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Abstract

Malaria, which is spread by the female anopheles mosquito, is a highly fatal disease that affects
many parts of the world, with up to 0.4 million deaths reported worldwide. The detection of malaria
infection levels is based on vital gene expressions. Experts quantify malaria parasite-infected RBCs
and classify their life cycle stages at the macroscopic level in order to make informed decisions. Sev-
eral computational approaches have recently been proposed to avoid the dimensionality problem and
produce accurately predicted results. Our study presents a theoretical framework to select diagnosis
markers and drug targets by implementing ML techniques on sc-RNA-seq data. The main objective is
to select the top-ranked genes from the scRNA-seq profiles at different stages of the Plasmodium fal-
ciparum (Pf) life cycle inside infected RBC. We employ a supervised learning algorithm coupled with
feature selection algorithms to extract the most relevant genes to predict the life cycle stages of Pf inside
RBC.

The first stage of modeling is to optimize the quality of data from the dataset (5066 features) by
removing the irrelevant features. Genetic Algorithm (GA) based search technique is popularly used for
feature selection and dealing with high dimensionality datasets. This reduced subset (378) is further
utilized in the second stage of high accuracy multi-class classification.

In this work, a GA-based dimensionality reduction technique is used on single-cell transcriptomics
to obtain an optimised subset of features from a larger data set. To separately transform the selected
elements into a lower dimension, features are chosen based on their class variants, taking into account
increased efficiency and accuracy. We constructed the protein-protein interaction network (PPIN) of
these genes and performed topological analysis using the Search Tool for the Retrieval of Interacting
Genes/ Proteins database (STRING 11.0 b) and Gephi software to provide hierarchies according to the
importance of the genes in the network. Various topological measures are estimated to evaluate the
node characteristics in the PPINs, including degree, between centrality, eccentricity, closeness central-
ity, eigenvector centrality, and clustering coefficient. Proteins having a high degree and betweenness
centrality tend to assert more control over the network function. We also performed gene ontology
analysis to determine the role of proteins in the parasite’s life cycle progression.

For the multi-class classification of the life cycle of malaria parasite based on oriented gradients
and local binary pattern features, a three-pronged approach employing the multi-class Support Vector
Machine (SVM), Logistic Regression (LR), and Random Forest (RF) techniques are used. On using
these 378 features, RF performed best with a classification accuracy of 92% while SVM had a 91%
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accuracy and LR gave 88% accuracy. By merely using the 378 features, we achieved similar or better
performance scores for all four classes, across all three models. Further, randomly chosen features from
our dataset of 378 were also evaluated using the SVM, LR, and RF models. We achieved an accuracy of
81%, 79%, and 80% for the three respective models. This proves the robustness of the features selected
using the GA-based approach. The proposed research methodology can be likely used for improved
malaria diagnosis and drug targets.
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Chapter 1

Introduction

1.1 Malaria

Malaria is a deadly disease caused by the Plasmodium parasite and is transmitted through the bite

of a female Anopheles mosquito. The four common Plasmodium species are Plasmodium (falciparum,

vivax, malariae and ovale) [7] and two of these species falciparum and vivax are of the greatest threat.

Plasmodium falciparum (Pf)is the most prevalent on the African continent.P. vivaxis dominant in

most countries outside of sub-saharan Africa. This plasmodium attacks the red blood cells (RBCs) and

the degree of malaria can be estimated by the quantity of infected RBCs [8]. If not treated, Pf malaria

can progress to death within a span of 24 hours. In 2020, 241 million cases of malaria were estimated

worldwide, malaria deaths stood at 627000 in 2020 [9]. Plasmodium species cause human malaria, with

majority of the estimated 0.4 million annual deaths accounted for the deadliest unicellular, protozoan

malaria causing parasite Pf. Of all the Plasmodium species, Pf has the quickest time for the develop-

ment of infection symptoms. The incubation phase may last nine to thirty days. Malaria symptoms

include high fever, tiredness, vomiting and headache and even seizures and death in some severe cases.

