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Abstract

In the literature several parsing systems for natural language processing exist which use
different methods to parse sentences. Most of the previous work done in this domain was either
done using hand written grammar or by using data-driven methods. Both these methods have
pros as well as cons associated with them. As data-driven parsers rely on annotated treebanks
they perform at high accuracies when they encounter familiar data that they have been trained
on. The only downside to this method is that when they encounter unknown data in a sentence
their performance drops drastically. On the other hand, when we come to parsers which use
hand written grammars, they have a broad coverage on the language hence we could say that
there is no such a thing as seen or unseen data. The only problem with this method is that it
is very hard to write a grammar that has broad coverage in a language.

In this thesis we develop a method where the con of one method is overcome by the pro
of the other. In short we could say that we are building a parser which uses grammar rules
extracted from a treebank (which would cover the aspect of broad coverage) and also has the
data-driven approach included in it.

With this thesis we try to achieve two goals:

• Developing a novel approach to parsing text.

• Being able to use the resulting parser using very minimal resources.
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Chapter 1

Introduction

Parsing is a process which involves giving structural descriptions to sentences which is one
of the many important processes in NLP. The applications of parsing include everything from a
very simple task such as phrase finding, e.g. proper noun recognition, to a bit complex systems
like Machine Translation, Dialogue Managers, etc. The success of the above mentioned systems
is greatly dependent on how best the parser used in them performs, which makes it a core
component in all of the above mentioned systems, which in turn suggests the high significance
given to parsing.

We usually construct the parse trees using one of the following relations:

• Constituency relation used in Phrase Structure Grammar

• Dependency relation used in Dependency Grammar

A constituency parse tree splits the input sentence into sub-phrases. There is a clear dis-
tinction between the “terminal nodes” and “non-terminal nodes” in a constituency parse tree.
Here is an example which shows the phrase structure parse of a simple sentence “John sees
Bill”:

Figure 1.1
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The parse tree in the above case is the entire structure, starting from the node “Sentence”
and ending in each of the leaf nodes (John, sees, Bill). All the nodes in a given tree can be
categorized into one of these three:

• Root node - “Sentence” (Non-terminal node)

• Branch nodes - “Noun Phrase”, “Verb”, “Verb Phrase” (Non-terminal nodes)

• Leaf nodes - “John”, “sees”, “Bill” (Terminal nodes)

Phrase structure parse is useful only when the languages we are dealing with have a very
strict word order. Since our goal is to build a parser that is useful to all the languages including
the ones which don’t have a strict word order, e.g. Hindi, we would be looking into dependency
parsing.

1.1 Dependendency Parsing

Dependency parsing involves using dependency relation which is used to define the relation
between two words (if they are related) in a sentence. This dependency relation views the finite
verb as the structural center of all the dependency structures. A “dependency parse” connects
words based on the relationship with other words in the sentence. Each node in the tree will
constitute a word, child nodes are those words that are “dependent” on the parent nodes, and
edges (which are directed) are labelled by the “dependency relation”, which defines a certain
grammatical relation between the parent node and the child node. When we consider parsing
the sentence “John sees Bill” using dependency grammar, we see a major difference between
the structures of phrase structure parsing and dependency parsing.

Figure 1.2

In the above structure we can see that both the terminal and non-terminal nodes are words.
So there won’t be any distinction between the two types of nodes as we saw in the phrase
structure parse of the above example. It also has relation names written on the edges. This
is different from what we saw in the structure we got using phrase structure parsing. All the
non-terminal nodes in the previous structure have been removed because of which we can see
a huge decrease in the size of the structure which in turn helps with storage purposes.
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From the above example we can say that dependency parsing has the following advantages
over phrase structure parsing:

• Dependency relations are very close to the semantic relationships. It would be really
difficult to identify “head-modifier” or “head-complement” relations from a tree that are
not straightforward.

• The dependency tree has as many nodes in it as there are words in the sentence. And
since the parser is tasked to connect the existing nodes and not generate new ones, this
process is more straightforward.

• Dependency parsing allows the use of one-word-at-a-time operation, which we saw in
phrase structure parsing.

We can say that both the dependency parse and the phrase structure parse have the following
properties:

1 Single Headedness: Each child node in both the structures has only one other node
that it depends on i.e. their parent node.

2 Connectivity: All the nodes in the structure are connected. We always have a path
from one node to any other node in the structure.

3 Acyclic: No matter which path we choose we will never find vertices repeating in that
path. In short, there won’t be any cycles present in these structures.

In syntactic parsing, a parser could function as a tool searching through all the possibilities
to find an accurate parse tree for a given input sentence. The search space of the possible parse
trees is defined by the grammar or a set of constraints we write for the parser. In this thesis we
show how the grammar we extract and the set of constraints we define (some of which happen
to be the properties explained above) are going to restrict the search space of our parser (which
is explained in the later chapters).

We now discuss two approaches used for parsing, grammar-driven parsing approach and the
data-driven parsing approach, in the following sections.

1.2 Grammar-Driven Parsing

In the grammar-driven approach, parsing is modeled by generating a grammar G which is
used to generate the language L(G). A grammar parsing algorithm is then used to compute the
analyses of a given input string. The grammar may be hand-crafted or it may be completely or
partially generated from an annotated corpus. There are two types of grammar-driven parsing:

3



• Context free grammar parsing (Unlexicalized grammar driven parsing)

• Constraints based grammar parsing (Lexicalized grammar driven parsing)

1.2.1 Context Free Grammar Parsing

A context free grammar is a formal grammar in which every rule follows the structure “V
→ w” where “V” is a single non-terminal symbol and “w” is a string of terminals and/or
non-terminals. Formally a context free grammar G can be represented by the 4-tuple:

“G = (T, N, S, R)” where,

• T - { Terminal symbols }

• N - { Non-terminal symbols }

• S - Start symbol ( S ∈ N, a non-terminal symbol)

• R - { Rules of the form “V → w” }

In general we assume that the language L(G) generated by this grammar G is a very close
approximation of the natural language L that we would like to process. In practice, we know
that most of the formal grammars that have been developed for natural languages till now do
not satisfy this assumption, and many of the research directions in natural language parsing
during the past few decades can be seen as motivated by the desire to overcome these problems.

A sample context free grammar for the language English is shown in the below figure:

Figure 1.3

Since the lexicon used in this formalism is merely a list of entries, we can say that parsing
using CFG is an Unlexicalized Grammar Driven Parsing. A sample sentence “The man read
this book” parsed using the above grammar is shown in the figure.

4



Figure 1.4

One may often find that more than one production rule can be applied to a sequence of
words, which will lead to a conflict, an ambiguous parse (as shown in the above example). This
grammar is unambiguous i.e. no string has two distinct parse trees. This would also mean that
the language “L(G)” generated by the above grammar “G” is far from being an approximation
of English (language “L”), as all the natural languages are ambiguous.

