboring peers, if uc cannot find j number of peers within
a hop distance of h, it increments h by 1. It re-broadcasts the NEED PEERS request along with a new
message sequence ID and new h. The uc repeatedly increments h till it finds j number of peers (see
Algorithm 3 Lines 3-10). If there are not enough connected peers for uc or uc finds the same set of peers
in two consecutive broadcasts, i.e., with hop distances h and h + 1, uc has to relax its privacy profile,
i.e., decreases the value of j by 1, or be suspended for a while (refer Lines 7-8, Algorithm 3). Since,
in our approach, higher anonymity is achieved using lesser peers, the number of hops required to find
peers should be small.
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Algorithm 5: DATA TRANSFER Originator(T , fSRQ)
Input : T : list of responses from peers by executing Algorithm 4; R: fSRQ by executing Algorithm 2;
Output : LBS results: results of all the fSRQ;
LBS results← {∅};1
T ← responses from peers;2
R← set of j fSRQs;3

T
′ ← select j responses randomly from T ;4

for ua in T
′

do5

R
′ ← select different fSRQ from R;6

Eua
(R

′
)← encrypt the SRQ with public key of broker ua;7

Broadcast DATA TRANSFER with tuple 〈uc, ua, hua
, Eua

(R
′
),mID〉8

repeat9

R
′ ← R whose results /∈ LBS results;10

foreach r in R
′

do11

if |T | − |T ′ | < |R′ | then12
Broadcast NEED PEERS13

R
′ ← select missing fSRQ from R;14

Eua(R
′
)← encrypt the SRQ with public key of broker ua;15

Broadcast DATA TRANSFER with tuple 〈uc, ua, hua , Eua(R
′
),mID〉16

until LBS results does not have all the results;17
LBS results← response from brokers;18

4.3.3 Data Transmission phase

Having received acknowledgment from peers interested in helping uc hide its query information.
Now, uc selects j brokers from the acknowledged peers and sends fSRQs to these brokers in this phase.
Here, uc acts as the request originator and sets results of fSRQs (LBS results) to {∅}.

Let T be the list of peers who responded to the NEED PEERS request broadcast and R be the list
of fSRQ. User uc selects j mobile peers from T randomly. These j peers (ua1 , ua2 , . . . uaj ∈ T ) are
termed as the brokers (refer Lines 1-4, Algorithm 5). User uc now broadcasts j messages m1, m2,
. . .mj each containing a distinct fSRQ (refer Lines 5-8, Algorithm 5). Each message contains a tuple
〈request originator ID (uc), request receiver (broker) ID (ua), hop distance (hua), fSRQ encrypted with
public key of the receiver Eua(R), message sequence ID (mID) 〉. The nth message is of the form:

mn = 〈uc, uan , huan , Euan (〈ln, rn, qn〉),mID〉

Here, 1 ≤ n ≤ j and corresponding to messages in {m1,m2, . . .mj}. Although these messages are
broadcast to everyone, only the corresponding brokers can decrypt them. This is because SRQ’s in the
messages are encrypted using the public key of the corresponding broker. A broker ua responds to a
message m = 〈uc, ua, hua , Eua(〈l, r, q〉),mID〉 send from the user uc in the following manner:
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1. First, ua checks if the message m is sent for itself using the receiver ID. If the message is not for
ua (i,e. receiver ID does not match), then the message is ignored.

2. If the message is for ua (i,e. receiver ID matches) then ua decrypts the SRQ Dua(Eua(〈l, r, q〉))
and gets the SRQ 〈l, r, q〉). Here, Dua is the private key of the broker ua. The decrypted SRQ is
sent to the LBS provider.

3. Once ua gets the response from the LBS provider R〈l,r,q〉, it sends the response back to the user
uc by transmitting the message as a tuple 〈ua, uc, Euc(R〈l,r,q〉),mID〉. Here, ua is the mes-
sage sender, uc is the message recipient, Euc(R〈l,r,q〉) is the result of the SRQ R〈l,r,q〉 from LBS
provider when encrypted using the public key of message recipient and mID is the message ID.

Finally, uc gathers all the responses from brokers in LBS results (see Algorithm 5 Line 18).

Counter failures: Sometimes user uc might not receive a response from a few brokers due to them
moving out of the range of the user, or there might be some error from the LBS provider. In such cases,
more brokers are selected from the set T to counter such failure. If T does not have enough brokers,
we run a multi-hop routing protocol to pick new brokers. Next, we send SRQ to the new brokers whose
results were not found in LBS results. This is done till we receive results for all the j fSRQs (refer Lines
9-17, Algorithm 5).

