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Abstract

Malaria, which is spread by the female anopheles mosquito, is a highly fatal disease that affects
many parts of the world, with up to 0.4 million deaths reported worldwide. The detection of malaria
infection levels is based on vital gene expressions. Experts quantify malaria parasite-infected RBCs
and classify their life cycle stages at the macroscopic level in order to make informed decisions. Sev-
eral computational approaches have recently been proposed to avoid the dimensionality problem and
produce accurately predicted results. Our study presents a theoretical framework to select diagnosis
markers and drug targets by implementing ML techniques on sc-RNA-seq data. The main objective is
to select the top-ranked genes from the scRNA-seq profiles at different stages of the Plasmodium fal-
ciparum (Pf) life cycle inside infected RBC. We employ a supervised learning algorithm coupled with
feature selection algorithms to extract the most relevant genes to predict the life cycle stages of Pf inside
RBC.

The first stage of modeling is to optimize the quality of data from the dataset (5066 features) by
removing the irrelevant features. Genetic Algorithm (GA) based search technique is popularly used for
feature selection and dealing with high dimensionality datasets. This reduced subset (378) is further
utilized in the second stage of high accuracy multi-class classification.

In this work, a GA-based dimensionality reduction technique is used on single-cell transcriptomics
to obtain an optimised subset of features from a larger data set. To separately transform the selected
elements into a lower dimension, features are chosen based on their class variants, taking into account
increased efficiency and accuracy. We constructed the protein-protein interaction network (PPIN) of
these genes and performed topological analysis using the Search Tool for the Retrieval of Interacting
Genes/ Proteins database (STRING 11.0 b) and Gephi software to provide hierarchies according to the
importance of the genes in the network. Various topological measures are estimated to evaluate the
node characteristics in the PPINs, including degree, between centrality, eccentricity, closeness central-
ity, eigenvector centrality, and clustering coefficient. Proteins having a high degree and betweenness
centrality tend to assert more control over the network function. We also performed gene ontology
analysis to determine the role of proteins in the parasite’s life cycle progression.

For the multi-class classification of the life cycle of malaria parasite based on oriented gradients
and local binary pattern features, a three-pronged approach employing the multi-class Support Vector
Machine (SVM), Logistic Regression (LR), and Random Forest (RF) techniques are used. On using
these 378 features, RF performed best with a classification accuracy of 92% while SVM had a 91%
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accuracy and LR gave 88% accuracy. By merely using the 378 features, we achieved similar or better
performance scores for all four classes, across all three models. Further, randomly chosen features from
our dataset of 378 were also evaluated using the SVM, LR, and RF models. We achieved an accuracy of
81%, 79%, and 80% for the three respective models. This proves the robustness of the features selected
using the GA-based approach. The proposed research methodology can be likely used for improved
malaria diagnosis and drug targets.
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Chapter 1

Introduction

1.1 Malaria

Malaria is a deadly disease caused by the Plasmodium parasite and is transmitted through the bite
of a female Anopheles mosquito. The four common Plasmodium species are Plasmodium (falciparum,
vivax, malariae and ovale) [7] and two of these species falciparum and vivax are of the greatest threat.
Plasmodium falciparum (Pf) is the most prevalent on the African continent. P. vivax is dominant in
most countries outside of sub-saharan Africa. This plasmodium attacks the red blood cells (RBCs) and
the degree of malaria can be estimated by the quantity of infected RBCs [8]. If not treated, Pf malaria
can progress to death within a span of 24 hours. In 2020, 241 million cases of malaria were estimated
worldwide, malaria deaths stood at 627000 in 2020 [9]. Plasmodium species cause human malaria, with
majority of the estimated 0.4 million annual deaths accounted for the deadliest unicellular, protozoan
malaria causing parasite Pf. Of all the Plasmodium species, Pf has the quickest time for the develop-
ment of infection symptoms. The incubation phase may last nine to thirty days. Malaria symptoms
include high fever, tiredness, vomiting and headache and even seizures and death in some severe cases.
If not properly treated, the disease may recur even months later. The most common symptom of malaria
is paroxysm. Every two days, there is a cyclical occurrence of sudden coldness followed by shivering,
fever, and sweating. Malaria can lead to several serious complications including development of respira-
tory disorder. Non-cardiogenic pulmonary oedema, pneumonia, and severe anaemia are a few potential
reasons. Infection with Pf can cause severe cerebral malaria, which is distinguished from other types of
fever by retinal whitening.It causes spleen and/or liver enlargement, as well as low blood sugar, severe
headache, and haemoglobin in the urine with kidney failure. [10, 11].

1.2 Malaria Parasite Life Cycle

The growth and survival of plasmodium through the reproduction and development process in dif-
ferent hosts during its entire life cycle occurs by more than 5,000 genes and associated proteins. These
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genes also evade the different responses of the host that otherwise may lead to their destruction.

Figure 1.1: The life cycle of a malaria parasite.

The complex life cycle (Figure 1.1) of malaria parasites adapts diverse developmental strategies, each
of which is adapted to thrive in the particular host environment. Malaria transmission occurs through
female anopheles mosquito (vector). When it feeds on an infected human it ingests gametocytes -
the sexual form of the parasite [12]. Male and female gametocytes mate in the mosquito’s gut and
after meiosis they move through the midgut wall forming an oocyst and leading to the development of
thousands of sporozoites which are then injected into a human during the next bite, rapidly reaching
the liver and infecting the hepatocytes. Later they start replicating asexually. Around 15 days later the
liver schizonts are ruptured, and thousands of merozoites are released into the blood further invading the
RBCs. Over the next 48 hours, the parasite replicates, passing through different stages (ring, trophozoite
and schizont), and producing nearly 16 new merozoites per schizont. The schizonts further populate
asynchronously with other parasites, producing the dominant fever cycle. After each replication, some
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of these merozoites also develop into gametocytes, infecting susceptible mosquitoes, bringing full circle
to the transmission cycle [13].
During the blood stage growth, Plasmodium being intra-cellular, provides protection to the parasite due
to the immune response of the host and is vulnerable in the extra-cellular stage [14].The development of
blood stage begins when a freshly released, extracellular parasite (a merozoite) attacks an erythrocyte,
forming the ring stage of infection, progressing into the trophozoite stage. During this stage the infected
erythrocyte is largely modified enabling the proliferation of parasite. Thereafter, the parasite sub-divides
to form a connected network of daughter cells, called schizont, which finally loses the host erythrocyte,
and releases the new born merozoites to attack the new erythrocytes. These steps are in together termed
the intra erythrocytic developmental cycle (IDC) [15]. The parasite then invades RBCs and develops
into a ring stage within 48 hrs and soon followed by stages trophozoite and schizont. Depending on
differentiation intra erythrocytically to gametocytes inside a human host, the transmission of malaria
parasites to mosquitoes is done [16].
On attachment of the parasite to RBC, its cell membrane deforms forming a junction allowing the
penetration of the parasite in to the cell using various protein structures. The parasite which begins to
form a ringed shape in the cell, creates a parasitophorous vacuole which separates it from the RBC’s
intra-cellular environment. For biosynthesis, haemoglobin the primary nutrition source and amino acids
are used. The breakdown of molecule is followed by the continued proliferation and increase in numbers
and size of the RBCs. The parasite continuously divides within the cell going through different stages
and producing trophozoites and finally schizonts. As their number increases by asexual reproduction,
the cell bursts producing new merozoites which infect other RBCs while some of the parasites turn into
gametocytes leaving the RBCs uninvaded. These non-pathogens infect the mosquitoes when it feeds on
infected individual persons. In the host of the mosquito, the gametocytes keep on fusing and continue
sexual reproduction allowing the overall cycle to go on and on [17, 18].

1.2.1 Various stages of the IDC

In Pf infections, the RBCs are sized normally. Generally, we can only see gametocytes and rings
unless the blood settled before the smear preparation. The different stages of the IDC are depicted
next [19].
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1. Rings: The cytoplasm of Pf rings is delicate and has a few small chromatin dots and the infected
RBCs do not enlarge. A few times appliqué forms (rings appearing on the RBC periphery)[20]
can also be found, as seen in Figure 1.2.

(a) Rings in a thick blood smear. (b) Images from a thick blood smear. Note the classic

”headphones” appearance of many rings.

(c) Thin, delicate rings in a thin blood smear. Note the

double chromatin dot in the infected RBC at the top, and

the appliqué form in the infected RBC at the bottom [21].

(d) Rings in a blood smear. Note the multiply-infected

RBCs.

Figure 1.2: Ring stage of malaria parasite life cycle.
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2. Gametocytes: Pf gametocytes are shaped like a sausage or crescent while the chromatin is in the
form of a single mass (macrogamete) or diffuse (microgamete) (Figure 1.3).

(a) Gametocytes in a thick blood smear. (b) Gametocytes in a thick smear. Note also the presence

of several rings.

(c) Two Gametocytes in a thin smear. (d) Gametocytes in a thin smear showing the membrane

of RBC.

Figure 1.3: Gametocyte stage of malaria parasite life cycle.
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3. Trophozoites: Older, ring stage parasites or Pf trophozoites can rarely be seen in peripheral blood
smears. The cytoplasm of younger rings tends to be less dense than in mature trophozoites. As Pf
trophozoites grow, they continue to retain their ring-like amoeboid shape (Figure 1.4). At times
traces of yellow pigment are also visible within the cytoplasm.

(a) Trophozoites in a thick blood smear. (b) Mature, compact trophozoites in a thin blood smear.

(c) Compact trophozoites in a thin blood smear.

Figure 1.4: Trophozoites stage of malaria parasite life cycle.
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4. Schizonts: Pf schizonts are hardly visible in peripheral blood., dark pigment, grouped in one
mass can be seen in mature schizonts (Figure 1.5).

(a) Mature schizont in a thin blood smear. (b) Ruptured schizont in a thin blood smear.

(c) Another schizont in a thin blood smear.