If not properly treated, the disease may recur even months later. The most common symptom of malaria

is paroxysm. Every two days, there is a cyclical occurrence of sudden coldness followed by shivering,

fever, and sweating. Malaria can lead to several serious complications including development of respira-

tory disorder. Non-cardiogenic pulmonary oedema, pneumonia, and severe anaemia are a few potential

reasons. Infection with Pf can cause severe cerebral malaria, which is distinguished from other types of

fever by retinal whitening.It causes spleen and/or liver enlargement, as well as low blood sugar, severe

headache, and haemoglobin in the urine with kidney failure. [10, 11].

1.2 Malaria Parasite Life Cycle

The growth and survival of plasmodium through the reproduction and development process in dif-

ferent hosts during its entire life cycle occurs by more than 5,000 genes and associated proteins. These
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genes also evade the different responses of the host that otherwise may lead to their destruction.

Figure 1.1: The life cycle of a malaria parasite.

The complex life cycle (Figure 1.1) of malaria parasites adapts diverse developmental strategies, each

of which is adapted to thrive in the particular host environment. Malaria transmission occurs through

female anopheles mosquito (vector). When it feeds on an infected human it ingests gametocytes -

the sexual form of the parasite [12]. Male and female gametocytes mate in the mosquito's gut and

after meiosis they move through the midgut wall forming an oocyst and leading to the development of

thousands of sporozoites which are then injected into a human during the next bite, rapidly reaching

the liver and infecting the hepatocytes. Later they start replicating asexually. Around 15 days later the

liver schizonts are ruptured, and thousands of merozoites are released into the blood further invading the

RBCs. Over the next 48 hours, the parasite replicates, passing through different stages (ring, trophozoite

and schizont), and producing nearly 16 new merozoites per schizont. The schizonts further populate

asynchronously with other parasites, producing the dominant fever cycle. After each replication, some
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of these merozoites also develop into gametocytes, infecting susceptible mosquitoes, bringing full circle

to the transmission cycle [13].

During the blood stage growth, Plasmodium being intra-cellular, provides protection to the parasite due

to the immune response of the host and is vulnerable in the extra-cellular stage [14].The development of

blood stage begins when a freshly released, extracellular parasite (a merozoite) attacks an erythrocyte,

forming the ring stage of infection, progressing into the trophozoite stage. During this stage the infected

erythrocyte is largely modi�ed enabling the proliferation of parasite. Thereafter, the parasite sub-divides

to form a connected network of daughter cells, called schizont, which �nally loses the host erythrocyte,

and releases the new born merozoites to attack the new erythrocytes. These steps are in together termed

the intra erythrocytic developmental cycle (IDC) [15]. The parasite then invades RBCs and develops

into a ring stage within 48 hrs and soon followed by stages trophozoite and schizont. Depending on

differentiation intra erythrocytically to gametocytes inside a human host, the transmission of malaria

parasites to mosquitoes is done [16].

On attachment of the parasite to RBC, its cell membrane deforms forming a junction allowing the

penetration of the parasite in to the cell using various protein structures. The parasite which begins to

form a ringed shape in the cell, creates a parasitophorous vacuole which separates it from the RBC's

intra-cellular environment. For biosynthesis, haemoglobin the primary nutrition source and amino acids

are used. The breakdown of molecule is followed by the continued proliferation and increase in numbers

and size of the RBCs. The parasite continuously divides within the cell going through different stages

and producing trophozoites and �nally schizonts. As their number increases by asexual reproduction,

the cell bursts producing new merozoites which infect other RBCs while some of the parasites turn into

gametocytes leaving the RBCs uninvaded. These non-pathogens infect the mosquitoes when it feeds on

infected individual persons. In the host of the mosquito, the gametocytes keep on fusing and continue

sexual reproduction allowing the overall cycle to go on and on [17, 18].

