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Abstract

Advancements in 3D sensing, driven by the adoption of LiDAR technology, have reignited
innovation in autonomous navigation. LiDAR sensors offer real-time, large-scale point clouds,
surpassing traditional vision solutions. Datasets like nuScenes and KITTI empower researchers
in tasks such as Localization, Place Recognition, and Obstacle Trajectory Prediction. This the-
sis contributes by exploring the modeling and prediction of large-scale point cloud sequences.
Additionally, it showcases a practical application, representing point-cloud sequences as occu-
pancy grid maps and generating trajectories for autonomous navigation. This dual focus en-
hances our understanding of autonomous navigation complexities, providing valuable insights
into real-world implementation challenges.

The first study introduces ATPPNet, an innovative architecture tailored to predict future
point cloud sequences using Conv-LSTM, channel-wise and spatial attention, and a 3D-CNN
branch. Extensive experiments conducted on publicly available datasets demonstrate the model’s
impressive performance, outperforming existing methods. The thesis includes a comprehen-
sive ablative study of ATPPNet and an application study showcasing its potential for tasks such
as odometry estimation.

In the second study, the thesis proposes NeuroSMPC, a novel integration of data-driven
frameworks with sampling-based optimal control for real-time applications, particularly on-
road autonomous driving. The 3D-CNN layers in NeuroSMPC predicts optimal mean control
without iterative resampling, reducing computation time. The approach proves effective in
generating diverse control samples around the predicted optimal mean, facilitating real-time
trajectory rollout in the presence of dynamic obstacles. The 3D-CNN architecture implicitly
learns future trajectories of dynamic agents, ensuring collision-free navigation without explicit
future trajectory predictions. Performance gains are demonstrated over multiple baselines in
on-road scenes through closed-loop simulations in CARLA. Real-world applicability is show-
cased by deploying the system on a custom Autonomous Driving Platform (AutoDP). These
studies collectively advance the understanding and implementation of autonomous navigation
systems in dynamic environments.
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Chapter 1

Introduction

Advancements in technology have led to a growing use of robotics in research labs and in-
dustry. These robots/agents often require to autonomously navigate in their environments to
reach their designated goals. This research direction, widely explored in robotics, has appli-
cations in various domains, including autonomous aerial/aquatic drones, vehicles, and mobile
robots. The task of autonomous navigation has three main stages: Perception, Planning and
Control. This thesis primarily focuses on the Perception and Planning stages of autonomous
navigation.

Figure 1.1: The three stages of autonomous navigation

Recent advancements in 3D perception, propelled by commercial LiDAR (Light Detection
and Ranging) technology, have led to substantial progress in perception systems. These ad-
vancements enable LiDAR sensors to produce real-time, large-scale sequential point clouds,
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providing a high-fidelity perception of the 3D world compared to traditional monocular/stereo-
based vision solutions. The availability of such extensive data, exemplified by datasets like
nuScenes [2] and KITTI [1], has empowered researchers to tackle complex tasks such as Lo-
calization, Place Recognition, Segmentation, Obstacle Trajectory Prediction and Autonomous
Navigation. The majority of existing methods addressing these tasks rely on captured sequen-
tial point clouds within a specified temporal window from the recent past. The planning and
decision making tasks mainly makes use of the detect then forecast framework to first detect the
objects in the captured sequential point clouds and then forecast how their poses will evolve.
This decoupled approach cannot be scaled as it is expensive in nature. An alternative way to
address this issue is to first generate a spatio-temporal model of the observed sequential point-
clouds. This model inherently encapsulates information about the scene’s dynamics and can
predict how the scene will evolve by generating future sequences of point-clouds.

Modeling sequences of large-scale point clouds presents unique challenges. A primary ob-
stacle arises from the inherent unordered nature of point clouds in the spatial dimension, despite
their temporal order. Additionally, the varying sampling sizes further complicate the task of
capturing spatio-temporal coherence among these point clouds. This complexity renders tradi-
tional architectures for feature encoding (such as CNNs) and sequence prediction (like LSTMs)
unsuitable, as they are not designed to process spatially unordered data. Another significant
challenge stems from the extreme sparsity of LiDAR point clouds, making it difficult to repre-
sent spatial geometric structures accurately. The inherent noise in sensing introduces additional
hurdles, especially in scenes with significant clutter. Furthermore, the memory-intensive nature
of extracting features from sequences of full-scale point clouds, each containing over 100,000
points, adds to the computational demands.

Despite these challenges, once a spatio-temporal modeling approach generates a feature
vector representing observed point cloud sequences, it proves versatile for various applica-
tions. One noteworthy application is autonomous navigation, where the spatio-temporal model
can be used to facilitate the planning of a collision-avoiding trajectory. Different strategies
exist for trajectory planning, such as generating multiple trajectory proposals [3–5] or incorpo-
rating sampling-based optimization paradigms. However, achieving real-time trajectory rollout
remains a challenge in this context. Addressing these challenges is essential for advancing the
capabilities of autonomous navigation systems based on spatio-temporal models.

In section 1.1, a discussion has been made about the existing methods that spatio-temporally
models sequential 3D data and the gaps in the literature. These methods leverage the derived
feature vector to predict future sequences of point clouds, thereby validating the effectiveness
of the learned model. Subsequently, a discussion was presented on trajectory generation meth-
ods that leverage a representation of observed sequences of point-clouds and the current gaps
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in the literature. Section 1.2 discusses briefly about the contributions in this thesis followed by
section 1.3 discussing about the organisation of this thesis.

1.1 Related Work

Traditionally, 3D data is processed with deep learning encoders using volumetric [6–8],
point-cloud [9, 10] and multi-view projection [11–13] methods.

In regards to spatio-temporally modelling sequences of observed point clouds and predicting
future point cloud sequences, primarily two lines of work exist, focusing on point cloud and
range image representation. The existing point cloud prediction methods either reformulate
the task as scene flow estimation [14] or employ RNN kind of temporal prediction [15, 16].
The former predicts just a translation of the 3D points and hence does not represent the future
point cloud accurately. At the same time, the latter works on down-sampled point clouds (for
memory efficiency reasons) thereby limiting the resolution of 3D data.

On the other hand, range image based representations project the point cloud data to a
2D virtual image plane of the LiDAR sensor, thereby retaining only the single (closest, far-
thest, or average) depth of the scene for every pixel. Early work with this representation [17]
used LSTMs to process the temporal sequences and predict a sequence of future range im-
ages. [18] used 3D-CNNs with circular padding and skip-connections to predict a sequence of
future range images while [19] used Conv-LSTMs on each of the features from the convolu-
tion encoder for the prediction task. However, their network is cumbersome and they use the
auto-regressive approach for prediction of range images. Recent work in [20] uses the self-
attention mechanism of Transformers along with a semantic-based loss function. This method
compresses the 3D tensors into height and width dimensions and processes each of them sep-
arately using two separate transformer blocks. As a result, they are using self-attention only
on the channels and since they are compressing the feature tensor into height and width they
are also losing the spatial context. Additionally, their model size in terms of the number of
parameters is large.