Figure 1.5: Schizont stage of the malaria parasite life cycle.
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1.3 Plasmodium invasion proteins: Structural aspect

An insight into the mechanism of interaction, invasion, and inhibition at the interface of the host–parasite
is provided by the structural details of Plasmodium.

The structure of Pf is not fixed and keeps changing continuously during the entire life cycle. The
spindle-shaped sporozoite of 10–15 µm length grow into 30–70 µm diameter ovoid schizont. Each
schizont then continues to produce merozoites of 1 µm diameter and 1.5 µm length. Merozoites of the
erythrocyte form a ring structure to turn in to a trophozoite feeding on the haemoglobin and forming the
granular pigment haemozoin [22, 23]. Contrary to the other species of Plasmodium, the Pf gametocytes
are crescent-shaped and elongated (3–6 µm wide and 8–12 µm long), which sometimes helps in their
identification. The ookinete is further longer in size (18–24 µm nearly) while an oocyst is round in
shape and grows in diameter up to 80 µm [7].
When a blood film is examined under a microscope, only early stage ring-shaped trophozoites and
gametocytes are found. While mature trophozoites or schizonts are typically hidden in tissues in blood
smears, occasionally, lighter comma-shaped red spots can be seen on the surface of erythrocytes. These
”Maurer’s cleft” dots are secretory organelles and proteins that produce enzymes and are necessary for
the processes of immune evasion and nutrition uptake (Figure 1.6) [24].

Figure 1.6: Blood smear from a Pf culture.
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1.4 Literature Review and Treatment

Malaria continues to be a major concern for humans in many tropical and subtropical regions. Just in
Africa itself, millions of children die annually from this disease attributed to the Pf parasite species. The
disease becomes severe when Pf modifies the surface of infected RBCs by inserting parasite proteins.
By the process of cytoadherence, these parasitized erythrocytes bind to the host endothelial cells in the
brain, leading to the occurrence of cerebral malaria [25]. The current day malaria control and treat-
ment techniques include bed nets impregnated with insecticide and chemotherapy. Although large scale
efforts have been made towards developing a vaccine, none of the immunization approaches existing
so far are effective. Moreover, with the growing resistance against existing antimalarial drugs, reliable
prophylaxis is impossible, making the cure of malaria even more difficult. As a collaborative effort, the
Malaria Genome Sequencing Consortium was setup to alleviate these problems, by sequencing the en-
tire genome of Pf. “The consortium aims to generate almost all of the Pf genome sequence in unfinished
form and making its entire gene complement accessible for malaria researchers” [26].
Oral medicines like Artemisinin may be used to treat simple malaria. The combination of ACT artemisinin
and other anti-malarial drugs remains the most effective treatment for Pf infection. This decreases single
drug component resistance. Artemisinin-naphthoquine combination therapy is also used to treat falci-
parum malaria. However, more research is needed for a reliable treatment. In low transmission settings,
the performance of Artesunate+Mefloquine is better than that of Mefloquine. Atovaquone-Proguanil is
effective against uncomplicated Pf with 5% to 10% possible failure rate while Amodiaquine+Sulfadoxine-
Pyrimethamine is said to display lesser treatment failures in uncomplicated Pf malaria. Studies on treat-
ing uncomplicated malaria with Chlorproguanil-Dapsone are scarce. The combination of primaquine
and artemisinin-based combination therapy for falciparum malaria reduces transmission on days 3-4
and 8 after infection [27, 28]. Chloroquine remains the mainstay of treatment for Plasmodium vivax
malaria despite increasing reports of treatment failure [29]. For quick and successful patient recovery, it
is crucial to diagnose and quickly treat malarial infection. If the malaria life cycle stages are somehow
ascertained then the treatment of disease becomes easier. Various techniques are being used to examine
malaria, including:

1. rapid diagnosis tests (RDTs)

2. quantitative buffy coat

3. peripheral blood smear microscopic examination, etc.

In majority of developing countries, the stained blood smears microscopic examination is yet considered
to be the standard diagnostic method [30, 31]. Experienced medical professionals frequently examine
a large number of blood films to detect malaria infection. Microscopists normally visualize the thin and
thick blood smears to identify a disease or its cause. However, the accuracy depends upon the quality
of smear and expertise to classify and count the parasite and non-parasite cells. It is fairly challenging
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to number the parasites and infected RBCs manually and needs an expert microscopist for a quality
diagnosis [32].

1.4.1 Machine Learning based Diagnostics

In Pf the classification is inefficient as the changes in geometric features are not seen. Colour pixel
classification with feature characterization based on k-NN was reported for infected erythrocyte iden-
tification [33]. A semi-automatic method was presented by Diaz et al. [34] using SVM classifier to
quantify and classify malarial erythrocytes. Hu set of relative shape measurement, invariant moment,
intensity histogram, Laplacian features, gradient features, co-occurrence matrix, flat texture, run length
matrix was used for the characterization of erythrocytes by Spring et al. [35]. Khan et al. [36] used
first order feature and Hu moment based on intensity histogram with FF-BPNN classifier while Soni et
al. [37] published an automatic classification of erythrocytes and Pf.
A variety of image processing techniques are used for the diagnosis and stage detection of the malaria
parasite. This diagnosis is carried out using textural and statistical features in blood images of the
malaria parasite [24]. Nowadays, digital image processing and machine learning techniques are con-
tributing to a higher diagnostic accuracy in ultrasound imaging, CT, microscopy, etc. Computerized
diagnosis of malaria based on analysis of microscopic images of thin blood smear exists is reported in
the literature [15, 38, 39]. Geometric and texture features are used for classifying the malaria infected
erythrocyte as the morphological features of the infected erythrocyte change. Detection based on eccen-
tricity features and relative size using feed forward back propagation neural network (FF-BPNN) was
reported in [38].
Convolutional Neural Networks (CNNs) have been successfully used for automatic classification of
malaria parasites from blood smear images, enabling quicker diagnoses. However, it was limited to bi-
nary mode as infected and non-infected. A review of CNN techniques used for malaria diagnosis, focus-
ing on the data preprocessing, preparation and classification alongwith NN architectures, performance
and properties is presented. The authors in [40] used CNN based deep learning models for attribute
extraction and categorization. For achieving higher categorization accuracy, they selected certain domi-
nating features including size, color, shape, and cell count, from the images. Similarly, a more effective
two-stage approach based on CNN on a larger dataset was also proposed by [41]. It remains an espe-
cially challenging task to distinguish the multiple growth stages of parasites. Seng et al. [42] developed
a deep learning approach for the recognition of multi-stage malaria parasites in blood smeared images
using a novel deep transfer graph convolutional network (DTGCN). They reported higher accuracy and
effectiveness compared to a wide range of state-of-the-art approaches.

CNNs when used for feature extraction exhibit better performance than learning from scratch and
transfer learning approaches. However, research employing private datasets for training and testing the
CNN models cannot be easily compared with other methods. Future research would employ available
public datasets to allow comparison of proposed CNN methods. Multi-class CNN models for classifi-
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cation of species and life stages of malaria-causing plasmodium are needed [43].

1.4.2 ML based Feature Classification

Various machine learning (ML) approaches have been proposed for accurate gene features classifica-
tion. Karthik and Sudha [44], reviewed ML methods for classifying gene expression model or computa-
tional analytical structure for complicated diseases, by identifying several differentially expressed gene
techniques. Numerous ML approaches have been proposed in the literature to enhance gene expression
data classification such as clustering, classification, dimensional reduction, among others [45]. Training
of ML models using initial high-dimensional features performs unsatisfactorily in practice and may re-
sult in network over-fitting and increased redundant information. This problem was addressed using the
random forests classifier in [46, 47]. Hossain et al. [30] designed an effective variational quantum circuit
(VQC-based) approach to recognize the existence of malaria in RBC images through the classification
of optimized feature set extracted from them. Murad et al. [48] used algorithms based on multifilter and
hybrid approaches to feature selection, leading to accuracy in excess of 90%. Mei et al. [49] suggested
a dimensionality reduction method to classify tumor gene expression data. Arowolo et al. [50] and Li et
al. [51] proposed a dimensionality reduction approach for classifying gene expression.
To overcome the dimensionality problem, Rokach et al. devised a genetic algorithm-based feature selec-
tion method. They evaluated the fitness function of several obvious tree classifiers using a new encoding
approach [52]. Zhang et al. proposed a classifier ensemble with feature selection based on GA. The au-
thors of this work created a new hybrid method that combines a multi-objective genetic algorithm with
an ensemble of classifiers. The GA-ensemble approach was tested on a variety of datasets and its per-
formance was compared using a variety of classifiers [53]. Cheng-Lung Huang [54] suggested a feature
selection method based on GA and SVM optimization. The ultimate goal was to improve the SVM
classification accuracy while optimising the feature subset and parameters. Chaung et al. [55] employed
a hybrid technique that began with a genetic algorithm with a dynamic variable to pick a sample of
genes, which were then ranked using Chi Square analysis, and the level of accuracy of the selection was
assessed using SVM. Shutao et al [56] used Particle Swarm optimisation and GA in order to perform
highly accurate classification. The authors in [57] achieved a classification accuracy of 90.32 % using
GA for feature selection and a SVM Classifier.

1.4.3 Single-cell RNA sequencing

The Pf genome is sized at 23.3 Mb and is encoded by over 5400 genes [15]. Transcriptional regula-
tion of a majority of parasite genes occurs during the IDC. The same is seen at multiple points of time
but has a maximally abundant single peak per gene. cDNA microarray technology was employed in the
initial analysis of Pf IDC. RNA-seq when applied initially to the Pf IDC led to gene model alterations
in more than 10% of the 5400 genes, as also 121 new coding sequences were identified [32]. By this
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research 84 alternate splicing cases and 75% of predicted splice sites were also confirmedly detected.
However, due to the limitations of the then RNA-seq technology, the extremely AT-rich UTRs went un-
detected on a genome-wide scale. The probable reason for this was attributed to a multiple difficulties
generating PCR bias and AT-rich cDNA against the AT-rich sequences [58].

