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Abstract 

When volcanoes erupt explosively, the ash gets airborne and reaches till stratosphere vertically, 

and then spreads laterally to synoptic scales due to wind. Detecting the presence of ash in the 

atmosphere accurately is a challenge. Although several remote, in-situ, and near-sensing 

techniques exist, due to the variety and complexity of the physical and chemical properties of 

ash, that get ejected, even within between spells of the eruption of a given volcanic event, it is 

hard to distinguish it from other aerosols such as desert sand, ice clouds, etc. The false positives 

in the detection render these solutions unreliable and inconsistent. As a result, weather 

parameters are explored as an alternative strategy to predict the presence of ash. In specific, the 

temperature variable is identified as the proxy variable to study the spatial distribution of ash 

in the atmosphere. There are several beneficial reasons to study temperature because the values 

do not vary randomly, low-cost equipment suffice to gather the data, the diurnal variations can 

be accounted for easily, the ability to convert scales from negative to positive metrics for 

numerical calculations does not vary significantly with ash type, etc. 

For this research, the eruption of the Icelandic volcano, Eyjafjallajokull is chosen, due to the 

severe negative impact it created on the economy across Europe in April and May 2010. World 

Meteorological Organisation (WMO) and International Civil Aviation Authority (ICAO) 

together have created Volcanic Ash Advisory Center (VAAC) to model the concentration and 

simulate the transportation of ash to inform the hazards of ash fall to various stakeholders 

across the world. The London VAAC used a VAFTDM known as Numerical Atmospheric-

dispersion Modeling Environment (NAME) to model the ash spread. This theoretical model 

had several limitations, chief of them being related to the accuracy of the Numerical Weather 

Prediction (NWP) models that were supported for ash modeling. The UK Met Office dealing 

with the NWP associated with the NAME model supported and offered multiple models such 

as Unified Model (UM), ECMWF, and a few others to predict the weather variables. Since 

each VAAC uses its own NWP model that varies spatially and temporally, a benchmarking 

exercise was conducted to compare the Volcanic Ash Forecast Transport and Dispersion 

(VAFTD) models. The benchmarking allowed the use of either NCEP or ECMWF NWP. For 

this research, NCEP NWP was chosen for analysis since 6 out of 12 VAFTD models used this 

NWP.  
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On analysis, it was observed that NCEP NWP had large grid sizes and therefore small-scale 

spatial variations were not effectively captured, especially in the vertical extent, even across 

years. So, we chose to analyze the interpolation model used in the generation of gridded outputs 

for NCEP since there were limitations observed in using the Ensemble Kalman Filter (EnKF) 

technique. In this context, the suitability of regression-based interpolation methods was 

considered to model the NCEP values better. A sample of flight-based ash temperature data 

from the 2010 Eyjafjallajokull eruption was taken for case study. Initially, a linear regression 

technique was employed.  

Since the outputs of the Multiple Linear Regression (MLR) method were not observed to be 

highly accurate in modeling the missing day’s temperature using 3 out of 4 day’s samples, a 

non-linear regression method, based on geostatistics, known as Kriging, was chosen.  

Kriging, originally developed for ore mining problems was cross applied to an atmospheric 

problem in this research. The advantage of using Kriging is that it generates prediction surfaces. 

In addition, when compared against deterministic methods such as Inverse Distance Weighting 

(IDW), Kriging can produce error estimates too. Initially, Simple Kriging (SK) method was 

applied to generate profiles. Since the nature of the dataset was highly clustered and 

heteroskedastic, a better kriging method was required to model the variations better. A 

stochastic variant of kriging called Empirical Bayesian Kriging (implemented in ArcGIS 

version 10.3) was chosen to account for the non-stationary random field. Again, the effect of 

using an intrinsic random function (non-transitive) in generating and fitting the semivariograms 

over the use of a transitive function-based approach (by making transformations) was 

compared. The former is denoted as EBK while the latter is referred to as EBKT. 

The non-linear kriging-based interpolation estimates were observed to be significantly better 

than the traditional MLR method when compared against the NCEP NWP estimates. In 

addition, a detailed error analysis was performed to compare the 3 kriging methods. EBK 

method outperformed SK and EBKT in both point estimates and block grade averages. The 

EBK prediction surfaces were then overlayed on NCEP NWP raster images, in the area of 

interest, to generate risk maps. The aviation domain was chosen as a case study to apply this 

methodology. Using the risk map generated, Go/No-Go Zones were identified to mark the 

presence of airborne ash to ensure safe routes for the operation of aircrafts.  

 



9 
 

Contents 

I. INTRODUCTION ................................................................................................................................ 16 

1. VOLCANIC ERUPTION AND IMPACT TO AIRSPACE DUE TO AIRBORNE ASH ........................................ 16 
2. AIRBORNE VOLCANIC ASH DISPERSION MODELING ............................................................................ 26 
3. ROLE OF NUMERICAL WEATHER PREDICTION MODELS IN ASH DISPERSION SIMULATIONS ............. 44 
4. WHY IS AIR TEMPERATURE A GOOD PROXY FOR ASH DISPERSION MODELING? ................................ 52 
5. PROBLEM FORMULATION....................................................................................................................... 58 
6. USE OF GIS AND GEOSTATISTICS IN INTERPOLATION OF TEMPERATURE ........................................... 60 
7. DEFINING GO/NO-GO REGIONS ............................................................................................................. 61 
8. OBJECTIVES ............................................................................................................................................ 62 
9. STRUCTURE OF THESIS ........................................................................................................................... 62 

II. STUDY AREA AND STUDY SITES ................................................................................................... 63 

1. STUDY SITE ............................................................................................................................................. 63 
2. VALIDATION: NCEP NWP GRIDDED REANALYSIS .............................................................................. 68 
3. ANALYSIS OF VALIDATION DATASET ..................................................................................................... 69 
4. EXPLORATORY SPATIAL DATA ANALYSIS ............................................................................................. 74 

III. ESTIMATION OF SPATIAL SPREAD OF TEMPERATURE ..................................................... 78 

1. METHODOLOGY #1: BY MULTIPLE LINEAR REGRESSION (MLR) ....................................................... 78 
2. METHODOLOGY #2: BY NON-LINEAR REGRESSION – KRIGING ........................................................... 85 

IV. DETAILED ANALYSIS OF KRIGING AS INTERPOLATOR .................................................. 103 

1. VALIDATION OF POINT KRIGING RESULTS (GLOBAL ESTIMATES) .................................................... 103 
2. COMPARATIVE ANALYSIS: LOCAL ESTIMATES - MLR, KRIGING, NCEP ......................................... 105 
3. IS EBK BETTER THAN SK AND EBKT? ............................................................................................... 108 
4. DETAILED ANALYSIS OF EBK PREDICTIONS AND ERRORS ................................................................ 112 
5. COMPARATIVE ANALYSIS OF BLOCK GRADE EBK AGAINST NCEP .................................................. 123 

V. APPLICATION: CASE STUDY – AVIATION WEATHER SAFETY ............................................ 126 

1. GENERATION & VALIDATION OF RISK MAP WITH BLOCK GRADE GO/NO-GO ZONES .................... 128 

VI. CONCLUSION .............................................................................................................................. 131 

GLOSSARY OF TERMS ........................................................................................................................... 134 

LIST OF PUBLICATIONS ........................................................................................................................ 138 

REFERENCES ........................................................................................................................................... 138 

 

  



10 
 

List of Figures 

Figure 1: Types of Volcanoes based on Ash Cloud Explosiveness ....................................................... 16 

Figure 2: World Map showing Live Air Traffic Density ....................................................................... 19 

Figure 3: World Map showing Volcanoes in Active State in 2021 ....................................................... 20 

Figure 4: World Map showing Encounters between Aircrafts & Volcanic Ash of Varying VEI .......... 20 

Figure 5: Timeline of aircraft encounters with volcanic ash in 20th Century ...................................... 21 

Figure 6: Difference between an ash concentration within an ash layer and an integrated ash total 

column loading...................................................................................................................................... 25 

Figure 7: Plume rises from under the Eyja glacier in Iceland ............................................................. 26 

Figure 8: A Pilot’s View of Ash Plume Pilot’s view of the ash cloud above normal clouds at 

Netherlands. Altitude: 6000 feet ........................................................................................................... 26 

Figure 9: Optical Particle Counter Remote Sensing Instrument .......................................................... 27 

Figure 10: Sequence of satellite images showing “aerosol index”, the concentration of particles of 

ash or other pollution in the atmosphere. On April 15, the plume is clearly visible as a streak of 

orange, or 4.0 on scale. Values more than 2 in yellow could be ash. ................................................... 28 

Figure 11: A sample map produced by NAME model predicting the extent of ash spread .................. 29 

Figure 12: Flowchart showing key steps in NAME Model Operation .................................................. 30 

Figure 13: Categorization of No-Fly Zones ......................................................................................... 33 

Figure 14: Enhanced Procedure Zones ................................................................................................ 34 

Figure 15: Ash Concentration by NAME Model Simulations ............................................................... 34 

Figure 16: Drifting ash and gas plumes from Karthala volcano .......................................................... 35 

Figure 17: Sand/Dust Outbreak at Canary Islands - MODIS Satellite Imagery .................................. 35 

Figure 18: Greyish Ash in Gas Plume from Kluichevskoi Volcano in summer .................................... 36 

Figure 19: Windblown resuspended Ash in Southern Coast of Iceland in the background of an 

hurricane clouds ................................................................................................................................... 36 

Figure 20: Ash and gas plume indistinguishable over snow covered terrain, Kluichevskoi volcano .. 36 

Figure 21: Low level gas cloud plume from Kluichevskoi volcano ...................................................... 37 

Figure 22: Photographs of volcanic ash layers varying with low mass concentrations (12-32 mg per 

cubic metre) taken on 13th May 2010 over the North Sea close to Great Britain ................................ 37 

Figure 23: Diluted ash concentrations alongside Normal Clouds ....................................................... 38 

Figure 24: List of VAACs with locations across the world ................................................................... 38 

Figure 25: World Map showing VAAC Partitions ................................................................................ 40 

Figure 26: Jagged Boundary Representation by ICAO ........................................................................ 41 

Figure 27: Maximum Extent of Volcanic Ash Cloud that created No-Fly Zone in UK Airspace ......... 45 

Figure 28: The VAAC Process .............................................................................................................. 46 

Figure 29: Forecast ash concentration chart (Sample) of Eyjaf eruption in 2010 ............................... 47 

Figure 30: Hail Swath observed from aircraft platform on May 14th, 2015........................................ 52 

Figure 31: Hail swath shown by arrow as observed from NASA Terra Satellite on 15th May 2015 ... 53 

Figure 32: Similarity between ash and Sulphurous vog in Hawaii, USA as seen from International 

Space Station in February 2015............................................................................................................ 53 

Figure 33: Typical Flight Surfaces that experience friction with particles like Sand only at ground .. 54 

Figure 34: Engine Damage Correlates with Cloud Age, Particle Size ................................................ 55 

Figure 35: Ash Particle Size in Comparison with other Particulate Matters – Electron Micrograph of 

a single ash particle shown together with some other common materials, US EPA. ........................... 56 

Figure 36: Irregular Shape of Ash Particles ........................................................................................ 56 

Figure 37: Duration of Exposure versus Ash Concentration Chart by Rolls Royce ............................ 57 



11 
 

Figure 38: Rolls Royce Engine Exposure Studies: Visible and Discernible ash plotted against ash 

concentration ........................................................................................................................................ 57 

Figure 39: Impact to European Airspace in 2010 - Open (light green) and closed (grey) FIR in 

Europe on 15th April, 18th April and 21st April 2010 ......................................................................... 63 

Figure 40: Photo of Eyjafjallajokull Eruption in Iceland on 8th May 2010 during clear weather 

conditions .............................................................................................................................................. 64 

Figure 41: FAAM Bae 146-301 ARA Instrumentation ......................................................................... 64 

Figure 42: Location, Timestamps and Density of Ash Distribution ..................................................... 65 

Figure 43: Map showing the MBR with Data Locations w.r.t. Volcanic Vent over Europe................. 66 

Figure 44: Temperature Distribution Plot of Data Samples ................................................................ 66 

Figure 45: Euclidean Map revealing high degree of anisotropy observed in the study site ................ 67 

Figure 46: Map showing Overlay of Grids of NCEP Rasters from Individual Days & Composites 

across Days ........................................................................................................................................... 71 

Figure 47: Plots showing temperature distribution on individual days and across days from May 2010

 .............................................................................................................................................................. 72 

Figure 48: Normal Distribution Check Using Histogram and Normal QQ Plot .................................. 74 

Figure 49:  Global Moran's Index ........................................................................................................ 75 

Figure 50: Trend Analysis Check ......................................................................................................... 76 

Figure 51: Semivariogram Cloud ......................................................................................................... 76 

Figure 52: Semivariogram Surface (Lag Size: 2.3158; No. of lags: 10) .............................................. 77 

Figure 53: Plots showing correlation of temperature between: (a) 16th and 17th May 20201 (b) 17th 

and 18th May 2010 (c) 16th and 18th May 2010 ..................................................................................... 80 

Figure 54: Combined Correlation Analysis of May 16th to May 18th ................................................. 80 

Figure 55: Modeling Using Multiple Linear Regression ...................................................................... 81 

Figure 56: Comparison of Input Data against Predicted Temperature Estimates ............................... 82 

Figure 57: Comparison of Individual Days vs Predicted Temperature Estimates (a) 16th May 2010 vs 

Predicted Estimates (b) 17th May vs Predicted Estimates (c) 18th May 2010 vs Predicted Estimates .. 83 

Figure 58: Decay Curves – IDW Interpolation .................................................................................... 86 

Figure 59: Plot showing graph of attribute (air temperature in Kelvin) values in the input dataset ... 90 

Figure 60: Scatterplot showing Altitude vs Temperature on May 16, 17, 18 ....................................... 91 

Figure 61: Maps showing Prediction Estimates by SK, EBK, EBK (Transformed) methods ............... 94 

Figure 62: Maps showing Prediction Estimates by SK, EBK, EBK (Transformed) method ................ 95 

Figure 63: Comparative 3D Visualization of Kriging and NCEP Profiles .......................................... 98 

Figure 64: Comparison of Prediction Profiles – SK, EBK, EBKT ....................................................... 99 

Figure 65: Comparison of Prediction, Error Profiles of Kriged Estimates ....................................... 102 

Figure 66: Probability Density Graphs for Input, Kriged and NCEP Estimates ............................... 104 

Figure 67: Graph comparing SK, EBK and EBKT estimates against test data (14th May) ............... 105 

Figure 68: Comparison of approximate averages of Input, MLR, Kriging& NCEP temperature values 

locally .................................................................................................................................................. 106 

Figure 69: Correlation of Prediction Estimates by each kriging method against NCEP ................... 107 

Figure 70: Correlation of Error Estimates by EBK Methods against NCEP ..................................... 107 

Figure 71: Comparison of Probability Density Graphs for SK Estimates, NCEP and Input ............. 108 

Figure 72: Comparison of Probability Density Graphs for EBK Estimates, NCEP and Input .......... 109 

Figure 73: Comparison of Probability Density Graphs for EBKT Estimates, NCEP and Input ........ 110 

Figure 74: Comparison of EBK Prediction Estimates Against Input Samples in 5K Intervals Using 

Maps For 14th May and Entire region (with no inputs for 14th May 2010) ........................................ 113 

Figure 75: Comparison of EBK Prediction Estimates Against Input Samples in 5K Intervals Using 

Maps For Input Locations (16th May, 17th May, 18th May) ................................................................. 114 



12 
 

Figure 76: Comparison of Prediction Estimates and Error Estimates for Each Day ........................ 115 

Figure 77: 3D Contour View of EBK Error ....................................................................................... 116 

Figure 78: Location of Extreme Low and Extreme High Errors in MBR ........................................... 117 

Figure 79: Categorization of Reliability of Zones based on Errors ................................................... 118 

Figure 80: Growth pattern in errors when categorized into 15 classes. ............................................ 119 

Figure 81: Discrete representation of error values in the form of stacks........................................... 120 

Figure 82: Approximate Count of Error Ranges in Intervals of 5 Units ............................................ 121 

Figure 83: Plot Validating EBK Prediction Profile against NCEP Profile ....................................... 123 

Figure 84: Plot of Probability Density Estimates - EBK Prediction vs NCEP ................................... 123 

Figure 85: EBK Map Showing Total MBR, Data Rich and Data Poor Regions ................................ 124 

Figure 86: Plot comparing Probability Density Graphs of EBK Point and Block estimates against 

NCEP estimates for Total MBR, Data Rich and Data Poor Regions ................................................. 124 

Figure 87: Plots comparing EBK Estimates in Data Rich, Poor Regions against corresponding NCEP 

estimates .............................................................................................................................................. 125 

Figure 88: Map Showing Risk Zones Categorized As Go/No-Go Regions ......................................... 127 

Figure 89: Maps showing Block Grade EBK – Prediction Estimates (above) & Error Estimates 

(below) ................................................................................................................................................ 128 

Figure 90: Overlay maps generated using Fuzzy AND (above) and Fuzzy OR (below) Operations . 129 

Figure 91: Plot comparing the mean & SD values of EBK (Block), NCEP and Overlayed estimates

 ............................................................................................................................................................ 130 

  



13 
 

List of Tables 

Table 1: Volcanic Eruptions since 1970 that caused Significant Insured Losses ................................. 17 

Table 2: Frequency of few of the eruptions at Kamchatka and Northern Kuril Islands from 1993-2003 

Impacting Aviation Operations ............................................................................................................. 18 

Table 3: Comparison between Input Days (14161718) & Validation Days (161718) By Overlaying 

Individual Days ..................................................................................................................................... 69 

Table 4: Comparison between Flight Averages (14161718) and Validation Days (161718) for 

Individual Days ..................................................................................................................................... 70 

Table 5: NCEP Temperature values against Input Data of Individual Days (in Kelvin) ..................... 71 

Table 6: NCEP Temperature values against Input Data of Overlayed Composites (in Kelvin) ........... 72 

Table 7: Key outlier values along with their location........................................................................... 79 

Table 8: Summary of Statistics of Predicted Values ............................................................................. 81 

Table 9: Comparison of Composite Input, Composite NCEP, and MLR Predicted for 14th May, NCEP 

14th May and Input 14th May Statistics ............................................................................................... 84 

Table 10: Comparison of Predicted Estimate for 14thagainst Validation Datasets ............................. 84 

Table 11: Table comparing chosen Kriging techniques ....................................................................... 88 

Table 12: Combinations of Tobler’s Law ............................................................................................. 89 

Table 13: Distance between Vent location and Individual Sampling Locations .................................. 89 

Table 14: Distance between Pairs of Sampling Locations ................................................................... 90 

Table 15: Comparison of Temperature Values - Across Sampling Locations ...................................... 91 

Table 16: Distance between key Sampling sites and Center of map ..................................................... 91 

Table 17: Error Estimates for SK, EBK and EBKT methods ................................................................ 97 

Table 18: Validation of Band Statistics of Punctual (Point) Kriging Estimates Against NCEP 

Estimates ............................................................................................................................................. 103 

Table 19: Comparison of SK Temperature Values - Across Sampling Locations .............................. 108 

Table 20: Comparison of EBK Temperature Values - Across Sampling Locations ........................... 109 

Table 21: Comparison of EBKT Temperature Values - Across Sampling Locations ......................... 110 

Table 22: Comparison of each Day's SK, EBK and EBKT Average Temperature Values and Range of 

Temperature Values ............................................................................................................................ 111 

Table 23: Summary Statistics Compared EBK Predicted Estimates against Input Dataset ............... 112 

Table 24: Comparison of error values with reference to origin by EBK and EBKT methods ............ 121 

Table 25: Comparison of EBK Point, Block Averages against NCEP in Total MBR, Data Rich & Poor 

Regions ................................................................................................................................................ 125 

Table 26: Comparison of Fuzzy AND and Fuzzy OR minimum, maximum, mean and SD values ..... 129 

Table 27: Comparison of temperature averages & SD amongst EBK, NCEP & Overlay estimates 

generated statistically ......................................................................................................................... 130 



14 
 

List of Acronyms 

AMDAR - Aircraft Meteorological Data Relay 

ASHTAM - Ash (Notice) to Airmen 

ATS - Air Traffic Services 

BADC - British Atmospheric Data Center 

CAA - Canadian Aviation Authority 

DLR - Deutsches Zentrum für Luftund Raumfahrt (German) 

EBK - Empirical Bayesian Kriging 

EBKT - Empirical Bayesian Kriging - Transformed 

ECMWF - European Centre for Medium-Range Weather Forecasts 

EnKF - Ensemble Kalman Filter 

ELR - Environment Lapse Rate 

EPZ - Enhanced Procedure Zone 

EPS - Ensemble Prediction System 

ERA - ECMWF Re-Analysis  

ESP - Eruption Source Parameters 

FAAM - Facility for Airborne Atmospheric Measurements 

FIR - Flight Information Region 

FL - Flight Level 

GEFS - Global Ensemble Forecast System 

GFS - Global Forecasting System 

HWRF - Hurricane Weather Research and Forecasting (Model) 

HYSPLIT - Hybrid Single-Particle Lagrangian Integrated Trajectory (Model) 

IAVW - International Aviation Volcanic Watch 

IDW - Inverse Distance Weighting 

IMD - Indian Meteorological Department 

IFS - Integrated Forecasting System 

IN/CCN - Ice Nuclei / Cloud Condensation Nuclei 

INTF/NC/WKN (Intensifying/No Change/Weakening 

IVATF - International Volcanic Ash Task Force 

LAM - Local Area Models  

LAMP - Localized Aviation MOS 

MBR - Minimum Bounding Region 



15 
 

MER - Mass Eruption Rate 

MLR - Multiple Linear Regression 

MetUM - Meteorological Unified Model 

MOGREPS-G - Met Office Global and Regional Ensemble Prediction System 

MOS - Model Output Statistics 

MWO - Meteorological Watch Office  

NAME - Nuclear Accident Model 

NAE - North Atlantic and European Region  

NATS - National Air Traffic Services 

NCEP - National Center for Environment Prediction 

NCAR - National Center for Atmospheric Research 

NFZ - No Fly Zone 

NOTAM - Notice to Airmen 

NWP - Numerical Weather Prediction 

OPC - Optical Particle Counter 

PIREP - Pilot Report 

SK - Simple Kriging 

SIGMET - Significant Meteorological (Information) 

VAA - Volcanic Ash Advisory 

VAAC - Volcanic Ash Advisory Center 

VAFTAD - Volcanic Ash Forecast Transportation and Dispersion (Model) 

VEI - Volcanic Explosivity Index 

VONA - Volcano Observatory Notice for Aviation 

WMO - World Meteorological Organization 

WRF - Weather Research and Forecasting (Model) 

TCAC - Tropical Cyclone Advisory Centre 

VOL-CALPUFF - Volcano California Puff (Model) 

  



16 
 

I. Introduction 

 

1. Volcanic Eruption and Impact to Airspace Due to Airborne Ash 

 

Natural disasters are a class of phenomenon occurring over a short or long period of time. They 

cause widespread human, material, economic or environmental loss that exceeds the ability of 

the affected community to cope with available resources. Although disasters in earth are 

usually classified as geological or hydrological or meteorological, the impact of volcanic 

eruptions spans right from lithosphere to the atmosphere. Therefore, they are a potential global 

multi-hazard. The unpredictability of volcanic eruptions (both in timing and in location) has 

led to many disasters. Due to the variety of volcanic products and the large range of possible 

event sizes, volcanic risk presents a particular challenge for risk management. Two types of 

volcanic threats have to be considered: (1) city scenarios of local or regional extent and (2) rare 

extreme events with global consequences. 

