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Abstract

In today’s digital era, biometric authentication has become increasingly widespread for verifying a
user across a range of applications, from unlocking a smartphone to securing high-end systems. Var-
ious biometric modalities such as fingerprint, face, and iris offer a distinct way to recognize a person
automatically. Fingerprints are one of the most prevalent biometric modalities. They are widely utilized
in security systems owing to their remarkable reliability, distinctiveness, invariance over time and user
convenience.

Nowadays, automatic fingerprint recognition systems have become a prime target for attackers. At-
tackers fabricate fingerprints using materials like playdoh and gelatin, making it hard to distinguish them
from live fingerprints. This way of circumventing biometric systems is called a presentation attack (PA).
To identify such attacks, a PA detector is added to these systems.

Deep learning-based PA detectors require large amounts of data to distinguish PA fingerprints from
live ones. However, there exists significantly less training data with novel sensors and materials. Due to
this, PA detectors do not generalize well on introducing unknown sensors or materials. It is incredibly
challenging to physically fabricate an extensive train dataset of high-quality counterfeit fingerprints
generated with novel materials captured across multiple sensors. Existing fingerprint presentation attack
detection (FPAD) solutions improve cross-sensor and cross-material generalization by utilizing style-
transfer-based augmentation wrappers over a two-class PA classifier. These solutions generate large
artificial datasets for training by using style transfer which learns the style properties from a few samples
obtained from the attacker. They synthesize data by learning the style as a single entity, containing both
sensor and material characteristics. However, these strategies necessitate learning the entire style upon
adding a new sensor for an already known material or vice versa.

This thesis proposes a decomposition-based approach to improve cross-sensor and cross-material
FPAD generalization. We model presentation attacks as a combination of two underlying components,
i.e., material and sensor, rather than the entire style. By utilizing this approach, our method can gen-
erate synthetic patches upon introducing either a new sensor, a new material, or both. We perform two
different methods of fingerprint factorization - traditional and deep-learning based. Traditional factor-
ization of fingerprints into sensor and material representations using tensor decomposition establishes a
baseline using machine learning for our hypothesis. The deep-learning method uses a decomposition-
based augmentation wrapper for disentangling fingerprint style. The wrapper improves cross-sensor and
cross-material FPAD, utilizing one fingerprint image of the target sensor and material. We also reduce

vi



vii

computational complexity by generating compact representations and utilizing lesser combinations of
sensors and materials to produce several styles. Our approach enables us to generate a large variety of
samples using a limited amount of data, which helps improve generalization.



Contents

Chapter Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fingerprint Recognition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Fingerprint Presentation Attack Detection . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Fingerprint Presentation Attack Generalization . . . . . . . . . . . . . . . . . 4

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Traditional methods for Fingerprint Disentanglement . . . . . . . . . . . . . . 6
1.4.2 Deep learning based Fingerprint Disentanglement . . . . . . . . . . . . . . . . 6

1.5 Summary and Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Fingerprint Presentation Attack Detection Techniques . . . . . . . . . . . . . . . . . . 9

2.1.1 Hardware-based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Software-based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2.1 Traditional FPAD Methods . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2.2 Deep learning-based FPAD Methods . . . . . . . . . . . . . . . . . 10

2.2 Fingerprint Presentation Attack Detection Generalization . . . . . . . . . . . . . . . . 11
2.3 Disentangled Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Traditional Factorization Models . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Deep-Learning based Disentanglement . . . . . . . . . . . . . . . . . . . . . 12

2.4 Few-Shot Image-to-Image Translation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Classical Factorization Methods on Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Tensor Algebra Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Tensor Decomposition - The N-Mode SVD Algorithm . . . . . . . . . . . . . . . . . 17
3.4 Tensor Prints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Linear Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



CONTENTS ix

4 Deep Learning-Based Disentanglement of Fingerprint Style . . . . . . . . . . . . . . . . . . 25
4.1 Motivation for Deep Learning-Based Method . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 One-Shot Sensor and Material Translator . . . . . . . . . . . . . . . . . . . . 28

4.3.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Experiments, Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5.1 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.2 Major Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.2.1 Comparison with State-of-the-Art . . . . . . . . . . . . . . . . . . . 33
4.5.2.2 Cross-Sensor Performance . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2.3 Cross-Material Performance . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2.4 Cross-Sensor and Cross-Material Performance . . . . . . . . . . . . 35

4.5.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.3.1 Varying Number of Synthesized Patches Used . . . . . . . . . . . . 36
4.5.3.2 Performance across Fabrication Techniques . . . . . . . . . . . . . 37

4.5.4 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.4.1 Incorrectly and Correctly Classified Patches by OSMT . . . . . . . . 38
4.5.4.2 Classification Results of UMT vs. OSMT . . . . . . . . . . . . . . 38

4.5.5 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6.1 Network Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



List of Figures

Figure Page

1.1 Different biometric modalities - a) ear, b) face, c) facial thermogram, d) hand thermo-
gram, e) hand vein, f) hand geometry, g) fingerprint, h) iris, i) retina, j) signature, and k)
voice [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Fingerprint spoof examples from MSU 12 Spoof materials dataset [13] . . . . . . . . 3
1.3 Fingerprint Recognition System vulnerable to presentation attacks. . . . . . . . . . . . 4
1.4 Fingerprint Recognition System with an additional presentation attack detector . . . . 4
1.5 Consider supplied patches S1-M2 and S2-M1. Using style transfer methods as shown

in (a), we can obtain only 2 output combinations. However, using our decomposition-
based method, we can obtain 4 different output combinations as shown in (b). Here, C
= content and S1, S2, M1, M2 = sensor1, sensor2, material1, material2 . . . . . . . . 6

1.6 3D t-SNE visualization of style embeddings in the deep feature space produced by var-
ious methods of data generation - (a) Data for 3 existing sensor and material combina-
tions, (b) Interpolated data between two existing sensor-material combinations by UMG,
(c) Extrapolated data by our approach to obtain s2-m2 combination from existing data
combinations (s1-m1, s1-m2, s2-m1) and (d) Further interpolation on our generated
data. Here, s1, s2, m1, m2 = sensor1, sensor2, material1, material2 . . . . . . . . . . 7

2.1 Overview of CNN-based Fingerprint Spoof buster for Fingerprint presentation attack
detection [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Spoof detector with a style transfer wrapper (UMT [18]) to prevent presentation attacks. 11
2.3 Given a training set of observations with multiple styles (i.e., fonts) and content classes

(i.e., letters), we can (A) classify content with a new style, (B) extrapolate a new style
to unobserved content classes, and (C) translate from new content observed only in new
styles into known content or styles classes. [17] . . . . . . . . . . . . . . . . . . . . . 12

2.4 Example of translation on face images from [17] . . . . . . . . . . . . . . . . . . . . 13

3.1 A(1),A(2),A(3) matrices comprising mode-1, mode-2, and mode-3 vectors, obtained by
flattening a 3rd-order tensor in 3 ways. [60] . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 An N -mode SVD decomposes a tensor into N orthogonal spaces (vector spaces for
N=3 shown above) from [24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Data tensor with fingerprint variations across content, sensors and materials . . . . . . 19
3.4 First two images correspond to the fingerprints to be aligned. Third image shows the

overlapping images after performing alignment. . . . . . . . . . . . . . . . . . . . . . 20
3.5 Minutiae points of the reference and gallery fingerprint before and after alignment . . . 20

x



LIST OF FIGURES xi

3.6 Synthesized patches for cross-sensor and cross-material combinations using classical
linear method. Bonafide images for the corresponding sensors are in the first column. . 23

4.1 Convolutional Neural networks for capturing multi-level context [32] . . . . . . . . . . 26
4.2 A supplied style patch is factorized into its corresponding sensor and material codes,

then combined in several ways to synthesize patches across (i) unknown material and
known sensor, (ii) known material and unknown sensor, or (iii) unknown material and
unknown sensor. The black cell indicates an existing train image. From the supplied im-
age’s style, UMT [18] can only generate the style in the red cell, whereas our proposed
method can generate the style in both the blue and red cells. . . . . . . . . . . . . . . . 27

4.3 (a) An overview of the proposed pipeline with One-Shot Sensor and Material Translator
(OSMT) wrapper over the PA detector for addition of synthesized patches belonging to
the target sensor and material (b) Architecture of the Generator of One-Shot Sensor and
Material Translator (OSMT) wrapper. A content patch c and a style patch (of the target
sensor s and material m) are passed into the content, sensor and material encoders
respectively. The generated sensor and material codes (zs and zm) are fused using a
matrix outer product to form the bilinear style code zb. The content code zc is processed
through the decoder with AdaIN parameters from the style code zb to generate the final
output image c. c contains the content of c and texture of sensor s and material m. . . 29

4.4 Synthesized patches for cross-sensor and cross-material combinations using our OSMT
wrapper. Bonafide images for the corresponding sensors are in the first column. . . . . 37

4.5 Samples of correctly classified and misclassified predictions of our classifier on live and
PA fingerprint patches with the title - predicted label (true label). . . . . . . . . . . . . 38