1.2.1 Various stages of the IDC

In Pf infections, the RBCs are sized normally. Generally, we can only see gametocytes and rings

unless the blood settled before the smear preparation. The different stages of the IDC are depicted

next [19].
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1. Rings: The cytoplasm of Pf rings is delicate and has a few small chromatin dots and the infected

RBCs do not enlarge. A few times appliqué forms (rings appearing on the RBC periphery)[20]

can also be found, as seen in Figure 1.2.

(a) Rings in a thick blood smear. (b) Images from a thick blood smear. Note the classic

”headphones” appearance of many rings.

(c) Thin, delicate rings in a thin blood smear. Note the

double chromatin dot in the infected RBC at the top, and

the appliqúe form in the infected RBC at the bottom [21].

(d) Rings in a blood smear. Note the multiply-infected

RBCs.

Figure 1.2: Ring stage of malaria parasite life cycle.
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2. Gametocytes:Pf gametocytes are shaped like a sausage or crescent while the chromatin is in the

form of a single mass (macrogamete) or diffuse (microgamete) (Figure 1.3).

(a) Gametocytes in a thick blood smear. (b) Gametocytes in a thick smear. Note also the presence

of several rings.

(c) Two Gametocytes in a thin smear. (d) Gametocytes in a thin smear showing the membrane

of RBC.

Figure 1.3: Gametocyte stage of malaria parasite life cycle.
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3. Trophozoites: Older, ring stage parasites or Pf trophozoites can rarely be seen in peripheral blood

smears. The cytoplasm of younger rings tends to be less dense than in mature trophozoites. As Pf

trophozoites grow, they continue to retain their ring-like amoeboid shape (Figure 1.4). At times

traces of yellow pigment are also visible within the cytoplasm.

(a) Trophozoites in a thick blood smear. (b) Mature, compact trophozoites in a thin blood smear.

(c) Compact trophozoites in a thin blood smear.

Figure 1.4: Trophozoites stage of malaria parasite life cycle.
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4. Schizonts: Pf schizonts are hardly visible in peripheral blood., dark pigment, grouped in one

mass can be seen in mature schizonts (Figure 1.5).

(a) Mature schizont in a thin blood smear. (b) Ruptured schizont in a thin blood smear.

(c) Another schizont in a thin blood smear.

Figure 1.5: Schizont stage of the malaria parasite life cycle.
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1.3 Plasmodium invasion proteins: Structural aspect

An insight into the mechanism of interaction, invasion, and inhibition at the interface of the host–parasite

is provided by the structural details of Plasmodium.

The structure of Pf is not �xed and keeps changing continuously during the entire life cycle. The

spindle-shaped sporozoite of 10–15� m length grow into 30–70� m diameter ovoid schizont. Each

schizont then continues to produce merozoites of 1� m diameter and 1.5� m length. Merozoites of the

erythrocyte form a ring structure to turn in to a trophozoite feeding on the haemoglobin and forming the

granular pigment haemozoin [22, 23]. Contrary to the other species of Plasmodium, the Pf gametocytes

are crescent-shaped and elongated (3–6� m wide and 8–12� m long), which sometimes helps in their

identi�cation. The ookinete is further longer in size (18–24� m nearly) while an oocyst is round in

shape and grows in diameter up to 80� m [7].

When a blood �lm is examined under a microscope, only early stage ring-shaped trophozoites and

gametocytes are found. While mature trophozoites or schizonts are typically hidden in tissues in blood

smears, occasionally, lighter comma-shaped red spots can be seen on the surface of erythrocytes. These

”Maurer's cleft” dots are secretory organelles and proteins that produce enzymes and are necessary for

the processes of immune evasion and nutrition uptake (Figure 1.6) [24].

Figure 1.6: Blood smear from a Pf culture.
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1.4 Literature Review and Treatment

Malaria continues to be a major concern for humans in many tropical and subtropical regions. Just in

Africa itself, millions of children die annually from this disease attributed to the Pf parasite species. The

disease becomes severe when Pf modi�es the surface of infected RBCs by inserting parasite proteins.

