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Abstract

Neural Radiance Fields (NeRFs) have emerged as a pivotal advancement in computer graphics and
vision. They provide a framework for rendering highly detailed novel view images from sparse multi-
view input data. NeRFs use a continuous function to represent scenes that can be estimated using neural
networks. This approach enables the generation of photorealistic images for static scenes.

Outside the domain of image synthesis, NeRFs have been widely adopted as a representation of
several downstream including but not limited to scene understanding, augemented reality, scene nav-
igation, segmentation, and 3D asset generation. In this thesis, we explore upon the segmentation and
editing capabilities in radiance fields.

We propose a fast style transfer method that leverages multi-view consistent generation of stylized
priors to change the appearance vectors in a Tensorial Radiance Field. Our method promises a speed-up
of several orders of magnitude in applying style transfer and adheres to the colorscheme from the style
image better than previous works.

Next, we tackle the task of segmentation in radiance fields. Our method uses a grid-based feature
field which allows extremely fast feature querying and searching. Combined with our stroke-based seg-
mentation, this allws the user to interactively segment objects in a captured radiance field. We improve
the state-of-the-art in terms of segmentation quality by a huge margin and in terms of segmentation
time by orders of magnitude. Our method enables basic editing capabilities like translation, appearance
editing, removal, and composition for which we show preliminary results.

We further explore the problem of composition of radiance fields. Composition of two radiance
fields using ray marching requires twice the amount of memory and compute. We use distillation to
fuse multiple radiance fields into one to circumvent this problem. Our distillation process is roughly
thrice as fast as re-training and produces a unified representation for radiance fields.
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Chapter 1

Introduction

1.1 Rendering

In 3D computer graphics, the world is often represented as a 3D scene using one of many 3D rep-
resentations. This 3D scene is then rendered onto an 2D image using a virtual camera; the process is
termed rendering. Traditionally, the contents of the scene are known and hand-crafted by artist. This
realistic hand-modelling combined with physically accurate light transport results in photorealistic ren-
derings. However, this process is difficult and tedious for the artist and may require hours to days of
work depending upon the complexity of the 3D object being designed.

1.2 Novel View Synthesis and Image Based Rendering

However, photorealism is abundantly present in real-world photographs. Researchers have explored
the problem of novel view synthesis i.e. capturing images of a real-world scene and rendering the scene
from new views. This can allow photorealism and avoid the tedious hand-crafting required to model the
scenes. Another major advantage of these approaches is that the cost of rendering an image is indepen-
dent of the complexity of the scene. The originally proposed light-field rendering [15,27] methods take
densely captured images and interpolates them to take a reconstruct a slice of the underlying light-field.
However, for a faithful reconstruction, the sampled images have to be significantly dense. Additionally,
the lack of a proxy geometry creates two problems:

• The novel views must lie outside the convex hull of the underlying scene geometry [27].

• The underlying scene cannot be edited or manipulated easily due to a complete implicit represen-
tation.

Recent novel-view synthesis methods like NeRF [33] utilize radiance fields which estimate geometry
close to the surface. In this thesis, we focus and use such methods and introduce editing capabilities to
newer representations like NeRF and it’s follow-up works.
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1.3 3D Representations in the Era of Machine Learning

Choosing the correct 3D representation is an important and at times a difficult task depending upon
the application. It is often observed in computer graphics, computer vision, robotics and medical imag-
ing. For inverse problems (like 3D reconstruction), things get even more difficult since the choice
determines how well the inverse problem is solved.

For the purpose of 3D reconstruction, point clouds have been the go-to choice [41] which are later
refined, and converted into a different representation (like a mesh) for the required application.

3D representations can broadly be divided into two categories: (i) implicit representations: the form
of representation where the geometry in not known directly but satisfies some relationship, (ii) explicit
representations: the form of representation where the geometry is directly known (often unprocessed or
processed samples).

Explicit representations involve points, voxels, meshes, etc. They are a great choice for applications
that requires fast processing since processing of such representations can be parallelized. However, a
major drawback is the discretization in the represenation. Opposed to this, implicit represenations like
SDFs and UDFs are continuous. They may or may not be fast to evaluate depending upon the operation.
An important advantage of implicit representations are that they are often mathematical functions and
neural networks being universal approximatoin functions can fit them. This unlocks a great potential
of using them as a proxy for learning 3D shapes. Explicit representations can also be obtained through
differentiable optimization. Similarly, a set of features can be regressed in a pre-determined voxel
lattice. Meshes on the other hand are extremely difficult to directly obtain through learning-based
methods due to their complex connectivity. Recent developments show that hybrid representations like
voxel grid + MLP or point cloud + mlp provide great trade-offs between implicit and explicit shape
representations [52].

1.4 Radiance Fields

A Radiance Field maps the radiance present in a 3D scene as view-dependent color values, approx-
imated using RGB. Formally, for a given 3D point x ∈ R3 and a view-direction described using polar
angles d ∈ S2, a radiance field maps it F maps it to an RGB vector c ∈ R3 s.t. 0 ≤ ci ≤ 1:

F (x, d) : R3 × S2 → R3

A radiance field represents the light being transmitted at any point in any direction in a scene. There-
fore, it can be used to capture the appearance of objects in a given scene at a given moment in time.
Therefore, they are a good choice for solving the inverse problem of reconstruction of appearance of 3D
objects.

2



1.4.1 Volumetric Density

We have been successful in modeling the appearance of objects using a radiance field. However, we
have not modelled the geometry yet. Radiance fields are coupled with volumetric density to represent
the entire scene. The volumetric density is a function that takes in the 3D location x ∈ R3 and outputs
a density value σ ∈ [0, 1].

Intutively, the density at a point represents the amount of opaque content present at a position. 0

represents completely transparency i.e. light completely passes through while 1 represents complete
opaqueness i.e. no light passes through. Another intution is that the density at a location represents the
probability of a ray terminating at that location.

It is important to note that this property, unlike radiance/colour, does not depend on the direction of
viewing the 3D point.

1.4.2 Volumetric Rendering Equation

Given a camera ray r(t) = o+ td, with near and far bounds to be tn and tf respectively, the expected
color of the ray C(r) is given by:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
Firstly, the function T (t) denotes the accumulated transmittance along the ray from tn to t. Intutively,

it is the probability that during it’s travel from tn to t, the ray has not terminated. A higher transmittance
means that the ray has not terminated while a lower transmittance means that the ray has terminated.

The product of transmittance T (t) and volumetric density σ(t) at a point indicates the contribution
of that point in the final color of the ray. Hence, the final colour can be determined by the integrating
the color-contributions along the ray where the color-contribution is simply the contribution of the point
multiplied by the color of the point.

The continuous integral is converted to a discrete estimation using numerical quadrature:

Ĉ(r) =

N∑
i=1

Ti(1− exp(σiδi))ci where Ti = exp

− i−1∑
j=1

σjδj


This function that calculates Ĉ(r) from sampled set of (ci, σi) also reduces to the traditional α-

compositing formula upon substituting α = 1− exp(−σiδi).
As mentioned briefly previously, this equation can be used to render a camera ray. To render an

entire image, multiple such camera rays can be shot to render an entire array of pixels.

The beautiful thing about this formulation is that it is differentiable enabling us to calculate gradients
and perform gradient descent to learn the radiance field along with a volumetric density field. NeRF, as
the name suggests, uses a neural network (an MLP to be more specific) to represent these fields. The
weights of the MLP are learnt using gradient descent. For further details, please refer to Chapter 2.

3
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Figure 1.1: NeRF: NeRF uses a neural network to estimate the volumetric density and the view-
directional radiance for a given co-ordinate and view-direction. It blends these values according to
the volumetric rendering equation. The photometric loss is calculated between the rendered images and
the ground truth to calculate the gradients for back-propagation. (Figure taken from NeRF [33])

1.5 Our contributions

We first explore editing Neural Radiance Fields through style transfer. Existing style transfer meth-
ods firstly rely on the original method of Neural Radiance Fields. Moreover, they attempt changing style
codes directly in the latent space or rely on repeated optimization from inconsistent images. We realize
another method that relies on multi-view consistent generation of stylized priors which can assist in
rapid adaption of style to an already trained radiance field. Our work shows speed-up in style adaption
by several orders of magnitude attributed to both grid-based representation of NeRFs and our stylization
strategy. With our method, the resultant stylized radiance field adheres better to the colorscheme pro-
vided by the reference style image. Our work shows short-term and long-term view consistency similar
to previous methods.

We next explore fast, interactive and accurate segmentation in the domain of grid-based radiance
fields. There has been previous work in object based selection/segmentation in the space of radiance
fields. However, there have been several drawbacks to them which we address. Although previous
works allow patch-based or stroke-based selection of objects in radiance fields, they are non-interactive
and excruciatingly slow. Moreover, the segmentation produced by them is not accurate. Our method of
segmentation is more accurate and orders of magnitude faster than the previous approaches. It allows
users to select and remove objects in the scene iteratively and hence it is truly interactive. Furthermore,
we showcase how segmentation is an important step which enables editing operations for individual
objects.

Finally, we tackle the problem of fusing multiple radiance fields. Many works in the NeRF space
show preliminary results of composition. We observe that to render to radiance fields simultaneously,
all the methods require twice the amount of storage and time. We propose to distill the information from
multiple radiance fields to a single one to circumvent this issue. This fused representation allows us to
render multiple composited radiance fields using the memory and time complexities of a single one.