Ribonucleic acid sequencing (RNA-Seq) is used to express multiple levels of transcripts simultane-
ously. Several tools are used to develop and classify in to several pre-defined classes, after studying
the RNA-Seq data of pathogens or viruses, depending on their attributes. Various machine learning
approaches are providing powerful toolboxes for classifying RNA-Seq data [38]. Single-cell transcrip-
tomics is used to map the genes during the entire transmission cycle of the etiological agent of malaria,
Pf. Single-cell RNA sequencing (scRNA-seq) has allowed us to solve the cell-level heterogeneity issue
in complex cell populations [59, 60, 61]. In fact, recent studies have elucidated the role of heterogeneity
in enabling a small fraction of Plasmodium population inside the human host to remain ready to enter
into the mosquito host by making transition to gametogenesis stage [62]. Similarly, heterogeneity plays
a crucial role in the Plasmodium stress response inside the RBC [16]. Off late scRNA-seq views of the
entire life cycle of Pf, have captured at high resolution the fine-scale developmental transitions driving
their progression [58, 40, 41, 42, 63]. The Malaria Cell Atlas [58, 41] data resource and website pro-
vides the scientists the option to investigate gene expression patterns in individual parasites across the
different developmental stages and for a variety of parasite species.

The differences between individual cells of unicellular and multi-cellular organisms can have far-
reaching functional consequences. The single-cell mRNA-sequencing methods developed recently al-
low the high-throughput, unbiased, high-resolution transcriptomic analysis of individual cells. This has
opened newer vistas of biology by way of transcription dynamics, tissue composition, and regulatory
relationships between genes. This goes on to provide additional transcriptomic information in compari-
son to traditional bulk cell populations profiling methods. Fast paced technological advances in the field
of cell capture, phenotyping, bioinformatics and molecular biology seem to project a bright future in
multiple medical and biological applications [64].

Single-cell RNA sequencing technology could be possibly used to further reveal how the parasite
resists drugs or bypasses the immune system. This may also help in the future in developing drugs that
disturb the synchronisation of these genes, disrupting the parasite’s development and further stopping
the cause of disease [60, 65]. Recent studies in next generation sequencing (NGS) via RNA-Seq have
enabled the simultaneous measurement of expression levels of multiple transcripts [38]. RNA-Seq is
a powerful transcriptome profiling NGS technique which provides in-depth details of RNA transcripts.
The RNA-Seq analysis methodology in general involves the following steps:
1) raw sequence disease data expression analysis, after its normalization;
2) individual network modules construction for gene identification; and
3) examination of their aggregate network properties [40].
This approach assists in the identification of multiple disease related genes which can then assist as a
target in the further process of drug discovery. RNA-Seq readings can be exon, gene or other regions-
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of-interest. These expression levels have led to the development of various classification algorithms.
However, the analysis of complex datasets using computational tools is still inadequate, and there is no
single technique for classifying and analysing the RNA-Seq data. Additionally, the high dimensional
NGS data, including RNA-Seq, makes the problem even more challenging. The development of clas-
sification models for molecular level disease monitoring, diagnosis, and classification of diseases and
research into potential disease biomarkers is highly desired.

1.4.4 Conclusions from Literature Review

Parasites of malaria can be easily identified by analysing the digitized microscopic blood smears. The
same is, however, error prone, time consuming, and tedious. As a result, automation of the diagnostic
process is critical to reducing the time-consuming manual review and diagnosis process. The classifi-
cation of healthy and unhealthy cells into four types according to the respective life stages was done
using as many as 11 CNN-based deep learning models. The robustness of the models was evaluated by
experimenting on two cross-datasets of different type.

Whereas ResNet-18’s accuracy in binary classification was 97.68%, DenseNet-201’s accuracy in
multi-class classification was 99.40%. The cross-dataset experiments highlight the lack of robustness
in the deep learning approach as a weakness. Mobile-oriented architectures seem to be promising and
performed satisfactorily in the recognition and classification of type and stage of malaria parasites [66].

1.5 Motivation

The complex life cycle of malaria parasites features diverse developmental strategies for unique
adaptation in specific host environments. The main objective of our study is to select the top-ranked
genes from the scRNA-seq profiles at different stages of the Pf life cycle inside the infected RBC. We
employ a supervised learning algorithm coupled with feature selection algorithms to extract the most
relevant genes to predict the life cycle stages of plasmodium inside RBC. The first stage of the proposed
model is to optimize the quality data from the dataset by removing the redundant, noisy and irrelevant
genes (features). From the systematic literature review it can be concluded that:
1) GA based search technique is popularly used for feature selection.
2) GA is well suited for dealing with high dimensionality datasets.
3) GAs showed better performance than the other selection algorithms.

Hence, GA is employed in our proposed approach as the search algorithm in the feature selection
process. This subset can be further utilized in the second stage of the process, Classification, to produce
high classification accuracy. We tested the subsets using three classifiers: SVM, LR, and RF to ensure
that the investigation is carried out rigorously. The combination of the first and second stages of the pro-
posed model will achieve a better identification of the different Malaria Life Cycle stages. Additionally,
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the feature selection method is able to identify genes that significantly change expression across the life
cycle stages. UMAP projection of the cells based on these features supports the distinction of stages
using these features. We constructed the protein interaction network of these genes and performed a set
of topological analysis to provide hierarchies according to the importance of the genes in the network.
These genes can be used for disease diagnosis and drug targets.
Feature extraction, selection and classification of malarial erythrocytes are the major issues faced. The
features comprises of a combination of features such as the channel difference histogram, prediction
error R-G color and the co-occurrence of binary linear pattern. Feature selection and classification of
erythrocyte based on optimal feature set and a hybrid (k-NN, SVM and Naive Bayes) classifier was
attempted here. The hybrid classifier is hoped to provide improved results and sensitivity compared to
the three individual classifiers [7].
Our study presents a theoretical framework to select diagnostic markers and drug targets by implement-
ing ML techniques on sc-RNA-seq data.

1.6 Dimensionality Reduction

The sc-RNA expression dataset is highly dimensional. The dataset contains redundant character-
istics that behave as noise during model training. As a result, classification performance is degraded,
and computing time is increased. Dimensionality Reduction (DR) techniques are required to eliminate
redundancy and to retrieve irrelevant details that hinder performance. When the data contains a large
number of features, a model can become more complex. Complex models tend to overfit the data. By
lowering the number of features (dimensionality) in the data, DR reduces model complexity. The details
of the two methods for reducing the dimensionality of data is shown in Figure 1.7:

1.6.1 Feature Extraction

Feature extraction is a way to find the most important features, traits, or attributes of a dataset. Data
with several dimensions require the use of feature extraction to provide a more concise summary of
its categorization. New variables are created as combinations of the original variables to reduce the
dimensionality. I t is classified into two types: linear and nonlinear.

Linear feature extraction adopts data on a low-dimensional subspace. Matrix factorization is used
to project them on this subspace. Principal Component Analysis (PCA) is a linear feature extraction
technique that is mostly utilized for dimensionality reduction. It finds the principal components of the
data using the covariance matrix, eigenvalues and eigenvectors. These components represent a portion
of the variance in the data.

Several methods of nonlinear dimensionality reduction exist. For instance, mapping a low-dimensional
surface to a high-dimensional can reveal a nonlinear nature between the features. To map the features
onto higher-dimensional space, a lifting function is used. The relationship between the features in a
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Figure 1.7: Dimensionality Reduction [1].

higher space is linear, and thus it is easily detected. This is converted back into lower-dimensional
space, revealing the nonlinear nature. The difference between linear and nonlinear problems is shown
in Figure 1.8.

1.6.2 Feature Selection

A feature in a dataset is a quantifiable property of the observed process. The feature (gene) selection
method facilitates data comprehension, reduces processing requirements, alleviates the curse of dimen-
sionality, and enhances the performance of the classifier. Feature selection is the process of removing
noisy, and redundant features and identifying the relevant feature subset upon which the learning al-
gorithm improves its performance [67]. The feature selection process is usually used on datasets that
contain thousands of features with small sample size. Some of the main objectives of the feature se-
lection process are to reduce overfitting, to provide fast and cost-effective models, and lastly, to gain a
better insight into the underlying process that generated the data.
In addition to the standard method of feature selection, soft computing techniques (fuzzy logic, neu-
ral networks, and evolutionary algorithms are some examples) are used to choose features from high-
dimensional data. Numerous evolutionary techniques, such as the genetic algorithm, the ant colony
optimization algorithm, and the particle optimization algorithm, are commonly employed to achieve ef-
fective feature selection in high-dimensional datasets [68]. The filter, wrapper, and embedded methods
are the three main types of feature selection methods [69].
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Figure 1.8: Linear versus nonlinear classification problems [2].

1.6.2.1 Filter Method

In this method, the features are filtered based on the intrinsic properties of the data. The low-scoring
features are removed, and the optimal subset of features is input into the classification algorithm. This
method does not consider a predictive model in the evaluation. It is fast and simple and scales well with
high-dimensional data. It avoids overfitting, but sometimes does not pick the best features. Some of the
ranking methods are as follows [70]:

• Correlation criteria: This is used to determine the linear relationship between two features. The
Pearson’s correlation coefficient is used to determine it:

R(i) =
cov(xi, y)√

var(xi) ∗ var(y)
(1.1)

where cov is the covariance between the variables x and y and var is the variance of each of the
two variables.

• Mutual information: This metric is used to quantify the interdependence of features. A value of
0 indicates that two qualities are unrelated.

1.6.2.2 Wrapper Method

This is a feedback method that uses a machine learning algorithm to help choose the best features.
They use the performance of the classifier to figure out which features are good. They look through the
space of feature subsets and figure out how well one learning algorithm will do for each feature from
a feature set. To find the best subset of features, the wrapper method uses a blind search. There is no
way to be sure that this is the best subset without getting all the possible subsets. It is hard to choose
features in this way because it is NP-hard. It has a lower error rate. It selects a nearly perfect subset but
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the method’s primary disadvantage is that it is computationally costly. Because of the classifier, there is
a risk of overfitting than there is with filter approaches.