Algorithm 6: Collect(LBS results)
Input : LBS results: result for fSRQs;
Output : R〈lc,rc,qc〉: result of uc’s actual query
R〈lc,rc,qc〉 ← {∅};1
results← select query from LBS results with intent equal to qc;2
for result in results do3

for obj in result do4
if obj, lc ≤ rc then5

if obj /∈ R〈lc,rc,qc〉 then6
R〈lc,rc,qc〉 ← R〈lc,rc,qc〉 ∪ obj7

4.3.4 Data Deconstruction phase

In this phase, mobile user uc finally calculates the result of the SRQ 〈lc, rc, qc〉 using the results
collected from all the brokers. User uc selects all the SRQ results from LBS results (refer Algorithm 5).
Results with the query intent equal to qc are pruned out from LBS results (refer Line 2, Algorithm 6).
Next, user, uc computes the final result R〈lc,rc,qc〉 from the LBS resutls (refer Line 3-7).
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Table 4.1: Parameters of our performance study

S.N. Parameter Default Values Variations
1 user density (uD) 250 users/sq.km 10, 20, · · · , 500
2 mobile user’s minimum velocity (Vmin) 0 km/hr –
3 mobile user’s maximum velocity (Vmax) 90 km/hr –
4 Transmission Range (TR) 250 m –
5 probability of adversarial peers (pA) 0 0, 0.1, · · · , 1
6 Infeasible Region Ratio (IRR) 0.3 –
7 location randomization constant (δ) 0.5 km –
8 Total queries received by the LBS provider(k) 10 2, 3, · · · , 30
9 Number of fragments required (j) 3 1, 2, · · · , 10

10 Number of intents added (i) 3 1, 2, · · · , 10

4.4 Theoretical Analysis

We conduct theoretical analysis to show that the user query location is more secure by using a privacy
protection scheme that adopts ijk-anonymity than a‘ scheme that uses k-anonymity. Let Pk and Pijk be
the probability of finding a data point if it followed k-anonymity and ijk-anonymity, respectively.

Lemma 4.4.1. In dataset K, where J ⊂ K, k = |K|, j = |J | and i = |I| then, always Pk ≥ Pijk.

Proof. Defining ijk-anonymity, we have Pijk = 1

i·(kj)
, which can be split as 1

ik
j

k−1
j−1
k−2 . . .

2
k−(j−1) .

Given J ⊂ K, we find j + 1 ≤ k, which implies j
k−1 ≤ 1, and by similar logic, j−1

k−2 ≤ 1; j−2
k−3 ≤

1; . . . 2
k−(j−1) ≤ 1. Substituting these inequalities, we get Pijk = 1

ike1 × e2 × e3 . . . ej−1, where

e1, e2, e3 . . . ej−1 ≤ 1. Let e = e1×e2×e3 . . . ej−1; we find e ≤ 1 and i ≥ 1. Thus, Pijk = 1
ik×e =⇒

Pijk ≤ 1
k . Knowing that Pk = 1

k , we finally obtain Pijk ≤ Pk.

Thus, the probability of finding a data point that follows ijk-anonymity is always less than or equal
to the probability of finding a data point that follows k-anonymity.

4.5 Performance Evaluation

This section reports our performance evaluation. We implement the simulation system in Python 3.0
and conduct experiments on a computer with a fifth-generation Intel Core-i5, 2.7GHz frequency, and 8
GB of main memory. We create a discrete event simulation with event-based modeling [8] to model the
simulation. This simulation generates multiple events, and these events are stacked in the event queue.
Events with the least execution time are placed on top of the event queue. A central simulator object
executes the events from the event queue.
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The performance study parameters used in our experiments are summarized in Table 4.1. In our
simulation, the size of the layout is 200 km × 200 km square. The average mobile user density in the
layout uD is 250 users/square.km. Initially, all the mobile users are distributed uniformly at the start of
the simulation. Each mobile user has a velocity ranging from 0 to 90km/s. Mobile users consider an
individual random walk model based on the random way-point model [5, 21]. In a random way-point,
each mobile client randomly chooses its destination in the space with a randomly determined speed
ranging from Vmin to Vmax. When the mobile client reaches the destination, it comes to a standstill to
determine its next destination and repeats the motion.