Concretely, the contributions of this thesis are:

• A methodology to rapidly apply multi-view consistent style transfer on a pre-trained radiance
field, albeit already having a style network trained. (Chapter 3)

4



• A method to quickly and interactively segment grid-based radiance fields which can be used to
generate multi-view segmentation masks or editing in radiance fields. (Chapter 4)

• A distillation method to fuse multiple composed radiance fields into a single one improving stor-
age and runtime performance. (Chapter 5)

This thesis resulted in a full paper in ICVGIP 2022 [12], a full paper in CVPR 2023 [13] and a short
paper at XR-NeRF Workshop at CVPR 2023 [14].

In the next chapter, we explain the related work relevant to our contributions.

5



Chapter 2

Related Work

2.1 NeRF: Neural Radiance Fields

The formulation of radiance fields and the volumetric rendering equation described in Chapter 1 is
differentiable. Neural Radiance Fields (NeRF) [33] utilize a coordinate-based neural network to learn
the volumetric density and view-directional radiance. The input to the network is the coordinate of a 3D
point and the view-direction of the ray. The output of the network is the volumetric density and a view-
direction dependent color represented using a 3-dimensional vector RGB. The authors show that fully
connected deep networks are biased towards learning low frequencies which they mitigate by applying
positional encoding: mapping the inputs co-ordinates and view-directions to their sinusoids at multiple
frequency levels. Positional encoding [45] “lifts the inputs to a higher dimensional space” making it
easier for the neural network to learn high frequency information across space.

NeRF showed state-of-the-art results for novel view synthesis but due to an MLP being evaluated
hundreds of times per pixel, training and inference is excruciatingly slow.

2.2 Grid-Based Radiance Fields

Due to an 8-layer neural network being queried hundreds of times to render every pixel in an image,
NeRFs [33] take close to 24 hours to train on a small scale scene. Due to the same reasons, at inference
time, it takes several seconds to render as single image.

To tackle this, there has been a shift towards grid-based or hybrid radiance fields that use a lat-
tice structure to store local features which can be interpreted by a function (or MLP) to get radiance.
DVGO [42, 43] employ a 3D voxel grid for feature storage which is followed by a small MLP. For a
point x, the features in the nearby 8 voxel vertices are tri-linearly interpolated. These features are con-
catenated with the view-direction of the ray and passed through the MLP to obtain color that can change
with a change in view-direction. Plenoxels [10] follows a similar grid-based approach. However, they
store the coefficients for Spherical Harmonics in the grid which are decoded using the SH function of a
chosen degree. It is observed that the SH-based representation is not as faithful as MLP is representing
high-frequency specular information.

6



Figure 2.1: TensoRF: Tensorial Radiance Fields (TensoRF) represent the 3D scene as decomposed
tensors (VM decomposition). The decomposed/projected features undergo outer product to obtain the
feature at a 3D coordinate which is decoded by an MLP and rendered using the volumetric rendering
equation. We use TensoRF extensively in our works. (Figure taken from TensoRF [6])

Grid-based radiance fields significantly speed up the training and inference time. Training takes
around 15 minutes while rendering an image takes around a second. The reason for this massive speed-
up is that now only a few parameters are optimized per sample on the ray compared to an entire 8-layer
neural network in NeRF. Grids, being spatial, offer faster look-ups. However, they are bulky and require
close to 1GB of storage for a good resolution.

An important work that tackles this problem is TensoRF [6]. They propose a low-rank approxima-
tion of the 3D grid through tensor decomposition. The feature vector at a 3D point can be calculated by
taking the tensor product / outer product of a 1D-vector and a 2D-matrix. Since, this process is differ-
entiable, the vector and matrix (VM decomposition) can be optimized through gradient descent. This
new representation takes the same training time and inference time as other grid-based radiance fields
but reduces the memory requirement from O(N3) to O(N2) for N3 voxel resolution.

Until recently, the hash-grid representation proposed by Instant-NGP [34] offered the fastest im-
plementation of radiance fields by leveraging a learnable hash-grid, an extremely fast on-chip neural
network, and a complete CUDA implementation.

In our works, we extensively used grid-based radiance fields: DVGO [42, 43] and TensoRF [6] to
represent volumetric density, color and semantic features.

2.3 Feature Fields

Radiance fields are being rapidly adopted for several downstream applications. This is due to their
capability of learning large-scale scenes from sparse views and produce excellent novel views for static
scenes. Researchers are exploring an important branch: learning other features alongside the view-
dependent colors.
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SemanticNeRF [55] explores incorporating semantic segmentation logits alongside appearance and
geometry in an MLP-based radiance field. They show its advantages in novel semantic view synthesis,
label denoising, and label interpolation.

Works like N3F [48] and DFF [24] distill semantic features from general purpose feature predictors
like DINO [5] and LSeg [28]. They show that distilling these 2D features from multiple-views into 3D
produces a more powerful feature-rich 3D representation. They show that these distilled features can
be used to select and carve-out objects in 3D by user’s choice. DFF and LeRF [22] show that language
features can be embedded into radiance fields leading to text-based selection and editing.

In our works, we use similar ideas and distill semantic features like DINO [5] from multiple views
into grid-based radiance fields. Like N3F [48], we observe an big jump in the quality of features after
distillation. Alongside distilled featuers, we leverage the 3D spatiality coming from grids to improve
the segmentation and editing capabilities in radiance fields.

2.4 Appearance Editing in Radiance Fields

A simple, although less controllable, form of editing is global appearance editing of the entire scene.
Global appearance editing is a good approach to test the editing possiblities in a 3D representation. We
explore style transfer as a form of global editing in the representation of radiance fields.

Stylizing images has been a well-studied problem in the vision community. The method proposed
by Gatys et al. [11] optimizes white noise to match the content of one image while transferring the style
from the other. Johnson et al. [20] proposed to use simple feed-forward architecture, which produces
stylized content in real-time. While being quick at producing results, they require a separate neural
network for each style. These works provide a strong basis for stylizing 2D content.

Recently, style transfer has been extended to Neural Radiance Fields. Some work [7] use a hyper-
network [16] trained on the style to predict the weights of the appearance MLP. StylizedNeRF [19]
appraoches this problem by mutually optimizing 2D-3D consistency but suffer from inaccurate style
transfer. SNeRF [35] devises a new iterative re-training strategy. Theses methods and especially SNeRF
suffer from a very high training cost.

We take inspiration from SNeRF and train a radiance field representation on stylized images them-
selves. We realize the limitations in their approach and propose solutions that enable faster and accurate
adaptation of style as described in Chapter 3.

2.5 Structural Editing and Segmenting Radiance Fields

Since its initial release, the popularity of radiance fields has only risen. Radiance fields are getting
better on two ends simultaneously: (i) improving in quality [2, 3], (ii) improving in speed [10, 21, 34].

Naturally, researchers are investigating methods to manipulate and edit an already captured radiance
fields in a more controllable fashion compared to Sec. 2.4. Seamless editing can enable us to capture and
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augment real world scenes and visualize them in real-time. Improvements in quality further improves
photo-realism.

In our works, we show preliminary results in editing and manipulating already captured radiance
fields under some constraints. Our work acts as a proof-of-concept of editing of neural radiance fields
and ideas from it can be taken and applied to achieve the ultimate goal of seamless editing.

Style transfer is a good proxy to test global appearance editing in radiance fields. It can help in
realizing multiple problems that can pop-up in editing attempt on neural radiance fields: multi-view
consistency in appearance, manipulation of existing radiance, changes in geometry and how to decouple
changes in geometry and appearance, etc. Style transfer has been explored in NeRFs since it’s advent
[19,35]. In our work StyleTRF [12], we explore the choices previous works made for style transfer and
offer better subtitutes. As a result, we obtain style transfer which can be obtained orders of magnitude
faster.

Object selection/segmentation from an already learnt radiance fields is an extremely challenging
and important task. Due the novel view synthesis capabilities of radiance fields, segmenting them
can provide masks from unseen views. Moreover, 3D segmentation in this representation can enable
localizing objects which makes manipulating them for editing a much easier task since it restricts the
control to the desired object. Initial methods like Semantic NeRF [55] tried directly regressing semantic
labels in the novel views from sparse priors. A few leveraged deep image features like DINO [5] and
LSeg [28] to attribute semantics to the 3D scene points. N3F [48] and DFF [24] demonstrate object-
specific segmentation using deep semantics. Though these methods support segmentation, interactive
content addition and removal are not supported by them, as the underlying scene representation is an
implicit neural function that prohibits easy alterations and extensions into other application scenarios.
NVOS [38] follows a 3D variant of GrabCut using the positive and negative strokes for segmentation of
scenes represented as RFs and MPI [49] but struggles to produce faithful segmentation while incurring
significant performance overhead.

In our work ISRF [13], we use a 2D-3D distillation-based approach similar to N3F and DFF, but fo-
cus on fine-grained interactive segmentation. We build upon the proven methods like semantic features,
nearest neighbor matching, and voxel carving techniques [17, 25] by extending them to radiance fields.
We experimentally prove how such simple techniques combined with the appropriate scene representa-
tion can improve result quality and fine details while simultaneously being quite intuitive, interpretable,
and efficient (80× faster than NVOS).

2.6 Composition and Fusion of Radiance Fields

A simple composition using affine transformation has been attempted by works like D2NeRF [51]
where compact Neural-RFs were employed to obtain the desired composition. The desired composition
increases memory footprints and render times in proportion to the number of scenes involved. In the
case of explicit volumetric lattice, though the partial content retrieval is more accurate, the memory
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requirement grows rapidly, leading to infeasibility when more than a few scenes are being composited.
Hence, a fused representation of composition is desired owing to memory footprints and render times
as that of a single RF.