The above grammar does display an interesting and troublesome phenomenon called local
ambiguity. Consider the sentence “The cops knew Mark shot John”. This has a unique parse
tree in this grammar. But now look at the first part of it: “The cops knew Mark”. This is
also considered as a sentence according to this grammar, but not when considered as a part of
“The cops knew Mark shot John”, which could be problematic for a parser. Locally we have
something that looks like a sentence and a parser may prove that this part really is a sentence
according to the grammar.

One way to deal with such ambiguous parses is to add more rules, or prioritize the existing
rules so that one rule precedes the others. However, this has a huge drawback of multiplying the
rules numerously, to the point where they become difficult to manage. One other difficulty we
face is over generation, where unlicensed structures, structures that are meaningless, are also
generated. Probabilistic grammars overcome these problems by using the frequency of various
productions to order them, resulting in a “most likely” interpretation.

A probabilistic context-free grammar (PCFG, also known as stochastic CFG, SCFG) is
a context-free grammar, where a certain probability is assigned to each rule. Thus, some

5



derivations become “more likely” than other. These probabilities are typically computed using
machine learning techniques that train on very large corpora. As such, a probabilistic grammar’s
validity is constrained by the context of the text used to train it because of which the definition
of “most likely” would change with the context of the discourse. A very popular example of
a probabilistic CFG parser that has been trained using the Penn Treebank is the Stanford
Statistical Parser of Klein and Manning.

Different techniques are used to parse a sentence using PCFG, one of which is a variant of
CYK algorithm which finds a Viterbi parse, which is the “most likely” parse, of a sequence for
a given PCFG.

The unlexicalized grammars have certain advantages that are very straightforward, namely

• Easy to estimate

• Easy to parse with

• Time and space efficient

However, the poor performance of these basic unannotated and unlexicalized grammars has
made these advantages irrelevant.

1.2.2 Constraint Based Grammar Parsing

The second approach in grammar-driven parsing is based on the notion of eliminative parsing,
where the sentences are analyzed by successively eliminating representations that don’t satisfy
the constraints until only valid representations remain. In the eliminative approach, parsing is
viewed as a constraint satisfaction problem, where any analysis that satisfies all the constraints
of the grammar is a valid analysis. This grammar can handle non-projective labeled parse
structures along with the projective ones.

Verb valency can be defined as the number of arguments controlled by a verbal predicate.
In this formalism (Constraint Based Grammar) all the verbs are classified into different groups
based on how similar their “valences” are. Since the words used here are not just simple entries
in the lexicon but have a proper structure associated with them, we can say that this formalism
is a Lexicalized Grammar Driven Parsing.

So far, we have discussed two main trends in grammar-driven parsing. The first is the Con-
text Free Grammar (CFG) and its variant Probabilistic Context Free Grammar (PCFG) both
of which are usually restricted to projective phrase structure parses, where standard techniques
from context-free parsing are used to obtain good efficiency in the presence of massive ambigu-
ity. The second is based on a formalization of dependency grammar in terms of constraints, not
necessarily limited to projective structures, where parsing is naturally viewed as a constraint
satisfaction problem which can be addressed using eliminative parsing methods, although the
exact parsing problem is often hard to deal with.
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1.3 Data-Driven Parsing

When we come to data-driven parsing, a formal grammar is not relevant for parsing anymore.
In this framework we use an annotated treebank to train the language model. Here, the mapping
from the sentences to their respective parse structures is learnt by the models, which is used to
parse the input sentences.

The basic data-driven parsing framework is as given below:

Figure 1.5

One of the major advantages of data-driven parsing approach is that the time taken to
develop is shortened by a lot when compared to the systems that rely on hand-crafted resources
in the form of lexicons or grammars. However, this can be achieved only if the data resources
required to train or tune the data-driven system are readily available [3].

There are two approaches for modeling the data-driven parsers:

• Transition based models

• Graph based models

Malt Parser, a commonly used parser, uses transition based model. The basic idea behind a
transition-based model is to define a transition system (state machine) for mapping a sentence
to its graph and induce a model for predicting the next state transition, given the transition
history. Given this induced model a parser then constructs an optimal transition sequence for
all the input sentences, thereby giving us a parse structure as output.

We will discuss about graph based models in the next chapter where we’ll analyze in depth
about the related literature.
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1.4 Problem Statement and Motivation

At the moment, many languages do not have annotated treebanks which can be used by
data-driven parsers like Malt Parser, which leads to higher accuracies only when they encounter
familiar data that they have been trained on. When we consider parsers which use hand written
grammars, they have a broad coverage on the language. We could say that there is no such
a thing as seen or unseen data. The only problem with this method is that it is very hard to
write a grammar that has broad coverage in a language.

Our goal here is to come up with a hybrid approach which employs the pros of both the ap-
proaches mentioned above. We would be building a parser which uses grammar rules extracted
from an annotated treebank. Although the state-of-the-art parsers use neural networks, lin-
guistically informed approaches can still work.

1.5 Contribution of the thesis

Below is a list of contributions made by this thesis.

• Building a dependency grammar from an existing treebank

• A new constraint based graphical model for dependency parsing, Data-driven Gram-
mar based dependency parsing model

• Improving existing parsing Techniques (Maltparser)

• By products such as word sketches, thesaurus, etc.

8



Chapter 2

Review of related Literature and Research

As discussed in the previous chapter, in literature we have several statistical and graph
based parsing techniques. One such method developed by Hirakawa (2001) is a graph based
parsing technique that reduces the problem of dependency parsing to spanning tree search.
This method uses a branch and bound algorithm that is exponential in the worst case.

The other graph based parsing technique, which we are going to discuss in detail in this
chapter, is the edge-based factorization of dependency trees [12]. This is used to simplify
the problem of dependency parsing to the problem of identifying maximum spanning trees in
directed graphs. This method is very similar to that of our approach discussed in detail in the
coming chapters.

2.1 Dependency Trees as Spanning Trees

Mcdonald et al 2005 [12] has proved that the problem of dependency parsing can be simplified
to finding maximum spanning trees in directed graphs. This can be achieved by applying the
edge-based factorization method to the projective languages with the Eisner parsing algorithm
and non-projective languages with the Chu-Liu-Edmonds algorithm.

2.1.1 Edge Based Factorization & MST

As described in Mcdonald et al, 2005, if x = x1...xn is representing a generic input sentence
and if y is representing a generic dependency tree for the input sentence x then we can write
“(i, j) ∈ y”, if there is a dependency tree in y from word xi to word xj .

The score of a dependency tree is factored as the sum of the scores of all the edges in the
tree. The score of an edge is the dot product between a high dimensional feature representation
of the edge and a weight vector,

s(i, j) = w.f(i, j) (2.1)

9



Hence, the score of a dependency tree y for a sentence x is,

s(x,y) =
∑

(i,j)∈y
s(i, j) =

∑
(i,j)∈y

w.f(i, j) (2.2)

Assuming an appropriate feature representation f(i,j) and a weight vector w, dependency
parsing is nothing but finding tree y with the highest score for a given input sentence x.

In their work, a generic directed graph G = (V,E) is represented by its vertex set V =

v1, ..., vn and set E ⊆ [1 : n] × [1 : n] of pairs (i,j) of directed edges vi → vj , where each such
edge has a score s(i,j).

