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Abstract

With the number of protein sequences increasing rapidly, it becomes imperative to have a basic idea
of the function and structure of a protein before the three-dimensional structure becomes available.
Protein-drug interactions play essential roles in many biological processes and therapeutics. Prediction
of the active binding site of a protein helps discover and optimise these interactions leading to the design
of better ligand molecules. The secondary structure provides clues to the shape that the protein can be
expected to take. It tells us whether an amino acid belongs to a coil turn, alpha-helix or beta-sheet struc-
ture. Deep Learning is a class of machine learning algorithms that progressively uses multiple layers
to extract higher-level features from raw input. Deep learning methods eliminate feature engineering
for supervised learning tasks by translating the raw inputs into intermediate representations that capture
the more abstract and composite information, removing redundancies in the original input. The rapid
adoption and success of deep learning algorithms in various sections of structural biology beckon deep
learning algorithms for accurate binding site detection and secondary structure prediction.

Protein-drug interactions play essential roles in many biological processes and therapeutics. Pre-
diction of the active binding site of a protein helps discover and optimise these interactions leading to
the design of better ligand molecules. The tertiary structure of a protein determines the binding sites
available to the drug molecule. To quickly and accurately predict the binding site from sequence alone
without utilising the three-dimensional structure is challenging. In the first study, a Residual Neural
Network (leveraging skip connections) [1] is implemented to predict a protein’s most active binding
site. An Annotated Database of Druggable Binding Sites from the Protein DataBank, sc-PDB [2], is
used for training the network. Features extracted from the Multiple Sequence Alignments (MSAs) of
the protein generated using DeepMSA, such as Position-Specific Scoring Matrix (PSSM), Secondary
Structure (SS3), and Relative Solvent Accessibility (RSA), are provided as input to the network. A
weighted binary cross-entropy loss function is used to counter the substantial imbalance in the two
classes of binding and non-binding residues. The network performs very well on single-chain proteins,
providing a pocket that has good interactions with a ligand.
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Secondary structure predictions predict three classes: C (Coil Turn), H (Alpha Helix) and E(Beta
Sheet). In the second study, a Transformer (based on the multi-attention mechanism) network is used to
train on the TR4590 dataset, which contains 4590 proteins with a sequence similarity cut off 25% and X-
ray resolution better than 2.0Å. Ten models are trained across 10-fold cross-validation, and a weighted
cross-entropy loss function is used. The ten trained models are run on the test set containing 1199
sequences. The mean of the probabilities of each class is taken, and then the class with the maximum
probability is considered the class to which the amino acid belongs. The model achieves an accuracy of
82.51%.
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Chapter 1

Introduction

1.1 Protein and its Structures

Proteins are macromolecules that carry out vital functions in all biological processes in the human
body, such as DNA replication, providing structure to cells, transporting molecules, etc. They are
comprised of one or more long chains of amino acid residues (known as a polypeptide chain). Amino
acids are organic compounds that contain an amino group (−NH2), a carboxyl group (−COOH), and
a side chain group (R). Although there are around 500 naturally occurring amino acids, only 20 appear
in the genetic code of life. There are four levels of amino acid organisation in a protein: primary,
secondary, tertiary and quaternary structures. The primary structure refers to the linear sequence of
amino acid residues held together by peptide bonds between the amino acids. The secondary structure is
a course-grained descriptor of the local structure of the polypeptide backbone, containing highly regular
local sub-structures. The secondary structure involves hydrogen bonds along the backbone that cause
the long chain to fold into local shapes, mainly α-helices, β-sheets and coils. Tertiary structure is the
three-dimensional of a single protein molecule (polypeptide chain). The α-helices and β-pleated-sheets
are folded into a compact globular structure, driven by non-specific hydrophobic interactions, the burial
of hydrophobic residues from water, salt bridges, hydrogen bonds, and the tight packing of side chains
and disulfide bonds. Quaternary structure is the aggregation of two or more individual polypeptide
chains that operate as a single functional unit, stabilised by non-covalent interactions. A binding site is
a region of the protein to which a ligand binds, with specificity. Often, the binding is accompanied by a
conformational change that alters the protein’s function.
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1.2 Modern Machine Learning Methods

Machine learning is the process of using a computer algorithm to learn from data. The goal of ma-
chine learning is to find patterns in data that are not explicitly given, which is done by finding the best
fit of a model to the data, by training a mathematical model, validating it along the way and then testing
it to see how well it performs on unknown data. Deep learning imitates the workings of the human
brain in processing data and creating patterns for use in decision making [7]. There has been a great
deal of progress in deep learning. Some examples of architectures include: ANNs (Artificial Neural
Networks) [8], RNNs (Recurrent Neural Networks) [9], LSTM (Long Short-Term Memory) Networks
[10], ResNets (Residual Neural Networks) [1], Transformers [5], GANs (Generative Adversarial Net-
works) [11], SOMs (Self-Organizing Maps) [12], Boltzmann Machines [13], and VAEs (Variational
Autoencoders) [14].

Figure 1.1: Architecture of a simple Artificial Neural Network model. Source: [3]
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An Artificial Neural Network (ANN) is a straightforward machine learning model designed to sim-
ulate how the human brain analyses and processes information. It is the foundation of Artificial Intel-
ligence and Deep Learning and can solve impossible or complex problems. They have self-learning
capabilities, enabling them to produce better results as more data becomes available. An ANN has a
collection of connected nodes called artificial neurons. Each connection/edge, like the synapses in a
brain, can transmit signals (a real number computed by some non-linear function of a mathematical
computation of its inputs) to another neuron. Each connection has a weight that adjusts as learning pro-
ceeds and increases or decreases the strength of the signal at a connection. Figure 1.1 shows a simple
ANN model with an input layer, two hidden layers and an output layer.

Figure 1.2: The structure of the Long Short-Term Memory (LSTM) cell. Source: [4]
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LSTM [10] is a Recurrent Neural Network (RNN) [9], which has feedback connections, meaning
that it can not only process single data points but a sequence of data points. RNNs are networks with
loops in them which allows for them to persist past information. However, a problem of RNNs is that
they remember only recent information and not long-range dependencies. LSTMs solve this problem by
adding gates in their memory cell, allowing for the LSTM to remove or add information to the cell state
based on whether or not the information is valuable or not. Figure 1.2 shows the structure of a single
LSTM cell.

Figure 1.3: Residual learning of a building block of the Resnet. Source: [1]

CNNs (Convolutional Neural Networks) take in an input image, assign importance through learnable
weights and biases to various aspects of the image, and differentiate one from another [15]. It is similar
to a neural network but in higher dimensions. It uses the available surrounding information to capture
spatial and temporal dependencies and make predictions. CNNs need not only be applied to images
but also any matrix of information. ResNet [1] is a particular type of CNN that uses skip connections
between layers to persist the original available information, allowing for the network to learn more
complex features and to model long-range dependencies, making them very popular for classification
problems that require modelling long-range dependencies. Figure 1.3 shows the skip connection that is
added to a building block that helps the network persist the original information.
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Figure 1.4: Model architecture of a transformer. Source: [5]