Works like PVD [9] provide methodologies for faster distillation of one RF to another in a supervised
setting. But the work is limited to a single RF representation. We draw ideas from this work and build
a FusedRF [14] representation that is compact and easy to render.
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Chapter 3

StyleTRF: Stylizing Tensorial Radiance Fields

Figure 3.1: Stylization: We show results of stylization using our technique presented in Sec. 3.1. We
stylize the PLAY-GROUND scene using two different styles mosaic and mudbath. Our Pipeline adapts
style in a nominal time of 40 sec on top of a pre-optimized TensoRF scene representation. Once the style
is adapted in accordance, stylized novel views can be generated with traditional volumetric rendering
techniques.

Stylized view generation of scenes captured casually using a camera has received much attention
recently. The geometry and appearance of the scene are typically captured as neural point sets or neural
radiance fields in the previous work. An image stylization method is used to stylize the captured appear-
ance by training its network jointly or iteratively with the structure capture network. The state-of-the-art
SNeRF [35] method trains the NeRF and stylization network in an alternating manner. These methods
have high training time and require joint optimization. In this work, we present StyleTRF, a compact,
quick-to-optimize strategy for stylized view generation using TensoRF [6]. The appearance part is fine-
tuned using sparse stylized priors of a few views rendered using the TensoRF representation for a few
iterations. Our method thus effectively decouples style-adaption from view capture and is much faster
than the previous methods. We show state-of-the-art results on several scenes used for this purpose.
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Figure 3.2: System overview: The pipeline diagram presents an overview of the strategy employed
by our work. We first optimize Tensorial Radiance Fields for representation of the scene as proposed
by [6]. Concurrently we optimize stylization module utilizing [20] method on COCO14-dataset [30].
The stylization module is then used to stylize a sparse set of novel views generated by the pre-optimized
TensoRF. These stylized views act as sparse style-priors and are used to fine-tune the appearance of
the previously optimized scene representation. It is to be noted that we freeze the density terms of the
TensoRF and only alter the appearance vectors which retains geometric while adapting the novel style.

3.1 Method

Given a set of posed images of a scene and a reference style image, our aim is to render stylized
novel views of the scene, which are consistent in appearance and geometry across different frames. We
achieve this by fine-tuning the appearance of a TensoRF [6] using stylized images.

3.1.1 Preprocessing Stylization Module

In our method, we use the stylization method presented by [20], which produces stylized content
in real time. The approach requires a per-style training of a CNN, for which it utilizes COCO2014
dataset [30]. The per-style optimization takes an approximate time of 20-minutes and at the inference,
it produces 30 images/sec. Since training per-style takes only 20 minutes, we can simultaneously train
multiple [20] models for each desirable style independently and infer based on the preference.

We choose [20] as our underlying stylization module over [11], unlike others [35] because it gives
stable stylization for two closeby viewpoints. In the case of [11], stylizing two closeby viewpoints that
share a large amount of image content usually results in drastically different stylization as shown in
Fig. 3.5. This is because the image developed using [11] start with white-noise and try to converge
the distribution of reference-style and content images. This results in unstable stylization across nearby
viewpoints as the optimization depends on various factors such as the learning rate, initialization, and
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type of optimizer. One of the reasons for the slow multi-iter stylization in SNeRF was to alleviate the
inconsistencies caused by [11] based stylization.

On the other hand, once [20] is trained, the output image is deterministic with respect to the input
image. Furthermore, two close-by camera viewpoints share a large amount of spatial information. Since
CNN’s are spatially invariant in the local region, our image transformation network gives fairly stable
stylization across closeby viewpoints Fig. 3.5.

Though [20] provide stable stylization across adjacent views, it is not temporally consistent. Hence
it is to be noted that, we do not rely on temporally-consistent stylization while only relying on the
nominally-stable stylization of nearby viewpoints. The per-style training of our Stylization Module is
depicted in Fig. 4.2.

3.1.2 Scene Representation using TensoRF

In order to generate a novel view, it is necessary to have a geometric representation and appearance
understanding. In order to address this issue, we use Radiance fields(L). The radiance fields [56] (L) is
given by:

L : R3 × S2 → R3 (3.1)

where R3 on the left is the scene’s world space; S2 is the sphere of directions about each point, and the
R3 on the right is radiance at the point. Radiance fields in a way encode geometry and radiance in their
mapped representation. Though there exist various recent adaptions of the mapping function presented
in Eq.(3.1) like NeRF [33], PlenOxel [10], we chose TensoRF [6] which is a compact, accurate, and
fast-to-optimize representation of Radiance Fields. We use a specifically VM-48 variant of TensoRF
which optimizes a scene within a timeframe of 15-20 minutes while maintaining a memory footprint of
10-15MB.

The TensoRF representation utilizes a Tensor decomposition known as VM-decomposition which in
itself is a special case of BT-decomposition. This reduces the voxel grid memory by order ofO(n). This
scene optimization can be done independently for every scene irrespective of style. In a later phase, we
alter the appearance to adapt to the reference style in a short period of 40-50 seconds.

Similar to TensoRF [6], we utilize L1 norm loss and total variation (TV) loss (Eq. 3.2) for regulariza-
tion. This helps our process to avoid getting stuck in local minima and prevents overfitting. For scenes
with less number of captured images, TV loss is a better choice to obtain good results. The equation for
TV loss is given by:

LTV =
1

N

∑(√
∆2Tσ + 0.1

√
∆2TC

)
(3.2)

Here, ∆2 is the squared difference between the neighboring values in our tensors, N is the total
number of parameters across our TensoRF representation T . Tσ represents the density value and TC
represent the appearance value in the TensoRF representation. They are weighted in the ratio of 10 : 1

respectively. More details about TV Loss can be found in the work by [6].
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3.1.3 Stylizing TensoRF representation

3.1.3.1 Novel View stylization

Upon optimizing the radiance fields which encode the geometry and radiance of the scene as dis-
cussed in the Sec.3.1.2, we render a sparse set of 20 − 30 novel views in a simple trajectory (spiral).
We stylize these novel renders using the pre-trained Stylization Module discussed in 3.1.1. Fig. 4.2
(top-right) shows the generation stylization of these renders utilizing the Stylization Module.

3.1.3.2 Stylizing Appearance of TensoRF

We utilize the sparse set of stylized novel views generated using the per-style optimized [20] module
and optimize the appearance vectors of the TensoRF. During the process of optimization, we ensure that
the density terms are frozen, and only the appearance is altered. We explicitly chose to freeze density
as we have observed that stylizing looks pleasing and free from artifacts when density is kept frozen.
This fine-tuning only takes a nominal time of downwards of 40 secs. Once the fine-tuning is done, we
obtain a geometric scene represented as Tensorial Radiance fields, which can be used to render stylized
novel views with consistent appearance across the viewpoints. The rendering of each image having a
resolution of 800 × 800 takes an approximate time of 4-5 seconds. Fig. 4.2 (bottom-right) shows the
appearance modification from a sparse set of inputs and novel view generation.

3.2 Implementation Details

3.2.1 Optimizing TensoRF

The training/optimization of radiance fields requires information of the camera poses from which an
image is captured. In the case of real scenes, we rely on COLMAP [40]to obtain this information and in
the case of synthetic scenes, we use the data obtained from Blender. We optimize TensoRF (VM-Split-
48) on the input images for 15k iterations. In each iteration, we shoot 4096 rays into the voxel grid. We
obtain the radiance using volumetric rendering (Eq. 3.3) and optimize the grid iteratively.

C =
Q∑

q=1

τq (1− exp (−σq∆q)) cq, τq = exp

− q−1∑
p=1

σp∆p

 (3.3)

We use Adam optimizer [23] which is initialized to a learning rate of 0.02 and is re-initialized to 0.02

after upsampling. The voxel grid is initialized with an effective resolution of 1283 and iteratively upsam-
pled every 1000 iterations, first upsampling starting 2000 until 5000 iterations are reached. We finally
reach an effective voxel-grid resolution of 6403 for real-world scenes and 3003 for synthetic scenes. It
is to be noted that the resolution mentioned here is effective but not exact, as the VM-decomposition
provided by TensoRF presents a compact representation of voxel grid. Similar to TensoRF, we bi-
linearly interpolate the matrix and linearly interpolate the vector in the VM decomposed representation
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(a) GT Unstylized (b) ReReVST (c) StylizedNeRF (d) StyleTRF (Ours)

Figure 3.3: Qualitative Comparison: [Row 1: santamaria, Row 2: udnie, Row 3: mediterranean]
Here we show the comparisons Un-stylized frame in column-(a), temporally consistent stylization of
ReReVST [50]in column-(b), StylizedNeRF [19] in column-(c) and stylization using our pipeline in
column-(d). It can be observed that due to the usage of combined neural representation density and ra-
diance, the style adaptation is affecting in the case of StylizedNeRF. Observe noisy geometric structures
in mediter applied onto FERN .

Figure 3.4: View Consistency Across Frames: The figure shows stylized novel views of a simple trajec-
tory. To keep it simple we named the frames in ti with increasing order of i from left to right. It can be
observed clearly that our stylization is multi-view consistent both in the case of STOVE and HORNS .
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(a) Gatys View 1 (b) Gatys View 2 (c) Johnson View 1 (d) Johnson View 2

Figure 3.5: Gatys vs Johnson Stylized Priors: The figures shows the output of the stylization modules
proposed by [11] and [20] on HORNS stylized based on udnie. [11] produces inconsistencies in the style
generated across near-by views which provide a poor prior to optimize appearance for our module. [20]
provides stable stylization across close-by views as seen in the figure.

during upsampling. This (bi-linear + linear) interpolation is similar to the tri-linear interpolation of the
full-voxel grid. We perform such interpolations with neighboring voxels during the evaluation of a ray
query. This enables us to obtain continuity in our rendered images. This pre-optimization phase requires
10-15 minutes. Once optimized it can be used to generate new views with various camera poses which
post-stylization act as priors to our fine-tuning phase.