This being said, they use Chu-Liu-Edmonds algorithm shown in fig. 2.1 to find the maximum
spanning trees (MSTs) in the graphs defined above.

Figure 2.1: Chu-Liu-Edmonds algorithm

As described by Mcdonald et al 2005 [12] -
“The algorithm selects an incoming edge with highest weight for each vertex in the graph. If

we do end up with a tree, it must be the maximum spanning tree. If not, there must be a cycle.
The process involves identifying a cycle and contracting it into a single vertex and recalculating
the edge weights that go into and come out of the cycle. It is observed that a maximum spanning
tree on the contracted graph is equivalent to a maximum spanning tree in the original graph
(Leonidas, 2003). Hence the algorithm can recursively call itself on the new graph. When the
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(a)

(b)

Figure 2.2

algorithm in fig. 2.1 is applied on the directed graph shown in fig. 2.2 (a) we get the resultant
tree shown in fig. 2.2 (b).”

The features used in the featuer set f(i,j) are combined with the direction of the attachment
and also with the distance between the two words being attached with a relation. As described
in Mcdonald et al 2005 [11], these features represent a system of backoff from very specific
features over words and part-of-speech tags to less sparse features over just part-of-speech tags.

Our approach is similar to how the dependency parsing problem has been reduced to finding
MST. Except, we use Integer Linear Programming to solve the directed graph, that we end up
with, by applying the grammatical rules we extracted from the treebank. The coming chapters
will explain in detail about how we extract a grammar and apply it on the target sentences.
The way we calculate the weight of an edge in the directed graph is where things differ notably
when we compare our method with the one explained above.
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Chapter 3

Data-Driven Grammar

Our grammatical framework is very similar to that of the Sketch Grammar [1], which is based
on regular expressions over part-of-speech tags. It underlies the word sketches and is written in
the Corpus Query Language (CQL). Sketch grammar is designed particularly to identify head-
and-dependent pairs of words (e.g., खा [eat] and राम [Ram]) in specified grammatical relations
(here, k1 [doer]), in order that the dependent can be entered into the head’s word sketch and
vice versa. More about the Sketch Grammar would be explained in the coming sections and
Sketch Engine would be explained in Chapter 7.

3.1 Grammatical Framework

As explained above, we use Sketch Grammar to identify words in syntactic relations in a
given sentence. For example, a grammar rule for the relation

• k1 (doer)

– 2:[tag=”NN”] [tag=”PSP:ने”] [tag=”JJ”]? 1:[tag=”VM”]

which specifies that if a noun is followed by a PSP that is followed by an optional adjective
which in turn is followed by a verb, then the noun is the kartha/subject of the verb. The head
and child are identified by 1: and 2: respectively.

Writing a full-fledged sketch grammar with high coverage is a difficult task even for language
experts, as it would involve capturing all the idiosyncrasies of a language. Even though such
hand-written rules tend to be more accurate, the recall of the rules is very low. Here, the
grammar we use is a collection of POS tag sequences (rules) which are automatically extracted
from an annotated Treebank, Hindi Dependency Treebank (HDT-v0.5), which was released for
the Coling2012 shared task on dependency parsing (Sharma et al., 2012). This treebank uses
IIIT tagset described in (Bharati et al., 2006). This method gives us a lot of rules based on the
syntactic ordering of the words.
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From the above mentioned treebank (HDT-v0.5) we extract dependency grammar rules (i.e.
sketch grammar) automatically for each dependency relation, based on the POS tags appearing
in between the dependent words (inclusive).

For example, from the sentence,

राम(Ram) ने(erg.) कमर(ेroom) मे(inside) आम(mango) खाया(eat)

Ram ate [a] mango in [the] room

we extract rules of the type: (k1[doer], k2[object], k7[location])

• k1 - 2:[tag=”NNP”] [tag=”PSP:ने”] [tag=”NN”] [tag=”PSP:मì”] 1:[tag=”VM”]

• k2 - 2:[tag=”NN”] 1:[tag=”VM”]

• k7 - 2:[tag=”NN”] [tag=”PSP:मì”] [tag=”NN”] 1:[tag=”VM”]

In the above example, relation names are in bold with one of the corresponding rules for
each of them.

We do include a few lexical features associated with the POS tags PSP (post-position)
and CC (conjunction) in order to disambiguate between different dependency relations. For
example, in both the relations k1 (doer) and k2 (object) we have the rules (1) and (2) given
below respectively:

In (1), the ergative marker indicates that the noun (NN) is the doer of the verb (VM). In
(2), the accusative marker indicates that the noun (NN) is the object of the verb (VM). Also,
(2) is not a complete sentence (in a sense) – the doer has not been mentioned, and only the
part of the sentence that the rule is applied to is shown.

If in the rules, the PSP tags didn’t contain the lexical features, both the rules would have
been the same, and hence both the rules would have been applied on both the sentences, making
them ambiguous.

By lexicalizing the PSP POS tag, the rule(s) formed are now less ambiguous, and more
accurate.
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3.1.1 Weighted Dependency Grammar

After extracting all the dependency rules, we apply each rule on the annotated Treebank
(HDT-v0.5), and compute its precision. For example, if the rule

• k7 (location) - 2:[tag=”NN”] [tag=”PSP:मì”] [tag=”NN”] 1:[tag=”VM”]

is applied on the HDT-v0.5, we get all the [2:NN, 1:VM] pairs where the rule holds, say N
pairs. Out of these N pairs, if M of them are seen correctly with k7 (place) relation in the
training data, then the precision of the rule is M/N.

Conditions that need to be satisfied for a rule to be included in the sketch grammar:

• The rule must have a precision of at least 0.05%.

• The frequency of the tag sequence (N) must be greater than 4, to ensure some amount of
statistical significance of the rules.

• The context size – the maximum allowed length of the tag sequence (rule), is set to 7 to
limit the number of rules generated.

Example rule set (numeral present at the end of the rule tells us the precision of the rule),

• k1

– 2:[tag=”NNP”] [tag=”PSP:का”] 1:[tag=”VM”] 1.0000

– 2:[tag=”NNP”] [tag=”PSP:ने”] 1:[tag=”VM”] 0.9624

– 2:[tag=”NNP”] [tag=”PSP:ने”] [tag=”NNP”] [tag=”PSP:को”] 1:[tag=”VM”] 0.8000

• k2

– 2:[tag=”NN”] [tag=”PSP:को”] [tag=”JJ”] [tag=”NEG”] 1:[tag=”VM”] 1.0000

– 1:[tag=”VM”] [tag=”VM”] 2:[tag=”CC:िक”] 0.9600
– 2:[tag=”NN”] [tag=”PSP:को”] 1:[tag=”VM”] 0.7260

• k4

– 2:[tag=”NN”] [tag=”PSP:को”] [tag=”NN”] 1:[tag=”VM”] 0.5230

– 2:[tag=”NN”] [tag=”PSP:को”] [tag=”JJ”] [tag=”NN”] 1:[tag=”VM”] 0.4444

– 2:[tag=”NN”] [tag=”PSP:को”] 1:[tag=”VM”] 0.1917
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• k7p

– 2:[tag=”NNP”] [tag=”PSP:मì”] 1:[tag=”VM”] 0.6667

– 2:[tag=”NN”] [tag=”PSP:पर”] 1:[tag=”VM”] 0.3548

– 2:[tag=”NN”] [tag=”PSP:के”] [tag=”NST”] 1:[tag=”VM”] 0.1818

In the examples shown above, the rule 2:[tag=”NNP”] [tag=”PSP:को”] 1:[tag=”VM”] exists
in the rule set of both k2 and k4. Each rule may often be matched by more than one relation
creating ambiguity. Currently there is no way of disambiguating between such rules in our
framework. The rule with the highest precision gets more priority while parsing.