Transformer Neural Network [5] aims to solve sequence-to-sequence tasks while handling long-
range dependencies. It introduces an encoder-decoder architecture based on multi-head attention layers,
RNNs, embedding space, positional encoding, and feedforward networks. Attention tells us which part
of the input is essential and should be focused on. A multi-head attention layer focuses on multiple
parts of the input. Embedding space is used to convert the input into a dictionary that the model can
understand. Positional encoding is a technique to provide a vector that gives context according to the
position of, say, a word in a sentence. A feedforward network is just a plain artificial neural network that
helps learn about the input. The encoder creates a representation of all the words provided until now,
and the decoder will decode that information to predict the next word in the sequence. Transformers can
be used for various tasks such as speech synthesis, machine translation, image captioning, and question
answering. Figure 1.4 shows the architecture of a transformer network.
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Figure 1.5: Architecture of a Generative Adversarial Network. Source: [6]

GAN (generative adversarial network) [11] consists of two neural networks that compete with each
other in a zero-sum game. The generator learns to generate data similar to actual data by using informa-
tion from a learned latent space representation. The discriminator tries to learn to distinguish between
the actual data and generated data. Though it was intended for unsupervised learning, where the goal is
to generate data similar to provided data, it has been very successful in semi-supervised, fully supervised
and reinforcement learning. In figure 1.5, the architecture of a simple GAN is shown.
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1.3 Role of Machine Learning in Protein Predictions

Over the years, many supervised and unsupervised machine learning methods have been applied
to tackle protein prediction problems and have significantly contributed to advancing state-of-the-art
protein predictions. The predictions can broadly be classified into protein structure predictions and
protein function predictions.

Since its inception, deriving a protein’s structure from its sequence alone has been an unsolved prob-
lem due to the large conformational space of a protein chain and the lack of accurate energy functions
to model the folding process. Hence, it becomes necessary to solve more straightforward problems such
as the determination of the secondary structure, torsion angles, contact map and distance map of the
protein.

Protein secondary structure refers to the local conformation of the polypeptide backbone of proteins.
It consists of 3 class classification: H (α-helix), E (β-sheet), and C (coil), as well as 8 class classifica-
tion: H(α-helix), G(3-10-helix), I(π-helix), E(β-strand), B(isolated β-bridge), T (turn), S(bend), and C
(others). DSSP [16] and STRIDE [17] are used for calculating the secondary structure from known pro-
tein structures and used for creating the datasets. PHD [18] and PSIPRED [19] were one of the earliest
methods to use MSAs and neural networks for predictions. SPARROW [20] used two stages of multi-
linear regression and a neural network. PORTER 4.0 [21], SPIDER2 [22] leveraged Recurrent Neural
Networks along with more information derived from MSAs to incorporate information of surrounding
residues. PORTER 5 [23] and MUFOLD-SS [24] used more complex deep learning models like CNNs
and inception networks to achieve state-of-the-art results.

The torsion angles are φ, ψ, θ and τ and form the complimentary basis for local backbone structure.
φ and ψ are the angles between the planes formed by three consecutive residues, whereas θ and τ are
3 and 4 residues, respectively. These angles have been predicted as both discrete states and continuous
values. Kang et al. predicted the probabilities for phi-psi angles using the appropriate frequencies from
a database of crystal structures and then applying a custom function on the data. SPINE-X[26] uses
a guided-learning artificial neural network with a conditional random field model. ANGLOR [27] and
TANGLE [28] used Support Vector Machines (SVM) [29] by considering PSSM information. SPIDER3
[30] captured the non-local interactions by using long short-term memory (LSTM) bidirectional RNNs
for prediction. RaptorX-Angle [31], and SPOT-1D [32] used an ensemble of Recurrent and Residual
Neural Networks for predicting the real-value angles.
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A contact map of a protein is a matrix of zeros and ones that shows the existence of contacts between
residues. A distance map is a matrix of distances between residues. CORNET [33], DISTILL [34]
were one of the first methods to use neural networks along with evolutionary information to predict
the contact map. SVMcon [35] and SVMSEQ [36] used SVMs, whereas PconsC2 [37] and RaptorX-
Contact [38] used Deep learning methods such as RNNs and ResNets for more accurate predictions.
SPOT-Contact [39], and TripletRes [40] are some of the more recent methods that have been very
successful with distance predictions, and these predictions have helped immensely in the state-of-the-
art protein structure prediction.

Critical Assessment of Protein Structure Prediction (CASP) [41] is a community-wide, worldwide
experiment for protein structure prediction that takes place every two years and has become the stan-
dard for testing new methods in structure prediction [42]. Modern prediction methods comprise of
four modules: an input module that takes a protein sequence to generate additional input features such
as MSAs, a neural network module capable of pattern recognition, which transforms the input feature
vectors into vectors with partial spatial information, an output module that converts the spatial infor-
mation into an initial 3D structure, and finally, a refinement module that improves the 3D structure and
produces all atomic coordinates. In previous CASP assessments, a mixture of physics-based energy
functions, knowledge-based statistical reasoning, and heuristic algorithms was used in these modules
[43]. However, the inclusion of neural networks into all the modules has vastly improved the quality of
the predictions. Some of the more recent and successful methods include Deepmind’s AlphaFold [44],
AlphaFold2 [45], RaptorX [46], Robetta [47], FEIG-R2 [48], I-TASSER [49], MULTICOM [50], and
QUARK [51].

The binding site of a protein is the pocket in the 3D structure of the protein where a ligand binds to
and changes the conformation of the protein, making it functional. DeepCSeqSite [52] is a template-
based method that uses seven characteristics (position-specific scoring matrix, relative solvent accessi-
bility, secondary structure, dihedral angle, conservation scores, residue type and positional embeddings)
of each residue to create a feature map, which is then used as an input to a convolutional neural network.
DeepPocket [53] is a structure-based method that uses 3D Convolutional Neural Networks to generate
a list of pocket probabilities and a segmentation model to elucidate shapes for the top-ranked pockets.

Binding affinity is the strength of the binding interaction between a protein to its ligand. KronRLS
[54] used Kronecker-Regularized Least Squares, and SimBoost [55] used gradient boosting regression
trees method to rank the binding of a set of drugs to a set of target proteins. DeepDTA [56] was the first
Deep Learning Approach that used SMILES [57] representation as an input to a CNN architecture to
predict the binding affinity value without using structural information. WideDTA [58], PADME [59],
and DeepAffinity [60] later used more complex architectures such as ResNets, Graph Convolutional
Neural Networks and RNNs, and more relevant input features for prediction.
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1.4 Motivation

The tertiary structure of a protein provides important clues about its function. The rapid speed of se-
quencing attained with modern DNA sequencing technology has been instrumental in sequencing com-
plete DNA sequences, leading to faster sequencing of proteins. Although there have been improvements
in the determination of the three-dimensional protein structure by techniques such as X-Ray Crystallog-
raphy, NMR Spectroscopy and Cryo-Electron Microscopy, they are expensive, labour-intensive and
time-consuming, and sometimes not possible. The gap between the number of known protein sequences
(214,406,399 UniProt sequences as of May 2021)[61], and the number of known structures (177,910
PDBs as of May 2021)[62][63] is increasing rapidly. Proteins perform a vast array of functions within
organisms, and the tertiary structure of a protein can provide important clues about these functions. Al-
though the main goal is to predict the 3-D structure, 1-D and 2-D predictions are of intrinsic interest and
often used as inputs for 3-D coordinate predictors. Hence, predictions based on the protein sequence
must be made to speed up the structure prediction process and provide clues towards the function of a
protein.

Recent advances in deep learning and the development of new deep learning frameworks have en-
abled state-of-the-art models for predictions on protein sequences. Also, due to the availability of large
amounts of protein sequence data, the models have been very successful in making highly accurate
predictions. Hence, it becomes imperative to apply the latest machine learning techniques to various
protein prediction problems.

