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Abstract

Precomputed Radiance Transfer (PRT) is widely used for real-time photorealistic effects. PRT dis-

entangles the rendering equation into transfer and lighting, enabling their precomputation. Transfer
accounts for the cosine-weighted visibility of points in the scene, while Lighting is usually a distant
emitted lighting, e.g., environment. Transfer computation involves tracing several rays into the scene
from every point on the surface. For every ray, the binary visibility is calculated, and a spherical func-
tion is obtained. The spherical function is projected into Spherical Harmonic(SH) domain. SH is a
band-limited representation of spherical functions, and the order of SH decides the representation ca-
pacity of the SH (the higher the SH order better the approximation of a spherical function). The SH
domain also facilitates fast and efficient integral computation by simplifying the integral into simple dot
products and convolutions. The original formulation of PRT by Sloan et al. 2002 provides different
storage requirements for the transfer—vectors in the case of diffuse materials and matrices in the case
of glossy materials. Using matrices for Transfer representation makes it infeasible as the SH orders in-
crease. The work of Triple Product Formulation by Ng et al. in 2004 extended the formulation to allow
simple vector-based Transfer storage even for the case of glossy materials. Prior art stored precomputed
transfer in a tabulated manner in vertex space. These values are fetched with interpolation at each point
for shading. Since the barycentric interpolation is finally employed to calculate the final color across the
geometry apart from the vertex locations, the vertex space methods require densely tessellated mesh ver-
tices to obtain accurate radiance. Sometimes high-density(tessellated) meshes adversely affect runtimes
and memory requirements. This is mainly observed in simple geometries with no additional detailing
but still demanding higher triangle counts (e.g., planes, walls, etc.). The first work provides a solution
by leveraging Texture space, which is more continuous than the Vertex space. We also added additional
functionality to obtain inter-reflection effects in the texture space.
While Texture space methods provide faithful results in meshes, they require non-overlapping, area-
preserving UV mapping, and a high-resolution texture to avoid artifacts. In the subsequent work, we
propose a compact transfer representation that is learnt directly on scene geometry points. Specifically,
we train a small multi-layer perceptron (MLP) to predict the transfer at sampled surface points. Our
approach is most beneficial where inherent mesh storage structure and natural UV mapping are un-
available, such as Implicit Surfaces, as it learns the transfer values directly on the surface. Using our
approach, we demonstrate real-time, photorealistic renderings of diffuse and glossy materials on SDF
geometries with PRT.

vi
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Chapter 1

Introduction

Rendering has been of particular interest to production houses of movies and video games, both
photorealistic and non-photorealistic renderings. While non-photorealistic rendering concentrates on a
wide spectrum of artistic choices requiring manual intervention and validation, photorealism is guided
by the physical modeling of light transport. In this work, we only concentrate on Photorealistic render-
ing. Rendering broadly deals with generating pixels stacked as 2D arrays forming an image. In the real
world, the image captured by a camera collects the incoming light energies onto the sensor array. The

sensor information is captured and processed to obtain an image.

In the case of computer-generated imagery(CGI), the task is usually the inverse of image capture
using the camera. The scene has authored both geometry and lighting. A virtual camera is placed, and
suitable material properties are assumed for the geometric content present in the scene. Panning the
camera around creates the desired set of images. For the formation of this image, the methodologies
used are categorized into two categories: Rasterization and Path Tracing.

1.1 Image Formation Methodologies

1.1.1 Rasterization Graphics Pipeline

Rasterization is the process of converting vector graphics or 3D models into a raster or bitmap image.
In computer graphics, rasterization is an important step in the rendering pipeline. It involves converting
a set of mathematical equations that describe a 2D or 3D object into pixels or dots that can be displayed

on a screen.

The process of rasterization involves several steps. First, the object is broken down into individual
polygons, which are then projected onto a 2D plane. Next, the pixels that are covered by each polygon

are determined, and the color or texture of each pixel is calculated based on the properties of the polygon.
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Figure 1.1: Rasterization Graphics Pipeline (image courtesy from learnopengl.com)

1.1.2 Ray Tracing Graphics Pipeline

Ray-tracing is a rendering technique used in computer graphics to create realistic images of 3D
scenes. Unlike rasterization, which projects polygons onto a 2D plane, ray tracing simulates the behavior

of light in a 3D environment, calculating the path of light rays as they interact with objects in the scene.

Ray tracing works by tracing the path of light rays from a virtual camera through each pixel in the
image plane and calculating the color and intensity of each pixel based on the interactions of the light
rays with the objects in the scene. This involves simulating the reflection, refraction, and absorption of
light as it interacts with surfaces in the scene, as well as the effects of shadows and global illumination.

One of the advantages of ray tracing is that it can produce highly realistic images with accurate
lighting and shadows. This makes it well-suited for creating images of complex scenes, such as those
found in architectural visualization, product design, and film animation. Ray tracing can also produce
images with high levels of detail and visual fidelity, making it a popular choice for creating photorealistic
images.

However, ray tracing is computationally intensive and requires significant processing power and time
to render images. To address this, various optimizations have been developed, such as using specialized
hardware, parallel processing, and adaptive sampling techniques. The development of real-time ray
tracing has also made it possible to use ray tracing in interactive applications, such as video games and
virtual reality.



Figure 1.2: Raytracing Pipeline (image courtesy scratchapixel)

While these image formation methodologies exist, there are three fundamental aspects to consider

for the formation of the image:
1. How is the scene geometry represented? (Sec. 1.2)
2. How is the lighting of the scene defined? (Sec. 1.3)

3. What is the material property of the scene? (Sec. 1.4)

1.2 Scene Representation

There are various ways of representing the scene geometry. Some of the few are discussed here.

Fig. 1.3 shows a respective depiction of the geometries.

1.2.1 Meshes

A mesh is a 3D representation of an object or surface consisting of a set of vertices and faces.
The vertices define the position of points in 3D space, while the faces connect the vertices to form

triangles, quads, or other polygons. The topology of a mesh defines the structure of the connections
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Figure 1.3: Geometric Representation (image courtesy Slides Stanford University)

between vertices and can affect the appearance and properties of the mesh. Meshes are commonly used
in computer graphics, animation, and simulations and can be rendered using various techniques such as
rasterization or path tracing.

Additionally, meshes also ship with hierarchical data arrangements, like vertices, faces, and UV

parameterizations. These act as data storage techniques for rendering related tasks.

1.2.2 Point Cloud

A point cloud is a set of data points in a 3D space that represents the surface geometry of an object
or scene. Each point in the point cloud corresponds to a specific location in 3D space and is typically
associated with additional information such as color, intensity, or reflectivity. Point clouds can be gen-
erated from various sources, such as 3D scanners or LIDAR sensors, and can be used in a wide range
of applications such as 3D modeling, virtual reality, robotics, and autonomous vehicles. However, point
clouds can be computationally expensive to process and analyze due to their large size. Moreover, they

are not commonly used for rendering purposes.

1.2.3 Voxel

Voxel-based representations are commonly used in medical imaging, where a three-dimensional im-
age is generated by stacking a set of two-dimensional images taken at different depths. Voxel-based
representations can also be used in computer graphics, where they can represent the shape of a 3D
object or scene. Voxel data can be processed and manipulated in various ways, such as filtering or

smoothing, and can be converted into other representations, such as point clouds or meshes.

1.2.4 Implicit Surfaces

Implicit surfaces are a mathematical representation of a 3D object or surface that defines the surface
as the zero-level set of a scalar function. The scalar function takes a 3D point as input and outputs

a value, which can be interpreted as the distance of the point from the surface of the object. The



implicit surface can be described by the equation f(z,y,z) = 0, where f is the scalar function. The
sign distance function is a variation of the scalar function used to represent implicit surfaces. The
sign distance function assigns a positive or negative sign to each point in space depending on whether
it is inside or outside of the object represented by the implicit surface. The magnitude of the sign
distance function is the distance of the point from the surface. The sign distance function can be used
to create a signed distance field, which can be used in various applications such as collision detection,
rendering, and shape manipulation. Implicit surfaces have some advantages over other representations,
such as meshes or point clouds. They can represent complex and continuous shapes without explicitly
defining the topology or structure of the object. Implicit surfaces can also be easily manipulated using
mathematical operations such as blending or deformation. However, implicit surfaces can be tedious to
the author as the complexity of geometry increases.
Of the aforementioned geometric representations, the point cloud and voxels are not commonly used in
rendering tasks. This is due to the fact that rendering usually considers a surface and assigns a proper
color to it at every point, while on the other hand, a point cloud consists of points that are infinitesimally
small. This leaves out meshes and implicit surfaces. Both of these representations are widely used in
the industry specifically in gaming and films. While meshes are commonly used to represent a vast
majority of geometric content like the exteriors and interiors of buildings, human body models, etc,
implicit surfaces are commonly used for modeling geometries with high detail and easy mathematical
representation: terrains, tweakable geometries supporting the union, and intersection operations.

In this thesis, we concentrate on the Meshes and Implicit Surfaces, specifically SDF based geometries
for the task of rendering.

1.3 Lighting

/\\ [ T~

Point light Spot light Directional light Area light

-\‘\/‘ S — K e
S

Figure 1.4: Light Sources (image courtesy Lecture Slides of University of Sulaimani)

There are several types of lighting commonly used in computer graphics, including:



* Ambient lighting: Ambient lighting is a uniform lighting technique that provides a base level
of illumination to the entire scene, regardless of the position or orientation of the objects in the

scene.

* Directional lighting: This light simulates a light source that is infinitely far away, providing par-
allel light rays that illuminate the scene uniformly from one direction.

* Point lighting: Point lighting simulates a light source that is located at a specific point in space

and radiates light equally in all directions, creating a realistic sense of illumination and shadow.

» Spotlighting: Spotlighting simulates a light source that is directed towards a specific area, creating

a focused cone of light that illuminates objects within the cone and casts shadows outside of it.

» Area lighting: Area lighting simulates a light source that has a finite size and emits light uniformly

in all directions, providing soft and even illumination across a surface.

* Image-based Lighting: Image-based lighting (IBL) uses an environment map or panoramic image
to simulate the lighting of a scene, providing accurate reflections and lighting that match the

surrounding environment.