 

 

 

Figure 1: Types of Volcanoes based on Ash Cloud Explosiveness 

(Source: http://sci.sdsu.edu/how_volcanoes_work/Thumblinks/erupttypes_page.html) 
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In an explosive phreatic event, gaseous magma abruptly gets depressurized as it nears the 

Earth’s surface and jets out through a constrained vent. The ejected magma fragments into 

glassy shards and mineral particles as it cools. Any source of water gets converted as steam in 

phreatomagmatic eruptions. Else, the lava flows quietly from fissures in magmatic eruptions. 

Along with gases and air entrained from the surroundings, the convective plume rises upward. 

Such eruption columns rise at tens of meters per second and can quickly reach cruise altitudes 

of jet aircraft and beyond, to nearly 50 km. Plumes either entrain moisture to increase their 

buoyancy or bend due to local wind effects. In Plinian eruptions, as shown in Figure 1, the 

plume punches through the tropopause to form a mushroom-shaped pyro cumulus cloud. 

Volcanic fragments larger than several tens of microns fall out of a plume within hours and are 

generally deposited within a few hundred kilometres around the volcano, whereas finer ash 

remain suspended in the stratosphere for days. Once ejected into the atmosphere, the ash and 

gas are dispersed by prevailing winds as aerosols. If wind direction varies with height (wind 

shear), the eruption plume gets dispersed in multiple random directions. 

 

Wilson et al., (2012) identify the ‘critical infrastructure’, essential for the smooth functioning 

of a society and economy that are most affected by volcanic eruptions at a local scale. This 

includes, electricity networks, gas and oil production, transport and distribution, 

telecommunications, water supply, sewage disposal drainage networks, food production and 

distribution, heating systems (e.g. natural gas, fuels); transportation systems (road and rail 

networks, airports, ports, inland shipping), farming and animal rearing. 

 

Smolka and Käser, (2015) report the loss in millions of USD, as given in, Table 1, due to 

volcanic eruptions across different countries in the last few decades.  

 

Location Year Economic Loss Insured Loss 

Mount St. Helens (USA) 1980 860  31  

Pinatubo (Philippines) 1991 750  70  

Tavurvur, Papua New Guinea 1994 300  66  

Montserrat 1995-97 200  100  

Merapi (Indonesia) 2010 380  Minor 

 

Table 1: Volcanic Eruptions since 1970 that caused Significant Insured Losses 
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With global events, property damage is not necessarily the issue, as the volcanic centres tend 

to be at long distances away from large cities (Naples and few Indonesian volcanoes are 

exceptions to this rule). Thus, among multiple damage foci, one of the chief concern in recent 

years is to aviation. Particularly in the case of Icelandic region, which is the customary airspace 

over the North Atlantic that tends to be blocked for months due to threats from ash clouds. 

Rerouting of flights is not a sufficient work-around if a large number of aircrafts had to be 

grounded as in the case of spring 2010 eruption of Eyjafjallajokull eruption.  It is estimated 

that 500+ airports worldwide are within 62 miles (100 km) of active volcanoes. Over the last 

sixty years, at least 100 airports have been impacted by eruptions on 171 separate occasions 

(some airports more than once). Gordeev and Girina, (2014), identify that United States and 

Indonesia, to have reported the most airport disruptions due to volcanic eruptions as shown in 

Table 2. 

 

Volcanoes Eruptions Eruption Date (UTC) 

Shiveluch 7 strong 
1993-2013; paroxysmal events: 22.04.1993, 19.05.2001, 28.02.2005; 

22.09.2005, 29.03.2007, 27.10.2010 

Llyuchevskoi 11 

15.03.1993-02.10.1994; 02.04-1995; 01-09.1997;02-09.1998; 05-

12.1999;22.03.2003-03.03.2004;10-01-03.04.2005;15-02-26.07.2007; 16-

10.2008-29.01.2009; 18-09.2009-01.10.2010;01.09.2012-15.01.2013 

Bezymyannyi 26 

1993-2013; paroxysmal events; 20-23.10.1993; 05.10.1995;09.05.1997; 

05.12.1997; 24.02.1999;13.03.2000;01.11.2000;06.08.2001;25.12.2002; 

26.07.2003;13.01.2004;18-06.2004; 11.01.2005; 

30.11.2005;09.05.2006;24.12.2006;11.05.2007;08.03.2012;01.09.2012 

Karymskii 2 strong 1996-2013; strong events;02.01.1996; 13-14.05.2006 

Chikurachki 6 
25.01-01.05.2002;17.04-16.06-2003;10.03-07.04.2005;04.03-

07.04.2007;19.08-20.10.2007;29.07-15.08.2008 

Mutnovskii 4 17.03.2000;29.06.200;17.04.2007;03.07.2013 

 

Table 2: Frequency of few of the eruptions at Kamchatka and Northern Kuril Islands from 1993-2003 Impacting 

Aviation Operations 
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The most common effect is temporary operational disruption, ranging from flight cancellations 

to airport closures for periods of few hours to weeks. The main hazard to aviation is ash fall. 

The accumulation of only a few millimetres of ash on runways is sufficient to force temporary 

closure of an airport, although disruptions also have been caused by airborne ash in the vicinity 

of airports without the deposition of ash on the ground.  

On the other hand, for aircrafts, there are several threats once it becomes airborne, such as, 

turbulent climatic conditions, bird strikes but volcanic ash is a special class of problem. It is 

spatially spread on a meso-scale region, and it can be encountered at various altitudes with no 

visible clues. The movement of the ash cloud dynamically changes in direction based on wind 

conditions. Ash clouds manifest themselves either as opaque or transparent or translucent forms 

requiring the need to differentiate it from various types of meteorological clouds. At any given 

time, as shown in the Figure 2, there are as many as 10,000+ flights that are airborne across 

the world.  

 

Figure 2: World Map showing Live Air Traffic Density 

(Source: Snapshot from FlightRadar24 website in January 2021) 
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As shown in the map in Figure 3, there are about 1,500 active volcanoes on any given day with 

many in effusive eruption phase and a few erupting explosively. Given this scenario, there is 

always a high probability for a new volcanic eruption to begin anywhere on the land and/or sea 

with an aircraft potentially encountering the plumes mid-air. 

 

Figure 3: World Map showing Volcanoes in Active State in 2021 

(Source: https://www.volcanodiscovery.com/volcano-activity/news/126875/Volcanic-activity-worldwide-9-Apr-

2021-Fuego-volcano-Popocatepetl-Dukono-Reventador-Sangay-Sa.html) 

Volcanic ash is a threat to the safety of aircrafts while at ground (taxi phase), during 

landing/takeoff phase and at cruising altitudes. But the safety threat to aircrafts rapidly 

transforms into threat for human lives especially when the aircraft is in take-off/landing & 

cruising modes since engines are operated near full throttle and are hence at high temperatures. 

While ash deposition on other parts of aircraft is also dangerous, it only impacts the ability to 

navigate and to communicate. Only when the ability to aviate is challenged, emergency is 

declared by pilots. Figure 4 maps vulnerable regions across the world where even a minor 

eruption can cause major catastrophes due to airborne.   

 

Figure 4: World Map showing Encounters between Aircrafts & Volcanic Ash of Varying VEI 

[Source: Encounters of Aircraft with Volcanic Ash Clouds: A Compilation of Known Incidents, 1953–2009, By 

Marianne Guffanti, Thomas J. Casadevall, and Karin Budding – Appendix 1.mdb] 
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Figure 5 depicts the number of encounters between ash clouds and aircrafts in 20th Century. 

 

Figure 5: Timeline of aircraft encounters with volcanic ash in 20th Century 

[Source: Reducing the threat to aviation from airborne volcanic ash, Marianne Guffanti et al, U.S. Geological 

Survey; Air Line Pilots Association; 55th Annual International Air Safety Seminar, 2002, Dublin] 

 

i. Volcanic ash plume is an imminent threat to any country 

Airborne volcanic ash is a non-localized hazard and its risks are exceptionally dynamic in short 

term since it injects significant amounts of ash into airspace traversed by thousands of aircrafts 

at any given time. Unlike the established societies that lie in the path of the volcano at ground, 

the aviation community experiences a continually changing risk with respect to location of 

dispersing clouds. Mitigation actions comprise specialized warning messages disseminated 

within tens of minutes of detection of ash clouds to aid in making decisions to diver the en 

route aircraft with ground dispatch and Air Traffic Control Centers, taking into account the 

forecast location of ash clouds. The mitigation framework is usually globally coordinated with 

responsibilities of reporting, forecasting. Every region on earth is equally at risk from 

volcanoes for the below described reasons. 
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ii. Volcanoes can form anywhere in land 

Paricutin is a cinder cone volcano in Mexico. Usually volcanoes are classified as dead, dormant 

and active.  Paricutin is unique in the fact that its evolution from creation to extinction was 

witnessed, observed and studied by human beings.  The volcano began in 1943 as a fissure in 

a cornfield. The volcano grew quickly, reaching five stories tall in just a week, and could be 

seen from afar in a month. After roughly one year, the volcano had grown 336 metres (1,102 

feet) tall. For the next eight years the volcano continued erupting. In 1952, the eruption ended 

and Parícutin attained a final height of 424 metres above the cornfield where it began. The 

volcano has been quiet since then. Like most cinder cones, Parícutin is believed to be 

a monogenetic volcano, which means that once it has finished erupting, it will never erupt 

again. Polygenetic volcanic fields generally occur where there is a high-level magma chamber 

and may last over 10 million years. There are tens of such volcanoes around the earth. Unlike 

monogenetic volcanoes, polygenetic volcanoes reach massive sizes. Polygenetic volcanoes 

include stratovolcanoes, complex volcanoes, somma volcanoes, calderas and many shield 

volcanoes. 

iii. Volcanoes can form anywhere in sea (submarine/subaerial) 

Submarine volcanoes are underwater fissures in the Earth's surface from which magma can 

erupt. They are estimated to account for 75% of annual magma output. The vast majority are 

located near areas of tectonic plate movement, known as ocean ridges. Although most are 

located in the depths of seas and oceans, some also exist in shallow water, which can spew 

material into the air during an eruption. The presence of water can greatly alter the 

characteristics of a volcanic eruption and the explosions made by these.  

The Kolumbo underwater volcano in the Aegean Sea was discovered in 1650 when it burst 

from the sea and erupted, killing 70 people on the nearby island of Santorini. The Taman 

Peninsula in Sea of Azov, Ukraine has about 25 mud volcanoes, most of which are active. Their 

eruptions are usually quiet, spilling out mud, and such gases as methane, carbon dioxide and 

hydrogen sulfide, but are sometimes violent and resemble regular volcanic eruptions. A major 

eruption on 6 September 1799, near Golubitskaya, lasted about 2 hours and formed a mud 

island 100 metres in diameter and 2 metres in height; the island was then washed away by the 

sea. Similar eruptions occurred in 1862, 1906, 1924, 1950 and 1952. This shows that some 

regions are prone to repeated sudden eruptions from under water conditions too. 

http://en.wikipedia.org/wiki/Fissure_vent
http://en.wikipedia.org/wiki/Cinder_cone
http://en.wikipedia.org/wiki/Monogenetic_volcanic_field
http://en.wikipedia.org/wiki/Magma_chamber
http://en.wikipedia.org/wiki/Stratovolcano
http://en.wikipedia.org/wiki/Complex_volcano
http://en.wikipedia.org/wiki/Somma_volcano
http://en.wikipedia.org/wiki/Caldera
http://en.wikipedia.org/wiki/Shield_volcano
http://en.wikipedia.org/wiki/Shield_volcano
http://en.wikipedia.org/wiki/Volcano
http://en.wikipedia.org/wiki/Earth
http://en.wikipedia.org/wiki/Magma
http://en.wikipedia.org/wiki/Plate_movement
http://en.wikipedia.org/wiki/Ocean_ridge
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http://en.wikipedia.org/wiki/Ocean
http://en.wikipedia.org/wiki/Kolumbo_underwater_volcano
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iv. Man-Made Eruptions 

Accidental drilling has given rise to mud volcanoes in the past. But those were not considered 

to be violent eruptions. Sand volcanoes are also less explosive in nature. In 2003, a new type 

of submarine volcano known as Asphalt volcano was found. These are typically seamounts and 

generate water vapour but not generate silicate ash. Some occur after a long time of dormancy 

with little recognized warning, sometimes in remote parts of earth as in Siberia. 

 

v. Subglacier volcanoes  

These type of volcanoes are also explosive in nature. Whenever magma comes into contact 

with water bodies that are either on ground or near surface level, it gives rises to highly 

explosive eruptions. This includes snow-clad mountains also. The eruptions are called as 

phreatomagmatic in nature.  

 

Also, each volcano can exhibit different types of eruption phases within its active period (or) 

vary between two different eruptions over a period of time. For example, Mt. Fuji (864 & 1707 

eruptions) and Grimsvotneruptions in 2011. Of these, plinian type of eruptions are the ones that 

mostly cause hazards to aircrafts. One of the characteristic feature of plinian eruptions is the 

presence of rhyolite. It is a colourless acidic rock.Out of 1500 named sub-aerial & sub-glacial 

volcanoes in the world, around 30 volcanoes are active at any given point of time and explode 

with Volcanic Explosivity Index (VEI) greater than 2 on a scale of 1 (least explosive) to 10 

(most explosive). Several dormant volcanoes in human uninhabited islands start erupting 

violently and rapidly from the very onset of eruptions signs.  

 

To be able to detect them in all climatic conditions, time of the day is an open challenge till 

date. There are several key chemical elements in ash clouds/plumes that turn hazardous to 

aircrafts under flying conditions that makes the jet engines vulnerable to flameouts. Airborne 

volcanic ash is in principle visible under suitable daylight conditions. But “Visible ash” is not 

a reliable concept for decision making. Real-life detectability depends on many parameters and 

is therefore a complex, unsolved problem.  
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Although the danger due to even synoptic scale volcanic eruptions is largely analysed from the 

perspective of safety and livelihood of mostly humans, directly and indirectly, on air and at 

land, sometimes, even remote, human uninhabited islands undergo severe degradations with 

respect to flora and fauna. Even few intermittent, small eruptions lasting for 5 to 10 minute 

spells within a day but spanning across for few days can cause elevated temperature levels that 

could wipe out large volumes of fishes that keep moving across ocean currents for breeding 

purposes. Similarly migratory birds in air and exotic reptiles & endangered mammals that 

belong to species that are unique, local and native to those areas face rapid extinction in large 

numbers. Although the negative impacts of many such irreversible losses are not directly felt 

on majority of human beings, immediately, due to the remoteness of occurrence in oceanic 

regions, they still have their effects on airborne pollination process and waterborne seed 

dispersal patterns, even across continents. The April 1993 eruption of Barren Island volcano, 

in Andaman, India led to extinction of 10 out of 16 species of birds found only in that island. 

So, even eruptions as low as VEI 2 need to be quickly assessed for overall health of apparently 

disjoint biospheres.   

The solution for the issue of tracking volcanic ash dispersal has been well attempted using 

Remote Sensing techniques from 1980s. A variety of platforms such as Satellites, Aircrafts, 

Ships, Drones, International Space Station and Balloons have been used to monitor various ash 

properties. A variety of sensors that tap different properties of EM spectrum have also been 

designed and developed for this purpose as part of in-situ sensing, near sensing and remote 

sensing studies.  

Despite more than 3 decades of research efforts, no state-of-the-art technology has delivered 

promising results towards detection of volcanic ash. Despite the vast growth in the fields of 

meteorology, volcanology, oceanology, volcanoes, this problem continues to be a threat to 

human lives and livelihood due to the lack of accurate, cost-effective modelling/prediction 

systems.  

Accuracy of state-of-the-art modeling/prediction models for presence of ash generally range 

only between 60%-70%. Issues of false positives due to spectral resemblance with desert sand, 

normal meteorological clouds, spatial resolution of sensor imageries, temporal frequency of 

data, sampling methodologies etc are some of the primary challenges encountered. Although a 

wide variety of traditional interpolation techniques are in use today for climatological 

modeling, each method has its own severe limitations.  
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In this context, the appropriateness of the application of spatial interpolation using geostatistics 

approach and its rigorous validation are investigated in this research. 

In addition, since ash dispersion occurs in 3D space, ash concentrations are measured locally 

to cover across both the horizontal and vertical spaces. If there are multiple distal ash layers, 

as shown in Figure 6, then average ash concentration over vertical depth is computed. In 

addition, satellite instruments scan and measure column loadings over limited horizontal 

swaths. Given such partial clusters of data as inputs to any model forecasts, the estimates 

obtained are not usually effective.   Knowledge about spatial and temporal distribution of ash 

and its properties is inevitable for better model outputs.  

 

 

 

Figure 6: Difference between an ash concentration within an ash layer and an integrated ash total column 

loading 

(Source: Volcanic Ash and Aviation – Rolls-Royce Position, 2017) 

 

Given this background, the following sections explain the need for better modelling/forecasting 

algorithms that are able to simulate close to the physical processes in nature, especially from 

sparse experimental field data.  
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2. Airborne Volcanic Ash Dispersion Modeling 

For this research, an Icelandic eruption in 2010 has been used as a case study. The key 

operational issue was to analyse by when, which extent of airspace is likely to be contaminated 

by various quantities of volcanic ash using air temperature as a proxy variable.  Eyjafjallajokull 

is a smaller ice cap volcano on the southern tip of Iceland. It erupted once during 1821-1823 

causing relatively minor damage. The 2010 eruption produced a massive cloud of ash that 

entered the jet stream above Iceland and floated over United Kingdom and continental Europe.  

Eyjafjallajokull's ash cloud, as shown in Figure 7 rose as high as 30,000 feet into the sky, which 

is a critical height at which modern jet aircraft travel and it entered directly into an unexpectedly 

stable jet stream. A pilot’s eye view of the ash cloud from the eruption is shown in Figure 8. 

 

Figure 7: Plume rises from under the Eyja glacier in Iceland 

(Source: https://www.dailymail.co.uk/news/article-1268615/The-ash-cloud-How-volcanic-plume-UK-

twentieth-safe-flying-limit-blunders-led-lock-down.html) 

 

Figure 8: A Pilot’s View of Ash Plume Pilot’s view of the ash cloud above normal clouds at Netherlands. 

Altitude: 6000 feet 

 (Source: https://www.dailymail.co.uk/news/article-1268615/The-ash-cloud-How-volcanic-plume-UK-

twentieth-safe-flying-limit-blunders-led-lock-down.html) 
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i. Challenges in Measuring Ash 

The first step in studying the impact of any volcanic eruption involves knowing how much ash 

is injected into the atmosphere. As the plume rises, it expands and cools. The plume height is 

proportional to the heat of the eruption and the quantity of magma ejected. Once the ash 

temperature reaches the same as the temperature of the surrounding air, it stops rising. Many 

of the fine ash particles then collide with each other and stick together, become heavier and 

drop out of the sky. This process, known as sedimentation, is modelled assuming each actual 

particle of ash is a sphere with a fixed density. These values are added to temperature and 

pressure components that are calculated from the Navier-Stokes equations, to give a fuller 

picture of ash movement over each time-step.  About 95% of the volcanic ash is deposited to 

the ground. The key is then to find out where the remaining 5% is dispersing.  

 

The unsettled ash particles are relatively larger in size. About 50% of the mass comes from 

dispersed particles greater than 3 microns diameter. Decelerating these ash aerosols to sample 

through a pipe in a research aircraft platform for studies is difficult. Therefore, ash needs to be 

measured in free flow outside the aircraft, as shown in Figure 9, using optical scattering 

instruments such as Optical Particle Counter (OPC), Nephelometer etc.  

 

 

 

Figure 9: Optical Particle Counter Remote Sensing Instrument 

(Source: British Atmospheric Data Center, FAAM Aircraft Instrumentation) 

 

In addition, Turnbull et al., (2012) discuss the challenges related to observation of volcanic ash 

using in situ on airborne platforms such as The Facility for Airborne Atmospheric 

Measurements (FAAM) British Aerospace (BAE)-146 and German Deutsches Zentrum für 

Luft- und Raumfahrt (DLR) Falcon experimental research aircrafts. Lidar systems are not 

capable of measuring mass concentration of ash clouds neither directly nor using trace gases 

in both horizontal and vertical extents.  
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Also, aerosol mass loading experiments revealed extreme variations in mass concentration. 

Even small change in altitude (a few hundred metres) or geographic position (a few tens of 

km), equivalent to a few minutes of flight time) may result in an aircraft exposed to ash 

concentrations that change by a factor of more than 10, making it difficult to devise practical 

ash avoidance procedures for civil aircraft. Also in oceanic regions, ground-based sensor 

readings are not feasible.  

 

Newman et al., (2012) discuss the high spatial variability at various scales while measuring 

using other sensors such as 3 wavelength nephelometer and satellite radiative sensors, as shown 

in Figure 10. As a result, numerical models such as Numerical Atmospheric-dispersion 

Modeling Environment (NAME), that use these platforms and sensors as input sources are 

unable to capture such variability explicitly, especially over small spatial scales.  

 

 

Figure 10: Sequence of satellite images showing “aerosol index”, the concentration of particles of ash or other 

pollution in the atmosphere. On April 15, the plume is clearly visible as a streak of orange, or 4.0 on scale. 

Values more than 2 in yellow could be ash. 

(Source: https://www.dailymail.co.uk/news/article-1268615/The-ash-cloud-How-volcanic-plume-UK-

twentieth-safe-flying-limit-blunders-led-lock-down.html) 
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ii. Comments on UK National Air Traffic Services (NATS) Policy 

The mandatory airspace closure policy enforced by UK NATS, during the 2010 eruption was 

based on theoretical models as shown in Figure 11. These were mainly derived, not from 

satellite observations of where ash was visible but only from theoretical models. This showed 

that entire region could be affected by minute concentrations of ash dispersed by weather 

systems. Across most of this, the ash was claimed to be so thin as to be invisible. Only as the 

situation evolved, a key decision was taken to discover how dense the ash clouds for 

recommending the closure of vast airspaces.  

 

Figure 11: A sample map produced by NAME model predicting the extent of ash spread 

(Source: https://www.studentnewsdaily.com/daily-news-article/airlines-face-continued-disruptions-

from-iceland-volcano/) 

In this context, it is worthy to assess the quality of recommendations that were provided by 

regulatory authorities to the aviation community during the 2010 Icelandic eruption using the 

NAME model, in specific. Although not a scientific publication, some of the news articles carry 

significant importance and reputation. One such article titled,  “New ash density limits agreed 

for flights in the UK” (2010) shows the extensive usage of subjective phrases such as: ash is 

not too thick, some models of aeroplanes can fly, changes in ash density threshold after weeks 

of criticism, too strict cut off, safe enough to fly in all directions, gradual reduction based on 

OEM’s advice, something like 350 cancellations over past 36 hours, threat moved away, very 

minor risk, doubling previous limit of ash exposure, allowed to fly limited time only, medium 

density, much denser, nearly 30,000 feet etc. In addition, instead of estimating the maximum 

density of ash in the atmosphere, based on jet engine tolerance limits of 0.004g per cubic metre 

of air was considered by NAME model to prepare the density chart that led to incomplete 

legends showing 4000+ micrograms of ash. Even for small errors in positions of narrow 

plumes, NAME produced large concentration errors.  
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The movement of the ash cloud depends on three main factors: the weather, sedimentation and 

small-scale turbulence - the NAME model accounts for all three. Figure 12 shows the main 

steps described by Webster et al., (2012) in the operation of NAME dispersion model. 

 

 

Figure 12: Flowchart showing key steps in NAME Model Operation 

 

By using the Navier-Stokes equations, meteorologists can work out how the prevailing weather 

conditions will evolve over the next few days. However, despite carving up the atmosphere 

into relatively small grids, solving the Navier-Stokes equations and factoring in sedimentation, 

movement of ash on the smallest scales still needs to be taken into account. This small-scale 

diffusion is caused by eddies – small whirlpools of air that may or not follow the direction of 

the overall weather pattern. In order to mimic the effect of these eddies, a small random element 

of motion was applied to each particle. These small-scale turbulences are represented using 

Markov processes but always carry a near constant value.  