1.5 Thesis Structure

This thesis tackles the problems of protein binding site prediction and secondary structure prediction
solely based on the sequence alone. The first study introduces BiRDS[64], a ResNet-based model for
predicting the binding site of a protein. The second study deals with the prediction of the secondary
structure of a protein using a Transformer network. Both studies have the following sections: Introduc-
tion, Methods (datasets used, features generated, model architecture, and evaluation metrics), Results
and Discussion, and Conclusion. The thesis concludes with how protein sequences can derive valuable
insights, how machine learning has helped with the predictions, and future possibilities.
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Chapter 2

Binding Site Prediction

2.1 Introduction

Protein-ligand complexes are functionally important in crucial mechanisms such as DNA repli-
cation, metabolism, catalysis, defence against viruses, and signal transduction. A ligand can be any
molecule that binds to the protein with high affinity where the interaction site is the active binding site
of the protein. In drug design, a new drug is modelled to improve protein function after identifying a
potential active binding site, thus aiding in these crucial mechanisms.

Ligand binding site prediction methods are broadly categorised into geometry-based, energy-based,
template-similarity-based, traditional machine-learning-based and deep-learning-based prediction meth-
ods [65]. Geometry-based and energy-based methods maintain that most small ligand bindings occur
in cavities on protein surfaces since large interfaces have a high affinity to small molecules. These
methods locate the binding site by searching for spatial geometry or energy features by placing probes
in protein structures. SITEHOUND[66] uses a carbon and phosphate probe inside a grid covering the
entire protein. The grid points with higher interaction energies are clustered to determine the binding
residues. A spatial geometric measurement method CURPOCKET[67] computes the curvature distri-
bution of the protein surface and identifies clusters of concave regions. Other methods in this category
include CASTp[68], LIGSITE[69], VISCANA[70], Fpocket[71], and Patch-Surfer2.0[72]. While these
methods are widely used, they are invalid in certain cases due to their dependence on various factors,
such as the resolution of the structure determination method and the presence of both ligand groups and
external molecules.
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Template-similarity-based methods consider that proteins evolved from structurally, functionally,
or sequentially similar proteins, not as independent entities. S-SITE and TM-SITE[73] employ the
Needleman-Wunsch algorithm to align the query protein to sequentially-similar proteins in the BioLip[74]
database, a curated database for biologically relevant ligand-protein binding interactions. The frequently-
occurring binding residues in the aligned proteins form the binding residues of the query protein. Meth-
ods such as ConSurf[75], FINDSITE[76], 3DLigandSite[77], FunFOLD[78], and COFACTOR[79] also
employ similarity searching.

3D-structure-based and template-similarity-based methods complement each other very well. Tra-
ditional machine-learning-based methods build an analytical model based on protein data to identify
patterns and structural similarities. Machine learning integrates the information of both the methods and
applies mathematical functions to improve prediction accuracy. P2RANK[80][81] uses a random forest
algorithm to predict ligandibility scores across the entire protein surface. Ligandibility score is the score
given to a ligand for its ability to bind to specific points on the protein. The points with high scores are
then clustered into a single binding pocket. SCRIBER[82] is a fast, sequence-based, two-layer architec-
ture, machine learning predictor which predicts propensities of protein-binding, RNA-binding, DNA-
binding, and ligand-binding residues. ConCavity[83], MetaPocket[84], RF-Score[85], NsitePred[86],
NNSCORE[87][88], LigandRFs[89], COACH-D[90], and Taba[91] employ different machine learning
models to predict the protein binding site.

Deep Learning is a subfield of machine learning based on artificial neural networks with feature
learning. When a deep learning network is fed large amounts of data, it can automatically discover the
representations needed for feature detection or classification. Deep learning has been hugely successful
in the general areas of drug design, such as binding affinity predictions[92, 56], protein contact map
predictions[39, 38], and protein-structure predictions[44, 93, 94]. Deep learning-based methods like
DeepSite[95] and Kalasanty[96] model binding site prediction as an image processing problem. The
protein 3D structure is divided into small grids, called voxels, through a process known as voxelisation.
Each voxel’s specific calculated properties are used to train a deep convolutional neural network that
predicts whether a voxel belongs to a binding site. DeepPocket[53] is a structure-based method that
uses 3D Convolutional Neural Networks to generate a list of pocket probabilities. A segmentation
model then elucidates shapes for the top-ranked pockets.
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The tertiary structure of a protein can provide essential clues about the binding sites of a protein.
Even though there have been improvements in techniques such as X-ray Crystallography, NMR Spec-
troscopy, and Cryo-Electron Microscopy, the determination of the three-dimensional protein structure
is time-consuming and expensive. Modern DNA sequencing technologies have sped up complete DNA
sequencing, and in turn, protein sequencing. The gap between the number of known protein sequences
(214,406,399 UniProt sequences as of May 2021)[97] and the number of known structures (177,910
PDBs as of May 2021)[62][63] is enormous. Predicting the binding site based on amino acid se-
quence alone is challenging. However, it helps to identify potential binding residues before the three-
dimensional structure becomes available.

In this paper, a deep residual neural network (ResNet)[1] is trained to predict whether an amino acid
residue in the sequence belongs to the most active binding site or not. The sc-PDB database identifies
this site as the binding site most suitable for docking a drug-like ligand. Features are extracted from
the MSAs generated by DeepMSA[98], whose robustness and usefulness have been studied extensively.
BiRDS is trained on these features for all proteins in the training dataset. A weighted binary cross-
entropy loss function is used for handling the severe class imbalance. The network outputs the final
probabilities, which are converted to binary outputs. Most sequence-based prediction methods predict
the binding site of a protein for specific ligands, while most popular 3D structure-based methods predict
the ligandable binding sites of a protein. This paper bridges the gap between the two by providing a
reliable method for predicting a protein’s most active binding site from sequence information alone.
SC6K, a novel test set, is used for comparing BiRDS with Kalasanty (a 3D structure-based method) and
SCRIBER (a sequence-based method).

2.2 Methods

2.2.1 Dataset

An annotated database of druggable binding sites from the Protein Data Bank, known as sc-PDB
(v.2017)[2], is used to train and validate BiRDS. The database takes samples from the Protein Data
Bank[62, 99], creates prepared protein structures of biologically relevant protein-ligand complexes by
filtering based on Uniprot annotations and prepared ligand templates. The most buried ligand, peptide or
cofactor is found in the prepared structure, and the site of interaction is considered the most ligandable
binding site. Thus each sample in the dataset contains the three-dimensional structure of one ligand, one
protein, and one site.
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The sc-PDB (v.2017) database is generally used to predict binding sites based on the available
protein-ligand 3D structures. However, this paper deals with predicting the most active binding site
using sequence information alone, for which the complete amino acid sequence of all the protein chains
is required. The complete 3D structure is typically unavailable because some of the protein regions
in the crystal under study are disordered and mobile. Hence the whole sequence cannot be extracted
from the structure. Fortunately, the entire protein sequence is always available, and for this paper, it
has been downloaded from the RCSB[63] website in FASTA file format. A one-to-one mapping of the
amino acids in the downloaded sequence to the amino acids in the protein’s 3D structure is required
to know which amino acid is a binding residue. This mapping is done by first extracting the protein
sequence from the 3D structure. Next, the Needleman-Wunsch dynamic programming algorithm[100]
(implemented by Zhanglab’s NW-Align program[101]) is utilised to align the sequence extracted from
the structure file to the downloaded sequence. The protein structure file is reindexed based on this
alignment to match the indices of the residues in the downloaded sequence. This reindexing allows for
the labelling of binding residues in the downloaded sequence. Note that the protein sequence is the
concatenation of all its chain sequences.