By the process of cytoadherence, these parasitized erythrocytes bind to the host endothelial cells in the

brain, leading to the occurrence of cerebral malaria [25]. The current day malaria control and treat-

ment techniques include bed nets impregnated with insecticide and chemotherapy. Although large scale

efforts have been made towards developing a vaccine, none of the immunization approaches existing

so far are effective. Moreover, with the growing resistance against existing antimalarial drugs, reliable

prophylaxis is impossible, making the cure of malaria even more dif�cult. As a collaborative effort, the

Malaria Genome Sequencing Consortium was setup to alleviate these problems, by sequencing the en-

tire genome of Pf. “The consortium aims to generate almost all of the Pf genome sequence in un�nished

form and making its entire gene complement accessible for malaria researchers” [26].

Oral medicines like Artemisinin may be used to treat simple malaria. The combination of ACT artemisinin

and other anti-malarial drugs remains the most effective treatment for Pf infection. This decreases single

drug component resistance. Artemisinin-naphthoquine combination therapy is also used to treat falci-

parum malaria. However, more research is needed for a reliable treatment. In low transmission settings,

the performance of Artesunate+Me�oquine is better than that of Me�oquine. Atovaquone-Proguanil is

effective against uncomplicated Pf with 5% to 10% possible failure rate while Amodiaquine+Sulfadoxine-

Pyrimethamine is said to display lesser treatment failures in uncomplicated Pf malaria. Studies on treat-

ing uncomplicated malaria with Chlorproguanil-Dapsone are scarce. The combination of primaquine

and artemisinin-based combination therapy for falciparum malaria reduces transmission on days 3-4

and 8 after infection [27, 28]. Chloroquine remains the mainstay of treatment for Plasmodium vivax

malaria despite increasing reports of treatment failure [29]. For quick and successful patient recovery, it

is crucial to diagnose and quickly treat malarial infection. If the malaria life cycle stages are somehow

ascertained then the treatment of disease becomes easier. Various techniques are being used to examine

malaria, including:

1. rapid diagnosis tests (RDTs)

2. quantitative buffy coat

3. peripheral blood smear microscopic examination, etc.

In majority of developing countries, the stained blood smears microscopic examination is yet considered

to be the standard diagnostic method [30, 31]. Experienced medical professionals frequently examine

a large number of blood �lms to detect malaria infection. Microscopists normally visualize the thin and

thick blood smears to identify a disease or its cause. However, the accuracy depends upon the quality

of smear and expertise to classify and count the parasite and non-parasite cells. It is fairly challenging
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to number the parasites and infected RBCs manually and needs an expert microscopist for a quality

diagnosis [32].

1.4.1 Machine Learning based Diagnostics

In Pf the classi�cation is inef�cient as the changes in geometric features are not seen. Colour pixel

classi�cation with feature characterization based on k-NN was reported for infected erythrocyte iden-

ti�cation [33]. A semi-automatic method was presented by Diaz et al. [34] using SVM classi�er to

quantify and classify malarial erythrocytes. Hu set of relative shape measurement, invariant moment,

intensity histogram, Laplacian features, gradient features, co-occurrence matrix, �at texture, run length

matrix was used for the characterization of erythrocytes by Spring et al. [35]. Khan et al. [36] used

�rst order feature and Hu moment based on intensity histogram with FF-BPNN classi�er while Soni et

al. [37] published an automatic classi�cation of erythrocytes and Pf.

A variety of image processing techniques are used for the diagnosis and stage detection of the malaria

parasite. This diagnosis is carried out using textural and statistical features in blood images of the

malaria parasite [24]. Nowadays, digital image processing and machine learning techniques are con-

tributing to a higher diagnostic accuracy in ultrasound imaging, CT, microscopy, etc. Computerized

diagnosis of malaria based on analysis of microscopic images of thin blood smear exists is reported in

the literature [15, 38, 39]. Geometric and texture features are used for classifying the malaria infected

erythrocyte as the morphological features of the infected erythrocyte change. Detection based on eccen-

tricity features and relative size using feed forward back propagation neural network (FF-BPNN) was

reported in [38].