These lighting techniques can be combined and adjusted in various ways to create realistic and

visually appealing scenes in computer graphics. The first four types are shown in the Fig. 1.4.

Figure 1.5: Image based Lighting (image courtesy 3delightcloud)

For this thesis, we deal with the last variant of lighting, which is Image-based Lighting. Fig. 1.5. The
environment map shown on the left acts as a light source to illuminate the bust in the middle to result in

the rendering as shown on the right.

1.4 Materials

Real-world materials are complex to model; most rendering algorithm only approximates their prop-

erties. To model them, Bi-directional Reflectance Distribution functions(BRDFs) are used. BRDF is a
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Figure 1.6: BRDF: Diffuse and Specular Response (image courtesy Alto Blogs)

mathematical model that describes the way light is reflected off a surface in a specific direction. It is
often used to model the appearance of materials in computer graphics, where it is used to calculate the
color of a pixel based on the lighting conditions and the properties of the surface material.

The BRDF function takes as input the incoming light direction, the outgoing light direction, and
the surface normal and outputs a value that represents the reflectivity of the surface in that direction.
Different materials have different BRDF functions, which determine their appearance and how they
interact with light. For example, a glossy or reflective material such as polished metal will have a BRDF
function that reflects light mostly in the direction of the specular reflection, while a rough or diffuse
material such as a piece of paper will have a BRDF function that scatters light in all directions.

1.5 Appearance Modelling

Now that we have discussed scene representations, lighting conditions, and the material properties,
we will discuss briefly how these components are combined together to form images that are either

photorealistic or “near”-photorealistic.

1.5.1 Modelling Light Transport with Monte-carlo Ray Tracing

As discussed earlier, the use of path tracing will help obtain realism to the renderings. It is a form

of Monte-Carlo ray tracing that simulates the behavior of light as it bounces off objects in a scene and
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interacts with the camera. When a single bounce is modeled, it is referred to as direct illumination,
while on the other hand, when multiple bounces produce global illumination.

In path tracing, rays are traced from the camera into the scene, and each ray may bounce off one
or more surfaces before reaching a light source or being terminated. At each bounce, the path tracing
algorithm calculates the contribution of the light to the pixel being rendered, taking into account the
surface properties, such as the BRDF, which describes how the surface reflects light, and the surface
normals. The process is repeated for many rays, and the contributions are averaged to create the final
pixel color. Path tracing can produce highly realistic images that accurately simulate the effects of
indirect lighting, reflections, and refractions.

However, the computational cost of Path Tracing techniques is very high. Techniques such as im-
portance sampling and Russian roulette can be used to reduce computational costs and improve the
convergence of the path-tracing algorithm.

The light transport is governed by the Eq. (1.1) proposed by [21,23]

Lo(z,wo) = Le(x,w,) +/ f,«(:c,wo,wi)L(;r,, —w;)|cosb;|dw;, (1.1)
Q
where

» L, — final radiance at a point x as observed from the direction of w,

* L. — emitted radiance from point x towards w,.

f — BRDF

« L — incoming radiance towards  from z in the direction of —w;

¢ cosfl — cosine of the angle between the incoming direction —w; and normal at .
* () — imaginary unit hemisphere around the point x.

The rendering equation is a complex integral equation that cannot be solved analytically for most
scenes, and numerical methods such as Monte Carlo integration are typically used to approximate the
solution. The Eq. (1.2) shows the approximate formulation of Eq. (1.1) where N independent samples
of w; are sampled from a distribution which has a probability of p(w;). The quality of the estimate
is dependent on the N as well as the distribution function. A higher sample rate will usually result
in converged and more accurate results. It should also be noted that a wrong distribution from which
sampling is made will adversely affect the obtained result; often, these results are termed biased results.

The use of (multiple) importance sampling strategies improve converges rate times provided a suffi-

cient understanding of the material and/or lighting model is available.

Lz’

, —wj)|cosby|
p(wj)

1 & fz,wo, wj)
Lo(w,wo) & Le(2,wo) + 7 Y =" (1.2)
j=1
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Figure 1.7: Deferred Lighting (image courtesy Shrek 2001)

1.5.2 Deferred Rendering

Due to the computational complexity of Monte-Carlo-based ray tracing, methods like Deferred Ren-
dering/Shading have been employed. These methods provide multi-pass geometric buffers, often re-
ferred to as G-buffers like position, normal, view direction, lighting, etc., and utilize a simple Blin-phong
model [3] to approximate the photorealism. The first video game to utilize this technique was SHREK!
in 2001. As can be observed, the lighting of the game changes dynamically. Most of the effects seen
here are shadows either shadow mapped or obtained by multi-pass renders. It is not physically based, as
can be observed in Fig. 1.7d with the shadows and lighting being mimicked using multi-pass rendering
strategies.

While deferred rendering is initially used to approximate the effects of ray tracing, the performance
benefits it provides by eliminating the redundant fragments are substantial. In a typically OpenGL-based
rendering pass, there are quite a few fragments. Specifically in scenes with a high depth complexity

"https://web.archive.org/web/20131202224623/http://www.electricsheepgames.com/games3
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(multiple objects cover the same screen pixel), the same pixel region will fire multiple fragment shader
outputs and is overwritten once by the nearest point based on the Z-buffering information.
Hence, these aspects of deferred shading are still utilized in the industry to eliminate the excess

fragments and only process the visible geometry in both path-tracing and rasterization frameworks.

1.5.3 Analytical approximation of Path Tracing effects

Another interesting direction to obtain the effects of global illumination is by using analytical ap-
proximations. Recent work on Linearly transformed cosines, which provide a closed-form solution to
the light contribution of an area light [17].

Earlier methods like Efficient representation of Irradiance Environment Maps [47] by Ramamoorthi
et al. provide the foundation for distant illumination models. The work proposes to use Spherical
Harmonic(SH) representation to define environmental irradiance. The work does not account for soft
shadows nor renders images in real time.

Subsequent work by Sloan et al. [53] provided a framework for evaluating the final radiance at every
point on the scene while also being real-time. It does this by disentangling the components of the

rendering equation.
LP(w,) = / L(wi) pP (wo, wi ) VP (w;) (wi © n)dw; (1.3)
Q

where w, is viewer direction from p, w; is incoming direction on unit hemisphere €2 and n is the sur-
face normal at p. LP is the reflected radiance in direction w,, L is the incoming environment light from
wi, VP is the binary visibility function and p” is the Bi-directional Reflectance Distribution Function
(BRDF).

The Eq. (1.4) is decomposed into distant lighting and transfer signals as shown below:
LP(w,) = / PP (wo, wi) VP (w;)(w; @ n)dw; (1.4)
Q

The distant lighting and transfer signal '”(w;)(w; © n) are precomputed individually, and
projected to Spherical Harmonic basis [47].

The calculation of lighting is done by projecting every point on the environment map into spherical
harmonics bases. On the other hand, the Transfer signal is calculated for every geometric point on the
surface of a geometry based on cosine sampling. This is done by shooting numerous rays from every
geometric point, which provides information about visibility in the direction of the ray. Each such
visibility is projected into a spherical harmonic basis, and finally, an effective transfer signal at the point
accounting for the visibility is obtained in the form of an SH vector.

While the Spherical harmonic-based integration provides a fast rendering framework for producing
real-time soft shadows and dynamic illumination changes, it is constrained by the representative ca-
pacity, constraining it to low-frequency illumination changes and distant lighting, and static scenarios.

Despite these disadvantages, the setting is highly suitable for scene settings where objects are static, for
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example, buildings in the scenes. Hence we choose this fast analytical framework for the exploration of

the real-time rendering scenarios for arbitrary geometric representations.

1.6 Contributions

For this work, we have chosen Spherical Harmonics based Precomputed Radiance Transfer for the
rendering of arbitrary surface geometries. The Lighting is calculated per environment map and only
comprises a memory of a vector or a single matrix. On the other hand, Transfer signal needs to be
calculated and stored for every point on the surface geometry in an ideal scenario. But sampling such
a dense surface is computationally challenging. Hence, prior art like [53] has utilized vertex space for
the storage of Transfer signals.

While usage of densely tessellated meshes results in artifact-free render, lowly sampled/tessellated
meshes suffer greatly to render the desired photorealistic effects. Secondly, when the representation of
the scene is not mesh based, like Implicit surface (SDF), the discrete storage of such a Transfer signal is
infeasible. This thesis tackles both problems and addresses them while maintaining real-time framerates
and providing artifact-free renders.

Transfer Textures for Fast Precomputed Radiance Transfer

In the case of densely tessellated meshes, the barycentric interpolation of the Transfer signal usually
produces faithful results. But in the case of simple geometries (e.g. Walls, Planes, etc) that do not require
high tessellation for accounting for the geometric details, it is often redundant. Hence we propose the
usage of area-preserved UV-map storage of Transfer Signal. This helps produce artifact-free renders as

well as maintain lower memory footprints and computational complexities.

Real-time Rendering of Arbitrary geometries using Learnt Transfer

The absence of the inherent storage schema ( 1) Vertex Mesh and 2) UV mapping ) for storing
transfer signals limit the extension of the PRT framework to implicit surfaces like SDFs. We propose
the use of the Neural Surface Function Approximators [19] to provide a surface mapping from surface
position to Transfer Signal. Major challenges of maintaining faster framerates are handled by checking
various aspects like Fragment Shader capacities for handling Neural Weights and providing a generic
framework employing CUDA.

In both works, the Transfer signal is clubbed with desired Lighting and BRDF using [39] to obtain
final radiance at every point. Rendering the whole array of fragments produces the final renders of the

scene.
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1.7 Thesis Layout

In this thesis, we divide the content mainly into 5 Chapters. The Chapter 1 discusses briefly the
problem setting of PRT, the geometric constraints, and some relevant literature to give a broad overview.

In Chapter 2, we provide a study of prior arts existing in the field of PRT for real-time rendering and
solutions proposed by various works. Finally, we contrast the prior art with our approach.

In Chapter 3, we present the area-preserved UV-mapped Transfer storage framework for PRT. We
also show qualitative results against the SOTA and finally report the performance metrics both in render
times and memory footprints.