4.6 Correctly classified samples by OSMT but misclassified by UMT. . . . . . . . . . . . 38



List of Tables

Table Page

3.1 Cross-sensor and cross-material performance (TDR (%) @ FDR = 0.1%) without and
with synthesized patches (obtained by classical linear N-mode SVD) of the correspond-
ing test material and sensor in training . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Comparison of OSMT and SOTA cross-material performance (TDR (%) @ FDR =
0.1%) using EcoFlex, Body Double, and Play Doh spoof materials, without and with
using synthesized spoof patches in the train set. . . . . . . . . . . . . . . . . . . . . . 33

4.2 Cross-sensor performance (TDR (%) @ FDR = 0.1%) without and with synthesized
patches of the corresponding test sensor in the train set . . . . . . . . . . . . . . . . . 34

4.3 Cross-material performance (TDR@FDR=0.1%) without and with synthesized patches
for LivDet 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Cross-material performance (TDR@FDR = 0.1%) without and with synthesized patches
for LivDet 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Cross-sensor and cross-material performance (TDR (%) @ FDR = 0.1%) without and
with OSMT synthesized patches of the corresponding test material and sensor in training 36

4.6 Cross-sensor and cross-material performance (TDR (%) @ FDR = 0.1%) without and
with synthesized patches of the corresponding test material and sensor in training and
comparison with their corresponding classical linear method baseline . . . . . . . . . . 36

4.7 Variation in cross-sensor and cross-material performance (TDR (%) @ FDR = 0.1%)
for GreenBit-Gelatine combination with 5k, 15k and 30k patches . . . . . . . . . . . . 37

4.8 Performance across fabrication techniques for training on LivDet 2015 and testing on
LivDet 2021 dataset. Cross-sensor and cross-material performance (TDR (%) @ FDR
= 0.1%) without and with synthesized patches for two methods of capture - Consensual
and ScreenSpoof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xii



Chapter 1

Introduction

1.1 Biometrics

Biometrics is derived from the Greek words - bios (life) and metron (measurement); biometric iden-
tifiers are measurements from a living human body.

Biometrics is the analysis of unique anatomical characteristics, such as fingerprints, iris, and face
recognition, to identify a specific individual. These characteristics can be used to identify or verify a
person’s identity for security or other purposes.

Biometrics can be helpful in various contexts, including security, access control, and identification.
Some specific examples of how biometrics can be used include:

• Security: Biometrics can be used to verify a person’s identity before granting access to a secure
area or system. This can help prevent unauthorized access and increase overall security.

• Access control: Biometrics can be used as a form of identification for access control systems,
such as unlocking a smartphone or logging into a computer. This eliminates the need for tradi-
tional forms of identification, such as passwords or keys.

• Identification: Biometrics can be used to identify individuals in a variety of situations, such
as border control, voting, and criminal investigations. This can help improve the accuracy and
efficiency of identification processes.

• Time and Attendance: Biometric data can be used to track employee attendance and time spent
on tasks, reducing the need for manual time cards or time sheets.

• Banking and Finance: Biometrics can be used to verify the identity of customers in banking and
financial transactions, reducing the risk of fraud and increasing security.

Overall, biometrics can be a valuable tool for increasing security and convenience while making the
identification processes more accurate and efficient.
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Figure 1.1: Different biometric modalities - a) ear, b) face, c) facial thermogram, d) hand thermo-gram,
e) hand vein, f) hand geometry, g) fingerprint, h) iris, i) retina, j) signature, and k) voice [39]

To consider any anatomical or behavioral trait as a biometric identifier, the following conditions
should be satisfied:

• Universality: every person must possess the trait.

• Distinctiveness: the trait should be sufficiently different for any two persons.

• Permanence: the trait should be invariant (with respect to the matching criterion) over time.

• Collectability: quantitatively measuring the trait should be possible.

Multiple biometric modalities satisfy the above conditions, however fingerprint biometrics is consid-
ered to be one of the most widely used [39] and accepted forms of biometrics due to its reliability and
ease of use.

1.2 Fingerprint Recognition Systems

Fingerprint recognition systems use fingerprints as a means of identifying or verifying a person’s
identity. These systems typically consist of hardware and software that work together to capture, pro-
cess, and analyze fingerprints. Initially, images of a person’s fingerprints are captured, which are then
analyzed using specific algorithms to extract unique feature points called minutiae. The minutiae are
then compared to a database of fingerprints to find a match.

There are two main types of fingerprint recognition systems:
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1. AFIS (Automated Fingerprint Identification System) systems are used for identification. These
systems capture a person’s fingerprints and compare them to a database of fingerprints to find a
match. AFIS systems are commonly used in criminal investigations, border control, and other
situations where identifying an individual is essential.

2. ABIS (Automated Fingerprint Verification System) systems are used for verification. These
systems capture a person’s fingerprints and compare them to a stored template or reference fin-
gerprint to confirm their identity. ABIS systems are commonly used in access control, time and
attendance, and other situations where verifying an individual’s identity is important.

1.2.1 Fingerprint Presentation Attack Detection

Fingerprint Presentation Attack Detection (FPAD) is the process of identifying and preventing at-
tempts to bypass fingerprint recognition systems using fraudulent means called presentation attacks
(PA). The ISO standard IEC 30107-1:2016(E) [1] defines presentation attacks as the “presentation to
the biometric data capture subsystem with the goal of interfering with the operation of the biometric
system”.

Figure 1.2: Fingerprint spoof examples from MSU 12 Spoof materials dataset [13]

Common presentation attacks include the usage of gummy [46] and spoof fingerprints created with
readily available materials like playdoh, silicone, and gelatin. 2D or 3D printed fingerprint targets [3,

3



4, 6], altered fingerprints [63], and cadaver fingers [40] are a few sophisticated strategies to bypass
fingerprint recognition systems.

Figure 1.3: Fingerprint Recognition System vulnerable to presentation attacks.

The progressive demand for automatic fingerprint recognition systems has increased the number of
presentation attacks. This poses a severe threat to automatic fingerprint recognition systems.

An ordinary automatic fingerprint recognition system as shown in Figure 1.3, uses a matching mod-
ule to compare a query fingerprint with the other fingerprints in the database. Since this system is
vulnerable to presentation attacks, the pipeline is modified to include a PA detector that can identify a
spoof fingerprint, as shown in figure 1.4. If the fingerprint is detected as a non-spoof, it is sent to the
verification or identification module.

Figure 1.4: Fingerprint Recognition System with an additional presentation attack detector

1.2.2 Fingerprint Presentation Attack Generalization

Fingerprint presentation attack detectors are usually trained on datasets containing a limited set of
live and spoof materials. However, attackers can bypass these systems using unknown spoof materials or

4



attack methods other than those encountered during training. Such attacks can be detected by improving
the generalization capability of a fingerprint presentation attack detection system.

FPAD systems can be generalized using large and diverse datasets that cover a wide range of possible
attacks. Retraining by augmenting synthetic datasets containing a variety of materials and sensors can
also improve cross-sensor and cross-material generalization. In this thesis, we address the problem of
FPAD generalization using a synthesis-based approach.

1.3 Motivation

Automatic fingerprint recognition systems are currently under the constant threat of presentation
attacks (PAs). As mentioned in section 1.2.2, fingerprint presentation attack detection performance
could be impacted due to the usage of an unknown sensor or material.

Some of the current concerns are the following:

1. Existing fingerprint presentation attack detection solutions improve cross-sensor and cross-material
generalization by utilizing style-transfer-based augmentation wrappers over a two-class PAD clas-
sifier. These solutions synthesize data by learning the style as a single entity, containing both
sensor and material characteristics. However, these strategies necessitate learning the entire
style upon adding a new sensor for an already known material or vice versa.

2. We might have very few samples from the attacker, serving as the target material and sensor for a
synthesis-based FPAD generalization.

3. Existing works [13, 23] solve the problem by synthesizing fingerprints corresponding to unknown
materials by interpolation. However, there is yet to be literature that generates data through
extrapolation.

1.4 Contributions

The main contribution of this thesis is Fingerprint Sensor and Material Disentanglement for
FPAD Generalization. We demonstrate two different methods of fingerprint factorization, traditional
and deep-learning based, discussed in sections 1.4.1 and 1.4.2, respectively.

We explore a fundamentally new direction for modeling presentation attacks as a combination of two
underlying components - material and sensor, rather than the entire style.

By utilizing a sensor and material decomposition-based approach, we can generate synthetic patches
upon introducing a new sensor, material or both. Our method also reduces computational complexity
by generating compact representations and utilizing lesser combinations of sensors and materials to
produce several styles (Figure 1.5).
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(a) Two output combinations using style
transfer-based methods

(b) Four output combinations using our
decomposition-based method

Figure 1.5: Consider supplied patches S1-M2 and S2-M1. Using style transfer methods as shown in
(a), we can obtain only 2 output combinations. However, using our decomposition-based method, we
can obtain 4 different output combinations as shown in (b). Here, C = content and S1, S2, M1, M2 =
sensor1, sensor2, material1, material2

Generalization is commonly performed across different spoof materials, but we also perform gen-
eralization across sensors. Improving cross-sensor spoof detection performance is crucial to alleviate
the time and resources involved in collecting large-scale datasets upon introducing new sensors. This
is a highly-specific use case that can come to use in the case of a change of sensors used within large
organizations for security or governments.