Convolutional Neural Networks (CNNs) have been successfully used for automatic classi�cation of

malaria parasites from blood smear images, enabling quicker diagnoses. However, it was limited to bi-

nary mode as infected and non-infected. A review of CNN techniques used for malaria diagnosis, focus-

ing on the data preprocessing, preparation and classi�cation alongwith NN architectures, performance

and properties is presented. The authors in [40] used CNN based deep learning models for attribute

extraction and categorization. For achieving higher categorization accuracy, they selected certain domi-

nating features including size, color, shape, and cell count, from the images. Similarly, a more effective

two-stage approach based on CNN on a larger dataset was also proposed by [41]. It remains an espe-

cially challenging task to distinguish the multiple growth stages of parasites. Seng et al. [42] developed

a deep learning approach for the recognition of multi-stage malaria parasites in blood smeared images

using a novel deep transfer graph convolutional network (DTGCN). They reported higher accuracy and

effectiveness compared to a wide range of state-of-the-art approaches.

CNNs when used for feature extraction exhibit better performance than learning from scratch and

transfer learning approaches. However, research employing private datasets for training and testing the

CNN models cannot be easily compared with other methods. Future research would employ available

public datasets to allow comparison of proposed CNN methods. Multi-class CNN models for classi�-
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cation of species and life stages of malaria-causing plasmodium are needed [43].

1.4.2 ML based Feature Classi�cation

Various machine learning (ML) approaches have been proposed for accurate gene features classi�ca-

tion. Karthik and Sudha [44], reviewed ML methods for classifying gene expression model or computa-

tional analytical structure for complicated diseases, by identifying several differentially expressed gene

techniques. Numerous ML approaches have been proposed in the literature to enhance gene expression

data classi�cation such as clustering, classi�cation, dimensional reduction, among others [45]. Training

of ML models using initial high-dimensional features performs unsatisfactorily in practice and may re-

sult in network over-�tting and increased redundant information. This problem was addressed using the

random forests classi�er in [46, 47]. Hossain et al. [30] designed an effective variational quantum circuit

(VQC-based) approach to recognize the existence of malaria in RBC images through the classi�cation

of optimized feature set extracted from them. Murad et al. [48] used algorithms based on multi�lter and

hybrid approaches to feature selection, leading to accuracy in excess of 90%. Mei et al. [49] suggested

a dimensionality reduction method to classify tumor gene expression data. Arowolo et al. [50] and Li et

al. [51] proposed a dimensionality reduction approach for classifying gene expression.

To overcome the dimensionality problem, Rokach et al. devised a genetic algorithm-based feature selec-

tion method. They evaluated the �tness function of several obvious tree classi�ers using a new encoding

approach [52]. Zhang et al. proposed a classi�er ensemble with feature selection based on GA. The au-

thors of this work created a new hybrid method that combines a multi-objective genetic algorithm with

an ensemble of classi�ers. The GA-ensemble approach was tested on a variety of datasets and its per-

formance was compared using a variety of classi�ers [53]. Cheng-Lung Huang [54] suggested a feature

selection method based on GA and SVM optimization. The ultimate goal was to improve the SVM

classi�cation accuracy while optimising the feature subset and parameters. Chaung et al. [55] employed

a hybrid technique that began with a genetic algorithm with a dynamic variable to pick a sample of

genes, which were then ranked using Chi Square analysis, and the level of accuracy of the selection was

assessed using SVM. Shutao et al [56] used Particle Swarm optimisation and GA in order to perform

highly accurate classi�cation. The authors in [57] achieved a classi�cation accuracy of 90.32 % using

GA for feature selection and a SVM Classi�er.

1.4.3 Single-cell RNA sequencing

The Pf genome is sized at 23.3 Mb and is encoded by over 5400 genes [15]. Transcriptional regula-

tion of a majority of parasite genes occurs during the IDC. The same is seen at multiple points of time

but has a maximally abundant single peak per gene. cDNA microarray technology was employed in the

initial analysis of Pf IDC. RNA-seq when applied initially to the Pf IDC led to gene model alterations

in more than 10% of the 5400 genes, as also 121 new coding sequences were identi�ed [32]. By this
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research 84 alternate splicing cases and 75% of predicted splice sites were also con�rmedly detected.