The UK Meteorological (Met) Office encountered various other challenges too, critical to 

decision making (the adequacy of sampling), poor weather conditions to conduct experiments, 

operational issues with aircrafts (ceiling of turboprop aircrafts are less) and NWP models.  
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Some of the key issues w.r.t. NWP Models include: 

- For while computer ash dispersion simulations have good short-term accuracy, modelling 

errors build up & they get less and less reliable.  

- Models were not designed to readily give the all-important detail of particle density which 

determines if it is safe to fly.  

- The stakeholders agreed on a more individualized nation-by-nation assessment of the risk 

under the NAME model, which allowed for a more differentiated assessment of risk from 

the ash cloud, while still respecting safety concerns.  

Given these limitations, there was a clear need for a better modeling technique that accurately 

captures variations in weather variables in short spatial scales in the absence of a vast amount 

of experimental data in the context of severe weather scenarios that exist at synoptic scales. 

Bonadonna et al., (2012), identify five focus areas for various stakeholders to develop new and 

improved strategies for ash dispersal forecasting. They are:  

a. Improve the definition of the source term,  

b. Design models and forecasting strategies that can better characterize uncertainties,  

c. Explore and identify the best ensemble strategies that can be adapted to ash dispersal 

forecasting,  

d. Identify optimized strategies for the combination of models and observations and  

e. Implement new critical operational strategies.  

 

To resolve the issues arising due to the discrepancies observed in the Volcanic Ash Forecast 

Transport And Dispersion (VAFTAD) models due to underlying physics, parametrization of 

source terms and variations in inputs, a benchmarking exercise was conducted across nations. 

13 recommendations were proposed as outcome and agreed to by participating states. 

Recommendations #3 to #7 discussed by Bonadonna et al., (2012) focus on the need for 

quantifying the sensitivity of numerical model accuracy on model discretization. This includes 

uncertainties related to both ash related inputs and meteorological inputs (from either 

mesoscale or global scale weather forecasts).  
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iii. Recommendation for identifying Probabilistic Estimation Methods 

Ash dispersal modeling problem has a variety of uncertainties. While the randomness of the 

nature along with field measurement errors give rise to aleatoric uncertainties, errors arising 

due to sampling and numerical investigations cause epistemic uncertainties. While the former 

can be dealt with by identifying appropriate eruption activity and Probability Density Function 

of input parameters, the latter are reduced by improving the parametrization of physical 

processes, investigation techniques and numerical accuracies. Parameterization in 

a weather or climate model in the context of numerical weather prediction is a method of 

replacing processes that are too small-scale or complex to be physically represented in the 

model by a simplified process. Usually, weather and climate model grid boxes have sides of 

between 5 kilometres and 300 kilometres. On the other hand, a typical cumulus cloud has a 

scale of less than 1 kilometre and would require a grid even finer than this to be represented 

physically by the equations of fluid motion. So, sophisticated processes are required to ensure 

accuracy of forecasting. By routinely increasing model resolution, errors associated with the 

parameters increase. The estimates may be statistically valid for larger grid boxes but become 

questionable once the grid boxes shrink in scale towards the size of the ash cloud clusters itself. 

The resulting outputs therefore appear unrealistic in nature. This is why ash dispersal 

forecasting may be more accurate if it simply outputs a range of probability values as opposed 

to absolute values of ash properties or weather variables. It was therefore then anticipated that 

the stakeholders (e.g., aviation industry, decision makers) will eventually need to integrate 

probabilistic strategies into their processes of decision making. 

 

So, to comprehensively analyse these significant, open issues to mitigate the risks and errors 

that could arise in policy proposals and challenge the overall reliability of prediction estimates, 

newer line of enquiries is required.  
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iv. As-Is Systems to Simulate Ash Dispersion 

Atmospheric Dispersion Modeling is the mathematical simulation of how air pollutants 

disperse in the ambient atmosphere. The algorithms use mathematical equations governing 

pollutant dispersions in its algorithms. Close to erupting volcanic vents, the buoyancy causes 

pollutants to rapidly raise vertically. When the density of the ash plume is higher than the air, 

they get dispersed through winds and take even several months to settle down. Stefanescu et 

al., (2014) describes how Volcano Observatories (VONA) and Volcanic Ash Advisory Centers 

(VAACs) predict the likely position of ash clouds using deterministic mathematical models of 

advection and dispersion, known as Volcanic Ash Transport and Dispersal Forecasting 

(VATDF) models. These models require input data on volcanic source conditions as well as 

the wind field. As shown in Figure 13, the resulting maps are often understood to delineate 

‘‘hard’’ exclusion zones. In contrast, most meteorological forecasts are issued as maps or 

reports giving the probability of an event or the occurrence of a phenomenon, like precipitation, 

in a certain region at a specific time. Partly because of this disparity between ash cloud and 

meteorological forecasting and the desire to produce ash forecast products comparable to the 

standard, a need has been explicitly stated on numerous occasions for reliable, probabilistic ash 

cloud forecasts.  

Figure 13 shows the three-zone system introduced by the UK Civil Aviation Authority (CAA) 

in May 2010. The Enhanced Procedures Zone (EPZ) permits aircraft to fly in ash 

concentrations either measured or forecast up to 2 mg per cubic metre, while a time-limited 

zone (grey-colored) was introduced as a “buffer” between the EPZ and a No-Fly Zone (NFZ), 

where aircraft were not permitted to fly in measured or forecast ash concentrations of 4 mg per 

cubic metre or higher. Outsider the three zones, normal operation procedures were applied.  

 

Figure 13: Categorization of No-Fly Zones  

(Source: https://www.sciencedirect.com/science/article/pii/B9780123859389000523) 

https://www.sciencedirect.com/science/article/pii/B9780123859389000523
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Figure 14 shows an example of a fine ash mass loading retrieval based on MODIS Satellite 

data for 6th May 2010. The colours have been assigned to show levels at 0.2, 2 and 4 gram per 

square metre, which correspond to ash concentrations of 200, 2000 and 4000 microgram per 

cubic metre for an ash cloud 1 km deep.   

 

Figure 14: Enhanced Procedure Zones 

(Source: https://www.sciencedirect.com/science/article/pii/B9780123859389000523) 

Figure 15 shows modelled ash concentration from Flight Level, FL000 to FL200 at 0000 UTC 

20/04/2010.  

 

Figure 15: Ash Concentration by NAME Model Simulations 

(Source: https://www.sciencedirect.com/science/article/pii/B9780123859389000523) 

 

https://www.sciencedirect.com/science/article/pii/B9780123859389000523
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Volcanic ash dispersion models are used by an international network of scientific experts, as 

part of the initiative named, “Volcanic Ash Advisory Center (VAAC)”. This was created by 

International Civil Aviation Organization (ICAO), primarily for aviation industry. Currently 

they work in tandem with the Met-P Panel of yet another United Nations (UN) agency, namely, 

World Meteorological Organization’s (WMO), since the accuracy of the Numerical Weather 

Prediction (NWP) Model used by individual countries is critical to the effectiveness of the 

VATDFM recommendations, as discussed in Slide #21 of the report . 

As of today, to detect the presence of ash in atmosphere, most VAAC dispersion models take 

imageries as input data for initial stages of forecasting from 1 to 3 different satellites that are 

marked as relevant and responsible for a given region in a continent. In addition, the forecasters 

rely on real time Pilot Reports (PIREP). In both the methods, the visibility by color of ash to 

human eyes without any other aid play a crucial role in determining the extent of the ash spread 

to determine the safety of airspaces.  

If the ash is brown coloured, as shown in Figure 16, it appears similar to desert sand as shown 

in Figure 17.  

 

Figure 16: Drifting ash and gas plumes from Karthala volcano 

(Source: https://link.springer.com/article/10.1007/s11069-008-9273-z/figures/1) 

 

Figure 17: Sand/Dust Outbreak at Canary Islands - MODIS Satellite Imagery  
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If the ash is in grey color, as shown in Figure 18, then, it resembles towering cumulonimbus 

clouds, as shown in Figure 19.  

 

Figure 18: Greyish Ash in Gas Plume from Kluichevskoi Volcano in summer 

(Source: https://link.springer.com/article/10.1007/s11069-008-9273-z/figures/1) 

 

Figure 19: Windblown resuspended Ash in Southern Coast of Iceland in the background of an hurricane clouds 

(Source: https://link.springer.com/article/10.1007/s11069-008-9273-z/figures/1) 

If the ash is white in color, then, at times it resembles the snow at the terrain as shown in Figure 

20.  

 

Figure 20: Ash and gas plume indistinguishable over snow covered terrain, Kluichevskoi volcano 

(Source: https://link.springer.com/article/10.1007/s11069-008-9273-z/figures/1) 
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Also, if the ash in gas plume is white in color, it resembles the normal meteorological clouds 

too, as shown in Figure 21. 

 

Figure 21: Low level gas cloud plume from Kluichevskoi volcano 

(Source: https://link.springer.com/article/10.1007/s11069-008-9273-z/figures/1) 

Weinzierl et al., (2012)  discuss the visibility of ash from aircraft platform without any visual 

aids to human eyes, as shown in Figure 22. This is another input source, used to subjectively 

identify the presence of volcanic ash in the atmosphere. 

 

Figure 22: Photographs of volcanic ash layers varying with low mass concentrations (12-32 mg per cubic 

metre) taken on 13th May 2010 over the North Sea close to Great Britain 

(Source: https://www.sciencedirect.com/science/article/pii/S1474706512000496) 
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Also, at an air temperature of around 255K, diluted concentrations of hydrophobic ash particles 

tend to aggregate under ideal humidity conditions and turn into potential Ice Nuclei (IN)/Cloud 

Condensation Nuclei (CCN) and resemble normal meteorological super cooled ice/water 

clouds, as shown in Figure 23. 

 

Figure 23: Diluted ash concentrations alongside Normal Clouds 

(Source: https://www.sciencedirect.com/science/article/pii/S1474706512000496) 

Further, the spatial resolution of some satellites such as Japan’s Himawari-8 (used by Darwin 

VAAC at Australia) is as high as 1.25x1.25 degree and the temporal frequency is only once in 

6 hours. In the event of an ongoing eruption, even the airborne sources of data such as PIREPs 

(Pilot Reports) are not available as inputs for VATDFMs. A sample list of VAAC details is 

given in Figure 24. 

 

Figure 24: List of VAACs with locations across the world 

(Source: Geostationary Satellites to Generate Ash Products and Dispersion Models) 

Further it is not always possible to precisely know from satellite imageries if an existing, named 

volcano has erupted or a new volcanic vent has emerged over oceanic region or multiple vents 

are spewing ash explosively from existing volcanoes atop glaciers. Many times, the vent itself 

is obscured by clouds or even by the ash plume itself.  
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Also, proxies such as SO2 emission cannot be always relied as a marker for detecting presence 

of ash in the case of phreatomagmatic eruptions. Because, sometimes, ash could get airborne 

purely out of wind triggered resuspension process as in the case of Novarupta volcano. This 

Alaskan volcano last erupted in 1912 at Volcanic Explosivity Index (VEI) level 6. Yet large 

volumes of loose ash got aloft due to strong winds even as recent as September 2020.  

Also, wind speeds increase significantly as altitude increases, enabling faster dispersion of ash 

over larger continental regions. As a result, there is a need for a sophisticated methodology that 

can rapidly estimate using near-static weather variables such as air temperature and yet produce 

upper air temperature prediction estimates that vary even in small spatial scales, to be, as 

accurate as ±2o C, 90% of the times for regions as large as 100 nm in extent to meet safety 

requirement standards.  

The lack of data on ash is not just limited to direct quantities such as concentration but also 

extends to affect the collection of weather parameters such as temperature, humidity, wind 

speed/directions etc through the Aircraft Meteorological Data Relay (AMDAR) systems. 

AMDARs are typically used in commercial jet aeroplanes cruising at high altitudes. Given such 

a scenario, if only sparse samples can be collected using balloons and drones as platforms, in 

a random scheme, then, appropriate spatial interpolation techniques must be identified to 

understand the extent of ash field under investigation. 
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Also, two different VAFTD models are sometimes applied to a single country due to their 

partitioned geographies. For example, India’s Bay of Bengal (east of the peninsular India) 

under Chennai Flight Information Region (FIR) is monitored by Darwin VAAC while the 

Arabian Sea (west of the peninsular India) monitored by the same Chennai FIR is monitored 

by France VAAC, as shown in Figure 25.  

 

Figure 25: World Map showing VAAC Partitions 

(Source: https://www.ospo.noaa.gov/img/vaac/VAAC_Map_2017.jpg) 

Despite India’s Meteorological Department (IMD) having its own set of NWP models, often 

authorities have to process recommendations arising from two different VAFTD models to 

arrive at their contingency routes (i.e. USA’s Hybrid Single-Particle Lagrangian Integrated 

Trajectory (HYSPLIT) model from Darwin and France’s MOCAGE model). The unified 

decision making is essential for countries like India with its vast continental airspace and 

transoceanic airspaces to reroute aircrafts at short notices without shutting airspaces due to 

shortfalls arising due to difficulties in planning. In addition, being a large country in terms of 

area, sometimes more than one severe weather scenario could arise too, in which case, there is 

a need of smooth interoperability between the various types of NWPs models currently in use 

by a given country. For example, to name a few, the Indian Meteorological Department (IMD) 

uses the following NWPs in parallel: Global GFS T1534, Regional WRF, Ensemble GEFS, 

Cyclone Hurricane Weather Research and Forecasting (HWRF) model etc. 

Sometimes the horizontal spread of the volcanic ash plumes could be vast so as to span across 

FIRs of different countries or even across VAACs and yet the source of the cloud could be 

elusive since satellite imagery based forecasts provide updated imageries only once in 6 or 12 

or 18 hour time gaps.  In addition, quite often, the meteorological NWP grids and ash dispersion 

model of the same country grid cell sizes do not match each other and require regridding efforts. 
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Till date, Model Output Statistics (MOS) concept for aviation, such as USA’s Localized 

Aviation MOS Program (LAMP) has been largely applied only in a highly localized point 

sources context. The Station Based LAMP issues persistent weather recommendations at 

airport levels (for example, Terminal Aerodrome Forecasts (TAFs)), for granular time periods, 

by augmenting the NWP estimates. So there is also a need for a MOS methodology that can be 

applied to even mesoscale (eg; Gridded LAMP) and synoptic scale extents, irrespective of the 

country of origin, that can be applied on data collected in irregular spatial scales and from 

across different altitudes. Dispersion models must also be able to produce prediction estimates 

and associated error estimates for airspaces affected in both vertical and horizontal extents so 

that they can customized to prepare safe air corridors, trajectories and routes. Some of the other 

common issues observed in visualizing and interpreting the outputs of a VAFTD model are 

discussed below: 

a. The boundaries of Flight Information Region (FIR)/VAAC/Airline Routes are mostly well 

defined shapes as points or lines or polygons whereas Volcanic Vents/Ash plumes are 

irregular in spread. The spatial data types are also different for each type of input, especially 

for the NWP.  

 

Figure 26: Jagged Boundary Representation by ICAO 

(Source: Asia/Pacific Regional SIGMET Guide, 6th Ed, 2017) 

b. The regional (Significant Meteorology) SIGMET guide also provides information 

regarding the necessary coordination between the Meteorological Watch Office (MWOs), 

Air Traffic Services (ATS), volcanic ash advisory centres (VAACs), Tropical Cyclone 

Advisory Centres (TCACs) and pilots, and their respective responsibilities. Figure 26 

shows the jagged boundary of FIR alongside adjacent FIRs with sample SIGMET guidance 

overlapped on the polygon. 
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As of today, the entire earth surface is categorized into 9 VAACs. The scope for increasing the 

number of VAACs is being explored. This proposal arises because, in the Potts, n.d. (2017), 

the need for a model that accurately predicts small scale variations in the ash concentration in 

the atmosphere is stated as: “Following the Eyjafjallajökull eruption in 2010 there has been a 

need for more information on the spatial variation in ash concentration and the associated 

uncertainties to enable airlines to better manage operational risk. There are significant 

challenges with this objective.” This will enable National Civil Aviation Authorities to issue 

ASHTAM or ash NOTAM (Notice to Airmen) to alert pilots of any ash hazards enroute or at 

a specific location. 

Aviation industry typically requires alerts for potential ash cloud threats upto 300 nm (555 km) 

even outside the FIR boundary. In the case of volcanic ash the hazard to jet transport is greatest 

within the first few hours following an eruption. Hence speed of notification between all links 

in the chain of communication is critical – viz civil aviation, meteorological and vulcanological 

authorities. Consistency across agencies regarding extent, trajectory and dispersion patterns of 

ash is mandatory. On the other hand, pilots at cruising altitude are at the top of the chain for 

whom rapid dissemination of information is crucial.  

v. To-Be Systems 

The “METP WG MOG 8 VA SN 02_IAVW_Roadmap (attachment).pdf ” n.d. (2017) 

describes the need for development of next generation volcanic ash cloud forecasts that 

includes quantitative and probabilistic (uncertainty) information. The operation envisaged by 

the panel is summarized below: 

Current volcanic ash forecasts, such as the Volcanic Ash Advisory (VAA), are qualitative, 

deterministic forecasts. They are a yes/no binary forecast with respect to the depiction of the 

airspace impacted by discernible volcanic ash and they give a single forecast with no 

uncertainty information. Volcanic ash transport and dispersion models can produce an array of 

solutions (e.g., forecasts) by varying the model input. Changes in meteorological parameters 

and eruption source parameters (ESP) can result in different forecast outputs that affect the 4-

dimensional (4-D) shape (3-dimensional shape and change of shape with time) of the volcanic 

ash cloud and gases. 
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The next generation volcanic ash cloud forecasts, as well as forecasts of volcanic gases, is 

expected to provide both deterministic and probabilistic forecasts for contamination levels that 

will allow decision makers to use, taking into account their risk management practices and the 

quantitative exposures allowed by the engine manufacturers.  

Specifically, the addition of probabilistic forecasts will have to provide decision makers with 

an assessment of the likelihood of the volcanic ash exceeding a defined magnitude (or 

threshold) at a particular time and place. The probabilistic element further helps decision 

makers apply their own operational constraints (i.e. business rules) to determine the risk to their 

operations. 

From a high-level perspective, probability forecasts may be based on an ensemble approach. 

An ensemble is one way to account for some degree of uncertainty. For instance, a model or 

models can be run many times, each time with a realistic variant of one of the uncertain 

parameters (e.g. ash amount, ash column height, eruption start time and duration, input 

meteorology dataset, dispersion model used, with and without wet deposition, etc.). Taken as 

a whole, the variability of the ensemble member’s output gives an indication of the uncertainty 

associated with that particular volcanic ash forecast. 

The application of probabilistic forecasts is expected to suit both high- and low-density 

airspaces, where decision makers can benefit from more than just a deterministic forecast to 

determine route or flow. Decision support systems can also be adapted to use probabilistic 

information to provide efficient route and altitude selections, as well as time maintenance 

alerts, based on user’s dosage thresholds. 

For decision makers (i.e., operators, flight crew, air traffic control) to effectively use 

probabilities for the initial and ongoing evidence based qualitative risk assessments, a thorough 

understanding of the output from the VAAC is needed by the users. This will require 

educational/training efforts that will be suitable for all decision makers. It is envisioned that 

probabilistic information will be used pre-tactically to plan flight routes until the aircraft comes 

within range of an area of interest, at which time the pilot will receive higher resolution 

quantitative information. Also, currently the models output their recommendations in only 3 

categories – INTF/NC/WKN (Intensifying/No Change/Weakening). But with a more accurate, 

quantitative model, several levels of warning and caution advisories can be issued. In addition 

to issuing status on occurrence or non-occurrence of a severe weather phenomenon, the extent 

of prediction can be increased from ±1000 km in 70% of the instances. 
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3. Role of Numerical Weather Prediction Models in Ash Dispersion Simulations 

Numerical Weather Prediction (NWP) modelling is often at a disadvantageous situation, 

wherein, huge geographic regions must be simulated separately for lateral and vertical spaces. 

The physical parametrizations associated with certain small scale weather phenomenon are 

largely approximated or even totally ignored due to the complexity and the need for large 

computational resources. For example, grid cells in weather/climate models, such as 

NCEP/GFS are upwards of hundreds of kilometres whereas a typical cumulus cloud has a scale 

of less than 1 kilometre. As a result, finer grid sizes are required to accurately model the 

microphysics of normal and ash clouds.  

Although Environment Lapse Rates (ELR) recommend 6.5-degrees to 9-degree Celsius 

difference in temperatures for every 1000 feet based on real data, it is a typical recommendation 

meant for normal weather scenarios. During severe weather, the atmosphere is unstable and 

turbulent. Sub-grid scale variations in processes need to be considered to yield accurate 

predictions during severe weather scenarios. 

Of the various dispersion models discussed in the workshop report [8], the NAME model 

(Nuclear Accident Model/Numerical Atmospheric Dispersion Modelling Environment) has 

been taken for a short analysis as it was heavily used by UK Met Office during 2010 eruption 

to provide regulatory recommendations to mark safe airspace zones.  

i. Case Study: London VAAC NAME VAFTD and UK Met Office NWP 

The UK Met Office has international commitments to provide emergency response dispersion 

modelling services for release of hazardous gases and pollutants into the atmosphere. It is 

identified by World Meteorological Office and International Civil Aviation Organization to 

serve as a VAAC as part of the IAVW (International Airways Volcano Watch). In the last few 

decades, it has modelled radioactive releases at Chernobyl, Kuwait Oil fires, major industrial 

fires, chemical spills, 2 volcanic eruptions at Iceland and long term environment analysis.  
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NAME, discussed in the Jones et al., (2007), is the VAFTD model used by London VAAC to 

issue volcanic ash advisories. The impact to closure of the Air Routes, as predicted by NAME 

model, is shown in the Figure 27. The losses incurred across the world are discussed by 

Kristiansen et al., (2012), due to the overlap of the airspace in the path of Eyjafjallajokull 

eruption ash dispersion.  

 

Figure 27: Maximum Extent of Volcanic Ash Cloud that created No-Fly Zone in UK Airspace 

(Source: UK Met Office, April/May 2010) 

The NAME model includes additional parametrizations for atmospheric processes which are 

unresolved in the NWP, but which influence the transport of pollutants, including deep 

convection, horizontal mesoscale motions, and turbulence. NAME is a local to global scale, 

general purpose model developed by UK’s Met Office, in 1986. It is an integrated Lagrangian 

3d model that includes boundary layer dispersion modelling.  Random walk techniques using 

empirical turbulence profiles are utilized to represent turbulent mixing. It estimates pollutant 

concentrations using Monte Carlo simulation methods rather than solving equations.  

NAME uses a puff technique when modeling dispersions over short range which reduces the 

needed time for computations. It is capable of computations for a wide variety of atmospheric 

conditions and can generate maps. The Gaussian model-based process assumes that the air 

pollutant dispersion has a Gaussian distribution, meaning that the pollutant distribution has a 

normal probability distribution. Gaussian models are most often used for predicting the 

dispersion of continuous, buoyant air pollution plumes originating from ground-level or 

elevated sources. They may also be used for predicting the dispersion of non-continuous air 

pollution plumes (called puff models). The primary algorithm used in Gaussian modeling is 

the Generalized Dispersion Equation for A Continuous Point-Source Plume. 



46 
 

NAME assimilates meteorological data from different NWP models and datasets, as shown in 

Figure 28.  

 

Figure 28: The VAAC Process 

(Source: https://journals.openedition.org/belgeo/docannexe/image/16399/img-1.jpg) 

Some of the NWPs utilized include: 

● UK Met Office Unified Model (MetUM) – 1.5 km grid 

● ECMWF Integrated Forecasting System (IFS) (for real time forecasts) 

● ECMWF Re-Analysis (ERA) 

● Single site met observations of surface weather stations for short  range applications 

● Rainfall Radio Detection and Ranging (RADAR) data & Subset of data from other 

sources such as 2d surface fields and 3d model level fields. 

In the article by Miller, (2011), it is noted that the accuracy of NWP relevant to the ash 

dispersion model is very important to ensure proper response to volcanic eruptions, not just to 

the aviation industry but also society at large too.  