In Chapter 4, we present a framework that is robust to the geometric representation and can work in
real-time framerates while providing artifact-free renders.

Finally, Chapter 5 concludes the thesis with remarks and future directions.
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Chapter 2

Related Works and Background

In this chapter, we will discuss the relevant literature for the problem addressed in the thesis. We
first discuss the existing literature on Precomputed Radiance Transfer. We then discuss their usages
in different scene representational modalities. Later we mention the methods which can be employed
for arbitrary geometric representations. Additionally, we also discuss the relevant literature inspired by
which we build our solution for the two problem settings of Low-poly meshes and arbitrary geometries.
We finally contrast against the relevant work and provide the required mathematical background for
explaining the integration of the Rendering equation using the suitable band-limited approximation of

Spherical Harmonics.

2.1 Related Work

Spherical Harmonic Representation: Spherical Harmonic (SH) lighting was first proposed by [47].
The work focused mainly on representing the environmental lighting in the form of Spherical Harmonics
basis. This representation was aimed to handle low-frequency distant lighting scenarios efficiently. The
lower orders of Spherical Harmonic basis were employed in cases of diffuse material lobes while the

specular lobes demanded a high-order SH basis.

Traditional PRT: This compact and efficient representation of irradiance maps has led to the devel-
opment of PRT, proposed by [52, 53] to disentangle rendering equations into transfer, lighting, and
material while individually projecting them to the SH domain. Since then, PRT and SH have received
a lot of attention to efficiently compute SH basis [55], efficient rotation of SH [40], compressing SH
basis [54], microfacet BRDFs [26] and extending PRT for dynamic scenes [69]. But the fundamental
idea of disentangling and relevant mathematical formulation has mostly been unaltered.

For diffuse materials, the transfer signal is stored as a vector while for glossy materials the transfer
signal was stored as a matrix. The matrix representation is used to handle the interaction between the
change of viewing directions. While the matrix representation can faithfully replicate the glossy effects,

the storage of the matrix for every point on the surface was substantially demanding. This problem was
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addressed by the work of Triple Product Formulation [39] which allows storage of a vector for transfer

even in-case of glossy materials by using the tripling coefficient matrix.

Triple Product Formulation: Triple products naturally arise in computer graphics in the rendering
equation. Triple products in wavelet basis and spherical harmonics have been studied in depth [39].
Today, state-of-the-art in PRT uses triple products for dynamic relighting for diffuse and glossy scenes.
By itself, the triple product method has a computational complexity of O(k3). This method can be
made more computationally efficient by fixing the lighting [52]. Specifically, triple products with
fixed lighting in SH-based PRT achieve a computational complexity of O(k?) and per-vertex storage
of k-dimensional vector. We augment the triple product method with transfer textures and demonstrate
superior rendering quality and real-time framerates.

As the problem of reducing transfer storage is addressed by the triple product formulation, the storage

of transfer vectors has been handled majorly in two spaces. 1) Vertex Space 2) Texture Space

Vertex Space: Most traditional approaches [26,41, 46] as well as the newer ones for like polygonal
lighting shading in PRT [2, 63, 64], fast spherical harmonic product [65] store transfer at vertices.
For producing artifact-free renders all of these approaches necessitate dense tessellation to account for
transfer changes at high frequency in the scene. To handle these issues adaptive re-meshing techniques
were proposed by [25] which store transfer at vertices while re-meshing the region where the shadows

are missing. (refer Fig. 2.1)

Texture Space: Works by [22,34] store low-order SH coefficients at UV-mapped textures to account
for diffuse results confining to the diffuse material models. Additionally, they are also constrained to the

direct illumination model, disregarding the indirect illuminance.

Meshless geometries: The limitation of these methods is they are constrained to mesh representation
either by using a vertex storage approach or by using a texture storage approach.

FEM approaches To remove the dependency on the mesh representation, Meshless hierarchical trans-
port proposed by [28] samples and stores selective points by accounting for high-fidelity changes in the
transport function. But this approach requires multiple re-sampling and weighted k-nearest neighbor
searches to obtain a transfer to a given query point. All of these methods rely on a discrete representa-
tion of transfer.

Irradiance Volumes Another approach to disregard the inherent storage structure present in the mesh
is by using a volumetric grid of spheres providing spatial storage of spherical harmonic transfer coeffi-
cients [14]. This method has widely been used in various works like games [18,59], glossy reprojections
[50], compressed representation of precomputations [51], Chrominance [61], and interactive lightmaps
for frostbite BRDF [1]. Recent advances have utilized the representation to obtain dynamic diffuse

global illumination [32], with efficient Sign distance improvements over [20], while also extending to

14



Neural Light probes [15]. Despite these efforts, the Irradiance Volume representation is prone to light
leaks causing artifacts as shown in Fig. 2.2.

Later and recent efforts like [33] have provided solutions to eliminate light leakages. Nevertheless,
the use of irradiance volumes requires high memory storage in the orders of N3. Additionally, the latest
line of works [32] uses UV-mapped spherical probes which hold precomputed values in texture space.
Maintaining N3 textured precomputations is usually very memory intensive.

Neural Precomputed Radiance Transfer (Neural PRT) Nascent efforts like NeuralPRT by [45] and
Neural Radiance Transfer Fields by [30] take inspiration from PRT, learning latent representation for
transfer with lighting, diffuse and glossy descriptors. Furthermore, they operate in the image space and
perform loss calculations in the image domain, whereas we operate in the SH space. For disentangling
components from the final rendered images, they employ large neural MLPs for their constituent ren-
dering components, limiting their run times. We on the other hand stick to traditional formulations of

PRT allowing our method to be easily integrated into existing frameworks like [63,64].

(b)

Figure 2.1: Adaptive Tessellation of Geometry to accommodate accurate shadowing effects. Observe
the higher tessellation at the regions under the manifold which alleviates the requirement of dense mesh

structure on the ground plane. (image courtesy [25])
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Figure 2.2: Use of probe also accompanies Light leakage, causing artifacts as shown in the figure.
Irradiance Volume usually requires careful placement of Light Probes. (image courtesy Blender artist

forums)

Neural Fields In recent times the use of neural fields, which learn a function representation to augment
the representation of scene parameters has shown promising results. The work of NeRF [35] is one
such classical example. The use of simple MLPs to approximate the radiance of the scene has improved
the novel view generation from a given input set of discrete images. While some follow-up works
like [16, 48] concentrated on making the rendering real-time, some works looked at the semantics
of the Radiance Fields [4, 68]. There have also been works in the direction of editing materials and
lighting [5, 38,67] and geometry by [6,66]. Contrary to their efforts our work concentrates mainly on
real-time rendering along with the facilitation of material and lighting edits.

The use of simple MLPs to represent functions like radiance or irradiance has been proposed earlier
in the works of [49]. While the works like [49] try to regress radiance, we aim to regress the transfer.
Recent efforts like [29] have also used MLPs to regress transfer. But the primary concentration of
the work was to handle deformations in the geometry while utilizing harmonic maps of the temporal

changes.

Contrary to efforts of DeepPRT [29] which use neural approximations of transfer, we do not require
UV mapping and our method can pan to arbitrary surface representations. In contrast to works of
NeuralPRT [30,45] which re-model PRT formulation and work in latent space, we stick to the traditional
formulation making our method extendable to works like [63,64]. On the other hand, we differentiate
over the NeRF [35] greatly as we do not fit a model to understand the scene from a discrete set of images,
rather we regress the irradiance represented in SH while maintaining real-time framerates. Though
works like KiloNeRF [16,48] provide real-time renders they do not facilitate material and lighting edits.
NeRFactor [67] which extends NeRF to facilitate editing lacks real-time rendering.
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2.2 Background

The work of Sloan et al. [53] was introduced to obtain ray-tracing effects in real time. The method
disentangles lighting and cosine-weighted visibility into two different parts. The cosine weighted visi-
bility is coined as transfer [53]. The separated entities are precomputed and stored with a change of
basis. As all the sub-functions of the rendering equation are spherical, a suitable spherical domain is
chosen. Taking inspiration from Sloan et al. we also chose to use Spherical Harmonic representation(SH
basis).

The rendering equation for direct lighting at point p is given by
BP(w,) = / L(w03) P (o ) VP (w3) @i © m)dosy, @.1)
Q

where w, is the direction towards the viewer from p, w; is the incoming direction on the unit hemisphere
Q and n is the surface normal at p. BP? is the reflected radiance in direction w,, L is the incoming
environment light from w;, V'? is the binary visibility function and p? is the Phong Bi-directional Re-
flectance Distribution Function (BRDF) [3]. Eq. 2.1 is decomposed into the lighting L and transfer
T?(w;) = VP(w;)(w; © n) which are then projected to the SH basis with coefficients £; and 7" respec-
tively. The term 7 is referred to as transfer.

The original work Sloan et al. has two different representations of transfer for diffuse and glossy
materials. In the case of diffuse materials, the 7" is a vector of k-dimension to represent an SH-basis of
transfer. In case of glossy the 7;7” is a matrix of size k2. The size of the transfer representation increased
by k times. This has been addressed with the help of Triple product formulation [39]. Using [39] it is
only required to store a k-dimensional vector for both glossy and diffuse materials. This paves way for
our idea of learning the transfer vector using a network Chapter 4.

The diffuse case is fairly simple the radiance B? can be directly calculated as:

B =S TrL 2.2)

For the calculation of radiance for a glossy surface material, we have to evaluate the triple product
formula [39].

#’=/SQ we(@) | D Twi(w) | | Do Livi(@) | dw = i TEL;, -
i=1 j=1 i

The terms £; and 7;”in Eq. 2.3 account for lighting and transfer respectively. Hence obtained H? is
convolved with BRDF f? to obtain the final radiance BP.
B =M o f] 24

The 7;;, term here is a tripling-product matrix which is a 3D-matrix of dimension ¢ x j X k. It can be
obtained using the triple-project of basis functions described in [39]. In most works, this tripling matrix

is of the same dimensions across all three axes of the 3D matrix. (i.e; ¢ = j = k).
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But the formulation by itself does not constrain the user to use the ¢ = j = k. More elaborately,
we 7?”, can be a vector of size i, £; can have dimensionality of j while maintaining (¢, j) # k. This
enables flexible detailing of parts of the rendering equation which contain high-frequency details. For
example, BRDF is usually a high-frequency function that requires more coefficients to represent. In
such cases the dimension £ in 7;;, can be increased without re-computing the transfer or lighting. This
is consistent with works like [63, 64].