In the realm of autonomous navigation literature, significant attention is devoted to layout
representations [21–23], agent trajectory prediction [24, 25], and end-to-end trajectory gener-
ation [4, 23]. Most of the trajectory generation frameworks involve choosing the best possible
trajectory out of an elite set that is typically obtained from large dataset of driving examples
or expert trajectories [4, 23]. However the expert trajectories despite the diversity can be sub-
optimal and need not be the best response for a given input scenario. Most of these methods
do not show their trajectory planning in closed loop simulation scenarios as they are evaluated
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in pre-recorded datasets that prevent perception and planning in coupled closed loop settings.
Also none of the above methods showcase their formulation on a real self driving vehicle in
real world on-road scenes.

Elsewhere, in the manipulation planning community, sampling based optimal control [26,
27] have become popular essentially due to the derivative free blackbox optimization feature of
such frameworks. Such sampling based trajectory optimization methods suffer from the curse
of time complexity with a number of variants being proposed to overcome this disadvantage.
For instance [28] resorts to efficient parallelization of controls while [29] contributes through
sample efficient methods. Whereas in [30] gradient based updates of sample parameters leads
to enhanced performance. Nonetheless these methods still need iterative improvement of the
sample parameters to reach optimum mean control values that preclude their adaptation to
on-road real time autonomous driving applications.

1.2 Contributions

Figure 1.2: Contributions of this thesis: ATPPNet and NeuroSMPC

Based on the limitations of the existing literature in the field of spatio-temporally mod-
elling sequences of observed point-clouds and predicting future sequences of point-clouds, a
new framework ATPPNet (ATPPNet: Attention based Temporal Point cloud Prediction Net-
work) has been proposed in chapter 2. ATPPNet leverages Conv-LSTM [31] blocks along with
channel-wise and spatial attention modules for extracting an enhanced spatio-temporal context
for the task of future point cloud prediction. Further, a complimentary 3D-CNN branch is also
leveraged to spatio-temporally encode the global feature embeddings of the range images. Ad-
ditionally, the re-projection mask associated with the predicted range images are also predicted
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to retain only the valid range values when re-projecting to the point cloud. In contrast to the
approach presented in [20], the processing of range image sequences using Conv-LSTM, along
with the application of spatial and channel-wise attention directly on learned spatio-temporal
3D features, demonstrates superior performance without the need for a separate semantic-based
loss function. The proposed architecture achieves state-of-the-art performance on two publicly
available datasets and yields real-time future point cloud prediction (faster than a typical ro-
tating 3D LiDAR sensor point cloud rate i.e., 10Hz). Thorough qualitative and quantitative
evaluations have been performed and a detailed ablation study has also been provided to vali-
date the effectiveness of the proposed architecture.

In contrast to the existing literature on trajectory generation, a novel framework Neu-
roSPMC was proposed in chapter 3 for real-time collision free trajectory generation by mod-
elling sequences of observed point-clouds represented as occupancy grid maps. The spatio-
temporal context vector, derived from these sequences of observed occupancy grid maps, is
then used to predict optimal mean controls over a finite horizon. The predicted mean controls
are used to sample controls, which are subsequently scored using multiple cost functions. The
best-scored controls are selected and executed by the autonomous vehicle. Real time closed
loop simulations were shown on a number of CARLA scenes along with a closed loop imple-
mentation on the autonomous vehicle AutoDP to achieve point to point on-campus autonomous
driving. Moreover the low latency control rollout facilitates navigation in dynamic scenes with-
out collisions despite the lack of explicit trajectory prediction into the future of the dynamic
actors.

1.3 Organization of the Thesis

The thesis is organized into four chapters. A brief summary of each chapter is mentioned
below.

• Chapter 1: This is an introductory chapter detailing the motivation behind the research,
the contributions of the thesis and its outline.

• Chapter 2: This chapter introduces ATPPNet for modelling observed sequences of
point-cloud and predicting future sequences of point-clouds. The architecture of ATPP-
Net was explained and multiple experiments reveal that ATPPNet achieves SOTA per-
formance on various publicly available datasets while beating the existing methods by
8− 10% margin
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• Chapter 3: This chapter introduces NeuroSMPC that uses 3D-CNN layers to model
observed sequences of point-clouds represented as occupancy grid maps and predicts
the optimal mean control over a finite horizon.The performance gain of NeuroSMPC
was shown over multiple baselines in a number of on-road scenes through closed loop
simulations in CARLA. The real world applicability of the proposed system was also
showcased by running it on a custom Autonomous Driving Platform (AutoDP).

• Chapter 4: This chapter concludes the thesis by summarizing the various contributions
brought out by this thesis.
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Chapter 2

ATPPNet: Attention based Temporal Point cloud Prediction

Network

2.1 Introduction

Predicting future point clouds is an important yet challenging task in the field of autonomous
driving. The goal is to predict future point cloud sequences that not only preserves object
structures but also accurately depict their temporal motion. The foresight provided by these
predicted point clouds proves invaluable for subsequent tasks such as object trajectory estima-
tion to facilitate collision avoidance or estimating locations with the least odometry drift.

However, the task of predicting future point clouds comes with its own set of challenges.
One key challenge is that the point clouds are unordered in the space dimension (albeit ordered
temporally) and vary in sampling size hence it is difficult to model spatio-temporal coherence
among them. Traditional architectures designed for feature encoding, such as Convolutional
Neural Networks (CNNs), and sequence prediction (e.g., LSTMs), cannot be directly applied
due to their incapacity to process spatially unordered data. Another key challenge is that the
LiDAR point clouds are extremely sparse making it difficult to capture the geometrical struc-
tures of the objects in the scene and hence predicting them in the future timesteps is extremely
difficult. The noise in sensing puts additional challenges in the perception of real-world scenes
where objects are largely cluttered. Additionally, the sheer volume of data in each full-scale
point cloud, exceeding 100,000 points, intensifies the memory requirements for extracting fea-
tures from these sequences.

Addressing these challenges, the proposed ATPPNet architecture employs a novel approach
to predict future point cloud sequences given a sequence of previous time step point clouds
obtained with LiDAR sensor and represented as range images. ATPPNet leverages Conv-
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LSTM [31] blocks along with channel-wise and spatial attention modules for extracting an
enhanced spatio-temporal context for the task of future point cloud prediction. Further, the
proposed architecture leverages a complimentary 3D-CNN branch to spatio-temporally encode
the global feature embeddings of the range images. Additionally, ATPPNet also predicts the
re-projection mask associated with the predicted range images to retain only the valid range
values when re-projecting to the point cloud.

To summarize, the main contributions are as follows:

• A novel architecture, ATPPNet, has been proposed to predict future point clouds from a
sequence of past point clouds. ATPPNet leverages Conv-LSTM along with spatial and
channel-wise attention for this predictive task. ATPPNet achieves SOTA performance
on various publicly available datasets while beating the existing methods by 8 − 10%

margin.