The training set consists of the downloaded sequence and the generated binding residue labels of
every protein in the sc-PDB database, which has 17,594 PDB structures with 28,959 chain sequences,
of which 9,419 are unique. For training using k-fold cross-validation, we must ensure that no two folds
have proteins with sequence similarity greater than 25% to avoid data leakage between the training and
validation set during network training. Hence, the pairwise sequence similarity of the 9,419 unique chain
sequences was calculated using BLASTP (part of the BLAST+[102] package from NCBI). SiLiX[103]
package clustered these unique sequences into families with greater than 25% sequence similarity and
over 80% overlap, leading to the creation of 2,039 clusters of chain sequences. Since BiRDS predicts
the most active binding site of the complete protein, the protein sequence must also be clustered. The
Union-Find algorithm[104] using a disjoint-set data structure was employed to make this clustering,
where all the chains of a protein and their corresponding cluster were put in a single set, creating 1,744
sets. Protein sequences longer than 4,096 residues were removed. An equal sum K-partition algorithm
put these sets into ten folds for cross-validation. One set had 2,009 proteins and was reduced to 1,642
to split the sets into ten even folds. Finally, this gave 16,450 proteins belonging to the training set, with
each fold containing 1,645 proteins.
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A separate test set SC6K was constructed using the PDB structures from January 2018 to Febru-
ary 2020. All PDBs with at least one ligand were run through pdbconv program from the IChem
Toolkit[105]. The program used the exact filtering mechanism and site selection method as the sc-
PDB[2] database. The entire test set consists of 2,274 PDB structures with 3,434 chain sequences, of
which 1,889 are unique. However, there should be no data leakage between the test and training sets.
Hence, the pairwise sequence similarity of the 1,889 test chain sequences with the 9,419 training chain
sequences was calculated using BLASTP. Sequences with greater than 25% similarity and over 80%
overlap were removed from the test set, giving a set of 576 chain sequences. Proteins with all their
chain sequences in this set were considered for the reduced test set, leading to a final count of 530
protein sequences.

2.2.1.1 MSA Generation

Collections of multiple homologous sequences (called Multiple Sequence Alignments or MSAs)
can provide critical information for modelling the structure and function of unknown proteins. DeepMSA[98]
is an open-source method for sensitive MSA construction, which has homologous sequences and align-
ments created from multiple sources of databases through complementary hidden Markov model algo-
rithms. DeepMSA profiles provided statistically significant improvements in residue-level contact pre-
diction, homologous structure identification and secondary structure prediction. These improvements
were achieved without retraining the parameters and neural-network models.

The search for alignments is done in 2 stages. In stage 1, the query sequence is searched against the
UniClust30[106] database using HHBlits from HH-suite[107] (v2.0.16). If the number of effective se-
quences is < 128, Stage 2 is performed where the query sequence is searched against the Uniref50[108]
database using JackHMMER from HMMER[109] (v3.1b2). Full-length sequences are extracted from
the JackHMMER raw hits and converted into a custom HHBlits format database. HHBlits is applied to
jump-start the search from the Stage 1 sequence MSAs against this custom database.

2.2.2 Features

The MSAs were generated for the unique chain sequences in the training(9,419), and test(1,889)
sets using the method described in MSA Generation and stored in PSICOV[110] .aln format. The most
commonly used features in sequence-based predictions were used. Token embeddings, Positional em-
beddings, and Segment embeddings were extracted from the sequence, while Position Specific Scoring
Matrix, Information Content, Secondary Structure, and Solvent Accessibility were extracted from the
generated, high-quality MSAs. The process for creating the feature map is shown in Figure 2.1

14



Figure 2.1: The process used for generating the feature map of BiRDS framework. Token, positional
and segment embeddings are generated using just the sequence information. The features extracted

from the MSAs of the individual protein chains created using DeepMSA, are concatenated to form the
protein feature map
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2.2.2.1 Token Embedding, Positional Embedding and Segment Embedding

There are 21 amino acids in the protein vocabulary of BiRDS, with the 20 standard amino acids
labelled in alphabetical order from 1 to 20 and X, representing all non-standard amino acids, labelled
as 0. Token embeddings help the model differentiate between the different types of amino acids. It
is generated by an Encoding layer that uses the vocabulary label of each amino acid in the sequence.
Positional Embeddings (PE) carry information about the absolute position of the amino acids in the
sequence. Using the positional encoding layer of a Transformer network[5], these embeddings were
unique for each position and generalised to long sequences without extra effort. A segment embed-
ding was generated by using the chain number to which an amino acid belongs, to allow the model to
differentiate between the multiple chains of a protein.

2.2.2.2 Position-Specific Scoring Matrix and Information Content

Position-Specific Scoring Matrix (PSSM) is a commonly used representation of patterns in bio-
logical sequences, derived as the log-likelihood of the probability that a particular amino acid occurs
at a specific position. The PSSMs were derived from MSAs using Easel[111] and Heinikoff position-
based weights so that similar sequences collectively contributed less to PSSM probabilities than diverse
sequences. The information content (IC) of a PSSM gives an idea about how different the PSSM is from
a uniform distribution. IC was also derived using Easel.

2.2.2.3 Secondary Structure and Solvent Accessibility

The secondary structure is defined by the pattern of hydrogen bonds formed between the amino
hydrogen and carboxyl oxygen atoms in the peptide backbone. It gives an idea of the three-dimensional
structure of the protein. The secondary structural elements are alpha helices, beta sheets and turns.
PSIPRED (v4.0)[112] was used to predict the probability of each state of the 3-state secondary structure
(SS3) for every amino acid in the sequence. The solvent-accessible surface area is the surface area of a
biomolecule accessible to a solvent. SOLVPRED from MetaPSICOV 2.0[113] was used to predict the
every amino acid’s relative solvent accessibility (RSA). RSA can be calculated as
RSA = ASA/MaxASA, where ASA is the solvent-accessible surface area, and MaxASA is the
maximum possible solvent accessible surface area for the amino acid residue.
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Figure 2.2: Architecture of the deep learning model, BiRDS

2.2.3 Model

2.2.3.1 BiRDS Architecture

A Convolutional Neural Network (CNN) is a Deep Learning algorithm that can take an image
as input, assign importance (learnable weights and biases) to various aspects/objects in the image, and
differentiate one from the other. When multiple CNN layers are stacked on top of each other, Deep
Neural Networks (DNNs) are formed. DNNs are challenging to train because of the vanishing gradient
problem where the gradients become so small that the network’s weights do not change, preventing
further training. With the introduction of skip connections (shortcuts to jump over some layers) in
CNNs, the vanishing gradient problem is avoided. CNNs with skip connections are known as Residual
Neural Networks or ResNets[1]. ResNets use representation learning to extract the most important
features for classification. They can also model long-range interactions and have been hugely successful
in Computational Natural Sciences[44]. The architecture of the deep Residual Neural Network used here
is shown in Figure 2.2.
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Each sample protein in the dataset consists of one or more protein sequences. Let the length of the
sequences be l1, ..., ln. Features are generated for each sequence in the protein (ordered by chain ID in
PDB), leading to multiple vectors of shape [li, 47] for the ith sequence. These generated features are
combined through simple concatenation, giving a final feature vector of shape [L, 47] as input to the
model, where L = l1 + ...+ ln.