As we only learn transfer in our case, our approach can also leverage and benefit using the Triple
Product Formulation [39].

2.2.1 Spherical Harmonics

Spherical Harmonics (SH) are orthonormal basis functions on the unit sphere, parameterized by a

direction w = (@, ¢), the band [ and order m. The real spherical harmonics are given by:

Vi) = \/ DR cos) (o), @5

where P|lm | are the associated Legendre Polynomials. The function f (|m|¢) is 1 when m = 0, and is
equal to /2 cos(m¢) when m > 0 and is equal to /2 sin(|m|$) when m < 0. Projecting a function to
band ! SH basis results in a vector of [? coefficients, from which the original function can be recovered
by summing over all SH bases [46]. Often, it is convenient to index SH coefficients with a single index
i =1(l +1) 4+ m + 1 ranging from 1 to n?

2.3 Contrast

In the early efforts of PRT [53], the transfer was stored in vertex spaces, which required either a
dense tessellations or adaptive re-meshing [25]. To avoid this, we draw inspiration from the textured
storage methods to store transfer functions in UV-mapped spaces. These UV-mapped spaces are more
continuous, providing artifact-free renders. Unlike prior work of [34] restricted to diffuse renders, we
adopt triple product formulation extending the method to glossy materials. We further extend their work
by incorporating glossy materials and inter-reflections in the Textured PRT frameworks. We discuss this
in detail in the Chapter 3.

In the scenarios of rendering meshless-geometric representation, which lacks an inherent storage
schema, we propose to use neural approximators. This eliminates the high memory requirements caused
by techniques like Irradiance Volumes [14] while providing a continuous representation of transfer. This
approach also avoids dealing with light leaks. We discuss this in detail in the Chapter 4.

Though we utilize neural approximators for transfer regression, we do not follow similar approaches
as NeuralPRT [30,45]. NeuralPRT proposes using latent representations for all lighting, material, and
transfer signals, invalidating the use of Triple-product formulation. Unlike them, we leverage traditional
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Triple-product-based evaluation to extend current SH-based pipelines to incorporate arbitrary surface

geometries.
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Chapter 3

Transfer Textures for Fast Precomputed Radiance Transfer

=y

Wire-mesh ‘Wire-mesh

WertewViethods IFansier Textures

Figure 3.1: The above scene shows a minimally tessellated rug, floor, and table (shown in wireframe
insets). The vertex attribute method (left) fails to capture shadows due to insufficient sampling of the

transfer while the use of our transfer textures accurately captures all details for the same tessellation.

In this chapter, we present a storage strategy to alleviate the issue of using dense tessellation for
the work of PRT [53]. We present transfer textures to decouple mesh resolution from transfer storage
and sampling. We do this by utilizing the area-preserving UV spaces of the scenes creating Transfer
Textures. Transfer textures are UV-mapped textures storing sampled transfer function at every scene
location. The relatively more continuous nature of textures over the regular vertex attributes provides
artifact-free renders. This alleviates the necessity of redundant tessellation. Our method evaluates final
radiance in a fragment shader via sampling the Transfer-Texture unlike vertex color interpolation of the
prior art of [53]. Additionally, we also provide a method to compute 1-bounce indirect illumination
to obtain indirect illumination by fixing the distant lighting. Our method achieves real-time rendering

framerates while obtaining artifact-free renders.
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3.1 Transfer Textures

In this section, we begin with a description of computing and storing a band [ SH projection of trans-
fer on a texture (Sec. 3.1.1). Next, we show how inter-reflections can be pre-computed and incorporated
into our framework (Sec. 3.1.2). Our implementation is described in Sec. 3.2. Our approach achieves
real-time frame rates and better render quality, especially on low tessellation meshes, as shown in Sec
Sec. 3.3.

Algorithm 1: Pre-computing and storing the transfer texture.
Input: M, w, h,l: Mesh M, width w & height h, SH band I.

Output: 7),: Precomputed transfer texture
1 T, + Texture(w, h, 1) // Init. texture.
2 G = GenerateGBuffer(M) // G-Buffer
3 fortin'T, do
4 point = G[t.x][t.y].vertex
5 normal = G[t.x][t.y].normal
6 V' = ComputeTransfer(point, normal) // Path tracing

7 Vs, = SHProject(V)

8 | Toltx]ltyl ="V

9 T, = Dilate(7T5, 3)

3.1.1 Pre-computing Transfer Textures

The computation of transfer involves shooting multiple rays from a point p in the scene and then
evaluating and projecting the transfer to the SH basis. For transfer textures, there are [NV scene points
p corresponding to each pixel ¢ in the texture. The mapping between ¢ and p is defined by the UV
coordinates. To efficiently compute the transfer texture, we leverage G-Buffers(Alg. 2) to interpolate
vertex positions and normals based on their corresponding UV-Coordinates (Alg. 1, line 2). Next, we
read the G-buffer and the scene geometry and evaluate the transfer function for each pixel in the buffer
(Alg. 1, lines 4-6). The transfer obtained is then projected to SH basis and stored at the same pixel
location in an initially empty texture T}, (Alg. 1, lines 7-8). Finally, Ty is dilated to ensure that all points
inside a triangle receive a transfer value. At run-time, we fetch transfer 7, and use it with the triple

product formulation to obtain BP.
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Algorithm 2: Generate G-Buffer pass.(Vertex and fragment code)

1

2

3

10

11

12

13

14

15

16

17

Program VertexShader:

vec4 gl_Position; // In-built variable
in vec3 p, n; // Scene Point, Normal
in vec2 uv; // UV co-ordinates
out vec3 vertex; // Interpolated in Frag.
out vec3 normal; // Interpolated in Frag.

void main():
gl_Position = vec4(uv.x, uv.y, 0.0, 1.0);

vertex = p; normal = n;

Program FragmentShader:
in vec3 vertex;
in vec3 normal;
out vec4 gPos; // G-Buffer
out vec4 gNorm; // G-Buffer
void main():

gPos = vecd(vertex,1.0);

gNorm = vecd(normal, 1.0); /+ w — alpha channel */
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3.1.2 Pre-computing transfer textures for inter-reflections

Inter-reflected radiance BY at point p can be modeled as:
By (wo) = /(1 = VP(w;)) BP (2, w;) pF (wo, wi) (wi © n)dw;, 3.1
Q

where BP? is the radiance from a secondary hit-point g towards p and B is the inter-reflected radiance
[53]. First, we factor out 1 — VP(x,w;) by only integrating over rays that hit some geometry. For
a scene point p; and a secondary hit ¢, the radiance BP'?! can easily be precomputed given a zero-
bounce transfer texture 7, from Alg. 1 (See Fig. 3.2). The radiance from ¢; towards p; is obtained

D1

B =3 o (LT3 ) wi (R( = wprq,» NG, ))

Figure 3.2: Inter-reflections: The radiance BP'9" (red lines) towards a point p; from a secondary
hit-point ¢, can be computed by first fetching transfer at ¢,, using the zero-bounce transfer texture 75,
applying the light L followed by convolution with the BRDF at ¢,, and evaluation at reflected direction
along the normal at ¢,,. BP19" forms an indirect environment map which is projected to SH and stored

at p1 in an additional texture.

using the triple product formulation by fetching 7}, to obtain transfer at ¢;.

This is done for all hit points from p;. This radiance now forms an indirect environment map for
the point p;, which is then projected to SH basis resulting in a k-vector BY?, which is stored in a
separate one-bounce inter-reflection texture T1. At run-time, the inter-reflected radiance is obtained by
convolving B fetched from 7} with the BRDF SH p!” and evaluating at the reflection direction. The
final color is given as: BP(w,) + BY(w,). Alg. 1 can be easily extended to compute the second bounce
texture 75 and so on. The number of textures required is linear in the number of bounces in this setting,

and the final color is just their summation.

3.1.3 Handling dense UV-packing

In the previous section, we described methods for the efficient computation of transfer textures.

Usage of these textures requires UV co-ordinates each vertex to be defined. To obtain UV unwrapping
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of scene geometry, we used Smart UV-Unwrap or Light Map Pack from Blender 3D [7]. One caveat with
UV unwrapping is that dense packing of UV islands may cause overlaps which manifest as rendering
artifacts. Smart UV-Unwrap does not guarantee non-overlapping islands while Light Map Pack leads to
texture wastage and tiny pixel coverage for some parts of the geometry. In such scenarios, texture-sets
are beneficial.

Figure 3.3: Texture sets: TRM:Two Roza, one Monkey, We demonstrate the use of texture-sets with
TRM(right) where 4 small textures are assigned to each piece of geometry against the use of single
texture in case of TRM(left). The artefacts can be seen clearly in the Monkey’s eyes and Roza’s hair as
depicted in insets. Note that in both cases, the memory requirements are the same (single 1024 x 1024

texture v/s four 512 x 512 textures).

Consider an example scene as shown in Fig. 3.3. This scene contains 441K triangles, all of which are
packed into a single 1024 x 1024 texture (Fig. 3.3, left). As shown in the insets, this leads to artefacts.
A better approach is to use texture-sets, which means assigning individual textures to each object in
the scene (Fig. 3.3, right). In this case, each UV island can occupy the entire space of the texture thus

eliminating artefacts.

3.2 Implementation Details

We implement Alg. 2 in Python using the ModernGL [11] framework. We generate and store the
resulting G-buffers for each scene in a pre-process step. Alg. 1 is implemented in Python and uses

Embree [62] for efficient ray intersection tests. We project to band [ = 5 (25 coefficients) real spherical
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harmonics. As mentioned in Sec. 3.1.1 dilation is required to ensure that all points in the scene receive a
transfer value. Experimentally, we found a dilation of three to be sufficient which may need adjustment
depending on the scene complexity. The time taken for generating transfer textures for a scene like in

Fig. 3.1 is approximately three hours.