1.6.2.3 Embedded Method

Despite the filter method’s shorter computation time, a major disadvantage is that it is independent
of the classifier, typically resulting in inferior performance to the wrappers. The wrapper model, on the
other hand, has a significant computational cost, which is exacerbated further by the high dimensionality.
An intermediate solution is to employ hybrid or embedded algorithms that leverage the classifier to
provide criteria for ranking features. In comparison to the wrapper technique, embedded approaches are
more tractable and efficient and has a lower risk of overfitting.

1.7 Thesis Outline

In this research, we use machine learning to predict the various stages of the malaria life cycle.
In Chapter 2 we have briefly discussed the methodology, including the dataset, feature selection, and
prediction models that have been used in our study. Further, we also discussed the pipeline used in our
study. Chapter 3 presents a detailed account of the experiments performed and includes the results and
discussions. In Chapter 4, we have summarised the major inferences and contributions of our research,
as well as a discussion of the potential future directions.
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Chapter 2

Methodology

2.1 RNA-seq Dataset details

The single cell RNA-seq dataset utilized here is derived from the Malarial Cell Atlas, an open source
database of single cell transcriptomic data spanning the complete life cycle of malarial parasites. It is
freely accessible through a dynamic, user-friendly web interface (www.sanger.ac.uk/science/tools/mca/
mca/) [33]. For the current study, we considered the 10X scRNA-seq data of the intra-erythrocytic
stages of Pf in the human host. The dataset has 5066 rows and 6737 columns. Each row corresponds to
scRNA-seq read counts of a gene and each column corresponds to the same for a single cell. There are
5066 features in this dataset, which correspond to all the genes in each cell of the parasite. Additionally,
each cell is assigned one label among the four blood cycle stages (i.e. ring, early trophozoite, late
trophozoite, and schizont). Thus, we set out to utilize classification ML algorithms (see Section 2.3)
which would allow us to predict the life cycle stage of a cell based on the gene expression pattern.

2.2 Feature Selection using Genetic Algorithm

The idea behind evolutionary computation was that it could be utilised as a tool for optimization and
that solutions to problems could be evolved through the application of natural selection operators [71].
Earlier methods required describing jobs as finite-state machines and conducting mutations by changing
the state diagrams randomly. Genetic Algorithms (GA) were devised by John Holland as a population-
based algorithm. GAs work with a population of individuals that represent potential solutions to a given
problem. Each individual or chromosome is evaluated using a fitness function that measures how well-
suited this chromosome is as a solution. The best-fitting parents that survived crossover to produce
offspring. It is necessary to perform mutations in order to prevent GA from being caught at a good but
not ideal solution. The chromosomes that have survived in the population are the most optimal solutions
after many generations of evolution. [72]. As shown in Figure 2.1, the basic steps followed in GA are
as follows [73]:
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1. Randomly initialize a population of n chromosomes.

2. Evaluate fitness of each chromosome.

3. The best fitted individuals create new chromosomes by crossover and mutation.

4. Evaluate the new chromosomes.

5. If the termination condition is reached then return the optimal solutions, otherwise go to Step 3.

Figure 2.1: Basic steps of Genetic Algorithm.

2.2.1 GA Parameters

In this section, we will discuss the basic GA parameters [74].

2.2.1.1 Representation

GAs can employ any representation of individual genomes. The binary-coded GA is the most com-
monly used type of GA and is used for most of the development effort. Each chromosome in a binary
coding system is a vector comprising of 0s and 1s. A value of one indicates that the feature is currently
selected, whereas a value of zero indicates that it is currently not selected. As shown in Table 2.1, Fea-
tures 1, 3, 4 and 6 are selected, while Features 2 and 5 are not selected for that chromosome. These
features are also called genes of the chromosome.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6
Chromosome 1 0 1 1 0 1

Table 2.1: Representation of the chromosomes for a dataset containing 6 features.
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2.2.1.2 Initialization

It is important to start off the population with a wide variety of individuals or chromosomes to avoid
premature convergence. Usually, the first population is chosen at random, and the subsets are made from
the search space with a uniform distribution.

2.2.1.3 Selection

The Selection operator selects which individuals will be copied into the mating pool, from which
the next generation will be readied. The selection is performed to yield a mating pool with the same
size as the original population. The mating pool then serves as the parents on which genetic operators
(crossover and mutation) are used, interchanging and modifying the gene sets to generate a new genera-
tion. The probability of an individual being replicated into the mating pool is determined by the fitness
function of the individual. Individuals with a higher fitness level have a higher chance of being selected.

Some of the commonly used selection methods are tournament selection, rank selection and roulette
wheel selection. In the K-Way tournament selection procedure, we randomly select K individuals from
the population and choose the finest among them to become parents. The same procedure is followed
to choose the next parent. The individual with the maximum fitness level will win (Figure 2.2). In rank

Figure 2.2: Tournament selection [3].

selection, every individual in the population is ranked according to its fitness. The selection probability
depends upon their rank and not their fitness. Those who are ranked higher are favoured over those who
are ranked lower. In a roulette wheel selection, the roulette wheel is divided into n pies, where n equals
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the population’s total number of individuals. Each member receives a proportional share of the circle
based on its fitness score. The wheel is turned around a fixed point on its circumference. The portion
of the wheel immediately ahead of the fixed point is designated as the parent. An identical procedure is
repeated for the second parent. Clearly, a fitter individual has a larger pie on the wheel, which means
they have a better chance of landing ahead of the fixed point. Because of this, an individual’s chances
of being selected are directly related to their fitness.

2.2.1.4 Fitness Function

The fitness function is a function that takes a candidate solution to the problem as an input and tells
how ”fit” or ”good” the solution is for the problem at hand. The fitness function should have a smaller
computation time. It must be able to measure how fit a given solution is or how fit an offspring can be
made from that solution.

2.2.1.5 Crossover

Selecting the best chromosomes from the existing pool and putting them in the mating pool is the
purpose of the selection stage. Crossover which is sexual reproduction occurs first, followed by muta-
tion, in the mating pool. To provide the best possible offspring, two strings are randomly selected from
the mating pool and crossed. Some of the different methods of crossover are:

• Single Point Crossover: On the parent strings, a crossing point is randomly chosen. After that
point, the string is swapped between the two parents. As shown in Table 2.2, the parents P1 and
P2 mate to produce children or chromosomes C1 and C2 using the single point crossover method.
There are eight features in this example, and the crossover happens at the fourth index.

P1 1 0 1 0 0 1 1 1

P2 1 1 1 1 0 1 1 0

C1 1 0 1 0 0 1 1 0

C2 1 1 1 1 0 1 1 1

Table 2.2: Single point crossover operation.

• Uniform Crossover: A random selection of one of the parent chromosomes’ genes is used for
each gene. The crossover probability determines the parent at each gene position in this method.
As shown in Table 2.3, the parents P1 and P2 mate to produce chromosomes C1 and C2 using the
uniform crossover method.
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P1 0 0 0 0 0 0 0 0

P2 1 1 1 1 1 1 1 1

C1 1 0 0 0 1 1 0 1

C2 0 1 1 1 0 0 1 0

Table 2.3: Uniform crossover operation.

• OR Crossover: In the OR method, we do the OR operation between the two parents, P1 and P2

to produce the offspring C. Table 2.4 shows the OR crossover operation.

P1 1 0 1 0 0 1 1 1

P2 1 1 1 1 0 1 1 0

C 1 1 1 1 0 1 1 1

Table 2.4: OR crossover operation.

• AND Crossover: In the AND method, we do the AND operation between the two parents, P1

and P2 to produce the offspring C. Table 2.5 shows the AND crossover operation.

P1 1 0 1 0 0 1 1 1

P2 1 1 1 1 0 1 1 0

C 1 0 1 0 0 0 1 0

Table 2.5: AND crossover operation.

• XOR Crossover: In the XOR method, we do the XOR operation between the two parents, P1

and P2 to produce the offspring C. Table 2.6 shows the XOR crossover operation.

P1 1 0 1 0 0 1 1 1

P2 1 1 1 1 0 1 1 0

C 0 1 0 1 0 1 0 1

Table 2.6: XOR crossover operation.

22



2.2.1.6 Mutation

It is possible that individuals in the population will undergo mutation as a result of the crossover
operation that was used to produce the new offspring. A mutation is a small, random change to a
value that happens with a very small probability, which is called the mutation probability. Mutation is
critical because it keeps the population exploring the search space. It enhances population diversity by
preventing the population from becoming saturated with identical chromosomes. Some of the different
methods of mutation are:

• Bit Flip Mutation: We flip one or more random bits in bit flip mutation (Figure 2.3). This is used
for GAs that are binary encoded.

Figure 2.3: Bit Flip Mutation Operation

• Swap Mutation: In swap mutation, we randomly choose two locations on the chromosome and
switch their values (Figure 2.4).

Figure 2.4: Swap Mutation Operation

2.2.1.7 Generate New Population

In GA there are numerous approaches of managing populations from one generation to the next.
Given the limitation of maintaining a fixed population size, some individuals must be removed. Some
of the methods for generation replacement are:

• Elitist Replacement: In this method, the fittest person in the population is always passed down
to the next generation. This will guarantee that the best-fitted individuals are not destroyed.

• Total Replacement: In this method, only the new offspring of the previous generation enters the
next generation, and the parents of the previous generation are completely discarded. So, in each
generation, you get a new set of individuals.

• Steady State Replacement: At any given time, only a single population of individuals is main-
tained using this strategy. Two individuals are chosen from a population based on their fitness, and
their characteristics are subsequently modified through mutation and crossover. The replacement
operator then selects the chromosomes to be removed so that the newly created individuals can
join this single population. You have the option of specifying how much of the population should
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be replaced in each generation, as well as the replacement criterion that will be utilised in each
generation.