3.2.2 Stylization

Independently, we train the stylization module [20] with the various reference style image on the
COCO-14 Dataset [30] which takes 20 minutes. We train multiple such [20] models for each desired
style as the time required to train is quite less. We use this to create stylized priors from the views
generated in the previous phase.

While optimizing for the style we freeze the density parameters in the TensoRF representation and
optimize only the appearance parameters for a small number of iterations(1k iterations) with the stylized
prior. This style adaption only takes a nominal time of 40-50 seconds. The style-adapted TensoRF
representation obtained in the previous step can be thus used to generate novel stylized views using
traditional voxel rendering techniques. The generation of each view takes around 4-5 seconds.

3.3 Experiments

In this section, we present the various experiments with the proposed StyleTRF. We conduct all the
experiments mentioned throughout the paper including the comparisons, on a workstation PC equipped
with an AMD Ryzen-5800x and an NVidia RTX-3090 GPU. In Sec. 3.3.1 we discuss the choice of
stylization module used to stylize the sparse prior used in our approach. We also experimentally compare
and contrast between temporal-stylization of smooth trajectories of ground truth 3D content vs Actual
3D-Stylization in Sec. 3.3.2. Finally, in Sec. 3.3.3 we show the effect of different optimization strategies
used to stylize the 3D content.
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3.3.1 Stylization Module

For stylizing the sparse prior required by our method we use [20]. The concurrent work SNeRF [35]
uses [11] method to iteratively stylize the radiance fields. We choose [20] over [11] because the latter
depends on several factors such as the initialization, learning rate, and the optimization method which
make it unreliable to obtain stable stylization across close-by views let alone temporal consistency. This
can be observed in Fig. 3.5. This is one of the reasons, [35] requires multiple epochs to reflect the style
in appearance.

On the other hand, [20] use a fixed CNN-based architecture to infer the stylized image. Due to
the spatial consistency of CNNs, two close-by views sharing significant spatial content lead to stable
stylized close-by views.

3.3.2 Video Stylization v/s 3D Stylization

It can be argued that instead of stylizing 3D content, one can generate novel views on a camera
trajectory and use temporally consistent stylization frameworks like ReReVST [50] to obtain stylized
novel views.

However, we have observed that though temporal stylization is maintained, the work of ReReVST
fails to fully capture the style information. The same can not be said for the stylization of 3D content.
In Fig. 4.3 it can be seen that both StylizedNeRF and our method capture better style compared to
ReReVST.

3.3.3 Optimization Strategies for Style Adaptation

For the stylization of Radiance fields we present three strategies:

1. S1: Optimizing a TensoRF from scratch directly using the stylized priors.

2. S2: Pre-optimizing a TensoRF on the original ground truth and adapting for style using sparse
stylized priors without freezing any parameters (both density and appearance).

3. S3: Pre-optimizing a TensoRF on the original ground truth data and adapting for style using
sparse stylized priors while freezing the density.

When following the S1 we observed geometric artifacts. This is because the stylized priors generated
may not share the exact geometry with the ground truth. As stated above in Sec. 3.1.1, [20] does
not provide temporally consistent stylization which might also affect the geometry so-optimized in the
stylized views in the case of S1.

Another strategy S2 produces considerably better results compared to S1 as seen in Fig. 3.7. This is
because most of the geometric prior is learned from the pre-optimization phase which uses ground-truth
images to obtain scene properties.
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Scene
Method ReReVST [50] StylizedNeRF [19] Ours

short-term long-term short-term long-term short-term long-term
HORNS 0.0046 0.0137 0.0229 0.0239 0.0040 0.0120
FERN 0.0028 0.0080 0.0100 0.0168 0.0020 0.0069

FLOWER 0.0039 0.0106 0.0020 0.0277 0.0030 0.0089

Table 3.1: Consistency Metrics: We show short-term and long-term consistency metrics across a smooth
trajectory generated using our appearance stylized scene representation. We have found that we obtain
better short & long-term consistency compared to the SOTA 3D-Stylization technique StylizedNeRF
[19], while maintaining better style transfer compared to temporal stylizing methods like ReReVST [50].

Though S2 has produced good stylization at a micro-level, fuzzy geometry can be observed which
reduces the appeal of the stylization. Specifically, thin geometric structures suffer from these unde-
sirable fuzzy geometric changes. The limit-free optimization strategy of S2 fiddles with the geometry
components and leads to these artifacts. This can be observed in the insets provided in Fig. 3.7.

Our StyleTRF (S3) approach on the other hand alleviates these issues by freezing the geometric
components of scene representation. Our approach generates crispier results compared to the rest of the
aforementioned strategies S1, S2. This behavior is consistent across all the scenes.

We experiment with a different number of stylized priors to stylize the underlying scene. As shown
in Fig. 3.6, we find that good stylization is obtained when all the priors cover the entirety of the scene.
In most cases, 30-40 randomly sampled camera positions around the object suffice.

3.4 Results

In this section, we compare our results against both 3D stylization techniques and temporally-
consistent stylization techniques both quantitatively and qualitatively.

3.4.1 Qualitative Results

For comparing qualitative results, we can use smooth trajectories which are similar to a video.
This similarity enables us to compare with temporally-consistent stylization techniques alongside 3D-

(a) 5 Priors (b) 10 Priors (c) 20 Priors (d) 40 Priors

Figure 3.6: Number of Stylized Priors: The images in this figure are obtained by fine-tuning StyleTRF
using a different number of priors on the kitchen scene from the MipNeRF360 [3] dataset which is an
unbounded 360 degree scene. Depending on priors quality improves and saturates at 35-40 priors.
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Figure 3.7: Comparison of the different optimization strategies: Strategy S1 optimized directly on
stylized images produces massive artifacts due to the loss in geometry. Unconstrained optimization S2
on the other hand achieves results compared to S1 while struggling to capture micro-details as seen
in the insets. Our StyleTRF on the other hand freezes density while only optimizing for appearance,
capturing the style while maintaining the geometric detail of the original scene.

Stylization. For 3D stylized novel view synthesis, though there exists [18], they do not hold an accurate
representation of geometry and rely on explicit geometry as input. Although other methods like [7] do
not rely on explicit geometry input, they suffer from patch border artifacts as discussed in [19] and
Sec. ??. Hence, we compare our results with the latest 3D radiance field-based stylization method
StylizedNeRF [19] and temporally-consistent stylization technique of ReReVST [50], on similar lines
as [19].

Comparison amongst different stylization Techniques: We have observed that though the novel
views generated using StylizedNeRF are reasonably consistent, the geometry after stylization in the
case of StylizedNeRF has been greatly affected as seen in Fig. 4.3(c). It produces blurry geometry in
the case of TREX stylized using udnie along with the missing greenish tints present in the udnie, and
produces extremely noisy results for mediterranean applied on FERN . Contrary to this, our method
distinctively transfers different colors to different parts of the scene as seen in TREX stylized using
udnie and captures the complete color palette in mediterranean adapted onto FERN . Our method also
consistently preserves geometry across all scenes and styles. The geometric noise in the StylizedNeRF
can partly be attributed to the combined density and appearance encoded of a single MLP, which hinders
the disentanglement of geometry and radiance as observed by [35].

In the case of the temporal-consistent style transfer technique ReReVST, we have observed that
although the method is robust to adapt to new styles on the fly and produces results in real-time, it lacks
proper capture of style information. This can be observed Fig. 4.3(b), ReReVST fails to capture the
prevalent blue tint in santamaria in the case of FLOWER , this could also be observed in the case of
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GT Training Style Training Style Adaptation
StyleImp ≈ 12 hrs NA ≥ 5 hrs
SNeRF ≈ 12 hrs NA 3-4 days

StylizedNeRF ≈ 12 hrs NA ≥ 3 hrs
Ours 20 mins 20 mins 45 secs

Table 3.2: Training Times: We compare our training times with StyleImp [7], SNeRF [35], Stylized-
NeRF [19]. Due to our compact representation, we get a training time of ≈ 20 mins compared to at
least 12 hrs for others. The GT training and style training can be performed in parallel in our method.
We disentangle the style training process from the style adaptation process which enables us to quickly
adapt to any scene in under a minute.

StylizedNeRF and vaguely captures the color palette of mediterranean in FERN . For udnie applied on
TREX , it does not account for distinct colors present in the style and the resultant image contains an
unappealing blend of colors throughout the image.

View Consistency: To qualitatively show view consistency, we render views across a smooth
trajectory and show different views across it. In Fig. 3.4 we show our renders for udnie and mosiac
styles adapted onto STOVE and HORNS respectively. It can be observed from the insets of Fig. 3.4 that
stylized radiance across the frame is consistent, validating our claim that 3D-stylization-based novel
view generation can produce multi-view consistent stylized content.

3.4.2 Quantitative Results

In order to check the consistency of our stylized content, we generate a smooth trajectory similar to
SNeRF [35]. The rendered views along the trajectory are used to evaluate the consistency. Since the
smooth trajectory replicates the behavior of a video we can comfortably compare our method with the
temporal-consistent stylization techniques like ReReVST [50] alongside 3D-stylization methods like
StylizedNeRF [19]. For this comparison, we chose FERN , FLOWER , and HORNS scenes and report the
respective metrics in Tbl. 3.1. We obtained better metrics compared to both temporal stylization [50]
and implicit geometric stylization [19]. We estimated the consistency by calculating the optical flow O
between the non-stylized frames Freal

i and Freal
i+δ rendered using TensoRF.