• The empirical results demonstrate that ATPPNet significantly enhances the performance
of downstream tasks, like odometry estimation.

The rest of the chapter is organised as follows: Section 2.2 describes the architecture of the
proposed network in detail; Section 2.3 details the experiments and the analyses the results of
the experiments.

2.2 Methodology

The proposed ATPPNet (Attention-based Temporal Point cloud Prediction Network) lever-
ages Conv-LSTM blocks along with channel-wise and spatial attention modules, comple-
mented by a 3D-CNN branch, to process a past sequence of 3D point clouds and predict future
point clouds.

In a temporal window, let SP = {St−M+1, St−M+2, . . . , St} represent the input sequence of
3D point clouds spanning M time steps. Each Sτ ∈ R3 corresponds to a set of 3D points cap-
tured at a specific time step τ . The objective of the proposed ATPPNet is to forecast the future
sequence of 3D point clouds for a temporal window encompassing N time steps, denoted as
SF = {St+1, St+2, . . . , St+N}.

Following the approach in [18], the range image representation is adopted by initially con-
verting the point clouds into the spherical coordinate system. Subsequently, the resulting point
cloud Sτ ∈ R3 is projected onto the virtual image plane of the LiDAR sensor, represented as
Rτ ∈ R2.
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Let RP = {Rt−M+1, Rt−M+2, . . . , Rt} denote the sequence of past range images within a
fixed temporal window, obtained from SP . Similarly, RF = {Rt+1, Rt+2, . . . , Rt+N} repre-
sents the sequence of predicted range images corresponding to SF .

Figure 2.1: ATPPNet Architecture. ATPPNet leverages Conv-LSTM along with channel-wise and spatial atten-

tion dually complemented by a 3D-CNN branch for extracting an enhanced spatio-temporal context to recover

high quality fidel predictions of future point clouds.

2.2.1 Overall Architecture

The overview of the ATPPNet architecture is depicted in Figure 2.1. A convolution encoder
shared across the network processes the input range images RP and produces a set of multi-
scale feature tensors for each range image. Subsequently, the first L − 1 feature tensors are
input to Conv-LSTMs, enabling the modeling of spatio-temporal relationships across RP .

Furthermore, spatial and channel-wise attention mechanisms are applied to the Conv-LSTM
outputs, resulting in L − 1 context tensors. These context tensors represent a consolidated
spatio-temporal encoding of RP . Additionally, for the final L-th feature tensor, a 3D-CNN
layer processes the spatio-temporal relationship, generating the L-th feature tensor for the sub-
sequent N time steps.

On the decoder side, the context tensor, along with the hidden state from the last time step,
is provided to L−1 Conv-LSTMs. These Conv-LSTMs generate feature tensors for each of the
L− 1 layers, projecting N time steps into the future. All L feature tensors on the decoder side
are subsequently processed to generate the range image sequence RF and their corresponding
re-projection masks MF for all N future time steps. Each pixel Mτ ∈ MF can be interpreted
as the probability for each range image pixel to be valid or invalid.
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This re-projection mask is utilized during the back-projection of a range image to a point
cloud, where only the range values corresponding to probabilities greater than 0.5 are retained.
The specific construction details of these architectural blocks are outlined below.

2.2.2 Convolution Encoder & Decoder block

The convolution encoder block takes the range image and first performs a 2D-convolution
operation, resulting in a tensor with an increased number of channels but the same spatial
resolution. This tensor is further processed using L convolutional sub-blocks.

Each sub-block takes as input a feature tensor and applies a combination of 2D-convolution,
2D-batch normalization, and leaky-ReLU operation while keeping the tensor dimensions the
same. A strided-convolution operation is subsequently performed, resulting in a down-sampled
tensor.

The convolution decoder block follows the reversed structure of the convolution encoder
block. There are L sub-blocks, each of which takes an input tensor and passes it through a
2D-transposed convolution, 2D-batch normalization, and leaky-ReLU operation resulting in a
spatially scaled-up tensor while keeping the number of channels the same.

Another 2D-convolution operation is then performed, to decrease the channel size of the
tensor. The output of the L-th layer is finally passed through another 2D-convolutional layer
resulting in the predicted range images and the associated re-projection mask.

2.2.3 Conv-LSTM encoder

The utilization of L − 1 Conv-LSTMs is proposed to leverage the spatio-temporal context
inherent in input sequences. Following the architectural paradigm of S2Net [19], multiple
Conv-LSTM layers are employed for each of the feature tensors, aiding in the preservation of
high-frequency details across the range image sequences. The Conv-LSTMs corresponding to
each of the L− 1 features generate a hidden state for every time step within the M sequence.

2.2.4 Attention Module

Let τ ∈ [t−M +1, . . . , t− 1, t] be a specific time step in the given input temporal window,
and the feature tensors for the layer l at every time step be represented as f l

τ . Similarly, let the
output of l-th Conv-LSTM at time step t denoted as glt where l ∈ [1, . . . L− 1]. As part of the
attention module, the joint embedding J τ l of fτ l and glt is computed using the formulation
from [32]:
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J l
τ = σ1(Wff

l
τ ⊕Wgg

l
t),

where σ1 is a non-linear activation function chosen as ReLU and ⊕ is the concatenation
operation. Wf and Wg are implemented as 2D-convolution operations with 1 × 1 kernel.
The use of σ1, Wf , and Wg allows the network to learn non-linear relationships between the
features, which is especially important when the image is noisy like our range images. The
resulting tensors J l

τ are passed through the spatial and channel-wise attention module [33] to
find the 3D attention map M(J l

τ ) ∈ RCl×Hl×Wl . The refined feature tensor for layer l at time
step τ is computed as:

f̂ l
τ = f l

τ ⊗M(J l
τ ).

Here ⊗ is the element-wise multiplication. To compute the 3D attention map M(J l
τ ), the

channel-wise attention and spatial attention are computed separately and then combined as

M(J l
τ ) = σ(Mc(J l

τ )⊗Ms(J l
τ ))a,

where σ is the Sigmoid function and ⊗ is the element-wise multiplication operation. The
Mc function first applies the global average pooling operation on the 3D tensor J l

τ to get the
channel tensor which is then passed through an MLP layer to get the channel-wise attention
values. The Ms function applies 2D-convolution operation on the 3D tensor J l

τ and returns a
single channel tensor which represents the spatial attention values.