2.2.1.8 Termination Condition

In GA the termination condition is critical in defining when the GA run will terminate. It has been
noted that while the GA initially moves rapidly with improved solutions appearing every few iterations,
this tendency tends to saturate in the later phases with very small improvements. Some of the termination
conditions commonly applied include:

• When the population has remained unchanged for x iterations.

• When an absolute number of generations is reached.

2.3 Classification Algorithms

Classification is the process of identification of which of a set of categories or sub-populations an
observation belongs to. Usually, the individual observations are grouped into a set of quantifiable prop-
erties called features. These features may either be categorical or ordinal, integer or real-valued. In
the field of machine learning, observations are called instances, the variables termed as features are
grouped to form a feature vector, and the to be predicted categories are called classes. We have used
three classification algorithms in our study viz. Support Vector Machine, Logistic Regression and Ran-
dom Forest [75, 76].

2.3.1 Support Vector Machine

Support Vector Machine (SVM) is a popular supervised learning technique that can be used for clas-
sification and regression tasks. To classify the data points, SVM finds a hyperplane in an N-dimensional
space (N is the number of features). It sorts the data into two or more categories with the help of a
boundary to distinguish similar categories. SVM chooses the extreme points/vectors that help in creat-
ing the hyperplane. These extreme cases are called as support vectors, and hence algorithm is termed as
SVM.

As shown in Figure 2.5, the data can be classified into two categories, positive and negative. Let us
assume that the blue sample (positive) is female and the green sample (negative) is male. Our goal is to
differentiate between the males and females based on first studying the characteristics of both genders
and then accurately labeling the unseen data. Our next idea is to find a line that separates the points. Let
the equation of the line be:

mx+ c = 0 (2.1)

The hyperplane equation can now easily be written as:
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wT (x) + b = 0 (2.2)

where b is the intercept and bias term of the hyperplane equation. If a blue point is substituted in this
hyperplane equation, we will get a positive value mathematically:

wT (x) + b > 0 (2.3)

And the predictions from the negative group in the hyperplane equation would give a negative value
of that number, i.e.

wT (x) + b < 0 (2.4)

Figure 2.5: SVM classifier generating a two-dimensional line separating the two classes (green and
blue) into two separate groups [4]

There is no situation when everything is perfect and sometimes the classes are not linearly separable.
This means that we cannot expect the model to give us a hyperplane equation that is perfect for both
genders. There will always be one or more points that do not fall into their category even when the
best hyperplane equation is found. To solve this we can use kernels to convert the linear classifier to a
non-linear classifier to help us solve the problem.

2.3.2 Logistic regression

Logistic regression (LR) is a classification procedure that uses a discrete set of classes to assign
observations to them. Classification issues include determining if an email is spam or not, whether an
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online transaction is fraudulent or not, and whether a tumour is malignant or benign, etc. [77]. Logistic
regression translates its result into a probability value using the logistic sigmoid function (Figure 2.6).
The sigmoid function is used to convert expected values into probabilities. The function converts any
real value to a value in the range of 0 to 1.

σ(t) =
1

1 + e−t
(2.5)

Figure 2.6: Sigmoid function [5]

where t is given by:
t = θX (2.6)

and X are the input features. In the case of multiple features it becomes:

t = θ0 + θ1X1 + θ2X2 + θ3X3 + .... (2.7)

where X1, X2, and X3 are input features, and each input feature will have a randomly initialised
theta, θ0 being the initial bias term. The objective of this algorithm is to continuously update the theta
value in order to establish a link between the input data and the output label. We can use this to define
our LR model f with some threshold value:

f(t) =

1 σ(t) ≥ threshold

0 otherwise
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2.3.3 Random forest

Random Forest (RF) is a supervised ML algorithm that is used for classification and regression tasks.
It is a collection of decision trees constructed from a randomly chosen subset of training data. The steps
followed in the RF algorithm are as follows:

1. Select random samples from the dataset.

2. Construct decision tree for every sample. The decision tree predicts the results.

3. Voting will take place for every predicted result.

Figure 2.7 explains the working of the RF algorithm.

Figure 2.7: Working of the Random Forest algorithm [6]
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2.4 System Design

The flowchart of the entire pipeline comprises the following stages (Figure 2.8):

1. Dimensionality Reduction with Feature Selection.

2. Classification Pipeline.

Figure 2.8: The system design of the entire pipeline.

The dimensionality of the gene expression dataset is high. The dataset has redundant features which
act as noise while training a model. This results in poor classification performance and long computa-
tional time. Hence, the first stage is the feature selection stage using GA. This stage outputs Solution #1
as shown in the pseudo code in Figure 2.9. Solution #1 is then passed to stage 2 of the pipeline. These
optimized features are then used to train different models. We have used the SVM, LR and RF models
in our study. This yields the different evaluation metrics of the four different classes viz early troph,
late troph, schizont and ring.
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Figure 2.9: Pseudo code of the proposed method.
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2.5 Performance Evaluation Metrics

After selecting features and implementing a model and obtaining some outputs in the form of a
probability or a class, the next step is to determine the model’s effectiveness using test datasets. Various
performance metrics are used to compare various ML algorithms [78]. In our study, we have used the
following metrics:

2.5.1 Confusion Matrix

The confusion matrix is a table that compares the actual labels to the predictions made by the model.
The confusion matrix is divided into rows and columns, with each row representing instances of the
actual class and each column representing instances of the predicted class. In a sense, the Confusion
Matrix is not a performance metric per se, but rather a foundation upon which other performance metrics
are evaluated.

Figure 2.10: Confusion Matrix

As shown in Figure 2.10, 1 is a positive outcome and 0 is a negative outcome of some imaginary
model. Some of the terms associated with Confusion Matrix are:

• True Positive (TP): This is the scenario when both the actual and the predicted class of the data
point are 1.

• True Negative (TN): This is the scenario when both the actual and the predicted class of the data
point are 0.
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• False Positive (FP): This is the scenario when the actual class is 0 and the predicted class of the
data point is 1.

• False Negative (FN): This is the scenario when the actual class is 1 and the predicted class of the
data point is 0.

2.5.2 Mutual Information

Mutual Information (MI) is a measure of how much one variable’s uncertainty is reduced when the
other variable’s value is known. It is given by the formula [79]:

I(X1;X2) =
∑
X1

∑
X2

P (X1, X2) log
P (X1, X2)

P (X1)P (X2)
(2.8)

where P (X1, X2) is the joint distribution of the two variables. P (X1) and P (X2) are the marginal
distribution of the two variables. It is a dimensionless quantity that is measured in bits. Each element
of the confusion matrix represents the conditional probability of predicting a class y’ given the true
category y - p(y′|y). The joint probability of P (y, y′) is equal to the multiplication of the probability
of the true label P (y) and the conditional probability P (y′|y). P (y′) is given by the sum of joint
probability over true label y. We have used this to find the I(y; y′).

2.5.3 Accuracy

It is the most common way to measure the performance of classification algorithms and is defined
by the ratio of true predictions to the sum of true and false predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.9)

2.5.4 Precision

Precision is given by the ratio between the True Positives and all the Positives.

Precision =
TP

TP + FP
(2.10)

2.5.5 Recall

Recall attempts to calculate which portions of actual positives were correct. It can be defined math-
ematically as:

Recall =
TP

TP + FN
(2.11)
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2.5.6 F1 score

F1 score is the harmonic mean of precision and recall. F1 score is calculated mathematically as the
weighted average of precision and recall. F1 has a maximum value of 1 and a minimum value of 0. It
can be calculated using:

F1 =
2 ∗ precision ∗ recall
precision+ recall

(2.12)

2.5.7 Matthews’ Correlation Coefficient (MCC) score

MCC returns scores between -1 and 1, with 1 indicating perfect classification performance and -1
indicating 100 percent inaccuracy. Random prediction is represented by an MCC value of zero. The
coefficient can be calculated using:

F1 =
TP × TN − FP × FN√

((TP + FN)(TP + FP )(TN + FN)(TN + FP ))
(2.13)

The next chapter presents the details of the experiment carried out and the results obtained followed
by their discussions.

32



Chapter 3

Experimentation and Results

The results in terms of the number of features selected and the output of the classification pipeline
with and without feature selection is presented in this section.

3.1 Data visualisation and dimensionality reduction of the scRNA-seq

data

We used Seurat [80], an R-based Bioconductor package, to visualise and then apply dimensionality
reduction on the single cell RNA-seq data. We integrated the raw expression counts and metadata gen-
erated by Howick et al. [33], for downstream analysis to visualize the cells on a suitable manifold. Since
the published data had already undergone quality control, the cell counts were subjected to normalisa-
tion using the ‘LogNormalize’ method of the Seurat package. This involves a global normalisation of
cell counts with respect to the total expression, followed by log transformation. For further analysis,
it is useful to focus on genes that exhibit high variation over all the cells in the dataset. Hence, we
selected 1000 highly variable features (genes) from the data using the FindVariableFeatures() function.
The data was then subjected to scaling before applying the standard dimension reduction techniques
like PCA and UMAP. Next, PCA was performed on the data and the clusters produced from this lin-
ear dimensional reduction were annotated based on the blood cycle stages. Using the first 10 PCs, we
also performed a non-linear UMAP-based dimension reduction on the cells for a better projection and
annotated the clusters based on blood cycle stage. RunUMAP() function was used with dims = 1:10.
Figure 3.1 represents the UMAP of scRNA-seq counts of all the 5066 features. Non-linear dimensional
reduction of the expression values of all genes in the dataset is carried out. UMAP projection of the
four clusters for ring, early trophozoite, late trophozoite and schizont can be noticed distinctly. The cell
clusters are coloured based on the blood cycle stages of Pf.
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Figure 3.1: Three dimensional visualization of the cells from the scRNA dataset shows distinct

cluster of life cycle stages. UMAP of cells based on scRNA-seq counts of all variable features. The

cell clusters are colored based on the blood cycle stages of P.falciparum.

