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Abstract  

 

 
 
 
 

Rice is a fascinating and complex plant. Consumed by more than half of the world’s 
population, it is important to have a comprehensive understanding of the organism to advance crop 
engineering and breeding strategies. Abiotic stresses like drought, high temperature, salinity and 
flood have affected its growth and productivity. Furthermore, global climate change has added to the 
severity of these stresses, suggesting the need for varieties with improved stress tolerance for 
sustainable crop production. Improving stress tolerance requires an in-depth understanding of the 
biological processes, transcriptional pathways and hormone signaling involved in stress response. 
With the surge in omics data, it has paved the way for deciphering the biological information 
underlying complex traits. However, dealing with such large datasets calls for the development of 
powerful bioinformatics methods for a thorough transcriptome analysis. A popular approach is the 
construction and analysis of co-expression networks representing transcriptionally coordinated genes 
that are often part of the same biological process. Using prior knowledge and data integration further 
enhances the elucidation of gene regulatory relationships in this network.  

With this objective we have developed NetREx, a Network based Rice Expression Analysis 
Server, that hosts ranked co-expression networks of Oryza sativa using publicly available mRNA-
seq data across uniform experimental conditions. It provides a range of interactable data viewers and 
modules for analysing user queried genes across different stress conditions (drought, flood, cold and 
osmosis) and hormonal treatments (abscisic and jasmonic acid) and tissues (root and shoot). 
Subnetworks of user-defined genes can be queried in preconstructed tissue-specific networks, 
allowing users to view the fold-change, module memberships, gene annotations and analysis of their 
neighborhood genes and associated pathways. The webserver also allows querying of orthologous 
from Arabidopsis, wheat, maize, barley, and sorghum. Here we demonstrate that NetREx can be used 
to identify novel candidate genes and tissue-specific interactions under stress conditions and can aid 
in the analysis and understanding of complex phenotypes linked to stress response in rice. Available 
at: https://bioinf.iiit.ac.in/netrex/. 

In the second part of the thesis, we present a meta-analytic study using co-expressed modules 
to understand the biological functions associated with different abiotic stresses in the root tissue. The 
osmotic stress condition is an extremely severe stress condition involving the effects of multiple 
stresses like drought, salinity and ionic stress and is discussed in detail. The early responsive modules 
are analyzed and a causal flow of mechanisms and signaling pathways is established.  
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1 

1 Introduction 

1.1 Background 
Rice is the most widely consumed staple food crop across the world and is a model monocot 

system (Cantrell & Reeves, 2002). It is consumed by more than half of the world’s population (Seck 
et al., 2012) and provides for one-fifth of the calories consumed worldwide. The cultivation of rice 
is well suited to countries with low labor costs and high rainfall, as it is labor intensive and requires 
an ample supply of water. There are two main species of rice which are cultivated worldwide, Oryza 
sativa (Asian rice) and Oryza glaberrima (African rice). While Oryza sativa is native to tropical 
southern and southeastern Asia, Oryza glaberrima is only grown in South Africa. Oryza sativa is 
further classified into three subspecies based on its geographical environment: indica, japonica and 
javanica. The indica variety refers to the tropical and subtropical varieties native to southern and 
southeastern Asia. The japonica variety is native to temperate areas of Japan, China and Korea. While 
the javanica varieties are grown in Indonesia alongside of indica (Botanical Classification of Rice | 
Agropedia, n.d.). About 91% of the rice in the world, accounting for nearly 640 million tons, is grown 
in Asia. China shares nearly 30% of the total rice worldwide production followed by India (21%), 
Indonesia (9%) and Bangladesh (6%) (Rosell & Marco, 2008). 

The demand for rice is increasing with the exponential growth in world population. Hence its 
yield needs to be increased by agricultural or biotechnical approaches. Climate changes including 
variability in temperature and rainfall pattern and other factors severely affect the yield of rice. Rice 
is subjected to various kinds of abiotic and biotic stresses that affect its yield during different growth 
stages. Abiotic stresses include drought, salinity, extreme temperatures, flooding, mineral deficiency, 
heavy metals, pollutants, wind and mechanical injury. Biotic stresses affecting rice yield majorly 
include bacterial leaf blight (BLB), sheath blight (ShB), blast, brown spot (BS), false smut (FS), 
brown plant hopper (BPH) and gall midge (GM). There are a variety of ways in which plants respond 
to stress. Common response towards abiotic stress includes stomatal closure, increased reactive 
oxygen scavenging activity, reduced photosynthesis, delayed growth, and increased root length 
(Maiti & Satya, 2014). Response towards biotic stress such as pathogen also causes stomatal closure 
and reduced photosynthesis (Bilgin et al., 2010; Melotto et al., 2006). Other responses toward 
pathogen infection include production of toxic compounds like phytoalexins and reactive oxygen 
species, and induction of localized cell death (Wojtaszek, 1997).
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Most of these responses are mediated by phytohormones (Nguyen et al., 2016). Abscisic acid 
(ABA) and jasmonic acid (JA) are critical regulators of tolerance toward abiotic stress. For pathogen 
immunity, plants rely on ethylene, salicylic acid (SA) and jasmonic acid signaling. Many 
transcription factor (TF) families including both ABA-dependent and ABA-independent, play a 
significant role in abiotic stress response. ABA-dependent TFs include basic leucine zipper (bZIP) 
TFs which induce stomatal closure, dehydration tolerance gene expression, and other adaptive 
changes (Banerjee & Roychoudhury, 2017; Kim et al., 2010). However, ABA acts antagonistically 
to SA thus increasing the plant’s susceptibility to biotic interaction (de Torres Zabala et al., 2009). 
When compared to other crops, rice has an antagonistic characteristic about tolerances and 
susceptibilities towards abiotic stresses. Since it grows in standing water containing soil, it can 
tolerate submergence at levels that would kill other crops. However, it is highly susceptible to drought 
and cold and moderately tolerant towards salinity and soil acidity. 

In this thesis, we have made an attempt to get insights into the mechanisms involved in abiotic 
stress tolerance in rice. Several studies are present exploring broad plant stress response by analyzing 
microarray data (Hahn et al., 2013). We have attempted to expand on these studies with robust meta-
analysis of publicly available rice RNA-seq data sets. 

1.2 Abiotic Stress Mechanisms in Rice 
Exposure to abiotic stresses is essentially unavoidable. It is the most harmful factor as it affects 

the growth and productivity of crops worldwide (Gao et al., 2007). A combination of abiotic stressors 
is more detrimental than when they act in isolation (Mittler, 2006). Drought is the most damaging 
stress for rice farming, followed by salinity which is determined by high concentration of salts in the 
soil. Due to global climate change, heat stress has also become detrimental to rice production. At 
high altitudes, low temperatures hamper rice production, as it has a negative impact throughout the 
germination, development, and reproductive phases. Multiple stress like salt and drought, or drought 
followed by flooding, may also act at the same time, resulting in a high decrease in production. Hence 
combined tolerance to several forms of abiotic stress would significantly increase rice productivity. 

Due to the sessile nature of plants, they must confront the stress and potentially develop 
adaptations to avoid or tolerate the harsh effects of stress in order to survive. Over the years, there 
have been plenty of cellular, morphological, and physiological adaptations in crops to defend them 
against stress. The cuticle is the most apparent defense which is a universal outmost shell (Fich et al., 
2016; Shepherd & Griffiths, 2006). Recretohalophytes even developed a specialized organ to excrete 
salt (Yuan et al., 2016). Understanding of the biochemical and molecular processes involved in 
defense of various model species like Arabidopsis thaliana has provided insights into the defense 
response at the cellular level. Generalized and conserved cellular defense responses involve 
desaturation of membrane lipids, activation of reactive species, scavengers, and induction of 
molecular chaperones. Stress defense involves a complex regulatory network of molecules including 
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hormones, reactive oxygen species (ROS), hydrogen sulphide (H2S), nitric oxide (NO), polyamines 
(PAs), and calcium (Ca2+), as well as protein kinases and transcription factors (Figure 1.1).  

 

Figure 1.1 The general defense systems and the underlying regulatory network in botanic 
responses to abiotic stresses [reproduced from (He et al., 2018)]. 

Abiotic stress signaling is a multi-faceted phenomenon. Plants elicit specific abiotic stress signals 
in response to a particular stress condition. However, there is a significant overlap between the abiotic 
signals. This is attributed due to different stresses happening in conjunction or in sequence. For 
example, drought stress is linked to heat stress as high temperatures also lead to loss of water. The 
first phase in response to stress is signal perception which leads to the modification in the quantity 
of several secondary signals. These signals cause a protein phosphorylation cascade that lead to the 
activation of specific transcription factors (TFs) or target genes. The signaling molecules also serve 
as checkpoints for signals to flow in a particular direction. There are several signaling pathways that 
are reported to be triggered in response to abiotic stress (Pearce, 2007). 

1.2.1 ROS Signaling 
Oxygen, while being an essential element for plant development and growth, also serves as a 

substrate for Reactive Oxygen Species (ROS). Aerobic metabolic activities like photosynthesis and 
respiration lead to formation of ROS like Hydrogen peroxide (H2O2), hydroxyl radical, superoxide 
radical, and singlet oxygen. Stress triggers increased production of ROS from organelles such as 
mitochondria, peroxisomes, and chloroplast, which are corrosive in nature and leads to apoptosis or 
cellular damage by their reaction to nucleic acids, proteins, and lipids. There are several ROS 
homeostasis mechanisms involved to keep its level in check. Antioxidants like Catalase (CAT), 
monodehydroascorbate reductase (MDHAR), superoxide dismutase (SOD), etc. are ROS foraging 
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enzymes to detoxify its effects. Several non-enzymatic antioxidants like tocopherols, carotenoids, 
GSH, etc. also take part in maintaining homeostasis. Other mechanisms to prevent ROS 
overproduction include photosynthetic apparatus rearrangement, leaf movement and leaf curling 
(Gill & Tuteja, 2010). 

1.2.2 Calcium Signaling 
Calcium plays an important role in a variety of abiotic stress responses. They are central signaling 

molecules which govern many functions. After its activation, calcium ions travel through specific 
calcium ion channels, cell membranes or organelles into the cytosol. They activate various calcium-
dependent proteins like calmodulin, calcium dependent protein kinases (CDPKs) and calmodulin-
dependent phosphatases. Increase in local calcium levels occur in specific organelles like the 
chloroplasts thus triggering organelle specific actions. Ca2+ plays an important role in both ABA-
dependent and ABA-independent pathways for stress response. ABA or osmotic stress induces a 
spike in the levels of intracellular Ca2+ which likely affects calcium dependent protein kinases 
(CDPKs) that are involved in typical ABA responses like stomatal closure and gene expression 
control. Another important calcium dependent kinase family is the CBL-interacting protein kinase 
(CIPK)/SnRK3 family which plays a significant role in drought and osmotic stress signaling.  

Together with ROS signaling, calcium waves are also central for systemic signaling (Figure 1.2). 
Pathogen infection and wounding, as well as abiotic stresses like drought, salt, cold and heat elicit 
systemic responses such that locally applied stress causes responses not only locally but in distal 
tissues as well. This results in a systemic acquired acclimation (SAA). Figure 1.2 illustrates the 
mechanism of systemic signaling wherein local exposure to stress results in the increase in levels of 
Ca2+. The Ca2+ signals then activate CDPKs and CBLs-CIPKs which phosphorylates and activate 
Respiratory burst oxidase homolog protein D (RbohD). The activated RbohD generates H2O2 which 
diffuses through the cell wall to neighboring cells inducing Ca2+ signals through Receptor Like 
Kinases (RLKs) like Guard cell Hydrogen peroxide-Resistant 1 (GHR1). The H2O2 enters the cell 
wall as well through PIP water channels and activates Ca2+ signals intracellularly. This mutual 
activation between Ca2+ and H2O2 forms a self-propagating loop that can travel distal tissues at rapid 
speed causing SAA response. Stress triggered calcium and ROS signals can travel with speed 
exceeding 1000 µm per second enabling rapid transmission of signals from root to shoot (Choi et al., 
2014). 
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Figure 1.2 Systemic signaling model. Dashed lines indicate postulated regulation [reproduced 
from (Zhu, 2016)]. 

1.2.3 Salt Overly sensitive (SOS) signaling 
Salinity results in severe osmotic pressure and scarcity of water causing ions like Na+, K+ and 

Mg+ to accumulate in the root tissue of plants. The presence of high levels of ions causes ion toxicity 
and secondary stresses like oxidative stress. Salt tolerance is achieved by limiting the quantity of Na+ 
ions. This is achieved by transporting these ions over long distances to leaves by the transpirational 
stream or pumping them out from the tissue. The gene SKC1/ HKT8 as well as the gene HKT1, both 
belonging to the High-affinity K+ Transporter (HKT) family are associated with long-distance 
trafficking of Na+, hence maintaining a strong K+/Na+ balance in the plant (Golldack et al., 2002). 
Plants also use a calcium-dependent protein kinase pathway for salt stress tolerance known as the 
Salt-Overly-Sensitive (SOS) pathway (Zhu, 2002). In this pathway, the cytosolic calcium signal 
elicited by the salt stress is sensed by the EF-hand calcium-binding protein SOS3. SOS3 is expressed 
in the root, while an SOS3 paralog SCaBP8/CBL10 is expressed in the shoot (Quan et al., 2007). 
SOS3 in turn activates a serine/threonine protein kinase SOS2, which then phosphorylates and 
activates SOS1 (Figure 1.3). SOS1 is responsible for facilitating the outflow of Na+ across the plasma 
membrane from the root epidermal cells. SOS1 is also expressed in the xylem parenchyma cells and 
takes part in loading Na+ into the xylem for long distance transport to the leaves by the transpirational 
stream (Shi et al., 2002). 
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Figure 1.3 The Ca2+-CBL-CIPK module mediates signaling of ionic stresses. Arrows indicate 
activation, and bars indicate inhibition [reproduced from (Zhu, 2016)]. 

1.2.4 Phytohormone Signaling 
Phytohormones are chemical messengers that help in coordination of cellular activities. They play 

important role in plants by regulating their growth, development, reproductive process, longevity and 
cell death. Phytohormones play a major role in triggering abiotic stress response in plants. They have 
the ability to either carry out their function in their synthesis site or move to their active location. 
Plant phytohormones broadly constitute of cytokinin (CK), indole acetic acid (IAA), salicylic acid 
(SA), gibberellins (GAs), ethylene, brassinosteroids (BRs), abscisic acid (ABA) and jasmonic acid 
(JA).  

Cytokinins are adenine derivatives grouped into isoprenoid cytokinin and aromatic cytokinin. The 
presence of highly active growth substance, meta-topolin, belonging to aromatic CKs is suggestive 
of their important role as plant growth regulators as well as modulation of drought stress response. 
The endogenous levels of IAA regulated by auxin biosynthesis pathway has been reported to 
positively influence plant’s drought stress tolerance. SA which has been majorly studied for its role 
in biotic stress has also potentially shown to regulate few abiotic stresses like drought stress by 
regulating stomatal aperture and transcriptional regulation of drought stress related genes. However, 
depending on the SA dosage, it implicates drought tolerance as well as sensitivity. The GAs 
belonging to the group of tetracyclic diterpenoid carboxylic acids, play active role in abiotic stress 
tolerance by regulating plant growth and development by affecting the cell division and cell 
elongation machinery. Ethylene is another important phytohormone central to plant growth and 
development. Ethylene plays a role in biotic and abiotic stresses by regulating flower senescence, 
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fruit ripening and abscission of leaves and petals. BRs are an important class of steroidal derived 
phytohormones that play important role in drought stress tolerance as it is involved in multiple 
physiological responses like pollen tube and fertility, ethylene synthesis, cell elongation, leaf bending 
and seed germination. ABA and JA are key stress response hormones. Stress responsive transcription 
factors like ABFs and MYCs are direct components involved in ABA and JA signaling. 

ABA Signaling Pathway 

ABA is the most significant phytohormone involved in abiotic stress response in plants. It 
mediates functions like root growth inhibition, leaf senescence and stomatal closure in response to 
stress. Abiotic stress promotes the biosynthesis of ABA (Seki et al., 2002). ABA is synthesized from 
β-carotene which requires the enzymatic activities of 9-cis-epoxycarotenoid dioxygenase (NCED), 
abscisic aldehyde oxidase (AAO), cytosolic short-chain dehydrogenase/reductase (SDR), and 
molybdenum cofactor sulfurase (MCSU). The transcription of these genes along with many stress-
responsive transcription factors belonging to bZIP, MYC, NAC, AP2/ERF and MYB families, which 
are involved in ABA biosynthesis, are increased in response to abiotic stresses such as drought and 
osmosis (Zong et al., 2016). 

The ABA signal transduction pathway involves three major components: the Pyrabactin 
Resistance 1 PYR/PYL/RCAR-type ABA receptor, 2C-type protein phosphatase (PP2C), and SNF1-
related protein kinase 2 (SnRK2) (Fujita et al., 2013).  These activate target transcription factors like 
the basic leucine zipper (bZIP) and ABA-responsive element binding factor (ABF) transcription 
factors which regulate ABA-responsive genes (ABREs) establishing stress-specific transcription. 
The ABFs are activated through direct phosphorylation from ABA-activated protein kinases 
comprising of the SnRK2 family of genes. However, in the absence of ABA, PP2Cs inhibit the kinase 
activity of SnRK2s thus blocking ABF activation (Umezawa et al., 2009). Hence, the activity of 
PP2Cs needs to be inhibited for the signal transduction to follow through. This is achieved with the 
PYR/PYL/RCAR protein which has a hydrophobic pocket that can recognize ABA as a ligand. The 
ABA binding alters the conformation of PYR/PYL/RCAR protein by closing the “gate and latch” 
structure over the ABA pocket, enabling it to interact and inhibit the phosphatase activity of PP2Cs. 
Hence, in case of abiotic stress, the synthesis of ABA is promoted leading to the formation of 
PYR/PYL-PP2C complex which inhibits PP2Cs activity allowing SnRK2s to phosphorylate and 
activate ABFs (Figure 1.4). The activated ABFs then bind to ABREs, activating the transcription of 
other stress-responsive transcription factors like NACs and AP2/ERF which are responsible for 
expression of stress responsive genes.  
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Figure 1.4 A schematic representation of ABA signaling pathway [reproduced from (Yoon et 
al., 2020)]. 

 

JA Signaling Pathway 

JA is another phytohormone playing an important role in plant responses to environmental stresses 
(Wasternack & Hause, 2013). It is a cyclopentane fatty acid that was first isolated as a methyl ester 
from Jasminum grandiflorum. The biosynthesis of JA from linolenic acid takes place via the 
octadecanoid pathway involving various enzymes like lipoxygenase (LOX), allene oxide synthase 
(AOS), allene oxide cyclase (AOC), and 12-oxo-PDA-reductase (OPR). JA is further metabolized 
into its active form into JA-isoleucine conjugate (JA-Ile) or methyl jasmonate (MeJA) through the 
activity of jasmonate-amido synthetase 1 (JAR1) and jasmonate methyl transferase (JMT) 
respectively. Abiotic stress promotes the biosynthesis of JA by the regulation of JA biosynthesis 
genes. For example, in case of cold temperatures, JA signals are activated by inducing expression of 
JA biosynthesis genes like LOX, AOS, AOC in Arabidopsis and rice (Du et al., 2013; Hu et al., 
2013). Exogenous treatment of JA has been shown to improve tolerance towards cold. 
Overexpression of JA biosynthesis gene AOC1 (TaAOC1) in the case of wheat showed enhanced 
tolerance to salt stress due to the role of JA (Qiu et al., 2014). 

The JA signal transduction pathways involve two major components, the JA receptor Coronatine 
Insensitivity 1 (COI1) and the JA signaling repressors Jasmonate ZIM-domain proteins (JAZs) (Chini 
et al., 2007; Yan et al., 2009). The activated form of JA, mainly involving JA-Ile, activates JA 
signaling via their interaction with COI1. This interaction results in the proteolysis of JAZs. JAZs 
would suppress the activity of MYC2 transcription factor, which regulate the expression of JA-
dependent stress-responsive genes. With the degradation of JAZs, MYC2 is liberated which activates 
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JA-responsive genes (Figure 1.5). MYC2 plays a pivotal role in JA signaling and is reported to be 
involved in tolerance to abiotic stress such as oxidative stress (Sasaki-Sekimoto et al., 2005). The 
MYC transcription factors are characterized by a basic helix-loop-helix (bHLH) domain that belongs 
to the bHLH family (Kazan & Manners, 2013). In rice, the gene OsbHLH148 has a similar function 
to MYC2. It directly interacts with JAZ proteins, thereby acting as a JA signaling component (Seo et 
al., 2011). Expression of OsbHLH148 dynamically increased with the various abiotic stresses like 
drought, salinity, cold and wounding, as well as with exogenous JA treatment. 

 

Various bHLH transcription factors including MYC2 and OsbHLH148 are also involved in ABA-
mediated stress tolerance. Their expressions are strongly upregulated with ABA treatment and ABA-
related stresses. Results show the promotion of ABA biosynthesis by the activation of JMT involved 
in JA production (Kim et al., 2009). Interaction between the ABA receptor PYL6/RCAR9 and MYC2 
has also been observed (Aleman et al., 2016). This suggests an interaction between JA and ABA to 
modulate stress response where the bHLH transcription factors play a central role in JA-ABA 
crosstalk. 

1.3 Transcriptome Studies 
The central dogma of molecular biology explains the flow of genetic information in a biological 

system. It involves a two-step process, the transcription of DNA to form RNA and the translation of 
a subset of RNAs called the messenger RNAs, mRNAs into proteins. The DNA is a heritable genetic 
information repository which is acted upon by RNA polymerase enzymes to form RNA which is a 
short-lasting information carrier. The transcriptome is defined as the complete set of all RNA 
transcripts in a cell, a set of cells or in a complete organism. Transcriptome analysis is hence the 
study of the transcriptome, or the study of the complete set of RNA transcripts that have been 
produced by an organism under certain circumstances or in its specific cells. Transcriptome profiling 
monitors the changes in behavior of a cell considering the variations in the complete set of RNA 
transcripts, making it useful in biomedical research in the areas of biomarker discovery, diagnosis of 
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diseases as well as risk assessments of new drugs or environmental impact. This method is 
particularly useful in characterizing gene functions and identifying pathways that respond to 
environmental stresses in plants. This is achieved by comparing pair of samples based on the 
condition or tissue that needs to be studied. For example, the transcriptomes are compared for 
samples obtained from the same organism when exposed to different external conditions 
(environmental conditions or healthy and diseased states) to study the effects of the condition. The 
transcriptome can also be characterized for organisms and tissues at various stages of development 
to understand the processes involved in embryonic development or cellular differentiation.  

There are primarily two approaches used for transcriptome analysis – microarrays and RNA-Seq 
analysis. Microarrays were an early approach to study transcriptomes and mostly represented 
mRNAs, the genes that translated to proteins. Microarray array works on the principle that 
complementary nucleic acids will hybridize. It uses a glass slide where DNA molecules are fixed in 
an orderly manner at specific locations called probes or spots. These spots are printed on the glass 
using different technologies like robot spotting or photolithography. The DNA spot either contains a 
short section of a gene or other DNA element that are used to hybridize a cDNA or cRNA or anti-
sense RNA sample called the target. These spots also referred to as targets can be hybridized by two 
samples (probes) labelled with different fluorescent dyes simultaneously. This probe-target 
hybridization is detected and quantified by fluorophore, silver or chemiluminescence labeled targets 
using confocal laser scanners to determine the abundance of nucleic acid in each of the sample. The 
separate scanned image capturing the intensity of signals at different spot locations for the two 
samples are then combined and pseudo colored by means of computer software to denote the relative 
expression levels. (Figure 1.6). Hence microarrays are able to analyze the expression of several genes 
in a single reaction in a quick and efficient manner. Microarrays however has the limitation of 
needing transcriptome to be available beforehand. Hence it is unable to find any novel transcripts, 
hampering the information of the regulatory gene network involved in stress response. 

Earlier, several gene expression studies concerning stress-response and tolerance in plants have 
been carried out using microarrays. In rice, one of the earliest studies for monitoring global 
expression profiles in different stress condition like cold, drought and high salinity used cDNA 
microarray and RNA Gel blot analysis (Rabbani et al., 2003). Rabbani was able to identify 73 genes 
as stress inducible out of which 58 were novel and unreported genes in rice. A general flow for 
characterizing genes in plants involved the introduction of new traits in transgenic plants using gain-
of-function mutagenesis, followed by transcriptional profiling using microarrays. In plants it has been 
used extensively to characterize downstream targets of stress responsive genes (Dubouzet et al., 
2003; Li et al., 2019). The gene OsDREB1 was characterized to be potentially useful in response to 
drought, salt and cold stress. A NAC transcription factor, SNAC1 was identified and reported as a 
positive regulator of drought resistance in rice.  
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Figure 1.5 Principle of the cDNA microarray analysis system [reproduced from (Iida & 
Nishimura, 2002)]. 