However, due to the limitations of the then RNA-seq technology, the extremely AT-rich UTRs went un-

detected on a genome-wide scale. The probable reason for this was attributed to a multiple dif�culties

generating PCR bias and AT-rich cDNA against the AT-rich sequences [58].

Ribonucleic acid sequencing (RNA-Seq) is used to express multiple levels of transcripts simultane-

ously. Several tools are used to develop and classify in to several pre-de�ned classes, after studying

the RNA-Seq data of pathogens or viruses, depending on their attributes. Various machine learning

approaches are providing powerful toolboxes for classifying RNA-Seq data [38]. Single-cell transcrip-

tomics is used to map the genes during the entire transmission cycle of the etiological agent of malaria,

Pf. Single-cell RNA sequencing (scRNA-seq) has allowed us to solve the cell-level heterogeneity issue

in complex cell populations [59, 60, 61]. In fact, recent studies have elucidated the role of heterogeneity

in enabling a small fraction of Plasmodium population inside the human host to remain ready to enter

into the mosquito host by making transition to gametogenesis stage [62]. Similarly, heterogeneity plays

a crucial role in the Plasmodium stress response inside the RBC [16]. Off late scRNA-seq views of the

entire life cycle of Pf, have captured at high resolution the �ne-scale developmental transitions driving

their progression [58, 40, 41, 42, 63]. The Malaria Cell Atlas [58, 41] data resource and website pro-

vides the scientists the option to investigate gene expression patterns in individual parasites across the

different developmental stages and for a variety of parasite species.

The differences between individual cells of unicellular and multi-cellular organisms can have far-

reaching functional consequences. The single-cell mRNA-sequencing methods developed recently al-

low the high-throughput, unbiased, high-resolution transcriptomic analysis of individual cells. This has

opened newer vistas of biology by way of transcription dynamics, tissue composition, and regulatory

relationships between genes. This goes on to provide additional transcriptomic information in compari-

son to traditional bulk cell populations pro�ling methods. Fast paced technological advances in the �eld

of cell capture, phenotyping, bioinformatics and molecular biology seem to project a bright future in

multiple medical and biological applications [64].

Single-cell RNA sequencing technology could be possibly used to further reveal how the parasite

resists drugs or bypasses the immune system. This may also help in the future in developing drugs that

disturb the synchronisation of these genes, disrupting the parasite's development and further stopping

the cause of disease [60, 65]. Recent studies in next generation sequencing (NGS) via RNA-Seq have

enabled the simultaneous measurement of expression levels of multiple transcripts [38]. RNA-Seq is

a powerful transcriptome pro�ling NGS technique which provides in-depth details of RNA transcripts.

The RNA-Seq analysis methodology in general involves the following steps:

1) raw sequence disease data expression analysis, after its normalization;

2) individual network modules construction for gene identi�cation; and

3) examination of their aggregate network properties [40].

This approach assists in the identi�cation of multiple disease related genes which can then assist as a

target in the further process of drug discovery. RNA-Seq readings can be exon, gene or other regions-
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of-interest. These expression levels have led to the development of various classi�cation algorithms.

However, the analysis of complex datasets using computational tools is still inadequate, and there is no

single technique for classifying and analysing the RNA-Seq data. Additionally, the high dimensional

NGS data, including RNA-Seq, makes the problem even more challenging. The development of clas-

si�cation models for molecular level disease monitoring, diagnosis, and classi�cation of diseases and

research into potential disease biomarkers is highly desired.

1.4.4 Conclusions from Literature Review

Parasites of malaria can be easily identi�ed by analysing the digitized microscopic blood smears. The

same is, however, error prone, time consuming, and tedious. As a result, automation of the diagnostic

process is critical to reducing the time-consuming manual review and diagnosis process. The classi�-

cation of healthy and unhealthy cells into four types according to the respective life stages was done

using as many as 11 CNN-based deep learning models. The robustness of the models was evaluated by

experimenting on two cross-datasets of different type.