1.4.1 Traditional methods for Fingerprint Disentanglement

We factorize fingerprints using traditional methods to establish a baseline using machine learning.
We use the N-mode SVD algorithm on a corpus of fingerprint data for decomposition and call it ten-
sorprints. Tensorprints disentangle a fingerprint image into three different components - content (ridge-
valley structure), sensor (the sensor used for capture) and material (live or spoof material texture). By
fitting the tensor decomposition model on the train data, the algorithm learns to extract the underly-
ing factors. The algorithm can then extrapolate or translate by generalizing to a new content, sensor
or material. The learnt components are combined in multiple ways to obtain images across unknown
sensor-material combinations. In this way, we synthesize images across unknown sensors and unknown
materials.

1.4.2 Deep learning based Fingerprint Disentanglement

We propose a One-shot Sensor and Material Translator (OSMT) wrapper for improving cross-
sensor and cross-material PAD. Our framework synthesizes large amounts of data across unknown sen-

6



sors and materials, from exclusively a single fingerprint by decomposing and combining the underlying
sensor and material factors.

(a) Existing data (s1-m1, s1-m2, s2-
m1)

(b) Interpolation on existing data by
UMG [13]

(c) Extrapolated data (s2-m2) by pro-
posed approach

(d) Interpolation on extrapolated data
produced by our approach

Figure 1.6: 3D t-SNE visualization of style embeddings in the deep feature space produced by various
methods of data generation - (a) Data for 3 existing sensor and material combinations, (b) Interpolated
data between two existing sensor-material combinations by UMG, (c) Extrapolated data by our approach
to obtain s2-m2 combination from existing data combinations (s1-m1, s1-m2, s2-m1) and (d) Further
interpolation on our generated data. Here, s1, s2, m1, m2 = sensor1, sensor2, material1, material2

The main contributions of our work are as follows:

• To the best of our knowledge, this is the first work to disentangle a fingerprint image’s style (textu-
ral characteristics) into its corresponding sensor and material embeddings. These embeddings are
fused in multiple combinations to generate images across various unknown materials and sensors.

• For n sensors and m materials, our decomposition technique significantly reduces the number of
style representations to be learned from nxm to just n+m.
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• Disentanglement of sensor and material codes enables us to generate synthetic fingerprints by
extrapolation. Further, we can generate even more data by interpolating between the extrapolated
data and an existing material or sensor, as shown in Figure 1.6. This helps to develop data-
augmentation approaches for robustness, generalizability and learning with small datasets.

• Our approach is a constrained learning problem. It produces compact representations of the
sensor and material, which significantly helps in reducing the total number of parameters across
all synthesized combinations.

• It uses only 50 minutiae patches from one fingerprint of an unknown material and sensor for
synthesis, which is significantly low compared to the state-of-the-art [23], which utilizes atleast
100 live and 100 PA images to learn the target sensor.

• We present the improvement in PAD performance using our technique on the publicly available
LivDet datasets (2015, 2017, 2019 and 2021).

1.5 Summary and Thesis Organization

The thesis is organized as follows:

• Chapter 2 provides background on fingerprint presentation attack detection methods, techniques
for FPAD generalization and representational learning for disentangling features.

• Chapter 3 introduces traditional methods of factorization for fingerprints called tensorprints. It
establishes the baseline using machine learning for our study on the disentanglement of fingerprint
images.

• Chapter 4 discusses the deep learning based approach for the disentanglement of fingerprint style
and presents its superiority over the traditional factorization techniques. We also propose “One-
shot Sensor and Material Translator” (OSMT) wrapper for improving cross-sensor and cross-
material PAD.

• Chapter 5 summarizes this thesis and presents ideas for future work.
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Chapter 2

Literature Review

2.1 Fingerprint Presentation Attack Detection Techniques

Fingerprint presentation attack detection techniques can be based on hardware, software, or inte-
grated solutions [43]. A combination of hardware and software-based solutions can provide additional
layers of security and protection against presentation attacks.

2.1.1 Hardware-based Techniques

Hardware solutions are typically accomplished by using specialized sensors like OCT-based [10]
or multi-spectral Lumidigm sensors. RaspiReader [16], an open-source fingerprint reader, uses two
cameras to provide complementary streams (direct-view and FTIR) while capturing fingerprint images,
which are both beneficial for spoof detection. These solutions also try to augment sensors to detect
liveness with thermal output, odor [5] and blood flow [34].

Hardware-based methods can detect a wide range of spoofing techniques with good accuracy. How-
ever, they can also be expensive and require specialized equipment, limiting their applicability in certain
settings. Additionally, some types of spoofing attacks may still be able to bypass these methods.

2.1.2 Software-based Techniques

On the other hand, software-based solutions extract features from the fingerprint image acquired
by the sensor, to differentiate between live and spoof fingers. Software-based methods do not require
specialized hardware, making them more cost-effective. These solutions can also be easily updated and
deployed without any hardware changes.

2.1.2.1 Traditional FPAD Methods

Early software techniques used traditional methods to extract various handcrafted features from the
fingerprint image and utilize them to classify it as either spoof or live.
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[44] use 3rd-level anatomical features such as pore locations and their distributions for liveness de-
tection. Some solutions exploit morphological [9] and perspiration-based characteristics [2] separately.
Marasco et al. [42] combined a set of robust morphological and perspiration-based features for train-
ing different machine learning classifiers such as Support Vector Machine, Decision Tree, Multilayer
Perceptron and Bayesian classifier.

Traditional classifiers also relied on texture based features such as Binarized Statistical Image Fea-
tures (BSIF) [20], Weber Local Descriptor [22], and Local Phase Quantization (LPQ) [21]. LPQ method
is renowned for being insensitive to blurring effects, thereby helping detect the differences between a
live and a fake fingerprint due to the loss of information that may happen during the fabrication process.
Drawing inspiration from [29] for face recognition and texture classification, Ghiani et al. proposed a
novel fingerprint liveness descriptor named BSIF. BSIF automatically learns a fixed set of filters from a
small set of natural images instead of using handcrafted filters, e.g., LBP and LPQ.

Rattani et al. [52] utilized Weibull-calibrated SVM (W-SVM) as a novel-material detector and a
spoof detector, along with the capability for open set detection. [15] trained an ensemble of one-class
SVMs on different feature sets, extracted only from live fingerprints to form a hypersphere.

2.1.2.2 Deep learning-based FPAD Methods

Recently, deep learning-based methods have shown to outperform traditional methods, achieving
higher accuracy rates. Convolutional neural networks (CNNs) or other deep learning architectures can
extract features automatically from the input images. They can also learn from raw data with less manual
feature engineering than traditional methods, thereby motivating the incorporation of deep learning in
biometrics.

A preliminary deep learning-based PA detector by Nogueira et al. [49] used a VGG for feature
extraction and classification - both pre-trained and fine-tuned on fingerprints. Fingerprint images used
by Nogueiraet al. had lower regions of interest with white spaces. To resolve this issue, Pala et al. [51]
used randomly cropped patches and trained their network with triplet loss. Chugh et al. [12] extracts
localized minutiae patches aligned using fingerprint minutiae to provide salient cues for training a two-
class PA classifier as shown in figure 2.1. SlimResCNN [65], the winner of LivDet 2017 [48], proposed
a lightweight CNN with lesser processing time.

Figure 2.1: Overview of CNN-based Fingerprint Spoof buster for Fingerprint presentation attack detec-
tion [12]
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2.2 Fingerprint Presentation Attack Detection Generalization

Published works [13, 18, 23] use style transfer-based augmentation wrappers over a PA detector to
improve presentation attack detection performance on spoof materials with insufficient data.

Several style transfer works generate images with textures that are unseen during training. Gatys et
al. [19] utilized CNNs for neural style transfer to generate stylized images by optimizing a noise image
iteratively through a forward and backward pass. However, this is a computationally expensive opti-
mization problem, so feed-forward network methods [28, 57] were used to find approximate solutions
quickly. Another set of works [26, 58] utilizes feature statistics to perform style transfer.

[18] proposed the addition of synthesized spoof fingerprint patches by style transfer, while training
the classifier. One limitation of this approach is that we have to re-train the classifier each time after
adding synthesized patches for a new material to the train data.

To address this issue, UMG [13] synthesizes patches with style characteristics potentially similar to
unknown spoof materials by interpolating the styles between known spoof materials. [23] incorporates
adversarial representation learning on top of the UMG approach to improve cross-sensor generalization
in addition to cross-material performance. However, our work in this thesis is distinct from the above
approaches as we synthesize patches by extrapolation to enhance the generalization performance on
both sensors and materials outside the convex hull of [13].

Figure 2.2: Spoof detector with a style transfer wrapper (UMT [18]) to prevent presentation attacks.

2.3 Disentangled Representation Learning

2.3.1 Traditional Factorization Models

Data is formed by multiple constituent factors along with interactions between them. Tenenbaum
and Freeman [54] proposed that any entity can be separated into two factors - “style” and “content”.
[17, 55] put forth bilinear models for factorizing style and content using matrix decomposition. These
bilinear frameworks can estimate the style and content vectors, and parameters independent of the style
and content, but control their interaction. They use two approaches to fit the model - symmetric and
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asymmetric. As shown in figure 2.3, this content-style factorization approach was used to solve three
different problems - (i) classification of content with a new style, (ii) extrapolation of a new style to
unseen content, and (iii) translation of new content observed in a new style. They applied bilinear
factorization to data like typography, speech, and face-illumination as depicted in figure 2.4.