 

With the availability of high-throughput techniques like the whole genome transcriptome analysis, 
small RNA sequencing analysis (RNA-Seq), proteomic analysis, epigenetic sequencing analysis and 
metabolomic analysis, an in depth understanding of complex regulatory gene network involved in 
stress response can be achieved. These high-throughput techniques use sequence-based approaches 
instead of hybridization-based approaches allowing them to determine, map and quantify transcript 
sequences from new genomes directly. RNA-Seq method in particular is superior due to its high 
coverage of genome, global expression of transcripts and information about allele specific 
expressions and alternate splicing. It is a throughput technique which involves isolation of the total 
RNA, conversion into a library of cDNA fragments by attaching adaptors to one of both ends, 
followed by sequencing of each molecule to obtain short reads (of length 20-300bp) from one end 
(single-end) or both ends (paired-end) (Figure 1.7). After the sequencing, the reads are aligned and 
mapped to the reference genome. The number of reads aligned to each gene is called ‘counts’ and it 
serves as a digital measure of gene expression levels in the investigated sample. The counts are then 
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normalized and corrected for different sources of bias like sequencing-depth of a sample and gene 
length bias. Differential expression are then evaluated based on statistical significant change in gene 
expression in the compared conditions. Common sequencing platform include Illumina IG, Roche 
454 and Applied Biosystems. 

 

Figure 1.6 Schematic representation of RNA-Seq protocol [reproduced from (Kukurba & 
Montgomery, 2015)]. 

There have been several recent studies on rice using RNA-seq analysis concerning different 
aspects like genetic plasticity to varying environmental conditions (Kumar et al., 2022), 
characterization of genes involved in aerobic adaptations (Phule et al., 2019) and abiotic stresses (He 
et al., 2015), studying pathways involved in host-pathogen interactions (Liao et al., 2019), etc.  

The rapid accumulation of large omics data has allowed the analysis of biological information 
and understanding of the underlying complex traits. The most popular method to interpret such large-
scale data is the use of co-expression networks, which provides a visual and analytical approach for 
associating genes based on their expression values. A co-expression gene network is constructed by 
defining scores (like Pearson’s correlation coefficient, or mutual information) between pair of genes 
based on the similarity of their expression profiles. A gene pair is considered co-expressed if its score 
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crosses a certain threshold.  Modules of co-expressed genes can be identified and characterized for 
their biological function from the co-expression network. The prediction of gene function based on 
their co-expression analysis obeys the “guilt-by-association" principle (Wolfe et al., 2005). This is 
useful for hypothesizing the function of an unknown gene based on the co-expressed module it 
belongs to. While the construction of these networks is straightforward, the resulting network may 
become highly complex and may impede its biological interpretation. Several approaches are present 
to enhance the interpretability of these networks. Augmenting the network with data from external 
resources like gene ontology, pathway information and transcription factor annotations may further 
enhance gene prioritization and improve the elucidation of gene regulatory relationship. The 
workflow of co-expression network analysis is given in Figure 1.8. The correlation between 
expression values of gene pairs is evaluated. These pairwise correlation is represented as a network 
which can be clustered into modules. Analysis involving functional enrichment, identification of hub 
genes and regulators, differential co-expression analysis are carried out for these modules to 
understand its characteristic and change in behavior under different condition. Potential genes 
involved in the condition can be identified using the ‘guilt-by-association’ principle as the genes that 
are co-expressed with other genes involved in the condition (disease-associated module in the figure).  

 

Figure 1.7 Schematic representation of the co-expression network Analysis workflow 
[reproduced from (van Dam et al., 2018)]. 

Several studies make the use of microarray or RNA-seq to evaluate gene expression data for 
samples exposed to a particular condition or a particular growth stage depending on the objective of 
study. Using the expression data, genes that are differentially expressed are evaluated. Co-expression 
networks are constructed from these differentially expressed genes (DEGs) and clustering is done to 
identify coordinated biological processes. One such study involving transcriptome analysis in salt 
tolerance has been conducted by Zhu in the paper titled “WGCNA Analysis of Salt-Responsive Core 
Transcriptome Identifies Novel Hub Genes in Rice” (Zhu et al., 2019). It has provided a meta-
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analysis of 3 transcriptome datasets (SRP114666, SRP076274, and SRP083700) related to salinity 
and control conditions to explore the molecular mechanisms as well as key genes involved in salt 
stress response in rice. Using the aggregated dataset, it has identified a total of 28,432 expressed 
genes out of which 457 core differentially expressed genes were shortlisted as genes which responded 
to salt stress regardless of tissue, genotype or stress duration. These genes are analyzed based on 
functional enrichment from other sources like Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes (KEGG), as well as using co-expression networks to identify regulatory mechanisms and hub 
genes involved in salt stress response. 

The study uses RNA sequence data that is aggregated for control and salt-stress exposed rice 
cultivars from the National Center for Biotechnology Information (NCBI) Sequence Read Archive. 
RNA-seq transcriptome data provides the advantage of higher resolution and accuracy for low-
abundant transcripts. The raw reads are preprocessed to remove low-quality and noisy data, and then 
STAR (Anders et al., 2013) is used to map these reads to the rice genome to obtain read counts. 
Comparing the read counts with the control sample, the differentially expressed genes (DEGs) are 
screened out using the edgeR software enforcing the condition of fold change ≥ 2, q value ≤ 0.05 
with a significant false discovery rate-adjusted p value (FDR) < 0.05. A total of 15,596 unique DEGs 
are identified across the 3 datasets out of which 457 genes common among them are used for further 
analysis. GO enrichment analysis on these set of genes reveals the most significantly enriched 
biological process which is “peroxidase activity” followed by “response to stress”. Involvement in 
peroxidase activity suggests the importance of regulating antioxidant activity in salt stress response. 
KEGG pathway enrichment identified Phenylpropanoid biosynthesis and glutathione metabolism as 
the most significant pathways suggesting key roles of phenylpropanoid and glutathione in salt stress 
response in rice. 

To ascertain key genes and processes in salt stress response, gene co-expression analysis is then 
done. Three differentially co-expressed modules are identified after conducting WGCNA on the set 
of 457 core DEGs. The modules are assigned color names, Blue, Grey and Turquoise. The Blue 
module contained 196 DEGs, the Grey module contained 32 DEGs and the Turquoise module 
contained 229 DEGs. All the three modules are found to be positively correlated with salt stress 
suggesting that the up regulation of the genes play a role in providing salt tolerance. Observing the 
gene expression values of the modules for the three datasets, it is found that the blue module genes 
are more responsive to higher salt concentration treatment (sea water ~600mM NaCl). The turquoise 
module genes are induced by 200-300 mM NaCl treatment than seawater treatment. The grey module 
is weakly induced in both the conditions when compared to blue and turquoise module. GO and 
KEGG enrichment analysis are performed for each module separately to understand the individual 
biological processes associated with them. The blue module is enriched in GO biological processes 
“response to oxidative stress” and “peroxidase activity”, suggesting genes involved in oxidative 
stress tolerance via reactive oxygen species scavenging. KEGG enrichment in the blue module 
indicated the involvement of “phenylpropanoid biosynthesis” and “plant hormone signal 
transduction” suggesting that salt tolerance is regulated by regulating phenylpropanoid related 
metabolites and plant hormones. Turquoise module is enriched in GO biological process “ADP 
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binding” suggesting the role of energy metabolism in salinity stress tolerance. KEGG analysis further 
revealed “phenylpropanoid biosynthesis” and “glutathione metabolism” as the most enriched 
pathways indicating the module regulating phenylpropanoid related metabolites as well as 
antioxidant glutathione for salinity stress response. GO analysis of the grey module identified “iron 
ion binding” as the most significant biological process, while KEGG analysis displayed various 
metabolic pathways that were uniformly enriched. Iron being a crucial micronutrient involved in 
chlorophyll biosynthesis and energy transfer, it is speculated that the genes in this module favor an 
optimum supply of Fe during salt stress. 

 

Figure 1.1.8 Representation of Co-expression networks for the three WGCNA modules A) 
Blue, B) Turquoise and C) Grey identified in salt stress condition in rice [reproduced from 

(Zhu et al., 2019)]. 

The network of co-expressed modules is plotted to identify hub genes which are a smaller subset 
of genes that have interactions with many other genes in the module. It is estimated that hub genes 
are more likely to be essential and representative of the module processes than genes having lesser 
co-expressed gene partners. The network is plotted with nodes denoting genes and edge denoting the 
presence of co-relation between the expression of gene nodes that it connects. The nodes are colored 
in sky blue except for transcription factors to highlight them. The size of the node circle is made 
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proportional to its number of interacting partners. The networks for the three modules have been 
depicted in Figure 1.9. For the blue module, we observe the module getting divided to three clusters 
having high interconnected genes. 15 hub genes are identified in all the three modules having genes 
encoding different proteins which include DNA binding protein, carboxyesterase, late embryosis 
abundant LEA4-5, calmodulin binding protein and salt responsive proteins. Two unknown genes 
(LOC_Os05g27340, LOC_Os01g72009) as well as two proteins with unknown domains 
(DUF630/632 and DUF581) are also observed. Furthermore, most of the known genes have not been 
reported for being involved in salt stress response in rice and are ideal candidates for such 
investigation.  

Transcription factors (TFs) play an important role in stress response by regulating other stress 
responsive genes and hence their presence in the modules is investigated. The blue module contains 
TFs spanning various gene families including C2H2-type zinc finger (LOC_Os03g60570, 
LOC_Os01g62190, LOC_Os04g59380, and LOC_Os07g01180), basic helix-loop-helix bHLH 
(LOC_Os11g25560), basic leucine-zipper bZIP (LOC_Os09g29820), myeloblastosis MYB 
(LOC_Os01g18240), NAC (acronym from 3 families NAM, ATAF1/2 and CUC2) 
(LOC_Os04g43560), and plant regulator RWP-RK (LOC_Os02g04340) protein family (Figure 
1.9A). The turquoise module contains TFs from families heat shock factor HSF (LOC_Os03g53340), 
auxin response factor ARF (LOC_Os06g09660), bZIP (LOC_Os01g64000), NAC 
(LOC_Os05g10620), homeobox (LOC_Os02g43330) and MYB (LOC_Os02g04640). The grey 
module does not contain any transcription factors. Several of these TF families have already been 
reported to play key role in salt stress response. OsMYB6 from the MYB transcription factor family, 
OsbZIP71 from the bZIP transcription factor family and ONAC022 from the NAC transcription 
factor family have been reported to confer salt and drought tolerance in rice (Hong et al., 2016; Liu 
et al., 2014; Tang et al., 2019). Rice plants overexpressing SNAC1 gene have also shown improved 
salt tolerance. The novel unreported transcription factors in the core set of DEGs could hence be 
considered for functional characterization using reverse genetic experiments, to gain insights into 
salinity stress response. Altogether, this study has laid a strong foundation into understanding 
processes involved in salt stress response and in exploring the functions of unknown proteins such 
as CHL27, PP2-13, DUF630/632, and DUF581 in rice. 

 

1.4 Resources 
Several web-based resources have been developed for rice for transcriptome analysis. With the 

high abundance in genomic data, more processing and reformatting of the data is required for further 
application or analysis. These web-based resources help in aggregating, organizing and presenting 
the high throughput data in a systematic manner which is relevant for research.  The construction and 
utility of a few notable resources is briefly described below. 

RiceNet v2 (Lee et al., 2015) is a genome-scale gene network prioritization web-server for rice 
(http://www.inetbio.org/ricenet/). The resource uses two complementary network prioritization 
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algorithms, network direct neighborhood and context-associated hubs (Figure 1.10 shows 
visualization of context-associated hubs). In network direct neighborhood candidate genes are ranked 
by the sum of weight scores for all edges to the direct neighbors of guide genes which are already 
known to be involved in query phenotype. In context-associated hubs, each predefined subnetwork 
consists of a central hub and its neighbor genes. If the neighbor genes overlap significantly with the 
DEGs from a query phenotype context then the subnetwork hub genes is assigned as a context-
associated hub. The gene network of rice is built over a published midsize network of 100 rice stress 
responsive proteins constructed through protein interaction mapping (Seo et al., 2011). It uses 41,203 
non transposable element (TE)-related protein coding genes annotated from TIGR Rice Genome 
Annotation Release 5. Due to limitation of genome-scale datasets available for rice, it has made the 
use of gene orthology relationships to transfer datasets from other organisms. Thus, it contains 
evolutionarily conserved gene-gene linkages for rice by using datasets from other organisms like 
Saccharomyces cerevisiae, C. elegans, Homo sapiens, and A. Thaliana. RiceNet has been used to 
predict associations for diverse biological processes in rice. For example, the authors predicted and 
experimentally validated three previously unknown regulators of resistance mediated by a rice pattern 
recognition receptor XA21 which is responsible for innate immune response (Ronald & Beutler, 
2010). Significant predictive power for identifying genes for other crops like maize was also 
observed. 

 

Figure 1.9 Candidate gene (hub) visualization in RiceNet v2. Network of query genes are 
shown in cyan (1) Clicking locus ID provides network visualization of connections between 
candidate hub genes and their DEGs partners, (2) Hub genes are denoted in red (3) Query 

genes are denoted in cyan [reproduced from (Lee et al., 2015)]. 
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Oryza Express, formerly known as Rice Gene Expression Network (RGEN) (Hamada et al., 2011) 
is a web resource used for evaluating the statistical similarities of genome-wide gene expression 
patterns from aggregated large-scale gene expression data from various experimental conditions 
(http://plantomics.mind.meiji.ac.jp/OryzaExpress/). It is one of the first rice databases to provide 
information on both Gene Expression Networks and omics annotation. The microarray data used for 
the resource construction is obtained with Rice Gene Expression Microarray 4x44K (Agilent) and 
GeneChip(R) Rice Genome Array (Affymetrix) and are assembled from 1,893 samples in the NCBI 
GEO database. The similarities of gene expression patterns between genes are calculated using 
correspondence analysis (CA) which uses Pearson Correlation Coefficient (PCCs), Mutual Ranks 
(MRs) and partial correlation coefficient (PAC). The resource provides the option of conducting 
functional enrichment of the queried set of genes with Gene Ontology and KEGG Pathways. It also 
has support for visualizing the expression profile and co-expression network for the queried probes 
(Figure 1.11). The expression networks consist of edges comprising both similar and reciprocal 
expression patterns. Reciprocal expression pattern are inverse expression profiles that are effective 
in identifying repressor or downstream genes. While the database provides comprehensive gene 
expression networks integrated with various omics information from public database, it is limited in 
its specificity and dynamic range when compared to recent databases consisting of RNA-seq data.  

 

Figure 1.10 (A) Gene Expression Network image where red and blue edges indicate similar 
and reciprocal expression patterns, respectively. (B) Zoom-in of box in A showing the GO 

terms and metabolic pathways [reproduced from (Hamada et al., 2011)]. 

PlantArrayNet, formerly known as RiceArrayNet (RAN) (Lee et al., 2009) is the earliest database 
for rice which provides information on gene co-expression based on correlation coefficients (r values) 
(http://bioinfo.mju.ac.kr/arraynet/). It has the option for visualizing the degree of closeness between 
genes in a relzational tree and a relational network format (Figure 1.12).  Figure 1.11 A represents 
the coexpression relationships of the ribosomal protein Os10g0124000, in the form of a 
clusterdiagram or network where genes with similar expression profiles form a cluster. A set of 36 
genes are retrieved under the condition of r ³ 0.6 and depth = 1. Figure 1.11 B depicts the correlation 
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network under the same condition where the central protein Os10g0124000 is represented by an 
asterisk. The genes are denoted as circles and are placed such that the distance between them 
represents the closeness of their relationships. Expression data from 183 microarrays with 50 
different treatments have been aggregated for this resource. Information suggesting biochemical 
pathways and cis-regulatory elements of clustered genes have been additionally provided through 
KEGG and PLACE databases, respectively. The RAN database has been shown to be a useful tool 
which offers insights into a particular gene by examining its co-expressed neighbors. As a case study, 
the authors have shown a correlation pattern being captured between the 16-member 17Ae ribosomal 
protein family within rice. A drought responsive element-binding transcription factor 
(Os01g0968800), a trehalose-6-phosphate synthase (Os02g0790500) and a small heat shock factor 
(Os06g0219500) were found to be correlated indicating their presence in regulating the same 
biological process. 

 

Figure 1.11 Graphical presentation of co-expressed genes in Oryza Express. (A) Relational 
tree of gene expression with a ribosomal protein, B11032220. (B) Relational network using 

B11032220 where the network consists of 36 genes under the parameters of r ³ 0.6 and depth 
= 1 [reproduced from (Lee et al., 2009)]. 
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Rice Interaction Viewer (RIV) (Ho et al., 2012) is a web-based interactome network visualization 
tool hosting predicted protein-protein interaction network in rice that can be queried for subnetworks 
(http://bar.utoronto.ca/rice_interactions/cgi-bin/rice_interactions_viewer.cgi). The network is 
predicted based on the universality of conserved protein function in different organisms, under the 
assumption that evolutionarily conserved orthologous proteins would retain their interactions with 
other conserved proteins. A total of 37112 interactions among 4567 rice protein were predicted using 
an ortholog prediction algorithm with ortholog gene matching with at least of the 11 reference 
organisms used for prediction. The tool also supports the identification of sub-cellular localization 
information in the network (Figure 1.13). Figure 1.12 is the visualization of a predicted interactome. 
The color of each protein is based on the predicted subcellular localization. The edges are coloured 
based on their correlation values and its thickness depends on the confidence value (CV). 

 

Figure 1.12 Visualization of rice interactome from Rice Interaction Viewer. Nodes are colored 
according to its subcellular localization, edges are colored according to its co-expression 

correlation. Edge thickness correlates to Confidence Value (CV) [reproduced from (Ho et al., 
2012]) 

Rice Environment Co-expression Network (RECoN) (Krishnan et al., 2017) is a web resource for 
exploratory analysis of abiotic stress response in rice (https://plantstress-pereira.uark.edu/RECoN/). 
It consists of co-expression networks of 1744 abiotic stress-specific gene modules covering 28,421 
rice genes obtained from 129 samples, which are involved in response to some environmental stress. 
This data is aggregated from 29 publicly available gene expression datasets of the Affymetrix rice 
GeneChip from NCBI GEO and ArrayExpress. These gene modules consist of genes that are tightly 
coexpressed across many environmental stresses and are likely to be functionally coherent. RECoN 
offers the functionality to identify modules that are substantially perturbed in the user provided 
differential expression profile, thereby suggesting functional and regulatory mechanisms based on 
enriched functions of the predefined modules. Hence it is useful in exploring new data from all abiotic 
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stresses and uncovering gene candidates involved in stress tolerance. One of the drought-tolerance 
clusters identified in this resource is Cluster0079 containing 71 genes which is depicted in Figure 
1.14A. It includes a receptor-like cytoplasmic kinase OsRLCK253, a phosphatase OsPP108, a 
dehydrin OsLea3-1, an enzyme OsUGE-1 and TFs like OsDREB2A, OsNAC6, CMYB1 and ZFP182 
which are known drought tolerant genes. Most genes in the cluster are up-regulated by drought in all 
its developmental stages and are suggestive of these genes to have a dual role as developmentally 
regulated and stress responsive. Figure 1.14B represents the Cluster0424 containing 20 genes 
enriched with reproductive drought and they contain an ABRE-like motif. 

 

Figure 1.13 Graphical visualization of (A) 71 genes in Cluster0079 that contains six drought 
tolerance genes (with thick gray borders) and (B) 20 genes in Cluster0424 that contains four 

drought tolerance genes in RECoN [reproduced from (Krishnan et al., 2017)]. 

1.5 Organization of thesis 
The thesis focuses on the analysis and understanding of abiotic stress tolerance in Oryza sativa. 

Chapter 2 describes the material and methods that have been used in the analysis. Genes which are 
differentially regulated under different abiotic stress conditions (drought, flood, cold and osmotic) 
and exogenous hormone (ABA and JA) treatment conditions are evaluated. These genes are possible 
players in regulating stress response. Since it is a large data, co-expression networks are constructed 
which allows for visual and analytical approaches into associating genes based on their expression 
values. To further reduce the dimensionality of the co-expression network, clustering of the genes is 
done by grouping genes having similar expression profile into the same module. Chapter 3 describes 
the development of NetREx, a web-based resource, for querying these condition-dependent co-
expression networks, which provides different viewers to visualize the co-expression relation 
between the queried genes, as well as compare their expression values in a time-point based manner. 
A case study showcasing its usability in predicting novel genes related to the abscisic acid pathway 
involved in drought stress response is presented. Chapter 4 describes the differentially expressed 
genes and the metabolic processes they are involved in is compared across the different abiotic 
stresses. The co-expressed modules are further used to understand the response pathways involved 
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in osmotic stress response at the different time points. The thesis is summarized and concluded In 
chapter 5, the conclusion of the thesis and future directions is given. 



Chapter 2 
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2 Materials and Methods 

 
In this chapter we discuss the methodology used in the analysis of RNA-seq data of rice under 

various abiotic stress conditions (drought, flood, cold and osmotic) and exogenous hormone (ABA 
& JA) treatment. The datasets used in this study is given in section 2.1. In section 2.2 the 
preprocessing of the datasets is briefly described. Identifying the differentially expressed genes 
(DEGs) based on raw read counts in different stress conditions is described in section 2.3. To identify 
correlated genes, the co-expression network is constructed based on highest reciprocal rank (HRR) 
algorithm given in section 2.4. Section 2.5 describes the WGCNA method to identify co-expressed 
gene modules from the HRR network. The resources used in this work are briefly described in section 
2.6. 

2.1 Datasets 
The raw mRNA-seq read data from the root and shoot tissues of Oryza sativa L. (cv. Nipponbare) 

seedlings under four abiotic conditions (drought, cold, osmotic, and flood) and two phytohormone 
treatment conditions [abscisic acid (ABA) and jasmonic acid (JA)] are obtained from TENOR dataset 
(Transcriptome ENcyclopedia Of Rice, http://tenor.dna.affrc.go.jp) (Kawahara et al., 2016) 
downloaded from DDBJ Sequence Read Archive (DRA000959). TENOR database is a large 
repertoire of genome-wide time-course transcriptomic studies of rice shoot and root tissues while 
carefully using standardized laboratory conditions across all experiments (same platform, same rice 
genotype, etc.) which allow us to compare/integrate data across the conditions. The data was 
collected for several time points ranging from 3hr up to about 1-3days. The reads of length 76bp 
were generated by single-read sequencing using the Illumina GAIIx platform under uniform library 
conditions. The details of the total number of samples, the number of biological replicates for each 
time point and for the six stress/treatment conditions are given in Table 2.1.
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Table 2.1 Number of samples and biological replicates for the mRNA-Seq data from DDBJ-
SRA (DRA000959) considered for multi-stress analysis are summarized. 

Conditions Treatment 
Time-points (No. of biological replicates) No. of 

Samples Root Shoot 

Cold 4°C 0h (3), 1h (2), 3h (2), 6h (2), 
12h (2), 1d (2) 

0h (3), 1h (2), 3h (2), 6h 
(2), 12h (2), 1d (2) 

Root:13 

Shoot:13 

Drought 
Grown 
without 
medium 

0h (2), 1h (2), 3h (2), 6h (2) 
12h (2), 1d (2) 

0h (2), 1h (2), 3h (3), 6h 
(2), 12h (2), 1d (2) 

Root:12 

Shoot:13 

Osmotic 0.6 M 
Mannitol 

0h (3), 1h (2), 3h (2), 6h (2), 
12h (2) 

0h (3), 1h (2), 3h (2), 6h 
(2), 12h (2) 

Root:11 

Shoot:11 

Flood 
Completely 
submerged 
in medium 

0h (3), 1h (2), 3h (2), 6h (2), 
12h (2), 1d (2), 3d (2) 

0h (3), 1h (2), 3h (2), 6h 
(2), 12h (2), 1d (3), 3d (2) 

Root:15 

Shoot:16 

ABA 100 µM 0h (2), 1h (2), 3h (2), 6h (2), 
12h (2), 1d (2) 

0h (2), 1h (2), 3h (2), 6h 
(2), 12h (2), 1d (2) 

Root:12 

Shoot:12 

JA 100 µM 0h (2), 1h (2), 3h (2), 6h (2), 
12h (2), 1d (2) 

0h (2), 1h (2), 3h (2), 6h 
(2), 12h (2), 1d (2) 

Root:12 

Shoot:12 

No 
Treatment 

(NT) 
- 

0h (2), 1h (2), 3h (2), 6h (2), 
12h (2), 1d (2), 3d (2), 4d 

(2), 5d (2), 10d (2) 

0h (2), 1h (2), 3h (2), 6h 
(2), 12h (2), 1d (2), 3d (2), 

4d (2), 5d (2), 10d (2) 

Root:20 

Shoot:20 

Total 
Root:95 

Shoot:97 

 

2.2 Pre-processing 
High-throughput data are prone to having noisy data, missing values and other inconsistencies. 

Preprocessing them resolves such issues and makes it cleaner and efficient to perform data analysis.  
Raw reads are filtered to remove low quality and uninformative reads. Using Cutadapt (version 1.15), 
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the adapter sequences and the low-quality bases (having Phred-score Q <15) present at the 5’ and 3’ 
ends of the reads are trimmed (Martin, 2011). Reads of length less than 20bp after trimming may not 
be reliable and are discarded. Using HISAT2 (version 2.1.0), a graph-based alignment program, the 
reads for each sample are aligned to the rice reference genome (Os-Nipponbare-Reference-IRGSP-
1.0) (Kim et al., 2015). Gene annotations are taken from RAP-DB database (version 2017-04-14) 
(Sakai et al., 2013). The alignment details like the total number of base pair before and after filtering 
and the percentage of reads aligned to the genome are given in appendix (Appendix Tables 1 to 7). 
The percentage of mapped reads gives insight towards the sequence accuracy and the presence of 
contamination in the samples (Conesa et al., 2016). As observed in Table 2.2, the average percentage 
of reads mapped ranged between ~92% (flood stress) to ~98.2% (ABA and JA treatment) in case of 
shoot tissue, and it ranged between ~75.1% (JA treatment) to ~91.9% (ABA treatment) in case of 
root tissue. To compute gene expression from raw read counts, ‘featureCounts’ tool from SubRead 
package was used (1.6.0) (Liao et al., 2014) and the gene annotations were obtained from RAP-DB 
database (version: 2017-04-14) (Sakai et al., 2013). The average percentage of reads aligned and 
assigned to the genes for each sample is given in Table 2.2.  

