
Real Time Monocular Scene Understanding and Multibody SLAM in
Bird’s Eye View

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Electronics and Communication Engineering by Research

by

Swapnil Naresh Daga
201531063

swapnil.daga@research.iiit.ac.in

International Institute of Information Technology, Hyderabad
(Deemed to be University)

Hyderabad - 500 032, INDIA
JULY 2023



Copyright c© Swapnil Naresh Daga, 2023

All Rights Reserved



International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Real Time Monocular Scene Understanding
and Multibody SLAM in Bird’s Eye View” by Swapnil Naresh Daga, has been carried out under my
supervision and is not submitted elsewhere for a degree.

Date Adviser: Prof. K. Madhava Krishna



To my family, friends and teachers



Acknowledgments

First and foremost, I would like to thank my guide Prof. K. Madhava Krishna for giving me an
opportunity to be a part of Robotics Research Center, IIIT Hyderabad and advising me throughout the
course of all the MS work and the publications to finally this thesis.

I would also like to thank J. Krishna Murthy for being an incredible mentor throughout my work
during the MS. I am very much grateful to all my co-authors Gokul B. Nair, Junaid Ahmed Ansari,
Rahul Sajnani, Anirudha Ramesh, Kaustubh Mani, N Sai Shankar, Vignesh Prasad, Karmesh Yadav for
working constructively together for important submissions.

I would also like to give special thanks to Tayyibah Khanam for all the hardwork and efforts she put
in editing, reviewing, researching and suggesting changes to this thesis.

Special Thanks also to Jyotish Poonaganam for all the technical suggestions/alternatives he had and
for being available all the time whenever we needed him. I would also like to thank Ritwik Agarwal for
helping me with some of the work selflessly despite being from a different research field.

Finally, I would like to thank everyone who I might have missed out unknowingly who were present
and supported me during my work in RRC and my stay in IIIT-H.

v



Abstract

The field of autonomous driving has seen many advances in recent times. In this thesis, we try to look
at some important challenges in autonomous driving from the perspective of a single (monocular) cam-
era: Real-Time Scene (Road/Lanes) Layout and multi-object simultaneous localisation and mapping in
the outdoor scene. To tackle the challenges faced by monocular setups/systems (such as scale ambiguity
in monocular reconstruction, dynamic object localisation, and uncertainty in feature representation), we
transpose the above problems into orthographic (bird’s-eye view) space. Thus, we perform road/lane
layout reconstruction, localisation and mapping of dynamic participants and the ego camera vehicle in
the scene with an orthographic view as the configuration space. By assuming only the height of the ego-
camera above the ground, we leverage single-view metrology cues to accurately localise the ego-vehicle
and all other traffic participants in bird’s-eye view. We demonstrate that our system outperforms prior
work that uses strictly greater information, highlighting each design decision’s relevance via an ablation
analysis.

vi



Contents

Chapter Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 3D Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Perspective-View and Depth Estimation . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Unibody SLAM Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Multibody SLAM Frameworks: . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4.1 Traditional Approaches . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4.2 Deep Learning-based Approaches . . . . . . . . . . . . . . . . . . . 4
1.1.4.3 Recent Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2.1 Filtering Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2.2 Optimization techniques . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Pose Graph Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Non-Linear Least squares Optimization . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Sources of Relative Pose Measurement . . . . . . . . . . . . . . . . . . . . . 14

2.4 Morphological Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Opening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Hough Line Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3.1 Hough Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3.2 Steps involved in line detection . . . . . . . . . . . . . . . . . . . . 17

3 Real Time Monocular Scene Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Summary of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Segmentation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Bird’s eye view projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Refinement of point clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



viii CONTENTS

3.2.4 Point cloud reconstruction of lanes . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Experiments & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2.1 Real Time Monocular Scene Understanding Pipeline . . . . . . . . . 25
3.3.2.1.1 Input images . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2.1.2 Segmented images . . . . . . . . . . . . . . . . . . . . . 25
3.3.2.1.3 Bird’s eye view projection . . . . . . . . . . . . . . . . . 26
3.3.2.1.4 E-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2.1.5 Individual lane point clouds . . . . . . . . . . . . . . . . . 27

3.3.2.2 Extensive E-Net Results . . . . . . . . . . . . . . . . . . . . . . . . 28

4 BirdSLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Summary of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 BirdSLAM: Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1.1 Static Map Initialization . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1.2 Scale-Unambiguous Ego-Motion Initialization . . . . . . . . . . . . 32
4.2.1.3 Dynamic Object Localization . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 BirdSLAM Backend: Pose-Graph Optimization . . . . . . . . . . . . . . . . . 32
4.2.2.1 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Monocular Scene (Layout) Understanding . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Generating Amodal Lane Point Clouds in Camera Frame . . . . . . . . . . . . 35

