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Abstract

In today’s digital era, biometric authentication has become increasingly widespread for verifying a
user across a range of applications, from unlocking a smartphone to securing high-end systems. Var-
ious biometric modalities such as fingerprint, face, and iris offer a distinct way to recognize a person
automatically. Fingerprints are one of the most prevalent biometric modalities. They are widely utilized
in security systems owing to their remarkable reliability, distinctiveness, invariance over time and user
convenience.

Nowadays, automatic fingerprint recognition systems have become a prime target for attackers. At-
tackers fabricate fingerprints using materials like playdoh and gelatin, making it hard to distinguish them
from live fingerprints. This way of circumventing biometric systems is called a presentation attack (PA).
To identify such attacks, a PA detector is added to these systems.

Deep learning-based PA detectors require large amounts of data to distinguish PA fingerprints from
live ones. However, there exists significantly less training data with novel sensors and materials. Due to
this, PA detectors do not generalize well on introducing unknown sensors or materials. It is incredibly
challenging to physically fabricate an extensive train dataset of high-quality counterfeit fingerprints
generated with novel materials captured across multiple sensors. Existing fingerprint presentation attack
detection (FPAD) solutions improve cross-sensor and cross-material generalization by utilizing style-
transfer-based augmentation wrappers over a two-class PA classifier. These solutions generate large
artificial datasets for training by using style transfer which learns the style properties from a few samples
obtained from the attacker. They synthesize data by learning the style as a single entity, containing both
sensor and material characteristics. However, these strategies necessitate learning the entire style upon
adding a new sensor for an already known material or vice versa.

This thesis proposes a decomposition-based approach to improve cross-sensor and cross-material
FPAD generalization. We model presentation attacks as a combination of two underlying components,
i.e., material and sensor, rather than the entire style. By utilizing this approach, our method can gen-
erate synthetic patches upon introducing either a new sensor, a new material, or both. We perform two
different methods of fingerprint factorization - traditional and deep-learning based. Traditional factor-
ization of fingerprints into sensor and material representations using tensor decomposition establishes a
baseline using machine learning for our hypothesis. The deep-learning method uses a decomposition-
based augmentation wrapper for disentangling fingerprint style. The wrapper improves cross-sensor and
cross-material FPAD, utilizing one fingerprint image of the target sensor and material. We also reduce
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computational complexity by generating compact representations and utilizing lesser combinations of
sensors and materials to produce several styles. Our approach enables us to generate a large variety of
samples using a limited amount of data, which helps improve generalization.



Contents

Chapter Page

1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1
1.1 Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fingerprint Recognition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Fingerprint Presentation Attack Detection . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Fingerprint Presentation Attack Generalization . . . . . . . . . . . . . . . . . 4

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Traditional methods for Fingerprint Disentanglement . . . . . . . . . . . . . . 6
1.4.2 Deep learning based Fingerprint Disentanglement . . . . . . . . . . . . . . . . 6

1.5 Summary and Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9
2.1 Fingerprint Presentation Attack Detection Techniques . . . . . . . . . . . . . . . . . . 9

2.1.1 Hardware-based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Software-based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2.1 Traditional FPAD Methods . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2.2 Deep learning-based FPAD Methods . . . . . . . . . . . . . . . . . 10

2.2 Fingerprint Presentation Attack Detection Generalization . . . . . . . . . . . . . . . . 11
2.3 Disentangled Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Traditional Factorization Models . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Deep-Learning based Disentanglement . . . . . . . . . . . . . . . . . . . . . 12

2.4 Few-Shot Image-to-Image Translation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Classical Factorization Methods on Fingerprints : : : : : : : : : : : : : : : : : : : : : : : : 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Tensor Algebra Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Tensor Decomposition - The N-Mode SVD Algorithm . . . . . . . . . . . . . . . . . 17
3.4 Tensor Prints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Linear Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



CONTENTS ix

4 Deep Learning-Based Disentanglement of Fingerprint Style: : : : : : : : : : : : : : : : : : 25
4.1 Motivation for Deep Learning-Based Method . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 One-Shot Sensor and Material Translator . . . . . . . . . . . . . . . . . . . . 28

4.3.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Experiments, Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5.1 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.2 Major Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.2.1 Comparison with State-of-the-Art . . . . . . . . . . . . . . . . . . . 33
4.5.2.2 Cross-Sensor Performance . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2.3 Cross-Material Performance . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2.4 Cross-Sensor and Cross-Material Performance . . . . . . . . . . . . 35

4.5.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.3.1 Varying Number of Synthesized Patches Used . . . . . . . . . . . . 36
4.5.3.2 Performance across Fabrication Techniques . . . . . . . . . . . . . 37