Table 2.2 Average percentage of reads mapped to genes for different stress conditions after 
pre-processing. 

Conditions 

Root Shoot 

Avg. read 
align rate 

using 
HISAT2 (%) 

Avg. percentage of 
reads assigned to 

genes using 
featureCounts 

Avg. read align 
rate using 

HISAT2 (%) 

Avg. percentage of reads 
assigned to genes using 

featureCounts 

Cold 83.3 56.9 97.5 58.9 

Drought 79.0 53.4 98.0 62.0 

Osmotic 91.5 58.9 92.9 64.5 

Flood 86.8 56.9 92.0 58.4 

ABA 91.8 64.8 98.2 66.3 

JA 75.1 48.9 98.2 62.8 

 

2.3 Estimating Read Counts and Differential Gene Expression Analysis 
Read counts are a measure of gene expression as it is the sum of reads associated with each of the 

exons that belong to the gene. A count matrix is a table constructed from the read counts for all 
samples, with genes in rows and the samples in columns. Final count matrix across various 
stress/hormone treatments is constructed by considering only genes that exhibited raw read counts ≥ 
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5 in at least 50% of the total number of samples across all the conditions and time-points. Genes 
exhibiting 2-fold change and p-value ≤ 0.5 are obtained using the Bioconductor package DESeq2 
(Love et al., 2014) and are referred to as differentially expressed genes (DEGs). Differentially 
expressed genes (DEGs) are identified in a condition-specific manner for every time-point by 
considering the expression values at 0h as control for each stress/treatment condition. Next, for each 
stress/treatment condition, only genes that are differentially expressed in at least 2 time-points are 
considered for analysis and summarized in Table 2.3. The condition-specific DEGs that have an 
overlap with the developmental time-points (NT) are filtered out as these mainly correspond to 
diurnal or developmental changes. In RNA-seq data, most strongly expressed genes show large 
variations across samples compared to those with lower expression profiles (heteroscedasticity). On 
the other hand, most common methods of multi-dimensional data analysis like clustering work best 
with homoscedastic data (variance is independent of mean). To achieve this approximate 
homoscedasticity, the combined count matrix with 13695 genes in root tissue and 13717 genes in 
shoot is normalized using variance stabilizing transformation (VST) in DeSeq2 to obtain a relatively 
flat trend of variance as a function of mean (Anders & Huber, 2010). This makes the data 
approximately homoscedastic and appropriate for network and clustering analysis. The DEGs are 
then considered for rank-based network construction. 

Table 2.3 Number of genes that are differentially expressed in at least two time-points for 
various stress/treatment conditions in root tissue. Here, NT refers to DEGs obtained in the 

“no-treatment” condition. 

Tissue 
DEGs in at least 2 time-points Total DEGs used 

for Network 
Construction Drought Cold Osmotic Flood ABA JA NT 

Root 3817 6327 8040 3651 9340 8835 1127 13695 

Shoot 10576 6267 4540 6955 8898 6531 1116 13717 

 

2.4 Network Construction  
A network-based approach is used to capture the associations between genes that are up- or down-

regulated under various stress conditions in Oryza sativa. There are two main approaches available 
when constructing a gene expression database. These approaches have been termed “targeted” (also 
known as “guided-gene” and “directional”) and “non-targeted” (also known as “global” and “non-
directional”) approach in literature (Aoki et al., 2007). For the “targeted” approach, a network is 
constructed with genes that are correlated with a prior known set of genes (also known as bait genes) 
based on literature knowledge. The probable functions of these query genes can then be predicted 
based on the biological processes and pathways the bait genes are involved in. This approach has 
been used to identify candidate genes associated with the biosynthesis of cell wall (Rao et al., 2019; 
Sibout et al., 2017). For example, to screen transcription factors involved in lignin biosynthesis in 
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switchgrass, 14 known genes involved in this condition were considered as bait genes. Then genes 
exhibiting correlated expression patterns with these bait genes were searched across public 
microarray datasets to construct a “targeted” network related to the lignin biosynthesis. 

The “non-targeted” approach does not use any prior known set of genes. The co-expression 
network is constructed based on pairwise co-expression values for the complete set of genes. Co-
expressed modules can be identified from the network based on its topological structure. Modules 
having high cohesion and connectivity may be associated with a coordinated function and regulate 
the same biological process. This approach provides a global scenario of the co-expressed genes, 
however, it is computationally expensive. A few examples of this approach involve screening of 
genes involved in biotic and abiotic stress (Amrine et al., 2015; Ransbotyn et al., 2015), 
characterization of genes involved in seed maturation in Arabidopsis (Silva et al., 2016) and seed 
longevity in Medicago (Righetti et al., 2015). 

In this work, a “non-targeted” or a global approach is used for constructing gene co-expression 
network by computing pairwise correlation values for the DEGs across all samples for each tissue. 
Calculating the similarity score for the correlation of gene pairs is central to co-expression network 
construction. There are several methods which have been employed and their comparison has been 
well described in numerous studies (Kryuchkova-Mostacci & Robinson-Rechavi, 2017; Saelens et 
al., 2018). The statistical method can be chosen based on the biological concern that is intended to 
be analyzed and the sample size, number of genes and expression value distribution in the dataset. 
The most popular statistical method is Pearson’s correlation coefficient (PCC) which captures linear 
relationship between the expression level of two genes. A more robust method which can handle 
outliers is Spearman’s correlation coefficient (SCC). It is a non-parametric measure of rank 
correlation (Usadel et al., 2009). While PCC is sensitive to outliers it is more powerful than SCC. 
Other statistical measures such as mutual information content and partial correlation have been used 
for quantifying correlation between genes (de la Fuente et al., 2004; Lim et al., 2007). 

There can be false predictions due to different parameters and outliers in the data or the method 
used for analyzing the data. To minimize error in predictions, several experiments have been 
conducted to assess the construction and analysis of co-expression networks. Liesecke carried out 
comparative analysis of co-expression networks constructed using several distance measurements 
methods on Arabidopsis thaliana microarray and RNA-seq data (Liesecke et al., 2018). Pearson 
correlation coefficient with highest reciprocal rank (HRR) approach was shown to be reliable, 
resulting in highest correlation between the global co-expression network and enrichment of gene 
ontology annotation. Using HRR allows the use of ranked correlation coefficients instead of raw 
values. Ranking correlation coefficient implies that for every gene, the correlation calculated with 
the remaining genes are ranked from 1 to N (where N is the total number of genes).  For defining a 
co-expressed edge instead of using a hard threshold as in the case of PCC, HRR allows the use of 
rank cut-off which has been shown to be more relevant for biological networks and less prone to loss 
of information. 
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For the construction of co-expression network, Pearson correlation coefficients (PCCs) are 
computed between every pair of differentially expressed genes across all the stress and treatment 
conditions, for root and shoot tissues separately. Positively correlated genes with p-value ≤ 0.05 are 
considered for the construction of Highest Reciprocal Rank (HRR)-based co-expression network 
proposed by Mutwil et al  (Mutwil et al., 2010), both for root and shoot tissues. The HRR score 
between genes A and B is given by: 

HRR(A, B) = max(r(A, B), r(B, A)) 

where r(A, B) is correlation rank of gene B in gene A's co-expression list and r(B, A) is correlation 
rank of gene A in gene B's co-expression list.  For this study, the root and shoot networks are 
constructed with HRR values ≤ 100 (i.e., only top 100 neighbours for each gene are considered) and 
is termed as the global ‘HRR-100’ network. Every pair of connected genes in an HRR-100 network 
would imply that genes are within the top 100 correlated neighbours of each other. Corresponding 
stress-specific sub-networks are derived from the global HRR-100 network for each of the tissues 
using respective stress-specific DEGs in Table 2.3.  

Number of DEGs across various stress conditions in the Pearson correlation network and HRR-
100 network are given in Tables 2.4 and 2.5 respectively. It may be noted that the major advantage 
of considering the HRR-100 network over the PCC network is a significant reduction in the number 
of edges. 

Table 2.4 Number of Nodes (DEGs) and Edges across various conditions in Pearson 
Correlation Coefficient (PCC) network. 

Tissue \ Stress 
PCC network (with PCC > 0 and p-value < 0.05) 

Total 
Network Drought Cold Osmotic Flood ABA JA 

Root 
Nodes 13695 2970 5005 6311 2347 7460 7565 

Edges 2,62,69,920 16,86,453 36,37,333 62,86,236 8,95,590 83,63,871 96,29,038 

Shoot 
Nodes 13717 8809 3688 5280 5791 7546 5523 

Edges 2,91,80,730 1,44,25,817 24,30,142 49,56,792 57,93,144 95,82,721 53,20,944 

 

Table 2.5 Number of Nodes (DEGs) and Edges across various conditions in HRR-100 
network. 

Tissue \ Stress 

HRR-100 

Total 
Network Drought Cold Osmotic Flood ABA JA 

Root Nodes 13695 2970 5005 6311 2347 7460 7565 
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Edges 21,38,990 1,30,207 3,52,715 3,53,129 63,630 4,63,175 4,66,528 

Shoot 
Nodes 13717 8809 3688 5280 5791 7546 5523 

Edges 22,72,758 6,57,747 1,78,198 3,03,953 3,35,654 5,00,651 3,21,672 

 

2.5 Weighted Gene Co-expression Network Analysis (WGCNA) 
Clustering helps in reducing the dimension of the networks by grouping the large set of 

differentially expressed genes into a few manageable co-expressed modules that possibly regulates 
the same biological function. There are several clustering algorithms available for this purpose. These 
algorithms can be broadly classified into hierarchical and non-hierarchical clustering algorithms. 
Hierarchical clustering uses an iterative approach to cluster genes by assigning them to a cluster in 
each step. Initial weights are assigned to network vertices using the calculated correlation coefficient. 
Clusters are then constructed using high weight vertices and progressively expanding them by 
considering their neighbors. Hence the number of final clusters may vary and depends on the chosen 
threshold. There are several hierarchical clustering methods available which includes Weighted Gene 
Correlation Network Analysis (WGCNA) (Langfelder & Horvath, 2008), Markov Cluster Algorithm 
(MCL) (Enright et al., 2002), Improved Principal Component Analysis (IPCA) (Li et al., 2008) and 
Normalization Engine for Matching Organization (NeMo) (Rivera et al., 2010). Non-hierarchical 
approaches include K-mean clustering (Stuart et al., 2003) which assigns entities to pre-defined k 
clusters. The criteria for selecting a particular clustering algorithm should depend on the functional 
coherence of the predicted modules (Lysenko et al., 2011).   

WGCNA is a systems biology method for describing the correlation patterns among genes. It is 
used for finding clusters or modules of highly correlated genes. These modules each have a central 
hub gene known as the module eigengene. The function of the hub gene reflects the properties of the 
module, as well as their relationship with other modules. The closeness of any gene with the 
eigengene of its module defines its module membership. WGCNA is used in our analysis to further 
reduce the dimension of the HRR-100 network by associating highly co-expressed set of genes into 
modules.  

The analysis steps used in WGCNA involves network construction and identification of modules. 
For network construction, an adjacency matrix aij needs to be defined. An intermediate quantity 
called co-expression similarity sij is used to define aij. sij is measured as the absolute value of 
correlation coefficient between the expression profiles of gene i and gene j (sij = |cor(xi, xj)| ). 
Weighted networks allow the adjacency to take continuous values between 0 and 1. It is defined by 
raising the co-expression similarity to a power β: 

aij = sβ
ij 

with β≥1. By applying an approximate scale-free topology criterion the threshold parameters for 
the network is defined.  Gene modules are identified from this network based on groups of nodes 
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with high topological overlap. Topological overlap of two nodes defines their relative connectedness. 
A similarity measure based on topological overlap is defined by the topological overlap matrix 
(TOM) Ω = [ωij ] which is defined as: 

 

where lij = Σuaiuauj , and ki = Σuaiu is the node connectivity. In the case of hard thresholding, lij is 
same as the number of nodes to which both gene i and j are connected. This matrix is used in 
hierarchical based clustering to define gene modules. WGCNA uses soft thresholding approach by 
defining β, which avoids information loss which otherwise PCC with hard thresholding is prone to.  

The patterns of co-expression often point at coordinated biological processes the genes may be 
involved in and representing genes as co-expressed clusters help in reducing the dimensionality of 
the data. For this purpose, two ‘signed’ gene co-expression networks are constructed with 13695 
DEGs from root tissue and 13717 DEGs from the shoot tissue. The advantage of a ‘signed’ network 
over an ‘unsigned’ network is that it is able to capture the association of genes that are activated or 
repressed. Unsigned networks use absolute value of correlation sij

unsigned = |cor(xi , yj)| which fail to 
distinguish between gene activation (sij

unsigned = 1) and gene repression (sij
unsigned = 1) leading to loss 

of biological information (Mason et al., 2009). The similarity measure of a ‘signed’ network is 
defined as follows:  

 

where xi and yj represent the expression values of genes i and j, respectively. s ij
signed = 1 denotes a 

positive correlation, while s ij
signed = 0 denotes a negative correlation, and s ij

signed = 0.5 denotes no 
correlation. Clustering based on this similarity measure is able to distinguish between positively and 
negatively correlated genes.  

Using the block-wiseModules function in WGCNA R package (Langfelder & Horvath, 2008) 
hierarchical clustering of genes is carried out by Dynamic Tree Cut approach (Langfelder et al., 2008) 
with maximum block size = 14000, minimum module size = 50, “cut height” = 0.995 and “deep split” 
= 2. The parameters used in the construction of weighted gene co-expression network are given in 
Table 2.6. Here, for a weighted network, “β” is the soft thresholding power to which co-expression 
similarity is raised to calculate adjacency, thereby emphasizing high correlations at the expense of 
low correlations. And “k” refers to the connectivity or sum of the connection strengths with other 
genes in the network. The weighted topological overlap matrix in WGCNA allows us to compute 
various degree centrality measures which can be useful in screening important genes. Specifically, 
we computed the kIM, the within-module degree or intramodular connectivity of a gene. Intramodular 
connectivity is a measure of how co-expressed a gene is with the genes of its module, and is a measure 
of module membership. 
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Table 2.6 Parameters used for the construction of signed, weighted gene co-expression 
network using WGCNA R package is summarized. 

Tissue No. of 
Samples 

No. of 
Genes β Cut-off R2 Scale-

free fit 
Mean 

k 
Median 

k Max k No. of 
Modules 

Root 69 13695 26 0.91 15.4 8.7 151 22 

Shoot 72 13717 26 0.81 36.4 18.2 262 18 

 

The co-expressed modules (22 for root and 18 for shoot) are tested for their biological relevance. 
For this, genes of the individual clusters are submitted for over-representation analysis in GO 
consortium using PANTHER classification system (v14.0) (Mi et al., 2019) for Oryza sativa. Results 
with Fischer’s Exact Test and Bonferroni correction for multiple testing (p-value ≤ 0.05) are retrieved 
for each module. Significant GO terms indicate that genes of a given cluster are more often associated 
to certain biological functions than what would be expected in a random set of genes.  Furthermore, 
we queried the top 100 highly connected genes (based on intra-modular connectivity) in an 
independent database, STRING DB (Szklarczyk et al., 2019) to check for protein-protein interactions 
(PPI). Since co-expression clusters often point to coordinated biological processes where there maybe 
physical interactions between proteins, enrichment of PPIs further validated the biological relevance 
of the clusters. The percentages of DEGs across modules and results from the functional databases 
(GO, STRING DB) are discussed in detail in Chapter 4. A web-based resource NetREx is constructed 
using the co-expression networks and the additional data that have been integrated for gene 
prioritization. The construction and usefulness of this resource is given in Chapter 3. 

2.6 Resources Used 
Various resources that have been used in the construction of NetREx and in the analysis of gene 

expression data under different stress conditions is described below. 
 

STRING (Search Tool for the Retrieval of Interacting Genes) v11.5  

STRING database integrates all the known and predicted interactions between proteins 
(Szklarczyk et al., 2019). These interactions include both physical interactions and functional 
associations that are collected and scored from various sources including (i) text mining from 
published literature, (ii) databases of interaction experiments and annotated pathways, (iii) predicted 
interactions from co-expression or conserved genomic context and (iv) transfer of interactions 
evidence from one organism to other based on orthologs mapping. It currently consists of data from 
over 14000 organisms covering more than 67 million proteins. 
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MapMan v4 
MapMan is a framework which was initially developed with the aim to facilitate the visualization 

of omics data on plant pathways (Schwacke et al., 2019). Presently, it is used alongside gene ontology 
and KEGG to map genes to its corresponding metabolic and regulatory functions/processes. It uses 
a hierarchical tree structure called “bins” representing biological contexts. There are 27 top-level bins 
representing major biological processes and each child represent a focused subprocess or context 
within the parent bin. Proteins with complex and diverse functions may be mapped to multiple bins. 
The Mapman framework has evolved overtime to include bins representing regulatory processes, 
signaling pathways and biotic and abiotic stress response in addition to metabolic processes. Though 
it was initially developed for Arabidopsis Thaliana, it currently supports all land plant species. 

 
Panther GO (Protein ANalysis THrough Evolutionary Relationships Gene Ontology) v14 

Panther GO is a resource used for the functional and evolutionary classification of genes from 
organisms (Mi et al., 2019). It consists of a large, curated database of proteins and genes, their family 
information along with their functionally related subfamilies. The evolutionary classification has 
three levels based on their specificity: protein class, family, and subfamily. There exists over 15000 
families and 80000 subfamilies. For functional classification, Gene ontology is used which is 
obtained from the Gene Ontology Consortium (available at http://geneontology.org). Currently, it 
hosts information of over 900 different genomes. 

 
Ensembl Plants v2016 

Ensembl Plants is an integrated platform for genome-scale information for various sequenced 
plant species (currently 33 in number) which include the genome sequences, gene models, functional 
annotations, and polymorphic loci (Bolser et al., 2016). It also includes information on variation and, 
genotype and phenotype data. Thus enabling comparative genomics and aiding in the analysis of 
transcriptional regulation and variation in sequences. It also supports orthology relationships across 
plant species that can facilitate in augmenting information and validating relationships. 

 
funRiceGenes 

funRiceGenes database is a comprehensive dataset of over 2800 functionally characterized rice 
genes (Yao et al., 2018) containing information of rice families, their regulatory connections, and 
their interaction network. The data is obtained by integrating information from available databases 
and reviewing publications on rice functional genomic studies. 

 
RiceSRTFDB (Rice Stress-Responsive Transcription Factor Database) 

RiceSRTFDB is a database of annotated rice transcription factors (Priya & Jain, 2013). 
Transcription factors are regulatory elements of a genome and are essential targets for engineering 
stress tolerance. The database consists of comprehensive expression information for the rice TFs 
during drought and salinity stress as well as through various stages of development. It also includes 
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curated information for cis-regulatory elements present in the promoter region of these TFs which is 
important for the study of binding proteins.  

 
IC4R (Information Curation for Rice) v2.0 

IC4R is a curated knowledgebase that integrates multiple omics rice data through community-
driven modules (Consortium et al., 2016; Sang et al., 2020). It incorporates a variety of rice data 
which includes, expression profiles of genes at different developmental stages and tissues in rice 
obtained from RNA-seq data, genomic variations from re-sequencing data of rice varieties, plant 
homologs, post-translational modifications, rice-related literature, and community-contributed gene 
annotations. It is a useful resource for analyzing the expression profile of a gene across different 
tissues/conditions. 

 
RAP-DB (Rice Annotation Project DataBase) 

RAP-DB is a database providing the genome sequence assembly of the International Rice Genome 
Sequencing Project (IRGSP) as well as curated annotations of the sequence and other genomic 
information that can be useful in providing insights into rice biology (Sakai et al., 2013). It contains 
a variety of annotation data like the clone positions, structures and functions of 31429 genes which 
have been validated by RNA, cDNA genes detected by the massive parallel signature sequencing 
(MPSS) technology. Other validation methods include sequence similarity, transposable elements 
and flanking sequences of mutant lines. This tool has been proved useful for comprehensive 
understanding of the rice biology. 

KEGG (Kyoto Encyclopaedia of Gene and Genomes) 

KEGG is a collection of databases which deals with genomes, biological pathways, drugs, 
diseases and enzymes (Kanehisa et al., 2017). These databases are categorized into systems, genomic, 
chemical and health information. System information consists of pathway, modules and hierarchical 
information that helps in classifying genes. Its systems information is particularly useful for mapping 
and grouping genes into their related biological pathways.  

Cytoscape 

Cytoscape is an open-source software for network visualization of biological data (Franz et al., 
2016). It allows the integration of various sources of data and offers visualization aids to ease the 
analysis. Various plugins are available that provides network and molecular profiling analyses, new 
layouts, connection with databases and searching in large networks. Its integration with the STRING-
DB application eases the clustering and functional enrichment of subnetworks of the studied PPIs. 
Plugins helping in construction, visualization and clustering of gene coexpression networks are 
particularly useful in functional enrichment of genes and narrowing down their size based on 
functional filters for efficient analysis. 
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Gephi 

Gephi is an open-source platform for network analysis and visualization (Gephi - The Open Graph 
Viz Platform, n.d.). It provides the user with various network layout options and integrates biological 
information into the network via visual aids like the node size, colour and shape. It provides broad 
access to network data and allows for spatializing, filtering, navigating, manipulating and clustering 
of nodes. 
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Chapter 3 
 
 
 

3 NetREx – Network-based Rice Expression 
 

3.1 Introduction 
Studying Gene Co-expression Networks (GCNs) have been shown to be useful in inferring novel 

biological functions of genes and the activation and repression of biological processes under specific 
conditions. GCNs can be used for candidate gene prioritisation responsible for phenotypic 
differences, identification of regulatory genes and functional gene annotation. Owing to the dense 
nature of GCNs it is difficult to extract meaningful information from these networks and visualization 
approaches have been proposed to aid in their analysis. Rice co-expression networks constructed 
from the differentially expressed genes under different abiotic conditions would offer insights into 
regulatory response and stress resistant phenotypic differences. Querying and visualisation of these 
gene networks with respect to the temporal fold change, module membership and pathway 
information of genes would further enhance the analysis and understanding of stress responsive 
genes.

Various functional resources have been developed for the plant community exploring genomic 
relations based on co-expression. At the global scale, condition-independent co-expression networks 
have been constructed from large scale microarray datasets integrated from different databases with 
varying environmental conditions, platforms, tissues and developmental stages. For example, 
resources like MaizeNet, AraNet, RiceNet are examples of condition-independent co-expression 
networks specific to maize, Arabidopsis thaliana and rice respectively. For comparative genomics 
and evolutionary pathway analysis, resources which host pan-species co-expression network are 
required. Examples of such resources are ATTED-II (Obayashi et al., 2011), STRING database 
(Szklarczyk et al., 2019), PlaNet (Proost & Mutwil, 2017), PhytoNet (Ferrari et al., 2018), FamNet 
(Ruprecht et al., 2016), etc. Numerous rice specific resources have been developed such as Oryza 
Express and RiceFREND which are condition-independent co-expression networks constructed 
using various microarray data. ReCoN is an important rice specific resource that assembles 29 
different gene expression databases with a unifying biological theme to construct a gene co-
expression network with a focus on abiotic stresses.  Although these resources allow us to derive 
associations from a large sample size, the merging of different experimental conditions and platforms 
might incorporate complexities in the network which may be difficult to account. On the other hand, 
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condition-dependent networks that are derived from datasets corresponding to specific conditions 
provide opportunities to explore context specific associations. 