4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Error Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.3 Approaches Evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.3.1 Nair et al. [62]: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3.2 CubeSLAM [96]: . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3.3 Namdev et al. [63]: . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3.4 Batch Optimized Baseline in SE(3) with Scale-ambiguous ORB Odom-

etry: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3.5 Incremental Approach in SE(2) with Scale-Initialized Odometry: . . 39

4.4.4 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.5 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.6 Ablation Studies on Real-Time Approaches . . . . . . . . . . . . . . . . . . . 40

4.4.6.1 Contribution by Individual Constraints . . . . . . . . . . . . . . . . 40
4.4.6.2 Weight Allotted to Landmark Based Constraints . . . . . . . . . . . 42
4.4.6.3 Threshold for Landmarks . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.6.4 Impact of Lane Constraints . . . . . . . . . . . . . . . . . . . . . . 42
4.4.6.5 Impact of Dynamic Object Detection Method Comparison . . . . . . 42
4.4.6.6 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



List of Figures

Figure Page

1.1 Top-Left: Illustration of ill-posedness of Multibody SLAM. Triangulating a moving ob-
ject with a moving camera is impossible as the object has moved away by the time the
second image is captured. Back-projected rays intersect at highly erroneous locations.
While the car moves along the yellow line, many possible trajectories (red, magenta)
project to the same locations in the image. Bottom-Left and Right: BirdSLAM op-
erates in an orthographic view overcoming many nuisance factors like hard-to-obtain
geometric matches across vehicles, obstructions and occlusions caused by vehicles and
the (already ambiguous) scale of reconstruction drifting unexpectedly and rapidly. It
also makes optimizations simpler, and thus convenient to be plugged into downstream
planners. While triangulation causes larger error margins for Multibody SLAM, Bird-
SLAM reduces the error margins by minimizing upon non-linear cost functions in two
dimensions (ref. 4.2.2.1) while also taking care of scale reconstruction by taking odo-
metric information and priors in metric scale unlike traditional SLAM like ORB where
relative scale can lead to ambiguity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Classification of major SLAM algorithms . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 State of the art optimization based SLAM systems consist of a front-end and a back-end

block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Graph representation of a SLAM problem with landmarks: Circular nodes represent

robot poses ‘x’ (yellow) and landmarks ‘l’ (green). Edges represent three kinds of spa-
tial constraints between the nodes - blue squares for odometric measurements ‘u’ be-
tween consecutive robot poses, violet squares for constraints observed due to landmarks
‘z’ by the robot, and pink squares signifying loop closures. . . . . . . . . . . . . . . . 12

2.4 Representation of the pose-graph SLAM problem: Nodes correspond to robot poses ‘x’,
while edges correspond to spatial constraints, that is odometry ‘u’ in case of contiguous
poses and loop closures ‘y’ in all other cases. Each edge between poses xi and xj is de-
fined with its error function eij and the information matrix Ωij . These error terms arise
as a result of the difference between the real measurements yij and the approximated
constraints y′ij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Effect of the opening operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Effect of the closing operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Mapping of a unique line from the Cartesian space to the Hough space. . . . . . . . . 18
2.8 Transformation of two pointspo and p1 to two lines in the Hough space. The intersection

of both lines in The Hough space indicates the line passing through both points [8]. . . 18

ix



x LIST OF FIGURES

3.1 Pipeline for Bird’s eye view point cloud reconstruction of individual lanes from RGB
images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 KITTI tracking sequences dataset: Frame 151, Sequence 18 . . . . . . . . . . . . . . 26
3.3 Semantically segmented image of Frame 151, Sequence 18 . . . . . . . . . . . . . . . 26
3.4 Occupancy grids for frame 151, sequence 18 . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Input and Output to the E-Net architecture for frame 151, sequence 18 . . . . . . . . . 27
3.6 Individual Lane Point Cloud Reconstruction for a portion of Sequence 18. The particu-

lar frame in bird’s eye view is for frame 151 in sequence 18. . . . . . . . . . . . . . . 28

4.1 Pipeline: The Ego Motion and Static Map Initialization block illustrates the generation
of static road points in 3D, in addition to how we obtain camera trajectory in metric
scale. The Dynamic Object Localization block illustrates our approach to obtain two in-
dependent sources of localization of other dynamic objects in frame in Birds-Eye View
(BEV). Detailed explanation, and mathematical representation of these blocks can be
found in Sec. 4.2.1.3. The Backend Pose Graph Optimization block uses the results ob-
tained from Ego Motion and Static Map Initialization block , lane pointclouds obtained
from Chapter 3 (the static lane pointclouds marked in pink circles in the pose graph di-
agram) and the Dynamic Object Localization block to create a pose graph as illustrated.
In the pose graph formulation, the red, black, green, and blue arrows show the CC, VV,
CV and CP constraints as described in Sec. 4.2.2.2. . . . . . . . . . . . . . . . . . . . 31