The UK Met Office’s main NWP model is the Unified Model (UM). The UM is initialized 

using observation data blended with a previous forecast, through the process of data 

assimilation, to give a best estimate of the state of the atmosphere. NWP variables: pressure, 

density, potential temperature, and wind vectors are then evolved through time by solving the 

dynamical equations of motion. Physical processes such as orographic drag which occur on a 

sub-grid scale are usually parametrized as discussed in Crown, Met Office (2010). In the follow 

up paper, Beckett et al., (2020), the state of the art systems are reviewed in detail. 
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There are several model configurations of the UM which produce output at different 

resolutions, over different regions, and for different purposes. The meteorological data used to 

run NAME operationally during 2010 was taken from the Global configuration, a grid-point 

model using a standard latitude-longitude coordinate system which provides weather forecasts 

for the whole globe. At this time, forecast met data had a horizontal resolution of 25 km at mid-

latitudes, and a four-Dimensional Variational data assimilation (4DVar) method was used to 

combine observations with previous forecasts to initialize the model as discussed in Beckett et 

al., (2020). 

 

Figure 29: Forecast ash concentration chart (Sample) of Eyjaf eruption in 2010 

(Source: UK Met Office, April 2010) 

The forecast ash concentration chart, shown in Figure 29 was introduced during the eruption 

of Eyjafjallajökull, showed six-hour averaged concentrations over three flight levels (FL000–

200, FL200–350, FL350–550), where flight level (FL) represents aircraft altitude at a standard 

air pressure, and is approximately expressed in hundreds of feet, e.g., FL200 is 20,000 feet. 

However, observations of the Eyjafjallajökull ash cloud using ground-based Light Detection 

and Ranging (LIDAR) and research aircraft indicated that ash layers in the atmosphere were 

only a few hundred meters deep.  

The ability to resolve the fine structure of an ash cloud in the modelling was limited by the 

explicit averaging of the output concentrations, and uncertainties also arose due to the assumed 

uniform vertical profile of the effective source, the time resolution of variations in the plume 

height and Mass Eruption Rate (MER), the temporal and spatial resolution of the driving 

meteorological factors and the sub-grid scale parametrizations applied.  
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ii. A Note on Recent Developments in NWP to Generate Met Data 

Scientific and technological developments mean that weather forecast skill out to 3–10 days 

has increased by about one day per decade: in 2015, the 6-day forecast was as accurate as the 

5-day forecast in 2005. Under the umbrella of the UM, in addition to the Global configuration, 

there are higher resolution regional configurations, referred to as Limited Area Models 

(LAMs). During 2010, meteorological data at a resolution of 12 km was generated for the North 

Atlantic and Europe region (NAE configuration). Unfortunately, the NAE configuration had a 

domain boundary that was very close to Iceland and therefore could not be used to track ash 

clouds arising from Icelandic eruptions. 

 

Although both Global and NAE configuration forecasts suffered with decreasing accuracy with 

increasing forecasting time, it was clear that Global model output was the most appropriate 

dataset to use with NAME to simulate the transport and dispersion of volcanic ash clouds and 

was chosen to be the default met dataset used by the London VAAC. 

 

To improve NWP forecasts by utilizing initial atmospheric state observations, the Global 

configuration now uses a hybrid ensemble/four-dimensional data assimilation system (Hybrid 

4DVAR). This update considers the spread of observations over time and space and includes 

data from the Met Office’s ensemble prediction system MOGREPS-G. The horizontal 

resolution of the Global configuration has therefore increased, from 25 km (in the mid-

latitudes) to 17 km in 2014, and then further to 10 km in 2017. 

 

iii. Accuracy Issues in Latest UK NWP Models due to Atmospheric Processes 

 

The horizontal resolution of the NWP met data has increased significantly over the last decade, 

with higher resolutions expected to give better results. However, when the temporal resolution 

of the output met data is not increased inline with any increase in spatial resolution, the 

improvements seen in the accuracy of the dispersion modelling are only marginal. The Met 

Office is therefore currently considering whether there are benefits to using higher temporal 

resolution global met data (1 hourly) with our volcanic ash dispersion modelling. 
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The ability of dispersion models to represent thin and patchy ash structures is still limited by 

the representation of the released ash at the source, the horizontal and temporal averaging of 

the model output, the fact that dispersion models (both Lagrangian and Eulerian) present an 

average representation of the possible unresolved motions, and by the vertical resolution of 

NWP met data; the vertical resolution of the Unified Model (UM) Global configuration has not 

increased since 2010. 

 

To predict the concentration of ash in the atmosphere, turbulent weather processes which act 

to disperse the ash must be represented. Currently, a uniform value for turbulence intensity is 

assumed in the free troposphere in NAME. Due to the intermittent nature of turbulence in the 

free troposphere, this assumed uniform value could lead to, in most cases, instances where 

turbulence is over-estimated, and excessive vertical mixing of material in the model, resulting 

in an underestimation of peak air concentrations. Dacre et al. found that by applying a 

parametrization for varying free tropospheric turbulence the representation of the depth of 

volcanic ash layers from the Eyjafjallajökull eruption was improved. This turbulence scheme 

has been further developed and included in the latest version of NAME. Work is now underway 

to consider the use of this parametrization in the set-up used by the London VAAC. 

 

iv. Other NWP Strategies Explored for Ash Dispersion Modeling – Use of Ensembles 

 

The concept of ensemble modeling is widely experimented in non-vulcanological severe 

weather scenarios such as the Ensemble Prediction Systems (EPS) as discussed in Biondi and 

Todini, (2018). The EPS acts as input to a hydrological and/or hydraulic model to produce river 

discharge predictions, often supported by some kind of Decision Support System. On these 

lines, VATDM developers were tasked to identify the best ensemble strategies, (such as, the 

ENSEMBLE project that could optimize ash forecasting and also NWPs themselves.  

 

In particular, four different types of ensemble strategies were envisaged:  

• Ensemble of different input conditions (according to eruption scenarios and data 

uncertainty ranges),  

• Ensemble of different VATDMs (multi model) (on a single NWP),  

• Ensemble of different NWP forecasts (on a single VATDM) and  

• Combination of one or more strategies above.  
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It was also noted that there are several logistical constraints needed to be overcome if ensemble 

forecasting is to be operational during volcanic crises. This clearly shows that there is a pressing 

need for identifying a suitable methodology to accurately volcanic ash parameters. 

 

As Earth’s atmosphere is chaotic, even small perturbations to its current state can lead to 

significant changes to our future weather. The future state of the atmosphere therefore cannot 

be completely described with a single deterministic model forecast; instead, an ensemble of 

model runs is needed to fully predict all the possible outcomes. A good volcanic ash forecast 

should use an ensemble of met data to communicate a probabilistic assessment of the expected 

location and concentration of ash in the atmosphere.  

 

The Met Office’s MOGREPS-G system produces ensemble forecasts for the whole globe up 

to a week ahead. It generates 18 different weather forecasts and also attempts to represent 

uncertainty which arises due to errors in the NWP model itself by making small random 

variations to the forecast model. Therefore UK, Met Office is currently exploring possible 

approaches for using ensemble met data in the operational VAAC system.  Stefanescu et al., 

(2014), discuss about the development of a probabilistic forecast for Eyjafjallajokull ash 

location with time that involves investigating the effects of aleatoric uncertainty associated 

with volcanic eruption source parameters and the wind field using suitable ensembles, and 

epistemic uncertainty associated with the advective equations of motion by investigating 

outputs of both multiphysics and spectral ensembles. Such ensemble supported analysis are 

claimed to be much needed in complex environments to provide Operational Decision Support 

using a Dynamic Data-Driven Application System (DDDAS) paradigm. 

 

In addition, the chaotic nature of our atmosphere means that small errors in temperature, winds 

or other NWP variables can be amplified with time. Errors in the Global UM met data used by 

the London VAAC during their response to the 2011 Grímsvötn volcanic eruption’s ash cloud 

caused the NAME simulations to forecast the transport of the plume further south than was 

observed. Post-event comparison to simulations with other NWP models pointed to the need 

to consider using ensemble met data, which are generated from running the NWP model 

multiple times with perturbed starting conditions. This would allow the operational 

meteorologists to assess the uncertainty associated with forecast met data in the volcanic ash 

model simulations. 
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v. Other NWP Strategies for Dispersion Modeling - Coupled NWP-VAFTD Approaches 

 

The VAACs use offline coupled modelling systems in which the NWP is run independently to 

generate the met fields needed by the dispersion models. An alternative approach is to use an 

online strategy whereby the dispersion model is embedded within the NWP model. This 

approach has the advantage that it can directly incorporate the impact of the volcanic ash on 

the weather, including its effect on radiative heating and cloud formation. Furthermore, the 

particle transport is directly tied to the temporal and spatial resolution of the NWP model. This 

helps to avoid inaccuracies associated with the handling of atmospheric processes occurring on 

timescales smaller than the typical coupling intervals used between offline dispersion and NWP 

models. However, online approaches are computationally demanding and not without a range 

of as yet poorly constrained and only partially researched challenges.  

 

For operational use, an offline approach would likely be configured over a limited area to 

manage computational cost and run time. It can be challenging to set the extent of the domain 

when the transport of the plume is not yet known, and this approach would also suffer from the 

same problems associated with the use of regional configuration data that were discussed 

earlier.  

 

To reduce temporal resolution errors associated with its offline application, the London VAAC 

performs a linear interpolation in time to the meteorological fields, and it should be noted that 

data assimilation in the NWP necessarily incorporates the impact of the volcanic ash on future 

weather predictions, which are updated every 6 h. Further research, evaluation of the impact of 

greater coupling across a range of scenarios and model inter-comparison studies are needed to 

fully constrain the impacts associated with using offline versus online modelling strategies for 

the generation of operational forecasts of volcanic ash clouds. 

 

In summary, although there are several Volcanic Ash Forecast Transport and Dispersion 

(VAFTD) models to forecast the dispersion contours and concentrations of a variety of weather 

and ash related variables, nearly all models rely on Numerical Weather Prediction (NWP) 

model outputs for accurate prediction estimates. In the absence of any well-defined ash 

signatures, any small error in the initialization stages of the NWP weather variables, can 

magnify the errors in subsequent iterations drastically and severely impact the quality of the 

decisions to be taken.  
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Most NWP models used in the context of ash dispersion rely on ensemble approach to simulate 

various combinations of predictions and finally decide based on the ensemble average. Also, 

most of these NWP models have larger grid sizes and as a result do not capture the small-scale 

spatial variations commonly occurring in ash concentrations. Therefore, modeling weather 

parameters accurately is critical to the success of any model that estimates the concentration or 

transport or dispersion of volcanic ash in the atmosphere. 

4. Why is Air Temperature a good proxy for Ash Dispersion Modeling? 

Weather is the state of the atmosphere, describing the degree to which it is hot or cold, wet or 

dry, calm or stormy, clear or cloudy. Weather is primarily indicated by 3 components: 

temperature, air pressure, and moisture differences between one place and another. Even 

among these three prime variables, surface pressure is caused chiefly due to difference in 

temperature values arising in differential heating of the earth’s surface. Even in the absence of 

water bodies on the ground, elevation gradients in terrains can give rise to different air 

temperatures at a given altitude. Therefore, temperature differences due to presence or absence 

of sunlight is the single most important external factor that causes variations in weather on 

earth.  

The temperature variable is also largely consistent across spatial scales. Very rarely, it is 

abnormally variant at shorter distances in the absence of natural disasters. For example, the 

images in Figure 30 shows a 2.5-mile-long hail swath observed by a pilot at Northern Colorado, 

USA despite a high temperature of 80 degree Fahrenheit on 14th May 2015.  

 

Figure 30: Hail Swath observed from aircraft platform on May 14th, 2015 

(Source: https://weather.com/storms/severe/news/2018-05-17-colorado-hail-swath-from-the-air) 
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Up to 2 feet accumulated hail was observed on ground. The same hail swath, shown in Figure 

31, was observed using satellite imagery clearly only due to lack of clouds.  

 

Figure 31: Hail swath shown by arrow as observed from NASA Terra Satellite on 15th May 2015 

(Source: https://weather.com/storms/severe/news/2018-05-17-colorado-hail-swath-from-the-air) 

This shows that, even more, in the case of severe weather scenarios, smaller spatial events are 

not best observed using traditional remote sensing methods due to turbulent conditions of the 

atmosphere. Although vog, shown in the Figure 32 created due to sulphurous gases from 

volcanic eruptions serve as a proxy for ash detection, it cannot be used as a consistent marker 

in the case of resuspended ash and for ash clouds dispersed far away from the vent and are in 

negligible quantities. Because vog is a combination of fog, smog in addition to other volcanic 

gases. So, there is a need for consistent weather phenomenon to be identified as a proxy for the 

presence of volcanic ash in the atmosphere, irrespective of distal or concentrated quantities.  

 

Figure 32: Similarity between ash and Sulphurous vog in Hawaii, USA as seen from International Space Station 

in February 2015 

(Source: https://earthobservatory.nasa.gov/images/85456/volcanoes-vog-and-vortices) 
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The above example shows that a parameter like temperature despite which is usually assumed 

to be a static component in the case of normal weather scenarios and found to vary inversely 

only across large latitudes, can, in fact, vary significantly even in very short spatial scales 

during severe weather. While the occurrence of severe weather such as hail are at least limited 

to certain latitudes and can be detected by RADARs, volcanic ash eruptions are neither 

bounded by such geographical limitations nor detected using such sensors readily. In fact, ash 

particles have the potential to turn into Ice Nuclei/Cloud Condensation Nuclei due to their 

hygroscopic nature and pose additional threats, as discussed in the Martucci et al., (2012), 

O’Dowd et al., (2012), Martucci et al., (2012). So, any sudden changes in air temperature serves 

as a good proxy for potential ash cloud for detection and can thus be used to prevent inadvertent 

flight into such plumes.  

Secondly, weather variables such as wind speed, humidity etc are measured for real time, in-

situ weather monitoring via airborne platforms. This involves sampling and then processing 

the air drawn through pitot static in the aircraft, which would get rapidly and densely clogged 

with ash if aircrafts were to inadvertently entry into ash rich regions, especially at high speeds. 

On the other hand, air temperature (especially outside air temperature or true air temperature) 

is typically measured by a thermometer probe fitted on the surface of the aircraft, as shown in 

Figure 33. As a result, even in the event of losing information from all the onboard weather 

sensors, due to the electrical and chemical properties of ash, temperature input alone is largely 

unaffected. 

 

Figure 33: Typical Flight Surfaces that experience friction with particles like Sand only at ground 

(Source: https://www.aerohabitat.org/airmanshiponline/marzo2003/21-

Volcanic%20Hazards%20and%20Aviation%20Safety.pdf) 
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Thirdly, even a big jet aircraft such as Boeing 747, can glide safely for half an hour under most 

wind speed conditions. But even a marginal change in the temperature of the jet engine due to 

heavy rains or icing or ash melt can immediately cause flame out. As a result, temperature 

fluctuations act as a very critical, early warning proxy for detecting potential volcanic ash 

exposure. 

Fourthly, while every platform and sensor to detect ash directly or indirectly has disadvantages 

such as the need for low pressure/environment for their functioning in the first place, there is a 

need for an approach that is fundamentally built to turn the very disadvantage itself into an 

advantage and thereby uses it to detect ash. By using temperature anomalies, the ash detection 

problem can be near accurately identified. The problem of false positives reported by other 

prediction and modeling methods with respect to normal ice clouds, desert sand etc are also 

neatly categorized by using the well-established signatures of such regular severe weather 

phenomenon and excluding the possibility of such phenomenon causing abnormal temperature 

values in the atmosphere. 

Fifthly, since estimating the density of the ash is critical to shutdown of engines mid-air, 

temperature profiles, as shown in Figure 34, can be used as the perfect input for modeling and 

prediction of airborne ash densities and distributions.  

 

 

Figure 34: Engine Damage Correlates with Cloud Age, Particle Size 

(Source: GE Aviation Report, January 2019 - https://www.itafsc.org/wp-

content/uploads/2019/07/Caso_Studio_-_I._Oddone__Air_Dolomiti.pdf) 
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Apart from classifying any matter based on physical or chemical properties, they can also be 

studied using their intrinsic or extrinsic nature. Intrinsic or intensive properties are properties 

that are within the substance and do not depend on the amount of material that you have. 

Whereas extrinsic or extensive properties are properties that depend on the amount of the 

substance you have. All size measurements depend on amount, so all size measurements are 

extrinsic properties. Ash being microscopic particles, it is impossible to measure their size, as 

shown in the Figure 35 or their shape as shown in Figure 36 as they are amorphous in nature.  

 

 

Figure 35: Ash Particle Size in Comparison with other Particulate Matters – Electron Micrograph of a single 

ash particle shown together with some other common materials, US EPA. 

(Source: Dmochowska, Anna. (2018). Hazards associated with municipal waste storage Vol. II. MATEC Web of 

Conferences. 247. 00033. 10.1051/matecconf/201824700033);  

 

Figure 36: Irregular Shape of Ash Particles 

(Source:https://grrlscientist.medium.com/how-are-birds-affected-by-volcanic-ash-grrlscientist-d93451850c9) 
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At the same time, it is very essential to establish the quantum of ash that can be tolerated to 

declare a safe airspace, as shown in Figure 37 and Figure 38. Thus, the rate of change in 

temperature values can be supported using other quantities humidity to predict density 

thresholds to maximize the available airspace during volcanic eruption events. 

 

Figure 37: Duration of Exposure versus Ash Concentration Chart by Rolls Royce 

(Source: Volcanic Ash Impacts on Jet Engines and Developments Since 2010) 

 

Figure 38: Rolls Royce Engine Exposure Studies: Visible and Discernible ash plotted against ash concentration 

(Source: Volcanic Ash Impacts on Jet Engines and Developments Since 2010) 
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Lastly, temperatures can be measured in a variety of scales. Even if Celsius representation has 

zero and negative values, the readings can be converted to Kelvin scale to avoid numerical 

processing issues. So, the linear nature of temperature is yet another advantage while 

processing unlike precipitation which varies in units of metre and is tied to the area of 

measurement and the duration of the event. While rainfall, snowfall or hail are highly 

directional, their measurement units vary and are at times even reported using temperature 

units. Whereas temperature is the single unit that is used at terrain level and at atmospheric 

level irrespective of the gases present and presence of different forms of water in the 

atmosphere. Although temperature is a 3-dimensional in nature, it is not reported with different 

values in each direction in a given parcel of air. On the other hand, a variable like wind direction 

is resolved into x, y and z directional components and is cyclic in nature.  

While air the temperature of the buoyant ash closer to the eruption column might be 

significantly higher than far away from the volcanic vent, the quantum of ash 

(diluted/concentrated) can significantly affect the temperature of the atmosphere even far away 

from the source. As a result, it is all the more essential to study this phenomenon using air 

temperature, since it is the best variable that can be used to understand the neighbourhood 

airspace in the event of volcanic eruptions to identify various dispersion patterns.  Thus, 

irrespective of desiring to reduce the duration of exposure to ash or to decrease exposure to 

particulate concentration, air temperature can be used as a proxy property to model the spatial 

dispersion of airborne volcanic ash.  

5. Problem Formulation 

The aim of this research is to propose a methodology to generate the spatial distribution of 

volcanic ash spread using temperature as a proxy variable to understand the dispersion patterns 

of airborne ash in the neighbourhood airspace in the event of an eruption.  To model and create 

a gridded air temperature map, which is as close as, to the actual dispersion of airborne volcanic 

ash, over synoptic scales, in terms of averages and variances, is an open issue. This is because, 

the accuracy of the model outputs, have a significant impact on decisions pertaining to safety 

and livelihood of humans across continents on air and ground. Traditionally, an extensive 

variety of geostatistical methods and simulation techniques have been experimented to model 

weather variables. Map generation based on model outputs from samples can be achieved by 

two methods. While Grid based techniques aggregate local observations into average values 

on a regular grid, Interpolation methods use values at target locations (eg: grid points) to create 

models.  
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NCEP is a grid-based NWP method that uses Ensemble Kalman Filter (EnKF) to prepare daily 

composites of weather data sourced from different sensing platforms. EnKF technique is 

equivalent to geostatistical conditional simulation, and it implicitly assumes Gaussian model. 

On the other hand, in this research, we present a geostatistical method, known as Kriging, to 

ascertain that, embracing a pure spatial analysis approach is a powerful framework to 

supplement grid-based methods to generate highly accurate prediction estimates, even in severe 

weather scenarios over synoptic scales. To demonstrate the same, initially we propose to use a 

Linear Regression Model to interpolate the air temperature data. Subsequently, we have 

experimented, Kriging which is a Non-Linear Regression technique. We chose two variants of 

Kriging, namely Simple Kriging (SK) and EBK (Unconditional Simulation – with &without 

transformation) techniques to generate prediction maps. 

 

We intend to investigate if with sparse, heteroskedastic datasets, can a technique like Kriging 

be an effective method to model and understand the volcanic ash dispersion. Severe weather 

events are significantly different from normal weather scenarios because the environment is 

rapidly changing due to turbulence across the horizontal and vertical extents of the atmosphere. 

Applying classical statistics with the assumption that variables are independent of each other 

and that Gaussian distribution models are appropriate to model severe events requires to be 

challenged. With Gaussian models, the concept of averages is rendered meaningless since the 

variability of the sample data points is similarly distributed before and after mean values. When 

there are no well-defined means and variances in a spatial domain under study, additive models 

that have both positive and negative variations induces constant effects across the study region. 

On the other hand, multiplicative models such as Power Law distributions have only positive 

deviations and are highly directional towards infinity. As a result, power laws with no average 

and no finite standard deviation and therefore can be used to model heavy tailed (fat /long and 

cluster) scenarios. Instead of assuming that events are interdependent of factors like location, 

spatial statistics helps correlate the influence of location patterns across events and realizations.  

 

While near-homogenous dispersions and randomness can be easily identified, it is extremely 

difficult to model clusters using frequentist approaches. So, a combination of partitioning 

approaches using Bayesian methods is inevitable to accurately model a given natural 

phenomenon.  
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Conditional simulation techniques that support multiple realization approaches, such as 

Turning Bands, EnKF etc mostly produce global estimates of the random field honoring the 

means and variances. On the other hand, traditional kriging methods (such as Simple Kriging, 

Ordinary Kriging, Universal Kriging) require the assumption that the random field under 

exploration belongs to a single realization.  

 

As a result, there is a need to identify algorithms that are most suited to interpolate samples 

even from clustered spatial distribution patterns to produce both global and local means and 

variances with minimal errors, for a given region without assuming, that, the samples originate 

from a single realization. 

 

6. Use of GIS and Geostatistics in Interpolation of Temperature 

 

Geospatial analysis is an approach to applying statistical analysis and other analytic techniques 

to geographic or spatial data using Geographic Information System (GIS) software to render 

maps. Since the aim is to generate a spatial model to understand the natural phenomenon, the 

first step involves understanding the association between the attribute and location data. Since 

the analysis to be performed is purely spatial in scope, there is a need to quantify the spatial 

patterns and then use it to make predictions of variables at unsampled locations. Also, many 

datasets from real world scenario have inherent randomness, a stochastic approach is largely 

required to deal with uncertainties.  Since non-normality in data is to be expected, regression 

technique was chosen over Analysis of Variance (ANOVA). If the data samples have groups 

of unequal variances, then they give rise to unbalanced design due to crossed random effects. 

In which case, the dataset needs to be analysed by both transforming the data to normality and 

without applying any transformations.   