 

Figure 3.1 Schematic representation of NetREx. 

With this objective, we developed Network-based Rice Expression Analysis Server (NetREx), a 
web-based network querying and visualization resource for Oryza Sativa L. cultivar (Sircar et al., 
2022). Figure 3.1 is a schematic representation of functionalities and construction of NetREx. The 
central black boxes represent the processed data on which the resource is constructed and the green 
boxes denote the functionalities accessible in the resource for analysis.  In NetREx, data for four 
stress conditions (drought, cold, flood and osmotic stress) and two hormonal treatments (Abscisic 
Acid ABA and Jasmonic Acid JA) from root and shoot tissues of rice seedlings (10 days after 
germination) obtained from TENOR database (Transcriptome ENcyclopedia Of Rice, 
http://tenor.dna.affrc.go.jp) (Kawahara et al., 2016)  have been considered for network construction. 
First, a global rank-based stress network across four stress conditions and two hormonal treatments, 
separately for root and shoot tissues is constructed. Stress-specific networks are then derived from 
these global networks using differentially expressed genes. These networks along with functional 
information are hosted in the database. Using NetREx one can view relationships between query 
genes and analyze them based on different supported visualizations like the network viewer, the 
network neighborhood viewer and the expression viewer. It also provides the option to browse 
through the complete database based on tissues, modules, stress conditions/ hormone treatment and 
KEGG pathways. Since the data obtained for gene expression values for different stress conditions 
have been obtained under uniform laboratory condition, this tool is particularly sensitive towards 
comparative analysis of gene behavior across stress conditions. The visualization of time-point wise 
variation of gene expression data across queried genes in a co-expression network further offers 
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insights in understanding the regulatory flow. The network neighborhood network helps us explore 
novel candidate genes that are absent in the initial query set. 

3.2 Visualization Module Construction  
HRR Networks based on gene-coexpression are evaluated from RNA-seq data obtained from rice 

when exposed to various stress conditions in a tissue-specific manner. The construction of this 
network has been described in detail in Section 2.4. This HRR Network forms the basis of this 
resource. To find the co-expression network of the queried genes, the resource extracts the 
subnetwork of this global HRR co-expression network. The nodes of the network represent the 
queried genes whereas an edge between any two nodes or genes, represent that their expression values 
are correlated. The HRR networks are processed, and additional omics data are stored along with the 
basic node and edge information so that they could be used and depicted as visual features in different 
viewers to enhance analysis. The processed information enables a faster query response time as it 
avoids database lookup for these features after the query is sent. This processing is achieved using 
the Gephi Software (Gephi - The Open Graph Viz Platform, n.d.) where the network information is 
assembled in a tissue-specific manner for differentially expressed genes in each stress and WGCNA 
module. The color and size of the nodes as well as the layout of the network are evaluated using 
Gephi. 

The layout of a large network plays an important role as it defines how the network is perceived. 
A layout that incorporates both local and global structure, while being scalable to large graphs is 
essential. Hence the default layout is set to OpenOrd (Martin et al., 2011) which is a force-directed 
layout that uses average-link clustering to define the positions of the nodes in the network. The default 
size and colour of the nodes are set to be proportional to their degree in the global network. This 
helps in visual interpretation of high degree nodes that may be more important because of their higher 
connectivity with other genes. 

The processed network is exported in JSON format and is used by the web application to query 
the database. The web application provides the option to retrieve co-expression network for the 
queried set of genes for chosen tissue and stress/hormone treatment condition. The nodes of the 
network are the queried genes and edges of the network are then filtered based on the condition that 
both the connecting nodes are present in the query list. For the specified tissue and stress/hormone 
treatment condition, if the query gene is differentially expressed in at least two time-points, then it is 
considered as ‘valid’ input for visualization, else it is filtered out as ‘invalid’ gene. 
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Figure 3.2 Screenshot of Home page in NetREx. 

Querying NetREx: A user can submit up to a maximum of 300 genes and query their expression 
profiles across any of the four abiotic stresses, viz., drought, cold, osmosis and flood, and two 
phytohormone treatments, abscisic acid and jasmonic acid, for root or shoot tissues. By clicking the 
query button on the homepage (Figure 3.2) the user can access the Query form (Figure 3.3) to 
perform the search. In the dropdown menu, the user may provide rice RAPDB (Rice Annotation 
Project Database) IDs. Alternatively, the user may also query using Ensembl Stable IDs for 
Arabidopsis, wheat (Triticum aestivum), maize (Zea mays), barley (Hordeum vulgare) or sorghum 
(Sorghum bicolor), and the genes will be mapped to the corresponding rice orthologs based on the 
Ensembl Plants database. This allows the user to investigate involvement of genes in other crops 
under abiotic stress and phytohormone treatments through the interaction networks of their orthologs 
in rice. Submitting the query directs it to the validation page (Figure 3.4), which displays all the valid 
query genes. The validation page provides option to access different viewers for the valid set of query 
genes. 
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Figure 3.3 Screenshot of Query Form to query the genes in NetREx. 

3.3 Visualization 
Visualization is an essential aspect in the analysis of complex relationships between genes. It can 

help in narrowing the focus to important functional genes and their relationship with other genes in 
biological pathway regulation. NetREx provides multiple visualization options and features for such 
analyses. Three viewers are provided – Network Viewer, Network Neighborhood Viewer and 
Expression Viewer, to explore set of query genes in different tissues and abiotic stress/hormone 
treatment conditions. These viewers are enriched with features such as fold-change values, WGCNA 
module membership, KEGG pathway membership, as well as comparative study between different 
abiotic stress/treatment conditions. The network viewers explore the relationship across query genes 
based on co-expression while the expression viewer is heatmap display for comparative study of 
expression changes across genes at different time points. The viewers can be accessed via buttons 
provided in the validation page (Figure 3.4). 

 

Figure 3.4 Screenshot of the Validation Page in NetREx. 
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3.3.1 Network Visualization 
This module displays the interactions between the filtered set of queried genes, extracted from the 

HRR network of differentially expressed genes for the selected tissue and stress/treatment condition, 
shown in Figure 3.5. The nodes correspond to the genes and the edge represents a correlation 
between the two genes if they have a similar expression profile across time points. It can be accessed 
by clicking the Network Viewer button on the validation page. Network visualization have been 
provided to display co-expression networks of query genes, their neighbors and WGCNA modules 
as part of three viewers – Network Viewer, Network Neighborhood Viewer and Module Viewer 
respectively. 

The network viewer is divided into 3 panels, the view panel displaying the network, the options 
panel which lets one interact with the network features and the table panel which consists of a table 
with detailed information about the genes constituting the network (Figure 3.4). A brief description 
of these features is given below. 

 

Figure 3.5 Screenshot of Network Viewer in NetREx. 

3.3.1.1 View Panel 

The interactions between queried genes is displayed in the View panel (Figure 3.5). It allows the 
user to interact with it, such as zooming, repositioning, and hovering over genes. The nodes in the 
network correspond to the filtered genes after validation and the interactions between them is 
extracted from HRR100 Network. In the Network Neighbourhood Viewer, apart from the filtered 
genes, their top 50 neighbours (max=100) are also shown. The view panel is enriched with visual 
and interactive features that aid in prioritizing and analyzing gene interactions. 
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Visual Features 

The visual features constitute the layout of the nodes, the shape, color and size of the nodes and 
edges. 

Layout: The layout of the network is defined by the ForceAtlas2 algorithm, a force-directed 
algorithm for network spatialization (Jacomy et al., 2014). The algorithm simulates a physical system 
wherein the nodes repel each other using force law equivalent to charged particles. The edges act like 
springs between nodes. These forces in turn directs the movement of the nodes such that they 
converge to a balanced state. These conflicting forces ensures that highly connected genes appear 
together while poorly connected nodes drift apart. This algorithm does not take into account any node 
attributes and is solely focused on turning the network structural proximities into visual proximities 
which aids in interpretation of the network. The ForceAtlas2 algorithm supports the lay outing of 
scale-free networks ranging from 10 to 10000 nodes in size and hence is suitable in this case. For 
NetREx, this algorithm is run on the queried subnetwork for specific time duration, which is set such 
that it is proportional to the number of nodes in the queried subnetwork. This ensures that for a large 
network, the algorithm runs for a larger time as compared to a small network, and the disconnected 
node clusters are well separated while not drifting too apart. It also avoids the issue of the clusters 
being too closely spaced that the edges are not decipherable. One can see the continuous lay outing 
algorithm run in action and the nodes taking their respective positions when loading the network 
viewers. 

Size and Color: The size of the gene nodes is proportional to its overall degree in the complete 
HRR100 Network for the given tissue and stress condition. That is, nodes with higher degree are 
drawn larger in size to indicate their relative importance in the network. The default coloring scheme 
is also proportional to its degree in the complete HRR Network. A dark shade represents a high 
degree and vice versa. However various options are provided in the options panel to toggle the color 
of the gene nodes based on fold change across timepoints, involvement in biological pathways and 
their WGCNA module membership. In Network Neighborhood Viewer, the query genes are encircled 
by Lime green colour to distinguish them from its neighbours.  

Shape: The gene nodes are represented by solid circle, while transcription factors are represented by 
solid triangles. Transcription factors regulate the expression of number of genes, and so representing 
them with distinct shape in the network gives an idea of the genes that they may be regulating. Since 
co-expression networks are in general dense, the edges are curved for better visualization (Figure 
3.6). 

Node Label: To avoid overcrowding and improve readability in the network, the labels of all the 
nodes are not shown all at once. The labels of only those nodes that cross a certain node size threshold 
across different zoom levels are displayed. However, hovering on a node displays its label. 
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Figure 3.6 Visualization features of the network present in network viewers in NetREx. 

 

Interactive Features 

The interactive features provided in the viewer to aid the user in better visualization and analysis 
of the network is briefly described below. 

Zoom and Pan: To focus on a subset of genes, the network can be zoomed in by hovering the cursor 
over the subset and scrolling the mouse wheel up and down to zoom in and out respectively. One can 
click and drag at the empty area in the network to move the complete network in the view panel. 

Moving a Node: Upon clicking and dragging on a node, it moves relative to the network layout. This 
feature allows the user to rearrange the layout in order to highlight some regions of the network. 

Hover: The first neighbours of a node get highlighted upon hovering over it. This can be used to 
explore the direct connections of a gene when the network is too dense. The node also displays the 
same feature if the corresponding row in the table is hovered on (Figure 3.7). 

 

Figure 3.7 Screenshot depicting the hovering feature over a node in NetREx. The first 
neighbors of Os02g0526400 is highlighted. 
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3.3.1.2 Options Panel 

To augment the visual features, options panel is provided to highlight or toggle the coloring of 
the nodes to incorporate additional information. It is located to the left of the View panel and its 
appearance can be toggled by clicking on the expand button present on the top right corner of the 
view panel (Figure 3.5). The different options provided are briefly described below. 

Colouring Switches 

The nodes in the graph can be coloured with three different schemes upon toggling the 
corresponding switches. 

Default View: By default, the nodes in the graph are shaded based on their degree in the complete 
network. A darker shade corresponds to a higher degree and vice versa. 

Up/Down DEGs: This feature allows the user to view the genes that are up- or down-regulated at 
different time-points. From the drop-down menu, the user can select the time-point and toggle the 
button to enable colouring according to up or down regulation of genes. Nodes coloured ‘Red’ 
indicates up-regulated genes while those coloured ‘Blue’ indicates down-regulated genes. Thus, by 
comparing across different time-points, the user can analyse which genes go up or down as a function 
of time. This functionality helps in identifying ‘early’ or ‘late’ responsive genes. This feature can 
also be used to compare differential expression of genes across tissues, or across different 
stress/treatment conditions. 

Module Membership: This feature allows the user to view the genes based on their WGCNA 
module membership.  If majority of query genes are part of the same co-expressed module, then it is 
highly likely that they represent the same biological process and based on their up or down regulation, 
we can know whether the associated process is activated or repressed. 

 

KEGG Pathways 

Using this feature the user can highlight genes that belong to a specific KEGG pathway. From the 
drop-down menu the user can select the KEGG pathway. On selecting this option, genes that belong 
to the selected pathway remain coloured while others are greyed out. This option can be used along 
with the colouring switches to understand the up/down regulation or module membership in a 
particular KEGG pathway. However, the colour switches should be toggled before the selection of 
the pathway. 

Stress / Treatment 

Using this feature the user can see the connectivity and expression status of the queried genes 
under any stress condition/hormone treatment. From the drop-down menu, the condition can be 
selected by clicking on the right arrow button. The network for the new stress/treatment condition is 
loaded in a new tab for comparison.  
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View Neighborhood 

This feature is only provided in the Options Panel of the Network Viewer. In the text box enter 
the number of neighbours of the queried genes (default = 50, max=100) the user wishes to display. 
Clicking the right arrow button next to the text box loads the Neighbourhood Viewer (in the same 
tab). 

Download 

The user can capture the snapshot of the network in the View Panel as a high-quality publishable 
JPG image by clicking the Download Image button. The image of the displayed network in the view 
panel will be downloaded. 

 

3.3.1.3 Table 

Additional information, based on “Node” and “Edge” attributes, is provided in a tabular format 
by clicking on the “Show/Hide Table” button present below the View Panel in Figure 3.5. It provides 
information of the genes in the network view and their interactions, and are listed under the 
categories, Nodes and Edges. 

Edges 

Each row corresponds to an edge specifying the source and target gene as well as its PCC and 
HRR value. 

Nodes 

The node section consists of information about the gene nodes displayed in the network. This 
information has been further divided into three sections for better clarity. 

Description: Consists of Gene Name, Transcription Factor (TF) Labelling, Module Name, General 
Description, MSU_ID, ktotal and link to IC4R Expression. On clicking over a module name, the 
complete network of the corresponding module (Module Viewer) gets loaded in a new tab. On 
clicking the “Click!” button under IC4R Expression, the IC4R expression profile of that gene gets 
loaded in a new tab. Access to IC4R allows the users to compare expression profiles of the gene 
across a larger set of RNA-seq experiments (24 projects) across various growth stages, tissues, and 
conditions (The IC4R Project Consortium, 2016). 

Function: For this attribute, functional annotations from GO, Mapman, and KEGG pathway is 
provided. 

Fold Change: Fold-change (log2 Fold Change) and p-values of the genes across different time-points 
is provided in this attribute. 
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Hover 

Upon hovering over a row in the Node Section, the corresponding node and its first neighbours 
get highlighted in the View Panel. To access this functionality, hover over a particular row in the 
table to select the corresponding gene and then move the cursor outside the table panel and scroll up 
to the view panel to see the selected node and its neighbour. 

Search 

A search bar is provided on the top right part of the table. A Keyword search of the entered text 
is done across all sections and only those rows which match the search are displayed. 

Download Table 

The complete table can be downloaded in different formats (Copy / Excel / CSV / PDF) by 
selecting the corresponding button at the end of the table. 

3.3.2 Gene Expression Visualization 
Early and late stress-responsive genes are known to have distinct roles in stress response. At the 

same time, genes that are ubiquitously differentially expressed across all the stages of a plant may 
have some essential roles (Mi et al., 2019). Earlier studies have shown tissue-specific roles of stress-
responsive genes indicating that divergence in the expression patterns of differentially expressed 
genes is an important indicator of their functions. Particularly, for uncharacterized genes, stage and 
tissue-specific expression profiles can give important cues regarding their functions (Sircar & Parekh, 
2015). The user can analyze such stress, tissue and time-point specific information through heat maps 
provided in the Expression Viewer module (Figure 3.8). For the user-provided gene set, differential 
expression of genes can be observed based on fold-change and p-values at various time-points for 
the chosen stress and tissue. Fold-change heatmap assist in the comparison of expression changes 
across multiple genes, while the p-value heatmap provides the significance to the expression values. 
The user is also provided with the option to sort the ordering of genes or time-points in the heatmap 
based on the expression value, thus allowing to observe general trends across them. Other features 
like zooming and panning are also made available. 

Download 

The snapshot of both the heatmaps can be downloaded as a high-quality publishable image in both 
SVG and PNG format. 
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Figure 3.8 Screenshot of the Expression Viewer in NetREx. 

3.4 Data Browse Options 
Instead of querying for a particular set of genes, the user may browse through the complete dataset. 

Three browsing options are provided, namely, browsing based on stress/treatment condition, 
WGCNA module and KEGG pathway. This can be accessed from the navigation bar and provides 
an alternate way to select a gene set. 

3.4.1 Condition-wise 
To explore important stress-responsive genes, the user can browse NetREx using the browse 

option: “Condition-wise.” On selecting the tissue and stress/hormone treatment, the user can fetch 
the list of DEGs (in tabular format) for the corresponding tissue and condition. Tables containing 
gene information and link to IC4R expression database, gene function (GO, MapMan and KEGG) 
and fold-change along with p-value across time-points are provided. The fold-change tables can be 
sorted by fold-change or p-value to identify most significant up- or down-regulated genes for the 
chosen condition at different time-points. 

3.4.2 WGCNA Module-wise 
Using WGCNA R package 22 co-expressed gene modules for root and 18 for shoot HRR networks 

were identified (Table 2.6). These gene modules can be accessed by clicking “Module-wise” under 
the “Browse” menu and choosing the tissue and module name from drop down menu. On this page, 
top 100 highly connected genes based on their within-module connectivity can viewed on a graded 
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colour scale, based on the “colour name” of the module. The top 100 genes of the module are also 
listed in tabular format along with their node and edge attributes, functional annotation (from GO, 
MapMan and KEGG) and GO enrichment. For a given module in a tissue-specific network, these 
genes represent the core components whose functions may be representative functions of the 
respective module. Further, GO enrichment terms for “biological processes” are provided with the 
fold-enrichment and FDR values to infer the overall function of the co-expressed functional cluster. 
The network of the top 100 genes can also be viewed by clicking the “Module Viewer” button present 
under this browse section (Figure 3.9). This network has the same functionality as present in the 
other network viewers (Figure 3.10). 

 

Figure 3.9 Screenshot of the Module-wise browse page in NetREx. 

 

Figure 3.10 Screenshot of the Module-Viewer in NetREx where the WGCNA Black module 
for the root tissue is depicted. 
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3.4.3 KEGG Pathway-wise 
This is one of the attractive features of NetREx by which hierarchical KEGG pathways can be 

explored. After selecting the appropriate tissue and condition, the user may select a certain pathway 
of interest. Genes of the selected pathway that are DEGs for at least two time-points (for chosen 
stress/treatment condition) can be filtered for further network analysis. A multi-select tree showing 
the hierarchically arranged KEGG pathways and the associated genes are displayed (Figure 3.11). 
The checkboxes provided next to each pathway, sub pathways and genes may be ticked by the user 
for selection. Upon selection, the genes from the chosen pathways (max = 300) are displayed in the 
right-hand side panel. On submitting the selected genes, these are sent as query to the network and 
expression viewers and the user can analyze these genes as discussed above for any set of genes 
provided by the user. A search bar option is also provided for keyword search for KEGG pathways. 
Thus, this feature allows the user to view genes of the select pathway(s) and their representation in 
the chosen tissue and stress/treatment condition. 

 

Figure 3.11 Screenshot depicting how to select genes in Pathway-wise browse option in 
NetREx. 

3.5 Ortholog Network Analysis 
Ortholog network leverages the use of existing experimental data in one species to identify similar 

parallel relationships in another species. Analyzing these networks can also aid in improving the 
accuracy of an inferred network. To investigate the involvement of genes in other crops under abiotic 
stress and phytohormone treatments, an option is provided to query the interaction networks of their 
orthologs in rice. The webserver allows querying of orthologous from Arabidopsis, wheat, maize, 
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barley, and sorghum. To access this feature, the appropriate species should be specified from the 
dropdown menu and a comma-separated list of Ensembl Stable Gene IDs to be queried should be 
provided in the same query form as used for Oryza Sativa. (Figure 3.12). For example, for 
Arabidopsis: AT2G43490, for Barley: HORVU3Hr1G015620, for Maize: Zm00001d040234, for 
Sorghum: SORBI_3001G319500, and for Wheat: TraesCS3B02G102400. The genes are mapped to 
the corresponding rice orthologs based on the Ensembl Plants database. Upon submission, the 
validation page opens displaying information of the orthologous mapping and the unmapped genes 
(Figure 3.13). 

 

Figure 3.12 Example for ortholog query in NetREx. 

 

Figure 3.13 Validation Page in NetREx displaying the Arabidopsis thaliana - Oryza Sativa gene 
mapping. 
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3.6 Dataset 
The complete raw datasets used for constructing NetREx can be downloaded by the user from the 

Navigation Bar on the Home page. It contains data of the Node Lists for Root and Shoot tissues for 
various stress conditions/hormone treatments along with the fold-change values for different time-
points as shown in Figure 3.14. 

 

Figure 3.14 Screenshot of the dataset download page in NetREx. 

3.7 Implementation 
An overview of the functional components of the application is given in Figure 3.15 and includes 

various query and browse options, network visualization, heatmap display and functional annotation. 
Analysis and visualization of large networks is a difficult task for web applications. NetREx has 
tackled this issue by precomputing various aspects of the network and storing them in the backend 
as JSON files so that minimal computation time is spent after loading. Network attributes like the 
initial position of the nodes and edges, their size, shape and color are computed in the Gephi 
Application (Gephi - The Open Graph Viz Platform, n.d.) and the gene attributes are stitched together 
and exported as one queryable file for each stress condition and tissue type. The backend computation 
now just involves selection of the appropriate file based on user’s input, and then filtering the edges 
such that only the query genes are considered. For the various visualization features, Javascript 
plugins have been used. To stitch all of them together into one application, the backend is built on 
Express JS which is a Node.js web application framework. Express JS functions are used to 
communicate between the user and the JSON database thereby handling all logical computation. 
These computations include identifying the query, fetching and filtering of data from the complete 
graph and extracting relationship between queried genes for chosen tissue and stress/treatment 
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conditions. The frontend uses HTML, wherein the logical switches and backend calls are handled 
using the jQuery library. 

 
For Network Visualization, Sigma JS is used which is a javascript library dedicated to graph 

drawing. It allows the incorporation of features like network lay outing, coloring switches and 
interactability while also being light weight and computationally efficient. For heatmap display of 
Expression Viewers, Clustergrammer JS is used which is a front end javascript library for clustergram 
visualization. It provides interactive visualization features such as sorting and zooming (Fernandez 
et al., 2017). The KEGG pathway tree in the pathway browse option is constructed using the Tree 
Multiselect jQuery plugin. Hence the complete application uses a unified language Javascript which 
makes it efficient and scalable. 

 

 

Figure 3.15 The implementation architecture of NetREx. 

3.8 Querying NetREx - A Case Study 
Below we demonstrate the usefulness of NetREx by quering a set of drought-responsive genes in 

rice. The selected genes belong to the ABA signalosome complex comprising of PYR/PYL receptors, 
PP2Cs, SnRK2 kinases and ABF/bZIP transcription factors, obtained from the KEGG database 
(pathway ID: dosa04075) (Kanehisa & Goto, 2000; Umezawa et al., 2009) for this case study. The 
ABA signal transduction pathway is one of the key mechanisms by which plants respond to 
environmental stresses like drought. Several studies indicate that the central signaling module 
comprises three protein classes: Pyracbactin Resistance/Pyracbactin resistance-like/Regulatory 
Component of ABA Receptor (PYR/PYL/RCARs) proposed to be the ABA receptors and the 
regulatory proteins, viz., Protein Phosphatase 2Cs (PP2Cs) which act as negative regulators together 
with SNF1-related protein kinases 2 (SnRKs) which are positive regulators (Figure 3.16). Increase 
in ABA levels during stress leads to the PYR/PYL/RCAR-PP2C complex formation causing 
inhibition of PP2C activity, thereby allowing activation of SnRKs which target the functional proteins 
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like membrane proteins, ion channels and transcription factors, and facilitate transcription of ABA-
responsive genes. Network-based resources such as NetREx can facilitate querying the coordinated 
interactions of regulatory genes and their functional targets which further trigger downstream 
processes. 

 

Figure 3.16 A schematic representation of the ABA signaling pathway from KEGG database. 

A total of 41 rice genes from KEGG (pathway ID: dosa04075) are queried in NetREx in “root” 
and “shoot” tissues under “drought” stress. Of these 13 and 17 genes respectively mapped to the root 
and shoot networks and are listed in Table 3.1. The filtered gene sets (13 and 17) are a union of 
DEGs across all time points for the chosen condition (drought) and tissue (root and shoot). The 
“invalid genes” on the other hand either have very low expression values or are not differentially 
expressed in at least two timepoints and hence were not considered in the network construction in 
NetREx.  

Table 3.1 Shoot- and root-specific subnetworks of ABA Signalosome Complex extracted using 
NetREx under drought stress. 