Figure 2.3: Given a training set of observations with multiple styles (i.e., fonts) and content classes (i.e.,
letters), we can (A) classify content with a new style, (B) extrapolate a new style to unobserved content
classes, and (C) translate from new content observed only in new styles into known content or styles
classes. [17]

These studies led to the development of multi-linear models analyzing data as a combination of
two or more factors. Tucker [56] was the first to propose n-mode analysis. The N-mode SVD is a
tensor extension of the conventional matrix singular value decomposition (SVD) employed for multi-
linear modeling. Vasilescu et al. exploits the N-mode SVD algorithm in various domains, such as face
recognition [61] and human motion synthesis [59]. First, [59] performed a 3-mode analysis breaking
down the human motion tensor into people, action and joint angle time samples. Extracting these
elements and recombining them in various ways yields a generative model. It can also recognize people
and actions. Later, Vasilescu et al. decomposes faces into more than three factors (people, views,
illumination and expressions), calling them “tensorfaces” [60].

2.3.2 Deep-Learning based Disentanglement

Existing works [33, 45, 62] achieve disentanglement of images into multiple factors of variation.
Another set of works [31, 64] focuses on content-style separation by decomposing into the two factors.
[64] uses EMD to generate images with unknown style and content given a few reference images.
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Figure 2.4: Example of translation on face images from [17]

The style and content encoders extract style and content representations. A bilinear mixer mixes these
representations to generate images with target styles and contents. Lin et al. [36] uses bilinear CNN
models for fine-grained categorization, which extract two features and combine them to obtain an image
descriptor. To combine them, the outputs are multiplied using an outer product that can model pairwise
interactions and later pooled. In this thesis, we make use of this matrix outer product for combining
sensor and material codes.

2.4 Few-Shot Image-to-Image Translation

Image-to-Image translation models such as [27, 37] translate images among seen classes and generate
poor translation outputs if few images are given at training time. [38] can learn previously unseen classes
given at test time through a few example images. In the fingerprint domain, [18] requires 150 target
material spoof patches to extract the style of a novel material. Learning style characteristics from the
fingerprint of the target sensor and material obtained from the attacker, from as few images as possible
is crucial.

2.5 Summary

In this chapter, we explored some of the existing work on fingerprint presentation attack detec-
tion, both hardware and software solutions. Further, we focus on software techniques that use classical
machine learning and deep learning-based methods. Since these solutions do not generalize well for
variations in fingerprint capture (e.g., unfamiliar sensors or materials), we also review existing literature
related to FPAD generalization.
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Additionally, we dive into the disentanglement strategies based on tensor factorization and autoen-
coders. The following chapters discuss classical and deep-learning-based approaches for FPAD general-
ization with the introduction of sensor-material factorization. In the next chapter, we focus on traditional
tensor decomposition for fingerprints, a domain yet to be explored.
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Chapter 3

Classical Factorization Methods on Fingerprints

We introduce traditional methods of factorization for fingerprints in this chapter. This chapter estab-
lishes the baseline using machine learning for our study on the disentanglement of fingerprint images.
Here, we present classical techniques for fingerprint image synthesis through decomposition and
translation.

3.1 Introduction

Natural images are formed by the combination of multiple independent factors. For example, we
observe that facial images consist of several modes of variation, such as different facial geometries
(people), head poses, expressions and lighting conditions [60]. Similarly, fingerprint images also consist
of various components, namely the ridge-valley structure (content denoting the person), pressure, the
sensor used for capture, fingerprint dryness and live or spoof material texture.

To understand the composition of an image, we can extract its disentangled factors. We achieve this
by formulating the problem using tensor decomposition. By learning the components, we can perform
generalization tasks such as extrapolation and translation.

This chapter mainly discusses the traditional factorization methods for fingerprints using multi-
linear models.

The chapter is structured as follows: section 3.2 introduces tensor algebra terminology. Section 3.3
describes the N-mode SVD algorithm for multi-linear analysis and tensor decomposition. Section 3.4
describes tensorprints obtained by applying the N-mode SVD algorithm on a corpus of fingerprint data.

3.2 Tensor Algebra Terminology

In this section, we introduce the basic definitions of multi-linear algebra. We follow the notations
from [60]. Scalars are denoted by lower case letters (a, b, . . .), vectors by bold lower case letters
(a,b . . .), matrices by bold upper-case letters (A, B ...), and higher-order tensors by calligraphic upper-
case letters (A, B . . .).
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A tensor is a multidimensional matrix, n-way array, or n-mode matrix. It is a higher order gen-
eralization of a first order tensor (vector) and a second order tensor (matrix). The order of tensor
A ∈ RI1×I2×...×IN is N . We denote an element of A as Ai1...in...iN or ai1...in...iN , where 1 ≤ in ≤ In.

Figure 3.1: A(1),A(2),A(3) matrices comprising mode-1, mode-2, and mode-3 vectors, obtained by
flattening a 3rd-order tensor in 3 ways. [60]

Some of the important terms related to n-mode analysis for this thesis are as follows:

• mode-n vector: Consider an N th order tensor A ∈ RI1×I2×...×IN , by varying index in while
keeping the other indices fixed, we obtain In-dimensional vectors from A. These vectors are
called mode-n vectors. As shown in Figure 3.1, flattening the tensorA gives mode- n vectors that
are the column vectors of matrix A(n) ∈ RIn×(I1I2...In−1In+1...IN ). By generalizing for matrices,
column vectors are referred to as mode-1 vectors and row vectors as mode-2 vectors.

• mode-n product: On generalizing the product of two matrices to a higher dimension, we require a
product of a tensor and a matrix. The mode-n product of a tensor A ∈ RI1×I2×...×In×...×IN by a
matrix M ∈ RJn×In is denoted byA×nM. Let the resultant tensor beB ∈ RI1×...×In−1×Jn×In+1×...×IN ,
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whose entries are computed by

Bi1...in−1jnin+1...iN = (A× nM)i1...in−1jnin+1...iN
=
∑
in

ai1...in−1inin+1...iNmjnin . (3.1)

The mode- n product in tensor notation is expressed as follows:

B = A× nM, (3.2)

or, in terms of flattened matrices,

B(n) = MA(n). (3.3)

3.3 Tensor Decomposition - The N-Mode SVD Algorithm

Consider a matrix D ∈ RI1×I2 , a two-mode mathematical entity having two associated vector spaces
- a row space and a column space.

The SVD algorithm can orthogonalize these two spaces and decompose the matrix into a product as
follows:

D = U1ΣUT
2 (3.4)

where the left matrix U1 ∈ RI1×J1 represents the orthogonal columnspace, Σ ∈ RJ1×J2 is a diagonal
singular value matrix, and the orthogonal row space is represented by the right matrix U2 ∈ RI2×J2 .
Equation 3.4 can be rewritten in the form of mode-n product discussed in section 3.2.

D = Σ× 1U1 × 2U2 (3.5)

Figure 3.2: An N -mode SVD decomposes a tensor into N orthogonal spaces (vector spaces for N=3
shown above) from [24].

17



On extending to dimensions beyond two, we consider D, an order N > 2 tensor comprising N
spaces. The “N -mode SVD” for N -dimensional matrix orthogonalizes N spaces and expresses the
tensor as an n-mode product of N -orthogonal spaces:

D = Z × 1U1 × 2U2 . . .× nUn . . .××NUN (3.6)

In Equation 3.6, tensor Z is the core tensor and Un are the mode matrices for n = 1, . . . , N. The
core tensor controls the interaction between all the mode matrices (Un). Z is similar to the diagonal
singular value matrix in a conventional matrix SVD.

3.4 Tensor Prints

We perform factorization on fingerprints to get its constituent components. Here, we disentangle a
fingerprint image into three significant components -

• Content (ridge-valley structure)

• Sensor (the sensor used for capture)

• Material (live or spoof material texture)

These components are later combined in multiple ways to obtain images across unknown sensor-
material combinations.

Consider a fingerprint image data tensor D of the form RM×N×O×P , where M corresponds to the
number of sensors, N is the number of materials, O is the number of different content patches used, and
P is number of pixels per image (flattened vector).

We apply the N-mode SVD algorithm from the above section 3.3 to decompose the tensor D into its
corresponding core tensor Z and four orthogonal matrices - content C, sensor S, material M and pixels
P.

D = Z × 1S× 2M×3 C×4 P (3.7)

The sensor matrix S = [s1 . . . sm . . . sM ]T , spans the space of sensor parameters, where each row
vector sTm encodes the invariances for each sensor across different content and materials. Similarly,
the material matrix M = [m1 . . .mn . . .mN ]T , spans the space of content parameters, where each
row vector mT

n encodes the invariances for each material across different content and sensors. The
content matrix C = [c1 . . . co . . . cO]

T , spans the space of content parameters, where each row vector
cTo encodes the invariances for each content across different sensors and materials. The mode matrix P

orthonormally spans the space of images.

We synthesis tensorprints using multi-linear-based factorization methods as written below in section
3.4.2.
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Figure 3.3: Data tensor with fingerprint variations across content, sensors and materials

3.4.1 Datasets

We utilize the fingerprint liveness dataset LivDet 2015 [47] for our analysis and synthesis. The
images belong to 4 different optical sensors - Green Bit, Biometrika, Digital Persona and Crossmatch.
The first three sensors (Green Bit, Biometrika, and Digital Persona) contain five materials in train -
Ecoflex00-50, gelatine, latex, and wood glue and live. The CrossMatch sensor has materials that do not
overlap with the materials of the other three sensors, so we exclude the sensor from our experiments.
The total data has 3 sensors, 5 materials and 148 different content.