Among the 12 VATDMs benchmarked in the Volcanic Ash Workshop held in 2010, 7 models 

required some form of data interpolation algorithm to estimate ash concentrations. Also, 9 of 

those models required temperature as an input weather variable for their respective NWP 

model. In particular, NCEP NWP is used by the following VAFTDs: Hysplit, Modèle 

Lagrangien de Dispersion de Particules d'ordre zero (MLDP0) and Volcanic California Puff 

(VOL-CALPUFF) Model.  
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Regression based techniques have been traditionally to interpolate weather variables. For this 

study, we initially evaluate the suitability of Linear Regression method. In addition, 

Geostatistics based non-linear regression interpolation technique, called Kriging, originally 

applied in ore mining industry, as discussed in paper [34] is proposed to be investigated. The 

cross application of Kriging method for atmospheric problems is a novel exploration in the 

context of volcanic ash events. In particular, a Bayesian variant of Kriging using the concept 

of Generalized Covariance Functions is being rigorously validated against international 

Numerical Weather Prediction Model outputs in this study to generate risk maps for aviation 

safety. 

Geospatially enabled tools using Kriging on temperature as proxy variable will enable 

preparation of surface outputs at least an hour before ash potentially impacts a FIR or other 

VAAC areas. Even in the absence of any eruption, such spatial models can be run to simulate 

potential disasters at a lesser cost for various combinations of weather variables and intensities 

of the chosen variables. This methodology could be used to even simulate scenarios where no 

known or named volcanoes exist in both single realization and ensemble models. 

In this study, only the horizontal component of weather, expressed in latitude/longitude 

coordinates are initially considered. The vertical component (altitude) of the sampled data is 

averaged and assumed to be at a single pressure level. This is assumed rightly so, because the 

environment is anyhow in a state of flux during such events.  

 

7. Defining Go/No-Go Regions 

 

While the primary objective of the research is to model past eruption to understand the 

phenomenon better spatially, this research can also be applied directly and indirectly in related 

problems. As part of this research, we intend to propose a validated method to define and 

visualize the go and no-go regions by generating risk maps that can aid in improving the safety 

air traffic management during such disasters.  
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8. Objectives 

 

The following objectives are chosen for this research: 

1. Study and analysis of different interpolation techniques to determine which method of 

spatial interpolation is suitable for 3D ash cloud modeling. 

2. Evaluate different kriging methods along with error estimations to validate if 

Geostatistics can provide good estimate of temperature values at different altitudes 

3. Arrive at a method to visualize the ash temperature distribution for categorizing Go/No-

Go regions and to classify the patterns and bands around a set of observations.  

 

The application of a relatively new variant of a geostatistical technique called Empirical 

Bayesian Kriging in the context of volcanic ash, which hitherto, has not been attempted in any 

of the research till date. Through this, we address the chief debate in this field, which is to 

identify a reliable, probabilistic method that is capable of estimating both predictions and 

uncertainties to augment the deterministic methods currently in use for the International 

Volcanic Ash Task Force (IVATF) authorities to aid in robust decision making.  

9. Structure of thesis 

In Chapter 1, the problems due to airborne volcanic ash is introduced, supported by a review 

of literatures pertaining to the modeling of ash, how Numerical Weather Prediction models 

play key role in ash dispersion models, formulate a specific problem statement related to 

inadequate accuracy in air temperature modeling observed in NWPs and propose how a 

geostatistical approach would be appropriate to address the gap.  In Chapter 2 the study site 

chosen is described along with validation datasets and exploratory spatial data analysis. 

Chapter 3 discusses two methodologies to generate spatial distribution of ash temperature - viz 

Linear Regression and three variants of Non-Linear Regression technique, namely, Kriging. 

The prediction and error estimates are verified, global profiles are analysed and compared to 

validate against the NCEP NWP validation dataset. Chapter 4 discusses in detail the point and 

block grade errors observed at global and local scales in kriging estimates to identify the most 

appropriate ash temperature modeling strategy among the three chosen methods. Chapter 5 

deals with a potential application of the chosen kriging method in the aerospace industry. 

Finally, in Chapter 6, the benefits, limitations and scope for future work are discussed in 

conclusion. 
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II. Study Area and Study Sites 

1. Study Site 

The European airspace shutdown from 14th April 2010 due to the explosive eruption of the 

Icelandic volcano, Eyjafjallajokull marked the beginning of the largest shut-down of air traffic 

since the Second World War.  The effusive eruption started on March 20th and lasted till April 

12th. But the ash plumes from the explosive eruption phase travelled around 900 miles within 

24 hours and blanketed Northern Europe. In the ensuing six days 95,000 flights were cancelled 

across Europe, costing airlines an estimated £1.1 billion. The UK Treasury lost £30m of 

revenue from air passenger duty, with British hotels, restaurants and shops also taking a 

significant financial hit. It has been estimated London’s economy alone was left £100m out of 

pocket by the end of the flight ban.  

 

Initially, within the area at risk from ash, the ban was absolute, leaving up to one million British 

passengers marooned abroad. However, as the threat continued there was mounting pressure 

to remove the blanket ban and get some flights moving again. As a result, aircraft engine 

manufacturers released details of a maximum concentration of ash that their engines could 

withstand. The issue was that ash concentration is hard to measure directly. Meteorologists at 

the Met Office’s Volcanic Ash Advisory Centre (VAAC) were included in decision making by 

mathematically modelling the ash cloud. Wilkinson et al., (2012) discusses the extent of 

disruptions caused in European Airspace in 2010. The map of various regions in Europe 

affected during April 2010 is depicted in Figure 39. 

 

 

 

 

 

 

 

 

Figure 39: Impact to European Airspace in 2010 - Open (light green) and closed (grey) FIR in Europe on 15th 

April, 18th April and 21st April 2010 

(Source: https://www.researchgate.net/figure/Open-light-green-and-closed-grey-FIR-in-Europe-ie-airspace-for-

a-15th-April-b_fig1_251417365) 
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In particular, Thordarson and Larsen, (2007) and Sturkell et al., (2010)  discuss about the nature 

of two specific volcanoes that can disrupt air traffic due to widespread ash dispersal. While the 

Hjaltadóttir et al., (2015) discuss the history of past eruptions of Eyjafjallajokull, Saltykovskii, 

(2012) discuss in detail the specific eruption of 2010. Although there are several meteorological 

stations present close to the vent, Denlinger et al., (2012) and Gislason et al., (2011) discuss 

the issues in detection of ash due to various factors related to weather. 

During the resurgent May 2010 eruption of Eyjafjallajokull volcano, as shown in Figure 40, 

ash was dispersed across the European airspace for several days (Latitude: 54.2992 to 

63.633333 and Longitude: 3.557819 to 19.6). Facility for Airborne Atmospheric 

Measurements (FAAM) aircrafts, shown in Figure 41, were flown in sync with satellite 

overpasses for multiple days, near potentially hazardous ash laden regions to collect a variety 

of scientific data. British Atmospheric Data Centre (BADC) released a subset of the weather 

data for academic research purposes.  

 

Figure 40: Photo of Eyjafjallajokull Eruption in Iceland on 8th May 2010 during clear weather conditions 

(Source: https://phys.org/news/2010-04-iceland-volcanic-ash-halts-flights.html) 

 

Figure 41: FAAM Bae 146-301 ARA Instrumentation 

(Source:https://cimss.ssec.wisc.edu/itwg/itsc/itsc18/program/files/newman_volcanic_ash_itsc18.pdf)  

https://phys.org/news/2010-04-iceland-volcanic-ash-halts-flights.html


65 
 

The data from “Dataset Collection Record: Eyjafjallajokull Volcanic Ash Cloud Measurements 

and Imagery,” n.d.(2010) collected using a BOMEM Michelson interferometer, on four days 

(May 14, May16, May 17, May 18) was chosen for this study. While the field sampling 

durations extended several hours, a small portion of the recorded data, considered to be ash-

significant region, was handpicked for this research. The dataset for this research was created 

by mapping univariate temperature data against the flight path information and by referring to 

the discussions made amongst the scientific crew about the intensity of ash spread during the 

sorties.  

 

 

Figure 42: Location, Timestamps and Density of Ash Distribution 

(Source: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD016760) 

It is interesting to note the legend for the above graphs is left open on its higher limits (4000+ 

microgram of ash), as shown in the Figure 42. Data collection experiment for volcanic ash 

dispersion has been primarily conducted with sole aim to determine the jet engine tolerance 

thresholds. As a result, the sampling process cannot be stated to be adequate or appropriate for 

predictions over large areas and which areas are affected to which extents. It is not just enough 

to identify significantly high ash areas, but the sampling strategy must also be able to bring out 

patterns of ash concentrations.  
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The data collected is shown in the below map within the Minimum Bounding Region (MBR) 

which includes the vent location as shown in the Figure 43. Although 4 days datasets were 

available for this research, only 3 days (May 16th – 221 points, 17th – 288 points and 18th – 

240 points) data were used to develop the model. 14th May data (122 points) was reserved for 

model validation needs. A unique sample for vent and 3 dummy points were included in the 

dataset to mark the minimum bounding region comprising totally of 875 data points. 

 

Figure 43: Map showing the MBR with Data Locations w.r.t. Volcanic Vent over Europe 

For the 4 days of flight data, 16th, 17th and 18th were used as input, while 14th data was 

considered as test dataset for evaluating the accuracy of estimations. The MBR encompasses 

around 5 lakh square Kilometres of area. The temperature distribution across those days were 

compared and plotted as shown in Figure 44. 

 

Figure 44: Temperature Distribution Plot of Data Samples 

The spatial distribution of the data points across each day varies significantly. Although the 

total distance covered each day for sample collection is around 40 km, the leg velocity varies 

between 0.03 m/s (on 18th May) to 740 m/s (on 14th street).   

 



67 
 

Also, the dataset reveals clustering phenomenon and complex anisotropic processes. The map 

shown in Figure 45 reveals for each point, the direction in degrees, to the nearest source and a 

complex anisotropy is observed for the chosen dataset.  

 

Figure 45: Euclidean Map revealing high degree of anisotropy observed in the study site 
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2. Validation: NCEP NWP Gridded Reanalysis 

\ 

An Ash Dispersal Forecast and Civil Aviation Workshop was conducted post eruption to 

benchmark 12 dispersion models based on ash & weather data from the Hekla eruption in 2000. 

Ash concentration contour maps were generated at different flight levels. While all the 

operative models were tested and compared based on properties of ash, this study focuses on 

temperature variable as a proxy to model the ash dispersion.  

The input climate/weather data used in these VATDs included only reanalysis datasets: 

ECMWF ERA-40 and NCEP/NCAR reanalysis-1. ECMWF stands for European Center for 

Medium Range Weather Forecasts while NCEP/NCAR stands for National Center for 

Environmental Prediction/National Center for Atmospheric Research. The former is available 

only for the period 1957- 2002 while the latter from USA is continuously updated from 1948 

to present. Since this research involves modeling of 2010 eruption at synoptic scales, 

NCEP/NCAR was therefore chosen as validation dataset. 

Although the workshop used only reanalysis version 1, this research used the updated dataset 

Compo et al., (2011) from version 2c of NCEP/NCAR reanalysis since it is available for the 

given region under study for the said time period. Although, v3 based dataset was also released 

by NCEP/NCAR, the interpolation algorithm used between version 2c versus version 3 with 

respect to generation of daily composites did not have significant changes. So, v2c, being closer 

to v1 was finalized as validation dataset for this study.  

Data for each day was downloaded from the as referenced in the repository by Compo et al., 

(2011) according to the pressure altitude of the flight routes (350 mb/400 mb/700 mb/800mb), 

and required time slots (set to European Projection configuration). The Air Temperature 

weather variable daily composites were downloaded for the period of 14th May 2010 to 18th 

May 2010 for this study.  
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3. Analysis of Validation Dataset 

The initial step was to understand the temperature profiles simulated by NWP models such as 

NCEP, theoretically, over continental, and oceanic Europe for the same period and region of 

interest. Daily composites for the period between May 14th to May 18th were compared 

annually from 2008-2011. From the minimum and maximum temperature values predicted at 

350/400/700/800 mb Pressure Altitudes, it was observed that there were no variations in 

temperature greater than 8K in total. Contrastingly, May 17th, 2010, samples (collected by 

flight) revealed a variation of up to 22K even at very short spatial scales. Further, up to a 27K 

drop in air temperature was observed on May 17th when compared against the usual 

Environment Lapse Rate (ELR) (expected at 700 mb).  From the Table 3, it is observed that 

there is no significant difference in temperature values (in Kelvin) between the input days 

(161718) and validation days (14161718) with respect to NCEP.  

Year (Date) 
Pressure 

Altitude 

Minimum 

Temperature 

Minimum 

Temperature 

Maximum 

Temperature 

Maximum 

Temperature 

Fused - 2008  1415161718 161718 1415161718 161718 

 350 mb 228 234 244 252 

 400 mb 232 234 252 252 

 700 mb 258 255 282 285 

 800 mb 264 265 291 295 

Fused – 2009 350 mb 232 232 244 242 

 400 mb 238 238 250 250 

 700 mb 262 262 280 282 

 800 mb 267 267 291 291 

Fused - 2010 350 mb 234 234 246 246 

 400 mb 240 240 254 254 

 700 mb 264 264 285 285 

 800 mb 270 270 294 294 

Fused - 2011 350 mb 230 230 246 248 

 400 mb 234 234 254 254 

 700 mb 256 255 282 285 

 800 mb 265 265 290 295 

 

Table 3: Comparison between Input Days (14161718) & Validation Days (161718) By Overlaying Individual 

Days 
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But when NCEP temperature values was compared against flight data for 2010, as shown in 

Table 4, it is observed that for the samples collected on May 17th and May 18th the values signal 

very turbulent atmosphere, with a deviation of up to 27K from usual Environment Lapse Rate 

which the NCEP NWP is designed to faithfully honour. 

Year Pressure 

Altitude 

NCEP – 

Minimum 

Temperature (K) 

NCEP – 

Maximum 

Temperature (K) 

Flight – 

Minimum 

Temperature (K) 

Flight – Maximum 

Temperature (K) 

Fused - 2008 350 mb 228 244 - - 

 400 mb 232 252 - - 

 700 mb 258 282 - - 

 800 mb 264 291 - - 

Fused - 2009 350 mb 232 244 - - 

 400 mb 238 250 - - 

 700 mb 262 280 - - 

 800 mb 267 291 - - 

Fused - 2010 350 mb 234 246 229 244 

 400 mb 240 254 231 252 

 700 mb 264 285 237 259 

 800 mb 270 294 266 273 

Fused - 2011 350 mb 230 246 - - 

 400 mb 234 254 - - 

 700 mb 256 285 - - 

 800 mb 265 294 - - 

 

Table 4: Comparison between Flight Averages (14161718) and Validation Days (161718) for Individual Days 

  



71 
 

The individual and fused NCEP air temperature (in kelvin) dataset for various days are plotted 

over World Map in the below figures for the required Minimum Bounding Region. The 

individual days NCEP values were overlayed for a common scale of values to diverse and 

dissimilar inputs to create an integrated analysis. The input rasters were transformed into a 0/1 

scale, indicating the strength of a membership in a set, based on a specified fuzzified algorithm. 

Alternatively, a weighted overlay can be generated using a common measurement scale and 

weights each according to its importance. Figure 46 shows that coarse grid sizes used in NWP 

models do not accurately represent the state of the atmosphere even during large volcanic 

eruptions in any given region. The average temperature of the overlay created from using 

rasters of each day was ~253K.  

 

Figure 46: Map showing Overlay of Grids of NCEP Rasters from Individual Days & Composites across Days 

Using the NCEP temperature values given in Table 5 and Table 6, probability density graphs 

were generated, to visualize and study various statistical aspects related to the datasets. 

Altitude 

 (Feet) 

NCEP14 

(8K) 

Input  

14 

NCEP16 

(7K) 

Input 

16 

NCEP17 

(3K) 

Input 

 17 

NCEP18 

(1K) 

Input 

 18 

Min 233 229 238 231 263 237 269 266 

Max 236 244 243 252 266 259 270 273 

Mean 235 239 241 245 264 246 270 270 

Range 3 15 5 21 3 22 1 7 

 

Table 5: NCEP Temperature values against Input Data of Individual Days (in Kelvin) 

14th May 16th May 17th May 18th May Fused: 
161718

Fused: 
14161718
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Altitude 

 (Feet) 

Input 

161718 

NCEP 

161718 

Input 

14161718 

NCEP 

14161718 

Min 231 254 228 251 

Max 272 257 300 253 

Mean 253 256 251 253 

Range 41 2 71 2 

 

Table 6: NCEP Temperature values against Input Data of Overlayed Composites (in Kelvin) 

Figure 47 shows the following plots that depict the temperature distribution on individual days 

and across days from May 2010. 

i. Input Data: Individual 4 Days vs Combined 3 Days (16th, 17th, 18th May 2010)  

ii. NCEP: Individual 4 Days vs Combined 3 Days (16th, 17th, 18th May 2010) 

iii. NCEP vs Input Data: Combined 3 Days 

 

Figure 47: Plots showing temperature distribution on individual days and across days from May 2010 

The reason why NCEP estimates do not capture the small-scale spatial variations is discussed 

in (Compo et al., 2011). The paper describes the interpolation approach used in NCEP models 

and discusses the limitations arising in accuracy of model outputs when EnKF is applied in the 

context of large geographic regions.  

  

(a) (b) (c)
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In particular, the paper notes that: “As discussed by, e.g., Anderson and Anderson (1999) and 

Whitaker and Hamill (2002), sampling and model errors prevent the ensemble-estimated 

background error covariances from being optimal in the Kalman update equation (1). Such 

issues must be addressed to prevent ‘filter divergence’ wherein the update equations (1)–(4) 

weight the background too much and the observations too little. Cycling during such a 

condition reinforces the background and causes the filtered ‘analysis’ estimate to drift farther 

and farther from observations. Two methods are used to account for these sources of error: 

covariance inflation (Anderson and Anderson, 1999) and distance dependent covariance 

localization (Houtekamer and Mitchell, 2001; Hamill et al., 2001). Covariance localization 

(Houtekamer and Mitchell, 2001; Hamill et al., 2001) is a spatial filter that smoothly sets the 

ensemble covariances to zero beyond a specified distance. This reduces the potential for filter 

divergence arising from spurious long-distance correlations obtained using finite ensemble 

sizes.” 

The assumption that there is poor correlation in long distance contexts and weighing the 

observations lesser than the background, constrains the accuracy of the NCEP model outputs 

since they are obligated to honor the mean and variances for a fixed geographic extent in 2D 

and 3D. As a result, Power Law based spatial interpolation models are also investigated. This 

is required so that both spatial factors and attribute properties in various clusters in any given 

random field is given appropriate weightage by constructing semivariogram of distances and 

variances.  
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4. Exploratory Spatial Data Analysis 

Exploratory Spatial Data Analysis is performed as the initial step to get familiarized with the 

data and to detect patterns of regularity. Datasets are usually checked for three criteria 

primarily, namely, presence of normal distribution, stationarity and absence of trends. The 

summary statistics for the input dataset are captured below: 

Count 753 

Minimum 231.25 

Maximum 300 

Mean 253.46 

Standard Deviation 11.785 

Skewness 0.59215 

Kurtosis 1.8588 

 

i. Normal Distribution Check 

 

 

Figure 48: Normal Distribution Check Using Histogram and Normal QQ Plot 

Since the histogram, shown in Figure 48 has a bimodal peak, Gaussian Normality criteria is 

not met. Usually, log or box transformations. The mean is also expected to be close to median 

(253.46 vs 246.97). Skewness is expected to be close to 0 and was found to be ~0.59215. 

Kurtosis is expected to be close to 3 but was observed to be ~1.8588. There are no explicit 

outliers. The Normal QQ Plot generated shows that data does not follow 1:1 line. In such 

scenarios, applying Normal Score Transformation fits a smooth curve to the data to perform a 

quantile transformation to the normal distribution which is then transformed back at the end.  
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ii. Stationarity Check 

Stationarity is defined as the statistical relationship between two points depends only on the 

distance between them.  It means that statistical properties do not depend on exact locations. 

Therefore, the mean (expected value) of a variable at one location is equal to the mean at any 

other location. Voronoi maps (symbolized by Entropy or Standard Deviation) are used to assess 

stationarity by looking for randomness in the symbolized Thiessen polygons. Usually, if data 

is not stationary, then, transformations can stabilize the variances after removing trends to make 

the data constant. Since the dataset had significant heterogeneity, Voronoi maps could not be 

effectively generated. As a result, EBK technique was chosen to process the non-stationarity 

observed in the data. Empirical Bayesian Kriging can be used to treat local variance separately. 

Instead of variance being similar in a whole extent, EBK performs kriging as a separate 

underlying process in different areas. It still performs kriging but is done at a local scale. In 

this context, it is important to calculate another metric named, Global Moran’s Index (I), as 

shown in Figure 49. 

 

Figure 49:  Global Moran's Index 

● Given the p value, which is the probability of value zero, it could mean that it is very unlikely (small 

probability) that the observed spatial patterns is the result of random processes.  

● Given the z-score, which is the standard deviation, of 63.3883332056, there is a less than 1% 

likelihood that this clustered pattern could be the result of random chance. 

● This combination of (low p values and high z values) indicates a spatial clustering of high values 

since higher z scores indicates a more intense spatial clustering. It is usually found at the tails of 

the normal distribution. 

The default neighbourhood search threshold was 673070.9000 Meter computed using Chordal 

distances (Earth modelled as sphere instead of Ellipsoid as found in Geodesic distances).  
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iii. Absence of Trends Check 

Trends are systematic change in data across an entire study area i.e. Mean is not same/similar 

everywhere. They are often indistinguishable from autocorrelation and anisotropy. Large 

trends are removed using functional transformations to remove the relationship between data 

variance and data trend. The trend analysis graph provides a 3D perspective of the data.  Above 

each sample points, the value is given by the height of a stick in the Z dimension with input 

data points on top of the sticks. Then the values are projected on the XZ plane and the YZ 

plane, make sideways view through the 3D data. Polynomial curves are then fit through the 

scatter plots on the projected planes. In Figure 50, the green line shows the trend in the E-W 

direction and the blue depicts the trend in N-S direction. It is observed that there are lower 

temperature values in the centre in E-W direction and higher values in N-S direction indicating 

the presence of different trends in different directions.  

 

Figure 50: Trend Analysis Check 

iv. Spatial Autocorrelation Check 

The Spatial Autocorrelation check is used to examine the local characteristics of spatial 

autocorrelations within a dataset and look for local outliers. The semivariogram cloud shown 

in Figure 51 provides the empirical semivariogram values for all pairs of locations within a 

dataset and plots them as a function of the distance that separates the two locations. Each dark 

red dot shows the squared difference between the values of two data points making up a pair 

plotted against the distance separating the two points.  

 

Figure 51: Semivariogram Cloud 

Distance, h  10
-1

g   10
-3

0 0.29 0.58 0.87 1.16 1.45 1.74 2.03 2.32

0.39

0.79

1.18

1.58

1.97
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The semivariogram surface, shown in Figure 52 is generated including the search direction. 

With search direction is included, the values in the semivariogram cloud are put into bins based 

on the direction and distance between a pair of locations. These binned values are then averaged 

and smoothed to produce the semivariogram surface. The lag size determines the size of bins 

and the number of lags determines the number of bins. The extent of the semivariogram is 

controlled by lag size and number of lags. If the lag size is too large, the short-range 

autocorrelation may be masked. If the lag size is too small, there may be empty bins and sample 

sizes within bins with be too small to get representative average for bins.  

 

Figure 52: Semivariogram Surface (Lag Size: 2.3158; No. of lags: 10) 

When sample sizes are located on a sampling grid, grid spacing is usually a good indicator for 

lag size. However, if data is using irregular or random sampling scheme, a simple rule can be 

followed to determine lag size. The lag size can be multiplied by the number of lags, which 

should be about half the largest distance among all points. If the range of the fitted 

semivariogram model is large relative to the extent of the semivariogram, one can increase the 

lag size. Another approach widely used to determine lag size is to find the average nearest 

neighbour value using Euclidean distance.  

Having checked the dataset for a variety of criteria for spatial aspects, initially a simple linear 

regression technique, widely used in the context of time series analysis is experimented to 

understand the patterns from yet another perspective. 