RAP-DB Id Gene Name Component of the ABA Signalosome Degree 

Shoot Network 

Os09g0325700 OsSIPP2C1 PP2C phosphatase 7 

Os01g0583100 OsPP2C06 PP2C phosphatase 6 

Os03g0268600 OsPP2C30 PP2C phosphatase 6 

Os05g0537400 OsPP2C50 PP2C phosphatase 6 

Os01g0656200 OsPP2C08 PP2C phosphatase 5 

Os01g0869900 SAPK4 SnRK2 protein kinase 5 

Os02g0766700 OsbZIP23 bZIP TF 5 

Os06g0211200 OsAREB1 bZIP TF 2 

Os07g0622000 SAPK2 SnRK2 protein kinase 1 

Os05g0213500 OsPYL5 ABA receptor 1 
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Os01g0867300 OsbZIP10 bZIP TF 1 

Os02g0551100 SAPK6 SnRK2 protein kinase 1 

Os01g0813100 HBF2 bZIP TF 0 

Os10g0564500 SAPK3 SnRK2 protein kinase 0 

Os03g0390200 SAPK1 SnRK2 protein kinase 0 

Os05g0437700 OsbZIP40 bZIP TF 0 

Os02g0255500 OsPYL3 ABA receptor 0 

Root Network 

Os01g0656200 OsPP2C08 PP2C phosphatase 7 

Os09g0325700 OsSIPP2C1 PP2C phosphatase 7 

Os05g0537400 OsPP2C50 PP2C phosphatase 7 

Os03g0268600 OsPP2C30 PP2C phosphatase 7 

Os01g0583100 OsPP2C06 PP2C phosphatase 5 

Os01g0867300 OsbZIP10 bZIP TF 5 

Os02g0766700 OsbZIP23 bZIP TF 5 

Os06g0211200 OsAREB1 bZIP TF 5 

Os02g0255500 OsPYL3 ABA receptor 0 

Os02g0551100 SAPK6 SnRK2 protein kinase 0 

Os07g0622000 SAPK2 SnRK2 protein kinase 0 

Os10g0573400 OsPYL1 ABA receptor 0 

Os09g0456200 OsbZIP72 bZIP TF 0 

 
In the Expression Viewer, fold-change of the filtered (valid) genes is displayed as heatmaps, 

shown in Figure 3.17. For the root tissue (Figure 3.17 (A)), it is observed that majority of the DEGs 
are strongly up-regulated as early as 1 hr time-point. However, at 3 hr, a decrease in fold-change is 
observed which is probably due to transcriptomic and metabolic reprogramming. For the shoot tissue 
(Figure 3.17 (B)) it is observed that most genes are not induced at 1hr time-point but gradually the 
fold-change increases at later time-points. This indicates that response to drought stress is induced in 
root tissue earlier compared to shoot tissue. 
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Figure 3.17 Heatmaps from Expression Viewer for (A) Root tissue and (B) Shoot tissue under 
Drought stress. Genes in red having high positive fold-change and those in blue having high 

negative fold-change with respect to control (0h, no stress). 

Using “Network Viewer” module in NetREx, user can observe stress and tissue-specific view of 
the HRR-100 network. The expression status of the queried genes can be viewed in a time-specific 
manner by choosing the time-points 1h (default), 3h, 6h, 12h and 1day. In Figure 3.18, the “default 
view” indicates that among the 13 and 17 DEGs that mapped to the drought HRR-100 network in 
root (Figure 3.18 (A)) and shoot (Figure 3.18 (B)) respectively, 8 genes are seen to form the largest 
connected component in both these networks.  

 
Figure 3.18 The network of drought-responsive DEGs in involved in ABA signaling pathway 

shown. (A) Root tissue (13 DEGs) and (B) Shoot tissue (17 DEGs). 
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In Figure 3.19 is shown the connectivity information between genes, using the colour coding 
scheme: up- regulated (red) and down-regulated (blue) genes at 1h, 3h and 1day. For example, in the 
shoot network, the high-degree gene OsSIPP2C1 is observed to be up-regulated at 3h of stress, while 
it is up-regulated even early at 1h in root network. Interestingly, it was observed in previous studies 
that OsSIPP2C1 is negatively regulated by ABL1 which is involved in abiotic stress and panicle 
development in rice (Li et al., 2013). In the root network, the components are more tightly connected 
with the PP2Cs viz., OsSIPP2C1, OsPP2C50, OsPP2C30 and OsPP2C08 with the highest degree 
genes interacting with the TFs OsAREB1, OsbZIP23 and OsABF1. Also, most of the genes are up-
regulated at 1h time-point (Figure 3.19) and are probably early response genes in root tissue, except 
OsAREB1 which seems to be a late response gene activated only at 6h. For the shoot network, the 
response is delayed as discussed above and the SNRK2 protein kinase, SAPK4, is not induced until 
12h. While majority of the valid genes are up-regulated in shoot and root, a few genes are observed 
to be down-regulated. These include OsPYL3 (Os02g0255500), down-regulated both in root and 
shoot tissues. Indeed, this gene has been shown to be down-regulated in drought-susceptible rice 
genotype under abiotic stress conditions, while over-expression of this gene in Arabidopsis led to 
improved tolerance in cold and drought stress conditions (Li et al., 2015). The shoot-specific TF 
HBF2 is also down-regulated in the shoot network (6h, not shown in the figure), while the root-
specific OsPYL1 gene is down-regulated at 1h in the root network (Figure 3.19A). Among the 13 
root and 17 shoot, 11 genes are common and differentially expressed in the two tissues. Interestingly, 
all the five 2C protein phosphatase (PP2C) proteins are common to both root and shoot, indicating 
their ubiquitous role of negative regulation of ABA (via SnRK2s and PYR/PYL/RCARs) in both the 
tissues (Fujii et al., 2009). However, in terms of network-concepts, connectivity between the common 
gene sets differ between the two tissues as observed in Figure 3.18. Among the six shoot-specific 
DEGs, the bZIP TF HBF2 has been shown to be highly expressed in shoot apical meristem (Fujii et 
al., 2009). On the other hand, the root-specific gene OsPYL1 was shown to interact with OsABIL2 
that has a role in root development (Li et al., 2015).  
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Figure 3.19 Time-point specific networks of drought-responsive DEGs in Root and Shoot 

tissues respectively at 1h (A, D), 3h (B, E) and 1Day (C, F). The figure provides a comparative 
view of the transcriptional changes for the different time-points along with tissue-specific 

gene connectivity. 

Clusters of co-expressed genes often represent coordinated biological processes. Analysis of gene 
co-expression networks have been helpful in functional annotation of uncharacterized genes 
(Chandran et al., 2018; Sircar & Parekh, 2015), prioritization of candidate genes (Schaefer et al., 
2018; Zeng et al., 2018), inferring biological processes, e.g., metabolic pathways (Kautsar et al., 
2017; Wisecaver et al., 2017), stress response mechanisms (Nounjan et al., 2018; Tan et al., 2017), 
cell wall metabolism (Ferreira et al., 2016; Wang et al., 2012), etc. For example, out of the 13 genes 
in the root network, 8 genes belong to the root-specific Magenta module, shown in Figure 3.20. 
Incidentally, they also form the largest component in the network (Figure 3.20 (A)). The remaining 
five genes with zero degree belong to GreenYellow, Yellow (2 genes), Blue and the Brown module. 
To obtain further details on the root-specific Magenta module, we use the “Browse” option in NetREx 
for “Root” tissue. Some of the significant GO terms include “regulation of transcription, DNA-
templated” (GO:0006355, FDR= 8.56e-04) and “abscisic acid-activated signaling pathway” 
(GO:0009738, FDR= 7.64e-03) indicating the relevance of Magenta module in drought stress. 
Similarly, for the shoot network, out of 17 genes, 8 belong to the shoot-specific Turquoise and 4 to 
the shoot-specific Salmon modules. The Salmon module harbours genes involved in 
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Dephosphorylation (GO:0016311, FDR= 1.98e-02), while the Turquoise module is involved in a 
number of stress-responsive processes including ER-associated misfolded protein catabolic process 
(GO:0071712, FDR= 8.83E-03), regulation of response to stress (GO:0080134, FDR=3.51e-05), etc.  
The Module Viewer allows further exploration of genes belonging to the respective modules. For 
example, the above analysis indicates that genes of root-specific Magenta module maybe biologically 
relevant for drought stress. On exploring the top 100 highly connected genes of the module, we see 
several known TF family genes like bZIPs and HSFs are important hubs of this module. Along with 
these, several “Conserved hypothetical proteins’ lacking detailed functional annotations are also part 
of the hubs. The associations of these genes with known TFs can be further queried in NetRex along 
with their expression profiles across different conditions and different tissues (IC4R Expressions).  

 
Figure 3.20 The module-wise colored network of drought-responsive DEGs in involved in 
ABA signaling pathway shown. (A) Root tissue (13 DEGs) and (B) Shoot tissue (17 DEGs). 

In systems biology, network neighbourhood analysis is an important aspect as it facilitates a 
“guilt-by-association” strategy by which we can find interesting genes which are closely 
interacting/co-expressed with the initial “seed genes”. In the Neighborhood View on the right panel, 
top 100 neighbours based on kTotal, the connectivity in the whole network, of the 13 root-specific seed 
genes are fetched. The “seed genes” are encircled in green to distinguish from other neighbourhood 
genes in Figure 3.21 (A). To infer the overall function of the subnetwork (13 query genes and their 
respective 100 neighbours), we performed GO enrichment analysis. As expected, positive regulation 
of abscisic acid-activated signalling pathway (GO:0009789, FDR=9.50E-03) was the most enriched 
term. Two major clusters are clearly discernible (Figure 3.21 (B)) in this subnetwork.  
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Figure 3.21 Neighborhood View of 13 drought-responsive DEGs in root tissue: (A) default 

view and (B) Module view. 

The first set consists of neighbourhood genes that majorly belong to the Magenta module (16 
genes) and these genes are in fact up-regulated as early as 1h of drought stress (Figure 3.22 (A)). As 
indicated above, the Magenta module is involved in the ABA signalling and stress responsive 
pathways. The other cluster consists of mostly genes belonging to Blue and Red modules. These sets 
of genes are late response genes that are over-expressed as a result of downstream cellular and 
metabolic adjustments after the signalling components have been induced in the early time-points 
(Figure 3.16 and Figure 3.22 (B)). The Blue module includes stress-responsive genes that aid in 
autophagy of damaged proteins and cellular organelles (GO:0044805, FDR=6.74E-03) (Su et al., 
2020). The Red module harbours genes involved in the methylerythritol 4-phosphate (MEP) pathway 
of isoprenoid biosynthetic process leading to the production of carotenoids and various other 
secondary metabolites (GO:0019288, FDR= 1.32E-03).  



60 

 

   

 
Figure 3.22 Time-point specific views for the extended neighbourhood of drought-responsive 

genes in root tissue: (A) early timepoint of 1h and (B) late time-point of 12h. 

As discussed above, network neighbourhood helps us explore novel candidate genes that are 
absent in the initial query gene set. For example, the gene with the highest kTotal (weighted 
connectivity of a gene in the whole root network) is the transcription factor OsPHR3 (Os02g0139000) 
implicated in low Pi stress and in regulating Nitrogen homeostasis (Sun et al., 2018). To explore the 
transcriptomic dynamics of this gene in other stress conditions, we queried in NetREx again. Using 
the option to check the expression profile in ‘other conditions’ provided on the right panel in 
“Network Viewer”, we observed that this gene is up-regulated in osmotic stress (3-6h), flood stress 
(1h), ABA (1h to 1 day) and JA (1 and 3h) while it was down-regulated in osmotic stress at 12h, 
flood stress (3-6h) and JA (6h to 1 day). Additionally, to explore the expression of this TF across rice 
growth stages and tissues, we used the IC4R link in the “Nodes Description” table. From Figure 3.23 
it may be noted that OsPHR3 exhibits higher expression in root and leaf tissues. On scanning the 
upstream 1kb of this gene using the PlantPan v2.0 database (Chow et al., 2016), we observed several 
bZIP binding motifs especially in the 500 kb upstream region. Further, concurrent with this, several 
binding sites for WRKY TFs were also detected in and around the same region, indicating that this 
TF may also be a target of biotic stress signalling cascades (Appendix Table 8). The network 
neighbourhood view of OsPHR3 was next explored. All its neighbours are observed to be up-
regulated at 6h in root tissue under drought stress and all of them belong to the Blue module. 
Moreover, the top 10 neighbours are involved in functions like transferring phosphorus-containing 
groups, carbon-nitrogen ligase activity as well as drought and biotic stress (Appendix Table 8). 
Literature survey revealed that this TF has not been functionally characterized in multiple stress 
conditions such as drought and warrants further investigation. 
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Figure 3.23 Expression profile of OsPHR3 from IC4R across different tissues and 
development stages.  

A similar analysis was carried out with 17 shoot-specific DEGs and the Network View is shown 
in Figure 3.24 (A). It may be noted from the module view in Figure 3.24 (B) that majority of the 
genes belong to the shoot-specific Turquoise Module while a separate cluster is formed by genes of 
the Blue Module. Some of the most significant functions of the subnetwork include protein 
serine/threonine phosphatase activity (GO:1905183, FDR=6.58E-03), ABA signalling 
(GO:0009789, FDR=8.95E-03), cellular response to nitrogen starvation (GO:0006995, FDR=1.28E-
03), etc. Here, the gene with the highest kTotal is OsAtg8 (Os07g0512200), which is a well 
characterized gene involved in autophagy and protein degradation (Su et al., 2006). However, the 
role of this gene with respect to drought is yet to be explored. An important point to be noted is that 
we extracted extended root and shoot networks under drought stress using the same “seed” genes 
involved in ABA signalling. Needless to say, both the subnetworks had GO terms enriched for 
“abscisic acid-activated signaling pathway” (GO:0009738), “regulation of response to water 
deprivation” (GO:2000070), “cellular response to hormone stimulus” (GO:0032870) and so on. 
However, more specific tissue-specific GO terms like “photosynthesis and dark reaction” 
(GO:0019685, FDR= 3.15E-02), “gluconeogenesis” (GO:0006094, FDR= 3.60E-03), “cellular 
response to nitrogen levels” (GO:0043562, FDR= 4.21E-05), etc. for the shoot tissue and “cellular 
response to reactive oxygen species” (GO:0034614, FDR= 3.57E-02), “fatty acid oxidation” 
(GO:0019395, FDR= 5.41E-03), etc. for the root tissue were noted. Another major difference in the 
Neighborhood View of these genes in root and shoot tissues is the presence of down-regulated genes 
in the shoot network as compared to root and the gradual activation/repression of these genes in the 
shoot (Figure 3.25 (A to D)) in contrast to root (Figure 3.22 (A and B). The down-regulated genes 
in shoot (21 genes) majorly belong to the Blue module (Figure 3.24 (B)) with at least 6 genes 
annotated to be involved in photosynthesis, indicating that this process is preferentially switched-off 



62 

 

   

in the green tissues under drought stress. Further exploration of the Blue module of the shoot HRR 
network using the “Browse Module Wise” page in NetREx revealed several interesting shoot-specific 
GO terms like “photosystem II repair” (GO:0010206, FDR= 9.62E-04), “photosystem II assembly” 
(GO:0010207, FDR= 4.41E-03), “regulation of photosynthesis, light reaction” (GO:0042548, FDR= 
3.80e-03), etc. Adverse effects of abiotic stress conditions like drought on the photosynthetic 
machinery with harmful effects on the overall growth and yield of the crop are well documented 
(Sircar & Parekh, 2019; Zhou et al., 2007). This confidently explains the functional differences of 
the root and shoot subnetworks from the extended ABA signalosome analysis discussed above. 
Moreover, the expression profiles of the genes across time-points and their corresponding tissue-
specific network connectivity enables one to confidently explore the temporal and functional space 
of the genes and arrive at relevant conclusions.  

 

Figure 3.24 Neighborhood View of 17 shoot-specific genes with (A) default view and (B) 
Module views under Drought stress.  
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Figure 3.25 Time-point specific views for the extended neighbourhood for shoot-specific genes 
at early timepoints (1 and 3h) and late time-points (6h and 1day).  

3.9 Conclusion 
NetREx is a freely accessible web-server for biologists to conveniently explore the global rank-

based stress networks in a tissue-specific manner. The resource has been constructed using high-
quality RNAseq data from the TENOR database generated using homogeneous experimental 
protocols. In NetREx, substantial emphasis has been given to explore the networks through various 
perspectives such as exploring gene expression profiles (Expression Viewer heatmaps and Network 
Viewer in a time-point specific manner), network connectivity (Network Viewer and Neighbourhood 
Viewer), identification of novel stress-responsive candidates (Neighbourhood Viewer), functional 
analysis of genes (browsing NetREx by modules and pathways) and comparative analysis across 
stress conditions (supported in Network Viewer mode). The gene attributes displayed in the different 
modules have been extensively cross-linked to various other resources to provide additional 
information to the users. Our analysis indicates that the rank-based networks in NetREx are 
biologically relevant wherein the tissue and stress-specific information is effectively retained. 
Network-based subnetwork analysis and gene prioritization using NetREx will therefore be a 
significant resource to study complex phenotypes associated with stress-response in rice. 
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Chapter 4 
 

4 Results and Discussions 
 

In this chapter we discuss the results obtained from the processed RNA-seq data of rice under 
various abiotic stress conditions, followed by a thorough analysis into the processes involved in 
osmotic stress response in rice. The analysis on the timepoint wise count of differential expressed 
genes under various conditions is given in section 4.1. Section 4.2 discusses the distribution of DEGs 
based on their WGCNA module membership, thereby shedding some light on the coordinated 
biological processes that occur in the various stress conditions in a timepoint wise manner. Section 
4.3 describes the distribution of genes of the differentially expressed WGCNA modules based on the 
metabolic pathways they take part in. Finally, Section 4.4 gives an in depth analysis of the processes 
and important genes involved in osmotic stress in rice. 

4.1 Differential Expression Analysis in Root 
A comparative analysis of Differentially Expressed Genes (DEGs) across different time-points 

and different conditions is conducted to get insights into the response time associated with different 
environmental stresses. The number of up and down-regulated genes observed at different time-
points for various stress conditions and hormone treatments is shown in Figure 4.1. It is observed 
that drought exhibits significant number of DEGs from 6hr time-point, and the number of up-
regulated genes are much higher than down-regulated genes. Osmotic stress exhibits a similar 
behavior but with significantly higher number of DEGs than in the case of drought case and from 1hr 
onwards indicating an early response to stress. Flood stress exhibits negligibly small number of DEGs 
that are mainly down-regulated. Cold stress and ABA and JA treatment exhibit a similar trend of 
DEGs from 1hr onwards with higher number down- regulated compared to up-regulated genes. While 
osmotic stress and ABA treatment show a uniform number of up-regulated DEGs from 3h onwards, 
flood stress and JA treatment have a slight drop in DEGs towards the final time-points with a peak 
at around 12h for cold stress and 6h – 12h for JA treatment.
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Figure 4.1 Number of up and down-regulated genes as a function of time is depicted for 
various stress/treatment conditions in root tissue. WGCNA Module Analysis 

4.2 WGCNA Module Analysis 
To understand the processes that are activated or repressed in different stress conditions we 

analyze the distribution of DEGs across co-expressed modules. These can point towards important 
processes/pathways that are affected in response to stress. To obtain co-expressed modules, we use 
Weighted Gene Co-expression Network Analysis (WGCNA) algorithm, the process of which is 
explained in Section 2.5. It results in a total of 22 co-expressed modules for the HRR100 Network 
of the root tissue. The distribution of DEGs across co-expressed modules under different conditions 
is tabulated in Table 4.1. The ‘signed’ network gives insight into how different coordinated biological 
processes represented by modules are expressed in different conditions. The differentially expressed 
genes in different time points is evaluated for each condition module-wise. The time point where the 
maximum percentage for DEGs are observed for a module is taken into consideration.  

Cells with a considerable number of DEGs (>30%) are coloured. The red colour denotes the 
presence of more up-regulated genes while the blue colour denotes the presence of more down-
regulated genes in that module. Cells are coloured grey if the difference in the number of up-regulated 
and down-regulated genes is not more than 20. Functionally Enriched GO terms from the PANTHER 
classification system are evaluated for each of the modules by submitting the corresponding set of 
genes in the GO Consortium website geneontology.org. Co-expressed modules are representative of 
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coordinated biological function; hence their functional enrichment tells us the potential function, 
pathways or biological process that the module is involved in.  

Table 4.1 Co-expressed modules with %age DEGs across time-points in root tissue (h: hour, 
d: day). 

Module Drought Flood Osmotic Cold ABA JA GO 

Black 
(521) 

64.3% 
12hr 

(335,0) 

9.2% 
1hr 

(48,0) 

91.2% 
3hr 

(475,0) 

44.9% 
1day 

(214,20) 

51.6% 
1day 

(260,9) 

40.1% 
6hr 

(165,44) 

regulation of signal 
transduction, regulation 
of signaling, regulation 
of cell communication 

Blue 
(1653) 

18.6% 
1day 

(244,64) 

6.7% 
3day 

(27,84) 

50.3% 
6hr 

(806,25) 

37.7% 
12hr 

(80,544) 

64.9% 
1day 

(1068,4) 

54.6% 
6hr 

(777,126) 

late nucleophagy, 
autophagy of nucleus, 

autophagy of 
mitochondrion 

Brown 
(1478) 

28.3% 
12hr 

(6,413) 

18.9% 
1day 

(178,102) 

49.7% 
3hr 

(3,731) 

48.1% 
12hr 

(32,679) 

53.3% 
1day 

(40,748) 

31.1% 
12hr 

(244,215) 

arabinose metabolic 
process, L-arabinose 
metabolic process, 

cellular response to light 
stimulus 

Cyan 
(341) 

20.5% 
1day 
(5,65) 

5.0% 
6hr 

(13,4) 

15.5% 
6hr 

(37,16) 

89.4% 
12hr 

(0,305) 

17.6% 
1day 
(8,52) 

21.4% 
1day 

(31,42) 

chromatin remodeling, 
chromatin remodeling, 
chromatin organization 

Green 
(807) 

10.9% 
12hr 

(7,81) 

25.9% 
3day 

(156,53) 

46.7% 
12hr 

(166,211) 

37.4% 
1day 

(282,20) 

60.5% 
12hr 

(4,484) 

41.1% 
6hr 

(52,280) 

photosystem II 
assembly, photosystem 

II repair, NAD(P)H 
dehydrogenase complex 

assembly 

Green 
Yellow 
(419) 

65.6% 
12hr 

(273,2) 

15.3% 
3day 

(10,54) 

78.0% 
1hr 

(327,0) 

33.2% 
12hr 

(102,37) 

48.4% 
1day 

(56,147) 

40.1% 
1day 

(69,99) 

carotene metabolic 
process, hydrocarbon 

metabolic process, 
terpene metabolic 

process 

Grey (963) 
15.9% 
1day 

(59,94) 

14.0% 
3day 

(32,103) 

34.2% 
12hr 

(235,94) 

40.1% 
12hr 

(110,276) 

39.8% 
1day 

(148,235) 

29.2% 
1day 

(128,153) 

nucleosome positioning, 
negative regulation of 
DNA recombination, 
negative regulation of 

DNA metabolic process 

Grey60 
(263) 

17.1% 
1day 

(35,10) 

35.4% 
1day 

(75,18) 

52.5% 
6hr 

(137,1) 

39.2% 
1day 

(62,41) 

31.2% 
1day 

(64,18) 

47.1% 
12hr 

(93,31) 
No significant terms 

Light 
Cyan 
(274) 

5.5% 
12hr 
(9,6) 

20.8% 
1day 

(41,16) 

37.2% 
12hr 

(95,7) 

20.1% 
1day 

(38,17) 

71.5% 
1day 

(196,0) 

68.2% 
12hr 

(152,35) 

autophagy of 
peroxisome, process 
utilizing autophagic 

mechanism, autophagy 



67 

 

   

Light 
Green 
(229) 

5.2% 
1day 
(1,11) 

37.6% 
1day 
(1,85) 

27.1% 
12hr 

(30,32) 

55.0% 
12hr 

(126,0) 

16.6% 
1day 

(19,19) 

28.4% 
1day 

(22,43) 

mitochondrial electron 
transport, ubiquinol to 

cytochrome c, 
mitochondrial electron 
transport, cytochrome c 

to oxygen, mitochondrial 
ATP synthesis coupled 

electron transport 

Light 
Yellow 
(216) 

86.1% 
12hr 

(186,0) 

12.0% 
1day 
(3,23) 

75.0% 
1hr 

(162,0) 

37.5% 
12hr 

(16,65) 

33.8% 
1day 

(52,21) 

45.8% 
6hr 

(75,24) 

chorismate metabolic 
process, aromatic amino 
acid family biosynthetic 

process, dicarboxylic 
acid metabolic process 

Magenta 
(510) 

71.6% 
12hr 

(363,2) 

12.2% 
3day 

(16,46) 

75.9% 
3hr 

(387,0) 

36.9% 
1day 

(85,103) 

82.4% 
3hr 

(420,0) 

42.5% 
12hr 

(116,101) 

positive regulation of 
abscisic acid-activated 

signaling pathway, 
tryptophan biosynthetic 

process, indolalkylamine 
biosynthetic process 

Midnight 
Blue (306) 