3.2 Comparison

This grammar is similar to Probabilistic Context-Free Grammar (PCFG), discussed in Sec-
tion 1.2.1, where in a certain probablity is assigned to each rule. We however didn’t use any
complex machine learning algorithms, but a very simple mechanism mentioned in the above
sections. Even in our grammar, the probabilities are constrained by the context of the text
(discourse) used to train.
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Chapter 4

The Parser

4.1 Integer Linear Programming

Linear programming is a method to achieve the best outcome in a mathematical model
whose requirements are represented by linear relationships. Linear programs are problems that
can be expressed in canonical format such as:

where x represents the vector of variables, c and b are vectors of coefficients, A is a matrix
of coefficients, and (·)T is the matrix transpose. The expression to be maximized or minimized
is called the objective function (cTx in this case). The inequalities Ax ≤ b and x ≥ 0 are the
constraints which specify a convex polytope over which the objective function is to be optimized.

If x is restricted only to integers, we call this as an Integer Linear Programming. A variant
of this problem is where x is restricted to either 0 or 1, which is known as Zero-One Integer
Linear Programming.

We convert our parsing problem into an ILP problem by employing Zero-One Integer Linear
Programming to convert the directed graph into a tree. We try to extract the best possible tree
from the graph by following a certain set of rules or one might also call them as Constraints in
the ILP context. These constraints used in our algorithm are as follows:

• Each node cannot have more than one parent

• Cycles cannot exist in the output parsed tree

• A parent node cannot have more than one child occuring with the following set of de-
pendency relations (deprels) − [k1, k2, etc.] unlike those such as parent-child pairs with
relation ’ccof’ which can occur multiple times to the same parent node.
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• Constraints on conjunctions:

– The children of conjunctions either being Nouns or Verbs can occur multiple times

– Only a single child otherwise

4.1.1 Tools and Algorithms

To apply the grammar rules discussed in chapter 3 on an input sentence, we use the Knuth-
Morris-Pratt algorithm to find the rule patterns in the given input sentence. By doing so we
end up with a graph.

In order to parse this graph (using ILP) we use CVXOPT which is a free software package for
convex optimization based on the Python programming language. We also use the NetworkX,
another python package, to identify the cycles in the graph that we parse using ILP.

Figure 4.1: Data-Driven Grammar Parser Workflow
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4.2 Rule Disambiguity

Lets consider the example sentence ( बच्चे ने आम खाया ) which is used in the previous sections
to apply the grammar and parse the resulting graph.

Upon applying the grammar rules discussed in Chapter 3 on the example sentence, we get
a graph as shown below.

Figure 4.2: Graph to be parsed

Upon using the parser built using the ILP constraints on the graph shown in fig. 4.1, we get
the tree as shown below in fig. 4.2.

Figure 4.3: Parsed Tree

The parsed tree shown in fig. 4.2 is different from the gold tree (What the parsed tree
was supposed to be) shown in fig. 4.3. The dependency relation between खाया (ate) and आम
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Figure 4.4: Gold Tree

(Mango) is supposed to be k2 instead of pof. This is caused by the ambiguity of the rule shown
below which comes up in the grammar rules of both the dependency rules k2 and pof. The
parser ends up picking up the edge with dependency relation pof.

2:[tag=”NN”] 1:[tag=”VM”]

If the same grammar is applied upon a sentence (shown below) with little to no ambiguity
in the sentence, we can see how well the parser performs (found in fig. 4.4 and fig. 4.5 ).

• बच्चे (NN) ने (PSP:ने) आम (NN) को (PSP:को) कमरे (NN) मì (PSP:मì) फì का (VM)

(The child threw the mango in the room)

Figure 4.5: Graph to be parsed
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Figure 4.6: Parsed / Gold Tree

4.3 Experiments and Results

4.3.1 Basic Grammar Rules

The initial experiments just had the POS tag patterns directly extracted from the training
data of the treebank, HPST-ver0.51-2012, as our grammar rules. The resulting graph when
parsed performed very poorly, the results of which are shown below.

Labeled attachment score: 11890 / 39775 * 100 = 29.89 %

Unlabeled attachment score: 14315 / 39775 * 100 = 35.99 %

Label accuracy score: 12812 / 39775 * 100 = 32.21 %

4.3.2 Rule Disambiguity In Basic Rules

The low accruracies pointed out that the parser was not able to distinguish between most
rules belonging to different dependency relations. This was a result of ambiguity in POS tags
lwg__psp and ccof, which led to including the lexical features associated with these tags in the
patterns / rules extracted as shown below. This resulted in a considerable improvement in the
accruracies of ccof, lwg__cont, lwg__psp, lwg__rp and rsym dependency relations, the total
accuracies of which are shown below.

2:[tag=”NN”] [tag=”PSP:ने”] 1:[tag=”VM”]

2:[tag=”VM”] 1:[tag=”CC:पर”]
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Labeled attachment score: 26025 / 39775 * 100 = 65.43 %

Unlabeled attachment score: 29315 / 39775 * 100 = 73.70 %

Label accuracy score: 28283 / 39775 * 100 = 71.11 %

4.3.3 Rule Generalization

In addition to the above grammar rules, for every dependency relation, we have checked the
following distance ranges between the parent and child: 1-5, 6-10 and 11-15 to generalize the
rules. For example, for the dependency relation k1, we obtained the frequencies of the rules:

2:[tag=”NN”] [tag=”PSP:ने”] [ ]{1,5} 1:[tag=”VM”]

2:[tag=”NNP”] [ ]{1,5} 1:[tag=”VM”]

2:[tag=”NNP”] [ ]{6,10} 1:[tag=”VM”]

If the obtained frequency of each generalized new rule is considerably high (>= 10), we
include the new rule in the grammar. And all the rules that are covered by this generalized new
rule are removed from the grammar to remove redundancy. The idea behind doing this was to
reduce the rigidity of the rules, thereby dealing with new rule patterns (that didn’t appear in
the training corpus) which might be similar to the above mentioned new rules. This however
has led to a slight reduction in the accuracies.