 

  



78 
 

III. Estimation of Spatial Spread of Temperature 

1. Methodology #1: By Multiple Linear Regression (MLR) 

In statistical modeling, regression analysis is a set of statistical processes to estimate the 

relationships between a dependent variable and 1 or more independent variables (also called 

predictors or covariates). The most common regression analysis form is linear regression. In 

linear regression, one finds a line or a more complex linear function that most closely fits the 

data. It is based on a specific mathematical criterion. Regression analysis is chiefly used for 

two theoretically different purposes.  

● Widely used for prediction and forecasting.  

● In some scenarios, it is used to infer causal relationships between the predictors and 

dependent variables.  

In either case, it is essential to justify why existing relationships have predictive power for a 

new context or why a relationship between two variables has a causal interpretation using 

observational dataset. Prediction within the value range for a given to fit models is known as 

interpolation. Prediction outside this data range is called as extrapolation. Extrapolation 

generally relies on few assumptions. Although, the parameters of a regression model are 

usually estimated by method of least squares, some of the other notable methods include: 

Bayesian methods, % regression, Least absolute deviations (LADs), Nonparametric regression, 

Scenario optimization, Distance metric learning  to name a few. 

Linear regression is a linear approach to modeling the relationship between one dependent 

variable and 1 or more independent variables. When one explanatory variable is used, it is 

known as simple linear regression. If more than one explanatory variable is used, the process 

is then known as multiple linear regression. This is different from multivariate linear 

regression, wherein, multiple correlated dependent variables are predicted, rather than a single 

dependent variable. From the available dataset comprising 4 days of temperature data, collected 

during May 2010, in the vicinity of the eruption, 3 days’s data has been considered for this 

analysis. Although a significant assumption, it is presumed that the different day’s data 

originate from same altitude and from same time during the day. This facilitates in utilizing 

three days samples to be studied and used in the prediction of temperatures of the 4th day. The 

datasets available for 14th May, 16th May, 17th May & 18th May 2010.  

https://en.wikipedia.org/wiki/Bayesian_method
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From this dataset, the last 3 days have been chosen as inputs owing to the logical continuity in 

dates. From the complete dataset, the following outlier values, listed in Table 7 (eg: Vent data, 

data points from other time slots, dummy values etc) are ignored. 

Lon (dd) Lat (dd) Alt (m) Temp (K) 

-9.47537 59.9374 8048 266.753918 

-19.6 63.633333 4000 300 

-6.72907 58.5211 7487 274.057838 

-5.21287 54.2992 8061 273.5359 

Table 7: Key outlier values along with their location 

The temperature correlation between pairs of days, namely, 16th vs 17th, 17th vs 18th and 16th vs 

18th are depicted in Figure 53 (a), 53(b) and 53(c), respectively.  

 

Figure 53 (a): Correlation of temperature between 16th and 17th May 2010 

 

Figure 53 (b): Correlation of temperature between 17th and 18th May 2010 
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Figure 53 (c): Correlation of temperature between 17th and 18th May 2010 

Figure 53: Plots showing correlation of temperature between: (a) 16th and 17th May 20201 (b) 17th and 18th May 

2010 (c) 16th and 18th May 2010 

From the plots in Figure 53, it is observed that while May 16th and 17th seems to be highly 

positively correlated, May 18th temperature values do not reveal any significant correlation 

with May 16th and 17th. 

i. Modeling Using MLR Technique 

 

The combined correlation among the three days, as shown in Figure 54, is observed to be very 

insignificant since the Correlation Co-efficient, R value is found to be 0.000005.  

 

Figure 54: Combined Correlation Analysis of May 16th to May 18th 
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With this line of trend, the values are predicted for 4th day. The predicted temperature estimates 

are compared against input data to show the differences in Figure 55.  

 

Figure 55: Modeling Using Multiple Linear Regression 

The summary of statistics of the predicted values are compared against the summary statistics 

of the input data in Table 8. 

Temp (Kelvin) Input (16,17,18) Predicted Difference (Error) 

Mean 253.435 250.785 2.65 

Max 272.672 252.35 20.322 

Min 231.248 249.221 -17.973 

Range 41.424 3.129 38.295 

 

Table 8: Summary of Statistics of Predicted Values 
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From Figure 56, it is inferred the prediction estimates appear positively correlated with input 

values but not consistently or significantly in magnitude across the 3 days. This implies that 

Linear Regression Techniques can produce good estimates of global mean but are not very 

effective in modeling local variations correctly. 

 

Figure 56: Comparison of Input Data against Predicted Temperature Estimates 

The unbiasedness in the estimation of the mean (average) and variance using MLR technique 

is assessed by comparing the correlation of predicted value with each day’s temperature data. 

It is observed that, although the correlation of temperature values is positive, it is not significant 

in magnitude (0.01 to 0.3). 
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ii. Validation of MLR Predictions against Input Dataset 

From the correlation plots between temperature values from input data and predicted estimate 

for each day, as shown in Figure 57(a), Figure 57(b) and Figure 57 (c), it is inferred the 

prediction estimates appear positively correlated with input values but not consistently or 

significantly in magnitude across the 3 days. This implies that Linear Regression technique can 

produce good estimates of global mean but are not effective in modeling local variations. 

 

Figure 57 (a): Plot showing correlation between temperature of 16th May against predicted estimates  

 

Figure 57 (b): Plot showing correlation between temperature of 17th May against predicted estimates  

 

 

 

 

 

 

 

Figure 57 (c): Plot showing correlation between temperature of 18th May against predicted estimates  

Figure 57: Comparison of Individual Days vs Predicted Temperature Estimates (a) 16th May 2010 vs Predicted 

Estimates (b) 17th May vs Predicted Estimates (c) 18th May 2010 vs Predicted Estimates 
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iii. Validation of MLR against NCEP 

From Table 9 and Table 10, it is observed that the over estimation error observed using MLR 

technique in comparison against the NCEP model for the same 3 days is around 5K in 

magnitude. The range (min/max) also varies roughly by 5K. But these values are global in 

nature. To identify and model variations in smaller scales, MLR technique is not useful. So, 

using non-parametric regression (distribution free methods) models, the predictor can be 

constructed according to information derived from the data (instead of predetermined apriori).  

Temp (K) Input      161718 NCEP 161718 Predicted 4th day NCEP 14th Validation Input 14th 

Min 231.248 254.62 249.221 233 228.76 

Max 272.672 257.26 252.35 236 243.84 

Mean 253.435 256.41 250.785 235 238.84 

Range 41.4 2.64 3.129 3 15.08 

Table 9: Comparison of Composite Input, Composite NCEP, and MLR Predicted for 14th May, NCEP 14th May 

and Input 14th May Statistics 

With respect to each validation dataset, the accuracy of prediction using MLR is given below: 

Temp (Kelvin) Predicted 4th day 

vs Input161718 

Predicted 4th day 

vs NCEP161718 

Predicted vs 

NCEP 14th 

Predicted 4th day 

vs  Input 14th 

Error in Min -17.973 5.399 -16.221 -20.461 

Error in Max 20.332 4.91 -16.35 -8.51 

Error in Mean 2.65 5.625 -15.785 -11.945 

Table 10: Comparison of Predicted Estimate for 14thagainst Validation Datasets 

In summary, since the residual plots exhibit “heteroscedasticity,” meaning that the residuals 

get larger as the prediction moves from small to large (or from large to small). This doesn’t 

inherently create a problem, but it’s often an indicator that the model can be improved. The 

most frequently successful solution is to transform a variable. Often heteroscedasticity 

indicates that a variable is missing. The most common way to transform one or more variables, 

usually using a “log” or other functional transformation. Transforming a variable changes the 

shape of its distribution. In general, regression models work better with more symmetrical, 

bell-shaped distributions. So, it is essential to try different kinds of transformations until one is 

found to give this type of distribution. 
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2. Methodology #2: By Non-Linear Regression – Kriging 

 

Kriging or Gaussian Process Regression, discussed in the paper [34], is a stochastic, kernel 

based, spatial, geostatistical interpolation model similar to regression. It can be used in 

analysing, predicting (by interpolation) and surrogate model-based optimization processes for 

modeling even complex natural phenomenon. Unlike Support Vector Machine (SVM) or 

Radial Basis Function (RBF) or IDW, it provides uncertainty estimates too. The spatial 

dependence at various distance of spatial point reference data can be captured by a covariance 

function/semivariogram. Real world spatial data often show inherent variation sin 

measurements of a relationship over space, due to influence of spatial context on the nature of 

spatial relationships. The spatial dependency is captured by the spatial covariance matrix, 

which is estimated through spatial variogram. The accuracy of the model lies heavily on the 

modeling of the variogram. Conventional methods require specialized and in-depth domain 

knowledge about the field. By automating the estimation of single/multiple theoretical 

variogram for even fields that are anisotropic (not uniform in all directions), and exhibiting any 

type of stationarity phenomena (heterogeneous/non-stationary or intrinsically stationary or 

weak stationarity where in only some statistical properties do not change with locations), 

investigations can be performed with and without removal of trends alongside analysis of the 

spatial continuity of the field (i.e. dependence across locations). Non-normal data can be 

transformed using methods such as log transformation (which is a special case of Box Cox 

Transformation processes) to assume that the dataset is normally distributed post 

transformation.  

Geospatial Kriging technique is a combination of mathematical and statistical models. The 

addition of a statistical model that includes probability separates kriging from deterministic 

methods.  Kriging is a weighted moving average technique, similar in some ways to Inverse 

Distance Weighting (IDW) interpolation. Comparing the two techniques provides insight to 

the benefits of Kriging. With IDW, each grid node is estimated using sample points which fall 

within a circular radius. The degree of influence each of these points will have on the calculated 

value is based upon the weighted distance of each of sample point from the grid node being 

estimated. In other words, points that are closer to the node will have a greater degree of 

influence on the calculated value than those that are farther away.  
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Figure 58: Decay Curves – IDW Interpolation 

The disadvantage of the IDW interpolation technique is that it treats all sample points that fall 

within the search radius the same way. For example, if an exponent of 1 is specified, a linear 

distance decay function is used to determine the weights for all points that lie within the search 

radius, as shown in Figure 58. This same function is also used for all points regardless of their 

geographic orientation to the node (north, south etc.) unless a sectored search is implemented. 

Kriging on the other hand, can use different weighting functions depending on,  

• the distance and orientation of sample points with respect to the node, and  

• the manner in which sample points are clustered. 

Kriging is a weighted average technique that assigns higher weights on nearby observations. 

The predictions (“kriges”) at a given location (encompassed by a grid of locations over the 

geographic area of interest) are calculated on the basis of weighted average of the sample values 

(sample points near the prediction location are given larger weights than those that occur 

further away), with weights usually assigned as the straight line (Euclidean) distance between 

actual sample sites and the target location. 

Weights are determined empirically by ‘semivariogram analysis” (below). The latter models 

the similarity of sample values, in pairs, as a function of distance (or “lags”) between the 

sampling sites (Little et al.1997). Kriging uses the following weighted linear combination 

estimator: 

�̂� = ∑ 𝑤𝑖𝑧𝑖

𝑛

𝑖=1

 

Where, zi is the sample value at location i, wi is a weight, n is the number of samples.  
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Kriging is such a method that determines the weights so that the mean squared error (MSE) is 

minimized: 

𝑀𝑆𝐸 = 𝐸 ((�̂� − 𝑧0)2) 

Subject to the unbiasedness constrain: 

∑ 𝑤𝑖 = 1 

Kriging is the optimal interpolation method, since it:  

● Estimates the true value, on average, 

● Produces lowest expected prediction error, 

● Can use extra information, such as covariates, 

● Filters measurement error, 

● Can be generalized to polygons (Areal interpolation, Geostatistical simulations), 

● Estimate probability of exceeding a critical threshold. 

 

i. A Note on Partition Modeling 

Partition models can be useful modelling tools as, unlike standard spatial models (e.g., kriging) 

they allow the correlation structure between points to vary over the space of interest. Typically, 

the correlation between points is assumed to be a fixed function which is most likely to be 

parameterised by a few variables that can be estimated from the data. Partition models avoid 

the need for pre-examination of the data to find a suitable correlation function to use. This 

removes the bias necessarily introduced by picking the correlation function and estimating its 

parameters using the same set of data. 

Spatial clusters are, by their nature, regions which are not representative of the entire space of 

interest. Therefore, it seems inappropriate to assume a stationary covariance structure over X. 

The partition model relaxes this assumption by breaking up the space into regions where the 

data are assumed to be generated independently from locally parameterised models. This can 

naturally place in a single region those points relating to an unusual cluster, and these points 

do not necessarily have to influence the response function in nearby locations. Further, by 

assuming independence between the regions the response function at the cluster centre tends 

not to be over smoothed. 



88 
 

Considering the large volumes of traffic in modern scenarios, even small countries that do not 

have their own NWP can still be part of International Aviation Volcano (IAV) watch activities 

and tasks with our proposed model. This method can support multiple disjoint cloud clusters 

and not just single dispersed samples of a large ash cloud. This is critical from a collaborative 

analysis, forecasting and decision-making perspectives and to report with uncertainties in 

parallel. 

ii. Kriging Techniques – Chosen for Study 

 

Three variants of kriging were experimented for this comparative study, namely – Simple 

Kriging, Empirical Bayesian Kriging (with and without applying transformation). Chilès and 

Desassis, (2018) discuss the technique of Simple Kriging while Krivoruchko and Gribov, 

(2014), (Gribov & Krivoruchko, 2020) and Krivoruchko and Gribov, (2019) discuss Empirical 

Bayesian Kriging technique in detail. Table 11 lists the key differences in the theoretical 

aspects among the three chosen methods. 

Type Kriging Empirical Bayesian Kriging Empirical Bayesian Kriging 

Sub-Type Simple Kriging Without Transformation 
With Transformation – Simple 

Kriging 

Data Type 
Stationary 

Stochastic Process 
Moderate Non-stationarity Moderate Non-stationarity 

Assumption 
Data – Normally 

Distributed 
Normal Distribution, ideal Transformations applied 

Coordinate 

Systems 

Uses Euclidean 

Distance – 

Inaccurate, 

especially from the 

equator 

Uses Chordal distance – 3D 

straight line distance between 

points on a spheroid - 

Accurate approximation to 

geodesic distance upto 30 

degrees 

Uses Chordal distance 3D 

straight line distance between 

points on a spheroid 

Accurate approximation to 

geodesic distance upto 30 degrees 

No. of  

semivariogram 
One (theoretical)  Multiple Multiple 

Definition 

Simple kriging is 

used for spatial 

interpolation when 

the mean and spatial 

correlation model 

are constant and 

known. SK is 

applied in 

conditional 

simulation 

Empirical Bayesian Kriging is 

a Kriging-based interpolation 

method that accounts for 

uncertainty in semivariogram 

estimation by simulating 

many semivariograms from 

the input data.  In addition, 

EBK builds local models on 

subsets of the input data. 

Empirical Bayesian Kriging is a 

Kriging-based interpolation 

method that accounts for 

uncertainty in semivariogram 

estimation by simulating many 

semivariograms from the input 

data.  In addition, EBK builds 

local models on subsets of the 

input data. 

 

Table 11: Table comparing chosen Kriging techniques 
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The reason for choosing these 3 variants of Kriging are discussed below. Going by the First 

Law of Geography, as discussed in Zhu et al., (2019), which is also known as, Tobler’s Law, 

that states “Everything is related to everything else, but near things are more related than distant 

things”, the following 4 scenarios are identified in Table 12: 

 Nearer 

Things 

Farther 

Things 

Spatial Concept/Theme Comment 

1st 

Scenario 
Similar Dissimilar Spatial Autocorrelation 1st Law of 

Geography 

2nd 

Scenario 
Dissimilar Dissimilar Spatial Heterogeneity - 

(Every point on earth is 

varying uncontrollably) 

2nd Law of 

Geography – Pure 

random process 

3rd 

Scenario 
Similar Similar Everywhere Homogenous Very unlikely 

4th 

Scenario 
Dissimilar Similar Spatial Structure/Fractal 

Theory 

Spatial 

autocorrelation at 

various spatial 

scales 

Table 12: Combinations of Tobler’s Law 

The approximate distance and temperature ranges from this dataset are provided to help 

quantitatively interpret the terms near, distant/far, more related, less related. Although Kriging 

creates semivariograms based on distances between every pair of points, irrespective of the 

patterns in distribution, here, the distance and relation terms are interpreted from the vent 

perspective for the analysis since the samples are spatially clustered on each day and the 

distance between the samples is unique within each cluster (ranging from ~1m to ~700m), as 

shown in Table 13 and Figure 59. 

Location 

1 

Altitude 

(Feet) 

Location 

2 

Altitude 

(Feet) 

Distance 

(km) 

Average 

Temperature 

(Kelvin) 

Pressure 

Alt (mb) 

Vent 4,000 16th 7,530 1054 300-246 400 mb 

Vent 4,000 17th 3,144 1553 300-246 700 mb 

Vent 4,000 18th 1,799 1480 300-269 800 mb 

Vent 4,000 All data 

points 

4,000 - 300-253 - 

Vent 4,000 14th 8,120 1359 300-238 350 mb 

Table 13: Distance between Vent location and Individual Sampling Locations 
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Figure 59: Plot showing graph of attribute (air temperature in Kelvin) values in the input dataset 

In addition, the temperature values observed in each day (Cluster) is also unique since they are 

sampled from different altitudes, as shown in Table 14 and Figure 60. Therefore, this dataset 

is highly heteroskedastic in nature as given in Table 15. Also, this perspective helps us to 

compare and analyse the profiles generated from kriging estimates. 

Location 1 

(May ‘10) 

Altitude 

(Feet) 

Location 2 

(May ’10) 

Altitude 

(Feet) 

Distance 

(km) 

Average 

Temperature (K) 

16th 7,530 17th 3,144 558 246-246 

16th 7,530 18th 1,799 575 246-269 

17th 3,144 18th 1,799 270 246-269 

 

Table 14: Distance between Pairs of Sampling Locations 
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Figure 60: Scatterplot showing Altitude vs Temperature on May 16, 17, 18 

Date Max Temperature Min Temperature Avg Range 

16th 251 231 246 20 

17th 258 236 246 22 

18th 272 265 269 7 

Table 15: Comparison of Temperature Values - Across Sampling Locations 

Location 1 Altitude 

(Feet) 

Location 2 Altitude 

(Feet) 

Distance (km) Average                       

Temperature (K) 

Vent 4,000 Center of Map - 807 - 

16th 7,530 Center of Map - 268 - 

17th 3,144 Center of Map - 784 - 

18th 1,799 Center of Map - 743 - 

Table 16: Distance between key Sampling sites and Center of map 

In Table 16, the distance between key sampling sites and the center of the map are also 

tabulated. Based on the above details, the following aspects can be “assumed”: 

a. That “nearer things” correspond to the distance between the ash samples collected 

during experimentation.  

b. That “farther things” correspond to the distance between the vent and the regions were 

the ash samples were collected as part of the experimentation. 

c. And that distances mentioned in Point (ii) are twice than the distances mentioned in 

Point (a), ignoring the altitude component. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

200

220

240

260

280

300

320

Altitude (metre)

Te
m

p
er

at
u

re
 (

K
)

ALTITUDE vs TEMPERATURE



92 
 

iii. Possible Postulates Based on Tobler's Law 

The following postulates are envisaged based on Tobler’s law: (Considering the Center of the 

map to be corresponding to the origin in the semivariogram graph). 

● Scenario #1: Going by Tobler’s Law, with the vent assumed to be at 300K and the sampled 

data (average) at 253K, the intermediate regions are expected to be largely comprising of 

2 sets of temperature ranges.   

o Area in and around data points 

o Area excluding the region covered in above mentioned point 

● Scenario #2: Going by Second Law of Geography, each point must be unique with the 

entire field having a mixture of temperatures. 

● Scenario #3: Going by the third scenario, the interpolated region has to appear 

homogenous irrespective of the temperature differences at the vent and at the sampled 

locations.  

● Scenario #4:  

o Regions closer to the sampled regions should exhibit several minor (value related) 

variations even at shorter spatial scales, and, 

o The region between the vent and the area covered in point (i) must exhibit fewer, 

large variations at larger spatial scales. 

Although scenario 1 and scenario 4 are evaluated using the same dataset, the effectiveness of 

the Simple Kriging (SK) technique (which relies heavily only on the belief of stationarity) is 

compared against that of EBK technique (which has been developed on Spatial Autocorrelation 

theory and modified for modeling non-stationary processes). 2nd and 3rd scenarios are ignored 

for analysis due to their extreme positioning with respect to variable intensity/behaviour.  

To validate 4th scenario, two types of methods are used. While Empirical Bayesian (RMEL) 

approach is common to both the methods, the use of semivariogram model applied varies. 

(i) EBK Without Transformation (EBK): Uses Power Model (Intrinsic Random 

Function) 

(ii) EBK With Transformation (EBKT): Uses Models allowed for Simple Kriging 
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So, it is a critical criteria to be checked – whether the variations appear to change gradually 

(smoothly) or abruptly in each of the above discussed scenarios, as discussed in Krivoruchko 

and Mateu, (2020), van Stein et al., (2020) and Thakur et al., (2018). Whichever method 

provides a near-accurate variation in the region around sampled data points shall then be 

considered for validation, thereby, it can be considered to be reliable even for the predicted 

values region wherein sampled data points are not available.  
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iv. Results – Global Prediction and Error Estimates 

i. Prediction Estimates 

 

The maps in the below figure show the different patterns in the predicted values produced by 

various Kriging methods. Figure 61 (a) shows the predicted values of Simple Kriging, Figure 

61 (b) shows estimates of Empirical Bayesian Kriging and Figure 61 (c) shows the values of 

EBK when dataset was transformed. While Simple Kriging predicts all range of values at all 

regions in almost equal proportions, EBK technique is able to predict location specific 

variations more accurately. Irrespective of EBK and EBKT being approximately closer values, 

the dispersion pattern varies drastically, visually/graphically. 

 

                 

Figure 61 (a) SK Estimates                    Figure 61(b) EBK Estimates             Figure 61(c) EBKT Estimates 

Figure 61: Maps showing Prediction Estimates by SK, EBK, EBK (Transformed) methods 
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ii. Error Estimates 

 

The maps in the below figure show the different patterns in the error values produced by various 

Kriging methods. Figure 62 (a) shows the predicted values of Simple Kriging, Figure 62 (b) 

shows estimates of Empirical Bayesian Kriging and Figure 62 (c) shows the values of EBK 

when dataset was transformed.While Simple Kriging reports no error for the entire region, 

higher magnitude of errors are concentrated in sparse data region with EBK and  all ranges of 

errors are fairly distributed across the MBR region using EBKT. Again, irrespective of EBK 

and EBKT error magnitudes being almost similar, the dispersion pattern varies drastically, 

visually/graphically. 

 

        

                                                 

Figure 62(a) SK Error                    Figure 62(b) EBK Error             Figure 62(c) EBKT Error 

Figure 62: Maps showing Prediction Estimates by SK, EBK, EBK (Transformed) method 

Key Inferences: 

• The MBR covers approximately 5,00,000 square kilometre of area 

• Using EBK method, 60% of MBR contains prediction overestimation errors ranging 

between +0.2 K::+24 K 

• Area wise, 1.25L sq km of region lies within +8K error range 
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Both SK and EBK/EBKT methods estimate nearly the same average prediction temperature 

values, but there is a notable difference in the standard errors of the predictions. This is because 

simple kriging almost always underestimates standard errors due to the usage of a single 

theoretical semivariogram for the entire geographical extent. While a larger standard error in 

EBK seems to imply that EBK has larger uncertainty than simple kriging, the truth is that it 

captures even the small-scale variations accurately. This also clearly shows that the standard 

errors of simple kriging are incorrectly low. 

iii. Verification of Kriging Results Using Geostatistics 

 

Kriging is a distance based but not location-based interpolation algorithm. In addition to 

interpolated values, kriging can provide an estimate of the uncertainty in the interpolated 

values, which is known as the kriging variance or standard error. Kriging Models can be 

assessed based on two major aspects: (i) Numeric (prediction error statistics) and (ii) 

Qualitative (behaviour of phenomenon). Two questions that are applicable to modelling 

techniques that produce approximate estimations include: 

i. Model Convergence: Can more data improve the model? 

ii. Model Sensitivity - If data is modified, how much do the errors get magnified? 