3.2 Classification without Feature Selection

This section presents the details of the classification results without using the feature selection stage.
Using all the features, the datset was trained on SVM, LR and RF. Figure 3.2 shows the accuracy of
SVM, LR, and RF. This is the baseline for our experiment. Without feature selection, SVM and RF
performed best with a measured classification accuracy of 89%. The least accurate algorithm was LR
(86%).
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Figure 3.2: Classification accuracy of different models without feature selection. The classification

accuracy are shown for different machine learning protocols namely SVM, LR and RF.

Table 3.1 presents the precision, recall, and F1 scores of the SVM model for the four classes. For the
late troph and ring classes, we achieved an F1 score of 0.91 and 0.95 each, while we got an average F1
score for early troph as 0.83. Schizont’s F1 score was the lowest at 0.74.

Malaria Life Cycle Stage
Metric (%)

precision recall F1-score

early troph 0.89 0.77 0.83
late troph 0.87 0.95 0.91
ring 0.93 0.97 0.95
schizont 0.86 0.64 0.74

Table 3.1: Test results of SVM model without feature selection.
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Table 3.2 presents the precision, recall, and F1 scores of the LR model for the four classes. For
the late troph and ring classes we achieved an F1 score of 0.88 and 0.94, respectively, while we got an
average F1 score for early troph as 0.78. Schizont was again the lowest at 0.68.

Malaria Life Cycle Stage
Metric (%)

precision recall F1-score

early troph 0.80 0.76 0.78
late troph 0.86 0.91 0.88
ring 0.93 0.95 0.94
schizont 0.78 0.61 0.68

Table 3.2: Test results of LR model without feature selection.

Table 3.3 presents the precision, recall, and F1 scores of the RF model for the four different classes.
For late troph and ring we have achieved an F1 score of 0.91 and 0.95, respectively. We got an average
F1 score for early troph of 0.82. Schizont was found to be the lowest at 0.72.

Malaria Life Cycle Stage
Metric (%)

precision recall F1-score

early troph 0.89 0.76 0.82
late troph 0.87 0.94 0.91
ring 0.93 0.98 0.95
schizont 0.86 0.62 0.72

Table 3.3: Test results of RF model without feature selection.

3.3 Experiment

This section introduces each of the followed steps in detail. A summary of the implementation of
the entire pipeline is depicted in Figure 3.3. In order to create an independent test set and improve the
classification validity and accuracy, the input data was divided into the training and testing sets in a ratio
of 80% and 20% respectively.

The training set was created to validate the feature selection while the test set served a similar vali-
dation role in the classification process. The training set is then processed through the GA pipeline [30].
GA is a stochastic evolutionary optimization technique. It starts with an initial randomized set of pop-
ulation of features and then creates another population using subsets of the available features whose
individuals are evaluated using a predictive model for the target task. The selection technique is used to
pick the higher fitness subsets to be carried forward into the next generation for applying the cross-over
(updating the winning feature sets with features from the other winners) and mutation (probabilistically
introducing or removing some features) genetic operators. This process is iterated to yield the optimum
features for the set termination criteria. It is important to assess the performance of the GA pipeline.
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Figure 3.3: Flowchart of the entire pipeline.

How does the GA perform with different predictive models? Are the solutions obtained from the GA
pipeline optimal? How many generations does it take to reach the optimal solution? How much time
does it take to reach the optimal solution? We intend to address these questions in the coming sub-
section. Our study’s objective is to identify the optimal set of features within a reasonable time. We
performed two different experiments for that.

After the GA has selected the optimal features, these features are then subjected to different classifi-
cation algorithms (SVM, RF, LR) to measure the classification accuracy of the selected feature set. This
yields us the classification accuracy of the four classes viz early troph, late troph, schizont and ring.

3.3.1 Results and Discussion

In Experiment 1 we have used the RF as the predictive model where as in Experiment 2 we have
used the LR as the predictive model. The common parameters used for both the experiments include:

• Initial Random Population: 50
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• Selection Operator: Tournament Selection

• Crossover Operator: Uniform Crossover with crossover probability 0.5

• Mutation: Bit Flip Mutation with mutation probability 0.2

• Generate New Population: Elitist Replacement

• Termination Condition: Number of generations 50 and if no change in the best-fitted individual
for 5 generations.

We ran both the experiments using a different number of features every time. The number of features
used in the searches is 50, 100, 150, 200, 250 and 300. The results presented in Table 3.4 compares the
accuracy rates achieved by both the experiments for 50, 100, 150, 200, 250 and 300 features. Comparing
the numbers for both the experiments, we can infer that both the experiments have achieved a similar
accuracy rate. Experiment 1 gave better accuracy for 150 and 300 features in comparison to Experiment
2. Experiment 2 gave better accuracy with 50 and 250 features when compared to Experiment 1. For
100 and 200 features, both the experiments were comparable. Next, we measured the time taken by the
experiments to select the optimal features.

Number of Features Best accuracy rate by Experiment 1 Best accuracy rate by Experiment 2
50 0.79 0.85
100 0.81 0.82
150 0.87 0.83
200 0.85 0.87
250 0.84 0.87
300 0.89 0.84

Table 3.4: Classification accuracy rates for Experiment 1 and Experiment 2.

The results presented in Table 3.5 compare the time taken by both the experiments for 50, 100,
150, 200, 250 and 300 features. The time taken by Experiment 1 is in the range of 309 - 709 seconds
whereas the time taken by Experiment 2 is in the range of 3109 - 12203 seconds. As shown in Figure
3.4, Experiment 2 has taken significantly more runtime compared to Experiment 1 under the same
environment.
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Number of Features Time taken by Experiment 1 (sec) Time taken by Experiment 2 (sec)
50 709 2274
100 550 3109
150 431 3205
200 309 8155
250 309 12203
300 465 4274

Table 3.5: Time taken to select optimal features for Experiment 1 and Experiment 2.

We achieved similar accuracy rates, so we decided to prioritise the time taken for running the exper-
iments. Hence, for all further experiments, we eventually decided to use the Random Forest model for
the fitness function of the GA pipeline.

Figure 3.4: Time taken by Experiment 1 and Experiment 2 for different number of features.
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3.4 Classification with Feature Selection

The main aim of our study was to remove the redundant noise in our dataset so that the overall
classification accuracy can be improved. We used the GA pipeline with the following parameters for
this experiment:

• Initial Random Population: 500

• Selection Operator: Tournament Selection

• Crossover Operator: Uniform Crossover with crossover probability 0.5

• Fitness Operator: MCC score of Random Forest model

• Mutation: Bit Flip Mutation with mutation probability 0.2

• Generate New Population: Elitist Replacement

• Termination Condition: Number of generations 100 and if no change in the best-fitted individual
for 20 generations.

The number of features that we considered for this experiment were 500, 1000, 1500, 2000, 2500
and 3000. The results in Table 3.6 show the time taken and the accuracy rates for different number of
features. We have taken the best accuracy results amongst all the three models viz. SVM, LR, and RF.

Number of Features Time taken by experiment (sec) Best accuracy rate by experiment
500 356 0.87
1000 449 0.89
1500 380 0.90
2000 368 0.90
2500 578 0.90
3000 682 0.90

Table 3.6: Time taken and classification accuracy rates for Classification with Feature Selection.

The total number of features in the dataset was 5066. The best classification accuracy achieved
without feature selection was 89% (Section 3.2). We can see from Table 3.6 that as we reduce the
number of features, the best accuracy achieved by our model is very similar. This proves that there is
a lot of redundant data that can be removed from the dataset. Hence, we set the maximum number of
features at 500 for our further experiments. This means that we will want to reduce the dataset from
5066 to at least 500. This leads to a reduction of the dataset by 90.1%. In the experiment in this section,
we changed some of the parameters so that we could get better accuracy results for a maximum of 500
features. We changed the initial random population to 500 and we set the termination condition to 100
generations or 20 generations if there is no change in the generations. In the coming subsections, we
will discuss the results of the GA pipeline with the maximum number of features set at 500.
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3.4.1 GA convergence

We used the MCC scores of the Random Forest classifier as a fitness function for our experiment.
Table 3.7 shows the maximum MCC scores achieved in each generation by GA. Generation 0 is the

Number of generations Maximum MCC scores
0 0.81628465
1 0.82654331
2 0.83440726
3 0.83892729
4 0.84507526
5 0.84507526
6 0.84511502
7 0.84511502
8 0.84695042

9 - 28 0.84695042

Table 3.7: Maximum MCC scores achieved by the GA pipeline.

initial random individual selection with a maximum MCC score of 0.81628465. We can see that from
generation 1 to generation 8, the maximum value of MCC scores of the population has increased from
0.82654331 to 0.84695042, indicating that the GA was able to reach a better optimal solution from
generation to generation. After that, from generation 9 till generation 28, the maximum value of MCC
scores remains the same (0.84695042) for 20 generations, indicating that the GA has converged to an
optimal solution. This was the termination criteria set by us to end the GA pipeline.

Figure 3.5: Maximum MCC scores Vs Number of GA generations.

41



We kept the maximum number of generations at 100, and the GA converged within this number
of generations to reach the optimal solution. Figure 3.5 displays the relationship between the number
of generations needed to reach the optimal value using GA. We can see that from generation 0 till
generation 8, the MCC value increased, and then for the next 20 generations the value remained constant,
indicating the convergence.

3.4.2 Number of features selected

The GA pipeline outputs the most optimal features and has removed the redundant features. Table
3.8 shows the details of the number of features. The initial number of features was 5066 out of which a
subset of 378 features was selected using the GA. Thus the dataset was reduced by 92.5%.

Number of Features
Full Dataset 5066

Features Selected after GA pipeline 378

Table 3.8: Numbers of Features selected

3.4.3 Classification Results

Figure 3.6: Classification accuracy of different models with feature selection. The classification accu-

racy are shown for different machine learning protocols namely SVM, LR and RF after selection of the

378 feature following genetic algorithm.

.
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The next step was to use the GA based optimally selected 378 features in the classification pipeline.
We trained our SVM, LR, and RF models using the optimal features. Figure 3.6 shows the classification
accuracy of SVM, LR, and RF models. RF performed best with the classification accuracy measured
as 92%. SVM and LR gave 91% and 88% accuracy respectively. The followup subsections present a
detailed review of the test results for the SVM, LR, and RF models, respectively.