Labeled attachment score: 24672 / 39775 * 100 = 62.03 %

Unlabeled attachment score: 28747 / 39775 * 100 = 72.27 %

Label accuracy score: 28375 / 39775 * 100 = 71.34 %

4.3.4 Data added from different domains

We have added 300 sentences each from two totally different domains (News Articles and
Heritage), from the HDTB pre-release version (HDTB_pre_release_version-0.05), to the
existing test data of HPST-ver0.51-2012. The accuracies, as shown below, has a negligible
change. This leads us to believe that the existing rule set performs the same even with new
domains.

• News Articles

Labeled attachment score: 29671 / 45706 * 100 = 64.92 %
Unlabeled attachment score: 33620 / 45706 * 100 = 73.56 %
Label accuracy score: 32224 / 45706 * 100 = 70.50 %
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• News Articles & Heritage

Labeled attachment score: 33276 / 51576 * 100 = 64.52 %
Unlabeled attachment score: 37846 / 51576 * 100 = 73.38 %
Label accuracy score: 36103 / 51576 * 100 = 70.00 %

We have also added more data from different domains of HDTB_pre_release_version-
0.05 to the current training set of HPST-ver0.51-2012 to see if this would result in better
accuracies for the existing test data. We observed that the more data was added to the training
data from HDTB_pre_release_version-0.05, the results were showing reduced accuracies.

• 500 new sentences from HDTB_pre_release_version-0.05

Labeled attachment score: 25936 / 39775 * 100 = 65.21 %
Unlabeled attachment score: 29225 / 39775 * 100 = 73.48 %
Label accuracy score: 28194 / 39775 * 100 = 70.88 %

• 1000 new sentences from HDTB_pre_release_version-0.05

Labeled attachment score: 25764 / 39775 * 100 = 64.77 %
Unlabeled attachment score: 29005 / 39775 * 100 = 72.92 %
Label accuracy score: 27995 / 39775 * 100 = 70.38 %

• 1500 new sentences from HDTB_pre_release_version-0.05

Labeled attachment score: 25279 / 39775 * 100 = 63.55 %
Unlabeled attachment score: 29016 / 39775 * 100 = 72.95 %
Label accuracy score: 27492 / 39775 * 100 = 69.12 %

4.3.5 ISC dependency parser for Hindi

When we try to test the same dataset with the state-of-the-art parser, ISC dependency
parser, we can see better accuracies. Although the resulting grammar driven parser is not as
good as the ISC dependency parser, the results are decent enough given that the parser depends
on grammar rules extracted from the treebank.

• Test data from HPST-ver0.51-2012

Labeled attachment score: 33219 / 39775 * 100 = 83.52 %
Unlabeled attachment score: 36250 / 39775 * 100 = 91.14 %
Label accuracy score: 34385 / 39775 * 100 = 86.45 %

• 300 new sentences added to test data from HDTB_pre_release_version-0.05
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Labeled attachment score: 38357 / 45645 * 100 = 84.03 %
Unlabeled attachment score: 41726 / 45645 * 100 = 91.41 %
Label accuracy score: 39665 / 45645 * 100 = 86.90 %

• 600 new sentences added to test data from HDTB_pre_release_version-0.05

Labeled attachment score: 43521 / 51576 * 100 = 84.38 %
Unlabeled attachment score: 47251 / 51576 * 100 = 91.61 %
Label accuracy score: 44995 / 51576 * 100 = 87.24 %

4.4 Comparison - MST Parser

Our parser is a classic example of the Constraint Based Grammar Parsing explained in the
Section 1.2.2, where the parsing is viewed as a constraint statisfaction problem.

In dependencyACL2005 (Mcdonald et al 2005), it is mentioned that using just the features
over the parent-child node pairs was not sufficient for high accuracy. In order to solve this
problem they added two types of features. The first type of features look at words that occur
between a child and its parent. These features take the form of a POS trigram: the POS of the
parent, of the child, and of a word in between, for all words linearly between the parent and
the child. They explain how this feature was helpful for nouns identifying their parent. The
second type of feature provides the local context of the attachment, that is, the words before
and after the parent-child pair. This feature took the form of a POS 4-gram: The POS of the
parent, child, word before/after parent and word before/after child.

The rules mentioned in the previous chapter can be considered very similar to that of MST’s
feature set. Although we don’t include all of the POS tags of the surrounding words, one could
say that the rules are a hybrid of both the features mentioned above. We have all of the POS
tags of words between the parent and the child words (inclusive). We could also say that both
the parent and child words have half of the local context mentioned above, a word to the left
of the parent and a word to the right of the child or vice versa depending on where the parent
and child are located in a sentence.
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Chapter 5

Integration with Malt Parser

In this chapter, we present an approach to integrate unlexicalised grammatical features into
Malt dependency parser. Malt Parser is a lexicalised parser which has a well-known weakness
of data sparseness, similar to every lexicalised parser. Our goal here is to address this issue by
providing features from an unlexicalised parser developed as part of this thesis (described in
chapters 3, 4).

5.1 Dependendency Parsers

Dependency Parsing has gained popularity due to its ease of representation for any language
including free word order languages. With shared tasks like CoNLL [1], [2] and others [3],
dependency treebanks for many languages came into existence, and thereby many dependency
parsing techniques. Among these, Malt Parser [4] has become one of the popular dependency
parsers due to its ease of training, capability of handling various features, faster training and
parsing rates. We use Malt Parser in place of other higher-order graph-based parsers as we want
to improve greedy dependency parsing, which is still one of the most efficient parsing methods
available. Malt is a transition-based parser with greedy local search. Malt uses lexicalised
information i.e., the word itself, along with the features specified, to take a best local decision
while parsing. While lexicalised information is useful, the algorithm is prone to difficulties when
the words are unseen since the algorithm has to base its decision only on the features seen. The
features, in general, are unigram, bigram or trigram of various linguistic properties around a
fixed window from the current word.

There have been many attempts of improving a parser’s performance using features from
other parsers. [5] used features from [6] and [7] parsers which improved MSTParser’s UAS
(Unlabeled Attachment Score) by 1.7%. [8] and [9] used a technique called blending where
output of different parsers is used to generate the final parse. [10] used CCG (Combinatory
Categorial Grammar) features to improve dependency parser. Output of the CCG supertagger
is provided as features to Malt which resulted in significant improvements.
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index word POS tag 1st best relation 2nd best 3rd best
1 The DT 4:det:0.89159 3:det:0.870516 2:det:0.846192
2 luxury NN 3:nn:0.734832 4:nn:0.715789 4:amod:0.1166
3 auto NN 4:nn:0.734832 6:nn:0.139535
4 maker NN 7:nsubj:0.273 6:nn:0.169154 6:amod:0.1293
5 last JJ 6:amod:0.7330 4:amod:0.2280
6 year NN 7:nsubj:0.567 4:tmod:0.1268
7 sold VBD 0:ROOT:0.453
8 1,214 CD 9:num:0.96036 7:dobj:0.185424
9 cars NNS 7:dobj:0.6859
10 in IN 9:prep:0.6236 7:prep:0.479452
11 the DT 12:det:0.2726
12 U.S. NNP 10:pobj:0.228

Figure 5.1: Top 3 parents for each word. The format of each relation above is parent node index
: relation name : precision of the rule applied. For example, the 2nd best relation on word
index 3 i.e. auto is 6:nn:0.139535 indicating that word index 6 is the parent with dependency
relation nn with confidence 0.139535 (i.e. precision of rule nn 2:NN NN JJ 1:NN. Note: These
are not the features themselves. Features are constructed from these relations, e.g. feature
n-Rels of word index 4 (i.e. maker) are 1-nsubj, 2-nn, 3-amod

5.2 Unlexicalized parser: Intermediate Output

Unlexicalised grammar-driven parsers [11], [12] are well known for their robustness in han-
dling unseen words, and are also competitive in performance with statistical data driven lexi-
calised parsers. We aim to integrate information from a simple grammar-driven unlexicalised
parser into Malt, and thereby increase the robustness of Malt.