The objectives measure of success which constitute the basis for obtaining optimum predictors 

(also estimators) in the field of geostatistics include: 

a. Unbiasedness (Mean of Error = 0) 

𝐸[�̂� ( 𝑠0 ) − 𝑍  ( 𝑠0 )] = 𝐸 [𝑝(𝑍, 𝑠0 ) − 𝑍 (𝑠0 )] = 0  

b. Minimum Mean Square Error of prediction (estimation) 

𝐸[[�̂� ( 𝑠0 ) − 𝑍  ( 𝑠0 )]2] = 𝐸 [[𝑝(𝑍, 𝑠0 ) − 𝑍 (𝑠0 )]2] → 𝑚𝑖𝑛  
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To compare different interpolation techniques, the difference between the known data and the 

predicted data using the Mean Error or Mean Bias Error (ME/MBE), the Root Mean Squared 

Error (RMSE), the Average Kriging Standard Error (AKSE), the Root Mean Square 

Standardized Prediction Error (RMSP) and the Mean Standardized Prediction Error (MSPE) 

are traditionally used. Other commonly used criteria include Mean Square Error (MSE), Mean 

Absolute Error (MAE), Average Standard Error (ASE), Mean Square Reduced Error (MSRE), 

Root Mean Square Standardized Error (RMSSE), Mean Standardized Error (MSE) etc. 

Comparison Parameters 

SK 

EBK 

(Non-Transformed) 

EBKT 

(Transformed) 
Prediction 

Errors 

Target 

Values 

RMSS 1 4.523536399830001 0.9387761153709571 0.9271949442684004 

MS 0 0.07202474449353798 0.01834833637396241 0.0008108897593434113 

RMS 
As low as 

possible 
3.570262293188187 2.59698926266238 2.3744524182584796 

ASE 

As close to 

RMS Error 

as possible 

0.7892635269437307 2.0837038030126807 2.9657089460361927 

Regression 

Function 
- 

0.941227711687841 * x + 

15.2180711791894 

0.989436793632373 * x + 

2.6485023542719 

0.992914337830346 * x + 

1.76956611998676 

Mean - 0.05684650386619058 0.08815992385540611 -0.07532375520937504 

Table 17: Error Estimates for SK, EBK and EBKT methods 

Inference: While Root Mean Square value is desired to be as low as possible for any 

interpolation algorithm, a special metric to assess Kriging efficiency is RMS-Standardized, 

which is expected to be close to 1 while mean values are preferred to be unbiased (close to 

zero). From Table 17, it is evident that EBK has the closest target value of 1 for RMSS, which 

is significantly lesser than SK. Although the error values of EBK (with and without 

transformation) are closer for RMSS and RMS, the Average Standard Error of EBK with 

Transformation is higher than RMS Error and therefore EBKT is a less preferred method. Also, 

for the given dataset, EBK has lower over estimations while EBKT has slightly higher 

underestimated values. 
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iv. Profile Analysis: Point Kriging Prediction & Error Estimates 

 

The profiles of point kriging prediction and error estimates of SK, EBK and EBKT are 

compared in Figure 63. Profiles of SK, EBK, EBKT and NCEP values are shown as 3D plots 

in Figure 63 (a), Figure 63 (b), Figure 63 (c) and Figure 63 (d) respectively. 

 

Figure 63 (a) Prediction Profile of Simple Kriging 

 

Figure 63 (b) Prediction Profile of EBK 

 

Figure 63 (a) Prediction Profile of EBKT 

 

Figure 63 (d) Prediction Profile of NCEP 

Figure 63: Comparative 3D Visualization of Kriging and NCEP Profiles 
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While kriging estimates span a range of temperature values, NCEP is largely limited to a 

narrow range of values.  Figure 64 compares the prediction profiles of Simple Kriging with 

profiles generated from EBK Point Kriging estimates, (with & without transformations). 

 

Figure 64: Comparison of Prediction Profiles – SK, EBK, EBKT 

Among the three kriging techniques, SK and EBKT methods show similar profiles because, 

EBK when transformed internally uses Simple Kriging technique in Arcgis software. On the 

other hand, EBK when used without transformation uses random functions. As a result the 

profile reveals a significantly different pattern when EBK method is used. Figure 65 compares 

the prediction and error profiles of Simple Kriging with profiles generated from EBK and 

EBKT estimates.   
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Figure 65 (a) and Figure 65 (b) show the prediction and error profiles of Simple Kriging.  

 

 

 

 

 

 

 

 

Figure 65 (a) Simple Kriging Prediction Estimate Profile   

 

 

 

 

 

 

 

 

Figure 65 (b) Simple Kriging Error Estimate Profile   
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Figure 65 (c) and Figure 65 (d) show the prediction and error profiles of Empirical Bayesian 

Kriging.  

 

Figure 65 (c) EBK Prediction Estimate Profile 

 

 

Figure 65 (d) EBK Error Estimate Profile 
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Figure 65 (e) and Figure 65 (f) show the prediction and error profiles of EBKT. 

 

Figure 65 (e) EBKT Prediction Estimate Profile 

 

Figure 65 (f) EBKT Error Estimate Profile 

Figure 65: Comparison of Prediction, Error Profiles of Kriged Estimates 

Although SK and EBKT showed similar prediction profiles, the errors are not well estimated 

using Simple Kriging technique when compared with EBKT. Between EBK and EBKT, the 

latter has higher magnitude of errors in regions even in regions where input samples were not 

sparse for the profiles generated.   

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

4
2

1

4
4

1

4
6

1

4
8

1

5
0

1

5
2

1

5
4

1

5
6

1

5
8

1

6
0

1

6
2

1

230

240

250

260

270

280

290

300

Distance - ID

Te
m

p
e

ra
tu

re
 (

K
)

EBKT Prediction Estimates

EBKT

0

10

20

30

40

50

60

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

5
2

9

5
5

1

5
7

3

5
9

5

6
1

7

Temp (K)

Distance - ID

EBKT Error Estimates

EBKT Err



103 
 

IV. Detailed Analysis of Kriging as Interpolator 

 

1. Validation of Point Kriging Results (Global Estimates) 

 

i. Validation of Point Kriging Estimates against NCEP 

 

Table 18 compares the various Basic Statistics (Col 1), for Input data on 16th&17th&18th May 

2010 (Col 2), Simple Kriging Prediction (Col 3), Simple Kriging Error (Col 4), EBK Prediction 

(Col 5), EBK Error (Col 6), EBKT Prediction (Col 7), EBKT Error (Col 8), NCEP on all 4 

days (Col 9) and NCEP on 16th&17th&18th May 2010 (Col 10). All temperature Prediction 

and Error values are in Kelvin. 

BAND STATS 

I/P 

161718 

I/P 

14161718 

SK 

PRED 

SK 

ERROR 

EBK 

PRED 

EBK 

ERROR 

EBKT 

PRED 

EBKT 

ERROR 

NCEP 

14161718 

NCEP 

161718 

MIN 231.25 228.764 218.4472961 0 228.2447357 0.21697025 225.2490692 0.197122157 251.46875 254.619751 

MAX 300 300 300.5117798 0 299.3953247 48.75077438 297.359375 54.43642044 253.9550171 257.2614136 

MEAN 253.57 251.544 250.5170935 0 248.5588341 14.06798523 243.7774291 26.9505363 253.0810213 256.413902941176 

STD DEV NA NA 16.74186955 0 10.64582349 6.348119983 4.418745578 20.23731289 0.576458821 0.6371759 

RMS NA NA 4.5235364 NA 0.938776115 NA 0.927194944 NA NA NA 

ERR RANGE NA NA NA NA NA 6 to 24 NA 4 to 49 NA NA 

ERR 

CENTER 

PT (of Map) 

NA NA NA NA NA 9 to 14 NA 45 to 49 NA NA 

AVG RANGE 68.75 71.236 82.06448364 NA 71.15058899 NA 72.11030579 NA 2.4862671 2.6416626 

INACCURACY 

% 
NA NA NA NA NA 12.64922768 NA 62.40439492 NA NA 

  NA NA NA NA 19.6765764 NA 67.95145225 NA NA 

MAP CENTER 

PT - VALUE 
 NA 229-237 NA 241-242 NA 242-244 NA 253.196 255.98595 

 

Table 18: Validation of Band Statistics of Punctual (Point) Kriging Estimates Against NCEP Estimates 
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From the band statistics, it is observed that EBK (without transformation) method produces 

better estimates of averages and standard deviation (variance) than SK and EBKT when 

compared against NCEP estimates.  

ii. Validation of Point Kriging against 14th May 2010 (Test Data vs 16th&17th&18th) 

 

Out of the 4 days input data, 14th May samples were reserved as test dataset for verification. 

The input data for 14th May has a temperature range of 228K-243K while prediction estimates 

ranged between 228K–247K for all the three types of kriging. NCEP for the same period ranged 

between 235K-236K. 

Figure 66 shows the kernel PDF of the input (161718th) dataset, kriged outputs (SK, EBK, 

EBKT), test data (NCEP14, NCEP161718 and May 14th) values. 

 

Figure 66: Probability Density Graphs for Input, Kriged and NCEP Estimates 

Although SK predictions estimates were between 233K-242K, the errors were wide ranging 

and included both overestimation and underestimations (-29K to 26K). On the other hand, most 

of EBK and EBKT estimates were observed to lie between 242K-247K and had 

overestimations of about only 12K-15K.   
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From Figure 67, it is evident that 14th input temperature (TEMP variable - blue dotted line) 

has significant variations which are best predicted by only EBK. Both SK and EBKT (using 

SK technique iteratively) techniques yield poor predictions.  

 

Figure 67: Graph comparing SK, EBK and EBKT estimates against test data (14th May) 

Although the global prediction estimates of EBK using point kriging method span roughly a 

range of 70K, on an average, an overestimation error of only <8K was observed when tested 

against 14th May 2010 (test data). Thus, the error is within 10% threshold for EBK prediction 

estimates. 

2. Comparative Analysis: Local Estimates - MLR, Kriging, NCEP 

i. Comments on Average Estimates 

Figure 68 compares the average temperature observed on the 14th, 16th, 17th, 18th of May 2010 

among the different datasets within the range of 200 K – 300 K. Temperatures below 240K are 

labelled as COLDEST; values between 240K–260K are labelled as COLDER; values above 

260K are labelled as HOT/HOTTER. Colder values are given in various shades of blue color 

while hotter values are given in shades of orange/red. 

From the color codes, it is evident that although the average temperature of atleast one of the 

days using MLR is closer to NCEP, it is highly homogenous and hardly captures the variance 

observed in the input data across the other three days. On the other hand, although kriging 

estimates, closely follow the input data and the NCEP data, it also captures the small-scale 

variations accurately.  
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Figure 68(a) depicts the range of temperature values in the input dataset while Figure 68(b) 

shows the temperature estimates using MLR technique.  

  

Figure 68 (a) INPUT DATASET – BLOCK AVERAGES 

 

Figure 68 (b) MLR-BLOCK AVERAGES 

Figure 68(c) shows kriged estimates (SK/EBK/EBKT – all 3 same averages) and Figure 68(d) 

shows values of the validation dataset from NCEP dataset for the same location.  

 

Figure 68 (c) Kriging – SK, EBK, EBKT – BLOCK AVERAGES 

 

Figure 68 (d) NCEP – BLOCK AVERAGES 

 

Figure 68: Comparison of approximate averages of Input, MLR, Kriging& NCEP temperature values locally 

This proves that kriging is certainly a better technique than Multiple Linear Regression to 

model the block average estimates for ash dispersion.  
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ii. Comparative Analysis of Variation in Kriging Estimates against NCEP 

Figure 69 is a combined scatterplot that shows the correlation between kriged prediction 

estimates against NCEP. Simple Kriging correlations are scattered both positively and 

negatively with NCEP. As a result, consistency is unreliable. On the other hand, both Empirical 

Bayesian Kriging approaches, i.e. with and without transformation, appear to be largely 

negatively correlated with NCEP averages estimates.  

 

Figure 69: Correlation of Prediction Estimates by each kriging method against NCEP 

Figure 70 shows the correlation between error estimates using both EBK methods (with 

and without transformation) againt NCEP. The errors too are largely either uncorrelated 

or no correlation is observed with NCEP. Simple Kriging does not estimate any 

quantified errors and are therefore not included in this analysis.  

 

Figure 70: Correlation of Error Estimates by EBK Methods against NCEP  

Given this significant discrepancy in correlation, further validations are performed on EBK 

technique to assess the suitability and efficiency of the stochastic kriging method in association 

with NWP algorithms. 
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3. Is EBK better than SK and EBKT? 

 

With the same geographical extent, each day was kriged in isolation using the three techniques 

for a comparative analysis. The results of each kriging technique are given along with their 

respective PDFs below.   

i. SK Results 

Table 19 shows the prediction estimates by Simple Kriging method for each of the input days 

with respect to the minimum, maximum and average values (in Kelvin) to show the range of 

temperature estimate values predicted.  

Date Max Temperature Min Temperature Avg Range 

16th SK 246 244 245 2 

17th SK 249 245 246 3 

18th SK 271 267 269 4 

 

Table 19: Comparison of SK Temperature Values - Across Sampling Locations 

Figure 71 compares the probability density graph of prediction estimates produced by Simple 

Kriging method for the entire region with the estimates of NCEP and input data values for the 

same region. 

 

Figure 71: Comparison of Probability Density Graphs for SK Estimates, NCEP and Input 

 

SK SK vs NCEP Input vs NCEP SK vs NCEP vs Input
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ii. EBK Results  

Table 20 shows the prediction estimates by Empirical Bayesian Kriging method for each of the 

input days with respect to the minimum, maximum and average values (in Kelvin) to show the 

range of temperature estimate values predicted.  

Date Max Temperature Min Temperature Avg Range 

16th EBK 249 233 245 16 

17th EBK 256 241 247 15 

18th EBK 273 268 269 5 

 

Table 20: Comparison of EBK Temperature Values - Across Sampling Locations 

Figure 72 compares the probability density graph of prediction estimates produced by EBK 

method for the entire region with the estimates of NCEP and input data values for the same 

region. 

 

Figure 72: Comparison of Probability Density Graphs for EBK Estimates, NCEP and Input 

 

  

EBK EBK vs NCEP Input vs NCEP EBK vs NCEP vs Input
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iii. EBKT Results 

Table 21 shows the prediction estimates by Transformed - Empirical Bayesian Kriging method 

for each of the input days with respect to the minimum, maximum and average values (in 

Kelvin) to show the range of temperature estimate values predicted.  

 

Date Max Temperature Min Temperature Avg Range 

16th EBKT 248 231 244 17 

17th EBKT 254 241 247 13 

18th EBKT 272 268 269 4 

 

Table 21: Comparison of EBKT Temperature Values - Across Sampling Locations 

Figure 73 compares the probability density graph of prediction estimates produced by EBKT 

method for the entire region with the estimates of NCEP and input data values for the same 

region. 

 

Figure 73: Comparison of Probability Density Graphs for EBKT Estimates, NCEP and Input 

 

 

 

EBKT EBKT vs NCEP Input vs NCEP EBKT vs NCEP vs Input
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Table 22 compares range and values of average temperature estimates predicted by each 

kriging method against input data for each day from input data. 

Date 

Avg 

(Input) 

Avg 

(SK) 

SK 

Diff_Avg 

SK 

Diff 

Range 

Avg 

(EBK) 

EBK 

Diff_Avg 

EBK 

Diff 

Range 

Avg 

(EBKT) 

EBKT 

Diff_Avg 

EBKT 

Diff 

Range 

16th 246 245 1 -14 to 6 245 1 -4 to 11 244 2 -4 to 14 

17th 246 246 0 -8 to 11 247 1 1 -5 to 11   

18th 269 269 0 -4 to 3 269 0 -4 to 2 269 0 -3 to 2 

 

Table 22: Comparison of each Day's SK, EBK and EBKT Average Temperature Values and Range of 

Temperature Values 

From the above graphs and Table 22, the following analysis is done. When compared against 

the average values of each of the days given in the input data, the following aspects are 

evident: 

i. EBK estimates are better not only for entire region but also better when viewed in 

isolation for each day (i.e. 16th or 17th or 18th May 2010) 

ii. The range of EBK differences for each day (16th: 15K, 17th: 16K, 18th: 6 K) is also 

significantly better than SK (16th: 20 K, 17th: 19 K, 18th: 7 K) and EBKT (16th: 18 K, 

17th: 16 K, 18th: 5 K). 

Therefore, even with very sparse data (less than ~300 points) of each day in isolation too, it is 

seen that EBK produces better estimates than SK and EBKT techniques.  
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4. Detailed Analysis of EBK Predictions and Errors 

 

i. Verification Using Classical Statistics 

 

The summary statistics comparing predicted estimates using EBK (Point Kriging) method against the 

input dataset are given in Table 23: 

Statistic Input Dataset Predicted Dataset [EBK] 

Standard Deviation, σ 12.144024 11.37003 

Variance, s2 147.47732 129.27759 

Count, n 873 873 

Mean, μ 251.4469 251.89772 

Sum of Squares, SS 128600.22 112730.06 

 

Table 23: Summary Statistics Compared EBK Predicted Estimates against Input Dataset 

The average of prediction estimates by Empirical Bayesian Technique is 1 sigma above the 

mean. [(1* σ) + μ]. This implies that 68% of the data is within 1 standard deviation (σ) of the 

mean (μ).  The confidence that the result is real is 84.13%. 

 

ii. Visualization of EBK Predictions On Map 

  

The EBK (without transformation) produces two main types of surface outputs: Prediction 

Maps and Prediction Error Maps. Although Simple Kriging and EBK predict nearly the same 

global mean temperature, but there is a notable difference in the standard errors of the 

predictions. This is because Simple Kriging almost always underestimates standard errors due 

to using only a single theoretical semivariogram. While a larger standard error in EBK seems 

to imply that EBK has larger uncertainty than Simple Kriging, the actuality is that the standard 

errors of Simple Kriging are incorrectly low since large scale variations are ignored completely.  
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The EBK prediction estimates were split in intervals of 5 Kelvin to map to compare the 

variations in each day against the input samples. Figure 74 shows the maps for entire region 

and for 14th May 2010. 14th data was not provided as input for kriging both locally and globally. 

 

Figure 74: Comparison of EBK Prediction Estimates Against Input Samples in 5K Intervals Using Maps For 

14th May and Entire region (with no inputs for 14th May 2010) 

All Days - Input

All Days - Kriged

14th May - Input

14th May - Kriged
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Figure 75 compares the inputs and local kriged estimates of 16th, 17th and 18th May 2010 by 

providing the input data as samples for kriging.  

  

Figure 75: Comparison of EBK Prediction Estimates Against Input Samples in 5K Intervals Using Maps For 

Input Locations (16th May, 17th May, 18th May) 

16th May - Input 16th May- Kriged

17th May - Input 17th May - Kriged

18th May - Input 18th May - Kriged
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a. Prediction vs Error Visualizations on Maps 

Figure 76 compares the magnitude of prediction estimates against error estimates at each 

location of the input sample in intervals of 5 Kelvin. 14th May location is predicted without any 

input and has higher error variations. The patterns of under estimations and over estimations in 

other 3 days are observed from the maps. The blue color depicts predictions while red color 

depicts errors.  

 

Figure 76: Comparison of Prediction Estimates and Error Estimates for Each Day 

14th May

16th May

17th May

18th May
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b. Error Analysis 

Detailed error analysis is performed to support the argument why EBK is a better technique 

than SK and EBKT - not just in terms of prediction quality, but also in better determining the 

associated errors based on locations. From the EBK Prediction map earlier, it was observed 

that hottest temperatures (Closer to 300K) are less spread out than colder temperatures (closer 

to 200K), the reason being the vent is the only point with highest temperature (>280K) when 

compared with all the other input samples. Figure 77 shows the 3d contour view of EBK error 

estimates across all temperature ranges.  

 

Figure 77: 3D Contour View of EBK Error 
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Figure 78 shows the locations of regions with highest (in red) and lower (in green) magnitude 

of errors. 

 

 

 

 

 

 

 

 

 

 

Figure 78: Location of Extreme Low and Extreme High Errors in MBR 

It is observed that the error magnitude is significantly higher (up to +45K) near the hotter 

temperature areas when compared against those regions with colder temperatures. (33% of the 

estimates lie between 0K to 15K, 33% estimates lie between 15K-30K, 33% of estimates lie 

between 30K-45K error magnitudes). While this could be due to lower number of samples 

closer to vent and also the sample points near vent being significantly at a higher temperature 

than those found at other regions.  
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Based on the above analysis, a perspective of error map is created as shown in Figure 79. In 

this map, the intervals are chosen such that there are a maximum of 3 classes to assess the 

threshold of reliability of the Go/No-Go regions in the atmosphere. 

 

EBK Error (Raster Clipped) 

 0.21697025 15.06260445 

 15.06260447 27.43396629 

 27.4339663 48.75077438 

 

Figure 79: Categorization of Reliability of Zones based on Errors 

Regions in green are most accurate (<5K) and regions coloured in red are least accurate (<45K) 

(error). Regions where adequate input data are available provide nearly most of the reliable 

predictions while those regions were adequate input samples were not well spread out yielded 

higher errors. 
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iii. EBK – Error Growth Pattern 

In Figure 80, the growth pattern in errors in 8 iterations when classified into 15 classes is 

shown. 

 

Figure 80: Growth pattern in errors when categorized into 15 classes. 
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The growth is observed to be growing from regions around the points where the samples were 

available. As the Kriging progresses, through each iteration, in regions where the data samples 

were available, error magnitudes were observed to be lower. As further iterations progressed, 

regions that are sparse in data are kriged based on the distance from those regions where the 

data is available and this leads to larger error values.  

iv. EBK - Distance vs Error Analysis 

 

For the selected locations at various distances from the Vent, the error magnitudes were 

grouped into intervals of 10K and analysed in detail in Figure 81. 

 

Figure 81: Discrete representation of error values in the form of stacks 

If upto 10K error magnitude (which is 10% error) is defined to be acceptable in non-critical 

regions (where more data is available) then with intervals of 5K, if critical regions (regions 

where input data is less in number) are categorized, the following patterns are observed. i.e. 

For error values between 10K-45K, these categories are observed: 

a. Extreme errors (>35K) account only 3% of the total region 

b. Medium errors (between 15K to 35 K) account for 36% of the total region 

c. Lesser errors (below 15K) account for 61% of the total region 
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Figure 82: Approximate Count of Error Ranges in Intervals of 5 Units 

As shown in the Figure 82, since error values less than 5K and above 30K are very miniscule 

in proportion, it can be said that to achieve lower errors using EBK method, the sampling 

criteria can be improved for density and distribution of the samples recorded during 

experiments. 

v. Comparison of EBK and EBKT Prediction Maps for Accuracy 

EBK and EBKT Prediction Maps were generated at 1 degree temperature intervals and zoomed 

for detailed analysis of two points on either side of the centre of the map, which is the origin 

of the semivariograms. This is done to compare the errors at these points using both techniques 

and then conclusively establish which method is better for interpolation of air temperature 

variables, as shown in Table 24. 

 
Left of Origin - 

EBK 

Left of Origin - 

EBKT 

Right of Origin -

EBK 

Right of Origin - 

EBKT 

Latitude (dd) 59.9374 59.9374 -6.72907 -6.72907 

Longitude (dd) -9.47537 -9.47537 58.5211 58.5211 

Altitude (m) 8048 8048 7487 7487 

Input (K) 237.952163 237.952163 245.759699 245.759699 

Prediction (K) 238.521103 231.402527 245.251556 242.355881 

Max Error (K) 4.63958 25.275112 3.975919 14.778852 

Table 24: Comparison of error values with reference to origin by EBK and EBKT methods 

Error Range (K) vs Count 

0 to 1

1 t0 2

2 to3

3 to 4

4 to 5

5 to 10

10 to 20

20 to 30

30 to 40

40 to 50
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● The point chosen to the left of origin is at a greater distance (136 km) when compared to 

the point chosen to the right of the origin (90 km).  