O : opticalflow
(
Freal
i ,Freal

i+δ

)
(3.4)

Using the so-obtained optical-flow O, we warp the stylized frame Fstyle
i to F̂style

i+δ .

W : F̂style
i+δ ←Warp(Fstyle

i ,O) (3.5)

For the calculation of optical flow, we use RAFT [46] similar to SNeRF.
We then calculate the pixel-averaged L2 loss between the warped frame F̂style

i+δ and the actual stylized
frame Fstyle

i+δ . We aggregate this loss across the frame-combinations and report the metrics in Tbl. 3.1.
For calculation of short-term consistency we chose δ = 1 and for long-term δ = 5. It is to be noted that
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δ here represents the change in the camera position along the trajectory. We have observed that though
the temporal-cosistent stylization techniques like [50] come close to our results, they struggle to capture
the reference-style (as seen in Fig. 4.3(b)).

3.5 Conclusion

In this paper, we presented StyleTRF, a compact and quick-to-optimize stylization technique which
can generate stylized novel views of a scene. We have shown that our method can efficiently and
faithfully incorporate style into a radiance field representation of a casually captured scene. We have
qualitatively and quantitatively compared our method with the previous stylization methods. Our quali-
tative results and quantitative metrics demonstrate that StyleTRF is consistent across the views, having
stylized the underlying 3D representation. We also reported the short and long-term consistency metrics
which are better in most cases compared to the present 3D stylization methods.

Concurrently, Zhang et al. [53] presented stylized novel view synthesis using voxel-based grids,
partly similar to our method. But they chose PlenOxels [10] to represent the radiance fields. They
focussed more on obtaining brush strokes while ours concentrates on geometric preserved fast-style
adaptation.
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Chapter 4

Interactive Segmentation of Radiance Fields

Figure 4.1: We present ISRF, an interactive method to segment objects in radiance fields. Users can
draw positive strokes to segment multiple objects at a time in 3D and negative strokes to remove un-
wanted regions repeatedly. In the figure, the WOODEN TABLE TOP is segmented using one positive and
one negative stroke as shown.

Radiance Fields (RF) are popular to represent casually-captured scenes for new view synthesis and
several applications beyond it. Mixed reality on personal spaces needs understanding and manipulating
scenes represented as RFs, with semantic segmentation of objects as an important step. Prior segmen-
tation efforts show promise but don’t scale to complex objects with diverse appearance. We present the
ISRF method to interactively segment objects with fine structure and appearance. Nearest neighbor fea-
ture matching using distilled semantic features identifies high-confidence seed regions. Bilateral search
in a joint spatio-semantic space grows the region to recover accurate segmentation. We show state-
of-the-art results of segmenting objects from RFs and compositing them to another scene, changing
appearance, etc., and an interactive segmentation tool that others can use.

4.1 Method

We first provide the basics on radiance fields and the feature distillation strategy related to our scene
representation. We then detail our proposed interactive segmentation workflow comprising 2D-3D fea-
ture matching, region growing, and manipulation techniques on this learned representation.
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Figure 4.2: ISRF System overview: We capture a 3D scene of voxelized radiance field and distill the
semantic feature into it. Once captured, the user can easily mark regions using a brush tool on a reference
view (green[ ] stroke). The features are collected corresponding to the marked pixels and clustered
using K-Means. The voxel-grid is then matched using NNFM (nearest neighbor feature matching) to
obtain a high confidence seed using a tight threshold. The seed is then grown using bilateral search to
smoothly cover the boundaries of the object, conditioning the growth in the spatio-semantic domain.

4.1.1 Radiance Field Representation

A radiance field [56] F maps the scene radiance values as view dependent RGB color c ∈ R3, given
a continuous point x ∈ R3 and viewing direction d ∈ S2 in space as inputs: F(x, d) : R3 × S2 → R3.

NeRF [33], and its variants [3, 31, 54] encoded this mapping as the neural function using an MLP,
with a low memory footprint but high training and rendering overhead. They also store scalar point
density σ ∈ R which is used for differentiable volumetric rendering to train the network:

Ĉ(r) =
(∑K

i=i Tiαici

)
where (4.1)

αi = 1− e−σiδi and Ti =
∏i−1

j=1(1− αj). (4.2)

Here for a given point i along a ray, δi is the distance to the sampled point, Ti is the accumulated
transmittance, and ci is the view-dependent color for the point.

Later efforts like Plenoxels [10], and DVGO [42] stored the field variables in a lattice structure akin
to a 3D voxel grid, significantly improving the training and rendering times at the cost of high storage
requirements. These quantized values are trilinearly interpolated and decoded to render color value at
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any point. The grid structure provides easy spatial context and explicit representation leading to higher
efficiency. Recently, TensoRF [6] proposed a matrix-vector decomposition representation of this lattice,
reducing storage requirements while facilitating efficient training and view generation.

We use TensoRF as the basis of our work. The top part of Fig. 4.2 shows our radiance field capture
step, with the volume represented using TensoRF. In the case of the quantized representation of radiance
fields, the radiance is obtained as follows:

σi = ψ(V σ, xi) and ci = µrbgθ (ψ(V f , xi), d). (4.3)

Here σ is the density of the volumetric space, V f the radiance feature grid of appearance features
f , and ψ indicates trilinear interpolation. While rendering a given sample point xi ∈ R3 along the ray
direction d, a small decoding MLP µrbgθ (fi, d) → ci is evaluated. The final color of a ray is calculated
by combining all sample colors ci at every point xi along it using the Eq. (4.1). This is used to reduce
the photometric loss L(rgb) optimizing for both the radiance feature lattice V f and parameters θ of MLP
(µ).

4.1.2 Semantic Features Distillation

Object segmentation requires knowledge of scene semantics. We include an additional feature into
the radiance field for this. In order to attribute semantics to the radiance field, we distill contextual
knowledge from a large pre-trained teacher model similar to the prior art [24, 48]. Specifically, our
teacher is a vision transformer model trained using self-supervision and is shown to pay attention to
semantically meaningful objects in the scene in a class-agnostic manner. This knowledge from the
teacher is distilled into the student radiance field in addition to the color and density values as point
semantic features ϕ ∈ Rm. Thus the mapping now becomes: F(x, d) : R3 × S2 → R3 × R× Rm.

More concretely, we use 2D semantic features using the DINO ViT-b8 model [5] for each input posed
image.

Recent efforts [24, 48] also use DINO; unlike them, we directly optimize for the features on the
voxel grid in the TensoRF representation without a neural network. We also do not encode the direction
dependence in these semantic features since the object semantics are direction agnostic. We trilinearly
interpolate the distilled semantic feature ϕi = ψ(V ϕ, xi) for a point xi from the learned feature lattice
V ϕ. We combine the ϕi along the ray using the Eq. (4.1) like color ci. The TensoRF representation is
optimized to minimize the total loss

L = Lrgb + λLfeature (4.4)

to obtain the final radiance field with ϕ, V f , and V ϕ. Both losses Lrgb and Lfeature are calculated using
L2 norm.
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High-resolution feature rendering results in high-frequency feature fields similar to N3F [48]. (See
the supplementary document for distilled feature field visualizations.)

Explicit semantic features at every point open the way to adapt traditional 3D analysis techniques to
radiance fields in a semantically meaningful fashion. Segmenting objects in 3D voxel space and using
bilateral filtering inspired search are examples that go beyond what prior neural representations have
shown.

4.1.3 2D-3D Feature Matching

For object segmentation, the user picks a(few) reference views and annotates the regions of interest
using a brush stroke. Semantic DINO features associated with the marked pixels are collected.

DINO features were shown to fare well using 1-NN feature matching for good 2D semantic segmen-
tation [5]. However, a single DINO feature will not suffice to segment complex objects with diversity.
We cluster the input features using K-Means to obtain a fixed-size exemplar set of features for match-
ing in 3D space. We use nearest neighbor feature matching (NNFM) on the exemplar set to label each
voxel as foreground or background. The result is stored in a 3D bitmap. In this step, we use a tight
threshold to identify a high-confidence seed region, which is processed further. Prior methods [24, 48]
used a single averaged semantic feature from the user-specified patch to match 2D to 3D. Their implicit
neural representation can only be segmented after ϕ values are rendered. Feature matching methods like
NNFM are too costly to evaluate at every point on the ray using a neural representation.

The segmentation results can also be precomputed and stored, facilitating downstream tasks like
view generation and editing on the fly without repeated processing.

4.1.4 Region Growing

The high confidence seed region (M0) from the previous step is grown in the volume-space to
delineate the complete object volume. We do this in joint spatio-semantic space to include proximate
voxels that are also semantically close. We adopt a Bilateral Filtering [47] inspired search dubbed as
Bilateral Search on the voxel grid using the spatial feature x and semantic feature ϕ values as filter’s
domain and range kernels, respectively.

We iteratively grow the current bitmap region M r till convergence, as given below:

M r+1(x) = Tτ

 1

W

∑
xi∈Ωx

M r(xi) gσϕ
(ϕ2i ) gσs(s

2
i )


where ϕi = ∥ϕxi − ϕx∥ , si = ∥xi − x∥

and W =
∑

xi∈Ωx

gσf
(ϕ2i )gσs(s

2
i ).
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Here M r is the rth iteration of filtering; ϕx is the distilled semantic feature at point x in the volu-
metric space; gσ is the Gaussian smoothing functions with variance σ; Tτ is binary thresholding against
value τ ; and Ωx is the immediate voxel neighbors of x.

We find that τ = 0.2 works well for our scenes. The seed region expands to the boundaries of the
desired object in a few iterations of bilateral filtering.