We just use a part of the parsing technique described in the previous chapters for integrating
with Malt Parser. We define our unlexicalised grammar as a set of rules corresponding to each
dependency relation type. Each grammatical rule is a sequence of POS tags between (and
including) the head and child words. We extract these rules from the training data. For each
sentence in the test data, we apply all the rules extracted in the above steps. If we define a
sentence as a set of nodes in a graph, each rule is like an edge connecting two nodes in the
graph, with relation name as the edge label. For each child node (i.e. indicated by 2: in an
applied rule), we select its n-best parent nodes (i.e. indicated by 1: in an applied rule) by
sorting the rules based on their weights (in descending order). In Figure 1, for each word, we
show its 3 best parent nodes.

5.3 Integrating Grammatical Features with Malt

As mentioned in the earlier sections, we use the intermediate output of our parser, namely,
the n-best relations for each word, to generate features which we integrate with Malt. For each
word in the sentence, we specify its possible parents, relations and the scores derived from our
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Table 5.1: Impact of new feature set on Malt baseline. McNemar’s test, ** = p < 0.01, * =
p < 0.05
† - Unlexicalised

Language Experiment/FEATS LAS UAS

English

Stanford Baseline (BL) 87.71 90.17
Stanford BL + {5-posTags, 5-ScoreRanges} 87.90** 90.34**
† Stanford Baseline (BL) 79.45 83.39
† Stanford BL + {3-posTags, 3-ScoreRanges} 79.90** 83.85**
CoNLL Baseline (BL) 88.73 90.00
CoNLL BL + {2-Rels, 2-posTags} 88.88* 90.20**
† CoNLL Baseline (BL) 83.31 85.68
† CoNLL BL + {4-Rels, 4-posTags, 4-ScoreRanges} 84.01** 86.29**

Hindi

Baseline (BL) 87.97 93.40
BL + {5-Rels, 5-posTags} 88.25** 93.70**
† Baseline (BL) 83.33 91.79
† BL + {3-Rels, 3-posTags} 84.16** 92.65**

parser. As far as we know, the only way to encode the predicted head of a word in a feature
is through InputArc and InputArcDir constructors, but we chose not to use them as they only
work on 1-best predictions. Instead, we specify the features of parent word as parent indicating
features to the child word. Similarly, it is not possible to specify scores from our parser as
numerical features to Malt. Instead we convert score to a range based on the magnitude of the
score. Our feature set from the grammar-driven parser is as follows.

1. n-Rels: Relations between the current word and the nth-best parents specified by the
grammar-driven parser.

2. n-posTags: POS tags of the n-best parents.

3. n-ScoreRanges: The range in which score of the n-best parents falls in. We define the
ranges as follows. 1 for 90-100%, 2 for 80-90% and {3,4,5,6} for 80-0% in splits of 20.

4. n-ChunkTags: Chunk tags of the n-best parents. If n is 3, we have 1-ChunkTag, 2-
ChunkTag, 3-ChunkTag features.

The generic feature ‘rK-V’ - where r is the rank, K is one of {rel, H, PS, H_chunkID} and
V is the value, means there are r features added for the ranks 1 to r.

If n is 3, then we have one feature each for the 1st, 2nd and 3rd best feature value.
Apart from the above described features, we define another feature which is similar to feature

2. In this case we modify the pos tag of each word of both the train and the test data to
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match the form pos_chunkID, where the chunkType (head/child in the local word group) of
the respective word is attached to the postag in the pos column.

key: rank+‘H_’+chunkID

value: pos tag of the possible parent node with the chunkID of the parent node

In our experiments, we add the above features from grammar-driven parser to the existing
state-of-the-art Malt feature set (refer next section) to form a new feature set, and tune over
the complete feature set using development data to get the best settings.

We also experiment with Malt by disabling the lexical features. Since our grammar rules
are purely unlexicalised, this would serve as a control experiment to estimate the performance
of the unlexicalised Malt Parser.

5.4 Experiments

In this section we describe the datasets we used for English and Hindi and our experimental
settings.

5.4.1 Data and Tools

For English, we experimented with two different dependency annotation schemes, namely,
CoNLL which has a label set of 11 labels, and Stanford which has a much larger label set of
48 labels, both of which are widely popular. We used Penn Treebank [9] with standard splits -
sections 02-21 for training, section 22 for development and section 23 for testing. We extracted
Stanford dependencies and CoNLL dependencies from Penn Treebank using Stanford Parser
built-in converter with basic projective option and Penn2Malt1 respectively.

For Hindi, we used the Hindi Dependency Treebank (HDT-v0.5) which was released for the
Coling2012 shared task on dependency parsing [3]. This treebank contains 12,041 training,
1,233 development and 1,828 testing sentences with an average of 22 words per sentence and
has a lable set of 63 labels.

The dependency labels for English are syntactic; whereas for Hindi, they are syntactico-
semantic in nature. We use predicted POS tags for English, and the gold POS tags for Hindi.

5.4.2 Final Feature Set and Malt Settings

We use state-of-the-art English and Hindi feature sets of Malt as our baselines [17], [3]. The
state-of-the-art Malt features for English are based on word and POS. For Hindi, apart from
word, lemma and POS, the features also include morphological properties such as case markers

1http://w3.msi.vxu.se/nivre/research/Penn2Malt.html
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Table 5.2: Distance wise accuracies with our improved feature set
1-5,6-10 and >10 represent the parent-child disntance

Language Experiment LAS UAS
1-5 6-10 >10 1-5 6-10 >10

English

Stanford Baseline (BL) 89.76 70.69 72.17 91.89 73.54 74.17
Stanford BL+BestFeat 89.88 70.46 73.52 91.98 73.22 75.72

CoNLL Baseline (BL) 90.61 72.64 73.18 91.86 73.34 73.43
CoNLL BL+BestFeat 90.69 73.00 73.82 91.98 73.70 74.17

Hindi
Baseline (BL) 91.33 73.59 71.42 96.21 82.82 78.14
BL+BestFeat 91.57 73.86 72.10 96.44 83.24 78.99

for nouns; tense, aspect and modality markers for verbs; and chunk properties such as chunk
label and chunk type (indicates if the word is head or non-head of the chunk).