The feature vector is passed through the first level, consisting of a 1D convolutional layer with 128
filters of size 7, batch normalisation layer and ReLU (Rectified Linear Unit) activation function. The
input is padded with zeroes to ensure that the length of the output vector remains the same. The filters of
this layer stride along the length of the protein, considering the features of the three prior amino acids,
the current amino acid, and the three subsequent amino acids (totalling 7). This stride allows for the
extraction of the required information of the current amino acid based on the features of nearby amino
acids.

The following five levels contain an up(down)sampling layer and two basic blocks. A basic block
consists of a 1D convolutional layer, a batch normalisation layer, a ReLU activation function, a second
1D convolutional layer, a second batch normalisation layer, and a final ReLU activation function. The
ResNet skip connection is made after the final ReLU activation, where the initial input to the first basic
block is added to the output of the final ReLU activation. Usually, the input received by the first basic
block will not match its required input size. Hence, an up(down)sampling layer ensures that the input to
the first block has the required shape. The output of size L× d from the first level runs through e filters
of size 1× d of the up(down)sampling layer to generate a vector of size L× e. This vector is passed to
the first basic block, which follows a similar stride policy as the first level but with a window size of 5.
The process is repeated with the second basic block, and its output is sent back to the up(down)sampling
layer. This process is repeated five times, with d going from 128 → 128 → 256 → 128 → 64 and e
going from 128 → 256 → 128 → 64 → 32. The multiple levels capture the long-range dependencies
of amino acids since the filters help propagate information of one amino acid through its neighbours.

The last two levels contain simple, linear, fully connected artificial neural networks. The penultimate
level has a LeakyReLU activation function with dropout to prevent sparse gradients. A sigmoid function
at the end ensures that the model outputs values between [0, 1], resulting in a vector of size L (length of
the protein), denoting the probabilities of a residue being a part of the binding site.
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2.2.3.2 Loss Function

There is a substantial imbalance in the two classes of binding and non-binding residues in this
classification problem, where the percentage of binding residues is only 6%. Hence, a weighted binary
cross-entropy loss function was used to train the model.

L(ŷ, y) = −(αŷ log(y) + (1− ŷ) log(1− y))

ŷ is the vector of true labels, y is the model output probabilities, and α is the weight assigned to the
rare class.
α heavily penalises the model if it incorrectly predicts binding residues as non-binding. α is calcu-

lated on the fly for every batch of inputs using α = nnbr
nbr

, where nnbr is the total number of non-binding
residues in the batch and nbr is the total number of binding residues in the batch.

2.2.3.3 Implementation

The model is implemented using PyTorch Lightning[114], a wrapper on the popular open-source
deep-learning library, PyTorch[115]. The model is trained in batches using an Adam Optimiser with
the ReduceLROnPlateau scheduler and a learning rate warm-up where the learning rate is gradually in-
creased to the actual learning rate. The implementation can be found at https://github.com/devalab/BiRDS.

2.2.4 Evaluation Metrics

2.2.4.1 Confusion Matrix

A confusion matrix is a table that allows for the visualisation of the performance of a supervised
learning algorithm. The following terminologies can be defined in the binary classification of a residue
as a binding residue (BR) or non-binding residue (NBR).

• True Positive (TP): Number of BRs predicted correctly as BRs.

• True Negative (TN): Number of NBRs predicted correctly as NBRs.

• False Positive (FP): Number of NBRs predicted incorrectly as BRs.

• False Negative (FN): Number of BRs predicted incorrectly as NBRs.

The following metrics can be derived from the confusion matrix
Accuracy: ACC = TP+TN

TP+TN+FP+FN

Precision: PPV = TP
TP+FP

Recall: TPR = TP
TP+FN

F1 score: F1 =
2TP

2TP+FP+FN

Intersection over Union: IoU = TP
TP+FN+FP

Matthews Correlation Coefficient: MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)
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2.2.4.2 Accuracy, Precision, Recall

Accuracy (ACC) is the ratio of correct predictions to the total number of predictions. Precision (PPV)
is the ability of a classifier to identify only relevant objects. Recall (TPR) is a metric which measures
the ability of a classifier to find all the relevant cases (that is, all the ground-truths)

2.2.4.3 F1 score, IoU

F1 score is the harmonic mean of precision and recall. It maintains a balance between the precision
and recall of the classifier. IoU, also called Jaccard index, is a metric that evaluates the overlap between
the ground-truth and the predictions. It is commonly used in Object Detection.

2.2.4.4 MCC

The Matthew’s Correlation varies from [−1,+1], with +1 representing a perfect prediction, 0
representing no better than a random prediction and -1 representing total disagreement between the
prediction and the observation. It is a common metric used in binary classification problems where
there is a substantial imbalance in the class labels. It is a more reliable statistical rate which produces a
high score only if the prediction obtained good results in all of the four confusion matrix categories (true
positives, false negatives, true negatives, and false positives), proportionally both to the size of positive
elements and the size of negative elements in the dataset[116].

2.3 Results and Discussion

Ten models with the architecture described in BiRDS Architecture were trained through ten-fold
cross-validation, where one fold formed the validation set while the remaining folds formed the training
set in each iteration. The validation results are provided in Table 2.1 and the sum of confusion matrices
in Figure 2.3. The Receiver Operating Characteristics (ROC) curve and the Precision-Recall (PR) curve
of the models on their validation sets is provided in Figure 2.4 and 2.5. The description of the various
metrics is provided in Evaluation Metrics.
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Dataset MCC ACC F1 IoU PPV TPR
Fold 1 0.354 0.920 0.394 0.582 0.359 0.437
Fold 2 0.606 0.931 0.633 0.695 0.545 0.755
Fold 3 0.521 0.896 0.565 0.641 0.474 0.700
Fold 4 0.270 0.898 0.323 0.544 0.296 0.355
Fold 5 0.324 0.892 0.367 0.556 0.293 0.490
Fold 6 0.338 0.884 0.373 0.555 0.282 0.550
Fold 7 0.324 0.902 0.368 0.562 0.309 0.456
Fold 8 0.340 0.924 0.380 0.578 0.355 0.407
Fold 9 0.380 0.918 0.421 0.591 0.378 0.475

Fold 10 0.355 0.917 0.391 0.579 0.332 0.476
Test (Full) 0.568 0.940 0.589 0.677 0.502 0.713

Test (Reduced) 0.440 0.951 0.464 0.626 0.497 0.436

Table 2.1: Validation and test results

Figure 2.3: Sum of confusion matrices of the ten models on their corresponding validation sets
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Figure 2.4: Receiving Operator Characteristics curve of the ten models on their corresponding
validation sets

Figure 2.5: Precision-Recall Curve of the ten models on their corresponding validation sets
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Figure 2.6: Success rate plot for various DCC thresholds of the ten models on their corresponding
validation sets

The model predictions were also mapped back to the available 3D structures of proteins for DCC
calculation. DCC is the distance between the centre of the predicted binding pocket and the centre of
the actual binding pocket. It is commonly used for evaluating 3D-structure based models. The success
rate of DCC is defined as the fraction of predictions below a given threshold. Pockets with DCC below
4Å are considered to be correctly predicted. Figure 2.6 denotes the success rate plot of the models’
predictions on their validation set for various thresholds of the DCC metric. The success rate ranges
from 15% to 75% when the threshold is 4Å. Fold 2 and Fold 3 models performed well on their validation
sets since they contained only 1 to 5 protein families with similar sequence patterns. The presence of
only a few families in these folds is due to the equal sum partition algorithm used to create these folds.
It is a greedy algorithm that combines as many large clusters as possible, thus causing large families to
appear in a single fold.