In our simulation, each mobile client can issue a query to the LBS provider and the rate of issuing
the query is set to one per ten minutes. Every mobile user who requests an SRQ will log all the details
of its query, like the number of peers in the surroundings and the total response time for the request. All
the experiments show the average result of all the clients who request an SRQ from the LBS provider.
The transition range of each mobile client TR is set to 250 meters. The peers in the network can act as
malicious entities with a probability of pA. Depending on the infeasible region ratio (IRR), infeasible
regions were randomly arranged in the layout. The location randomization constant δ is set to 0.5 km.
The value of k defines the number of queries received by any adversary (here, the adversary can be an
LBS provider or peers or someone with access to LBS server data) while processing the fragmented
queries. The value of k in an individual simulation is the same throughout the simulation. The user’s
SRQ query is fragmented into j queries. The number of intents sent in an fSRQ is set to i. The default
value of i is set to one to study the impact of location anonymization in isolation.

Now, we explain performance metrics used in our experiments and how we mock them in our simu-
lation.

Degree of Anonymity (A): This metric calculates the degree of anonymity, equal to the probability of
an adversary finding the user. A lower value indicates better protection from an adversary.

Number of Hops Required (H): This metric calculates the number of hops required to find the desired
number of peers from the mobile network to cloak the user’s query information. A lower value of H
indicates less time for a user to receive the query result.

Communication Cost for total Hops (CH): This metric calculates the total requests generated by all
mobile peers to make hops to gather the desired number of peers for the request originator. A lower
value of CH indicates fewer resources are required to receive the query result.

Anonymity against compromised LBS (AL): This metric calculates the degree of anonymity when
requesting a query from a compromised LBS provider. When LBS is compromised, all the client’s
requests are accessible to the adversary (it can be some external adversary who has access to the LBS
server or the LBS provider itself). In this case, the adversary will know which query maps to which
client. Hence, if the query has the client’s actual location, then the client’s location will be compromised.
To simulate this scenario, we log all the queries received by the LBS provider with the details of the
query originator. Then an adversary is assumed to have access to this data to find the user query location
in the logs.
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Anonymity against compromised peers (AP ): The peers in the surrounding can be malicious and
expose the user query location. Nevertheless, our approach sends only the fragmented SRQ to the
peers; hence a single peer will never know the user’s exact location. Moreover, peers cannot access the
information sent to another peer since it is encrypted with the desired peer’s public key. Hence, the only
way for a peer to get the user query location information is to collude with other brokers in the network.
Hence metricAP calculates the degree of anonymity against malicious peers who can collude with each
other. We log all the fSRQs sent to compromised peers to simulate this scenario. The user’s anonymity
AP is calculated by assuming that an adversary has access to this data.

Peers Colluding Cost (PC): This metric describes the total communication cost required to compromise
the user query location via colluding with other compromised peers in the network.

Anonymity against Center of CR attack (AC): This metric describes the user’s anonymity against
the centre of CR attack. In this attack, the adversary knows the location of all the users in the cloaking
region. Here, the adversary assumes that the user close to the centre of the CR is the request originator.
Usually, it is true in previous approaches since users propagate requests equally in all directions. Hence
there is a higher probability that the request originator will be the user at the centre of the CR. To
simulate this attack, we assume that the adversary knows the location of all the users in the cloaking
region. Hence, the adversary considers that the user at the centre of CR is the required originator.

We compare our approach with prive [15], MobiHide [14], and mainly cloakP2P [11]. We choose
cloakP2P as the baseline for performance comparison because cloakP2P peer gathering and data trans-
fer methods are close to that of our approach. Moreover, cloakP2P does not use other p2p network
formations (like Kademlia, Chord). For comparison, many schemes, such as [14, 15, 31] also choose
cloakP2P. We compare the performance of ijkCloak with cloakP2P by varying the user density in the
layout uD and the number of queries (k) an adversary receives. Also, we evaluate the practicality and
effectiveness of our proposed scheme. The adversary can either be the LBS provider or the peers in the
surrounding. But since the peers in the surroundings only receive a fragment of the actual user’s query
in the form of fSWQ, the peers can not calculate the user’s actual query location. On the other hand, the
LBS provider will receive all the j fSWQ along with queries from other mobile users. Therefore, in our
performance study, we consider k(k ≥ j) as the number of queries received by the LBS provider while
processing j number of fSWQ. We adapt these reference approaches with essentially the same setup as
ours in the interests of meaningful comparison. We compare the performance of our approach with the
previous approaches against different attacks and variations in k, j, i and uD.
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Figure 4.9: k Vs AL Figure 4.10: pA Vs AP