In our models, in addition to the baseline feature set, we also include the features from our
grammar-driven parser as described in Section 5.3. These features are provided in the FEATS
column of CONLL format2. We tried various combinations of features: baseline features +
combinations of n-Rels, n-posTags, n-ScoreRanges.

All the experiments are carried out using Malt Parser version 1.7.23. We use nivrestandard
as the parsing algorithm and liblinear as the learner in our experiments. The rest of the settings
are set to default.

5.5 Results

Table 5.1 displays the results of our experiments with English and Hindi on test data. We
chose the best performing feature set based on the results on development data. As mentioned
before, we also ran Malt by disabling lexical features - these results are marked by †.

On lexicalised data for English, we obtained an improvement of 0.19% LAS and 0.17% UAS
on Stanford dependencies, and 0.15% LAS and 0.20% UAS on CoNLL scheme. For Hindi, we
achieved an improvement of 0.28% LAS and 0.30% UAS. All these improvements are statistically
significant (p < 0.01 for all except CoNLL-LAS with p < 0.05 using McNemar’s test).

In Table 5.2, we also present the distance wise improvements of dependency relations. We
observed improvements on all distance ranges (except 6-10 on Stanford), which shows that our
grammar is effective even for long distance dependencies.

2http://nextens.uvt.nl/depparse-wiki/DataFormat
3Malt Parser v1.7.2 can be downloaded at http://www.maltparser.org/download.html
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We have considered the following distance ranges: ‘0-5’, ‘6-10’ and ‘>10’ (greater than 10).
Among these, the 0-5 range is covered by smaller rules and the >10 range, as explained above,
are covered by larger rules. This causes, as shown in Table 5.2, a significant improvement for
relations over 10 words apart, and those in the ‘0-5’ range.

5.6 Related Work

In our work, we incorporated features into Malt from an unlexicalised grammar-driven parser.
There have been many attempts of improving a parser’s performance using features from other
parsers. [10] used features from [5] and [4] parsers which improved MSTParser’s UAS (Unlabeled
Attachement Score) by 1.7%. [15] introduced a technique called blending where output of the
parsers is used to generate the final parse. In this approach, based on the information from
different parsers, a dependency graph is generated. Maximum spanning tree algorithm is used
to extract the final dependency tree from this graph. This technique has been used by [7]
to produce best performing system in CoNLL 2007 [13]. [14] integrated graph-based model
(MST) and transition-based model (Malt) and improved parsing accuracy. Features from one
model are used to extend other model during training, which improved accuracies for both
models. Using this approach, they obtained significant improvement over the state-of-the-art
on CoNLL-X shared task data sets.

The other stream of work is improving parsing performance of a grammatical framework
using other grammatical frameworks. [16] improved Head-driven Phrase Structure Grammar
(HPSG) parser by using the output of a dependency parser. [6] used higher-order dependency
features to improve phrase structure parsing. They incorporated higher-order dependency fea-
tures into a cube decoding phrase-structure parser and obtained significant gains on dependency
recovery for both in-domain and out-of-domain test sets. [8] improved CCG parser using de-
pendency features. They first extracted n-best parsers for a sentence using a CCG parser.
Then dependency features from a dependency parser are provided to a re-ranker. [2] used CCG
features to improve dependency parser. Output of the CCG supertagger is provided as features
to Malt which resulted in significant improvements.

Our approach is much simpler, and widely applicable for many languages without much
hassle. Though our method is not as sophisticated as others, we still achieve better results than
state-of-the-art Malt settings.
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Chapter 6

Hindi Word Sketches

Word sketches are one-page automatic, corpus-based summaries of a word’s grammatical
and collocational behavior. These are widely used for studying a language and in lexicography.
Sketch Engine is a leading corpus tool which takes a corpus as its input and generates word
sketches for the words of that language. It also generates a thesaurus and “sketch differences”,
which specify similarities and dissimilarities amongst near synonyms. In this paper, we present
the functionalities of Sketch Engine for Hindi. We collected HindiWaC, a web crawled corpus
for Hindi with 240 million words. We lemmatized, POS tagged the corpus and then loaded it
into Sketch Engine.

6.1 Introduction

A language corpus is simply a collection of texts, so-called when it is used for language
research. Corpora can be used for all sorts of purposes: from literature to language learning;
from discourse analysis to grammar to language change to sociolinguistic or regional variation;
from translation to technology.

Corpora are becoming more and more important, because of computers. On a computer,
a corpus can be searched and explored in all sorts of ways. Of course that requires the right
app. One leading app for corpus querying is the Sketch Engine (Kilgarriff et al., 2004). The
Sketch Engine has been in daily use for writing dictionary entries since 2004, first at Oxford
University Press, more recently at Cambridge University Press, Collins, Macmillan, and in
National Language Institutes for Czech, Dutch, Estonian, Irish, Slovak and Slovene. It is also
in use for all the other purposes listed above. On logging in to the Sketch Engine, the user
can explore corpora for sixty languages. In many cases the corpora are the largest and best
available for the language. For Indian languages, there are the corpora for Bengali, Gujarati,
Hindi, Malayalam, Tamil and Telugu. The largest is for Hindi with 240 million words – we
would be referring to it as HindiWaC in the rest of the paper.
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Figure 6.1: Word sketches for the verb कर (do)

The function that gives the Sketch Engine its name is the ’word sketch’, as shown in fig 6.1.
Since the images in this paper are screenshots taken from Sketch Engine, translations and gloss
have not been provided for the Hindi words in the images. In this paper we first introduce the
main functions of the Sketch Engine, with Hindi examples. We then describe how we built and
processed HindiWaC, and set it up in the Sketch Engine.

6.2 The Sketch Engine For Hindi

6.2.1 The Simple Concordance Query Function

A Simple concordance query shows the word as it is used in different texts. We have fig. 6.2
shows the query box, while fig. 6.3 shows its output. A simple search query for a word such कर
(do) searches for the lemma as well as the words which have कर (do) as the lemma, so कर (do),
िकया (did), करने (to do), करते ([they] will do), etc. are all retrieved. Figure 3 shows the first 20
results out of the retrieved 5 million results.

Figure 6.2: Simple concordance query
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Figure 6.3: The resulting concordance lines

Figure 6.4: Frequency of word forms of कर (do)
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6.2.2 The Frequency Functions

The Sketch Engine interface provides easy access to tools for visualizing different aspects of
the word frequency (see fig. 6.4). The Frequency Node forms function on the left hand menu
in Figure 4 shows which of the returned forms are most frequent.

Thus we have immediately discovered that the commonest forms of the lemma कर (do) are
कर (do), िकया (did) and करने (to do).

The p/n links are for positive and negative examples. Clicking on p gives a concordance for
the word form, while clicking on n gives the whole concordance except for the word form.

6.2.3 The Word List Function

TheWord List function allows the user to make frequency lists of many types (words, lemmas,
tags). We have fig. 6.5 which shows the most frequent words in the corpus. In addition to most
frequent words, keywords of any target corpus can be extracted. This is done by comparing
frequent words from the target corpus with the frequent words from a general purpose corpus.
We have fig. 6.6 which displays the keywords of a Hindi Election corpus, where this is the
target corpus, and the general purpose corpus is the HindiWaC.