3.4.3.1 Using multi-class Support Vector Machine

Table 3.9 presents the precision, recall, and F1 scores of the SVM model for the four classes. For
late troph and ring, we have achieved an F1 score of 0.93 and 0.96, respectively. We got a F1 score for
early troph at 0.85. Schizont was the worst, at 0.79.

Malaria Life Cycle Stage
Metric (%)

precision recall F1-score

early troph 0.91 0.79 0.85
late troph 0.89 0.97 0.93
ring 0.94 0.97 0.96
schizont 0.91 0.70 0.79

Table 3.9: Test results of SVM model with Feature Selection.

3.4.3.2 Using Logistic Regression

Table 3.10 presents the precision, recall, and F1 scores of the LR model for the four different classes.
For late troph and ring, we have achieved an F1 score of 0.90 and 0.95, respectively. We got a F1 score
for early troph at 0.83. Schizont was the worst, at 0.68.

Malaria Life Cycle Stage
Metric (%)

precision recall F1-score

early troph 0.86 0.79 0.83
late troph 0.88 0.92 0.90
ring 0.94 0.96 0.95
schizont 0.74 0.63 0.68

Table 3.10: Test results of LR model with Feature Selection.

3.4.3.3 Using Random Forest

Table 3.11 presents the precision, recall, and F1 scores of the RF model for the four different classes.
For late troph and ring, we have achieved an F1 score of 0.94 and 0.96, respectively. We got a F1 score
for early troph at 0.87. Schizont was the worst at, 0.79.
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Malaria Life Cycle Stage
Metric (%)

precision recall F1-score

early troph 0.93 0.82 0.87
late troph 0.90 0.97 0.94
ring 0.95 0.97 0.96
schizont 0.91 0.70 0.79

Table 3.11: Test results of RF model with Feature Selection.

3.4.4 Confusion matrix for the three models

(a) (b)

(c)

Figure 3.7: Confusion matrix of different models show the prediction accuracy for different stages. The

heatmaps display the confusion matrix in predicting the four different stages as indicated after feature

selection for three different models (A) SVM (B) LR (C) RF models.
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Figure 3.7 shows the confusion matrix along with the heatmaps in predicting the four stages after
feature selection for the three models. The confusion matrix for the SVM model shows that 44 samples
were predicted as late troph which should have been labeled as early troph. Similarly, 31 samples were
predicted as late troph which were otherwise labeled as schizont. For late troph class, 15 samples were
misclassified as early troph. For ring class, 6 samples were misclassified as early troph. The confusion
matrix for the LR model shows that 40 samples were predicted as late troph which should have been
labeled as early troph. Similarly, 40 samples were predicted as late troph which were otherwise labeled
as schizont. For late troph class, 29 samples were misclassified as early troph. For ring class, 9 samples
were misclassified as early troph. The confusion matrix for the RF model shows that 35 samples were
predicted as late troph which should have been labeled as early troph. Similarly, 31 samples were
predicted as late troph which were otherwise labeled as schizont. For late troph class, 10 samples were
misclassified as early troph. For ring class, 8 samples were misclassified as early troph. These were
some of the common misclassifications in all three models.

3.5 Comparison of classification with feature selection and without fea-

ture selection

Figure 3.8 shows a comparison between the classification accuracy of without feature selection vs.
with feature selection for the three models. It demonstrates the legitimacy of the selected features. We
have reduced our feature set from 5066 to 378, using which we achieved an improved accuracy of 91%
in the SVM model, 88% in the LR model, and 92% in the RF model. For the SVM model, without
feature selection, we got a F1 score of 0.83, 0.91, 0.95, and 0.74, whereas, with feature selection, we
got a F1 score of 0.85, 0.93, 0.96, and 0.79 for early troph, late troph, ring, and schizont, respectively.
For the LR model, without feature selection, we got a F1 score of 0.78, 0.88, 0.94, and 0.68, whereas,
with feature selection, we got a F1 score of 0.83, 0.90, 0.95, and 0.68 for early troph, late troph, ring,
and schizont, respectively. For the RF model, without feature selection, we got a F1 score of 0.82, 0.91,
0.95, and 0.72, whereas, with feature selection, we got a F1 score of 0.87, 0.94, 0.96, and 0.79 for early
troph, late troph, ring, and schizont, respectively. Using the selected features, we achieved similar or
better F1 scores across all four classes, in all three models. This proves the robustness of the features
selected from the GA pipeline. For the early troph class, we achieved the best F1 score of 0.87 from the
RF model. For the late troph class, we achieved the best F1 score of 0.94 from the RF model. For the
ring class, we have achieved the best F1 score of 0.96 from both the SVM and RF models. For schizont
class, we have achieved the best F1 score of 0.79 from the SVM and RF model. The schizont class has
seen lesser F1 scores than the others, this could be because of the lesser number of schizont cells in the
dataset.
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Figure 3.8: Classification accuracy with feature selection vs without feature selection demonstrate the

legitimacy of the selected features. The bar graphs display a comparison between the values of accu-

racy for the three models and for classification with feature selection and without feature selection as

indicated.

We also calculated the mutual information (MI) between the predicted labels and the true labels of
the three models using the joint probabilities from the confusion matrix (see Subsection 2.5.2). For
instance, C(1,1) of the confusion matrix represents the joint probability P(X, Y) where X= true label of
early troph and Y corresponds to correctly predicted early troph. Similarly C(1,2) would reflect the joint
probability P(X,Y) where X = true label of early troph while Y = incorrectly predicted to be late troph.
Figure 3.9 shows the comparison of MI with and without feature selection. One of the advantages
of displaying accuracy using mutual information is that the upper limit of the mutual information is
exactly known. So, the accuracy of the model can be compared with the ideal case. In our case, since
the number of labels is four, the maximum possible mutual information for an error-free case is 2 bits,
however, maximum information acquired by the models is 1.28 bits here.
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Figure 3.9: Mutual information with and without feature selection. The bar graphs display a comparison

between the values of mutual information in bits between predicted and actual labels for the three models

and for classification with feature selection and without feature selection as indicated.

3.5.1 Classification with randomly selected 378 features

In order to test whether the GA-based feature selection algorithm is able to select the features appro-
priately, we randomly chose 378 features from our dataset and evaluated the prediction accuracy using
the SVM, LR, and RF models. We achieved an accuracy of 0.81, 0.79, and 0.80 for the models. Table
3.12 shows the F1 scores of the different classes for the three models.

Malaria Life Cycle Stage
F1 scores

SVM LR RF

early troph 0.63 0.61 0.60
late troph 0.86 0.85 0.86
ring 0.87 0.84 0.86
schizont 0.72 0.69 0.71

Table 3.12: F1 scores of different models of different classes with randomly selected 378 features.

The accuracy and the F1 scores of this experiment were lower when compared to the classification
results with feature selection using the GA pipeline (see subsection 3.4.3). This results demonstrate the
legitimacy and supremacy of the feature selection method.
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3.6 Construction and Analysis of Protein-Protein Interaction Network

Figure 3.10: Protein-protein interaction network exhibits different clusters.

The graph shows the protein protein interaction network of the 378 proteins selected by the feature

selection method. The different colors indicate different identified clusters.

Understanding protein-protein interactions (PPIs) is critical for cell physiology in normal and patho-
logical states because they are required for practically every process in a cell [81]. Protein-protein
interaction networks (PPIN) are graphs of the interactions between proteins in a cell. Protein-protein in-
teraction happens in specified binding areas and serves a specific function. The feature selection method
provided us with 378 proteins in Plasmodium falciparum. We used the Search Tool for the Retrieval
of Interacting Genes/Proteins database (STRING 11.0b) [82] to construct the PPI network associated
with these proteins. STRING can then construct a PPI network containing all of these proteins and their
connections. Their interactions were generated with high confidence from high-throughput lab exper-
iments and prior information in curated databases (sources: experiments, databases; Scores ≥ 0.90).
The network construction shows a set of highly connected modules (Figure 3.10).
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3.6.1 Topological Analysis of the PPIN

Various topological measures are generally used to evaluate both the global and node characteristics
in the PPINs, including degree (k), between centrality (BC), eccentricity, closeness centrality (CC),
eigenvector centrality (EC), and clustering coefficient [83]. These are the definitions of these measures:

• Network size: The total number of nodes N is called the size of the network

• Degree: The number of links a node has (i.e., the number of its direct neighbors) is called its
degree k.

• Network paths: A network path refers to a sequence of links that connect two nodes A and B

• Network diameter: The diameter dmax of a network is the longest of all shortest paths between
any two nodes.

• Between Centrality: Between Centrality counts the number of shortest paths that pass through a
node.

• Eigenvector Centrality: measure of the degree of the node as well as the degree of its neighbors.

• Closeness Centrality: measure of how close is a vertex to the other vertices [sum of the shortest
path distances].

• eccentricity : The eccentricity of a node in a graph is defined as the length of a longest shortest
path starting at that node.

• Clustering coefficient: clustering coefficient is a measure of the degree to which nodes in a graph
tend to cluster together.

Here, highest degree nodes are identified using the degree distribution. Additionally, we have used
Markov Clustering (MCL) Algorithm to find the clusters in the network. Among these clusters, we
identified clusters which also contain the node with the highest degree and high BC.

This PPIN is composed of 378 nodes with the number of edges: 600, average node degree: 3.17,
average local clustering coefficient: 0.309, expected number of edges: 621, PPI enrichment p-value:
0.00015. We can see that proteins in the red cluster (designated as 1st cluster) have the highest degree
and high betweenness centrality. So, we can consider the red cluster as disease module. We analysed
other topological properties like degree, BC, eccentricity, CC, EC, clustering coefficient, etc of this Red
cluster using Gephi [84].