4.5.1 Effect on Anonymity when LBS is Compromised (AL)

In Figure 4.9 the x-axis represents the number of queries received by the LBS provider k. On the
other hand, the y-axis represents AL. We can observe that in both approaches, AL decreases with
an increase in k. This is because as k increases, it becomes demanding for an adversary to guess the
correct query originator. Moreover, we can observe from the results in Figure 4.9 that AL is always less
in ijkCloak than cloakP2P. This is because, in ijkCloak, the adversary must find all the brokers carrying
fSRQ’s from k peers, which is a more challenging task. Moreover, in ijkCloak, intent randomization is
run to hide the user’s query intent.

4.5.2 Effect on Anonymity when Peers are Compromised (AP )

In Figure 4.10 the x-axis represents pA. Whereas the y-axis represents AP . In Figure 4.10, as pA
increases the value of AP also increase. This is because as more and more peers act as adversaries, it
will become harder to preserve user query location privacy. Moreover, from the results in Figure 4.10
it is clear that ijkCloak always performs better than cloakP2P. This is because to compromise the user
query location in ijkCloak, all the brokers must be adversaries (hence they can collude to get the actual
query location of the user). On the other hand, in cloakP2P, if at least one of the peers helping the user
is compromised, then the user query location will be compromised. This is because, in cloakP2P, peers
are considered trustworthy, and the actual location is sent to the peers.

In Figure 4.11 the x-axis represents pA. Whereas the y-axis represents the total communication cost
that the adversarial peers would require to compromise the user query location PC. In Figure 4.11 the
amount of communication PC increases drastically as pA increases. This is because it is not sufficient
for adversarial peers to collude only with peers in the user’s surroundings. Since the peers do not know
the user’s surrounding information, they should collude with all the adversarial peers in the layout. As
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we can observe from the results, the communication cost for maintaining a network to collude with
other adversarial peers is huge. Hence, we can assume it is practically far-fetched.

Figure 4.11: pA Vs PC Figure 4.12: k Vs AC

4.5.3 Effect on Anonymity with Center of CR Attack (AC)

In Figure 4.12 the x-axis represents the number of queries received by the LBS provider k and the
y-axis represents AC. We can observe from the results in cloakP2P for k = 40, the probability of the
query originator being at the centre of CR is 0.1. In contrast, the maximum bound for predicting the
location of the query originator using k-anonymity should be 1/40 = 0.025 (1/k). Hence, a user query
location is 25 times more likely to be compromised than the k-anonymity maximum bound. This is
because, in cloakP2P, users are likely to come uniformly from all directions. Hence, the adversary can
guess the query originator’s location more easily. Therefore cloakP2P has poor performance compared
to the other approaches.

On the other hand, approaches like MobiHide and Privé achieve the required k-anonymity degree of
1/k at all times. These approaches use data structures like Hilbert’s curve to map the layout and create
their cloaking region. In the case of ijkCloak, directly finding a cluster of peers (brokers) used to cloak
the query result itself is not possible. Since, in ijkCloak, all the locations are not aggregated by one user
and sent to the LBS provider. Instead, brokers individually send the request to the LBS provider. Thus,
the adversary can not know all the brokers helping the user get the SRQ result. Even if the adversary
wants to guess the brokers from the k peers, it will be bound by the same bound as that of ijk-anonymity
(i,e. 1

iCjk
) as can be seen from the results in Figure 4.12.

4.5.4 Effect of Variation in k Number of Queries Revived by LBS

The results of our experiments with variation in the number queries received by the LBS provider
while responding to fragmented queries k are depicted in Figure 4.13. In Figure 4.13, the x-axis rep-
resents k. The y-axis represents the anonymity of the users. It can be observed from the results in
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Figure 4.13 that cloakP2P, MobiHide and Privé have their anonymity close to that of the baseline value
of the k-anonymity (i.e., 1/k). On the other hand, ijkCloak has anonymity much less than all other
approaches. This is because, in ijkCloak, ijk-anonymity is used. For example, to achieve location
anonymity of 0.025, cloakP2P would need 40 peers. In contrast, ijkCloak would need eight peers to
be in its surroundings to achieve similar anonymity. This is because to find the user query location in
ijkCloak adversary has to guess j brokers from all the peers it has received.