Our real-time renderer is also implemented in the ModernGL framework. We implement the triple
product (TP) and triple product with fixed light (TPFL) methods augmented with our transfer textures.
Rendering is done in the fragment shader using the generated transfer textures for the respective scene.
We render all scenes with glossy materials with spatially varying roughness on a workstation with an
NVIDIA RTX 3090 with a resolution of 1920x 1080. An important detail is that we use the early depth
pass to prune fragments that are not visible thus avoiding unnecessary computations. We use a texture
resolution of 1024 x 1024 texture as we have found it to be best trade-off in between memory and quality

for our scenes.

Table 3.1: Scene configurations. We list all scenes used in this paper, with their corresponding number
of triangles and FPS with triple product (TP) and triple product fixed light (TPFL) methods on both
vertex and fragment shaders (with transfer textures). Our approach achieves real-time framerates on all

scenes.

Scene # tris. | Vert. (Trad.) | Frag. (Ours)
TP TPFL | TP TPFL

Dragon ( Fig. 3.4) | 1.3M | 3.62 41.2 5.2 1512
TRM ( Fig. 3.4) 441K | 102 116.2 | 15.2 2029
Room ( Fig. 3.1) 21K | 3523 24327 | 83.6 568.2
Plants ( Fig. 3.4) 18K | 363.2 2597.6 | 6.7 1683

3.3 Results & Evaluation

In this section, we present glossy rendering results including inter-reflections using transfer textures
on the fragment shader. We compare the renderings with traditional vertex shader based approaches.
We also discuss and demonstrate the use of normal maps with transfer textures which is not possible
with traditional vertex based PRT. Finally, we analyze the memory requirements and give a lower bound
of FPS for tranfer texture usage in a fragment shader. Rendering results are demonstrated on four scenes

whose statistics and performance comparisons are given in Tab. 3.1.
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Figure 3.4: We show results of TP and TPFL on the fragment shader using our transfer textures (Bot-
tom). We compare renderings with traditional vertex shader based approaches on the top. For minimal
tessellations, our method accurately renders shadows whereas previous methods are unable due to in-
sufficient sampling of transfer. The third row (high-tessellation) shows that renderings using traditional
methods approximately approach the quality of transfer textures on addition of more vertices. Note that
low-FPS in case of Dragon low-tessellation and TRM low-tessellation in vertex based TP and TPFL is

due to their high resolution geometry.
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3.3.1 Glossy rendering & Inter-reflections

Fig. 3.4 shows the renders for three scenes: Plants, Dragon and TRM (two Roza, one Monkey). All
scenes have a ground plane, which is minimally tessellated, as shown in the wireframe insets. The TP
and TPFL methods on vertex shader are unable to capture proper shadows on the ground plane due to
sparse sampling of the transfer function. In contrast, the TP method on the fragment shader using our
transfer textures properly reproduces shadows on the plane, albeit at a very low FPS. The TPFL method
with transfer textures also achieves a similar render quality at a higher FPS. We note that the TP/TPFL
methods on vertex shader approach the render quality of our transfer textures with a highly tessellated
ground plane, as shown in the high-tessellation renderings. We note that this requires the addition of
redundant vertices. We further note that such situations frequently arise in production, for example with
walls in a room or any large surface with minimal curvature ( Fig. 3.1). In such cases, all previous
PRT methods on vertex shaders require the addition of avoidable vertices to store the transfer on leading
to drop in performance, as opposed to our transfer textures method. Additional renders with different

phong exponents and environments maps for four different scenes are shown in Fig. 3.7 & Fig. 3.8.

0-Bounce 1-Bounce 0-Bounce 1-Bounce

Figure 3.5: We demonstrate inter-reflections with transfer textures on two scenes: Diffuse Monkey (left)
and glossy Roza (right). Renders with inter-reflection maintain real-time frame-rates, albeit slightly

lesser than zero-bounce renderings.

Next, we demonstrate inter-reflections using transfer textures with the method described in Sec. 3.1.2.
The zero-bounce and one-bounce renders with their corresponding FPS are shown in Fig. Fig. 3.5 for
two scenes: Monkey and Roza. Because of extra texture fetch, convolution and evaluation operations the
FPS with inter-reflections is slightly lower, albeit still real-time. As described in Sec. 3.1.2, additional
bounces can be added with additional pre-computed textures.
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Figure 3.6: Normal Maps: Transfer textures make it possible to use the shading normals from normal

maps instead of the geometric normals. This is difficult to achieve with traditinal vertex based PRT. The
above scene shows a minimally tessellated ground plane (wireframe, right) with a normal map. The

scene is rendered with TPFL and transfer textures. All normal map details are preserved.

3.3.2 Normal Maps

Transfer textures make it possible to use normals maps during precomputation. This translates to
lesser vertices during rendering as finer detail can instead be embedded in the normal map. Consider
precomputation in traditional vertex based PRT. In this case if a normal map is applied, it only ever
affects the transfer at those vertices thus loosing detail within each face when using high frequency
normal-texture. With transfer textures we can output the shading normal from the normal map instead
of the geometric normal in the G-buffer during precomputation. In Alg. 1 line 6, the transfer will then
be computed at the shading normal instead. Since this texture is used to fetch transfer during rendering,
all normal map details are preserved. We show renderings with normal maps in Fig. 3.6. The detail
on the floor is due to the normal map without any additional vertices, as can be seen in the wireframe

insets.

3.3.3 Memory Requirements

McKenzie et al. demonstrated textures with diffuse PRT using the formulation of Sloan et al. .
Directly implementing glossy formulation by Sloan et al. with textures amounts to storing a k X k£ matrix
per texel which quickly becomes intractable, even for reasonably small textures. Thus augmenting the
triple product formulation to transfer textures is a clear choice. The memory requirements for vertex as
well as texture (fragment) based approaches is shown in Tab. 3.2. The former’s memory requirements
depend on the scene complexity whereas it is constant for textures. Furthermore, a direct extension of

Sloan et al. ’s method to textures is infeasible, as shown in the fifth column (2.5 GB per texture).
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Table 3.2: Memory requirements for vertex based and transfer texture based approaches for a 1024 x
1024 texture. Note that McKenzie et al. uses Sloan et al. ’s approach which results in large textures for

glossy rendering.

Scene # tris. Vert. Mem. Tex. Mem.

Sloanetal. Ngetal. | McKenzieetal.  Ours

Room 21K 64MB 2.5MB 2.5GB 100MB
Dragon | 1.3M 5.2GB 215.8MB 2.5GB 100MB
TRM 441K 2.3GB 139.3MB 2.5GB 100MB
Plants 18K 64MB 2.5MB 2.5GB 100MB

3.3.4 Lower Bound on FPS

Since transfer textures are used in fragment shaders with an early depth pass, we achieve a lower
bound on the FPS. The computation is roughly the same for each fragment and the worst case is when
all fragments contain some geometry to be processed and rendered. This is in contrast to vertex based
approaches, where run-time depends on the number of vertices in the scene. We demonstrate this in
Fig. 3.4 in the TRM (441K verts) and Dragon (1.3M verts) scenes. Here, the FPS is lower for vertex
based approach as compared to fragment based approach with transfer texture, in both TP and TPFL.

Monkey Roza Dragon Plants

Env 1

Env 2

Env 3

Figure 3.7: Results of our transfer textures method with different light settings
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Monkey Roza Dragon Plants

Phong exp. 5 Phong exp. 0

Phong exp. 50

Figure 3.8: Results of our transfer textures method with different Phong BRDFs with same light

3.4 Conclusions, Limitations & Future work

In this paper, we presented precomputed radiance transfer textures for decoupling mesh tessellation
from transfer sampling and storage for glossy rendering. We described methods to efficiently and cor-
rectly compute these textures and also demonstrated incorporation of inter-reflections using additional
precomputed textures. We compared our renderings with traditional vertex based PRT approaches and
thoroughly analyzed the memory requirements of transfer textures. We demonstrated real-time framer-
ates for rendering with transfer textures on the fragment shader and superior render quality for minimally
tessellated meshes. Additionally, we gave a lower bound on the FPS which will be useful in perfor-
mance analysis in production. Our approach inherits the advantages of texture based optimizations like
textures-sets, mip-maps and level of detail which can be easily incorporated. Although we demonstrate
on a fixed texture resolution, it can be tailored accordingly depending on the hardware constraints and
rendering quality needed. This is in contrast to vertex based methods that provide vertex count as the
only control knob and little control over level of detail.

A limitation of transfer textures is that inter-reflections essentially bake the lighting and BRDF i.e.
they cannot be changed without re-computation. We note that the work of [53] also bakes BRDF (in-
cluding albedo) into their transfer matrices for inter-reflections. We would like to address this issue for

future extensions of this work.
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Chapter 4

Real-time Rendering of Arbitrary geometries using Learnt Transfer

(c) (d)

Figure 4.1: The figure shows OLD-CAR defined as a Signed Distance Function (SDF) rendered with our

approach for two different materials types: (a) Diffuse, (b)-(d) Glossy with increasing Phong exponent.

The use of textures to store sampled transfer function in PRT [53] provides artifact-free renders
while leveraging the fast hardware accelerated texture lookups and barycentric interpolations. But, when
using other geometric representations specifically, the ones which lack inherent storage schemas namely,
Vertex-attributes and Texture-mappings. The extension of PRT is a very tedious process either requiring
memory-intensive volume storages as in [14] or resampling-based FEM-based techniques like [27]. In
contrast to the aforementioned approaches, we propose a learnt representation of transfer that can be
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used with geometries that lack inherent storage schemas. We do this by learning a regression function
that regresses transfer function from the input surface properties. For instance, the use of SDFs (Signed
distanced fields) surfaces for rendering with traditional PRT methods is not possible as SDFs do not
contain vertices or texture mappings to store and fetch transfer functions. Hence we propose the use of
MLPs to regress the transfer values. Our method plausibly renders soft shadows and glossy highlights
and achieves real-time framerates. We provide GLSL and CUDA based pipelines to obtain real-time

renders.