Whereas ResNet-18's accuracy in binary classi�cation was 97.68%, DenseNet-201's accuracy in

multi-class classi�cation was 99.40%. The cross-dataset experiments highlight the lack of robustness

in the deep learning approach as a weakness. Mobile-oriented architectures seem to be promising and

performed satisfactorily in the recognition and classi�cation of type and stage of malaria parasites [66].

1.5 Motivation

The complex life cycle of malaria parasites features diverse developmental strategies for unique

adaptation in speci�c host environments. The main objective of our study is to select the top-ranked

genes from the scRNA-seq pro�les at different stages of the Pf life cycle inside the infected RBC. We

employ a supervised learning algorithm coupled with feature selection algorithms to extract the most

relevant genes to predict the life cycle stages of plasmodium inside RBC. The �rst stage of the proposed

model is to optimize the quality data from the dataset by removing the redundant, noisy and irrelevant

genes (features). From the systematic literature review it can be concluded that:

1) GA based search technique is popularly used for feature selection.

2) GA is well suited for dealing with high dimensionality datasets.

3) GAs showed better performance than the other selection algorithms.

Hence, GA is employed in our proposed approach as the search algorithm in the feature selection

process. This subset can be further utilized in the second stage of the process, Classi�cation, to produce

high classi�cation accuracy. We tested the subsets using three classi�ers: SVM, LR, and RF to ensure

that the investigation is carried out rigorously. The combination of the �rst and second stages of the pro-

posed model will achieve a better identi�cation of the different Malaria Life Cycle stages. Additionally,
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the feature selection method is able to identify genes that signi�cantly change expression across the life

cycle stages. UMAP projection of the cells based on these features supports the distinction of stages

using these features. We constructed the protein interaction network of these genes and performed a set

of topological analysis to provide hierarchies according to the importance of the genes in the network.

These genes can be used for disease diagnosis and drug targets.

Feature extraction, selection and classi�cation of malarial erythrocytes are the major issues faced. The

features comprises of a combination of features such as the channel difference histogram, prediction

error R-G color and the co-occurrence of binary linear pattern. Feature selection and classi�cation of

erythrocyte based on optimal feature set and a hybrid (k-NN, SVM and Naive Bayes) classi�er was

attempted here. The hybrid classi�er is hoped to provide improved results and sensitivity compared to

the three individual classi�ers [7].

Our study presents a theoretical framework to select diagnostic markers and drug targets by implement-

ing ML techniques on sc-RNA-seq data.

1.6 Dimensionality Reduction

The sc-RNA expression dataset is highly dimensional. The dataset contains redundant character-

istics that behave as noise during model training. As a result, classi�cation performance is degraded,

and computing time is increased. Dimensionality Reduction (DR) techniques are required to eliminate

redundancy and to retrieve irrelevant details that hinder performance. When the data contains a large

number of features, a model can become more complex. Complex models tend to over�t the data. By

lowering the number of features (dimensionality) in the data, DR reduces model complexity. The details

of the two methods for reducing the dimensionality of data is shown in Figure 1.7:

1.6.1 Feature Extraction

Feature extraction is a way to �nd the most important features, traits, or attributes of a dataset. Data

with several dimensions require the use of feature extraction to provide a more concise summary of

its categorization. New variables are created as combinations of the original variables to reduce the

dimensionality. I t is classi�ed into two types: linear and nonlinear.

Linear feature extraction adopts data on a low-dimensional subspace. Matrix factorization is used

to project them on this subspace. Principal Component Analysis (PCA) is a linear feature extraction

technique that is mostly utilized for dimensionality reduction. It �nds the principal components of the

data using the covariance matrix, eigenvalues and eigenvectors. These components represent a portion

of the variance in the data.

Several methods of nonlinear dimensionality reduction exist. For instance, mapping a low-dimensional

surface to a high-dimensional can reveal a nonlinear nature between the features. To map the features

onto higher-dimensional space, a lifting function is used. The relationship between the features in a
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