During training, we utilize the leave-one-out strategy and create images for the left-out sensor and
material by translation. The data tensor used for factorization will D ∈ R2×4×148×9216. On decompos-
ing D using equation 3.7, the core tensor Z ∈ R2×4×148×9216, S ∈ R2×2, M ∈ R4×4, C ∈ R148×148

and P ∈ R9216×9216.

Pre-processing

We first resize the 1000 dpi images of the Biometrika sensor in LivDet 2015 to 500 dpi. We prepro-
cess these images by segmenting the fingerprint from the background similar to [18]. To create tensor
D, we must use patches with the same content across different sensors and materials. For this, we get
96x96 minutiae-aligned patches using the mated minutiae module of VeriFinger SDK v11 (commercial
SDK). After aligning and cleaning the data by removing incomplete patches, we get 3×5×148×9216

as the size of the total data tensor.
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Minutiae-based Alignment

Figure 3.4: First two images correspond to the fingerprints to be aligned. Third image shows the over-
lapping images after performing alignment.

To form the data tensor, we need to use minutiae-aligned patches. We first gather the images belong-
ing to the same fingerprint (content) but across all sensor-material variations - {x1,x2, · · · ,xn}. Then,
we find the fingerprint with the maximum number of minutiae and set this as the reference fingerprint
for alignment, denoted as xr. This will ensure the greatest overlap between all the impressions, and we
will get the maximum number of aligned patches.

(a) Minutiae points before alignment (b) Minutiae points after alignment

Figure 3.5: Minutiae points of the reference and gallery fingerprint before and after alignment

We then iterate through all the remaining impressions and find the corresponding mated minutiae
with the reference fingerprint using the VeriFinger SDK v11. Let there be mp matching minutiae pairs
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between fingerprint xp and xr,
{
(i1, j1) , (i2, j2) , · · · ,

(
imp , jmp

)}
, where p 6= r. The matched minu-

tiae pairs are the iq-th minutia in fingerprint xp and the jq-th minutia in fingerprint xr, where q ∈
{1, 2, · · · ,mp}. We find the affine transformation parameters T(p,r) using the least squares method:

T(p,r) =

((
P

T
P
)−1

P
T
R

)T

where P ∈ Rmp×2,P = [P,1] ∈ Rmp×3 and R ∈ Rmp×2 are the matching minutiae pairs’ coordinates
in xp and xr respectively.

Using the obtained transformation matrix, we align all the fingerprint impressions to the reference
fingerprint pairwise. After aligning, we crop patches around each minutiae point.

3.4.2 Linear Factorization

We perform linear factorization on fingerprints using the equation 3.7 to get the constituent compo-
nents. We use the tensorly [30] library to perform tucker decomposition (or N-mode SVD).

Using multi-linear factorization, we analyze a corpus of fingerprint data spanning different sensors,
materials and content. By fitting the linear decomposition model on the train data, the algorithm learns
to extract the underlying factors well. The algorithm can then extrapolate or translate by generalizing to
a new content, sensor or material. In this way, we can synthesize a large number of images for unknown
sensors and unknown materials.

We train by utilizing the leave-one-out strategy with D and synthesis images for the left-out sensor
and material by translation.

Consider Dijk ∈ R1×1×1×P , a part of the tensor D, which denotes the image vector for the ith

sensor, jth material, and kth content as follows:

Dijk = Z × 1si
T × 2mj

T × 3ck
T (3.8)

Suppose we get two images, say dsensor
new and dmat

new from an attacker. dsensor
new with an unknown sensor

sM+1 and known material. dmat
new with a known sensor and an unknown material mN+1.

We can use the N-mode SVD algorithm to split them into their linear components as below

dsensor
new = Z × 1(sM+1)

T × 2(mj)
T × 3(ck)

T (3.9)

dmat
new = Z × 1(si)

T × 2(mN+1)
T × 3(ck)

T (3.10)
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The tensors Bsensor and Bmat are calculated by leaving the mode matrices for sensor and material,

Bsensor = Z × 2(mj)
T × 3(ck)

T (3.11)

Bmat = Z × 1(sj)
T × 3(ck)

T (3.12)

We calculate (sM+1)
T and (mN+1)

T by the following equations 3.13 and 3.14 similar to [59, 35].
Here, [. . . ]−1 indicates the pseudo-inverse function.

dsensor
new = Bsensor × 1(sM+1)

T ,dmat
new = Bmat × 2(mN+1)

T (3.13)

(sM+1)
T = dsensor

new [Bsensor]−1 , (mN+1)
T = dmat

new [Bmat]
−1 (3.14)

To get the final synthesized image with the unknown sensor (sM+1) and the unknown material
(mN+1) with any content (ck), we use n-mode product as given in equation 3.15.

dsensor,mat
new = Z × 1(sM+1)

T × 2(mN+1)
T × 3(ck)

T (3.15)

3.4.2.1 Experimental procedure

We utilize a PA classifier to evaluate the performance of our factorization method. We use a leave-
one-out strategy for the particular test sensor and test material. The left-out train data is then augmented
with the test data to increase the PA classifier’s test size.

We synthesize the target sensor and material data as mentioned in 3.4.2. For capturing the style, we
use fingerprints from the attacker and content from the bonafide patches of a known sensor. The PA
detector is trained with and without these synthesized patches to verify the improvement.

3.4.2.2 Results

While evaluating cross-sensor and cross-material performance, we remove both the lives and spoof
data of the unknown sensor from the train set. The data belonging to the novel material within all the
other sensors in train data is also removed.

To generate patches of unknown sensor and unknown material, we supply two sets of 50 minutiae
patches each from (i) unknown material and known sensor and (ii) known material and unknown sensor.
We utilize 15,000 synthesized patches for every unknown sensor-material combination.

Figure 3.6 presents the synthesized patches generated by classical linear factorization.

Table 3.1 showcases the cross-sensor and cross-material performance obtained without and with
synthesized patches (obtained by classical linear factorization).
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Figure 3.6: Synthesized patches for cross-sensor and cross-material combinations using classical linear
method. Bonafide images for the corresponding sensors are in the first column.

Table 3.1: Cross-sensor and cross-material performance (TDR (%) @ FDR = 0.1%) without and with

synthesized patches (obtained by classical linear N-mode SVD) of the corresponding test material and

sensor in training

Materials

GreenBit Digital Persona Biometrika

Without

synthesized

With linear

synthesized

Without

synthesized

With linear

synthesized

Without

synthesized

With linear

synthesized

Ecoflex 00-50 96.07 75.67 10.46 6.57 47.34 51.51

Gelatine 81.52 81.82 4.37 2.34 21.74 20.73

WoodGlue 61.32 47.12 3.81 0.37 6.44 3.9

Latex 91.51 65.74 3.81 2.13 69.07 58.69
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3.5 Summary

In this chapter, we established a baseline for fingerprint factorization using traditional machine-
learning methods. We utilize multi-linear tensor decomposition (N-mode SVD algorithm) to find the
corresponding content, sensor and material representations. We synthesize images with unknown sen-
sors and materials using translation and feed these images to the PA detector for re-training. It is
observed that the synthesized images could be of better quality. The cross-sensor and cross-material
performance is poor, mainly due to the lack of training data, as tensorprints require aligned patches
across all combinations. This motivates us to switch to deep learning-based methods, as introduced in
the next chapter.
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Chapter 4

Deep Learning-Based Disentanglement of Fingerprint Style

In this chapter, we discuss the deep learning approach for the disentanglement of fingerprint style
and present its superiority over the traditional factorization techniques mentioned in the previous chap-
ter.

4.1 Motivation for Deep Learning-Based Method

• Captures Multi-level context (Local and global region): The content of a region depends on
its immediate context as well as its larger context. Traditional methods try to represent the overall
information of an image by giving uniform importance to each sub-region. However, we need
to capture the information such that the local region is given higher importance than the global
context. This way, the style will be learned from the overall image, but the exact variations will
depend on the local context. This kind of focused approach to the local region is required to
enhance the feature representation. Deep learning provides a natural way to solve this problem
using convolutional layers as shown in Figure 4.1.

• Controllable Non-linearity: Deep learning and kernel-based approaches both learn from the
data. However, the kernel-based method captures non-linearity of a fixed nature depending on
the specific kernel used, whereas deep learning is more flexible regarding its capabilities. Deep
learning has the ability to model non-linearity from a simple level to a very complex degree. The
non-linear complexity will be more for deep networks if they have multiple layers. Depending
on the amount of data, if you use the right amount of regularization, neural networks will create
representations as simple as possible but sufficiently capturing enough non-linearity to model it. It
will keep iterating until the loss function becomes good but captures the underlying non-linearity
completely. Therefore, deep learning helps in controllable non-linearity.

• Ability to learn from more data: Generally, traditional factorization-based methods find it dif-
ficult to deal with a large quantity of data. Deep learning-based techniques use neural networks
with gradient descent and can iteratively learn using mini-batches on more data.
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Figure 4.1: Convolutional Neural networks for capturing multi-level context [32]

4.2 Introduction

The increasing number of fingerprint presentation attacks poses a severe threat to automatic finger-
print recognition systems. Fingerprint presentation attack detection techniques are incorporated into
fingerprint recognition systems to combat these attacks. State-of-the-art presentation attack1 detectors
using deep learning methods such as CNNs have demonstrated exceptionally high accuracy. However,
CNN-based PA detectors have to be trained with large amounts of data captured across each spoof
material and sensor for better generalization.