4.1 Method

In this section, we first motivate and describe our learnt representation of transfer. Next, we discuss
training details along with training data generation which ensures that our learnt representation is con-
tinuous. Finally, we describe the GLSL and CUDA implementations of our learnt representation. We
evaluate and show the results of both these implementations in Sec. 4.2.

I-layers

o)
=

PE(p)
PE(1)

N

Figure 4.2: Our network is a Multi-Layer Perceptron (MLP) with k neurons per layer and [ layers. A
scene point p and its corresponding normal () are fed to the network as input with positional encoding.
The network outputs a vector, which are SH coefficients of transfer. The black-arrow lines represent a
leaky-relu activation while the dotted arrow represents a tanh activation. Scenes rendered in this paper

use k = 64,1 = 4 or k = 128, = 4 unless otherwise specified.

4.1.1 A learnt representation of transfer

The PRT formulation in Eq. (2.2) describes the evaluation of direct lighting at every point p. Ideally,
it needs to be pre-computed at every visible point in the rendered view requiring transfer-vectors (ﬁ)
at all surface points of geometry. This is practically impossible. Instead, we learn a continuous function

on the surface of the scene geometry as a function o

o:(p,n)— ﬁ 4.1
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that maps surface position(p) and normal(7) to a transfer value. We use a Multi-Layered Perceptron
(MLP) network as o. Neural networks are known to be universal function approximators [19]. Recently,
neural representations using coordinate-base MLPs have found a great utility to learn the distribution of
radiance in a scene [13,35,48,67]. We adapt this idea and learn ¢ as an MLP to represent a continuous
function over the given scene surface. We train the MLP by precomputing the transfer values at densely
sampled surface points. This method works on all types of surface representations: meshes, implicit
surfaces, SDFs, parametric surfaces, etc.

Formally, given a scene point p and its normal n, we train a MLP to learn a mapping function o
presented in Eq. (4.1) to learn the SH-vector of transfer ﬂ with components 773 (Eq. (2.3), Eq. (2.2)).
In our experiments, we use 16 SH coefficients similar to [64], making 77 16 dimensional. The network
architecture used is shown in Fig. 4.2. It contains [ layers with k neurons per layer. Each layer is fol-
lowed by the leaky-relu [31] activation function, except the last which is followed by fanh activation. In
practice, the network inputs are projected to a high dimensional representation using positional encod-
ing [35,44,58]. Weset k = 64 and | = 4 or kK = 128 and [ = 4 for scenes in this paper unless otherwise
specified. Previously, [53] and [25] stored transfer values on mesh vertices. Textures in a UV-space were
also used to store transfer values [10,34]. These strategies strongly rely on dictionary storage structures
inherently present in mesh-based geometric representations and do not extend to implicitly represented

scene objects. They also incur high memory costs to store transfers for complex scenes.

4.1.2 Training details

Our training dataset consists of transfer values for densely sampled points in the scene. We ensure an
equal distribution of these points by an area-based sampling of the mesh surface [60]. The ground truth
transfer is calculated using ray-tracing for each sampled point, as is done traditionally [46]. Note that
training data can be generated for any other geometric representation by first converting it to a mesh and
then applying the above routine. For example, in the SDF case, we use marching cubes to first extract a
mesh, densely sample the mesh using the above method and project these points to the SDF surface. The
Transfer is then calculated for these points by sphere tracing the SDF. We project the resulting transfer
to SH basis with 16 coefficients which are used as ground truth. By training our network with dense and
equally distributed samples, we ensure that it learns a continuous representation of transfer. For scenes
used in this paper, we generate 800k — 1M points on the geometric surface and calculate the associated
transfer vectors to train our network. The data generation takes around 2 hours per scene. We use a
batch size of 8192 and train our network with this data for around 200 epochs with the ¢; loss. The time
taken for training is about 10 minutes on NVIDIA RTX 3090 GPU. We use sampled points as a training
set and try to regress on the vertex locations which are not included in the training sample to ensure
the fitted function is consistent with the surface geometry. Our sampling scheme [60] ensures that the
sampled points do not co-inside with the vertex locations whereby keeping the test set different from the
train set ensures uniform fitting rather than an overfit of the region. Refer to Sec. 4.1.3. for more details

about training and sampling.
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4.1.3 Sampling

For sampling, we make use of the work by Turk et al. [60] method of uniform sampling over a surface
of a triangle. This sampling technique ensures there is no skewness towards the vertices of the triangle.

Usually, the sampling function used is

U1

Vo

Figure 4.3: The image shows the samples of [60]. It can be seen clearly that the points are not skewed

towards the triangle’s vertices(vg, v1, v2). They are uniformly distributed on the surface

(1= V& )wo + V& (1= &)vr + &) 3 €, & €[0,1) (4.2)

&), &1 are sampled using a random number generator. To further ensure samples not falling on vertices
(vg, v1, v2) We can constrain values f(’), &1 to tighter boundaries in between (0, 1). This ensures vertices
and their vicinities are not included in the train set.

For sampling on a surface, we do a face weight sampling taking area as the metric. We had to
implement our own sampler rather than using one in Trimesh [9] so as to leverage the sampling strategy
of [60] (Refer to Fig. 4.3).

4.1.4 Real-time rendering with GLSL & CUDA

Once trained on a given scene, our network can output transfer vectors for any point in that scene.
Furthermore, since our network is small, it allows for efficient per-pixel evaluation on the GPU. Below

we discuss two different implementations, one with GLSL and the other with CUDA.

4.14.1 GLSL

We implement the GLSL version within the ModernGL framework [11]. The network weights and
biases are hardcoded in 4 x 4 matrices (mat4 type) in the fragment shader. Specifically, the weights of
each layer are divided to fit into multiple mat4s. This allows for an efficient forward pass using matrix-

vector products on the GPU. We have automated this using a script-based extraction of weights into
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the shader. With the network weights available as matrices within the shader, the rendering proceeds
as follows. We first obtain the surface position p, its normal 7, and the view vector w,, in the fragment
shader using the standard OpenGL pipeline. An early depth pass is used to avoid the processing of
unnecessary fragments. Next, we apply positional encoding [44] to p and n and evaluate the forward
pass of our network with the hardcoded weights. This results in the SH vector of transfer ﬂ at p. The
transfer is used with the triple product formulation [39] with a global light matrix to obtain the shading at
p according to Eq. (2.3), Eq. (2.2). Our GLSL implementation works for both AMD and NVIDIA GPUs
since OpenGL itself is supported on both hardware architectures. A downside of this implementation is

that the network size is constrained by the amount of local memory available for each shader.

4.14.2 CUDA

To alleviate the dependence of network size on local shader memory, we implement the second
version in CUDA. Before rendering starts, we pre-load the trained weights of our network on the GPU.
Rendering is then performed in two separate passes: (1) An OpenGL pass to extract G-buffers, (2) A
dedicated CUDA pass for network forward evaluation using the pre-loaded weights. The OpenGL pass
works similarly to the GLSL implementation, except it only extracts G-buffers and does not perform
shading. We create CUDA buffers that point to the resulting G-buffers from the previous step, which
implies that these share the same GPU memory. These CUDA buffers are then converted to PyTorch [42]
tensors using the PyCuda [24] interface. This approach avoids expensive transfers between GPU and
the host and is crucial to achieving real-time framerates. The PyTorch tensors are then used for the
network forward pass with positional encoding. The network evaluation only processes parts of the
G-buffers that intersect geometry by packing them before the network forward evaluation. The transfer
vectors obtained from the network are then unpacked to their original locations in the G-buffer. This
avoids unnecessary evaluations of the network further improving the FPS. The final image is obtained
by combining this transfer with global light matrices with the triple product formulation [39], similar to
the GLSL pass. This implementation allows the network to be as large as the entire GPU memory since
it has a dedicated forward pass for it. Refer to Fig. 4.4 for a visual explanation of this implementation

and a caption for details.

4.1.5 Handling Large Scene without loss of performance

In certain scenarios, while handling large scenes, a small neural network might not be sufficient to
regress the transfer-accounting for the cosine weighted visibility of the rendering equation. In such
a scenario, we can either engage a large neural network or subdivide the scene into smaller segments
and assign a small network to regress the respective transfer values. The latter is a more performance-
friendly approach as the number of operations required to calculate transfer will be substantially smaller
than the former. This is due to the fact that per fragment only a small MLP needs to be evaluated

as opposed to a large network, resulting in real-time performance obtaining render-framerates of over
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View Vector in SH: y(w;)

—— OpenGL — Surface Position
G-Buffer: p

Scene
Geometry

Surface Normal
G-Buffer: i

Figure 4.4: CUDA Implementation: We extract G-buffers that store the position p and normal 7 in
texture space. Along with G-buffers we also project per fragment view directions to SH and store them
in textures. All OpenGL Textures (M), are shared with CUDA buffers(m). The CUDA bufters are
mapped to the same memory location as OpenGL texture to avoid expensive GPU - Host transfers. The
CUDA buffers are copied to preloaded torch-sensors( ) residing on GPU. The tensors are then fed to the
network residing on GPU and the output is obtained. Since the operations are only between GPU-GPU
without involving the host we avoid host latency. The network outputs a transfer vector which is clubbed
with lighting and SH representation of view direction extracted as torch tensor to obtain color at each
pixel using the Triple Product Formulation [39]. Note: Before passing the G-buffers to MLP, fragments
that intersect the geometry are separated from the ones that do not and packed to avoid unnecessary

network computations.
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200FPS. To achieve this we subdivided the scene into sub-scenes and sample points in each sub-scene
using the strategy explained in Sec. 4.1.2. To maintain continuous seamless regression of transfer at
boundaries we sample points for extra § area over the adjacent sub-scene refer to Fig. 4.5 for details.
For each sample point, we trace rays into the un-subdivided(whole scene) scene. This ensures the
visibility accounting for the full scene rather than the sub-scene. Once transfer vectors are calculated,
to ensure a minimal number of MLPs being used to regress the transfer of the whole scene we cluster
neighboring sub-scenes using Variances analysis of the transfer vectors similar to the techniques of
CPCA [54]. Contrary to their method, we do not use Principle components rather just rely on the small
MLPs to regress transfer. At run-time, every sub-scene is assigned respective MLP either in GLSL or
CUDA based implementation. Thus, enabling parallel execution of the fragments achieving real-time

framerates of 200FPS. A visual representation of the above strategy is given in Fig. 4.6.