51.6% 
12hr 

(158,0) 

7.2% 
3day 
(9,13) 

50.7% 
1hr 

(154,1) 

92.2% 
12hr 

(282,0) 

28.4% 
1day 

(60,27) 

21.6% 
1day 

(34,32) 
No significant terms 

Pink (509) 
27.7% 
12hr 

(129,12) 

13.9% 
1day 

(10,61) 

35.2% 
12hr 

(126,53) 

35.6% 
12hr 

(159,22) 

86.8% 
12hr 

(442,0) 

45.6% 
12hr 

(154,78) 

acetyl-CoA biosynthetic 
process from acetate, 

acetate metabolic 
process, citrate 

metabolic process 

Purple 
(484) 

14.3% 
12hr 

(1,68) 

9.7% 
3day 

(29,18) 

25.6% 
3hr 

(1,123) 

19.0% 
1day 

(40,52) 

11.8% 
1day 

(38,19) 

70.2% 
6hr 

(76,264) 

small nucleolar 
ribonucleoprotein 

complex assembly, box 
C/D snoRNP assembly, 
positive regulation of 
transcription by RNA 

polymerase I 

Red (626) 
34.0% 
12hr 

(201,12) 

10.9% 
3day 

(23,45) 

43.5% 
12hr 

(206,66) 

36.1% 
12hr 

(35,191) 

38.2% 
1day 

(125,114) 

76.2% 
6hr 

(399,78) 

purine nucleoside 
catabolic process, 

isopentenyl diphosphate 
biosynthetic process, 
methylerythritol 4-
phosphate pathway, 

nucleobase-containing 
small molecule catabolic 

process 

Royal 
Blue (206) 

57.3% 
6hr 

(118,0) 

25.7% 
12hr 

(4,49) 

55.3% 
1hr 

(113,1) 

39.8% 
1day 

(52,30) 

47.1% 
1day 

(10,87) 

49.0% 
6hr 

(70,31) 

CDP biosynthetic 
process, xylan 

acetylation, CDP 
metabolic process 
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Salmon 
(343) 

47.5% 
12hr 

(0,163) 

13.7% 
1day 
(41,6) 

28.9% 
12hr 

(88,11) 

84.8% 
1day 

(0,291) 

13.4% 
1day 
(37,9) 

15.7% 
1day 

(24,30) 

biological_process, 
organic substance 
metabolic process 

Tan (360) 
29.2% 
1day 

(58,47) 

12.8% 
3day 

(12,34) 

35.8% 
3hr 

(52,77) 

43.1% 
12hr 

(19,136) 

84.7% 
6hr 

(305,0) 

35.3% 
12hr 

(47,80) 

sulfur compound 
metabolic process, 
biological_process 

Turquoise 
(2158) 

12.6% 
1day 

(57,215) 

26.1% 
1day 

(10,553) 

39.3% 
12hr 

(230,618) 

26.9% 
1day 

(234,347) 

86.0% 
1day 

(3,1853) 

71.7% 
12hr 

(275,1272) 

syncytium formation, 
mitotic chromosome 

condensation, meiotic 
chromosome 
condensation 

Yellow 
(1028) 

9.4% 
6hr 

(15,82) 

20.5% 
1day 

(9,202) 

19.2% 
12hr 

(91,106) 

27.3% 
12hr 

(256,25) 

27.0% 
1day 

(50,228) 

72.9% 
6hr 

(71,678) 

positive regulation of 
translational fidelity, 

snRNA pseudouridine 
synthesis, ribosomal 

large subunit assembly 

 

The number of up and down-regulated modules in each stress condition can be summarized as in 
Table 4.2. It is observed that the number of up-regulated modules always exceeds the number of 
down-regulated modules. For the flood stress condition, only one module is observed to be up- 
regulated (Grey60 - 35.4%) and one down-regulated (Light Green - 37.6%) with a very low 
percentage of DEGs. For drought and osmotic stresses, large number of up-regulated modules are 
observed in agreement with Figure 4.1. For cold stress and ABA, JA phytohormone treatment, the 
number of up and down-regulated modules are almost equal.  

Table 4.2 Number of differentially expressed modules across different stress conditions in the 
root tissue. 

Conditions 
Number of differentially expressed modules 

Up-regulated Down-regulated 

Drought 7 1 

Flood 1 1 

Osmosis 12 4 

Cold 8 8 

ABA 8 6 

JA 9 6 
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The understand the time-profile of co-expressed modules, in Table 4.3 the modules that enriched 
with up or down regulated genes at different time points under different stress conditions is 
summarized. This would help us identify early/late-stage processes that are activated or repressed in 
response to different abiotic stresses. Under drought and cold stresses, differentially expressed 
modules are observed only from 12hr time-point. On the other hand, Osmotic stress shows an early 
response, with the presence of a number of differentially expressed modules as early as 1hr time 
point. In response to ABA treatment, single differentially expressed modules are observed from 3hr 
time-point, while at the end of 1D, 5 modules are up-regulated and 5 down-regulated. While in 
response to JA treatment, 8 and 6 modules are differentially regulated 6hr and 12hr timepoints 
respectively.  

Black and Magenta are modules central to regulation of signaling and contains the highest 
percentage of transcription factors (> 10%). Magenta module is highly enriched in the function 
positive regulation of abscisic acid-activated signaling pathway. Both these modules have high 
number of up regulated genes in case of drought (12hr) and osmotic (3hr) stress conditions. In the 
case for ABA hormone treatment, the Magenta module is observed to have high number of up-
regulated genes at 3hr time point, while the Black module has its highest number of up-regulated 
genes at 1 day time point. For Cold and JA, while Black module shows distinctively high number of 
up-regulated genes, Magenta module has almost equal number of up and down-regulated genes. In 
all the cases except for cold, these modules have high number of up-regulated genes at the early 
timepoints (1hr-12hr) indicating their role in initiation of stress response. 

Light Yellow, Royal Blue and Red modules, which are functionally enriched in metabolic 
processes like chorismate metabolism, CDP metabolism and purine nucleoside catabolism 
respectively, are observed to be highly up-regulated at almost the same timepoints in case of drought, 
osmotic and JA hormone treatment stress conditions. It has been reported that exogenous treatment 
of JA increases the antioxidative capacity of plants under drought stress by enhancing the activity of 
antioxidant enzymes (Nafie et al., 2011). Chorismate metabolism has also been reported to 
accumulate antioxidants by promoting salicylic acid response pathway (Jan et al., 2021). Hence, we 
observe these modules to take part in oxidative response for these conditions. Green Yellow module 
which is functionally enriched in carotene metabolism is up-regulated in the case of drought and 
osmotic stress condition. Carotene metabolism is the central step towards the synthesis of ABA for 
an ABA mediated response towards drought stress.  Pink module enriched in acetate and citrate 
metabolic processes is up-regulated at the 12-hour time point for Cold, Osmotic, ABA and JA stress 
conditions. Acetate plays an important role in acetyl-CoA biosynthesis which participates in fatty 
acid metabolism as part of stress response (Lin & Oliver, 2008). Down-regulation of the Tan and 
Brown module in osmotic and cold conditions at the same time points, is indicative of the down 
regulation of their enriched metabolic functions, sulphur compound metabolism and arabinose 
metabolism. The demand for the uptake of sulphur is reduced in extreme condition and hence its 
metabolism is observed to be down-regulated in case of osmotic and cold conditions. However, in 
the case of ABA hormone treatment Tan module is highly up regulated at 6-hour time point signifying 
the importance of sulphur metabolism in its response. ABA has been reported to increase the levels 
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of mRNA encoding cytosolic O-acetylserine(thiol)lyase which is a key enzyme in Sulphur 
assimilation and metabolism (Kopriva, 2006). 

Autophagy plays an important role in stress response for osmotic, ABA and JA hormone 
treatment, as is evident from the high number of up-regulated genes in Blue and Light Cyan modules, 
which are functionally enriched in processes like nucleophagy, autophagy of nucleus, mitochondrion 
and peroxisome. External stress leads to the formation of oxidative waste like reactive oxygen species 
(ROS) which needs to be removed or recycled from the system. This is achieved through autophagy 
which recycling of damaged molecules of cell organelles. 

Table 4.3 Up/Down-regulated modules across different stress conditions time point wise in the 
root tissue. 

 Drought Flood Osmotic Cold ABA JA 

1hr 
Up - - 

Green Yellow 
(78.0%), 

Light Yellow 
(75.0%), 

Royal Blue 
(55.3%), 

Midnight Blue 
(50.7%) 

- - - 

Down - - - - - - 

3hr 
Up - - 

Black (91.2%), 
Magenta (75.9%) 

- Magenta (82.4%) - 

Down - - 
Brown (49.7%), 

Tan (35.8%) 
- - - 

6hr 

Up 
Royal Blue 

(57.3%) 
- 

Grey60 (52.5%), 
Blue (50.3%) 

- Tan (84.7%) 

Red (76.2%), 
Blue (54.6%), 

Royal Blue 
(49.0%), 

Light Yellow 
(45.8%), 

Black 
(40.1%) 

Down - - - - - 

Yellow 
(72.9%), 
Purple 

(70.2%), 
Green 

(41.1%) 
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12hr 

Up 

Light Yellow 
(86.1%),  
Magenta 
(71.6%), 

Green 
Yellow 

(65.6%), 
Black 

(64.3%), 
Midnight 

Blue 
(51.6%), 

Red (34.0%) 

- 

Red (43.5%), 
Light Cyan 

(37.2%), 
Pink (35.2%), 
Grey (34.2%) 

Midnight Blue 
(92.2%), 

Light Green 
(55.0%), 

Pink (35.6%), 
Green Yellow 

(33.2%) 

Pink (86.8%) 

Light Cyan 
(68.2%), 
Grey60 
(47.1%), 

Pink (45.6%), 
Brown 

(31.1%) 

Down 
Salmon 
(47.5%) 

- 
Green (46.7%), 

Turquoise 
(39.3%) 

Cyan (89.4%), 
Brown 

(48.1%), 
Tan (43.1%), 
Grey (40.1%), 
Blue (37.7%), 
Light Yellow 

(37.5%), 
Red (36.1%) 

Green (60.5%) 
Turquoise 
(71.7%), 

Tan (35.3%) 

1day 

Up - 
Grey60 
(35.4%) 

- 

Black (44.9%), 
Royal Blue 

(39.8%), 
Grey60 
(39.2%), 

Green (37.4%) 

Light Cyan 
(71.5%), 

Blue (64.9%), 
Black (51.6%), 
Light Yellow 

(33.8%), 
Grey60 (31.2%) 

- 

Down - 
Light 
Green 

(37.6%) 
- 

Salmon 
(84.8%) 

Turquoise (86.0%), 
Brown (53.3%), 
Green Yellow 

(48.4%), 
Royal Blue 

(47.1%), 
Grey (39.8%) 

Green Yellow 
(40.1%) 

 

4.3 Metabolic Processes 
Mapman analysis is performed to provide insights into various metabolic processes involved in 

stress response. Differentially expressed genes corresponding to top up and down regulated modules 
for each stress condition (as in Table 4.2) are mapped to Mapman bins. Mapman ontology consists 
of a set of 34 bins structured as a tree that may represent a metabolic pathway (e.g., glycolysis), a 
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cellular function (e.g. protein synthesis), biological response (e.g. stress) or even large protein 
families (e.g. cytochrome P450). The plots in Figures 4.2 - 4.6 represent the percentage of 
differentially expressed genes that are mapped to a bin after normalization by the total number of 
reference genes of the respective bin. Some of the important processes affected are discussed below. 

 

Figure 4.2 Mapman bin distribution for top modules involved in drought stress which are (a) 
up-regulated and (b) down-regulated in the root tissue. The y axis represents percentage of 

DEGs that have been mapped to a corresponding bin after normalization. 

In case of drought, the up-regulated module distribution is almost evenly distributed across 
mapman bins (Figure 4.2 a). We observe that only bins corresponding to metabolisms like minor 
CHO, hormone, polyamine and nucleotide metabolism have more than 20% genes mapped to it. All 
the bins have a high number of differentially expressed genes present from the magenta module. 
None of the metabolic processes are observed to be downregulated except from Tricarboxylic Acid 
Cycle (TCA) in the Salmon module. The TCA cycle is responsible for release of stored energy 
through oxidation of acetyl-CoA (Figure 4.2 b). 



73 

 

   

 

Figure 4.3 Mapman bin distribution for top modules involved in osmotic stress which are (a) 
up-regulated and (b) down-regulated in the root tissue. 

A high fraction of up regulated genes (>40%) are observed to map to gluconeogenesis bin in the 
case of osmotic stress (Figure 4.3 a). Other bins have nearly uniform distribution, except for 
metabolism bins corresponding to minor CHO, lipid and amino acid metabolism which have more 
than 20% genes mapped to it. All the bins mapped from up-regulated genes have a high number of 
differentially expressed genes present from the Blue, Pink, Light Cyan and Magenta module. In the 
case of mapping of down-regulated genes, we observe the highest percentage mapped to the 
polyamine metabolism bin (~20%). The mapped down-regulated genes are mostly from the 
Turquoise module, however we also find genes from Brown Module to be in high percentage for the 
polyamine metabolism and biotic stress bins. (Figure 4.3 b). 
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Figure 4.4 Mapman bin distribution for top modules involved in cold stress which are (a) up-
regulated and (b) down-regulated in the root tissue. 

Distribution of up-regulated genes under cold stress across MapMan bins is shown in Figure 4.4a. 
We observe high percentage (~20%) of DEGs mapped to the bins Photosynthesis (PS), Oxidative 
Pentose Phosphate (OPP) cycle and Mitochondrial electron transport. While the genes belonging to 
the PS bin are predominantly from the Green module, we observe the presence of genes from Light 
Green module in the Mitochondrial electron transport bin. Genes involved in processes involved in 
biotic stress response, signaling and metal handling are observed to be down-regulated under cold 
stress in root (Figure 4.4b). The highest percentage of down-regulated genes are mapped to biotic 
stress bin, the genes of which predominantly belong to the Brown module. 



75 

 

   

 

Figure 4.5 Mapman bin distribution for top modules involved in ABA hormone treatment 
stress which are (a) up-regulated and (b) down-regulated in the root tissue. 

Both the hormone treatment conditions have a similar MapMan distribution for up and down 
regulated module genes. Gluconeogenesis and S-assimilation have a high percentage presence (~50% 
in ABA and ~35% in JA) for up-regulated genes (Figure 4.5a & 4.6a). Both these bins contain genes 
predominantly from the Blue and Pink module. Polyamine metabolism also has a high percentage 
(>20%), but only in the case for JA hormone treatment condition. For down-regulated genes, C1 
metabolism bin has a high percentage presence in both the hormone treatment (Figure 4.5b & 4.6b). 
Photosynthesis and cell wall bins also have a similar percentage in the case for ABA down-regulated 
genes. In the case for JA, S-assimilation and nucleotide metabolism bins have a high percentage of 
mapped down-regulated genes. The mapped down regulated genes are mostly from the Turquoise 
module.  
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Figure 4.6 Mapman bin distribution for top modules involved in JA hormone treatment stress 
which are (a) up-regulated and (b) down-regulated in the root tissue.  

In all the stress conditions, except for JA hormone treatment, the abiotic stress bin has a higher 
percentage than the biotic stress bin for up-regulated genes, and a reverse trend is observed for down-
regulated genes. Gluconeogenesis bin has an exceptionally high percentage in the case of Osmotic 
stress, JA and ABA hormone treatment conditions for up-regulation. Gluconeogenesis is a process 
involving the synthesis of glucose from non-carbohydrate carbon substrates like lactate, amino acids 
and glycerol. In all the three stress conditions (osmotic, ABA and JA), an external agent is applied 
resulting in an initial osmotic shock at the root. Gluconeogenesis can be associated to be involved in 
mechanism in response to this shock. It has been observed that salt stress induces the accumulation 
of sucrose, glucose and fructose, through the gluconeogenesis pathway in tobacco plant (Zhang et 
al., 2011). Photosynthesis is predominantly down-regulated in Osmotic stress, JA and ABA hormone 
treatment condition as observed from the higher percentage in its bin for down-regulated gene, while 
an opposite trend is observed in Cold stress. This photosynthesis process is essential to plant to 
generate oxygen and carbohydrates like sugar and starch as a form of chemical energy to fuel the 
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organism’s activities. In case of Osmotic, JA and ABA treatment condition, this mechanism is shut 
down to counter the accumulation of reactive oxygen species (ROS) and avoid the loss of water 
through stomata. The required glucose levels are maintained through gluconeogenesis. However in 
case of Cold stress, the immediate effect is not perceived at the root tissue and it increases its 
photosynthetic processes to prepare for the extreme conditions. 

 

4.4 Osmotic Stress Analysis 
A plant experiences osmotic stress when there is a significant change in water potential in its 

environment, leading to the disruption of normal cellular activities that may even result in plant death. 
Several other stresses like drought, high salinity and cold, results in the imbalance of water potentials 
in a cell and impose osmotic stress. In drought stress, the shortage of water in the soil results in the 
root cell to experience an osmotic shock due to the increased internal pressure caused by the 
difference in solute concentration. Similarly salt stress also results in an imbalance of ionic 
concentration across cell membranes disrupting ionic and osmotic homeostasis. Drought and salinity 
are the major stresses in the realm of agriculture which are responsible for limiting plant growth and 
productivity. Hence, an understanding in the mechanisms of osmotic stress can provide insights into 
development of stress tolerant species.  

For the root tissue, we study the up and down regulated WGCNA modules for osmotic stress in a 
time-point wise manner. Table 4.4 is an extract from table 4.5 for the osmotic stress condition. For 
the drought stress condition, we observe that the WGCNA modules are differentially expressed at 
almost a single timepoint (Royal Blue up-regulated at 6 hour; Light Yellow, Magenta, Green Yellow, 
Black, Midnight Blue, Red up-regulated at 12 hour), making it difficult to make a timepoint based 
analysis of processes. For the osmotic stress we observe a similar set of WGCNA modules, however 
they are differentially expressed in a broad range of timepoints (1hour till 12 hour). The GO enriched 
functions of these modules present in Table 4.1 can be referenced alongside their time-point based 
differential regulation (Table 4.4) to get a potential sequence of biological processes that are 
triggered as a response to osmotic stress. 
 
 
Table 4.4 Up/Down-regulated modules across osmotic stress conditions time point wise in the 

root tissue. 

1hr 3hr 6hr 12hr 

Up Down Up Down Up Down Up Down 

Green Yellow 
(78.0%), 

Light Yellow 
(75.0%), 

Royal Blue 
(55.3%), 

- 
Black (91.2%), 

Magenta 
(75.9%) 

Brown 
(49.7%), 

Tan (35.8%) 

Grey60 
(52.5%), 

Blue (50.3%) 
- 

Red (43.5%), 
Light Cyan 

(37.2%), 
Pink (35.2%), 
Grey (34.2%) 

Green (46.7%), 
Turquoise 
(39.3%) 



78 

 

   

Midnight Blue 
(50.7%) 

 

Since very little is known about defense mechanism pathways activated/repressed prior to the 
abscisic acid signaling, analysis of the early response modules in response to osmotic stress may offer 
insights towards some early regulatory mechanisms. For this, 756 genes up-regulated at 1-hour time 
point from the four modules (GY, LY, RB and MB) are evaluated. These genes may possibly be 
involved in osmotic stress tolerance or take part in the relay of stress signals to the corresponding 
stress tolerant genes. An integrative approach combining co-expression networks with protein-
protein interaction networks and metabolic pathway information can enhance the analysis and help 
in linking genotype to phenotype. Genes which have a high degree in the protein-protein interaction 
(PPI) network may point towards its significance in regulating the stress. Hence a PPI network of 
these 756 genes is constructed using the STRING database (Szklarczyk et al., 2019). The PPI network 
consisting of 740 nodes and 883 edges with a confidence score ≥ 0.4 and p-value < 1e-16 is obtained. 
To identify biological processes/pathways associated with these genes, we identify gene clusters (> 
5 nodes) using the Markov Cluster algorithm (MCL) with an inflation value of 3. MCL algorithm is 
an unsupervised graph (network) clustering algorithm whose objective is to keep highly connected 
nodes in one cluster which weakly connected nodes in different cluster. It is based on simulation of 
stochastic flows in graph wherein it alternates between an expansion step and an inflation step until 
an equilibrium is reached. A total of 14 clusters are obtained whose size, module membership and 
functional enrichment details are given in Table 4.5. The functional relevance of a few of these 
clusters is briefly discussed below.  

Table 4.5 Biological processes associated with the early responsive up-regulated gene clusters 
in response to Osmotic stress. 

Cluster Associated Biological Process Total Genes GY LY RB MB 

U1 
Phosphate metabolic process, Intracellular 

protein transport, Response to abiotic stimulus, 
Chromatin organization 

62 29 14 6 13 

U2 Jasmonic Acid Signaling Pathway 25 7 3 10 5 
U3 Glycerophospholipid metabolism 18 9 2 6 1 

U4 
Aromatic amino acid family biosynthetic 

process 
15 0 9 4 2 

U5 Alpha-amino acid metabolic process 14 7 3 3 1 
U6 Phenylpropanoid biosynthesis 14 3 6 3 2 
U7 Amino sugar and nucleotide sugar metabolism 10 2 6 2 0 
U8 Polysaccharide biosynthetic process 10 4 0 4 2 
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U9 - 9 5 0 2 2 
U10 Valine, leucine and isoleucine degradation 7 0 5 1 1 

U11 
Hormone activity and di-glucose binding with 

ER 
6 4 1 1 0 

U12 Terpenoid metabolic process 6 5 0 0 1 
U13 - 6 2 0 1 1 
U14 Endocytosis 6 3 1 2 0 
 

Cluster U1: Response to stimulus, MAPK Cascade, Protein transport, Chromatin organization 

Any environmental stimulus transmitted as signals into the cellular machinery is identified by 
receptors, and secondary signals are triggered so that an appropriate response may be generated. 
Mitogen Activated Protein Kinase (MAPK) cascades are signaling pathways that are central to 
regulation of a variety of cellular stimulated processes like proliferation, differentiation, apoptosis 
and stress response. The signals are transmitted via a cascade effect from the cellular wall to the 
nucleus where they modulate different processes like the activity of transcription factors, chromatin 
remodeling and protein transport. 

 

Figure 4.7 PPI network of cluster U1. The nodes are colored proportional to their degree 
(darker shade represent high degree). Border color represents fold-change (darker shade 

represents higher fold-change value). Triangular nodes indicate transcription factors. 

Cluster U1, consisting of 62 genes with 119 interactions (Figure 4.7), clearly captures MAPK 
signaling and secondary signal response interactions. Four subgroups based on their enriched 
functions is depicted in the figure. We observe the largest subcluster of genes is enriched in 
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“Phosphate containing compound metabolic process”. It majorly comprises kinases and phosphatases 
belonging to the families MAPK, Stress Activated Protein Kinase SAPK, Receptor-like Kinase RLK 
and Protein Phosphate 2C PP2Cs. The role of SAPK and PP2Cs in ABA mediated stress response is 
well known. However, the PYL-PP2C-SnRK2 core formed in the ABA signaling pathway is 
observed to regulate the MAPK cascade comprising of the MAP3Ks MAP3K17/18, the MAP2K 
MKK3 and the MAPKs MPK1/2/7/14 (de Zelicourt et al., 2016). While PP2Cs are suppressed in the 
ABA mediated pathway, few PP2Cs (like BpPP2C1 in Betula platyphylla and ZmPP2C-A in maize) 
have been observed to be up-regulated in response to salt stress, as they promote autophagy 
(Memisoglu et al., 2019), thereby improving the antioxidant defense system (He et al., 2019; Xing et 
al., 2021). RLKs are plasma membrane-localized signaling molecules that perceive endogenous and 
exogenous signals via sequential phosphorylation and function as upstream of MAPKs in regulating 
plant development (Z. Wang & Gou, 2020). The subcluster consists of 4 kinases that are part of the 
MAPK signaling pathway in plants, OsMAPK20-5/MPK7, SMG1/MKK4, SAPK2 and 
OS09T0383300-01 wherein they transmit the environmental signal into the nucleus of the cell. We 
observe a direct connection between the MAP kinase OsMAPK20-5 with two heat shock 
transcription factors HSF11 and HSFA3, which are a part of the subcluster enriched with “Response 
to abiotic stress”. These heat shock protein factors are transcriptional regulators that bind to heat 
shock protein elements (HSEs). Environmental stress disrupts protein folding and results in an 
increase in reactive oxygen species (ROS) or induces oxidative stress in the cell (Hu et al., 2009). 
The heat shock proteins act as molecular chaperones which prevent protein misfolding and help in 
promoting cell survival in adverse conditions. Incidentally these two transcription factors report one 
of the highest fold change values in this cluster. 