The refined feature tensors for all the M time steps for each of the L − 1 layers are then
used to compute the context tensors, that are subsequently served as input to the decoder Conv-
LSTMs.

contexttl =
t−M+1∑
τ=t

f̂ l
τ

2.2.5 Conv-LSTM decoder

The Conv-LSTM decoder follows a similar structure as the Conv-LSTM encoder. L −
1 Conv-LSTM decoders are used to predict L − 1 feature tensors for each of the N future
time steps. Let τ ∈ [t + 1, . . . , N ] be a specific time step in the predicted future temporal
window. For the τ -th time step, the l-th Conv-LSTM decoder takes as input the context tensor
contextτ−1

l where l ∈ [1, . . . , L − 1] along with the hidden state of the Conv-LSTM for time
step τ−1 to compute the output feature tensor. This output feature tensor along with the hidden
states of the previous time steps are used to re-compute the context tensor contextτl to be used
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for the next time step. These output feature tensors on the Conv-LSTM decoder side are used
by the convolutional decoder to generate the predicted range images RF

2.2.6 3D-CNN block

The feature tensors for the Lth layer from the convolutional encoder block for all the past
M time steps are concatenated to create a 4D tensor. A 3D-CNN layer is used to process
this feature tensor and generate N feature maps for the L-th convolutional decoder block. It’s
crucial to note that due to the spatial focus tendencies of 3D-CNNs, which concentrate on
fewer, contiguous areas within feature tensors [34], a 3D-CNN is applied specifically to the
last L-th layer of the feature tensor (obtained with 2D-CNN), and is chosen for its ability to
capture global structures in the range image [35], [36]. Thus, the 3D-CNN block extracts only
the complementary spatio-temporal context as the primary spatio-temporal context is already
obtained by applying Conv-LSTM’s on the initial layers of the convolutional encodings as they
tend to capture the high frequency details in the range images. This also gives us the additional
advantage of speeding up our inference time.

2.2.7 Loss Function

A combination of losses are used when training the network. Since the ground truth point
clouds are projected onto 2D range images of dimension H ×W , 2D image-based losses can
be used.

Firstly, the average range loss LR is employed to calculate the error between the pre-
dicted range values r̂τ,i,j ∈ RN×H×W and the corresponding ground-truth range values rτ,i,j ∈
RN×H×W . The formulation for the average range loss is as follows:

LR =
1

N ×H ×W

t+N∑
τ=t+1

H∑
i=1

W∑
j=1

|| r̂τ,i,j − rτ,i,j ||1,

where || • ||1 represents the L1 norm. The range loss LR is computed only for the valid
ground truth points. To train the re-projection mask output, the Binary Cross-Entropy loss is
used between the predicted mask values m̂τ,i,j ∈ RN×H×W and the ground truth mask values
mτ,i,j ∈ RN×H×W . The average mask loss LM is computed as:

LM =
1

N ×H ×W

t+N∑
τ=t+1

H∑
i=1

W∑
j=1

−mτ,i,j log m̂τ,i,j (2.1)

− (1−mτ,i,j) log(1− m̂τ,i,j), (2.2)
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Figure 2.2: Qualitative comparison conducted on sequence 10 of the KITTI odometry dataset. The predicted

points (blue) and the ground truth points (red) are combined for a better visual comparison. The top row shows

the point clouds at prediction step t+ 1 and the bottom row shows the point clouds at prediction step t+ 5. The

areas of interest are circled in green.

where m̂τ,i,j is the predicted probability of whether the range value is valid. mτ,i,j is 1 if the
ground-truth range value is valid and 0 otherwise. A masked range image is generated by taking
only the range values from the range image whose corresponding mask values are greater
than 0.5. Since the predicted masked range images are re-projected into point clouds,Chamfer
distance [37] represented as LC is used for evaluating fidelity of the predicted point clouds.

The combined loss function is given as

L = LR + LM + αCLC .

αC is the weight associated with the Chamfer distance.

2.3 Experiments and Results

2.3.1 Experimental Settings

ATPPNet is trained in a self-supervised manner in the sense that only the sequential point
cloud data scans are used and no manually annotated labels are required. For the experiments,
the temporal window size has been kept as M = N = 5. In the convolutional encoder block,
the initial convolutional operation outputs 16 channels while retaining the spatial dimension.
L = 4 sub-blocks were used where the channel size increases by a factor of 2 for every suc-
cessive sub-block obtained by the convolutional encoder. In each of the sub-blocks, the first
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Figure 2.3: (a) Predicted range images by our ATPPNet and existing methods in comparison to ground truth

and, (b) the 3D rendering of the predicted point cloud by ATPPNet (blue) and ground-truth (red). Green cir-

cle/rectangle highlights regions where ATPPNet’s predictions are superior.

convolutional operation uses a kernel size of 3×3 with stride (1, 1), and the second convolution
operation uses a kernel size of 2 × 4 with stride (2, 4). All the convolutional operations use
circular padding [18]. Each Conv-LSTM block uses 3 layers.

Similar to the trend in the literature [18, 20], the proposed architecture was trained for 50
epochs with αC = 0 and then fine-tuned with the Chamfer distance loss for the next 10 epochs
by setting αC = 1. The proposed model is trained on a system with an Intel Xeon E5-2640 CPU
and 3 Nvidia RTX 2080 GPUs using the Distributed Data Parallel strategy. While training, the
ADAM optimizer [38] was used with default parameters along with an initial learning rate of
0.0003 and the StepLR learning rate scheduler with gamma as 0.99.

2.3.1.1 KITTI Odometry dataset [1]

The training data consists of sequences 00 − 05, the validation set comprises sequences
06−07, and sequences 08−10 are designated for testing. In the KITTI dataset [1], the LiDAR
system encompasses 64 channels. Consequently, range images of size 64 × 2048 have been
utilized in our approach.
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Prediction Step TCNet [18] PCPNet [20] PCPNet-

Semantic [20]

ATPPNet

(Ours)

1 0.554 0.543 0.503 0.468

2 0.671 0.662 0.620 0.570

3 0.779 0.773 0.727 0.667

4 0.878 0.872 0.825 0.760

5 0.974 0.973 0.920 0.851

Mean 0.771 0.765 0.719 0.663

Table 2.1: Range Loss results on the KITTI odometry test set verifies that ATPPNet has a performance improve-

ment of 4.026% over SOTA on the mean range loss. Bold values correspond to the best performing model in that

corresponding time step.

2.3.1.2 nuScenes dataset [2]

The proposed network was trained on this dataset employing a training strategy similar to
that used on the KITTI dataset. In line with PCPNet [20], sequences 00−69 were employed for
training, 70− 84 for validation, and 85− 99 for testing. The architecture was trained on range
images with dimensions 32× 1024, since the LiDAR system in use possesses 32 channels.

2.3.2 Qualitative Analysis

Figure 2.2 (and Figure 2.3) shows a qualitative comparison of the predicted point clouds
generated using the proposed ATPPNet and the other methods: TCNet [18], PCPNet and
PCPNet-semantic [20]. The areas of interest are highlighted with numbered green circles.