Figure 4.13: k Vs A Figure 4.14: j Vs A Figure 4.15: i Vs A

4.5.5 Effect of Variation in j Fragments Generated

Figure 4.14 depicts the effect of variation in j. In Figure 4.14, the x-axis represents the number
of fSRQ created and the number of brokers required (j). The y-axis represents the user’s anonymity
(probability of being found). Previous approaches are not compared here since the terms j, and i were
proposed in our approach. In the case of j = 1 and j = 2, A is close to one. This is because when
the number of brokers is one or two, they cannot cover all the desired objects of the SRQ unless these
brokers are in the same location as the query originator. For other values, as j increases,A also increases.
This is because in a circle, if any three points on its circumference are found, then the centre of the circle
can be calculated. Hence as j increases, it becomes easier for an adversary to pick three brokers from k

peers in its surrounding. Hence an ideal value of j in our approach should be three.

4.5.6 Effect of Variation in i Intents Generated

Figure 4.15 depicts the effect of variation in i. In Figure 4.15, the x-axis represents the number of
intents sent to the LBS provider (both actual and dummy intents). The y-axis represents the anonymity
of the user. It can be observed from the results in Figure 4.15 that A decreases as i increases. This
is because an adversary must further guess the user’s query intent from i intents (i-1 dummy and one
actual intent) present in a query.
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Figure 4.16: uD Vs H Figure 4.17: uD Vs CH

4.5.7 Effect of Variation in User Density (uD)

Since the privacy preservation scheme should function in regions with different user densities, we
evaluate ijkCloak with varying user densities. Figure 4.16, 4.17 shows the results of our experiments
with variation in mobile users density in the layout uD.

In Figure 4.16, the x-axis represents uD, while the y-axis represents the number of hops required to
reach the required number of peers H . It can be observed in Figure 4.16 that the H is maximum at low
density. This is because in regions with less uD, the approach has to make multiple hops to reach the
required number of peers to preserve the user query location privacy. Moreover, H of ijkCloak is less
than cloakP2P. This is because, in ijkCloak, it is enough to find j brokers from the surrounding (since
j = 3 in our cases). Whereas in cloakP2P, since it user k-anonymity, the approach has to find k users
in the surround. Since k is greater than j, it required more hops to reach the required no of peers in
cloakP2P.

In Figure 4.17, the x-axis represents uD. while the y-axis represents the communication cost by the
system due to hops CH . It can be observed in Figure 4.17 that CH of ijkCloak is always less compared
to cloakP2P. This is because in ijkCloak required number of peers can be achieved with fewer hops. In
contrast, in the case of cloakP2P, it takes more hops to find the required number of peers to preserve
the user query location privacy. In the case of cloakP2P, CH is high when the uD is less. Since it
requires more hops to find k peers, it needs to make more hops, increasing the system’s communication
cost. However, as uD increases, fewer hops are required to find k users; hence communication cost
decreases. After some point, the communication cost increases linearly as it would take at least one hop
to get k users. However, since the density is high, more users will be requested to join the network than
required. On the other hand, in the case of ijkCloak, the communication cost also increases when uD is
low, but the increment is minute. Furthermore, as density increases, the CH increases linearly but still
is less than the value of cloakP2P. This is because ijkCloak requires fewer hops to gather brokers.
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4.6 Summary

In this chapter, to preserve the location and intent privacy for location-based spatial range queries,
we have proposed the notion of ijk-anonymity. Our proposed approach, designated as ijkCloak, adopts
ijk-anonymity in a mobile network to preserve the user query location privacy using fewer peers. Hence
ijkCloak is more feasible for users in highly mobile and dynamic networks. In ijkCloak, the user’s exact
location is sent to neither the LBS provider nor the peers. Moreover, in ijkCloak, the intent of the
user’s query is also preserved. Furthermore, we conduct theoretical analysis, performance evaluation
and experiments on resistance to attacks to demonstrate that ijkCloak effectively provides improved
location privacy. In the next chapter, we present summary and conclusion.
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Chapter 5

Summary and Conclusions

In this chapter, we present summary, conclusions and future work.