4.1.5 User Interactivity

Region growing results in a stable voxel content based on the input strokes. The user can add or
remove parts interactively if the extracted content misses out on a few details or when some extraneous
content floods into the segmented region. We use positive and negative strokes to add and remove the
content in the image space, as followed by methods like GrabCut [39]. The mask of the negative seg-
ment is subtracted from the mask of the positive segment to get the final segmented objects. We find
practically that even complex objects can be segmented well with a few positive and negative strokes, as
shown in the results in the paper and in the supplementary material. Additionally, our method provides
interactive feedback for every stroke (as can be seen in Tab. 4.3) that allows users to segment interac-
tively unlike methods like NVOS [38]. Implementation details have been reported in the supplementary
document.

4.2 Implementation Details

Our system is implemented using PyTorch [36] branching off the code provided by DVGOv2 [43].
All experiments are performed using a commodity hardware equipped with AMD Ryzen 5800x and a
NVIDIA RTX 3090.

The feature components of the radiance fields namely radiance latent vectors and the learnt DINO
features are stored using VM decomposition proposed by TensoRF [6]. For radiance latent vectors, we
use VM-48 representation of TensoRF and for DINO features, we use VM-64 variant of TensoRF. The
segmentation masks and densities are stored as a full voxel grids.

The DINO ViT-b8 [5] model provides 768 features for each patch of 8 × 8 pixels in an image. We
reduce DINO features to 64 by doing a principal component analysis. This is consistent with the prior
works [24, 48]. For each pixel, The feature of a pixel is the same as the feature of the patch it belongs
to.

We first pre-train the model for the volumetric density and radiance for 20, 000 iterations. Once
the radiance field is stabilized on the VM-48 TensoRF representation, we introduce distillation using
student-teacher strategy similar to that of [24, 48] on the VM-64 TensoRF variant. Upon adoption,
the resultant VM-48 variant of TensoRF along with its shallow MLP represents the radiance field, and
VM-64 consititute the distilled features. It is to be noted that the distilled features are not accompanied
by a shallow MLP. The features are store at voxel lattice locations and tri-linearly interpolated to be
compared and optimized against the DINO features without involving any non-linearity. The adoption
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Figure 4.3: Our ISRF vs N3F/DFF [24, 48]: Both N3F and DFF employ a similar strategy for segmen-
tation. We tweak the threshold for their method and bring out the best results and show their respective
results in the Row 2. Row 3 shows our results with the same queried patch (highlighted in green[ ] in
Row 1). Since our method works best on user provided strokes (shown in yellow[ ] in Row 1), we show
the corresponding results in Row 4. While N3F/DFF are able to recover simpler objects like COLOR

FOUNTAIN , they fail to capture other objects. Our method faithfully recovers the queried objects with
clear and smooth boundaries. For more details, please refer to Sec. 4.1.4.

is done with λ = 0.001 for the weighted loss function for 5, 000 iterations. The loss is taken on the
features and radiance together to maintain consistency.

We chose K = 10 when applying K-Means to the set of features selected from the user’s brush
stroke. For the bilateral search, the value of σϕ and σs are set to 10.0 and the 1.0 respectively while the
threshold value τ is 0.1.

4.3 Results

In this section, we discuss the comparisons and results of our proposed method against the existing
semantic features distillation-based Radiance fields segmentation approaches. Specifically, we focus
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Reference NVOS Ours NVOSStroke Ours Best

Figure 4.4: left to right: Reference segmentation using NVOS professionally segmented mask, Result
of NVOS [38], Our result using NVOS stroke, Our result using additional strokes. The quantitative
comparisons are mentioned in the main document where our method performs better than NVOS even
when using NVOS strokes. Please zoom using Adobe Acrobat/Okular reader to see the details.

on the two recent approaches: DFF-DINO [24] and N3F [48]. Both use extracted features from input
images and fuse them into the volumetric space. DFF additionally concentrates on the language queries
using LSeg [28], but both approaches are similar regarding semantic features. As the code of DFF is not
publicly available, we compare our method against N3F, which is similar to DFF for this part.

4.3.1 Comparison

As discussed earlier, our approach supports region selection either by a patch or a hand-drawn brush
stroke as shown in Fig. 4.1. To obtain the desired volumetric content, we follow the methods described
in the Sections (Secs. 4.1.3 and 4.1.4). Fig. 4.3 shows our segmentation results on a few challenging
scenes.

The usage of clustering followed by NNFM clearly outperforms the prior approach of average match-
ing [24,48]. The direct incorporation of nearest neighbor feature matching (NNFM) in these approaches
leads to significant rendering delays, while the choice of neural space limits them from using elegant
techniques like bilateral search.

In Fig. 4.3 it can be observed that in the case of the COLOR FOUNTAIN , the simple average feature
matching technique faithfully recovers the region of interest albeit with some additional noise. How-
ever, as the scene’s complexity and region of interest grows, the prior art fails to garner pleasing results.
This can be observed clearly in the case of the three LLFF [32] scenes (CHESS TABLE , SHOE RACK ,
STOVE ). When only simple averaging is employed, the CHESS TABLE scene suffers due to the erro-
neous feature matches. The clustered matching mitigates the errors and confines the segmented volume
to the TABLE. A similar effect can be observed in the case of STOVE where the object of interest is spar-
ingly covered in the input images but is faithfully recovered with distinct boundaries, unlike N3F. The
last scene SHOE RACK is a classic example where recovering white-sole might be challenging even with
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Scene Metric N3F Ours (Patch) Ours (Stroke)

CHESS TABLE
Mean IoU ↑ 0.344 0.864 0.912
Accuracy ↑ 0.820 0.985 0.990

mAP ↑ 0.334 0.874 0.916

COLOR FOUNTAIN
Mean IoU ↑ 0.871 0.927 0.927
Accuracy ↑ 0.979 0.989 0.989

mAP ↑ 0.871 0.927 0.927

STOVE
Mean IoU ↑ 0.416 0.827 0.819
Accuracy ↑ 0.954 0.992 0.992

mAP ↑ 0.387 0.824 0.817

SHOE RACK
Mean IoU ↑ 0.589 0.763 0.861
Accuracy ↑ 0.913 0.965 0.980

mAP ↑ 0.582 0.773 0.869

Table 4.1: This table denotes the Mean IoU (Intersection Over Union), Accuracy and Mean Average
Precision measurements for the four LLFF scenes shown in the main paper. The ground truth segmen-
tation masks have been hand-annotated for comparison.

NVOS Ours(NVOS Stroke) Our best
mIOU mAcc mIOU mAcc mIOU mAcc
70.1 92.0 83.75 96.4 90.8 98.2

Table 4.2: Quantitative metrics(mIOU and mAcc) of NVOS against Ours using NVOS provided strokes
and additional strokes using our interactive feedback tool

the best feature matching scheme. This is where the bilateral search helps in exploiting multi-domain
content by conditioning on the spatio-semantics.

To quantitatively compare our method on the LLFF Dataset [32], we hand-annotate the segmenta-
tion masks for the prominent objects in the CHESS TABLE , COLOR FOUNTAIN , STOVE and SHOE

RACK scenes. Tab. 4.1 reports the segmentation metrics for the four scenes. In our method, to predict
the segmentation mask, we threshold α to be greater than 0.1 while rendering. This removes the low
volumetric density seeping in that contribute negligibly in the rendered visuals. Quantitative evaluation
of mIOU/mAcc scores on all the NVOS dataset also reflect similar behavior. Using the input strokes and
GT masks of NVOS, we obtain an mIoU of 83.75% (compared to 70.1% of NVOS) and an mAcc of
96.4% (compared to 92.0% of NVOS), on the same LLFF dataset. Additionally, our interactive scheme
allows for improving the segmentation in subsequent iterations. We achieved an mIoU of 90.8% and an
mAcc of 98.2% on the same dataset using multiple strokes as shown in Tab. 4.2.

4.3.2 Interactive Segmentation with User Strokes

Our method allows both adding and removing content using positive and negative strokes. The cases
where the single stroke fails to obtain the desired content in the extracted space, the user can add another
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Figure 4.5: Feature Matching: This figure shows the high confidence region of the RF (a) obtained using
different feature-matching techniques for a particular stroke. While Average feature matching (b) fails
to cover the entire object due to loss of information during the averaging process, NNFM (c) without
clustering leads to noise bleeding. Use of NNFM after clustering (d) eliminates noisy regions while also
considering multiple features at once.

positive stroke to add more content. Fig. 4.8 shows one such example where the excavator (‘JCB’) has
missing teeth in the extracted region. Drawing an additional stroke and bilaterally growing the region
again brings out the full desired result. This effectively grows the bit-map M r by segmenting more
desirable regions from the volumetric space.

Similar to adding new content, some scenarios demand the need to remove extraneous content from
the extracted region. In such scenarios, we mark the region to be removed and grow it independently
of the positive content. Once fully grown, the full extent of the negative/undesirable content is obtained
which we subtract from the previously extracted regions obtaining the edited bit-map M r. Fig. 4.1
shows one such example where the REFLECTIVE GRANITE floods into the TABLE region. We add a
negative stroke (red) to remove this undesired region.

Incorporating these functionalities is not trivial in the case of the prior art, as an additional negative
match or a positive match calculation at the time of rendering is a tedious task.

4.4 Experiments

In this section, we discuss various feature-matching variants we used to obtain the high-confidence
seed region. Additionally, we show some immediate applications of radiance field segmentation.