The ten trained models are run on the full and reduced test sets for testing. The models come to a
consensus if five or more models predict a residue as belonging to the most active binding site of the
proteins in a set. The test results, both full and reduced, are provided in Table 2.1 and the confusion
matrix on the reduced test set in Figure 2.7 and on the full test set in Figure 2.8.
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Figure 2.7: Confusion matrix on the reduced test set after consensus among models

Figure 2.8: Confusion matrix on the full test set after consensus among models

24



Figure 2.9: Success rate plot for various DCC thresholds on the test set after averaging the predictions
of the 10 models

The performance of BiRDS on the novel SC6K test set was compared against Kalasanty[96] and
SCRIBER[82]. Kalasanty is a 3D-structure-based method that uses a U-Net architecture[117] capable
of protein binding site segmentation. The full test set was run on Kalasanty using their open-source
code, and the DCC metric was calculated for the predicted pocket. The success rate plot of DCC is
shown in Figure 2.9. BiRDS performs on par with Kalasanty on the full test set, which will have a
lot of sequences similar to the training data. However, the performance on the reduced test set shows
Kalasanty outperforming BiRDS. Nevertheless, BiRDS still performs well on the reduced test set for
a sequence-based predictor, achieving a success rate of 25% at a 4Å cutoff for DCC. In other words,
for 25% of the test data, the model has predicted the binding site such that the centre of the predicted
binding site is within 4Å of the centre of the most ligandable binding site. As the threshold of DCC
increases, the success rate also naturally increases. It should be noted that if the model predicts the
whole binding site correctly and misses out on a couple of residues or predicts more residues, the centre
of the predicted binding site may shift significantly.
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Figure 2.10: ROC curve of BiRDS and SCRIBER on the test sets

Figure 2.11: PR curve of BiRDS and SCRIBER on the test sets
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SCRIBER is a sequence-based, two-layer architecture, machine learning predictor which predicts
propensities of protein-binding, RNA-binding, DNA-binding, and ligand-binding residues. The pre-
dictor was trained on individual chain sequences of a protein, based on their Uniprot IDs. For a fair
comparison with BiRDS and to speed up prediction time on their webserver, the 1,889 unique chain
sequences of the test set were filtered; sequences with length greater than 1,024 and sequences with se-
quence similarity greater than 25% and over 80% overlap with the SCRIBER training set and SC6K test
set were removed. SCRIBER predictions of RNA-binding, DNA-binding and ligand-binding residue
propensities on the final 521 sequences were averaged and considered for comparison. The Receiver
Operating Characteristic (ROC) curve and the Precision-Recall (PR) curve of BiRDS on the full and
reduced test set, and SCRIBER on the 521 sequences, is shown in Figure 2.10 and 2.11.

A variety of more complex deep-learning models were trained to improve predictions. As described
in the paper by Cui et al., a Complementary Generative Adversarial Network (CGAN) was imple-
mented to mitigate the substantial imbalance in the prediction classes. However, a simple weighted
binary cross-entropy loss function worked better than a CGAN with focal loss. A Deep Bidirectional
Encoder Representations from Transformers (BERT)[118], a state-of-the-art model for token classifica-
tion problems in NLP, was also implemented. It performed on par with the current BiRDS model but
led to longer training times. Several different features to improve performance were also tried. Task
Assessing Protein Embeddings (TAPE)[119] provided trained deep learning models which produced
an embedding representation of the protein sequence input. The trained TAPE transformer model was
added along with BiRDS architecture, but the training could not proceed due to a large-sized feature
map and insufficient GPU memory. SPOT-1D[32] is a sequence-based predictor for predicting sec-
ondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact
maps. These predictions were used as inputs to BiRDS but did not provide any improvement over the
features extracted from Deep MSAs.

Some case studies were undertaken to show that the model’s performance is good, but the metrics
do not rate it well due to the limitations of the dataset. The aggregated predictions of the ten models
on the test set were mapped back to the three-dimensional structure of the protein-ligand complex.
3Dmol.js[120], a modern, object-oriented Javascript library for visualising molecular data, was used
to visualise the protein’s surface, with coloured residues representing the predicted and actual binding
residues. In the following examples, red indicates an incorrect prediction of a non-binding residue as
binding, blue indicates a binding residue that was not predicted as binding, and green indicates a correct
prediction.
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Figure 2.12: 6FAD - BiRDS seems to be incorrectly predicting the actual binding site (in blue), when
in reality, it is predicting another binding site of the protein (in red)

In Figure 2.12, BiRDS seems to incorrectly predict all the binding residues for 6FAD[121]. However,
it is predicting another binding site of the protein. The sc-PDB[2] dataset was generated through a series
of filters, and the residues surrounding the most buried ligand was selected to be the most ligandable
binding site. This selection, unfortunately, is a flaw of the dataset and the method used for predictions.
There is no right way to cover cases like these where the model needs to be penalised less when it
predicts a binding site that is not the most ligandable binding site. Hence, the evaluation metrics will
generally give an abysmal score for such cases.
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Figure 2.13: 6ISP - BiRDS is able to predict the binding site of individual chains (in red), but not the
binding site formed due to the interaction between chains (in blue)

Figure 2.13 shows 6ISP[122], where BiRDS predicts individual binding sites of two same sequence
chains of the protein. However, the model finds it challenging to predict the binding site created due
to the interaction between the two chains. This may likely be due to the way the input features are
generated. A simple concatenation of the features of individual chains to generate the protein sequence
features is insufficient as it does not provide any information about the interaction among the multiple
chains. These interactions scarcely occur in the training set, making it hard for BiRDS to learn.
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Figure 2.14: 6S2J - BiRDS predicts the binding site correctly, but due to the presence of same
sequence protein chains, it predicts both the binding sites (in green and red)

Figure 2.14 shows 6S2J[123], where BiRDS predicts the binding site of a protein chain with high
precision. It predicts most of the binding residues surrounding the ligand and a couple of outliers.
However, the two protein chains have the same sequence, causing BiRDS to predict similar binding
sites for both. Since sc-PDB selects only one active binding site during its selection process, the model
predictions are compared against a single site for metrics calculation. The metrics do not do justice to
these types of predictions, penalising BiRDS with a poor score.
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2.4 Conclusion

In this study, a deep ResNet was implemented to predict a protein’s most active binding site. A train-
ing set of ten folds was derived from the sc-PDB(v. 2017)[2] database containing data of a protein’s
most ligandable binding site. A novel test set SC6K was constructed from protein-ligand complexes of
the PDB from January 2018 to February 2020. MSAs were generated for all unique protein chains in
both the datasets using DeepMSA, and features such as Position-Specific Scoring Matrix, Secondary
Structure and Solvent Accessibility were extracted. The individual features of the chains were con-
catenated to form the protein feature map, and BiRDS was trained using 10-fold cross-validation and
a weighted binary cross-entropy loss function. BiRDS can accurately predict the most active binding
site of a protein using only sequence information. It outperforms SCRIBER, a sequence-based protein-
binding site predictor and performs on par with Kalasanty, a 3D-structure-based method. It becomes
crucial to determine the pocket where the drug molecule binds with the protein in drug design. BiRDS
can be used for early and quick determination of the binding site before the availability of the protein
structure.