Attackers are constantly trying to exploit diverse fabrication techniques to produce significantly dis-
tinct spoof materials to circumvent biometric systems. It is observed that the PAD performance reduces
significantly [41] upon introducing fingerprints synthesized using novel materials or those captured with
unknown sensors. However, it is incredibly challenging to physically fabricate an extensive train dataset
of high-quality counterfeit fingerprints generated with novel materials captured across multiple sensors.

Furthermore, we might barely have a few samples of a spoof material or sensor from the attacker. For
example, cases like partial PA fingerprints captured on an unknown sensor can contribute extremely few
patches for serving as the target material and sensor for a synthesis-based FPAD. Therefore, it is crucial
to learn the characteristics of these novel materials and sensors with the help of a minimal number
of samples to improve the cross-material and cross-sensor generalization capability of fingerprint PA
detectors.

Existing works use a style-transfer-based augmentation wrapper over a PA classifier to improve pre-
sentation attack detection. UMT [18] generates a large synthetic PA dataset by using atleast 150 patches

1Presentation attack detection (PAD) is also referred to as liveness detection or spoof detection, we use these terms
interchangeably.
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Figure 4.2: A supplied style patch is factorized into its corresponding sensor and material codes, then
combined in several ways to synthesize patches across (i) unknown material and known sensor, (ii)
known material and unknown sensor, or (iii) unknown material and unknown sensor. The black cell
indicates an existing train image. From the supplied image’s style, UMT [18] can only generate the
style in the red cell, whereas our proposed method can generate the style in both the blue and red cells.

of an unknown material over a fixed CrossMatch sensor. Another set of works [13, 23] aims to improve
cross-sensor and cross-material performance by synthesizing fingerprint images corresponding to novel
materials, possibly occupying the space between the known materials in the deep feature space. How-
ever, these synthesized images only lie within the convex hull formed by interpolation between known
materials which is a very limited and constrained feature space.

Our approach aims to improve performance by extrapolating to sensors and materials outside the
convex hull, utilizing one fingerprint image of the target sensor and material. This allows us to explore a
much larger and diverse feature space, and generates a large variety of samples using the same limited
amount of data, which helps improve generalization further.

We propose a One-shot Sensor and Material Translator (OSMT) wrapper for improving cross-
sensor and cross-material PAD. Our framework synthesizes large amounts of data across unknown sen-
sors and materials, from exclusively a single fingerprint by decomposing and combining the underlying
sensor and material factors.
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4.3 Methodology

4.3.1 Overview

An outline of our end-to-end pipeline for improving presentation attack detection is depicted in
Figure 4.3. We propose One-shot Sensor and Material Translator (OSMT) wrapper that disentangles
material and sensor characteristics from a single target fingerprint and translates them onto the content
(ridges) of other fingerprint images.

While training, we learn to translate images between known classes of sensors and materials. At test
time, we extract sensor and material embeddings from only one fingerprint that belongs to an unknown
material, sensor, or both. We utilize these embeddings to synthesize patches of the required target
sensor-material combination by translation. These synthesized images are augmented to the existing
train dataset of OSMT to train the MobileNet-V2 [53] PA classifier. This pipeline has proven to improve
the FPAD performance for the target materials and sensors.

4.3.2 One-Shot Sensor and Material Translator

We input a 96 × 96 target patch of a novel material, sensor, or both, along with the required content
fingerprint patch to the OSMT framework. We follow an architecture similar to Liu et al. [38], with a
conditional image generator G and multi-task adversarial discriminator D. G can simultaneously take
in a content patch c, a set of K1 patches from a sensor s = {s1, . . . , sK1} and K2 patches from a
material m = {m1, . . . ,mK2} to produce an output patch c.

c = G (c, {s,m}) = G (c, {{s1, . . . , sK1} , {m1, . . . ,mK2}}) (4.1)

As shown in Figure 4.3, c retains the content of c while resembling the textural characteristics of
material m and sensor s. We fix K1 = K2 = 1 in our experiments as we propose to extract the sensor
and material codes from exclusively a single target patch.

4.3.2.1 Architecture

Our generator consists of a content encoder Ec, a material encoder Em, a sensor encoder Es, a
bilinear layer B and a joint decoder Fc.

• Content encoder: Our content encoder Ec maps an input content fingerprint patch c to a content
latent code zc, which is a spatial feature map. It comprises several strided convolutional layers for
downsampling the input, followed by residual blocks [25]. Every convolutional layer is followed
by Instance Normalization (IN) [58].

• Sensor and Material encoders: We pass the input style patch belonging to the desired sensor and
material through the encoders Es and Em to extract corresponding sensor and material codes by
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Figure 4.3: (a) An overview of the proposed pipeline with One-Shot Sensor and Material Translator
(OSMT) wrapper over the PA detector for addition of synthesized patches belonging to the target sensor
and material (b) Architecture of the Generator of One-Shot Sensor and Material Translator (OSMT)
wrapper. A content patch c and a style patch (of the target sensor s and material m) are passed into
the content, sensor and material encoders respectively. The generated sensor and material codes (zs and
zm) are fused using a matrix outer product to form the bilinear style code zb. The content code zc is
processed through the decoder with AdaIN parameters from the style code zb to generate the final output
image c. c contains the content of c and texture of sensor s and material m.
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disentanglement in the style feature space. Both sensor (Es) and material (Em) encoders have the
same network. Their network consists of several strided convolutional layers for downsampling,
followed by a global average pooling layer and a fully connected (FC) layer. The encoders Es

and Em map the style patches to intermediate latent vectors {s1, . . . , sK1} and {m1, . . . ,mK2},
which are then converted to 8-dimensional sensor (zs) and material (zm) codes by computing
their mean.

• Bilinear Layer: We combine the sensor (zs) and material (zm) codes using a bilinear layer
B similar to [36] for computing the final bilinear style code zb. In the bilinear layer, the 8-
dimensional codes zs and zm are combined using an outer product to produce an 8×8 intermediate
output. This output is flattened using the vec operator as shown in Equation 4.2 to produce a 64-
dimensional style code zb.

zb = B(zs, zm) = vec(zs ⊗ zm) = vec(zTs zm) (4.2)

The bilinear combination merges the sensor and material information but also captures the pair-
wise interactions between them.

• Decoder: The decoder Fc takes in both the content and style codes to produce the output image.
The decoder consists of multiple adaptive instance normalization (AdaIN) residual blocks [27],
followed by upsampling and convolutional layers. The AdaIN residual blocks use AdaIN [26] as
the normalization layer. The affine parameters of AdaIN in Equation 4.3, are computed from the
style code zb using the multilayer perceptron network (MLP).

AdaIN(z, γ, β) = γ

(
z − µ(z)
σ(z)

)
+ β (4.3)

where z is the activation from the previous convolutional layer, µ and σ are channelwise mean
and standard deviation, γ and β are the affine parameters computed by the MLP.

The computed µ and σ are used to perform affine transformations in each of the AdaIN residual
blocks at the normalization layer. In this way, we infuse the style into the decoded content feature
maps using the affine transformations in the AdaIN residual blocks to generate the final stylized
fingerprint patch.

As shown in Figure 4.3, Equation 4.1 now becomes

c = Fc (zc, zb) = Fc (Ec(c), B(zs, zm)) (4.4)

• Sensor and Material Discriminators: We utilize two multi-task adversarial discriminators [38]
Ds and Dm for sensor and material respectively. This type of discriminator solves various binary
classification tasks simultaneously. We determine whether the input is an original image from the
known source class or a translation output from G in each task.
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4.3.2.2 Formulation

We train the proposed OSMT wrapper by solving the following minimax optimization function:

min
D

max
G
LGAN(Ds, Dm, G) + λCLC(G) + λFLF(G) + λSLsensor(G) + λMLmaterial(G) (4.5)

where LGAN,LC, LF, Lsensor and Lmaterial are the GAN loss, the content image reconstruction loss,
the feature matching loss, the sensor and material contrastive loss respectively.

We use a GAN loss conditioned on material and sensor as given in Eqn. 4.6 . The superscripts of D
- css, csm, cs and cm denote the source sensor, source material, target sensor and target material.

LGAN(Ds, Dm, G) =0.5 ∗ (Ec [− logDcss
s (c)] + Ec,s [log (1−Dcs

s (c)])+

0.5 ∗ (Ec [− logDcsm
m (c)] + Ec,m [log (1−Dcm

m (c)])
(4.6)

We use a contrastive loss [11] on the sensor and material codes produced by the sensor and material
encoders. It brings the embeddings belonging to the same material or sensor closer in the feature space
and pushes them away if the classes are dissimilar, using the objective below:

L(x1, x2) = (1− y)1
2
(Dw)

2 + (y)
1

2
{max (0,m−Dw)}2 (4.7)

where x1 and x2 are the input images. When x1 and x2 belong to the same class y = 1, else y = 0. Dw

is the euclidean distance between the embeddings and m is the margin.
The content reconstruction loss LC ensures the content (fingerprint ridges) is retained in the synthe-

sized image after translation. We pass the same input content image through all the three encoders -
content, sensor and material. Thereby, forcing G to produce an output image identical to the input. We
use L1 norm since it generates sharper images.