● As shown in Table 24, the errors on the left of the origin in EBK was only ~4K while it 

was ~25K for EBKT. Similarly, the error magnitude to the right of the origin for EBK was 

observed to be ~3K while EBKT value was ~14K.  

● Between EBK and EBKT, EBK without transformation consistently outperforms with 

significantly lesser error rates (approximately 3 times lesser error) on either sides of the 

origin. 

This proves EBK without transformation technique is superior to SK and EBK with 

transformation methods as it yields more accurate results consistently. 
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5. Comparative Analysis of Block Grade EBK against NCEP 

i. Comparative Profile Analysis between EBK and NCEP 

EBK block averages were validated against the NCEP NWP model values for the same 

duration in the area of interest. Figure 83 shows a consistent deviation of 10K of EBK values 

from NCEP estimates. However, the small-scale spatial variations were better estimated using 

the EBK method with a maximum deviation of ~12K. 

 

Figure 83: Plot Validating EBK Prediction Profile against NCEP Profile 

ii. Comparative Probability Density Analysis between EBK and NCEP 

Figure 84 shows the non-parametric probability density estimation for NCEP and EBK block 

averages. While EBK estimates had a Standard Deviation of ~3K, NCEP measured at ~0.57K. 

 

Figure 84: Plot of Probability Density Estimates - EBK Prediction vs NCEP 
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Given the above analysis, the MBR depicted in the Figure 85 was coarsely split into two 

categories based on the error magnitude of EBK estimates. These 2 categories roughly get 

mapped into two zones – one is a region where abundant input data samples were available and 

other region had sparse input data samples. These were labelled as “Rich Regions” and “Poor 

Regions”, respectively. A comparison was drawn for these two zones among three set of 

outputs, viz EBK estimates in Punctual Kriging mode, EBK estimates in Block Kriging mode 

and NCEP model, outputs, to assess the similarity of the estimates across the 3 methods as part 

of equivalence class testing approach. 

 

 

 

 

 

 

Figure 85: EBK Map Showing Total MBR, Data Rich and Data Poor Regions 

 

Figure 86: Plot comparing Probability Density Graphs of EBK Point and Block estimates against NCEP 

estimates for Total MBR, Data Rich and Data Poor Regions 
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Temp 

Averages(K) 

Block 

Poor 

Block 

Rich 

Block  

All 

Point 

Poor 

Point 

Rich 

Point   

All 

NCEP 253 253 253 - - - 

EBK 241 245 243 257 245 248 

 

Table 25: Comparison of EBK Point, Block Averages against NCEP in Total MBR, Data Rich & Poor Regions 

 

Figure 87: Plots comparing EBK Estimates in Data Rich, Poor Regions against corresponding NCEP estimates 

From Figure 86 and Figure 87 and Table 25, it is evident that, although both EBK Punctual & 

Block variants predict the same average values of around ~245K in data rich regions, the spread 

of small-scale variations differ widely in both methods. Also, from Table 25 it is evident that, 

the difference in average values is higher between EBK Block estimates and NCEP only in 

data poor regions. So, with adequate sampling, EBK (Block) is a suitable method to augment 

NWP estimates.  
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V. Application: Case Study – Aviation Weather Safety 

The UK Met Office, in its article, titled, “How accurate are our public forecasts? - Met Office,” 

n.d., has defined the following criteria to measure success of prediction of weather variables 

by models – “For a three hour forecast of normal weather, the measure of success for 

prediction of temperatures is expected to be within ±2º C 92% of the time it is reported”. The 

smallest size of the grid cell achieved for this study site with EBK was 4x2/2x4 units using Arc 

GIS software. The error range for this size of zone was found to be between 0K-2K. With 

Empirical Bayesian Kriging, the defined success rate was achieved for a spatial resolution as 

low as 2km x 4km. In the aerospace industry, this area roughly translates the detection of 

potential ash laden field, as early 20 seconds, ahead of time, by jet aircrafts in cruising altitude 

with high airspeeds and wind speed conditions. This methodology is therefore highly suited for 

a variety of other aerospace applications also, such as: 

● To augment on-board severe weather alert systems, despite its probabilistic origins and 

simulation scope 

● To help define guidelines for sample data collection using research aircrafts during future 

eruptions to assess the safety of an airspace 

● To augment the outputs of NWP for developing Model Output Statistics (MOS) systems 

Of the three potential applications, although MOS was envisaged in US in 1968 for airports in 

association with Meteorological Terminal Aviation Routine Weather Report (METAR), it is 

yet to be applied for mesoscale size regions due to limitations in accuracies of currently used 

methodologies. Model Output Statistics is largely a multiple linear regression technique in 

which predictands, near-surface weather variables such as, air temperature, wind direction, 

gusts, visibility are related statistically to one or more predictors. The predictors are typically 

forecasts from a NWP model, climatic data.  

An example of MOS currently recommended by US FAA’s NextGen Weather Concept of 

Operations for aviation is Localized Aviation MOS Program (LAMP). LAMP, discussed in 

Rudack and Ghirardelli, (2010) is based on international Global Forecasting System (GFS) 

model and is a statistical technique which provides both categorical and probabilistic forecast 

guidance for weather elements. LAMP produces forecasts from multiple linear regression 

equations that update the GFS MOS. LAMP updates GFS MOS on an hourly basis, to produce 

short range aviation forecast guidance and is disseminated from NCEP to 1600 stations as well 

as gridded stations on 2.5 km grid out to 25 hours.  
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Gridded LAMP provides gridded analyses of observations and operational LAMP forecasts for 

aviation forecasting. Verification of LAMP Forecast Guidance has shown improvements over 

the GFS MOS forecasts in accuracy and persistence. 

Rudack and Ghirardelli, (2010) discuss how Nearest Neighbour (NN) and Bilinear 

Interpolation techniques are used in the context of comparing LAMP forecasts with Regional 

and Mesoscale Weather Models and Ensembles for various altitudes. Thus, in place of Multiple 

Linear Regression or Nearest Neighbour or Bilinear Interpolation techniques, Empirical 

Bayesian Kriging interpolation technique can be experimented for both continuous and discrete 

variables, for improving regridding method based NWP used in Volcanic Ash Dispersion 

advisories for better accuracy and persistence. 

Thus, given a potential use case in the aviation industry, we generate Go/No-Go Zones using 

the point prediction map produced using EBK by comparing against NCEP values. The NCEP 

has a narrow temperature range of 251.4K-253.9K. Figure 88 shows regions with same range 

of observations in EBK are highlighted in green color (~247K to ~254K).  Areas with gradual 

variations in orange color, reveal EBK underestimations/overestimations against NCEP 

(±25K), while regions with red depict significant overestimations in comparison against NCEP 

(~+40K). 

 

Figure 88: Map Showing Risk Zones Categorized As Go/No-Go Regions 

Irrespective of the significant global variations in the input temperature across days, the EBK 

risk map reflects a balanced integration of unbiased global averages and small-scale variations, 

wherever adequate data is available. 

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China
(Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User
Community
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1. Generation & Validation of Risk Map with Block Grade Go/No-Go 

Zones 

 

Often in environmental monitoring projects, estimation of areal average values for large areas 

is required. Block kriging is a statistical method of computing areal averages that can be used 

with datasets that exhibit both regional trends and spatial persistence. This method generally 

provides average values for rectangular values and is appropriate for use with large datasets. A 

simple block analysis is performed to assess if there is a significant change in accuracy of 

values when compared against point kriging outputs. To compare the NCEP temperature 

averages (measured in Kelvin) with the prediction estimates of kriging, 1 degree x 1 degree 

grids were created using EBK estimates. EBK block averages shown in Figure 89 reveal a 

narrow range of global temperature estimates ranging between, 241 K to 251 K. The global 

EBK block mean is around ~243K, which is ~10K lesser than NCEP average. 

 

Figure 89: Maps showing Block Grade EBK – Prediction Estimates (above) & Error Estimates (below) 
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To generate the risk map with Go/No-Go Zones, shown in Figure 90, using only the EBK block 

grade estimates, the EBK map was merged with NCEP values using Fuzzy Overlay operation. 

While the Fuzzy AND overlay type operation returns the minimum value of the sets the cell 

location belongs, Fuzzy OR returns maximum values.  

 

 

Figure 90: Overlay maps generated using Fuzzy AND (above) and Fuzzy OR (below) Operations 

 

Overlay 

Operation 

Min 

Temp (K) 

Max 

Temp (K) 

Mean 

Temp (K) 
Std. Dev. (K) 

Fuzzy AND 241.195 251.349 243.41 2.97592 

Fuzzy OR 252.82 253.955 253.26 0.37248 

 

Table 26: Comparison of Fuzzy AND and Fuzzy OR minimum, maximum, mean and SD values 

As shown in Table 26, since each method outputs different ranges of values for the overlay 

maps generated, an alternative method is used to validate the accuracy of the merged outputs. 

To analyse the overlay values, a classical statistical method is used to merge two groups of 

same category that vary in their values using mean, sample size and standard deviation inputs 

as discussed in the article “Cochrane Handbook for Systematic Reviews of Interventions,” n.d.. 
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Using this approach, NCEP estimates were augmented using block grade EBK prediction 

estimates. (Sample Size: 46 in each category). 

 

Figure 91: Plot comparing the mean & SD values of EBK (Block), NCEP and Overlayed estimates 

From Figure 91, it is evident that, the acceptable Standard Deviation (SD) lies approximately 

at 4 sigma levels, which implies, 99.9% of the estimates are reliable in the merged output 

generated using EBK block grade prediction estimates and NCEP estimates.  

Temp (K) EBK NCEP Merged 

Mean 243.7100 253.2500 248.4800 

S.D. 2.7785 0.3448 5.1845 

 

Table 27: Comparison of temperature averages & SD amongst EBK, NCEP & Overlay estimates generated 

statistically 

Also from Table 27, it is observed that spatial Fuzzy AND operation produces values that are 

closer to statistically computed values to generate an overlayed risk map using NCEP and EBK 

estimates. 
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VI. Conclusion 

 

While volcanic ash dispersion modeling has been attempted using both spatial and non-spatial 

approaches, predicting and mapping the actual spatial distribution of airborne ash temperature 

using geostatistical methods such as kriging have not been researched till date. Geostatistical 

Kriging method was found to be more effective than traditional linear regression methods, such 

as, Multiple Linear Regression (MLR), used in this study, to represent stochastic spatial process 

locally as a stationary or non-stationary random field, where the parameters of the locally 

defined random field were found to vary across space. Empirical Bayesian Kriging (EBK), in 

particular, provided accurate predictions of data on a local scale developing a spatial model in 

which temperature concentrations were considered as the response variable; location variables, 

derived from flight data, were used as predictors. The methodology involved partitioning the 

whole dataset into small subsets to model each partition, and then by combining all outputs to 

predict at unknown locations using a distance metric in a Bayesian framework. A variety of 

verification and validation methods were used to assess the accuracy, consistency, profiles at 

various spatial scales for MLR, Simple Kriging (SK), EBK (without Transformation) and 

EBKT (EBK with data transformation) techniques against NCEP NWP estimations. A detailed 

analysis of errors was attempted to establish the best method out of all the explored techniques. 

It was observed that Empirical Bayesian Kriging (EBK) technique without data transformation 

yielded the best prediction and error estimates when compared against MLR, SK and EBKT 

techniques. Hence, a risk map was prepared for categorization of safe go zones and unsafe no-

go zones using EBK method.  

There are several merits of applying this geospatial approach to interpolation in aviation 

context. Empirical Bayesian Kriging is not affected by aerospace aspects such aircraft speed or 

engine type or the angle in which the flight path transects the ash cloud. It is also not directly 

dependent vulcanological explosion criteria such as VEI or volume of material erupted or 

eruption column height & angle. While the technique needs to be tested on temperature of 

resuspended ash datasets exclusively, modeling of past eruptions is feasible irrespective of the 

ash properties such as shape or size or refractive index or chemical composition. As a result, 

backward tracing of ash properties from weather parameters is also achievable even for 

volcanoes even in human inhabited regions and irrespective of age of the ash cloud.  
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The method also has no direct dependency on geological aspects such as terrain information or 

marine parameters. Even properties of volcanic gases such as sulphur dioxide, traditionally 

used as proxy for ash detection in other modeling methodologies are not required. As a result, 

the NWP data can be more tightly coupled with VAFDTM models.  

 

Using EBK, each weather variable can be independently interpolated but co-kriging of weather 

variables is currently not explored using this technique. Nowcast weather simulation attempts 

are usually severely error prone in atmospheric models even for minor fluctuations to initial 

conditions. This modeling method eliminates such dependencies on assumptions on past data.  

The method is not vulnerable to false positives in estimates arising due to incorrect 

identification of dust or ice as ash and it can be applied without any modifications across 

seasons and diurnal variations. Sophisticated airborne remote sensing or in situ sensing 

instruments are not needed to source the sample values and can work with even small sample 

sizes. Data can be collected from drone, balloon platforms too with irregular sample 

distributions. Further this method works well with data from both transect and regionally 

distributed samples.  

3D thematic maps and time lapse visualizations can be generated and overlayed for 

standardized GIS reporting across countries for regulatory authorities, aircraft OEMS, engine 

manufacturers and airliners to plan re-routing quickly. Although this technique is not based on 

the physics of the natural processes and uses the probabilistic approach, still the results were 

found to be consistent and reliable on validations. The method works irrespective of the 

absolute location of the phenomenon on any part of the earth and handles outliers effectively. 

Its usage is not limited to the immediate neighbourhood of volcanoes and can also output multi-

layered grid cells as outputs.  For generating prediction and error estimates for an area as large 

as a continental scale for a single weather variable, like temperature, the memory requirements 

are within the limits of a general-purpose computer and the process gets completed within few 

minutes for a sample size of ~1000 input points.  

In summary, it is observed that EBK, not only produces estimates of block mean closer to NWP 

averages but also models the local, small scale spatial variances better than NWP models, even 

at coarser spatial resolutions. In addition, it is also evident that when EBK is applied as a 

punctual kriging method, it is observed to yield unbiased averages even for spatially clustered, 

heteroskedastic datasets.  
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Hence, even in nonstationary datasets with absence of significant spatial autocorrelation, EBK 

can be used to assess likelihood of the volcanic ash exceeding a defined threshold at a given 

place so that risk to operations can be determined. Thus, Kriging technique, which was initially 

conceived, designed, developed and implemented for Gaussian world with higher emphasis on 

Spatial Autocorrelation, this research validates the appropriateness of using EBK method to 

help model the simultaneous existence of spatial autocorrelation and spatial heterogeneity at 

different degrees that are observed in events that obey Pareto conditions, to generate accurate, 

synoptic scale profiles and distribution maps for airborne volcanic ash dispersion. By 

overlaying on prediction estimates on NWP outputs, risk maps categorizing the patterns in ash 

distribution can be visualized and risks to aviation operations can also be established.  
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Glossary of Terms 

AMDAR - is a program initiated by the World Meteorological Organization. AMDAR is used 

to collect meteorological data worldwide by using commercial aircraft. 

ASHTAM - provides information on the status of activity of a volcano when a change in its 

activity is or is expected to be of operational significance. This information is provided using 

the volcano level of alert color code . 

ATS - is a service which regulates and assists aircraft in real-time to ensure their safe 

operations by streamlining the flow, preventing collision of aircrafts and providing search and 

rescue services during accidents. 

BADC - is the Natural Environment Research Council's (NERC) Designated Data Centre for 

the Atmospheric Sciences. The role of the BADC is to assist UK atmospheric researchers to 

locate, access and interpret atmospheric data and to ensure the long-term integrity of 

atmospheric data produced by NERC projects. 

CAA - is a national or supranational statutory authority that oversees the regulation of civil 

aviation, including the maintenance of an aircraft register. 

DLR – is a German Aerospace Center (DLR) operates the largest civilian fleet of research 

aircraft and helicopters in Europe. These highly modified aircraft are either themselves the 

subject of aeronautics research or are used to observe the Earth, the ocean surfaces and the 

atmosphere. 

ECMWF – is an independent intergovernmental organization supported by most of the nations 

of Europe. 

EnKF - is a recursive filter suitable for problems with a large number of variables, such 

as discretizations of partial differential equations in geophysical models. The EnKF originated 

as a version of the Kalman filter for large problems (essentially, the covariance matrix is 

replaced by the sample covariance), and it is now an important data assimilation component 

of ensemble forecasting. 

ELR - is the rate of decrease of temperature with altitude in the stationary atmosphere at a given 

time and location.  

EPS - are Numerical Weather Prediction (NWP) systems that allow one to estimate the 

uncertainty in a weather forecast as well as the most likely outcome. 

ERA - is a global atmospheric reanalysis from 1979, continuously updated in real time. The 

data products include a variety of surface parameters, describing weather as well as ocean-

wave and land-surface conditions. 

ESP - are those parameters that describe the initiation condition for numerical (weather 

prediction) models. Different models require different input parameters, however a common 

feature of all numerical models is that the quality of model outputs is dependent on the quality 

of model inputs. 

FAAM - is a research facility that operates a specially adapted research aircraft with the support 

of the UK atmospheric science community to measure most atmospheric parameters, and is 

capable of advanced remote sensing, cloud microphysics and measuring complex chemical 

species in the atmosphere. 
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FIR – is an airspace of defined dimensions within which flight information service and alerting 

service are provided 

FL - in aviation and aviation meteorology, a flight level (FL) is an aircraft's altitude at 

standard air pressure, expressed in hundreds of feet. The air pressure is computed assuming 

an International Standard Atmosphere pressure of 1013.25 hPa (29.92 inHg) at sea level, and 

therefore is not necessarily the same as the aircraft's actual altitude, either above sea level 

or above ground level. 

GEFS - is a weather forecast model made up of 21 separate forecasts, or ensemble members. 

The National Centers for Environmental Prediction (NCEP) started the GEFS to address the 

nature of uncertainty in weather observations, which are used to initialize weather forecast 

models. 

GFS - is a weather forecast model produced by the National Centers for Environmental 

Prediction (NCEP). Dozens of atmospheric and land-soil variables are available through this 

dataset, from temperatures, winds, and precipitation to soil moisture and atmospheric ozone 

concentration. 

HYSPLIT - is a computer model that is used to compute air parcel trajectories to determine 

how far and in what direction a parcel of air, and subsequently air pollutants, will travel. 

HYSPLIT is also capable of calculating air pollutant dispersion, chemical transformation, 

and deposition. 

IAVW – is an International Civil Aviation Organization (ICAO) commission that defines 

international protocols for the monitoring and provision of warnings to aircrafts in presence of 

volcanic ash in the atmosphere. 

IDW - is a type of deterministic method for multivariate interpolation with a known scattered 

set of points. The assigned values to unknown points are calculated with a weighted average 

of the values available at the known points. 

IMD - is the principal agency responsible for meteorological observations, weather 

forecasting and seismology.  

IFS - is a global numerical weather prediction system jointly developed and maintained by the 

European Centre for Medium-Range Weather Forecasts (ECMWF) based in Reading, 

England, and Météo-France based in Toulouse.   

IN/CCN - Ice Nuclei / Cloud Condensation Nuclei 

An ice nucleus, is a particle which acts as the nucleus for the formation of an ice crystal in 

the atmosphere. 

Cloud condensation nuclei, also known as cloud seeds, are small particles typically 0.2 µm, or 

one hundredth the size of a cloud droplet. 

LAMP - is a statistical system which provides forecast guidance for sensible weather elements. 

LAMP updates MOS on an hourly basis, is run on NOAA/NWS/NCEP Weather and Climate 

Operational Supercomputer Systems (WCOSS) computers and disseminated centrally from 

NCEP and provides guidance for over 1600 stations as well as gridded observation and forecast 

guidance on the NDFD CONUS 2.5-km grid out to 25 hours.   
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MBR - is a minimum bounding rectangle based on the combined spatial extent or envelope of 

one or more selected features.  

MER - describes the eruption intensity of a volcano. The eruption rate is determined by the 

eruption column height and length of lava flows. In large eruptions it is possible for millions 

of tons of lava to be emitted every second. Mass eruption rates cover three orders of magnitude 

up to millions of tons per second. 

MOGREPS-G – is a model from Met Office that recently introduced a short-range ensemble 

prediction system known as MOGREPS. This system consists of global and regional 

ensembles, with the global ensemble providing the boundary conditions and initial-condition 

perturbations for the regional ensemble. 

MOS - is a multiple linear regression technique used in weather forecasting, in 

which predictands, often near-surface quantities (such as two-meter-above-ground-level 

air temperature, horizontal visibility, and wind direction, speed and gusts), are related 

statistically to one or more predictors. The predictors are typically forecasts from a numerical 

weather prediction (NWP) model, climatic data, and, if applicable, recent surface observations. 

Thus, output from NWP models can be transformed by the MOS technique into sensible 

weather parameters that are familiar to a layperson. 

NAME - is a Lagrangian air pollution dispersion model for short range to global range scales. 

It employs 3-dimensional meteorological data provided by the Met Office's Unified National 

Weather Prediction Model. Random walk techniques using empirical turbulence profiles are 

utilized to represent turbulent mixing. 

NATS - provides en-route air traffic control services to flights within the UK flight information 

regions and the Shanwick Oceanic Control Area. It also provides air traffic control services to 

14 UK airports. 

NCEP/NCAR - is an atmospheric reanalysis produced by the National Centers for 

Environmental Prediction (NCEP) and the National Center for Atmospheric 

Research (NCAR). It is a continually updated globally gridded data set that represents the state 

of the Earth's atmosphere, incorporating observations and numerical weather 

prediction (NWP) model output from 1948 to present. 

NFZ - also known as a no-flight zone (NFZ), or air exclusion zone (AEZ),  is a territory or area 

established by a military power over which certain aircraft are not permitted to fly.  

NOTAM - is a notice filed with an aviation authority to alert aircraft pilots of potential hazards 

along a flight route or at a location that could affect the flight 

NWP – is a system that uses mathematical models of the atmosphere and oceans to predict the 

weather based on current weather conditions. 

OPC - is a sensor used for monitoring and diagnosing particle contamination within specific 

clean media, including air, water and chemicals. 

PIREP - is a report of actual flight or ground conditions encountered by an aircraft. Reports 

commonly include information about atmospheric conditions 

(like temperature, icing, turbulence) or airport conditions (like runway condition codes or 

ground equipment failures).  
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SIGMET - is a severe weather advisory that contains meteorological information concerning 

the safety of all aircraft. Compared to AIRMETs, SIGMETs cover more severe weather. 

VAA - analyses are made public in the form of volcanic ash advisories (VAAs), involving 

expertise analysis of satellite observations, ground and pilot observations and interpretation of 

ash dispersion models. 

VAAC - is a group of experts responsible for coordinating and disseminating information on 

atmospheric volcanic ash clouds that may endanger aviation. 

VAFTAD – is a model developed by the Air Resources Laboratory (ARL) of the National 

Oceanic and Atmospheric Administration (NOAA) for forecasting the visual transport of 

volcanic ash clouds.  

VEI - is a relative measure of the explosiveness of volcanic eruptions.  

VONA - issues reports for changes, both increases and decreases, in volcanic activities, 

providing a description on the nature of the unrest or eruption, potential or current hazards as 

well as likely outcomes. 

WMO - is a specialized agency of the United Nations responsible for promoting international 

cooperation on atmospheric science, climatology, hydrology and geophysics. 

WRF - is a system designed to serve both atmospheric research and operational forecasting 

needs.  

VOL-CALPUFF - is a model designed to simulate the dispersion of buoyant, puff or continuous 

point and area pollution sources as well as the dispersion of buoyant, continuous line sources. 
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