Figure 6.5: Word list function
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Almost every keyword closely relates to the trend of news articles in the 2014 Indian Par-
liament elections. Since the Hindi Election Corpus is of small size, the frequency-per-million
column contains projected values. These are significantly higher than the same words in the
HindiWaC since the Election Corpus is domain specific.

Figure 6.6: Frequency list of the whole corpus for Words and Keywords extracted automatically
from Hindi Election Corpus by comparing it with Hindi Web Corpus

6.2.4 The Word Sketch and Collocation Concordance Functions

The Word Sketch function is invaluable for finding collocations. The word sketches of the
word लोग (people) for three dependency relations are shown in fig. 6.7.

The dependency relations that we use are based on the Paninian framework (Begum et al.,
2008). Three of the most common dependency relations given by this model are as follows:

1. k1: agent and/or doer

2. k2: object and/or theme

3. k3: instrument
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Figure 6.7: Word Sketch results for लोग (people)

These relations are syntactico-semantic in nature, and differ slightly from the equivalent
thematic roles mentioned above. More about how we get the word sketches shown in fig. 6.7 is
explained in Section 6.3.

The three dependency relations shown in fig. 6.7 are:

1. nmod_adj: noun-modifier_adjective

2. k1_inv: doer_inverse

3. nmod: nounmodifier

The word sketch function assigns weights to each of the collocates and also to the dependency
relations.

Clicking on the number after the collocate gives a concordance of the combination (fig. 6.8).
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Figure 6.8: Concordance lines for लोग (people) in combination with its gramrel “nmod”

6.2.5 The Bilingual Word Sketch Function

A new function has been added recently to the Word Sketch, which is the Bilingual Word
Sketch. This allows the user to see word sketches for two words side by side in different
languages. Fig. 6.9 shows a comparison between लाल (red) and red. Interestingly, the usage of
word red in Hindi and English are very diverse. The only common noun which is modified by
red in both languages is गुलाब (rose).

6.2.6 Distributional Thesaurus and Sketch Diff

The Sketch Engine also offers a distributional thesaurus, where, for the input word, the
words ’sharing’ most collocates are presented. Fig. 6.10 shows the top entries in similarity to
कर (do). The top result is हो (be). Clicking on it takes us to a ’sketch diff’, a report that shows
the similarities and differences between the two words in Figure 11.

The red results occur most frequently with हो (be), the green ones with कर (do). The ones
on white occur equally with both.
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Figure 6.9: Adjective results of a bilingual word sketch for Hindi लाल (red) and English red
English translations of some of the Hindi words are: chilli, colour, fort, flower, rose, cloth,
Shastri

Figure 6.10: Thesaurus search showing entries similar to कर (do) (left) and Sketch Diff com-

paring collocates of कर (do) and हो (be) (right)
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6.3 Building and processing HindiWaC and loading it into the

Sketch Engine

HindiWaC was built using the Corpus Factory procedure (Kilgarriff et al., 2010). A first
tranche was built in 2009, with the crawling process repeated and more data added in 2011, and
again in 2014. Corpus Factory method can be briefly described as follows: several thousands of
target language search queries are generated from Wikipedia, and are submitted to Microsoft
Bing search engine. The corresponding hit pages for each query are downloaded. The pages
are filtered using a language model. Boilerplate text is removed using body text extraction,
deduplication to create clean corpus. We use jusText and Onion tools (Pomikálek, 2011) for
body-text extraction and deduplication tools respectively.

The text is then tokenized, lemmatized and POS-tagged using the tools downloaded from
http://sivareddy.in/downloads (Reddy and Sharoff, 2011). The tokenizer found here is installed
in the Sketch Engine.

For the grammar to be applied on the HindiWaC, we use the Sketch Grammar extracted
from the HDT (mentioned in Chapter 3). Each rule in this grammar must have a precision of
at least 70%. A higher cut-off gives us rules with better precision, but less recall, and it is the
reverse for lower cut-off limits. Though these rules do not have all the lexical cues of a language,
the hope is that, when applied on a large-scale web corpus, the correct matches (sketches) of
the rules automatically become statistically more frequent, and hence more significant.

6.4 Error Analysis

The word sketches may not always be accurate due to the ambiguous nature of rules, and
pos tagging errors. For example, when a rule such as

1:[tag=”NN”] [tag=”PSP: ने”] 2:[tag=”VM”]

is applied on sentences which have nouns ending with the honorific जी in the data, जी is
likely to be a collocate of the words. This is an error due to POS tagger that we use to tag the
HindiWaC. The tagger tags the honorific जी as NN and not RP. These word sketches can be
improved further by improving the POS-tagger, or the grammar, for example by involving local
word group information. The other related errors are due to UNK pos tag which is generally
assigned to words that are unknown to the tagger. As the length of a rule increases so does its
sparsity, i.e. the number of sentences on which the rule can be applied since all the POS tags
in the rule have to occur in that particular order. Hindi being a free word order language the
possibility of all the POS tags occurring in that order is even less.

As the length of a rule increases so does its sparsity, i.e. the number of sentences on which
the rule can be applied since all the POS tags in the rule have to occur in that particular order.
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Hindi being a free word order language the possibility of all the POS tags occurring in that
order is even less.
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Chapter 7

Conclusions

7.1 Data-Driven Grammar Parser

We presented a simple unlexicalised grammar driven parser using POS tag sequences. Al-
though the accuracies of this parser is far from the accuracies of the state of the art parser,
those are still decent accuracies gained by just considering the POS tag sequences.

7.2 Malt Parser Extension

We integrated features from the grammatical parser described above into Malt Parser. Our
features are found to outperform the state-of-the-art Malt Parser feature set for both English
and Hindi. We obtained a significant improvement over Malt Parser’s unlexicalised baseline
using our syntactic rules, and since Malt is a lexicalised parser, this indicates an improvement
in the robustness of Malt Parser.

This work can be extended to other languages to see if these observations hold on them as
well. We could also focus on building compact grammars using regular expressions since our
current grammar is prone to data sparseness as the length of rule increases. Yet, we were able
to improve long distance dependencies.

7.3 Hindi Word Sketches

Corpora are playing an increasing role in all kinds of language research as well as in language
learning, lexicography, translation, literary studies and discourse analysis. The requirements
are, firstly, a suitable corpus, and secondly, a corpus query tool. We have presented HindiWaC,
a large corpus of Hindi, which has been prepared for use in the Sketch Engine. We have
described how we used Hindi Dependency Treebank to develop the grammar underlying the
word sketches. And we have shown the core features of the Sketch Engine, as applied to Hindi.
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Our current grammar is prone to data sparseness as the length of rule increases. A future
direction of this work could be on building compact grammars using regular expressions. Ad-
ditionally, one could also explore the usefulness of morphological features in grammar rules to
make them semantically accurate.
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