In the predicted sequence t + 1 shown in Figure 2.2, it can be observed over the circles
a, b, c & d that ATPPNet outperforms the other methods by generating point clouds that are
less noisy and structurally more similar to the ground truth. It can be observed in time step
t + 5 (bottom row) that the circles numbered a, b, c, d, e & f in the point cloud generated by
ATPPNet is more fidel to the ground truth compared to the predicted point clouds from the
other methods that have large visible deviations from the ground truth and are more noisy.
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Sampled Point Cloud Full-Scale Point Clouds

Prediction

Step

Point-

LSTM

[15]

MoNet

[16]

TCNet

[18]

PCPNet

[20]

PCPNet-

Semantic

[20]

ATPPNet

(Ours)

TCNet

[18]

PCPNet

[20]

PCPNet-

Semantic

[20]

ATPPNet

(Ours)

1 0.332 0.278 0.290 0.285 0.280 0.258 0.253 0.252 0.242 0.225

2 0.561 0.409 0.357 0.341 0.340 0.311 0.309 0.301 0.298 0.270

3 0.810 0.549 0.441 0.411 0.412 0.375 0.377 0.362 0.354 0.326

4 1.054 0.692 0.522 0.492 0.495 0.445 0.448 0.435 0.427 0.391

5 1.299 0.842 0.629 0.580 0.601 0.523 0.547 0.514 0.503 0.461

Mean 0.811 0.554 0.448 0.422 0.426 0.382 0.387 0.373 0.365 0.335

Table 2.2: Chamfer distance results on KITTI Odometry test sequence with the sampled point clouds on the left

and full-scale point clouds on the right. ATPPNet has a performance improvement of 10.328% over SOTA for the

sampled point clouds and 8.219% over SOTA for the full-scale point clouds. Bold values correspond to the best

performing model in that corresponding time step.

2.3.3 Quantitative Analysis

In this section, a quantitative analysis of the proposed ATPPNet has been performed with
two point based methods (PointLSTM [15], MoNet [16]) on the KITTI [1] test set, and three
range image based methods (TCNet [18], PCPNet and PCPNet-semantic [20]) on the KITTI
[1] and the nuScenes [2] test set. The point based methods [15, 16] use down-sampled point
clouds to 65536 points and this is also adopted by ATPPNet and other methods i.e., [18, 20].
The range loss and Chamfer distance were used to evaluate the predicted range images and the
point clouds, respectively.

Table 2.1 shows the quantitative results of the range loss for all the methods on the KITTI
test set. Compared to the other methods, ATPPNet generates better range images as the predic-
tion time step increases, which can also be verified by the improvement of 4.026% over SOTA
(PCPNet-semantic [20]) in the mean range loss.

In Table 2.2, the Chamfer distance has been evaluated on the sampled point clouds (left col-
umn) and full-scale point clouds (right column) on the KITTI test set. As can be observed, the
proposed method is having an improvement of 10.328% over SOTA on sampled point clouds
and an improvement of 8.219% over SOTA on full-scale point clouds. It can also be observed
that the margin of Chamfer distance between ATPPNet and other methods increases as the pre-
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Evaluation metric TCNet [18] PCPNet-Semantic

[20]

ATPPNet (Ours)

Mean Chamfer

Distance

1.389 1.360 0.932

Mean Range Loss 0.719 0.704 0.598

Table 2.3: Mean Range Loss and Chamfer distance on the nuScenes test set. ATPPNet is making an improvement

of 15.056% over SOTA on the mean Range loss and 31.470% over SOTA on the mean Chamfer distance.

A) Attention Module B) Conv-LSTM (CLSTM) layers

Evaluation

metric

No

Attention

S-Attention C-Attention L− 1

CLSTM

L− 1 &

L− 2

CLSTM

all L

CLSTM

ATPPNet

(Ours)

Chamfer

distance

0.365 0.359 0.356 0.405 0.378 0.366 0.335

Range loss 0.719 0.687 0.690 0.770 0.698 0.717 0.663

Table 2.4: Results of Ablation study on Attention Module and Conv-LSTM layers. Bold values correspond to the

best performing model.

diction time step increases (i.e., farther in future). This indicates a more stable prediction of
the point clouds across all the time steps as depicted in Figure 2.2.

In Table 2.3, the quantitative analysis of the proposed model trained on the nuScenes dataset
has been reported. ATPPNet is improving 15.05% on the mean range loss and 31.47% on the
mean Chamfer distance over SOTA. The inference time on the KITTI and nuScenes dataset is
89.5 ms and 70.7 ms respectively.

2.3.4 Ablation Study

This section presents a comprehensive analysis of the significance of various blocks within
the proposed architecture, focusing on their impact on the KITTI test set. The effectiveness of
the proposed method is systematically demonstrated through this investigation.
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Window size 3 5 7

T+1 0.221 0.255 0.258

T+2 0.274 0.270 0.306

T+3 0.344 0.326 0.363

T+4 NA 0.391 0.426

T+5 NA 0.461 0.498

T+6 NA NA 0.580

T+7 NA NA 0.657

Table 2.5: An ablation study on how the performance changes as we vary the sequence length.

Impact of Attention Module: In Table 2.4 column A, the results of our ablation study
on the attention module are shown. To conduct this study, 3 experiment were set up: (1)
removing the attention module (column “No Attention”), (2) using just spatial attention (col-
umn “S-Attention”) and (3) using just channel-wise attention (column “C-Attention”). It can
be observed in all the 3 experiments that the range loss and Chamfer distance deteriorates as
compared to our original method.

Effects of Spatio-Temporal Modelling: In Table 2.4 column B, the impact of varying the
number of feature tensors from the convolutional encoder to be modelled spatio-temporally
has been demonstrated. For this, three experimental setups were adopted: (1) modelling only
the L − 1-th feature tensor with Conv-LSTM and L-th tensor with 3D CNN. (column “L − 1

CLSTM”), (2) modelling only the L−1-th and L−2-th feature tensor with Conv-LSTM and L-
th tensor with 3D CNN. (“L−1 & L−2 CLSTM”), and (3) modelling all the L layers from the
convolutional encoder with Conv-LSTM (column “all L CLSTM”). For the aforementioned
experiments a deterioration in the performance compared to the original method was observed.
The significance of the 3D-CNN layer for the L-th layer is further emphasized by the findings
from experiment (3). This verifies that 3D CNNs are better at modelling contiguous areas in
the feature tensors [34] which tend to appear at the lower level features from the convolutional
encoder [35], [36].

Impact of Sequence Length: In Table 2.5, the results are presented, showcasing the varia-
tions in performance corresponding to different temporal window sizes. It is important to note
that the temporal window size is kept the same for both input and output. A decrease in the
Chamfer distance as we increase the window size from 3 to 5 can be observed. However, further
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Pose error TCNet [18] PCPNet [20] PCPNet-

Semantic [20]

ATPPNet

(Ours)

Lt+1
P 0.1342 0.1363 0.1280 0.1209

Lt+2
P 0.2412 0.2282 0.2235 0.2065

Lt+3
P 0.3670 0.3388 0.3343 0.3038

Lt+4
P 0.5084 0.4630 0.4558 0.4128

Lt+5
P 0.6736 0.6022 0.5878 0.5328

Mean 0.3849 0.35374 0.3459 0.3154

Table 2.6: LOAM pose error. We adopt LOAM [36] and evaluate the disparity between the motion estimates on

ground truth and predictions.

increasing the window size from 5 to 7 leads to an increase in the Chamfer distance. A possible
explanation for this is that the window size of 3 is too short to model the spatio-temporal con-
text of the scene while, for the window size of 7, the context length and the prediction horizon
is too long.