4.5.4 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.4.1 Incorrectly and Correctly Classi�ed Patches by OSMT . . . . . . . . 38
4.5.4.2 Classi�cation Results of UMT vs. OSMT . . . . . . . . . . . . . . 38

4.5.5 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6.1 Network Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusions and Future Work: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

Bibliography : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43



List of Figures

Figure Page

1.1 Different biometric modalities - a) ear, b) face, c) facial thermogram, d) hand thermo-
gram, e) hand vein, f) hand geometry, g) �ngerprint, h) iris, i) retina, j) signature, and k)
voice [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Fingerprint spoof examples from MSU 12 Spoof materials dataset [13] . . . . . . . . 3
1.3 Fingerprint Recognition System vulnerable to presentation attacks. . . . . . . . . . . . 4
1.4 Fingerprint Recognition System with an additional presentation attack detector . . . . 4
1.5 Consider supplied patchesS1-M 2 andS2-M 1. Using style transfer methods as shown

in (a), we can obtain only 2 output combinations. However, using our decomposition-
based method, we can obtain 4 different output combinations as shown in (b). Here,C
= content andS1, S2, M 1, M 2 = sensor1, sensor2, material1, material2 . . . . . . . . 6

1.6 3D t-SNE visualization of style embeddings in the deep feature space produced by var-
ious methods of data generation - (a) Data for 3 existing sensor and material combina-
tions, (b) Interpolated data between two existing sensor-material combinations by UMG,
(c) Extrapolated data by our approach to obtains2-m2 combination from existing data
combinations (s1-m1, s1-m2, s2-m1) and (d) Further interpolation on our generated
data. Here,s1, s2, m1, m2 = sensor1, sensor2, material1, material2 . . . . . . . . . . 7

2.1 Overview of CNN-based Fingerprint Spoof buster for Fingerprint presentation attack
detection [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Spoof detector with a style transfer wrapper (UMT [18]) to prevent presentation attacks. 11
2.3 Given a training set of observations with multiple styles (i.e., fonts) and content classes

(i.e., letters), we can (A) classify content with a new style, (B) extrapolate a new style
to unobserved content classes, and (C) translate from new content observed only in new
styles into known content or styles classes. [17] . . . . . . . . . . . . . . . . . . . . . 12

2.4 Example of translation on face images from [17] . . . . . . . . . . . . . . . . . . . . 13

3.1 A (1) ; A (2) ; A (3) matrices comprising mode-1, mode-2, and mode-3 vectors, obtained by
�attening a 3rd-order tensor in 3 ways. [60] . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 An N -mode SVD decomposes a tensor intoN orthogonal spaces (vector spaces for
N =3 shown above) from [24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Data tensor with �ngerprint variations across content, sensors and materials . . . . . . 19
3.4 First two images correspond to the �ngerprints to be aligned. Third image shows the

overlapping images after performing alignment. . . . . . . . . . . . . . . . . . . . . . 20
3.5 Minutiae points of the reference and gallery �ngerprint before and after alignment . . . 20

x



LIST OF FIGURES xi

3.6 Synthesized patches for cross-sensor and cross-material combinations using classical
linear method. Bona�de images for the corresponding sensors are in the �rst column. . 23

4.1 Convolutional Neural networks for capturing multi-level context [32] . . . . . . . . . . 26
4.2 A supplied style patch is factorized into its corresponding sensor and material codes,

then combined in several ways to synthesize patches across (i) unknown material and
known sensor, (ii) known material and unknown sensor, or (iii) unknown material and
unknown sensor. The black cell indicates an existing train image. From the supplied im-
age's style, UMT [18] can only generate the style in the red cell, whereas our proposed
method can generate the style in both the blue and red cells. . . . . . . . . . . . . . . . 27

4.3 (a) An overview of the proposed pipeline with One-Shot Sensor and Material Translator
(OSMT) wrapper over the PA detector for addition of synthesized patches belonging to
the target sensor and material (b) Architecture of the Generator of One-Shot Sensor and
Material Translator (OSMT) wrapper. A content patchc and a style patch (of the target
sensors and materialm) are passed into the content, sensor and material encoders
respectively. The generated sensor and material codes (zs andzm ) are fused using a
matrix outer product to form the bilinear style codezb. The content codezc is processed
through the decoder with AdaIN parameters from the style codezb to generate the �nal
output imagec. c contains the content ofc and texture of sensors and materialm. . . 29

4.4 Synthesized patches for cross-sensor and cross-material combinations using our OSMT
wrapper. Bona�de images for the corresponding sensors are in the �rst column. . . . . 37

4.5 Samples of correctly classi�ed and misclassi�ed predictions of our classi�er on live and
PA �ngerprint patches with the title - predicted label (true label). . . . . . . . . . . . . 38