LC(G) = Ec

[
‖c−G(c, {c, c})‖11

]
(4.8)

In order to regularize the training, we use a feature matching loss for both sensor and material. The
feature extractors Dfs and Dfm are constructed by removing the final prediction layer. We use Dfs and
Dfm for extracting features from translated output c, target sensor {s1, . . . , sK1} and material images
{m1, . . . ,mK2} to minimize the loss below:

LF(G) = Ec,s[‖Dfs(c))−
∑
K1

Dfs (sk)

K1
‖11] + Ec,m[‖Dfm(c)−

∑
K2

Dfm (mk)

K2
‖11] (4.9)

4.4 Datasets

We utilize the LivDet (2015 [47], 2017 [48], 2019 [50] and 2021 [7]) fingerprint liveness datasets
for our experiments. Some of these datasets contain additional spoof materials in the test set other than
the ones in the train set. We only utilize the spoof materials common to both train and test data for our
experiments.
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For LivDet17, 19 and 21 datasets, we cannot perform ‘cross-sensor’ or ‘cross-sensor and cross-
material’ experiments since there are only two optical sensors. For the above two experiments, we must
remove the target sensor from the train data, leaving only one sensor to learn the sensor contrastive
loss. Similarly, LivDet21 has only two materials in train data, so we cannot perform cross-material
experiments.

LivDet17, 19 and 21 datasets also have disjoint spoof materials in the train-test split. Therefore,
while testing, we should use the train data of the target sensor and material left out during training, as
the test set. This test data has the same identities (content) as the training data across other sensors,
which might not be a good evaluation method. Due to the above reasons, we performed ‘cross-sensor
and cross-material’ experiments on the more suitable LivDet15 dataset, having more sensors and a train-
test split with common materials and sensors. However, we can obtain the cross-material performances
for LivDet17 and 19 as presented in section 5.4.

We also utilize the LivDet 2021 [7] fingerprint dataset for evaluating performance across fabrication
techniques. LivDet 2021 consists of fingerprints captured through both Consensual and ScreenSpoof
techniques. In the traditional consensual method, the mold is fabricated with user collaboration. The
ScreenSpoof [8] technique uses a semi-consensual method to model realistic attacks and helps in better
performance assessment. The steps for the ScreenSpoof capture are as follows:

• A snapshot of a latent fingerprint left on a smartphone screen is captured.

• After appropriate preprocessing (segmenting and enhancing), its negative image is printed on a
transparent sheet for the mold, similar to the non-consensual process.

Pre-processing
We first resize the 1000 dpi images of Biometrika sensor in LivDet 2015 to 500 dpi.
We preprocess these images by segmenting the fingerprint from the background similar to [18] and

then extract 150x150 minutiae patches. These minutiae patches are aligned and center cropped to 96x96
patches.

4.5 Experiments, Results and Analysis

We evaluate the performance of our proposed OSMT wrapper by utilizing a presentation attack
classifier. We conduct experiments in three different settings - cross-material, cross-sensor and both
cross-sensor and cross-material. With the help of these results, we demonstrate that the addition of
synthetic fingerprint patches improves the sensor and material generalization of a PA detector.

4.5.1 Experimental Procedure

We utilize a leave-one-out strategy similar to [18] to evaluate our model’s performance. Depending
on the cross-experiment type, we leave the particular testing material, sensor, or both out of the train
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data to simulate the real-world scenario. The left-out train data is then augmented to the test data of the
particular material or sensor to increase the test size for the PA classifier. We train the OSMT wrapper
with the rest of the data.

At inference of OSMT, we pass content patches and 50 minutiae patches2 from a single target finger-
print to synthesize data of the target sensor and material. We choose content patches from the bonafide
patches of the fixed sensor for cross-material experiments. For cross-sensor experiments, we select con-
tent patches from a sensor other than the test sensor. The PA detector is trained with and without these
synthesized patches to verify the improvement.

4.5.2 Major Results

4.5.2.1 Comparison with State-of-the-Art

Table 4.1: Comparison of OSMT and SOTA cross-material performance (TDR (%) @ FDR = 0.1%)
using EcoFlex, Body Double, and Play Doh spoof materials, without and with using synthesized spoof
patches in the train set.

Training Set Testing Set TDR (%) @ FDR
= 0.1%

Bonafide vs [EcoFlex + BD] Bonafide vs PD 92.73

Bonafide vs [EcoFlex + BD + 50 Spoof PD Patches* + 35K UMT Synthesized
PD Patches]

Bonafide vs PD 93.74

Bonafide vs [EcoFlex + BD + 50 Spoof PD Patches* + 35K OSMT Synthe-
sized PD Patches]

Bonafide vs PD 94.7

Bonafide vs [PD + EcoFlex] Bonafide vs BD 81.78

Bonafide vs [PD + EcoFlex + 50 Spoof BD Patches* + 35K UMT Synthesized
BD Patches]

Bonafide vs BD 81.88

Bonafide vs [PD + EcoFlex + 50 Spoof BD Patches* + 35K OSMT Synthe-
sized BD Patches]

Bonafide vs BD 80.04

Bonafide vs [PD + BD] Bonafide vs
EcoFlex

90.02

Bonafide vs [PD + BD + 50 Spoof EcoFlex Patches* + 35K UMT Synthesized
EcoFlex Patches]

Bonafide vs
EcoFlex

91.19

Bonafide vs [PD + BD + 50 Spoof EcoFlex Patches* + 35K OSMT Synthe-
sized EcoFlex Patches]

Bonafide vs
EcoFlex

93.9

∗50 Spoof EcoFlex / Body Double / Play Doh minutiae patches are generated from only 1 Spoof EcoFlex / Body Double /

Play Doh image, respectively. PD = Play Doh, BD = Body Double

Our method utilizes 50 minutiae patches from a single fingerprint with a target material within the
CrossMatch sensor for synthesis. We added 35000 synthesized patches to the train data for each new
material.

2Our wrapper can utilize only one target patch. However, we use multiple patches to capture the variability in style.
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We re-implemented UMT with minutiae patches for the baseline and observed that our UMT perfor-
mance is better than the original implementation (with randomly cropped patches).

We suitably compare our cross-material performance with UMT [18] as the state-of-the-art model
since we cannot compare our model with other SOTA methods - UMG [13], UMG+ARL [23]. UMG
tries to achieve a different goal by synthesizing images through interpolation between two materials.
However, we try to obtain results by extrapolating to materials and sensors outside the convex hull.
ARL is completely different from our method, it could also be applied on top of OSMT.

Table 1. presents the improvement in TDR @ FDR = 0.1% on the addition of synthesized patches
and compares our performance with the existing UMT wrapper. Here, we do not use the entire train data
(across multiple sensors) of the wrapper but only use the train set of the CrossMatch sensor, excluding
the target material, for suitable comparison to UMT.

4.5.2.2 Cross-Sensor Performance

We observe a consistent performance improvement across all sensors, and achieve an average im-
provement of 4.31% (TDR (%) @ FDR = 0.1%). Table 4.2 shows the cross-sensor performance without
and with the synthesized patches of the target sensor.

While training, we include the synthesized data of the target sensor and the real data of the three
sensors, excluding the target sensor. In the synthesized dataset of the test sensor, we include both the
synthesized live and synthesized spoof material patches. We supply 50 patches each, for live and every
spoof material belonging to the target sensor to the wrapper for synthesis. The number of synthesized
patches of the target sensor equals the number of actual live and spoof patches within the sensor in the
LivDet2015 dataset.

Table 4.2: Cross-sensor performance (TDR (%) @ FDR = 0.1%) without and with synthesized patches
of the corresponding test sensor in the train set

Sensor

TDR (%) @ FDR = 0.1%

Digital
Persona

Green
Bit

Bio-
metrika

Without
synthesized

6.66 67.59 35.95

With UMT
synthesized

8.07 57 37.88

With OSMT
synthesized

9.05 75.86 38.22

4.5.2.3 Cross-Material Performance

We evaluate the cross-material performance of LivDet 2017 and 2019 datasets similar to section
4.5.2.1. For each material, we utilize 35000 and 25000 synthesized patches generated using live patches
from GreenBit and Digital Persona sensors respectively.
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Tables 4.3 and 4.4 presents the results for cross-material performance on LivDet2017 and LivDet2019
respectively.

Table 4.3: Cross-material performance (TDR@FDR=0.1%) without and with synthesized patches for
LivDet 2017

Material
TDR (%) @ FDR = 0.1%

Without
synthesized

With OSMT
synthesized

Body Double 86.58 85.51

Ecoflex 56.41 46.91

Wood Glue 75.94 76.76

Table 4.4: Cross-material performance (TDR@FDR = 0.1%) without and with synthesized patches for
LivDet 2019

Material
TDR (%) @ FDR = 0.1%

Without
synthesized

With OSMT
synthesized

Body Double 99.48 99.96

Ecoflex 71.41 66.25

Wood Glue 20.52 22.67

Ecoflex-0050 44.37 45.34

Gelatine 48 55.83

Latex 49.2 62.17

4.5.2.4 Cross-Sensor and Cross-Material Performance

While evaluating cross-sensor and cross-material performance, we remove both the lives and spoof
data of the unknown sensor from the train set. The data belonging to the novel material within all the
other sensors in train data is also removed. The number of synthesized patches is approximately equal
to the number of patches in each spoof material for the given sensor.