2.3.5 Results on Downstream Task

In this section, the impact of the proposed model has been analyzed on a downstream task
of generating motion estimates (i.e., odometry) for the ego vehicle. LOAM [39] is utilized
to evaluate the disparity between motion estimates derived from ground truth and predictions.
Let p̂τ ∈ R2 denote the trajectory pose obtained using predicted point clouds and pτ ∈ R2

denote the trajectory pose obtained using ground truth point clouds at time step τ , where τ ∈
[t+ 1, . . . , t+N ]. The pose error Lτ

P is given as:

Lτ
P =|| p̂τ − pτ ||22 .

As reported in Table 2.6, the pose error (Lτ
P ) for ATPPNet is the least as compared to the other

methods. This verifies that the improved point cloud prediction from the proposed method
translates to a tangible outcome in the form of improved localization vis-a-vis other methods.
Additionally, such prediction of localization error can be effectively leveraged by active local-
ization strategies [40] that steer the vehicle to regions where the localization is expected to be
better.
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Chapter 3

NeuroSMPC: A Neural Network guided Sampling Based

MPC for On-Road Autonomous Driving

3.0.1 Introduction

On road autonomous driving entails persistent and consistent real-time decision making
in often highly dynamic and evolving scenes. To accomplish this most trajectory planning
frameworks employ a scheme of generating multiple candidate trajectory proposals and scoring
them according to an appropriate cost function [3–5]. The candidate trajectories are typically
obtained from large scale driving data [3] or by sampling from a parameter distribution that
defines a trajectory [4].

As an alternative sampling based optimization paradigms have been popular in the high
dimensional planning literature that seamlessly integrate dynamical model of the systems over
which the trajectory plans are computed. The major concern however here is the disadvantage
in rolling out trajectories in real-time.

The proposed novel framework interleaves neural network driven prediction of finite hori-
zon controls with samples drawn from the variance centred around the mean predicted by the
network. The deep network outputs a vector of controls that constitute the optimal mean control
over a finite horizon. The network is supervised with the best controls from the elite samples
of the sampling based control framework [28]. Typically this mean is expected to be close to
the global optimum [29, 30]. The best rollout sample is one that optimizes a scoring or cost
function detailed later.

The advantages of the original framework are maintained by abstaining from directly exe-
cuting the network output controls. Instead, the optimal rollout candidate is selected from the
samples around the network output controls. Simultaneously, we address the time complex-
ity challenges inherent in such frameworks by opting for the optimal mean obtained from the
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network, which is at least three orders faster. It’s worth noting that most formulations of this
nature typically entail numerous iterations of the following two steps to converge to the optimal
control:

• Selection of a subset of the candidate samples (the elite set) based on a scoring function.

• Update of the mean in accordance with the elite samples and re-sampling from the newly
updated distribution.

Additionally, the network, employing its spatio-temporal convolution (3D-CNN) architecture,
implicitly grasps the temporal evolution of dynamic actions without relying on explicit trajec-
tory prediction. Despite the absence of explicit trajectory prediction, the executed trajectory
demonstrates collision-free navigation across a diverse range of on-road scenarios featuring
multiple dynamic actors. This success can be attributed to the deep network’s capability for
extremely low-latency, high-frequency control roll-outs.

To summarize, the main contributions are as follows:

1. A neural network interleaved sampling based optimal control that computes finite hori-
zon control rollout in real-time thereby making it suitable for real-time self driving for
on-road scenes.

2. We show 3D convolutions that convolve spatial and temporal components of a time se-
quenced Birds Eye View (BEV) layout learns implicitly the future trajectories of the
dynamic obstacles so much so the planner based on the network output avoids collision
with dynamic obstacles despite lack of explicit trajectory prediction into the future.

3. A number of closed loop simulations in diverse scenarios in the CARLA simulator as
well as real-time on campus navigation through our AutoDP confirm the efficacy and
real-time veracity of the proposed framework.

4. Moreover the comparative analysis on compute time with other sampling based optimal
control frameworks [28, 30] clearly depicts the vast performance gain of the proposed
method.

5. Furthermore, RoadSeg is introduced as a system for real-time road segmentation on
board in known environments. It can effectively generate Bird’s Eye Views (BEVs)
even in setups with limited resources.

The rest of the chapter is organised as follows: Section 3.1 describes the architecture of the
proposed network in detail; Section 3.2 details the experiments and the analyses the results of
the experiments.
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Figure 3.1: Pipeline: Each Point-cloud from the AutoDP is first passed through the RoadSeg Network to segment

the points that belong to the road. The non-road points are considered as obstacles. A down-projection operation

is performed to the obstacle points to create a BEV occupancy grid map. 5 past BEVs are then stacked together

and passed through a 3D-CNN architecture to get the mean controls for a short-horizon. These mean controls are

then used as the mean of a sampling based MPC to sample more trajectories. The best trajectory is chosen from

amongst these trajectories to be executed by our AutoDP.

3.1 Methodology

In the context of on-road driving, given a point cloud and the global path that the AutoDP
needs to follow, the objective is to produce occupancy grid maps from the point cloud data.
These maps are then utilized to generate controls, directing the AutoDP towards obstacle-free
regions on the road, aligning with its global path. The state of the AutoDP at timestep h

is represented by the vector x̃h =
[
xh, yh, θh

]
where xh and yh represents the x and the y

coordinate of the vehicle respectively and θh is the orientation of the vehicle. The controls for
the vehicle at timestep h are represented by the vector uh =

[
vh, ωh

]
where vh and ωh are the

velocity and the angular-velocity of the vehicle respectively.

3.1.1 Pipeline

The framework pipeline is illustrated in Fig. 3.1. Initially, the point cloud from AutoDP
undergoes segmentation using the RoadSeg Network to isolate road-related points. Points not
belonging to the road are identified as obstacles. A down-projection operation is applied to
these obstacle points, resulting in a Bird’s Eye View (BEV) occupancy grid map. This process
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Figure 3.2: The RoadSeg network takes in the point postions as input, passes them thorough a nerf-like positional

encoding followed by a fully connected layer. The result is a segmentation score (road/not-road) for each point.

is repeated five times, and the resulting BEVs are stacked together. The stacked BEVs are
then fed through a 3D-CNN-based architecture to obtain mean controls. These mean controls
serve as the mean for a sampling-based Model Predictive Control (MPC) to generate additional
trajectories. From these trajectories, the best one is selected for execution by AutoDP.

3.1.1.1 RoadSeg Network

For the system to work in real time on a resource constrained setup, its essential that the
individual building blocks have minimal GPU footprint and the highest possible FPS. The ma-
jor bottleneck in the pipeline is road-segmentation, which is usually a GPU-intensive process.
To address this, leverage is taken of the known map environment of AutoDP. Initial road seg-
mentation is performed using computationally heavy neural networks, and this information is
then distilled using a smaller network designed for real-time operation. The resulting network
serves as an implicit representation of the operational area for the robot’s navigation [41].