5.1 Summary

Location-based services (LBSs) enable mobile users to obtain location-specific information by re-
questing LBS providers to retrieve the desired data. However, preserving privacy is a major issue due
to the possibility of leakage of user location to adversaries. Several cloaking-based privacy preservation
approaches have been proposed in the literature to preserve users’ location privacy. In this thesis, we
have improved the existing dummy generation and spatial cloaking-based distributed approaches. Ex-
isting dummy generation approaches fall short in providing adequate security, especially if an adversary
discerns the centre of the cloaking region. These approaches also overlook the aspect of time-dependent
infeasible regions. Furthermore, existing spatial cloaking-based distributed approaches do not protect
users’ intent privacy and demand substantial network peers for obfuscating a user’s location. Acknowl-
edging these limitations, this thesis has proposed improved approaches for protecting user location and
intent information.

The first of these approaches, the Annulus-based Gaussian Dummy Generation (AGDG), is built
upon existing dummy generation approaches. The AGDG approach considered user query probability
and the distribution of infeasible regions in the surrounding area. Unlike previous approaches, AGDG
used virtual cloaking regions with a specific distribution to obscure the true user’s location. Conse-
quently, AGDG rendered user location information more resilient to attacks, even when an attacker
knew the centre of the cloaking region. Additionally, we incorporated the concept of time-dependent
infeasible regions to preserve user location privacy further through a multi-layered structure.

The conducted experiments demonstrate the effectiveness of the proposed AGDG approach in en-
hancing user privacy. By varying the number of candidates, the entropy (H) increases, improving the
resistance to potential adversaries. Moreover, AGDG outperforms other methods when considering the
ratio of infeasible regions and the presence of time-dependent infeasible regions, maintaining a high
system entropy and effective cloaking region. As such, AGDG exhibits resilience and superior perfor-
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mance in diverse conditions, affirming its proficiency in providing robust location privacy protection for
users. Therefore, AGDG can be utilized in mobile devices where it can intercept any location-based
query sent from the device and dispatch multiple dummy queries, thereby safeguarding the user’s actual
location information.

The second method, ijkCloak, built upon and improved existing spatial cloaking-based distributed
approaches. We introduced ijk-anonymity within this method to preserve both location and intent pri-
vacy for spatial range queries. In the ijk-anonymity technique, a user’s SRQ was fragmented into j SRQ
queries to conceal the actual location in the user’s query. Furthermore, i− 1 dummy intents were added
to the fSRQs to hide the true query intent. The ijkCloak approach adopted ijk-anonymity in a mobile
network to protect users’ location privacy using fewer peers, thereby increasing its feasibility for users
in highly mobile and dynamic networks. In ijkCloak, the user’s information was preserved against both
the LBS provider and the peers.

The effectiveness of ijkCloak in preserving user location privacy was demonstrated through theo-
retical analysis, performance evaluations, and resistance to attack experiments. This study shows that
ijkCloak is very good at protecting user privacy, even when location services or peers are compromised.
It works better with fewer peers as k changes, keeps the best j value at three, and improves privacy
as i increases. Also, ijkCloak works well with different numbers of users, with fewer steps and lower
communication costs, showing it can protect privacy in many different situations.

5.2 Conclusion

The conclusions are as follows:

1. Based on the experimental results, we conclude that AGDG effectively enhances user location
privacy. It protects location information even if an adversary knows the centre of CR. More-
over, it generates more realistic dummies and considers the presence of time-dependent infeasible
regions.

2. We conclude that ijkCloak effectively preserves intent and location privacy even when LBS and
peers are compromised. Importantly, it achieves this privacy preservation with fewer peers com-
pared to previous approaches. Thus, making it more secure and practical for highly dynamic
mobile networks.

5.3 Future Work

Potential directions for future research include:

1. The proposed AGDG approach effectively preserves the user’s location privacy. However, intent
privacy also forms an integral aspect of user privacy. Therefore, future research could explore
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incorporating intent privacy measures into the AGDG methodology to provide a more compre-
hensive privacy solution.

2. In the current implementation of ijkCloak, brokers are chosen randomly from surrounding peers.
Future work could consider developing a broker selection algorithm that considers factors such
as the broker’s location, availability, and reliability. Such an enhancement could significantly
optimize system operations and improve overall performance.

3. An exciting avenue of future research is the development of practical use cases where our ap-
proach can be used to maintain privacy in wireless network-based applications, such as those
employed in military operations, security establishments, and disaster response systems.

4. A promising avenue for future work lies in applying the ijkCloak framework within commercial
mobile networks. With this approach, mobile companies could create user-centric privacy solu-
tions. This process would involve partnering with Location-Based Service providers, peers, and
mobile network operators, potentially enhancing privacy across a range of services.
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