The proteins in Table 3.13 from red cluster have high degree and betweenness centrality (BC). In
this cluster, the number of nodes: 36, number of edges: 252, average node degree: 14, average local
clustering coefficient: 0.83, expected number of edges: 127, PPI enrichment p-value < 10−6. We can
see that this cluster has lesser nodes with high clustering coefficient. So, this is a small world network.
We can see from the above table that C6KSW6 and C6KSY0 have the highest degree with high BC. We
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considered these two proteins as the hubs or bottlenecks as these nodes have high degree (k) and BC.
We have chosen 3 more proteins that have high degree and BC to consider as the backbone of the PPIN.
These proteins are Q8I2V4, Q8IAM1, and Q8I4R5. These 5 proteins are highly connected in PPIN and
have control over the network.

Proteins
name

Degree betweeness
centrality

Description

C6KSW6 29 116.68 Leucine-rich repeat protein
C6KSY0 29 83.89 AP2 domain transcription factor, putative
Q8I2V4 25 31.35 Regulator of chromosome condensation-PP1-interacting pro-

tein
Q8IAM1 25 26.76 AP2 domain transcription factor, putative
Q8I4R5 23 41.62 Rhoptry neck protein 3

Table 3.13: Topological analysis of the PPI network of the selected proteins.

In order to delineate the role of the PPN clusters, gene ontology (GO) enrichment analysis were
performed separately for different proteins belonging to the 6 clusters as designated in the Figure 3.10
and GO terms having enrichment p-values less than 0.05 are selected. The 1st cluster is found to be
enriched for the Rhoptry protein family which is known to play crucial role in the virulence of the
parasite inside the host [85]. The 2nd cluster proteins predominately belong to the apical complex
family which mediate host penetration and invasion [86]. The 4th cluster is enriched with ribosomal
protein plausibly to regulate translation during the IE life cycle stages [87, 88]. The fifth cluster is
composed of proteins belonging to symbiont containing vacuole membrane which is likely central to
nutrient acquisition, host cell remodeling, waste disposal, environmental sensing, and protection from
innate defense etc [89]. One of the components of 6th cluster is found to be the proteins in the nucleolus
which are important for regulation of ribosomal biogenesis [90]. Out of the 5 proteins with high degree
and betweeness in the PPI network, Q8I4R5 (from the red cluster) showed p-value less than 0.05 in the
GO enrichment analysis. We see that Q8I4R5 is the UniProt ID (RON3 - rhoptry protein) [91]. It could
be a potential target for drug design as RON3 affects functional translocation of exported proteins and
glucose uptake.

The function of a membrane protein complex called the Plasmodium translocon of exported proteins
(PTEX), which exports specific parasite proteins across the parasitophorous vacuolar membrane (PVM)
that encases the parasite in the host RBC cytoplasm, is essential for Plasmodium spp. survival within
the host red blood cell (RBC). The core of PTEX has three proteins: EXP2, PTEX150, and the HSP101
ATPase. Only EXP2 is a membrane protein out of these three proteins. Studying the PTEX-dependent
transport of members of the exportome, we found that when the parasite rhoptry protein RON3 was
conditionally disrupted, exported proteins such as the ring infected erythrocyte surface antigen (RESA)
were unable to move in parasites. Additionally, RON3-deficient parasites did not progress through the
ring stage, and their intake of glucose was drastically reduced. The results show that RON3 affects
two translocation processes, including the movement of the parasite exportome through PTEX and the
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Figure 3.11: Different enriched biological function for first six protein-protein interaction clus-
ters. The p-values of the enrichment of different gene ontologies for the six clusters of PPI network as
indicated by the color code. The horizontal dashed line represents a threshold of 0.05.

movement of glucose from the RBC cytoplasm to the parasitophorous vacuolar (PV) space, where it can
enter the parasite via the hexose transporter (HT) in the parasite plasma membrane [91]. (see Figure
3.11)

3.7 Expression Profile of the Selected Features

The analysis above provides us a set of proteins which are associated with the progression of the
malaria pathogen through different stages of the life cycle. Thus, the expression pattern of these proteins
would elicit the identity of the stages. In order to investigate the overall expression pattern of the genes
across the different stages, we extracted the selected 378 features from the dataset. For each feature,
we find the average RNA-seq read counts for all the four classes (early troph, late troph, schizont and
ring). The average values are then transformed into log scale. We observed that genes fall into different
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clusters according to the expression patterns (Figure 3.12) and also the expression patterns vary among
the stages. For instance, the genes at the bottom have a very low expression in ring phase. Similarly,
genes at the top cluster are displaying low expression for all stages. These expression patterns may be
harnessed to look for specific markers for different stages. Additionally, we visualised the clustering
behaviour of cells after feature selection by GA, using the 378 features via the Seurat package. As done
previously,the normalized counts were subjected to linear and non-linear dimensionality reduction using
PCA and UMAP respectively. Figure 3.13 shows clear clusters of all the four blood cycle stages - ring,
early troph, late troph and schizont, which supports that the selected features can serve as markers for
the respective stages.

Figure 3.12: The expression profiles are distinct among the stages. Expression Profile of the selected
genes across the different stages. The heatmap shows the average RNA-count of the selected 378 genes
across the different stages as indicated. A hierarchical clustering is performed on the expression levels
in order group genes with similar expression patterns indicated by the dendrogram.

52



Figure 3.13: Three dimensional visualization of the cells based on selected features.UMAP of cells
using 378 features. The cell clusters are colored based on the blood cycle stages of P.falciparum.

3.8 Tools Utilized

The data we used is freely accessible as a processed dataset through a user-friendly web interface
(www.sanger.ac.uk/science/tools/mca/mca/) [33]. Our dataset has 5066 rows and 6737 columns. Each
row corresponds to single cell and each column corresponds to a gene. We have 5066 features in our
dataset and have four malaria life cycle stages (early troph, late troph, ring, and schizont).

Ada, the High Performance Computing Data Center of International Institute of Information Tech-
nology Hyderabad, India was utilized for the computation. It consists of 92 nodes, each equipped with
dual Intel Xeon E5-2640 v4 processor, 128 GB RAM, two scratch disks (2 TB SATA and 960 GB SSD
SATA) and four Nvidia GTX 1080 Ti / RTX 2080 Ti GPUs. The cluster has a total of 1472512 GPU
cores, 3680 CPU cores and 11776 GB RAM. For our experiment we have used 40 cores with maximum
memory per CPU as 2 GB on a Linux Ubuntu operating system. The proposed model is implemented
using Python with the genetic selection library for the GA implementation and the sklearn library for
the classification algorithms. The relevant data and python scripts can be found in this github code link.

We used the R-based Seurat (v4.1.0) package developed by Satija lab [80] for visualisation and di-
mensionality reduction of single cell RNA-seq data. This was implemented in R (v4.1.3), run on RStudio
environment (v1.3.1093). We followed the standard pre-processing workflow, normalisation, linear and
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non-linear dimensionality reduction recommended by Seurat developers with default parameters, unless
otherwise mentioned in the results section.

The feature selection method provided us with 378 proteins in Pf. We used the Search Tool for the
Retrieval of Interacting Genes/Proteins database (STRING 11.0b) [82] to construct the PPIN associated
with these proteins. STRING software https://string-db.org/ can then construct a PPIN
containing all of these proteins and their connections. Their interactions were generated with high
confidence from high-throughput lab experiments and prior information in curated databases (sources:
experiments, databases; Scores ≥ 0.90). We can see that proteins in red cluster have highest degree and
high BC. So, we can consider red cluster as disease module. We have also analysed other topological
properties like degree, BC, eccentricity, CC, EC, clustering coefficient, etc of this Red cluster using
Gephi [84] software.
In the next chapter we present the major results and discussion of our research along with the potential
future research directions.
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Chapter 4

Conclusions

In this research we employ supervised learning algorithm coupled with feature selection algorithms
to extract the most relevant genes in predicting the life cycle stages of Plasmodium falciparum inside
RBCs. The present study presents a two-stage model for feature selection and classification leading to
improved classification of the different stages of the Malaria Life Cycle. This was achieved in the first
stage of modeling by extracting the relevant features from the total data set (5066 features) considered
for analysis. The popular GA based search optimization technique for feature selection was applied on
single-cell transcriptomics for dealing with high dimensionality datasets and dimensionality reduction.
Features are chosen based on their class variants for higher efficiency and accuracy, transforming the
selected elements into a lower dimension. The study’s main finding is that using a feature selection
procedure before applying a classification algorithm results in more accurate predictions. The use of
GA as a feature selection process significantly reduced the number of features included in the dataset.

Next, we constructed PPINs between our proteins obtained after employing feature selection algo-
rithm and conducted network analysis on this PPIN using the STRING 11.0b and Gephi software. A set
of topological analysis was performed using various topological measures (including degree, between
centrality, eccentricity, closeness centrality, eigenvector centrality, and clustering coefficient to estimate
and evaluate the node characteristics in the PPINs [83]. We found degree and betweeness centrality of
each protein though this calculation to provide hierarchies according to importance of the genes in the
network. Proteins having high degree and betweeness centrality tend to assert more control over the
network function and can thus be considered as drug targets for future studies.

In the second stage the reduced subset of 378 features is further utilized for high accuracy multi-class
classification. For the four-class classification of the life cycle of malaria parasite based on oriented
gradients and local binary pattern features, a three-pronged approach employing SVM, LR and RF
techniques is used. On using the reduced 378 features, RF performed best with a classification accuracy
of 92% while SVM had a 91% accuracy and LR gave 88% accuracy. Even for the reduced features
dataset we achieved similar performance for all the four classes, across all the three models. Further,
randomly chosen features from our dataset of 378 were also evaluated using the SVM, LR, and RF
models. We achieved an accuracy of 81%, 79%, and 80% for the three respective models, hence, proving
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the robustness of the features selected using the GA approach. The proposed research methodology can
be likely used for improved malaria diagnosis and drug targets. For further research, the hybrid methods
for feature selection, the impact of parameter fine tuning on various algorithms’ levels and the use of
other methods including Ensemble Learning may be attempted.
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