The process begins by creating a map of the operational area using LEGO-LOAM [42].
This map, obtained through a custom calibrated lidar-camera setup, is utilized for global lo-
calization and planning, similar to other autonomous driving platforms [43]. With 3D points
and corresponding RGB values, off-the-shelf segmentation models are employed to segment
the road in the 3D map offline. The segmentation model choice is arbitrary. Once road points
are segmented, this information is distilled with a smaller neural network, termed the RoadSeg
network.

The RoadSeg network takes x, y, z points, passing them through a NERF-like positional
encoder [44], followed by a few MLP layers. The network’s task is to predict if the given
points belong to the road or not, trained using the offline-segmented LEGO-LOAM map as
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ground truth. Despite the sparsity of the LEGO-LOAM map, the positional encoding enables
the network to learn general spatial trends. This capability allows it to segment the road in
entire (denser) lidar point clouds during inference. Moreover, it can identify regions not seen
during the map creation process, such as those occupied by other vehicles. The RoadSeg
network, illustrated in Fig 3.2, demonstrates its advantages over other baselines in Sec. 3.2.2.

3.1.1.2 3D-CNN based Neural Network

The occupancy grid map at the current timestep T along with the past 4 occupancy grid maps
and the global path are concatenated into a 6 × H × W spatio-temporal tensor. This spatio-
temporal tensor is then passed into the 3D-CNN based encoder architecture to extract a feature
vector. The feature vector is then passed through 4 fully-connected layers to get an output vec-
tor of dimension H × 2 which represents the optimal controls (velocity and angular-velocity).
The feature vector from the encoder architecture encodes the spatio-temporal correlations be-
tween the occupancy grid maps.

3.1.1.3 Sampling based MPC

The goal is to generate controls for short horizons of H timesteps into the future. The
3D-CNN based Neural Network produces an output that serves as the mean for a Gaussian
distribution. Subsequently, N control sequences of length H are sampled from this Gaussian
distribution and rolled out using the unicycle kinematics model of the vehicle, resulting in N

trajectories. Each of these trajectories is then evaluated based on two cost functions:

• Smoothness cost: The smoothness cost ensures that more preference is always given to a
trajectory with a smooth change in it’s linear and angular velocities.

ĉang(x̂i,ui) =

√√√√H−1∑
h=1

(uwh
− uwh−1

)2 (3.1)

ĉlin(x̂i,ui) =

√√√√H−1∑
h=1

(uvh − uwv−1)
2 (3.2)

where uv and uw represents the linear and angular velocity components of the sampled
controls respectively.

• Obstacle avoidance cost: The obstacle avoidance cost ensures that the trajectories are
not colliding with any obstacles (occupied cells in the occupancy grid map).
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d(x̃h, õh) =|| x̃h − õh ||2 (3.3)

Here x̃h and õh are the states of the agent and the obstacle respectively at time-step h.
The agent and the obstacles are represented as circles. Let rA and rO be the radius of
the agent and the obstacle respectively. The state x̃h is said to be in collision with the
obstacle state õh if the euclidean distance d(x̃h, õh) between the agent’s position and
the obstacle’s position is less than or equal to the sum of their radius.

ĉobs(x̂i,ui) =

∞ , if d(x̃h, õh) ≤ rA + rO, h ∈ [0, H)

0 , otherwise
(3.4)

where x̂i and ûi are the i-th trajectory and controls out of the N sampled trajectories and
controls.

The final cost Ĉ(x̂i,ui) for each trajectory is calculated as the weighted sum of the three
costs

Ĉ(x̂i,ui) = wang ĉang(x̂i,ui) + wlinĉlin(x̂i,ui)+

woĉobs(x̂i,ui) (3.5)

where wang, wlin and wo are the weights chosen by the user. The trajectory with the smallest
cost is chosen as the best trajectory and the controls at h = 1 are used to drive the ego-vehicle
after which a new trajectory is recomputed again. Figure 3.3 shows the output of the neural
network and the best trajectory.

3.1.2 Dataset

Each sample in the dataset consists of a sequence of 5 occupancy-grid maps along with
the global path as the input and the short horizon optimal control as the output. The CARLA
simulator [45] was used to create a dataset. Obstacles were spawned with varying velocities
randomly amongst the CARLA maps. Each occupied cell in the occupancy grid map is used
as an obstacle while planning the optimal controls using the Sampling based MPC (SMPC).
Since the SMPC operates in the center line reference frame (CRF), all the obstacles were
transformed to the frame attached to the global path[46]. This allows the curved roads to
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Figure 3.3: This figure demonstrates the output trajectory (red) of the neural network, the sampled trajectories

(blue) from a Gaussian distribution with the neural network output as the mean, and the best trajectory (green)

selected from the sampled trajectories after scoring them with the smoothness and obstacle avoidance cost func-

tions.
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be treated as straight roads and plan feasible trajectories easily without taking the curvature
bound constraints. To plan the trajectories that avoids collision with dynamic obstacles whose
velocities are known from the CARLA ground truth data, the SMPC was used with the MPPI
update rule. The optimal trajectories are then transformed back to the global frame so that the
trajectories are within the curvature bounds of the roads in the global frame.

During inference the BEV does not need to be converted from the global frame to the CRF
which is a big advantage of our method. Also the 3D-CNN layers learns the dynamic nature of
the scene implicitly so we also don’t need a separate obstacle trajectory predictor.

3.2 Experimental Evaluation

3.2.1 Qualitative Analysis

In this section, a qualitative comparison has been shown between the trajectories gener-
ated by the proposed NeuroSMPC (NSMPC) formulation and trajectories generated by Model
Predictive Path Integral (MPPI) and gradient based Cross-Entropy Method (GradCEM) ap-
proaches. All the methods generate a short horizon (30 timesteps) control (velocity and angular-
velocity) sequence. These controls are rolled out using the unicycle kinematics model to gen-
erate the trajectory. The NSMPC takes the past 5 birds-eye view occupancy grid maps and
the global path as input. For both the MPPI and GradCEM approach, the occupied cells in
the occupancy grid map are considered as obstacles. In both the approaches the distribution
is updated iteratively to get the mean controls. Fig. 3.4 shows the trajectory generated by
the proposed method compared to the trajectories generate by MPPI and GradCEM. It can be
observed that the trajectory generated from our NSMPC formulation is qualitatively similar to
the trajectories generated from the iterative approaches in an empty straight and curved road
scenario and in a road with obstacles.

3.2.2 Quantitative Analysis

RoadSeg Network: The RoadSeg Network, though only limited to the current operational
area, allows for a much faster and accurate road segmentation with minimal GPU footprint. A
comparison for the proposed RoadSeg Network is done with two other baselines: RANSAC
based plane segmentation and LSeg[47] in terms of computation time and GPU memory uti-
lization. From Table 3.1, it can be observed that RoadSeg outperforms other approaches by a
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significant margin. The lesser GPU footprint of RoadSeg enables the execution of the entire
NeuroSMPC pipeline on a single laptop within our AutoDP.