Step Time Taken
Pre-training radiance field 7 mins

Training feature field 2.5 mins
K-Means Clustering 2 secs
3D Feature Query 1 secs

Bilateral Region Growing 0.3 secs

Table 4.3: Timings of different steps of the ISRF pipeline
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4.4.1 Ablations

In order to obtain a high-confidence region, which acts as a seed for the bilateral filter, a feature-
matching technique is required to match the marked features with the distilled semantic features in
the volumetric space. To this end, we experimented with three different feature matching techniques,
namely (1) Average Feature Matching, (2) Nearest neighbor Feature matching(NNFM) (3) K means +
NNFM, which are compared in the Fig. 4.5. It can be easily inferred from Fig. 4.5 (b) that average
feature matching performs poorly in this task. In order to improve these results, we resort to the nearest
neighbor feature matching. Though this recovers a good high confidence region, it is accompanied by
additional noise as seen in Fig. 4.5 (c) Furthermore, as the marked region’s size grows, computation
also becomes tedious in this case. To address this, we cluster the features using K-means clustering and
then do an NNFM that reduces computational overhead and avoids noisy matches, as seen in Fig. 4.5
(d). When K = 1, clustering results in mean features of the selected stroke, and as K approaches high
values, the search approximates NNFM.

4.4.2 Scene Editing

In this section, we explain the procedures ISRF follows to edit the 3D scenes post segmentation. The
segmentation provides a 3D bitmap representing the segmented voxels. The bitmap also assists in faster
rendering as the voxels with segmentation mask values of 0 can easily be filtered out. Fig. 4.6 shows
the additional results of scene editing.

Object Removal: To remove a segmented object from the scene, we alter the evaluation of the
density for a 3D point. We simultaneously evaluate the bit map value bx at the queried point. The
effective density σ′x while rendering is σx ∗ bx for the segmented foreground objects. The effective
density σ′x of background is σx ∗ (1.0− bx).

Translation: If an object is moved to another location, the ray queries lying inside the object’s voxel
space can be shifted to the desired location. If t is the translation vector for the object to be moved, the

(a) Removal (b) Translation (c) Scene Composition (d) Appearance Editing

Figure 4.6: Scene manipulation: Segmented object(s) can be edited in different ways. In (a), we remove
the POT from the center of the table. In (b), we translate the POT to the GROUND behind the TABLE.
In (c), we replace the POT with the LEGO JCB obtained from a different scene (KITCHEN ). We stylize
the newly added LEGO JCB using [12] in (d). All scenes are from [3].

31



(a) Rendered Image (b) HCR (c) Iteration 1 (d) Iteration 2

Figure 4.7: Region Growing: Image (a) is the reference rendered viewpoint. Image (b) is the high
confidence region which misses out frontal region of the dry-leaf when extracting the content. Image (c)
shows the result obtained after the first iteration of bilateral filtering, which captures most of the desired
region of the leaf. Image (d) is the result of the bilateral filtering applied for the second time to include
intricate details such as strands around the dry-leaf.

object’s ray-point query values are given by:

σ′x, rgb
′
x = σx, rgbx ∀ bx = 0

σ′x, rgb
′
x = σx+t, rgbx+t ∀ bx = 1,

where bx is the bitmap value for the point x.

Scene Composition: To perform scene composition, we follow a similar strategy used by D2NeRF
[51]. We alter the volumetric rendering equation to account for density and color from both the scenes
as shown below:

Ĉ(r) =

∫ tf

tn

T (t) (σ1(t)c1(t) + σ2(t)c2(t)) dt

T (t) = exp

(
−
∫ t

tn

(σ1(s) + σ2(s))

)
ds

(a) Stroke 1 (b) Output 1 (c) Stroke 2 (d) Merged Output

Figure 4.8: Multiple Positive Strokes: When the method fails to capture some of the details using initial
set of strokes, the user can iteratively add more positive strokes to recover the desired object. (a) depicts
the initial strokes which lead to missing teeth as shown in (b). Addition of a small stroke on one of the
teeth (c) and followed by region grown captures full-details as shown in (d).
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Figure 4.9: Student Surpasses Teacher: The 4 columns of this figure shows the DINO features used
as teacher vs the ones learnt by student post optimization. Since, the student learns finer features than
the teacher due to assistance from the volumetric density, we can claim that the student surpasses the
teacher. This is consistent with the prior art N3F and DFF.

The results for scene composition have been shown in the main paper and Fig. 4.6 of the supplementary.

Appearance Editing: Here, we apply style transfer on an already composed scene. We first calculate
a 3D bitmap for the JCB lego in the KITCHEN scene. Then, we generate a new set of stylized training
images using the method proposed by [12, 20] using a reference image. The appearance latent vectors
and the rendering MLP is fine-tuned according to the new training images while keeping the density and
feature weights frozen. This transfers the style from a reference image to the 3D object.

4.4.3 Interactive Segmentation

Our method provides interactive segmentation capabilities to the user with the incorporation of pos-
itive and negative brush strokes similar to GrabCut [39].
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(a) Rendered View 1 (b) Rendered View 2 (c) Segmented Trex (d) Depth Map

Figure 4.10: Finer Segmentation: Images (a) and (b) show rendered views of T-Rex from the LLFF
dataset [32]. Image (c) shows the segmented output of T-Rex scene. Our method achieves fine-grained
segmentation of objects such as the rib-cage bones of T-Rex. However, on close observation, the region
near the tail bones background bleeds in. This is due to the wall and the tail-bone lie at the similar depth
as shown in the depth map (d). This can be mitigated by having more 3D information (better training
views) or higher voxel grid resolution.

Upon the addition of a new positive stroke, a new segmentation mask bp is calculated using the
procedure described in the main paper. The user has the option to grow this new region using bilateral
filtering until not required. The new segmentation mask bnew is given by b ∪ bp.

When the user adds a negative stroke, a new segmentation mask bn is calculated. Similar to a positive
stroke, the user has the option to grow this region using bilateral filtering until not required. The new
segmentation mask bnew is given by b ∩ (b ∩ bn)′ (X ′ denotes the complement of X).

4.4.4 Critical Analysis

DINO Features: The teacher DINO features calculated on the training set of images are for patches
of size 8x8. This method associates a total of 64 pixels to the same feature vector. As shown in Fig. 4.9,
the teacher features appear to be in low resolution due to this. When performing the teacher-student
training using the joint loss function, the features learnt by the student are finer in detail due to assistance
from volumetric density. Hence, the student surpasses the teacher during distillation. This is evident
from Fig. 4.9 as features are allocated with distinct boundaries in the voxel space.

Finer Segmentation: Our method can segment out fine-grained details such as the ribs of a T-Rex
as shown in Fig. 4.10. However, it requires accurate 3D information to achieve this. In the T-Rex scene,
the tail-bones cannot be distinguished from the wall behind, since the training set images do not cover
views which indicate the separation. Therefore, the optimized model containing the wall and the tail
bones lie at similar depths as shown in Sec. 4.3. Use of additional images covering more viewpoints can
circumvent this issue.

4.4.5 Discussions and Limitations

Our method improves upon the prior art on several fronts but has its own shortcomings. Like prior
works, we rely on DINO features to represent object semantics and this can result in artefacts if the
features do not capture the semantics properly. Third column in the last row in Fig. 4.3 shows a small
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false appendage at the bottom of the utensil holder which can not be easily removed interactively without
eating into object’s body. Better semantic features can resolve this problem. Also, the leftmost example
in Fig. 4.6 shows that the shadow of the pot is left behind on the granite center of the table even after
the pot is edited out. Removing the pot from the geometric representation does not guarantee removal
of its secondary effects on neighbouring objects like shadows or highlights, without elaborate geometric
post-processing. Our method may also struggle in segmenting geometry well if the voxel resolution is
low compared to the scale of object details as shown in supplementary results. Multiresolution voxel
representations can solve this problem with additional overhead.

4.5 Conclusions and Future Work

In this paper, we presented an easy and accurate method to segment objects from a TensoRF represen-
tation of radiance fields and showed simple scene editing operations facilitated by this. The efficient
voxel-based representation we use makes our method more versatile and simple compared to the prior
works in this direction. We show several results on multiple challenging scenes (and present more in the
supplementary document). Semantic segmentation is a first step towards interpretation, understanding,
and manipulation of 3D scenes. This work provides high quality segmentation that can be the basis for
several such downstream tasks. A simple extension to the current method would be to generalize the dis-
tance used for matching in the NNFM and region-growing steps to include other featurs like color latent
vectors. Extending the current method to a InstantNGP [34] framework, while incorporating additional
multi-domain explorations strategies like guided filtering [17] would be a good direction to explore.

In the future, multi-representation processing might be needed by combining parts of captured RFs,
graphics models, SDFs, etc., to provide maximum flexibility in Virtual Reality and Augmented Reality
applications. This requires processing parts of the RFs directly without going through the full learning
process post-editing. This is a promising direction of work that we intend to pursue in the future.
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Chapter 5

FusedRF: Fusing Multiple Radiance Fields

Figure 5.1: NeRF-Feast: Our method can be used to create a single composed representation. Here,
we show a feast prepared on the table from the garden scene from MipNeRF-360 [3]. Since we have
a single fused representation, the scene is rendered at the cost of a single RF representation while also
occupying a memory footprint of a single RF. Scene components are picked from [1].

Radiance Fields (RFs) have shown great potential to represent scenes from casually captured dis-
crete views. Compositing parts or whole of multiple captured scenes could greatly interest several XR
applications. Prior works can generate new views of such scenes by tracing each scene in parallel. This
increases the render times and memory requirements with the number of components. In this work,
we provide a method to create a single, compact, fused RF representation for a scene composited using
multiple RFs. The fused RF has the same render times and memory utilizations as a single RF. Our
method distills information from multiple teacher RFs into a single student RF while also facilitating
further manipulations like addition and deletion into the fused representation.