2.5 Data and Software Availability

The source code has been written in a modular fashion using PyTorch Lightning[114]. The method
implementation, data and pretrained models can be found at
https://github.com/devalab/BiRDS.
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Chapter 3

Secondary Structure Prediction

3.1 Introduction

The function of a protein is directly related to its native 3D structure, which often implies that similar
structures have similar functionality[124]. There are four levels of amino acid organisation: primary,
secondary, tertiary and quaternary structures. The primary structure of a protein refers to the linear se-
quence of amino acid residues. The secondary structure is a course-grained descriptor of the local struc-
ture of the polypeptide backbone. The secondary structure involves hydrogen bonds along the backbone
that cause the long chain to fold into local shapes, mainly coils(C), sheets(E), and helices(H). Tertiary
structure is the three-dimensional structure of a protein. The quaternary structure further stabilises the
protein molecule by bonding with one or more similar tertiary structures.

There have been three generations of methods used for the prediction of the secondary structure
of a protein. The first generation utilised statistical propensities of amino acids residues towards a
specific secondary structure class. Chou-Fasman’s method [125] is an example from this generation.
The second generation of methods used sophisticated statistical methods such as graph theory, neural
networks, logic-based machine learning and Bayesian statistics. A sliding window was used to take
the information of neighbouring residues into account. Some examples from this generation include
Garnier-Osguthorpe-Robson(GOR) method[126] and the Lim method[127]. The above two genera-
tions did not provide great accuracies. The third generation uses evolutionary information derived from
multiple sequence alignments of the query sequence and advanced machine learning models. Some
examples of such methods include PSIPRED [19], SPIDER3 [30], and ProteinUnet[128]. These new
methods provide a high degree of accuracy, reaching up to 85%.
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An ANN is an Artificial Neural Network created by at least 2-3 layers of neurons. The initial/input
layer introduces input variables into the network. The hidden/inner layers are where the values of
complex matrix computations are stored. The final layer is the output layer, which may contain units for
carrying out output classification. Deep learning models stack layers of ANNs based on the principle
of hierarchy of concepts which states that complex concepts are learned by building them from simpler
ones [129]. Deep learning has surpassed other statistical methods in almost every domain, allowing to
build such intricate relations from data, infeasible for traditional machine learning algorithms. It has
had immense success in Computational Natural Sciences and has been used in many areas of science
and engineering.

This study uses a Deep Neural Network called a Transformer to predict the protein secondary struc-
ture from its sequence.

3.2 Methods

3.2.1 Dataset

The dataset used is exactly the same as used in previous studies [30] [130]. The full dataset contains
5789 proteins with a sequence similarity cut off 25% and X-ray resolution better than 2.0Å. The dataset
was split into two sets by Heffernan et al.: 4590 proteins were randomly selected to be the training set
(TR4590), and the remaining 1199 were used as the independent test set (TS1199). In this study, the
training set was further split into ten random sets for 10-fold cross-validation.

For visualisation of the predictions made by the model, the PDBs of all the proteins in the test
dataset was downloaded from the RCSB [63] website. The Needleman-Wunsch dynamic programming
algorithm[100] is used to align the sequence extracted from the structure file to the sequence present in
the test set. The protein structure file is then reindexed, based on this alignment, to match the indexing
of the sequence provided in the database.

nprot aacoils aasheets aahelices

Train 4,590 393,265 234,267 376,313

Test 1,199 102,518 58,998 98,146

Table 3.1: Summary of the dataset used for training and testing for secondary structure prediction
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3.2.2 Features

3.2.2.1 MSA Generation

Collections of multiple homologous sequences (called Multiple Sequence Alignments or MSAs)
can provide critical information for modelling the structure and function of unknown proteins. DeepMSA
[98] is an open-source method for sensitive MSA construction, which has homologous sequences and
alignments created from multiple sources of databases through complementary hidden Markov model
algorithms.

The search is done in 2 stages. In stage 1, the query sequence is searched against the UniClust30
[106] database using HHBlits from HH-suite[107] (v2.0.16). If the number of effective sequences is <
128, Stage 2 is performed where the query sequence is searched against the Uniref50 [108] database us-
ing JackHMMER from HMMER [109] (v3.1b2). Full-length sequences are extracted from the JackHM-
MER raw hits and converted into a custom HHBlits format database. HHBlits is applied to jump-start
the search from Stage 1 sequence MSA against this custom database.

3.2.2.2 Position Specific Scoring Matrix and Information Content

Position Specific Scoring Matrix (PSSM) is a commonly used representation of patterns in bi-
ological sequences. PSSMs are derived from MSAs using Easel [111] and Heinikoff position-based
weights so that similar sequences collectively contributed less to PSSM probabilities than diverse se-
quences. The information content (IC) of a PSSM explains how different the PSSM is from a uniform
distribution. IC is also derived using Easel.

3.2.2.3 Amino Acid Embeddings

Word2Vec [131] is a method in NLP (Natural Language Processing) for obtaining an efficient esti-
mation of word representations in a vector space. The same methodology can be applied by considering
amino acids as words, protein chains as sequences and the quarternary structure as a paragraph.

A shallow Common Bag of Words (CBOW) neural network is trained using a huge corpus of amino
acid sequences, obtained from the RCSB website[62][63]. The network takes the context of each word
as the input and tries to predict the word corresponding to the context. In this process of predicting the
target word, the vector representation of the word is created. Gensim [132] is a fast library for training
vector embeddings. Protein sequences were yielded as sentences to Gensim to train a Word2Vec model
for generating the amino acid embeddings. The vector representation of an amino acid is projected into
two dimensions using T-SNE, and the projection is visualised using a scatter plot.
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Figure 3.1: T-SNE 2D projection of the vector representation of amino acids coloured by mass

Figure 3.2: T-SNE 2D projection of the vector representation of amino acids coloured by charge
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Figure 3.3: T-SNE 2D projection of the vector representation of amino acids coloured by

hydrophobicity

Figure 3.4: T-SNE 2D projection of the vector representation of amino acids coloured by occurrence
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Figure 3.5: T-SNE 2D projection of the vector representation of amino acids coloured by isoelectric

point

Figures 3.1 (mass), 3.2 (charge), 3.3 (hydrophobicity), 3.4 (occurrence), 3.5 (isoelectric point) rep-
resent the T-SNE projection of an amino acid vector representation. The colours represent the quantity
of a particular property. It can be seen that amino acids with similar colours are closer together, indicat-
ing that the embeddings capture the properties of an amino acid very well, grouping amino acids with
similar properties together.

3.2.3 Model

3.2.3.1 Architecture

A transformer neural network[5] is a novel architecture that aims to solve sequence-to-sequence tasks
while handling long-range dependencies. It adopts the mechanism of attention, differentially weighing
the significance of each part of the input data. The transformer architecture is composed of a stack of
transformer layers, each containing a transformer sub-layer. The sub-layer is a multi-head self-attention
mechanism that uses a combination of feedforward and convolutional layers to perform the necessary
computations. A feedforward layer then transforms the output of the sub-layer to project it to the next
layer.
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Figure 3.6: Model architecture for secondary structure prediction. Transformer image taken from [5]
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Every sample in the dataset is a single protein chain, and the MSAs were generated for the same.
PSSM was calculated from the generated MSAs. The feature map was created by concatenating the
amino acid embeddings and the PSSM. The feature map was passed through a GRU (Gated Recurrent
Unit) to overcome the vanishing gradient problem, and then positional encodings were added to the
output. The GRU output with positional encoding was then provided to a Transformer network to
capture the local and global properties of the sequence. The output of the Transformer network was
then passed through a fully connected layer to project it to a single dimension and then through a
softmax layer to project it to a probability distribution. The output of the softmax layer was then used
to calculate the loss.

3.2.3.2 Loss Function

The loss function is calculated as the sum of the weighted cross-entropy loss of each class.