Sub-Scene A Sub-Scene B
i i :
! ' I '
! L I l
I Sub-Scene A 51 Sub-Scene B Sub-Scene A i3 Sub-Scene B |
I i I i
! ' I '

Figure 4.5: Sampling at boundaries: While handling the boundary regions of neighboring sub-scenes
which are caused due to the sub-division. We sample ¢ area more into the adjacent sub-scene and
include the sample points falling into that J region into the training set of the sub-scenes MLP. This

ensures smooth learning of transfer vectors and avoids seam artifacts.

4.2 Validation & Results

In this section, we validate and show the results of our learnt representation ( Sec. 4.1.1) implemented
in GLSL and CUDA (Sect. Sec. 4.1.4). Our network is trained for each scene and we generate training
data as outlined in Sec. 4.1.2. We compare our renderings with baseline PRT, which uses texture-based

storage of transfer [10, 34] with the triple product formulation [39]. We use the texture version as the

37



Diffuse FPS: 180
Glossy FPS: 75.2

Figure 4.6: Large Scene: The Figure on the fop-left shows the top-view of SPONZA Cathedral divided
into 12 even parts. We use the heuristic presented in Sec. 4.1.5 to join the few sub-scene to reduce
the number of networks required to regress the Transfer. The clubbed geometries are visualized in the
bottom-left image where the components of the middle section are joined with their respective neighbors.
Please observe that both top-left and bottom-left images are color-coded, each unique colors represent a
sub-scene. We utilize the bottom-left configuration of the sub-scene which only requires 9 small MLPs
rather than 12 as in the case of rop-left. We visualized the resulting render in the right. It is to be noted
that we have used White light to show the transfer regressed from the network is independent of the
Lighting and material of the object and can be swapped with ease as depicted in Fig.(Fig. 4.9,Fig. 4.1).

FPS of respective materials are mentioned in Figure.
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baseline since it produces artifact-free renderings in most cases and avoids the memory overhead of
vertex-based approaches for dense meshes. The baseline implementation stores transfer in a 1024 x
1024 texture with optional texture-sets for large meshes. In Sec. 4.2.1, we validate our renderings of
triangle meshes by qualitative and quantitative comparison with baseline PRT. In Sec. 4.2.2, we show
results on scenes with SDF as the geometric representation. This is possible since our network learns
a continuous representation of transfer and can predict it for any point in the scene. We show results
on both analytical and neural SDFs. Lastly in Sec. 4.2.3, we compare and contrast our GLSL and
CUDA implementations and discuss their framerates for different network sizes. All scenes are rendered
using our GLSL implementation (unless otherwise specified) on an NVIDIA RTX 3090 GPU and at a
resolution of 1024 x 1024.

4.2.1 Validation on triangle meshes

We validate our results on four scenes with triangle meshes: TEASET , PLANTS , ROZA , & DINING-
TABLE . Additionally, we also show results on a large scene leveraging the strategy presented in
Sec. 4.1.5 and Fig. 4.6 shows rendered results. These scenes contain high-frequency changes in vis-
ibility, for example in the hair of ROZA and shadows due to leaves in PLANTS . And our network
is able to regress the SH vectors of transfer with ease. We render our results with diffuse and glossy
materials using two different sizes of the network: £k = 64,1 = 4 and k = 128,] = 4 and compare
them with baseline PRT. Rendering results are shown in Fig. 4.8 and quantitative metrics (MAE, PSNR,
SSIM) along with frame times (FPS) are shown in Tab. 4.1. The quantitative metrics are calculated
by comparing our rendering with baseline PRT as a reference. Our rendering results closely match the
baseline and achieve high PSNR and SSIM values, which validates our method. We further compare
our rendering of the diffuse ROZA scene with baseline PRT in Fig. 4.7. Our method is able to reproduce
fine soft shadows which further strengthens our validation. As shown in Tab. 4.1, the k = 64,1 = 4
network comfortably achieves real-time FPS for both diffuse and glossy materials. A larger network

(k = 128,1 = 4) achieves better rendering quality and metrics albeit at a drop in FPS.

4.2.2 Results on SDF

We now present our rendering results on scenes with SDF geometry. As stated earlier, implicit
representations like SDFs do not have an inherent storage schema like the Mesh, which makes it very
hard to store transfer vectors, hence we utilize the MLPs we trained to regress transfer. Rendering is
done using the GLSL implementation (Sec. 4.1.4.1). We sphere trace the SDF and obtain transfer at the
intersection point using our network. Since sphere tracing needs to be done for all fragments, the scene
geometry is set to two triangles that cover the entire image. We show results on four analytic SDFs,
MIKE-MONSTER , RABBIT from [12,43] and OLD-CAR , FISH from [56]. We also show results with
one Neural SDF, STANFORD-BUNNY using the method of [8].
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(Ours)

(Ours)
Baseline k=64, 1=4 k=128, 1=4

Lighting 1

Figure 4.7: Diffuse Mesh Results: Since our learned function is only accounting for transfer we can
dynamically change the light on the fly without retraining the network. We show results of ROZA with
two different lightings while using the same set of learned weights. Our approach plausibly renders soft

shadows, especially in high-frequency visibility changes in the hair.

40



RozA PLANTS TEASET

DINING

Figure 4.8: We show the results of our approach and compare them with the baseline (left), which is
a texture-based transfer storage implementation of PRT. Our results are rendered with k = 64,1 = 4
network (middle) and & = 128,] = 4 network (right). Insets are provided at the right-extreme, where
we can observe that £ = 64,1 = 4 network produces plausible results albeit with a few jaded lines in
the case of PLANTS and DINING-TABLE , while &k = 128, = 4 network gets rid of those artifacts and
matches the baseline. We note that k¥ = 64,1 = 4 network comfortably achieves real-time FPS while

k = 128,10 = 4 has a lower FPS (Tab. 4.1). Please inspect insets closely
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Diffuse

k=64, 1=4 k=128, =4
MAE | PSNR | SSIM FPS MAE | PSNR | SSIM | FPS
TEASET 0.00074 | 49.227 | 0.99708 | 350.5 | 0.00055 | 51.050 | 0.99757 | 35.1
PLANTS 0.00109 | 44.450 | 0.99399 | 201.2 | 0.00076 | 46.290 | 0.99573 | 20.5
Roza 0.00123 | 44.068 | 0.99462 | 330.2 | 0.00080 | 48.261 | 0.99658 | 38.1
DINING-TABLE | 0.00168 | 41.917 | 0.99066 | 300.0 | 0.00106 | 43.494 | 0.99280 | 40.1

Scene

Glossy
k=64, [=4 k=128, |=4

Scene
MAE PSNR SSIM FPS MAE PSNR SSIM | FPS
TEASET 0.00133 | 45.752 | 0.99356 | 105.5 | 0.00102 | 48.129 | 0.99504 | 25.1
PLANTS 0.00319 | 35.701 | 0.98237 | 64.5 | 0.00250 | 36.614 | 0.98661 | 12.2
RozA 0.00122 | 42.449 | 0.99701 | 120.5 | 0.00083 | 46.768 | 0.99817 | 31.1
DINING-TABLE | 0.00411 | 32.638 | 0.97393 | 130.1 | 0.00312 | 33.414 | 0.97886 | 32.1

Table 4.1: This table shows comparison among two different network sizes used to learn the transfer
function. The quantitative metrics (MAE, PSNR & SSIM) are calculated by comparing our rendering
with baseline PRT as reference, which is a texture storage implementation of PRT. These metrics av-
eraged amongst 30 uniformly sampled views in a trajectory for both DIFFUSE and GLOSSY material
configurations. We also show the FPS obtained for respective network sizes. Our approach renders in

real-time for both diffuse and glossy configurations.
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FPS
Scene k=64, =4 k=128, =4

Diffuse | Glossy | Diffuse | Glossy

OLD-CAR 254.96 | 207.28 73.2 38.8
MIKE-MONSTER | 294.28 | 173.6 61.0 24.2
FisH 320.1 231.6 77.1 50.1
RABBIT 310.21 | 205.94 | 73.2 37.9

Table 4.2: Performance on diffuse and glossy renders of analytic SDFs. Our approach can render SDFs

within the PRT framework in real-time.

Transfer k=64, =4 k=128, =4
Surface Diffuse | Glossy | Diffuse | Glossy
k=32, 1=2 320 200 77 20.1
k=64, 1=2 50 25 26.5 15.2

Table 4.3: FPS on the STANFORD-BUNNY Neural SDF (Fig. 4.10).

Renderings with glossy materials using our method are shown in Fig. 4.9. We render these scenes
with two different environment lighting. All highlights from the environment map are reproduced on
the glossy surface accurately. For instance, the yellowish ground in the environment map reflects at the
bottom of the SDF and the bluish sky reflects at the top. We also show renderings of one diffuse and
three glossy results with increasing Phong exponents on the OLD-CAR SDF in Fig. 4.1. All scenes pro-
duce real-time FPS while producing plausible glossy highlights and soft shadows as shown in Tab. 4.2,
Fig. 4.9, Tab. 4.2. The FPS for SDFs behaves similarly to triangle meshes, in that the k = 64, = 4
network comfortably achieves real-time FPS while the k¥ = 128,1 = 4 network has a lower FPS.

Finally, we show our rendering of the STANFORD-BUNNY scene, which is defined as a Neural SDF
as a proof of concept. We use the SDF optimized by [8]. The result is shown in Fig. 4.10 for diffuse and
glossy material and two different lighting conditions. We also show the FPS in Tab. 4.3 for two different
SDF networks sizes (vertical) and two different sizes of our network (horizontal). The renderings are
plausible and achieve real-time framerates for smaller network sizes while maintaining interactivity for
larger network sizes. The FPS could be further improved by optimizing the tracing of SDFs [57], a
research direction orthogonal to ours.
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LIGHTING 1 LIGHTING 2

FisH

MIKE-MONSTER

(d)

RABBIT

(e) ®

Figure 4.9: SDF Results: With the use of learnt transfer approach we extended PRT onto SDF where UV
mapping or vertex storage is not defined. The learnt function approximates the transfer well. Results

are shown on three SDFs: MIKE-MONSTER , FISH, RABBIT with two different lighting environments.
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Lighting 1 Lighting 2

2266

Figure 4.10: We show renderings of the STANFORD-BUNNY neural SDF learnt using two network
architectures. We show diffuse and glossy renderings of the neural SDF by evaluating our learnt transfer
on the surface. Note that the geometric representation of STANFORD-BUNNY is obtained from the [8]

and we only contribute learnt transfer to it.