Approach GPU Memory Utilization (MB) Inference Time (sec)

RoadSeg 790 0.0015

RANSAC - 0.08

LSeg 3492 0.018

Table 3.1: RoadSeg Performance compared against RANSAC and LSeg. RoadSeg results in lesser GPU footprint

and faster inference.

Neural guided Sampling based MPC: A comparison is done of the proposed method with
two other sampling based MPC baselines: MPPI and GradCEM, during inference with respect
to the number of iterations required to reach an optimal trajectory. Table 3.2 shows that using
the proposed method, an optimal trajectory can be achieved in single-shot, whereas using MPPI
or GradCEM, iterative update of the mean is needed to get an optimal trajectory. For MPPI,
the mean of the distribution was updated for 5 iterations whereas for GradCEM, the mean was
updated for 3 iterations.

3.2.3 Sim2Real

One of the key challenges of a deep learning based system is to ensure that a model trained
on a dataset collected from a simulator can also run effectively in the real world. While it is
very easy to generate large volumes of data from a simulator, it is very difficult to accurately
model real world physical phenomenons like friction, impact and uncertainty in a simulator.
This results in the dataset from simulator not representing the real physical world accurately.
This challenge was addressed by utilizing a simplified form of data. The occupancy grid map

Approach No. of iteration

NSMPC (Ours) 0

MPPI 5

GradCEM 3

Table 3.2: Comparison of SMPC (proposed method) with MPPI and GradCEM in terms of no. of update iterations

required to get an optimal trajectory.
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from the simulator lidar is very similar to the occupancy grip map from the real world Lidar.
This is because the lidar configuration in the simulator is the same as our AutoDP. The only
thing missing was the simulator’s absence of sensor noise which was addressed by introducing
minor random perturbations to the lidar points. After training the model on synthetic data
obtained from a simulator, the model was successfully deployed on the AutoDP. Fig. 3.5
shows the execution of the model on the AutoDP while avoiding an obstacle in a controlled
on-campus scene. Despite occasional instances where the model’s output led to collisions
with the obstacle, the sampling nature of the proposed formulation guarantees the derivation of
an obstacle-avoiding trajectory from the distribution of trajectories sampled from the model’s
output as the mean.

3.2.4 Why Sample?

The Neural Network’s output is stochastic in nature and is not always guaranteed to avoid
collisions with the obstacles. Ensuring safety requires that the trajectory executed by AutoDP
is consistently collision-free. To address this, a distribution of trajectories is sampled using the
proposed model’s output as the mean. The sampled trajectories are then scored using the cost
functions mentioned in Section 3.1.1.3. The best trajectory is then selected from the sampled
trajectories and executed by the AutoDP. Fig. 3.6 shows an example scenario where the Neural
Network output is colliding with the obstacle in front. The best trajectory (green) chosen from
sampled trajectories is then executed by the AutoDP to avoid colliding with the obstacle.

3.3 Implementation and Training

The MPPI, GradCEM and the proposed Neural guided Sampling based MPC has been im-
plemented using the PyTorch [48] library and trained on a system with a Intel Core i7-5930K
(6 Core 12 threads) CPU and one NVIDIA RTX A4000 GPU with 16 GB VRAM and 64 GB
RAM. The Lion optimizer [49] was used with a learning rate of 0.001 to train the proposed
network parameters.
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(a) Straight road

(b) Curved road

(c) Obstacle avoidance

Figure 3.4: A qualitative comparison is shown of the trajectories generated by NSMPC (our method), MPPI

and GradCEM in three different driving conditions: Straight empty road, Curved empty road and a road with

Obstacles. The grey line denotes the future trajectory of the dynamic obstacles.
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Figure 3.5: Run on a real car: The presented study demonstrates the successful application of the model trained

on synthetic data from a simulation to operate effectively in a real-world environment. The model underwent test-

ing on an actual self-driving car, navigating around an obstacle within a controlled on-campus scene to prioritize

safety. In the visual representation, the top row of image sequences illustrates the capability of the ego-vehicle

(depicted in green) to maneuver and avoid the obstacle (highlighted in yellow). Meanwhile, the bottom row of

images displays corresponding occupancy grid maps, showcasing the predicted trajectory (in red) and the optimal

sampled trajectory (in green) within the ego-vehicle coordinate frame.

Figure 3.6: Why sample? Since the NN out-

put may not always be collision free, a dis-

tribution of trajectories (red) is sampled by

using the NN output (blue) as the mean of

a Gaussian distribution. The best trajectory

(green) is then selected to be executed by the

AutoDP.
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Chapter 4

Conclusion and Future Work

In this thesis, the primary focus was on developing and presenting a self-supervised ap-
proach for modeling a sequence of observed point clouds and predicting the subsequent se-
quences. The practical application of modelling sequences of observed point-clouds are then
showcased in the domain of autonomous driving.

• ATPPNet: A novel self-supervised approach is introduced for predicting future point
cloud sequences based on provided past point cloud sequences. The method employs
spatial and channel-wise attention in conjunction with Conv-LSTMs, complemented by
a 3D-CNN branch, to effectively model spatio-temporal information and predict future
point cloud sequences at a frequency lower than that of LiDAR. The proposed approach,
named ATPPNet, is thoroughly evaluated on various real-world datasets, demonstrating
superior performance through comprehensive ablations. An application study is pre-
sented to showcase the potential of the method in predicting point clouds.

• NeuroSMPC: A novel neural network guided Sampling Based Optimal Controller called
NeuroSMPC was proposed as an effective mechanism of interleaving single shot opti-
mal inference with sampling based frameworks. NeuroSMPC overcomes the entailment
of iterative resampling of sampling based optimal control frameworks by inferring sin-
gle shot optimal trajectory rollouts and yet retains the advantage of sample diversity by
sampling controls around the predicted rollouts. NeuroSMPC trajectory rollouts are sim-
ilar to sampling based optimal control formulations [28, 30] yet come at a much faster
clip thus making it suitable for real time settings like on-road autonmous driving. Neu-
roSMPC’s spatio-temporal convolution architecture learns implicitly the dynamic nature
of scenes without the need for explicit prediction of future states as it seamlessly avoids
dynamic obstacles through an implicit understanding of their future evolution. Neu-
roSMPC has been tested in various CARLA scenes and a sim2real transfer on AutoDP
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(AutonomousDrivingPlatform) for on-road campus autonomous driving establishes its
efficacy.

4.0.1 Future Work:

• ATPPNet: The future work would mainly focus on retaining the shapes of the small
objects in the predicted point-clouds. Another direction of the future work would be to
predict the point clouds by querying a location at a particular time, to determine areas
with minimal drift in motion.

• NeuroSMPC: The current study operates under the assumption that the vehicle traverses
flat terrain, utilizing the kinematics model for trajectory planning and evaluation. Future
research endeavors will extend this approach by incorporating the dynamics model of
the vehicle to model uneven terrains, such as climbing slopes, and subsequently plan
trajectories tailored to these challenging topographical conditions.
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