5.1 Method

Chapter 5 shows an overview of our FusedRF method. The following through Secs. 5.1.1 to 5.1.3 will
detail the compositional, fusion, and convergence aspects of the proposed methodology, respectively.
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Figure 5.2: FusedRF: Method to fuse multiple RFs into single presentation. We shot the same ray
into both teachers T1, T2 (left) created using ISRF [13] to distill a combined Student S(right). For
every sampled point on a ray of both RFs we prune out ones with lower densities and apply supervised
distillation losses to obtain faster convergence. Followed by a few iterations of Pixel Loss on alpha-
composited RGB for smoothening. By fusing multiple RFs into a single representation, we reduce
rendering and memory overheads of composition. Both scenes GARDEN and LEGO are picked from the
MipNeRF-360 [3] dataset.

5.1.1 Composition of Radiance Fields

The composition of two distinct radiance fields can be performed by altering the compositional aspect
of the volumetric rendering equation [33, 42]. For simplicity, let’s assume we have to composite only
two radiance fields (RF 1 and RF 2). Every ray is shot and sampled similarly in both RFs. For every
sampled point along the ray, the activated volumetric density (α : αI = 1−e−σIδI ) is calculated, where
I corresponds to the respective Radiance Field (RF I ) [42]. The point with a higher α value is chosen
for a contribution towards the rendering of color and density. The resultant RF is considered ground
truth for scene composition. It can be observed that the tracing and sampling of the same ray twice are
redundant; subsequently, it causes high render times and larger memory footprints. To address these
issues, we fuse the RFs into a single representation.

5.1.2 Fusing Radiance Fields

Rendering two or more radiance fields simultaneously for composition is computationally expensive
and cannot be scaled as the memory and computation increase linearly with the number of radiance
fields involved in composition. To this end, we propose a method that quickly distills from multiple
RFs to a single representation. The resulting representation is as compact and efficient as a single RF.
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We leverage the already learned 3D information to take losses in 3D, which leads to faster learning
(distillation).

Let the two radiance fields to be composed be T1 and T2 (teacher1 and teacher2), and the final fused
radiance field be S (student). For brevity, let us assume we do not apply any rigid transformation on
the radiance fields. We shoot a ray through both T1 and T2 and sample points on the ray. The points
with low density [ ] are pruned out while the ones with high density [ ] are utilized. The union of
these selected points from T1 and T2 acts as our training set for the student S [ ] . We query the three
radiance fields (T1, T2, S) for their density, alpha and color (σ, α, c) at every training sample point
location. We apply a Supervised loss || − ||2 to the color and density values of the student (S) against
the corresponding teachers (T1, T2) at every training point selected above. This supervised distillation
will fuse the composition into one single scene.

As a final stage, we render the RGB values for the rays by accumulating the individual color values
weighted by the activated volumetric density using Volumetric Rendering Equation [44] and take an
alpha-composited RGB pixel loss || − ||2 for a few iterations. This helps smooth the result around the
boundaries of the inserted object.

5.1.3 Fast convergence

To obtain a single representation of a composed radiance field, one could use the traditional RGB
loss against the rays from composed RFs or rendered views extracted from the composition. But this
would essentially be retraining and would amount to the same time as training an RF from scratch.
However, since we have 3D information from already-trained RFs, we can leverage the supervised losses
employed at every sampled point, which achieves faster convergences. The augmented convergence is
due to 3D distillation. Pruning of low-density points suggested in Sec. 5.1.2 further speeds up the
process.

Additionally, it is often the case that during the composition of radiance fields, one of the scenes
is in the majority (dubbed as a background scene). Initializing the student with the background scene
significantly speeds up the distillation process. Hence, we initialize the student representation S with
the weights of the background scene (one of the dominant teachers Ti). The reduction in time in the
case of our distillation-based fusion against total retraining is 3×.

5.2 Results

Performance: To validate the performance of our method, we provide Render times and Memory de-
mands against other means of composition, namely 1) Neural-RF, 2) Explicit lattice structures 3) Fused
Representation. We tabularize these results in the Tab. 5.3. It can be observed that the render times
and memory footprints increase linearly in the case of Neural-RFs [33] and Explicit lattice representa-
tions [6,10,42,43] with the increase in the number of scenes used for composition. While it is possible to
composite multiple scenes when leveraging Neural-RF, rendering times are a strong limitation, specifi-
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Works
Native Composition

Small Memory
Footprint

Short Training
Time

Small Memory
Footprint

Short Inference
Time

NeRF [33] ✔ ✘ ✔ ✘

D2NeRF [51] ✔ ✘ ✔ ✘

PlenOxels [10] ✘ ✔ ✘ ✘

DVGO [42] ✘ ✔ ✘ ✘

InstantNGP [34] ✘ ✔✔ ✘ ✔✔

CNeRF [26] ✘ ✔ ✘ ✘

TensoRF [6] ✔ ✔ ✔ ✘

PVD [9] ✔ ✔ ✘ ✘

FusedRF (Ours) ✔ ✔ ✔ ✔

Table 5.1: While works like NeRF and D2NeRF struggle in render times, works like DVGO, Plenoxel,
and ControlNeRF additionally also demand high memory. Leading to the infeasibility of the compo-
sition of more than a few scenes. Our method efficiently fuses the RFs and maintains memory, and
renders times to a single RF.

Scene Ours (w/o RGB) Ours (Full)

Figure 5.1 36.71 39.89
Figure 5.3 (b) 37.20 40.32
Figure 5.3 (d) 35.18 38.78

Table 5.2: This table shows the PSNR of the images from some scenes in the paper. Please note that the
PSNR reported is of the FusedNeRF images against composed NeRF images.

cally when employed in the case of XR applications. On the other hand, Explicit Lattice representations
demand a large amount of memory, leading to infeasibility. On the other hand, our FusedRF represen-
tation alleviates the issues by fusing the compositions iteratively, constraining memory, and rendering
budgets to that of a single RF.

Quantitive Results: Along with maintaining tighter memory and rendering budgets, our proposed
FusedRF representation also retains the quality of composited scenes. To validate this, we provide
quantitive metrics of our FusedRF representation against the naive composition(Refer Tab. 5.2). This
validates the representative capacity of our FusedRF representation.

Qualitative Results: The Qualitative results of our method are presented in the Figs. 5.1 and 5.3.

5.3 Conclusion

We present FusedRF, a method to create a single RF representation for a scene composed of multiple
RFs. This reduces the memory and rendering overheads without degradation of quality. We showed
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# Neural Based Voxel Based
NeRF DVGO TensoRF Ours

1 10 MB / 20s 800 MB / 2.01s 25 MB / 2.05s 25 MB / 2.04s
2 20 MB / 40s 1.6 GB / 4.11s 50 MB / 4.25s 25 MB / 2.05s
4 40 MB / 80s 3.2 GB / 8.58s 100 MB / 8.7s 25 MB / 2.04s
8 80 MB / 160s OOMB 200 MB / 17.2s 25 MB / 2.04s

Table 5.3: Rendering composition of RFs is slow and memory intensive as the number of scenes in-
creases. Our proposed FusedRF performs fusion once, maintaining the memory and computing constant
even when the number of composed scenes increases. Experimented on RTX 3060 Ti (8GB).

Time: 4s, Memory: 50MB

(a) Naive Composited

Time: 2s, Memory: 25MB

(b) Ours FusedRF

Time: 8s, Memory: 100MB

(c) Naive Composited

Time: 2s, Memory: 25MB

(d) Ours FusedRF

Figure 5.3: The figure shows results of compositing multiple RF into a single scene, (a) and (c) shows
results of composition while (b) and (d) shows results of our FusedRF. Respective memory footprints
and rendering times are mentioned in the insets. The scenes are picked form [1, 3, 33].

our method over TensoRF [6] representation here. However, our method can be extended to any RF
representation that uses explicit 3D lattices like InstantNGP, DVGO, Plenoxels, etc. [10, 34, 42]. As
our method provides tighter memory and rendering budgets, using our FusedRF in XR applications
like [8, 29] can facilitate the composition of multiple RFs while maintaining real-time results. The
supplementary video provides an overview of our method, the multiview visualization, and the iterative
addition of scenes in our results.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we explored methods to segment, edit and fuse grid-based radiance fields. This enables
applications such has generating multi-view segmentation masks, 3D segmentation and manipulation in
radiance fields.

We introduced an efficient and easily adaptable stylization method that rapidly produces stylized new
renderings of a scene. Our approach demonstrates the ability to integrate style into the representation of
a radiance field for casually captured scenes.

We introduced a straightforward and precise technique for object segmentation from TensoRF rep-
resentation, enabling easy scene editing operations. Our method utilizes an efficient voxel-based rep-
resentation, enhancing versatility and simplicity compared to previous approaches. Our work offers
high-quality segmentation as a foundation for interpreting, understanding, and manipulating 3D scenes.
We also developed a user-friendly GUI allowing users to perform segmentation on pre-trained radiance
fields through positive and negative strokes.

We introduced a technique for generating a fused radiance field representation for scenes with multi-
ple radiance fields. This minimizes memory and rendering burdens without compromising quality. Our
approach optimizes memory and rendering resources, making it suitable for XR applications, where
real-time composition of multiple radiance fields is essential.

6.2 Future Work

As newer and better representations for radiance fields are popping up, the methods proposed for
existing representations need to be adapted. Our method for rapid style transfer can be applied to almost
any representation. Our feature distillation followed by region-growing method for segmentation can be
applied to newer more promising representations like Instant-NGP [34] and 3D Gaussian Splatting [21].
Although, 3DGS does not require fusion, the latest high-quality grid-based radiance fields [4, 37] will
require it for efficient scene composition.
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