4.6 Correctly classi�ed samples by OSMT but misclassi�ed by UMT. . . . . . . . . . . . 38



List of Tables

Table Page

3.1 Cross-sensor and cross-material performance (TDR (%) @ FDR =0:1%) without and
with synthesized patches (obtained by classical linear N-mode SVD) of the correspond-
ing test material and sensor in training . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Comparison of OSMT and SOTA cross-material performance (TDR (%) @ FDR =
0:1%) using EcoFlex, Body Double, and Play Doh spoof materials, without and with
using synthesized spoof patches in the train set. . . . . . . . . . . . . . . . . . . . . . 33

4.2 Cross-sensor performance (TDR (%) @ FDR =0:1%) without and with synthesized
patches of the corresponding test sensor in the train set . . . . . . . . . . . . . . . . . 34

4.3 Cross-material performance (TDR@FDR=0:1%) without and with synthesized patches
for LivDet 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Cross-material performance (TDR@FDR =0:1%) without and with synthesized patches
for LivDet 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Cross-sensor and cross-material performance (TDR (%) @ FDR =0:1%) without and
with OSMT synthesized patches of the corresponding test material and sensor in training 36

4.6 Cross-sensor and cross-material performance (TDR (%) @ FDR =0:1%) without and
with synthesized patches of the corresponding test material and sensor in training and
comparison with their corresponding classical linear method baseline . . . . . . . . . . 36

4.7 Variation in cross-sensor and cross-material performance (TDR (%) @ FDR = 0.1%)
for GreenBit-Gelatine combination with 5k, 15k and 30k patches . . . . . . . . . . . . 37

4.8 Performance across fabrication techniques for training on LivDet 2015 and testing on
LivDet 2021 dataset. Cross-sensor and cross-material performance (TDR (%) @ FDR
= 0.1%) without and with synthesized patches for two methods of capture - Consensual
and ScreenSpoof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xii



Chapter 1

Introduction

1.1 Biometrics

Biometricsis derived from the Greek words -bios(life) andmetron(measurement); biometric iden-

ti�ers are measurements from a living human body.

Biometrics is the analysis ofunique anatomical characteristics, such as �ngerprints, iris, and face

recognition, to identify a speci�c individual. These characteristics can be used to identify or verify a

person's identity for security or other purposes.

Biometrics can be helpful in various contexts, including security, access control, and identi�cation.

Some speci�c examples of how biometrics can be used include:

• Security: Biometrics can be used to verify a person's identity before granting access to a secure

area or system. This can help prevent unauthorized access and increase overall security.

• Access control: Biometrics can be used as a form of identi�cation for access control systems,

such as unlocking a smartphone or logging into a computer. This eliminates the need for tradi-

tional forms of identi�cation, such as passwords or keys.

• Identi�cation: Biometrics can be used to identify individuals in a variety of situations, such

as border control, voting, and criminal investigations. This can help improve the accuracy and

ef�ciency of identi�cation processes.

• Time and Attendance: Biometric data can be used to track employee attendance and time spent

on tasks, reducing the need for manual time cards or time sheets.

• Banking and Finance:Biometrics can be used to verify the identity of customers in banking and

�nancial transactions, reducing the risk of fraud and increasing security.

Overall, biometrics can be a valuable tool for increasing security and convenience while making the

identi�cation processes more accurate and ef�cient.
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Figure 1.1: Different biometric modalities - a) ear, b) face, c) facial thermogram, d) hand thermo-gram,
e) hand vein, f) hand geometry, g) �ngerprint, h) iris, i) retina, j) signature, and k) voice [39]

To consider any anatomical or behavioral trait as a biometric identi�er, the following conditions

should be satis�ed:

• Universality: every person must possess the trait.

• Distinctiveness:the trait should be suf�ciently different for any two persons.

• Permanence:the trait should be invariant (with respect to the matching criterion) over time.

• Collectability: quantitatively measuring the trait should be possible.

Multiple biometric modalities satisfy the above conditions, however �ngerprint biometrics is consid-

ered to be one of the most widely used [39] and accepted forms of biometrics due to its reliability and

ease of use.

1.2 Fingerprint Recognition Systems

Fingerprint recognition systems use �ngerprints as a means of identifying or verifying a person's

identity. These systems typically consist of hardware and software that work together to capture, pro-

cess, and analyze �ngerprints. Initially, images of a person's �ngerprints are captured, which are then

analyzed using speci�c algorithms to extract unique feature points called minutiae. The minutiae are

then compared to a database of �ngerprints to �nd a match.

There are two main types of �ngerprint recognition systems:

2
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