MAPK cascade involves transportation of macromolecules inside the nucleus via nuclear pore 
complexes (NPCs). The function of such intracellular proteins has been captured in one of the 
subclusters. The DNA is packed into chromatin wherein the double stranded DNA is coiled around 
a core of histone proteins. These are dense structures which make it inaccessible to other proteins 
like transcription factors. Hence a “decompaction” of the chromatin is required for transcriptional 
activity. Consequently, we observe a subcluster of chromatin organization and DNA recombination 
which considers chromatin remodeling in order to make target genes accessible. This process 
includes histone acetylation, phosphorylation, DNA conformational change and poly ADP 
ribosylation. 

A high number of signaling genes (13) are observed in this cluster. These involve 2 calcium and 
7 G protein signaling genes. Together they aid in transmitting signal from outside stimuli to the 
interior of a cell. The cluster is rich in transcription factors (TFs) with a total of 7 transcription factors 
present in this cluster. The KEGG enrichment mapping assigns 5 genes to be directly involved in the 
plant-pathogen interaction pathway (CML22, RLCK178, OsCPK15, MKK4 and Os01g0899000). 
Calcium signaling triggered by abiotic stress induces the proteins CML22 and OsCPK15 which 
initiates the plant-pathogen interaction pathway. These genes in turn induce defense-related genes 
like NHO1 and PR1 (PR1-72, PR1-73, PR1-101) which have been observed to be up-regulated in 
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osmotic stress at a later timepoint. Various transcription factors in other plants have been reported to 
enhance pathogenesis related genes like PR1 in response to abiotic stress (Liu et al., 2022; W. X. Liu 
et al., 2013). Abiotic stresses have been shown to have a pronounced effect on plant-pathogen 
interactions (Zarattini et al., 2021). Plant pathogen interactions have been shown to be influenced by 
abiotic stress via factors like plant metabolism, cell viability, signaling (Kissoudis et al., 2014) and 
transcriptomic regulations. There is multi-faceted crosstalk between the signaling pathways involved 
in abiotic and biotic stress responses. Several pathogenesis-related proteins have been shown to be 
differentially expressed following drought and osmotic stress (Haider et al., 2017; Hatmi et al., 2014). 
For example, 11 out of 35 WRKY genes involved in Fusarium udum infection in pigeonpea were 
also induced by salt stress (Kumar et al., 2019). 

The gene with the highest degree (18) in the cluster, OS02T0266300-01, is associated with two 
HSFs, 5 genes in abiotic stress response, 4 genes of the MAPK cascade, 4 genes involved in 
intracellular protein transport and 3 in DNA recombination. This is suggestive of its role in being a 
connecting factor in regulating these processes and playing an important role in osmotic stress 
response. The second highest degree node is SMG1 belonging to the MAPK Cascade subcluster and 
is connected to 17 genes. It has been reported to influence the grain size in rice and is involved in 
arsenic and wounding stress response (Duan et al., 2014; Rao et al., 2011; Yoo et al., 2014). The gene 
with the highest fold change is OsRLCK253 with a fold change value of ~10.2. It is a receptor-like 
cytoplasmic kinase that has been reported to interact via A20 zinc-finger and improve water-deficit 
and salt tolerance in transgenic Arabidopsis plants (Giri et al., 2011). 

Thus, we observe this cluster captures the mechanisms that are activated at the very early time-
point. It involves the perception of the stress signals by the RLKs and the transfer of signals from the 
cell wall to the nucleus via the MAPK cascade. This is followed by the response to stress aided by 
the activation of transcription factors like the heat shock proteins, which requires the remodeling of 
chromatin to make it more accessible. Signaling genes as well as genes involved in plant-pathogen 
interactions are also seen to be activated, which aid in countering the initial hyperosmotic shock. 

Cluster U2: Jasmonic Acid Signaling Pathway 

Jasmonic acid (JA) plays an integral role in abiotic stress response by regulating stress response 
pathways like the JA signal transduction pathway, ABA signal transduction pathway and the oxylipin 
pathways (Genva et al., 2018). The genes involved in JA biosynthesis are hence dramatically up-
regulated when the plant is exposed to environmental stress. JA signaling components primarily 
involve two gene families, the JA receptor Coranatine Insensitive 1 (COI1) and the JA signaling 
repressors Jasmonate ZIM-Domain proteins (JAZs). JA is metabolized into its active form JA 
isoleucine (JA-Ile) which interacts with the receptor COI1. This initiates proteosomal degradation of 
JAZs. MYC2 transcription factor which is otherwise suppressed with its interaction with JAZ 
proteins, is now released and leads to the activation of JA-responsive genes (Chini et al., 2007). 
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Figure 4.8 PPI network of cluster U2. The nodes are colored proportional to their degree 
(darker shade represent high degree). Border color represents fold change (darker shade 

represents higher fold change value). Triangular nodes indicate transcription factors. 

Cluster U2, consisting of 25 genes with 64 interactions (Figure 4.8), is enriched with genes 
involved in the jasmonic acid signaling pathway and stress response. A STRING cluster of 15 genes 
which is annotated as jasmonic acid signaling pathway and stress response is observed at the core of 
this cluster. KEGG mapping also annotates 3 JAZ genes (JAZ4, JAZ6 and JAZ9) to the plant 
hormone signal transduction pathway which undergoes ubiquitin mediated proteolysis in the 
jasmonic acid signaling pathway. We also observe the presence of genes containing zinc finger 
domains like ZFP36 which fall in the JAZ family. Incidentally, their fold change is observed to 
decrease with time which is justified as they act as JA signaling repressors which are degraded with 
the action of JA-Ile during stress response. A jasmonic acid biosynthesis gene, CYP74A1 is also 
observed, which results in the increase in the concentration of JA.  

This cluster is rich in transcription factors with a total of 10 genes out of 25 annotated as TFs. 
These TFs are mainly dominated by two families, the basic Helix-Loop-Helix family (OsbHLH6 and 
Os08g0490000) and the zinc finger family (OsDOF11, ZFP36, Os07g0508900 and JAZ9). Being 
rich in TFs, this cluster plays an integral role in regulation of stress response. ZFP36, belonging to 
the C2H2 zinc finger transcription factor family, has been recently reported to be a key player in 
ABA induced stress response for oxidative stress tolerance in rice (Zhang et al., 2014). It has direct 
connections with 4 other transcription factors OsRAV11, OsWRKY7, OsbHLH6 and 
OS07T0508700-00 suggesting its role in being a master regulator. An important transcription factor 
having both a high degree (12) as well as a high fold change (~9.7) is OsbHLH6. Also known as 
RERJ1, it is a jasmonic acid responsive gene that has been reported to be involved in wounding and 
drought stress response in rice (Kiribuchi et al., 2004, 2005). The high fold change and high degree 
of both ZFP36 and bHLH6 indicates their important role in early osmotic stress response.  
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Cluster U3: Glycerophospholipid metabolism 

Lipid signaling plays a vital role in abiotic stress response in plants. Being one of the major 
components of plasma membrane it serves as the interface between the cell and its environment. The 
membrane lipids also act as substrates for various signaling lipids like phosphatidic acid, 
sphingolipids, phosphoinositide, triacylglycerol, and others. The synthesis and metabolism of these 
signaling lipids are influenced by abiotic stress signals and take part in plant adaptation process. In 
osmotic stress signaling pathway, abscisic acid (ABA) signaling plays a significant role. The SNF1-
related protein kinase 2 (SnRK2) family of proteins are vital intermediates in the ABA signal 
transduction pathway as they mediate the phosphorylation of ABA binding factors (ABFs) which in 
turn promotes the expression of ABA responsive genes (ABREs). The osmotic stress induced activity 
of SnRK2 family (SnRK2.4 and SnRK2.10) is localized to the cellular membranes through their 
interaction with lipid like Phosphatidic Acid (PA) (McLoughlin et al., 2012).  

It was shown by Yu and Li that in Arabidopsis thaliana subjected to drought stress, with the 
increase in concentration of plastid lipids and double bond index, the fluidity of membranes improved 
thereby increasing water stress tolerance (B. Yu & Li, 2014). Increased rates of storage lipids like 
Triacylglycerol were an essential adaptive response to high temperature stress in plants (Mueller et 
al., 2015). Phosphatidylserine and Triacylglycerol have also been shown to be involved in salt stress 
response in sweet potato leaves (Yu et al., 2019). 

Cluster U3 with 18 genes and 50 interactions (Figure 4.9) is enriched with genes involved in 
glycerophospholipid metabolism. Annotation obtained from KEGG mapping reported 7 genes 
involved in glycerolipid metabolism and 6 genes involved in glycerophospholipid metabolism. 
Observing the pathways of the mapped genes, they are involved in biosynthesis of lipids like 
triacylglycerol, diacylglycerol phosphate, phosphatidyl glycerol, cardiolipin and inositol phosphate. 
These lipids take part in stress responsive signaling cascade. For example, triacylglycerol serves to 
sequester toxic lipid intermediates that get formed due to lipid remodeling induced due to stress. 
Triacylglycerol is enclosed by lipid droplets that serve as binding sites and substrate for synthesis of 
other stress responsive compounds. 

The high degree genes of this cluster are OsJ_02930 (12) and OS05T0502200-01 (11). OsJ_02930 
has been reported in STRING to encode a phosphatidic acid phosphatase beta-like protein which 
plays major role in lipid homeostasis. OS05T0502200-01 has been reported in STRING to encode a 
putative 1-acylglycerol-3-phosphate acyltransferase protein that serves as intermediate enzymes 
involved in the biosynthesis pathways of glycerophospholipids and triacylglycerol. We also observe 
two genes from the MGD family (OsMGD2 and MGD1) and 2 genes from the PLD family 
(OsPLD&alpha;5 and OsPLD&alpha;4) are part of the core of this cluster. Previous studies have 
demonstrated that OsMGD2 plays an important role in grain quality while also helping in plant 
growth and development. Increased accumulation of OsMGD was observed by ethephon, gibberellin, 
drought, and salt treatment (Qi et al., 2004). Phospholipase D (PLD) in plants hydrolyzes 
phospholipids to generate phosphatidic acid (PA) which is an important secondary messenger 



84 

 

   

mediating the generation of ROS and activating MAPK cascade (Yamaguchi et al., 2009). Hence, 
PLD genes play a significant role in abiotic and biotic stress response. 

 

Figure 4.9 PPI network of cluster U3. The nodes are colored proportional to their degree 
(darker shade represent high degree). The border color represents fold change (darker shade 

represents higher fold change value). 

 

Early responsive down regulated modules 

From Table 4.4, we observe that the early down-regulated modules observed under Osmotic stress 
are Brown and Tan modules with about 49.7% and 35.8% of their genes down-regulated at the 3hr 
time-point. These modules are enriched in metabolic processes like arabinose metabolism and 
sulphur compound metabolism. At 12hr time-point, Green and Turquoise modules are observed to 
be down-regulated with 46.7% and 39.3% of their genes down-regulated. Their enriched functions 
include syncytium formation, chromosome condensation and photosystem II assembly and repair. 

We analyzed the genes of the early responsive down-regulated modules Brown and Tan to 
understand the biological processes that are repressed in response to osmotic stress. There are 731 
genes down-regulated in Brown module and 77 genes down-regulated in Tan module. The expression 
profile of the down-regulated genes in these modules are plotted in Figure 4.10.  
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Figure 4.10 Expression Profiles of the down regulated genes at the 3-hour timepoint in the 
Brown and Tan modules for osmotic stress condition (Red indicates TF, Blue indicates other 

genes). 

The Brown module has a higher number of transcription factors compared to the Tan module. In 
both the modules, two patterns of expression profiles are observed. There are a set of genes which 
exhibit a sudden increase in their fold-change values at 6hr time-point followed by a dip at 12hr time-
point (we refer to these as Down Regulated Genes from 0-3hr, or, DRG0-3). Another set of genes 
observed exhibit a gradual increase in their fold-change values. These are down-regulated from 0-
6hr and exhibit an increase in their fold-change at 12hr time-point (we refer to these as Down 
Regulated Genes from 0-6hr DRG0-6). These genes can be viewed as genes which are late responsive 
as they get upregulated with a noticeably high fold change (2.5 – 12 log2FC) at late timepoints (6 -
12 hour) in spite of being downregulated at the earlier timepoints. 

We investigate the function of these two sets of genes as their respective genes are likely to have 
common transcriptional regulation. The first set, DRG0-3, consists of 268 genes and the other set, 
DRG0-6, consists of 540 genes. Protein-protein interaction networks are constructed for these two 
sets of genes using STRING DB application. This network establishes a relationship between co-
expressed set of genes based on experimental data, computational predicted methods and public texts 
and provides for a more reliable analysis. 

Analysis of DRG0-3 PPI 

The set of 268 genes corresponding to DRG0-3 were submitted to STRING DB to infer their PPI 
network. A total of 266 genes mapped to their corresponding proteins in STRING DB and resulted 
in a PPI network of 266 nodes and 40 edges. The edge confidence is set to a score ³ 0.4 and the 
network has a PPI enrichment p-value of 4.13e-05. The network is imported in Cytoscape for further 
analysis. The MCL algorithm (with inflation value = 4) is used to identify closely connected group 
of genes in this PPI network. Five clusters with size greater than 2 are obtained. The associated 
biological processes for these clusters and the module membership of their genes have been listed in 
Table 4.6. 
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Table 4.6 Biological processes of the early responsive down regulated gene clusters pertaining 
to DRG0-3 in Osmotic stress. 

Cluster Associated Biological Process Total Genes Brown Tan 
D1 Leucine-rich repeat 10 8 2 

D2 
Oxidation reduction process, alpha-amylase inhibitors, 

lipid transfer 
7 1 6 

D3 Lipid and amino acid metabolism 5 4 1 
D4 Oxidation reduction process, Monooxygenase activity 4 3 1 
D5 Protein phosphorylation 3 2 1 

 

Cluster D1: Actin Organization and Panicle Development/ Leucine-rich repeat (LRR) 

Actin filaments and microtubules are an integral part of the plant cytoskeleton and play crucial 
role in cell growth and developmental processes like cell division, motility and intracellular 
organization. Panicles form the plant inflorescence and are important for initiating the reproductive 
phase of rice development. Exposure to abiotic stresses results in limited resources for the plant 
hampering growth and development by stopping processes like actin organization and panicle 
development (Wang et al., 2011; Wei et al., 2017). Cluster D1 having 10 genes and 10 interactions 
(Figure 4.11) has a central hub gene OsSCAR2 directly correlated with 7 of the 9 genes in this 
cluster. OsSCAR2 encodes a SCAR/WAVE domain and is associated with TUT1 which shows a 
pleiotropic phenotype characterized by short roots, reduced plant height, and development of pollen 
grains and anthers. TUT1 is a functional SCAR protein that has been reported to show an important 
role in panicle development (Bai et al., 2015). At the earlier timepoints, it is down-regulated 
indicating that defense measure like hampering plant growth is not turned on. Only after the 6-hour 
timepoint these measures become active to counter the abiotic stress. 

The cluster D1 is also enriched with Leucine-rich repeat genes. Leucine rich repeat mainly 
constitutes receptor like kinases (RLKs) which are potential cell-wall sensors. They play the role of 
key regulators which perceive and process external stimuli to cellular signaling molecules. The 
extracellular signals are perceived through the LRR domain and are transmitted via the 
serine/threonine domains. Several LRR-RLKs have been identified to be involved in abiotic stress 
responses in plants. For example, the Srlk gene in Medicago truncatula was shown to improve salt 
tolerance in plants by accumulating fewer Na+ ions (de Lorenzo et al., 2009). The OsSIK1 gene in 
rice, which has an LRR domain, activated the antioxidative system and improved salt and drought 
tolerance (Ouyang et al., 2010). However, there also exists certain LRRs like the SIF1 and SIF2 that 
negatively regulate plant salt resistance (Yuan et al., 2018). The LRR-RLKs function by improving 
the activities of ROS scavenger, thereby reducing the levels of malondialhedyde (MDA) and ROS. 
The early down regulaton and the late upregulation of the genes in this cluster is suggestive of the 
importance of the presence of ROS for stress signaling, as they take part in systemic signaling 
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pathway and transfer signals across the plant. However, with the increase in the ROS levels, the LRR 
proteins become up-regulated and aid in oxidative homeostasis.  

 

Figure 4.11 . PPI Network of Cluster D1. The nodes are colored proportional to their fold 
change (the darker the shade, the lower is the fold change). 

Other Clusters 

The other clusters obtained had a size lower than 8 and did not have a highly distinctive enriched 
function. GO and KEGG annotations of a few genes in the clusters indicated functions like oxidation-
reduction process, alpha-amylase inhibitors, lipid metabolism and protein phosphorylation. Due to 
accumulation of reactive oxygen species as a result of hyperosmotic shock, to maintain oxidative 
homeostasis, oxidation reduction processes are necessary but should act at late timepoints so as to 
not disrupt the oxidative signaling. Alpha-amylase inhibitors have been reported to be differentially 
expressed in response to biotic and abiotic stresses in Amaranthus hypochondriacus (Sánchez-
Hernández et al., 2004). They act as defense systems against pathogens and are observed to be up-
regulated with exogenous treatment of MeJA or ABA, suggesting their involvement in ABA and JA 
signaling pathways. The role of lipid metabolism in abiotic stress has been discussed earlier in the 1-
hour timepoint up regulated cluster (U3), however here we observe the small lipid metabolism cluster 
(D3) being down-regulated at the 3-hour timepoint followed by up-regulation at the 6-hour timepoint. 
The central gene annotated for lipid metabolism in this cluster is OsLCB2a1. OsLCB2a1 has been 
reported to encode serine palmitoyltransferase (SPT), a key enzyme responsible for sphingolipids 
biosynthesis (Begum et al., 2016). The disruption of sphingolipid metabolism affects plant growth 
and responses to abiotic stresses. Hence, the down-regulation of OSLCB2a1 affects the biosynthesis 
of sphingolipid hindering plant growth, thereby enhancing stress tolerance. 
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Analysis of DRG0-6 PPI 

The DRG0-6 comprises set of 540 genes that are down regulated from 0-6hr time-points, after 
which these are up-regulated at 12hr time-point. The PPI network of this set of 540 genes resulted in 
a PPI network of 532 nodes and 263 edges using STRING database. The edge confidence is set to 
0.4 and the network has a PPI enrichment p-value of 1.0e-16. The network was imported in Cytoscape 
for further analysis. Using the MCL algorithm (with an inflation value = 4), the network is grouped 
into closely connected group of nodes. Five clusters with a size greater than 5 are obtained and are 
listed in Table 4.7 along with associated biological processes and module membership of their genes. 

Table 4.7 Biological processes of the early responsive down regulated gene clusters pertaining 
to DRG0-6 in Osmotic stress. 

Cluster Associated Biological Process Total Genes Brown Tan 
D6 Protein Phosphorylation 59 54 5 
D7 Signaling G-proteins, Cell vesicle transport 7 6 1 
D8 N-Glycan Biosynthesis 7 7 0 
D9 Gene Silencing by RNA 6 5 1 
D10 Auxin Biosynthetic process, polyamine metabolism 6 6 0 
 

Cluster D6: Gibberellin (GA) Signaling Response 

Gibberellins are plant hormones playing crucial role in plant growth and development like 
flowering, leaf senescence and stem elongation. When exposed to stress, plants take measures to save 
resources like reducing its growth rate. Hence, we also observe a relationship between GA levels and 
amount of abiotic stress experienced. Studies have shown that plant exposure to abiotic stresses like 
salt, cold and osmotic stress results in restriction of plant growth by the repression of GA signaling 
(Achard et al., 2006; Vettakkorumakankav et al., 1999). Cluster D6 having a total of 59 genes with 
72 interactions (Figure 4.12) has a central hub gene OsPKG which has been reported to play a role 
in mediating the gibberellin (GA) response in rice (Shen et al., 2019). OsPKG has the highest degree 
and is connected to all other genes in the cluster. PKG has many potential targets including GAMYB, 
a transcription factor involved in GA signaling, and has broad effects mainly in the salt stress 
response. PKGs are a family of genes that are structurally unique having an additional type 2C protein 
phosphatase domain. OsPKG possesses both protein kinase and phosphatase activities. cGMP 
activates its kinase activity which inhibits its phosphatase activity. Its downregulation in the early 
timepoints (1 – 6 hour) during osmotic stress represent the repression of GA signaling which hinders 
the plant growth thereby enhancing stress tolerance. 

The cluster D6 is enriched in genes involved in “Protein Phosphorylation”. Protein 
phosphorylation is a crucial step to synthesize nascent stress responsive proteins by subjecting a 
protein to an array of posttranslational modifications (PTMs). These activated proteins aid in rapid 
stress response.  Protein phosphorylation is a reversible form of modification that has a significant 
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role in signaling cascades. We observe a high presence of calcium-dependent protein kinases 
(CDPKs), receptor-like kinases (RLKs) and cGMP-protein kinases (PKG). These kinases are 
activated based on the fluctuation of cytosolic calcium levels and reactive oxygen species and affect 
various signaling pathways. RLKs are integral proteins that sense cell wall signals and relay them to 
the appropriate functional proteins. They also take part in systemic signaling for the transmission of 
local signals to distal tissues. We also observe the presence of molecules involved in SOS signaling 
pathway which includes calcineurin B-like gene CBL7 which is an EF-hand calcium-binding protein, 
and SOS1 which is a Na+/H+ antiporter at the plasma membrane. Together they help in coping with 
ionic stress. The cluster also consists of two transcription factors ZOS8-14 and OslDD11 which 
belong to the C2H2 zinc finger protein family. Since the central hub gene OsPKG in linked with all 
the other genes in the cluster, the other genes may be suggested to take part in GA signaling pathway. 
The genes in this cluster are late responsive genes, as they become up-regulated post 12hr time-point. 
Many of these genes play a role in plant growth and development and are down-regulated for resource 
allocation upon stress treatment.  

 

Figure 4.12 PPI Network of Cluster D6. The nodes are colored proportional to their fold 
change (the darker the shade, the lower is the fold change). Triangular nodes indicate 

transcription factors.  
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Cluster D7: Signaling G-protein and Cell Vesicle transport 

This cluster consisting of 7 genes (Figure 4.14) is enriched with signaling G-proteins and genes 
with functions like cell vesicle transport. Heterotrimeric G proteins are shown to play a significant 
role in drought and salt stress (Y. Wang & Botella, 2022). These G proteins are composed of three 
subunits α, β, and γ and they serve as universal signaling molecules mediating the response to various 
internal and external signals. Some groups have identified involvement of Gα in salt stress however 
both positive and negative roles are associated with this subunit. The other subunit Gβ combined with 
Gγ regulates the osmotic and ionic stresses by increasing the levels of ROS scavengers and 
osmoprotectants (Figure 4.13). 

 

Figure 4.13 Role of heterotrimeric G proteins in regulating salt stress [reproduced from (Y. 
Wang & Botella, 2022)]. 

While 3 of the highest degree genes in this cluster are signaling G-proteins (OsRac3, 
Os08T0537600 and Os11T0303400), the other 4 genes, all of which are connected to G proteins are 
related to transport. Stress response involves complex cellular work requiring cooperation among 
distinctive organelles within a cell and even neighboring cells. This is achieved by exchanging 
content between them using small membranous containers called vesicles. Vesicles are loaded with 
content from a donor organelle which then moves to the target site to release them. The ROS 
scavenging activity is required only at a later timepoint as an optimum concentration of reactive 
oxygen is required for signaling. Hence, they are down-regulated until the 6-hour timepoint. 
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Figure 4.14 PPI network of Cluster D7. The nodes are colored proportional to their fold 
change (the darker the shade, the lower is the fold change). 

Other clusters 

The other clusters were enriched in functions like N-Glycan biosynthesis, gene silencing and 
auxin biosynthetic process. N-glycans have been shown to play a role in salt stress response in 
Arabidopsis thaliana. A membrane anchored endoglucanase KORRIGAN1/RADIAL SWELLING2 
(KOR1/RSW2) with functions in cellulose biosynthesis is involved in salt stress response in 
Arabidopsis thaliana. N-glycans are required for their activation thus linking their role to salt/osmotic 
stress (Schaewen et al., 2008). The phytohormone auxin regulates the developmental plasticity of the 
plant root in salinity and drought stress (Korver et al., 2018; Naser & Shani, 2016). Auxin-mediated 
growth inhibition thus helps plants adapt to the changing environment. The presence of genes 
enriched in auxin biosynthetic process are down regulated till the 6-hour time point and is only 
activated at the 12-hour time point, pointing the role of auxin in late response to the osmotic stress. 