L(ŷ, y) = −
2∑

c=0

(αcŷc log(yc)

c represents the class of amino acid, 0 representing a coil, 1 representing a beta-sheet, and 2 repre-
senting an alpha helix.
ŷc is the vector of true labels where an amino acid belongs to class c.
yc is the model output of probabilities of a residue belonging to class c
αc is the weight that is assigned to the class c

3.2.4 Evaluation Metrics

3.2.4.1 Confusion Matrix

A confusion matrix is a table that allows for the visualisation of the performance of a supervised
learning algorithm. The x-axis represents the predicted class, and the y-axis represents the true class.
The diagonal elements represent the number of times a particular pair of classes were predicted correctly.
In contrast, the non-diagonal elements represent the number of times a class was mistaken for another
class. The sum of the diagonal elements represents the total number of correct predictions.
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3.2.4.2 Accuracy, Precision, Recall

Accuracy (ACC) is the ratio of correct predictions to the total number of predictions. Precision
(PPV) is the ratio of correctly predicted instances to the total number of predicted instances. Re-
call (TPR) is the ratio of correctly predicted instances to the total number of instances in the true
class.chicco2020advantages

3.3 Results and Discussion

The training dataset was split into ten folds, and ten models with the same architecture were trained.
One fold formed the validation set, and the remaining folds formed the training set for each model. The
validation results are provided in Table 3.2, along with the confusion matrix in Figure 3.7. The table
shows that the models learn almost similarly with accuracies ranging between 80.5% to 82%. This may
be due to the random split of the dataset to generate the folds, causing similar protein sequences to be
present in both the validation and train sets.

Dataset ACC(%) PPV(%) TPR(%)

Fold 1 81.83 92.99 92.89

Fold 2 80.79 92.48 92.38

Fold 3 81.02 92.54 92.63

Fold 4 81.15 92.58 92.78

Fold 5 81.12 92.69 92.62

Fold 6 81.32 92.77 92.59

Fold 7 80.40 92.41 92.18

Fold 8 81.38 92.66 92.75

Fold 9 80.15 92.17 92.35

Fold 10 81.05 92.48 92.66

Test 82.51 93.19 93.23

Table 3.2: Validation results of all 10 trained models and test results
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Figure 3.7: Sum of confusion matrices of the 10 models on their corresponding validation set

Figure 3.8: Confusion matrix on the test set after averaging the predictions of the 10 models
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For testing, the consensus algorithm chosen is as follows. The ten trained models are run on the test
set, the mean of the probabilities of each class is taken, and the class with the maximum probability is
considered the class to which the amino acid belongs. The test results are also provided in Table 2.1,
along with the confusion matrix in Figure 3.8. The consensus algorithm works well and provides a
higher accuracy on the test set than the validation sets, indicating that the models are not suffering from
overfitting on the training data.

SPIDER2 [22] employed a deep neural network consisting of three hidden layers with 150 hidden
nodes in each layer. The weights were initialised by stacked sparse autoencoder and then refined by stan-
dard back-propagation through fine-tuned supervised training. SPIDER2 reported accuracy of 81.8% on
the test set. An improved version of SPIDER2, called SPIDER3 [30] was released later on. SPIDER3
used long short-term memory (LSTM) bidirectional recurrent neural networks (RNNs) to capture non-
local interactions for improving their predictions on the 3-state secondary structure. It recorded an
accuracy of 84.16% on the test set.

Even as more data is becoming available and more sophisticated machine learning models are being
trained, the accuracy of secondary structure predictions has not improved as much, meaning that the
accurate prediction of the Q3 classification of secondary structures is possibly saturated. SPOT-1D [32],
after using a predicted interresidue contact map as additional input and an ensemble of recurrent and
residual convolutional neural networks was able to achieve 86% on the test set.

The transformer network was used for a token classification (named entity recognition) problem,
where each amino acid (token) in the sequence was given a class. According to a recent survey on deep
learning for Named Entity Recognition [133], Bidirectional Encoder Representations from Transformers
(BERT) performs very well on this task and can be explored as a prospect for the secondary structure
prediction task.

Some case studies were undertaken to see where the model performs well and where it performs
poorly. In the following figures: A coil turn predicted incorrectly is indicated by Red, while Orange
indicates a correct prediction. A beta-sheet predicted incorrectly is indicated by Green, while Yellow
indicates a correct prediction. An alpha helix predicted incorrectly is indicated by Blue, while Purple
indicates a correct prediction.

From the case studies in figures 3.9, 3.10, and 3.11, it is clear that the model does not perform well
at the borders of conversion from one structure to another and on short bursts of beta-sheets and alpha-
helices, indicating that the model has learnt to identify the general structure of the protein but finds it
challenging to find the transition point from one secondary structure to another.

42



Figure 3.9: 1KQP:A - The protein chain consists of all the secondary structures (α-helices (purple),

β-sheets (yellow) and coil turns (orange)). The model predicts correctly with high accuracy
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Figure 3.10: 1M9Z:A - The protein chain has bursts of small length β-sheets along its structure. The

model is unable to identify these short bursts (green indicates incorrect prediction of β-sheets)
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Figure 3.11: 1AOC:A - The protein chain has bursts of small length α-helices along its structure. The

model is unable to identify these short bursts (blue indicates incorrect prediction of α-helices)

3.4 Conclusion

In this study, a Transformer network was used to predict the secondary structure. The dataset used
was precisely the same as was used in previous studies [130] [30], where it was split into two parts:
4590 proteins were randomly selected to be the training set (TR4590), and the remaining 1199 were
used as the independent test set (TS1199). MSAs were generated for all the proteins in the dataset using
DeepMSA, and the Position-Specific Scoring Matrix and Information Content was extracted from it.
Amino acid embeddings were generated using a Gensim Word2Vec model, which gave representations
for each amino acid sharing similar qualities. Positional Encodings were generated and added to the
amino acid embeddings. The network was trained on 10-fold cross-validation, and the test set was
used to evaluate the model’s performance. Even with limited data, the network achieved an accuracy of
82.5%.
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Chapter 4

Conclusion

The rapid sequencing of proteins has led to the gap between the number of known protein sequences
and the number of known structures to increase rapidly. The tertiary structure provides important clues
about its function, but the techniques for structure determination are expensive, labour-intensive and
time-consuming, and sometimes not possible. Although the primary goal of protein predictions is to
predict the 3-D structure, 1-D and 2-D predictions are of intrinsic interest and often used as inputs for
intrinsic structure and function predictors. It becomes essential that predictions based on the protein
sequence are made to speed up the structure prediction process and provide clues towards the function
of a protein. There has been swift progress happening in Deep Learning. It has been successful on
many NLP tasks, including but not limited to image classification, text classification, object detection,
and machine translation. Due to the similarity between protein prediction tasks and the listed tasks,
applying the latest techniques for protein predictions becomes crucial.

This thesis applied two unique deep learning methods on different tasks, a protein function prediction
task and a protein structure prediction task, using only protein sequence information. A deep ResNet
was used to predict the binding site of a protein, and a Transformer network was used to predict the sec-
ondary structure. There are many prediction tasks, such as torsion angle, contact map, binding affinity,
protein-protein interactions for which deep learning models can be applied. When more complicated
techniques are developed, they can be applied to these tasks to achieve better results. Nevertheless,
with the introduction of DeepMind’s AlphaFold and AlphaFold2, there has been tremendous progress
in protein structure predictions, where unprecedented levels of accuracy are being seen. Have we finally
solved the age-old problem of predicting the structure of the protein from its sequence alone, or do we
still have a long way to go?
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