To generate patches of unknown sensor and unknown material, we supply two sets of 50 minutiae
patches each from (i) unknown material and known sensor and (ii) known material and unknown sensor.
We utilize 15,000 synthesized patches for every unknown sensor-material combination. CrossMatch
sensor in Table 4.5 is excluded due to the non-overlap of materials in the dataset.

Figure 4.4 presents synthesized patches generated by OSMT using cross-sensor and cross-material
experiments. By splitting and combining sensor and material codes, our method can generate various
combinations that UMT cannot.
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Table 4.5: Cross-sensor and cross-material performance (TDR (%) @ FDR = 0.1%) without and with
OSMT synthesized patches of the corresponding test material and sensor in training

Materials

GreenBit Digital Persona Biometrika

Without
synthesized

With
synthesized

OSMT

Without
synthesized

With
synthesized

OSMT

Without
synthesized

With
synthesized

OSMT

Ecoflex 00-50 96.07 97.7 10.46 7.06 47.34 58.6

Gelatine 81.52 84.19 4.37 18.53 21.74 24.27

WoodGlue 61.32 51.15 3.81 2.06 6.44 5.91

Latex 91.51 91.6 3.81 9.81 69.07 80.8

Comparison with Classical Methods Baseline

Table 4.6: Cross-sensor and cross-material performance (TDR (%) @ FDR = 0.1%) without and with
synthesized patches of the corresponding test material and sensor in training and comparison with their
corresponding classical linear method baseline

Materials

GreenBit Digital Persona Biometrika

With linear
synthesized

With
synthesized

OSMT

With linear
synthesized

With
synthesized

OSMT

With linear
synthesized

With
synthesized

OSMT

Ecoflex 00-50 75.67 97.7 6.57 7.06 51.51 58.6

Gelatine 81.82 84.19 2.34 18.53 20.73 24.27

WoodGlue 47.12 51.15 0.37 2.06 3.9 5.91

Latex 65.74 91.6 2.13 9.81 58.69 80.8

4.5.3 Ablation Studies

4.5.3.1 Varying Number of Synthesized Patches Used

We study the variation in cross-sensor and cross-material performance by varying the number of
synthesized patches added while training for the combination - GreenBit and Gelatine. We observe a
performance improvement till 15k patches and then a decrement with the addition of 30k patches, as
shown in Table 4.7.

We conclude that excessive synthetic patches could overwork the information already present, and
the extra noise would affect the overall performance.
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Figure 4.4: Synthesized patches for cross-sensor and cross-material combinations using our OSMT
wrapper. Bonafide images for the corresponding sensors are in the first column.

Table 4.7: Variation in cross-sensor and cross-material performance (TDR (%) @ FDR = 0.1%) for
GreenBit-Gelatine combination with 5k, 15k and 30k patches

Without synthesized With 5k With 15k With 30k

81.52 82.29 84.19 75.39

4.5.3.2 Performance across Fabrication Techniques

We utilize LivDet 2015 and LivDet 2021 [7] datasets for training and testing respectively, to evaluate
the performance across different fabrication techniques. To generate cross-sensor and cross-material
synthesized patches, we use patches from GreenBit-Live and CrossMatch-Body Double of LivDet 2015,
to generate GreenBit-Body Double patches. We use GreenBit-Body Double patches from the test set of
LivDet 2021 for evaluating the cross-sensor and cross-material performance.

LivDet 2021 consists of fingerprints captured through both Consensual and ScreenSpoof techniques.
The ScreenSpoof [8] technique models realistic attacks and helps in better performance assessment.
We supply target patches captured through the Consensual method only, due to the non-availability of
ScreenSpoof data in LivDet 2015. However, we evaluate our approach on LivDet 2021 fingerprints
captured using both techniques, as demonstrated in Table 4.8.
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Table 4.8: Performance across fabrication techniques for training on LivDet 2015 and testing on LivDet
2021 dataset. Cross-sensor and cross-material performance (TDR (%) @ FDR = 0.1%) without and
with synthesized patches for two methods of capture - Consensual and ScreenSpoof.

Sensor-
Material

Without
synthesized

With synthesized

Consensual Screen
Spoof

Consensual Screen
Spoof

GreenBit-
BodyDouble

49.93 59.74 62.07 65.18

4.5.4 Qualitative Results

4.5.4.1 Incorrectly and Correctly Classified Patches by OSMT

In Figure 4.5, we present a few correctly predicted and misclassified fingerprint samples. We observe
that PA fingerprints with a porous and lighter texture get misclassified as live. Fake fingerprints with
missing ridges and artifacts are easily detected by our method.

Figure 4.5: Samples of correctly classified and misclassified predictions of our classifier on live and PA
fingerprint patches with the title - predicted label (true label).

4.5.4.2 Classification Results of UMT vs. OSMT

We present a few example images that are correctly classified by OSMT, but fails to be classified by
UMT.

Figure 4.6: Correctly classified samples by OSMT but misclassified by UMT.
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We observe that images similar to live are being misclassified by UMT, but not by our proposed
method.

4.5.5 Exceptions

We observe that the classification accuracy for the Digital Persona sensor is much lower compared
to other sensors. This is mainly due to its small-sized sensor used to capture the fingerprint, thereby
producing smaller images. We also observe that materials like WoodGlue and Ecoflex do not have very
good accuracy improvement. These materials produce transparent spoofs allowing the live fingerprint
color to pass through, making them harder to distinguish from live fingerprints.

4.6 Implementation Details

The discriminators Ds and Dm consists of an output dimension equal to the number of sensors and
materials in the training dataset. We set λS = 1 and λM = 1 and batch size as 24 for OSMT. Other
hyperparameters are set identical to [38].

We use a MobileNetV2 classifier pretrained on ImageNet dataset [14] and remove the last layer
and replace it with two output neurons for live and PA classes. The classifier trained with an Adam
optimizer with a learning rate of 1e−3 and a batch size of 200 while training across multiple sensors.
For cross-material experiments, we use a train and test batch size of 64 and 120 respectively.

4.6.1 Network Details

We utilize the framework similar to FUNIT [38] as mentioned in Section 4. However, we use the
network layers of MUNIT [27] for our generator. MUNIT contains fewer layers in the generator which
is suitable for us due to the lower complexity required for learning fingerprints.

4.7 Summary

The progressive demand for automatic fingerprint recognition systems has increased the variety of
presentation attacks. Earlier FPAD solutions utilize style transfer wrappers over PA detectors by trans-
ferring the unknown style to content fingerprint patches.

We model presentation attacks as a combination of two underlying components - material and sensor,
rather than the entire style. By utilizing the disentanglement approach of our OSMT wrapper, we can
generate synthetic patches on introducing a new sensor, material or both.

We reduce the number of style representations to be learned from nxm to n+m. In this way, OSMT
can generate a tremendous amount of data with less samples. We also observe our method improves
cross-sensor and cross-material generalization.
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Chapter 5

Conclusions and Future Work

Fingerprint presentation attack detectors are usually trained on datasets containing limited live and
spoof materials. However, attackers can bypass these systems using unknown spoof materials or attack
methods other than those encountered during training. Such attacks can be detected by improving the
generalization capability of a fingerprint presentation attack detection system.

In this thesis, we address the problem of cross-sensor and cross-material FPAD generalization using
a synthesis-based approach. We improve presentation attack detection by the addition of synthesized
patches of the target sensor and material while training the PAD classifier. Existing approaches learn the
whole fingerprint style, however, we utilize a decomposition-based approach. Thus helping us learn the
corresponding sensor and material representations. By utilizing this approach, we can generate synthetic
patches upon introducing a new sensor, material or both.

We demonstrate two different methods of fingerprint factorization - traditional and deep-learning
based, in this thesis.

In chapter 3, we discuss traditional methods for factorization of fingerprint into sensor and mate-
rial representations using tensor decomposition called tensorprints. The factorized sensor and material
codes are used to synthesis new images by translation. This establishes a baseline using machine learn-
ing for our hypothesis.

In chapter 4, we propose a deep-learning based augmentation wrapper for the disentanglement of fin-
gerprint style called OSMT and present its superiority over the traditional factorization techniques. The
OSMT (One-shot Sensor and Material Translator) wrapper improves cross-sensor and cross-material
PAD, utilizing one fingerprint image of the target sensor and material.

Our approach aims to improve performance by extrapolating to sensors and materials outside the
convex hull. It also reduces computational complexity by generating compact representations and uti-
lizing lesser combinations of sensors and materials to produce several styles. This allows us to explore
a much larger and diverse feature space, and generates a large variety of samples using the same limited
amount of data, which helps improve generalization further.

In the future, we would like to incorporate open-set detection as a part of the presentation attack
detection pipeline. This would allow us to flag unknown sensors and materials and later pass them to
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our wrapper. This would reduce the computational complexity of the entire system, as synthesis using
OSMT and retraining the classifier will be required only on detecting an unknown sensor or material.
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[7] R. Casula, M. Micheletto, G. Orrù, R. Delussu, S. Concas, A. Panzino, and G. Marcialis. Livdet 2021

fingerprint liveness detection competition – into the unknown, 08 2021.
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