4.5 Conclusion 
With this analysis, we can suggest a causal flow of mechanisms and signaling pathways that are 

activated just after the plant experiences osmotic stress within the 1-hour to 3-hour range. At the 1-
hour timepoint, the Green Yellow, Light Yellow, Midnight Blue and Royal Blue modules are 
activated which regulate functions like the perception and transmission of cell signaling via the 
MAPK cascade. Protein transport and chromatin remodeling takes place to allow for transcriptional 
activity. Important glycerophospholipids are synthesized which take part in lipid signaling as well as 
enhance the production of secondary messengers like phosphatidic acid. JA signaling is also activated 
earlier than the ABA signal transduction pathway. At the 3-hour timepoint, the Brown and Tan 
modules are down regulated. In these modules we observe two sets of genes according to their 
expression profile. The first set DRG0-3 is down-regulated till the 3-hour timepoint followed by up-
regulation at the 6-hour timepoint. Associated functions which are suppressed until 3-hour timepoint 
involve the function of LRR-RLKs in mediating ROS scavenging activity as well as clusters involved 
in oxidation reduction process. This indicates the need of reactive oxygen at the earlier timepoints 
followed by their control mechanisms through the function of LRRs. The second set DRG0-6 is 
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down-regulated until the 6-hour timepoint thereafter being up-regulated. The clusters captured in the 
second set were found to be enriched in functions like protein phosphorylation and G-protein 
signaling. These genes are involved in plant growth and development and were hence down-regulated 
so that resources may be allocated for stress response. Other clusters enriched in functions such as 
auxin biosynthesis, gene silencing and N-glycan biosynthesis indicated that these mechanisms were 
only activated post 12-hour timepoint. Thus, we obtain an overall picture of the early activated and 
suppressed functions for coping with osmotic stress in rice. 
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5 Conclusions 
 
 
 
 

With the advances in high-throughput data, RNA-seq or transcriptome analysis has become a 
highly potential approach to gain insights into the complex machinery involved in plant regulatory 
response during stress conditions. It has helped us to understand the molecular mechanisms involved 
in the physiological and biochemical changes pertaining to stress response and has helped in 
establishing hierarchical relationships between signaling components and downstream effector genes 
to cope with the stress. The integration of information from other ‘omics’ data further increases the 
impact in identifying candidate genes. Rice being an important staple crop feeding over half of the 
world’s population, requires such analysis for development of multi-stress tolerant hybrids.  

 
In this thesis, we have used publicly available RNA-seq dataset to understand the mechanisms 

involved in different abiotic stress response in rice. The data is obtained from the TENOR database 
which ensures uniform library conditions in collecting timepoint-wise data for different abiotic 
stresses in a tissue specific manner, thereby allowing a comparative analysis across stresses, tissues 
and timepoints. The second chapter describes the pre-processing steps of this data to obtain read 
counts, alignment of the reads in the genome, evaluating differentially expressed genes in different 
condition and tissue, and the construction of a global co-expression network for analysis.  

 
The third chapter discusses the construction of NetREx which is a web-server to query the global 

rank-based stress co-expression network in a tissue-specific manner. The coexpressed network is 
further enhanced by integrating various genomic data like gene ontology, pathway information, 
transcription factor annotations and aggregated omics data from different tissues. Various tools and 
functionalities have been developed for exploring the networks such as exploring gene expression 
profiles, network connectivity, identification of novel stress-responsive candidates, functional 
analysis of genes and comparative analysis across stress conditions. We demonstrate that NetREx 
can be used to identify novel candidate genes and tissue-specific interactions under stress conditions 
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and can aid in the analysis and understanding of complex phenotypes linked to stress response in 
rice. 
 

The fourth chapter discusses the functional analysis of coexpressed modules across the different 
stress and hormone treatment conditions in the root tissue. The metabolic processes involved in 
different stress conditions based on the coexpressed modules are evaluated and compared. This is 
followed by an in-depth analysis of the early responsive modules active in the osmotic stress 
condition for the root tissue. We decipher the flow of signaling events and metabolic processes that 
follow osmotic shock within the 3-hour timepoint. Events like MAPK cascade, chromatin 
reorganisation, JA signaling pathway and lipid metabolism are activated within one hour. ROS 
scavenging activity and oxidation reduction processes are prevented until the 6-hour timepoint. This 
is followed by the activity of kinases and leucine rich repeats in the activation of required proteins 
and signal transmission.  

 
The various analysis and studies have paved the way for understanding stress response in rice. 

With the abundance of omics data, there is a tremendous need for resources that can perform data 
summarization, integration of cross-platform resources and visualization which can aid in a thorough 
analysis. While an endeavour has been made in this direction by the creation of NetREx for the 
analysis of abiotic stress in rice, there is always a room for improvement. Integration of the gene 
expression data with ChIP-seq data specific to stress condition can offer insights into the regulatory 
relationship between genes and can be of great scientific value. Furthermore, with the increasing size 
of biological networks, machine learning techniques can aid at extracting useful information.  



Appendix  

95 

 

 
Appendix Table 1 (a): Results from Shoot samples, after performing pre-processing and 
alignment for Drought Stress  

Time 
Point  Replicates  Raw Data 

(bp)  
Filtered 

Data (bp)  

Percentage 
Filtered 

(bp)  

Read 
Align 
Rate 
using 

HISAT2 
(%)  

Percentage reads 
assigned 

using FeatureCounts  

Control  
1  907432856  748230345  82.5  97.8  62.3  
2  698212228  660235232  94.6  98.3  66.1  

1 Hour  
1  429886400  364153310  84.7  97.9  64.2  
2  488040612  462559660  94.8  98.3  68.5  

3 Hour  
1  443888868  419224548  94.4  98.4  67.7  
2  904912848  856110119  94.6  98.5  66.6  
3  829786620  788641587  95  98.6  67.0  

6 Hour  
1  792933080  657271011  82.9  97.7  62.6  
2  527915304  500109092  94.7  98.3  68.1  

12 
Hour  

1  562146008  475743643  84.6  98.0  59.3  
2  849001548  811314106  95.6  98.2  54  
3  1394994896  1328231947  95.2  98.5  54.1  

Day 1  
1  43390216  371896482  85.7  98.1  60.1  
2  1183385056  1130694952  95.5  98.4  50.2  

 
 

Appendix Table 1 (b): Results from Root samples, after performing pre-processing and 
alignment for Drought Stress  

Time 
Point  

Replicates
  

Raw 
Data (bp)  

Filtered 
Data (bp)  

Percentage  
Filtered (bp)  

Read 
Align 
Rate 
Using 

HISAT
2 (%)  

Percentage reads 
assigned 

using featureCount
s  

Control
  

1  579818744 472441799  81.5  61.6  40.4  
2  653996948 622465056  95.2  97.9  67.4  

1 Hour  1  660945324 529637126  80.1  62.8  43.3  
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2  821572844 782628646  95.3  61.9  43.6  

3 Hour  
1  672104328 639437593  95.1  96.2  67.1  
2  992408456 945272961  95.3  82.1  57.6  

6 Hour  
1  521790464 417097626  79.9  66.2  44.8  
2  433799260 410262586  94.6  95.4  66.5  

12 
Hour  

1  812957636 650448954  80.0  70.9  47.0  
2  507000180 480936808  94.9  91.4  58.7  

Day 1  
1  294636876 280972422  95.4  96.0  58.9  
2  760328092 720016435  94.7  66.1  45.7  

 
 

Appendix Table 2 (a): Results from Shoot samples, after performing pre-processing and 
alignment for Cold stress  

Time 
Point  Replicates  Raw Data 

(bp)  
Filtered 

Data (bp)  

Percentage 
Filtered 

(bp)  

Read 
Align 
Rate 
using 

HISAT2 
(%)  

Percentage reads 
assigned 

using FeatureCounts  

Control  
1  881646740  837345090  95.0  98.3  64.3  
2  607299280  409957913  67.5  96.3  61.4  
3  924780768  743574467  80.4  97.8  65.1  

1 Hour  
1  345985212  248857129  71.9  96.3  61.5  
2  510530000  486500479  95.3  98.3  59.0  

3 
Hours  

1  333445592  229563105  68.8  95.9  59.9  
2-1  498210780  473058264  95.0  98.4  

57.2  
2-2  720808548  689046581  95.6  98.5  

6 
Hours  

1  437651472  293448032  67.1  95.7  58.2  
2-1  380045904  359614311  94.6  98.4  

63.3  
2-2  509582280  471474376  92.5  98.5  

12 
Hours  

1  272828068  192763474  70.7  96.3  58.3  
2-1  553511344  524999664  94.8  98.5  

60.8  
2-2  976304132  918486440  94.1  98.6  

1 Day  
1  276600632  195902523  70.8  95.6  48.0  

2-1  277888148  265037913  95.4  98.3  
49.1  

2-2  553242456  533541649  96.4  98.4  
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Appendix Table 2 (b): Results from Root samples, after performing pre-processing and 
alignment for Cold stress  

Time 
Point  Replicates  Raw Data 

(bp)  
Filtered 

Data (bp)  

Percentage 
Filtered 

(bp)  

Read 
Align 
Rate 
using 

HISAT2 
(%)  

Percentage reads 
assigned 

using FeatureCounts  

Control  
1  1249143296  1196454327  95.8  84.5  59.5  
2  276101160  199192472  72.1  80.1  54.8  
3  714701644  580553617  81.2  73.7  50.1  

1 Day  
1  357673480  341518903  95.5  98.0  63.0  
2  496436560  475882762  95.9  98.2  62.9  

1 Hour  
1  378665060  280841448  74.2  84.5  57.2  
2  1117230096  1032506789  92.4  85.0  59.6  

12 
Hours  

1  358160260  265437514  74.1  79.5  53.4  
2-1  498152640  478243958  96.0  68.7  

46.8  
2-2  910753752  866966264  95.2  68.6  

3 Hours  
1  350773896  263572983  75.1  89.5  60.1  
2  501562532  479464015  95.6  86.2  59.9  

6 Hours  
1  423490772  314674463  74.3  82.3  54.8  
2  609968172  582853590  95.6  85.7  58.6  

 
 

Appendix Table 3 (a): Results from Shoot samples, after performing pre-processing and 
alignment for Osmotic stress  

Time 
Points  Replicates  Raw Data 

(bp)  
Filtered 

Data (bp)  

Percentage 
Filtered 

(bp)  

Read 
Align 
Rate 
using 

HISAT2 
(%)  

Percentage reads 
assigned 

using FeatureCounts  

Control  
1  881646740  837345090  95.0  97.8  64.3  
2  607299280  409957913  67.5  98.5  61.4  
3  924780768  743574467  80.4  98.3  65.1  

1 Hour  
1  507308512  420254646  82.8  92.2  63.9  
2  1189371880  1133232364  95.3  98.0  65.4  

3 Hours  
1  663097340  544580638  82.1  98.3  65.6  
2  1003019576  955463930  95.3  82.1  66.1  

6 Hours  
1  670896460  545132502  81.3  80.1  66.2  
2  1475798248  1412506265  95.7  88.5  64.3  

12 
Hours  

1  856743364  701064272  81.8  91.8  65.8  
2  706020696  677760447  96.0  96.1  61.7  
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Appendix Table 3 (b): Results from Root samples, after performing pre-processing and 
alignment for Osmotic stress  

Time 
Points  Replicates  Raw Data 

(bp)  
Filtered 

Data (bp)  

Percentage 
Filtered 

(bp)  

Read 
Align 
Rate 
using 

HISAT2 
(%)  

Percentage reads 
assigned 

using FeatureCounts  

Control  
1  1249143296  1196454327  95.8  73.7  59.5  
2  276101160  199192472  72.1  97.7  54.8  
3  714701644  580553617  81.2  84.5  50.1  

1 Hour  
1  801065004  645567855  80.6  98.0  61.9  
2  672343652  636437233  94.7  89.3  62.3  

3 Hours  
1  768674640  638012019  83.0  97.9  61.5  
2  315982996  300973297  95.2  89.3  61.3  

6 Hours  
1  640814140  530178952  82.7  89.6  59.0  
2  1231838400  1178655304  95.7  89.3  60.6  

12 Hours  
1  722609292  597354743  82.7  98.4  60.4  
2  838759712  805733850  96.1  98.4  56.6  

 
 

Appendix Table 4 (a): Results from Shoot samples, after performing pre-processing 
and alignment for Flood stress  

Time 
points  Replicates  Raw Data  

(bp)  
Filtered  

Data (bp)  

Percentage  
Filtered 

(bp)  

Read 
Align  
Rate 

Using  
HISAT2 

(%)  

Percentage  
reads assigned 

using  
featureCounts  

Control  
1  881646740  837345090  95  96.7  64.3  
2  607299280  409957913  67.5  73.9  61.4  
3  924780768  743574467  80.4  97.2  65.1  

1 Hour  
1  378832716  284913476  75.2  98.3  60.6  
2  981018564  934575631  95.3  89.9  65  

3 Hours  
1  399905008  290472408  72.6  71.3  62.9  

2-1  428738952  404668112  94.4  98.5  
5.3  

2-2  746166936  717084707  96.1  96.3  

6 Hours  
1  464446032  323790694  69.7  98.2  62  
2  534791784  507435056  94.9  98.4  65.4  

12 Hours  
1  421422356  304440347  72.2  98.5  63.2  
2  622551036  589909044  94.8  96.1  65.7  

1 Day  
1  599438980  568786021  94.9  98.4  67.5  
2  1400898728  1335515577  95.3  84.5  66.5  
3  1559714864  1477659865  94.7  80.1  69.1  
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3 Days  
1  449239192  427564265  95.2  88.4  45  
2  849432620  795310796  93.6  97.8  45.3  

 
 
 

Appendix Table 4 (b): Results from Root samples, after performing pre-processing and 
alignment for Flood stress  

Time 
points  Replicates  Raw Data  

(bp)  
Filtered  

Data (bp)  

Percentage  
Filtered  

(bp)  

Read 
Align  
Rate 

Using  
HISAT2 

(%)  

Percentage  
reads 

assigned  
using  

featureCounts  

Control  
1  1249143296  1196454327  95.8  98.5  59.5  
2  276101160  199192472  72.1  98.5  54.8  
3  714701644  580553617  81.2  89.3  50.1  

1 Hour  
1  521348144  374075481  71.8  73.7  61.9  
2  583115244  554188903  95  89.6  55.2  

3 Hours  
1  381853716  280223572  73.4  98.6  62.6  
2  499614348  476575955  95.4  70.3  63.6  

6 Hours  
1  477663192  350059938  73.3  80.3  62.2  
2  539177288  513709573  95.3  69.4  63.9  

12 Hours  
1  563410420  405280074  71.9  97.2  61  
2  556642620  525369170  94.4  96.1  52.1  

1 Day  
1  293880904  208107732  70.8  90.6  48.7  
2  1091446944  1039665987  95.3  96.5  50.1  

3 Days  
1  449626488  306217413  68.1  91.8  49.1  
2  293268496  280137456  95.5  80.6  

57.1  
2  556556664  534978329  96.1  80.9  

 
 

Appendix Table 5 (a): Results from Shoot samples, after performing pre-processing and 
alignment for ABA treatment  

Time 
Point  Replicates  Raw Data 

(bp)  
Filtered 

Data (bp)  

Percentage 
Filtered 

(bp)  

Read 
Align 
Rate 
using 

HISAT2 
(%)  

Percentage reads 
assigned 

using FeatureCounts  

Control  
1  753215252  596184260  79.2  97.8  65.2  
2  654536396  626980227  95.8  98.5  64.4  

1 Hour  
1  467703620  383556982  82.0  98.0  66.6  
2  1228120100  1176548952  95.8  98.4  65.2  
1  546360808  440643637  80.7  97.9  66.2  
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3 
Hours  2  1167969976  1118014644  95.7  98.4  64.8  

6 
Hours  

1  634916844  507891903  80.0  97.8  68.4  
2  553,242,456  533,541,649  96.4  98.4  65.6  

12 
Hours  

1  696719664  565731763  81.2  98.0  68.4  
2  702398384  650248606  92.6  98.5  66.2  

1 Day  
1  518302140  425912740  82.2  97.9  68.1  
2  1488841216  1388650985  93.3  98.5  66.8  

 
 

Appendix Table 5 (b): Results from Root samples, after performing pre-processing and 
alignment for ABA treatment  

Time 
Point  Replicates  Raw Data 

(bp)  
Filtered 

Data (bp)  

Percentage 
Filtered 

(bp)  

Read 
Align 
Rate 
using 

HISAT2 
(%)  

Percentage reads 
assigned 

using FeatureCounts  

Control  
1  526740192  418298786  79.4  97.6  66.5  
2  1013412424  961743522  94.9  98.0  64.9  

1 Hour  
1  410940208  332103360  80.8  97.6  68.3  
2  2023243880  1913180023  94.6  97.8  67.5  

3 
Hours  

1  683697672  540174516  79.0  91.4  65.7  
2  2395719044  2279602092  95.2  89.6  63.6  

6 
Hours  

1  720925436  559086146  77.6  92.9  67.5  
2  781650880  746498551  95.5  85.2  61.5  

12 
Hours  

1  840271656  666711614  79.3  84.2  61.5  
2  1909279752  1820182384  95.3  93.5  66.8  

1 Day  
1  537581744  431861037  80.3  88.5  62.9  
2  1274690316  1215312374  95.3  84.8  60.3  

 
 

Appendix Table 6 (a): Results from Shoot samples, after performing pre-processing and 
alignment for Jasmonic Acid stress  

Time 
Point  Replicates  Raw Data 

(bp)  
Filtered 

Data (bp)  

Percentage 
Filtered 

(bp)  

Read 
Align 
Rate 
using 

HISAT2 
(%)  

Percentage reads 
assigned 

using FeatureCounts  

Control  
1  775009924  623535884  80.5  97.9  64.1  
2  591917412  561662378  94.9  98.4  65.7  

1 Hour  
1  472502412  394086934  83.4  98.1  63.1  

2-1  206822524  196980365  95.2  98.5  
65.5  

2-2  615613452  589283627  95.7  98.5  
1  617565816  509392336  82.5  98.0  63.7  
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3 
Hours  2  710704272  676235442  95.2  98.5  49.5  

6 
Hours  

1  684308788  559104471  81.7  97.9  63.4  
2  564344764  536078111  95.0  98.4  66.5  

12 
Hours  

1  617565816  509392336  82.5  98  64.9  
2  598872552  570990066  95.3  98.4  65.6  

1 Day  
1  416125460  350651386  84.3  98.0  64.5  

2-1  368522936  352140211  95.6  98.5  
57.4  

2-2  715759412  674233142  94.2  98.5  
 
 

Appendix Table 6 (b): Results from Root samples, after performing pre-processing and 
alignment for Jasmonic Acid stress  

Time 
Point  Replicates  Raw Data 

(bp)  
Filtered 

Data (bp)  

Percentage 
Filtered 

(bp)  

Read 
Align 
Rate 
using 

HISAT2 
(%)  

Percentage reads 
assigned 

using FeatureCounts  

Control  
1  640495092  495521484  77.4  80.73  54.7  
2  767064124  578479558  75.4  79.42  54.5  

1 Hour  
1  657721100  497652715  75.7  85.5  51.9  
2  564178856  442018072  78.3  85.21  53.9  

3 Hour  
1  712076908  543145747  76.3  80.73  49.7  
2  796485624  602178232  75.6  81.87  53.6  

6 Hour  
1  547832396  408481798  74.6  78.81  46.7  
2  656757876  495806661  75.5  85.7  58.4  

12 
Hour  

1  658917416  499218092  75.8  73.76  48.8  
2  651628788  494919522  76.0  62.53  41.2  

1 Day  
1  797808708  603254588  75.6  55.19  37.9  

2-1  410933368  320443062  78.0  66.49  
41.1  

2-2  1314611824  1236515010  94.1  66.21  
 
 

Appendix Table 7 (a): Results from Shoot samples, after performing pre-processing and 
alignment for Developmental Time-points (No Treatment)  

Time 
Point  Replicates  Raw Data 

(bp)  
Filtered 

Data (bp)  

Percentage 
Filtered 

(bp)  

Read 
Align 
Rate 
using 

HISAT2 
(%)  

Percentage reads 
assigned 

using FeatureCounts  

Control  
1  612382388  439576373  71.8  97.8  64.5  
2  667381764  468784510  70.2  97.9  65.3  

1 Hour  
1  586393124  417592326  71.2  97.8  65.1  
2  545417800  387111565  71.0  97.9  63.9  
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3 
Hours  

1  562898408  404914931  71.9  97.8  65.4  
2  683050380  474308234  69.4  97.4  65.9  

6 
Hours  

1-1  471812104  337387754  71.5  97.8  
66.6  

1-2  852563744  821155586  96.3  98.8  
2  563744288  394827485  70.0  97.8  64.5  

12 
Hours  

1  743380776  529798020  71.3  97.8  65  
2  758414868  536401596  70.7  97.8  63.2  

1 Day  
1-1  661066240  471464376  71.3  97.8  

65.4  
1-2  697630448  482239862  69.1  97.4  
2  783969944  545432861  69.6  97.5  64.4  

3 Days  
1-1  529668472  379653448  71.7  97.8  

65.6  
1-2  989260612  942400264  95.3  98.8  
2  589092644  412502587  70.0  97.7  64.8  

4 Days  
1  547062668  389567508  71.2  97.8  65.5  
2  788784012  551376946  69.9  97.8  64.1  

5 Days  
1  799590300  537377148  67.2  97.4  59.9  
2  497319224  352040957  70.8  97.5  65.1  

10 
Days  

1  505663796  355650859  70.3  97.5  64.5  
2  716291336  493806845  68.9  97.3  66.1  

 
 

Appendix Table 7 (b): Results from Root samples, after performing pre-processing and 
alignment for Developmental Time-points (No Treatment)  

Time 
Point  Replicates  Raw Data 

(bp)  
Filtered 

Data (bp)  

Percentage 
Filtered 

(bp)  

Read 
Align 
Rate 
using 

HISAT2 
(%)  

Percentage reads 
assigned 

using FeatureCounts  

Control  
1  7518132  405345006  70.9  90.2  63.0  
2  617656636  419525465  67.9  83.5  58.6  

1 Hour  
1  570453264  398425992  69.8  90.3  63.5  

2-1  603476100  408556653  67.7  84.1  
59.7  

2-1  1655964304  1533531564  92.6  85.7  

3 Hour  
1  610521908  419308518  68.7  84.0  56.2  
2  630330016  430205696  68.3  83.8  57.3  

6 H2ur  
1  634707464  471869517  74.3  89.1  62.5  
2  773149520  550770174  71.2  81.0  56.8  

12 
Hour  

1  611680224  451950522  73.9  81.0  56.2  
2  643527948  463123951  72.0  91.1  63.1  

1 Day  
1-1  553411784  403435538  72.9  81.7  

57.3  
1-2  588325880  412189345  70.1  81.4  
2  645960024  472308295  73.1  79.7  56.1  

3 Days  1  650700752  487138147  74.9  70.0  50.1  
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2  674622132  487532682  72.3  77.0  54.5  

4 Days  
1  655813120  478550089  73.0  78.0  55.2  
2  650388772  468334563  72.0  73.2  52.1  

5 Days  
1  586760052  429279737  73.2  67.6  47.8  
2  713029796  523884566  73.5  72.1  50.4  

10 
Days  

1  684959196  497710256  72.7  76.8  54.2  
2  863996196  609010264  70.5  79.8  56.2  

 
 

Appendix Table 8: Top 10 neighbours of OsPHR3 (gene with highest degree in the neighbourhood 
of root ABA signalling network)  

Source Target PCC HRR Function 

Os02g0139000 Os11g0536800 0.919 1 Molecular Function: carbon-nitrogen ligase activity, with 
glutamine as amido-N-donor (GO:0016884) 

Os02g0139000 Os11g0551800 0.916 1 Similar to Yippee-like protein 1 (DGL-1) (Mdgl-1). 

Os02g0139000 Os07g0637300 0.939 2 Transferase activity, transferring phosphorus-containing 
groups 

Os02g0139000 Os04g0398000 0.932 3 

ERF transcription factor, A member of 
APETALA2/Ethylene-Responsive Element Binding Protein 

(AP2/EREBP) family, Regulation of drought stress 
response, Innate immunity, Pathogenesis-related 

transcriptional factor and ERF domain containing protein. 

Os02g0139000 Os02g0265900 0.922 3 Reticulon family protein., Hypothetical conserved 
gene., Similar to Reticulon. 

Os02g0139000 Os04g0321800 0.916 3 OSIGBa0097I24.2 protein., Protein phosphatase 2C 
domain containing protein. 

Os02g0139000 Os02g0139000 0.84 3 Protein.degradation.ubiquitin.E3.RING 

Os02g0139000 Os03g0231600 0.926 5 

Cysteine and methionine metabolism, Valine, leucine and 
isoleucine degradation, Valine, leucine and isoleucine 

biosynthesis, Pantothenate and CoA biosynthesis, 
Metabolic pathways, Biosynthesis of secondary 
metabolites, 2-Oxocarboxylic acid metabolism, 

Biosynthesis of amino acids 
Os02g0139000 Os12g0583700 0.918 6 RNA.regulation of transcription.C2H2 zinc finger family' 

Os02g0139000 Os02g0817700 0.916 7 

Fatty acid degradation, Valine, leucine and isoleucine 
degradation, alpha-Linolenic acid metabolism, Biosynthesis 

of unsaturated fatty acids, Metabolic pathways, 
Biosynthesis of secondary metabolites, Fatty acid 

metabolism, Peroxisome 
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