4.2.3 GLSL & CUDA: Comparison

We compare and contrast the GLSL and CUDA implementations of our learnt representation. As
mentioned before, the GLSL implementation limits the network size to the available local shader mem-
ory. On the other hand, CUDA allows the network to be as large as the entire GPU memory. We
experimented with four different network sizes for both implementations: £ = 64, k = 128, k = 256 &
k = 512 with [ = 4. The FPS for these configurations on the PLANTS scene are listed in Tab. 4.4. The
GLSL implementation outperforms for £ = 64 network, while the performance drops on higher sizes.
It can be observed that CUDA starts to take the lead from k& = 128 network. In fact, for £ = 256 and
above, GLSL implementation fails to render. Although the performance of the CUDA implementation

drops for higher network sizes, it is still able to load and render the scene interactively.

Implementation | kK =64 | k=128 | k=256 | k =512

GLSL 64.4 12.2 N/A N/A

CUDA 55.1 29.1 20.7 8.0

Table 4.4: CUDA vs GLSL: Table contains the Performance in FPS of the GLSL and CUDA imple-
mentation with various MLP architectures ranging from k € (64,512),] = 4 tested on PLANTS scene
with a glossy material. The GLSL implementation outperforms the CUDA implementation for k£ = 64,
but degrades at larger network sizes or fails to render (k = 256, k = 512). The CUDA implementation
renders in all cases and is real-time for £ = 64 while maintaining interactivity for other cases. Please

note we use the same number of layers(! = 4) in all the architectures presented in the table
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4.2.4 Memory requirements

Thanks to our simple network structure, the entire transfer of a scene can be represented as a set
of weights. In vertex-based storage of transfer as in Sloan et al. , the memory requirement has a one-
to-one correspondence with the mesh tessellation. With texture-based storage, this correspondence is
reduced, with the caveat of needing a good UV-mapping or possibly a large texture. With our method,
this correspondence is further reduced as the entire transfer is now just a set of weights. For example, a
mesh with 1M/ vertices requires ~ 70MB data stored on vertices, while our method only needs around
64KB - 5MB. On the other-hand grid-based storage requires 256MB of data for a grid resolution of
512°.

4.2.5 Visualization of regressed transfer

As discussed earlier our representation learns a faithful mapping of surface to transfer values. Since
transfer (7”) is a cosine weighted visibility, which is a spherical function, we can project it back to
the spherical canvas. We visualize the ground truth transfer calculated using ray-tracing V's the one

regressed by our MLP in Fig. 4.11

Actual Transfer Regressed Transfer

Figure 4.11: In this figure we visualize the transfer by back projecting it into the spherical space for
both ground truth calculated via TexturedPRT and one which is regressed using the small MLP. It can be
seen clearly that for both points as visualized in (left) Roza the regressed transfer is faithfully matching

with the ground truth transfer of TexturedPRT.



4.3 Additional Results and Ablations

4.3.1 Additional Mesh Results

In this section, we show more results specifically on another large scene. For this, we chose a
L1vING-ROOM with a sofa, floor, and three shelves. The scene can be divided based on bounding
boxes as shown in Fig. 4.14(a) or semantically as shown in Fig. 4.14(b). Either way, we can assign
each color-coded sub-scene a different MLP to learn and regress transfer. As we have chosen to use the
bounding box method earlier, we want to demonstrate the semantic sub-division of the scene here. Each
sub-part Sofa, right-shelves, flooring and front and top shelves are sampled using the method presented
in Sec. 4.3.1. The so-obtained renders are demonstrated in Fig. 4.15. We show results of the same view
with two different lighting conditions while keeping the albedo constant. Respective FPS and Lighting
conditions are represented as insets in Fig. 4.15. Please feel free to zoom in and verify the shadowing

and lighting details.

Fully Diffuse Partly Diffuse

Lighting

Figure 4.12: The left shows a fully diffuse scene, while the right shows partly diffuse with all the
shelves: front, side, and top being glossy. Both are lit using purple lighting as shown in the inset. Please

observe the inset which demonstrates shadow effects being faithfully reproduced.

Apart from changing the material of the entire scene, we can also partly change the material of the
object. In Fig. 4.12 left we show a fully diffuse scene. On the right, all shelves: front, side, and top are
made glossy while keeping the floor and sofa still diffuse.
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Figure 4.13: In the left we show results of MLP without positional encoded inputs. On the right, we
show the results of positional encoded inputs. Observe the highlighted regions where the visibility
changes are not properly captured in the case of inputs with no positional encoding. While the ones
with positional encoding produced the results faithfully. Please note that we explicitly disabled albedo

so that shadows can be clearly observed

(a) (b)

Figure 4.14: Sub division: As we have geometry at hand we can sub-divide the scene semantically or

using a bounding box. (a) shows a bounding box-based division, while (b) shows semantic division.
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Diffuse FPS: 240
Glossy FPS: 80.2

Figure 4.15: The figure shows the large scene LIVING-ROOM scene with two different lighting con-
ditions. Please observe the insets, which accurately produce ray-tracing effects of direct illumination.
The FPS numbers are mentioned below the figure. Please note that lighting change does not cause FPS
drops. The drop is due to the glossy renders requiring a Triple Production evaluation as discussed in

Sec. 2.2
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4.3.2 Choice of Loss function And Effect of Positional Encoding

Loss Function We have experimented with different losses including Ly and projection loss.

Lo Loss: The L2 loss was not able to capture the minute differences in the SH-vectors leading to

missing shadows.

Projection Loss: In the case of projection loss, we projected the SH-vectors into Spherical Canvas
and tried taking Lo loss on ground-truth vs regressed transfer. This was smoothing out the transfer
vectors due to the fact that projection was limited to the resolution of the canvas. The higher resolution
of Canvas leads to an OOM(Out Of Memory). Hence, chose to go with L; loss.

Architecture and Positional Encoding: Since we aim to obtain real-time FPS while producing plau-
sible renders we need to limit the number of neurons per layer (k), ensuring forward the evaluation is
faster. Hence we have experimented with & = 64,128,256 and found that £ > 128 fails to maintain
real-time FPS. The Tab. 4.4 shows this behavior. When experimenting without Positional Encoding [35].
We have observed artifacts in cases where transfer varies sufficiently over the surfaces. The visual de-
scription is in Fig. 4.13.

4.4 Discussion & conclusion

In this paper, we presented a learnt representation of transfer through small MLPs in traditional PRT
frameworks. Our main motivation was to alleviate the dependence of transfer storage in PRT on geom-
etry representations. We ensured that our network learns a continuous representation of the transfer in a
scene by densely and equally distributing training samples over the surface. We provided a strategy to
handle large-scenes in Sec. 4.1.5 and Fig. 4.6 while maintaining real-time frame-rates. We demonstrated
two implementations of our learnt representation: GLSL and CUDA. We analyzed both implementa-
tions and discussed their merits and drawbacks. We further demonstrated that both implementations
achieve real-time FPS on meshes as well as SDFs. SDF rendering which we demonstrated with our
approach was not easily possible within the PRT framework. Utilizing our approach the works [63, 64]
can incorporate SDF geometries into their scenes.

One interesting challenge would be to empirically determine the optimal size of the network for a
given complex scene, we would like to work on it in the future. We would also like to study the benefit of
representing other surface properties, like specularity and albedo with our proposed approach. Finally,
we would like to investigate the incorporation of inter-reflections with our approach, without baking in

BRDF as done in [53], for real-time global illumination with PRT with flexible surface representations.
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Chapter 5

Conclusions and Future Work

In this thesis, we have explored the technique of Precomputed Radiance Transfer (PRT) for various
geometric representations while maintaining real-time framerates. Through the thesis, we first explained
prior work on 1) how the rendering equation is disentangled under certain assumptions into various
components like Lighting and Visibility, 2) how they are computed, and 3) clubbed together to obtain
final radiance, followed by the design choices we make and additional functionalities we add to the
existing works.

We first discussed the necessity of smooth sampling of the Transfer function for an artifact-free
representation. Unlike prior art which stores Transfer at vertex locations, leading to unnecessary tessel-
lation, the work of Chapter 3 presents an idea of storing Transfer at UV-mapped locations. Additionally,
along with the storage of Transfer accounting for cosine weighted Visibility, the work also provides a
way to store the Irradiance maps of the 1-bounce reflections efficiently in the UV space extending the
Triple Product Formulation [39]. The method produces real-time rendering framerates of about 70FPS
on commodity hardware at 1Kx 1K resolution.

When handling different storage spaces for Transfer we have observed the Transfer function takes the
assumption that an inherent storage schema is always present in the underlying geometric representation
namely Mesh vertices, UV maps, etc. More specifically, the UV mapping needs to be area-preserving
and meshing needs to be dense to achieve artifact-free renders. These schemas are not present in Im-
plicit Surfaces like SDFs, hence to extend the PRT framework to arbitrary geometric representations
we present an idea of learning small MLP which can regress spatially varying Transfer signals based
on the surface properties like position and gradient (normals). To maintain the desirable feature of
PRT which is “rendering at real-time framerates”, we provide two methodologies based on GLSL and
CUDA pipelines operating over a multi-pass OpenGL framework.

In the future, our method can be utilized to extend works like Polygonal SH [63, 64] for accommo-
dating SDFs into their framework. But with the advent of works like Instant-NGP and NRC [36, 37],
Montecarlo-based rendering techniques are garnering more interest than analytical approximations to
the Rendering Equation, nevertheless, most older systems still use SH-based rendering where this work

can still be incorporated.
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