4.2 Vehicle Localisation in bird’s-eye view: The left image shows the 3D bounding box out-
put and the right image shows the tight bounding boxes for the cars we obtain in bird’s-
eye view in camera frame in metric scale from the procedure described in Sec. 4.2.1.3.
The camera center for the right image is at (0,0) of XZ plane facing towards positive Z
axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Row 1: A frame in KITTI with 3 lanes, one of the lanes being occluded due to obstruc-
tions. Row 2, Col 1: ”Lane Boundary” occupancy grid pointcloud in bird’s-eye view.
Row 2, Col 2: ”Road” occupancy grid pointcloud in bird’s-eye view. Row 3, Col 1:
Lane Pointcloud output in bird’s-eye view without ENet. Row 3, Col 2: Amodal Lane
Pointcloud in bird’s-eye view obtained after following procedure in Sec.4.3.1. . . . . . 36

4.4 Qualitative Results: Visualizations of ego (black colored camera) trajectories and car
object trajectories(red and blue color) for some of the KITTI sequences, shown along
with surrounding lidar points in metric scale. Some of the results were obtained on
very challenging sequences like curved trajectories, occluded detections etc. One such
snapshot for a time instance is shown on the right for sequence 20 which had big turns
in its path and some of the tracked cars were far away and occluded. . . . . . . . . . . 37

4.5 Plot illustrating how number of objects in scene do not affect the time-elapsed in our
optimization formulation from Sec. 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . 43



List of Tables

Table Page

2.1 Different Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Terminologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Extensive ENet results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Absolute Translation Error (in meters) for localised vehicles in scene in bird’s-eye view
map, computed as root-mean-square error across the 2D axes. . . . . . . . . . . . . . 38

4.2 Absolute Translation Error (in meters) for ego motion in bird’s-eye view map, computed
as root-mean-square error across the 2D axes. . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Analysis over the contribution of each type of constraint to the final cost. . . . . . . . . 40
4.4 Performance of the optimiser as a function of weight given to the landmark based con-

straints relative to the same for ego motion [column 3 - 5]. Performance of the optimiser
with respect to the threshold set for the static feature landmarks on their depth from the
camera [column 6 - 10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Impact of lane-based constraints on batch-based approach from Sec. 4.4.3.4. . . . . . . 41
4.6 Dynamic Object Detection Method Comparison for Real-Time Approach . . . . . . . 41

xi



Chapter 1

Introduction

The six levels of autonomy are widely talked about in autonomous driving from level 0 (fully manual)
to level 5 (fully autonomous) autonomy [21]. As the race to level 5 autonomy for driverless vehicles
moves forward, building accurate and reliable perception modules for the surrounding environment of
vehicles becomes of paramount importance.

The response of the perception module of a driverless vehicle module depends a lot on the scene
surrounding it. Thus, scene understanding is essential for building any such system. The two major
components of an outdoor scene as seen in many autonomous driving datasets [37] are - static com-
ponents (road, lane markings, trees, buildings, pavements etc.) and dynamic components (vehicles,
pedestrians etc.). These two components are often interlinked to each other and accurate perception of
one leads to a better understanding of the other. For example, to accurately estimate a dynamic vehicle’s
trajectory during a lane change, we need to accurately know where the lanes are located. Similarly, dur-
ing an overtaking manoeuvre, one needs to not only know the accurate localisation of the ego camera
vehicle but also the accurate localisation of surrounding vehicles that are in visible vicinity.

A majority of industrially-led solutions to perception modules rely on a suite of sensors such as
Lidar, GPS, IMUs, radars, cameras or different permutations of such sensors. In this work, we deviate
from this paradigm and pose a challenging research question: “How accurately can we estimate the ego-
motion of a driving platform and the state of the world around it, by using only a single (monocular)
camera”? In robotics parlance, this task of estimating the ego-motion of a “robot” and the state of its
environment is referred to as simultaneous localization and mapping (SLAM) [27, 14].

A generalization of the SLAM problem—known as multibody SLAM—is of interest to us. While
a conventional SLAM system only estimates the robot’s ego motion and the static scene map by using
the stationary features, multibody SLAM additionally estimates every other actor’s motion in the scene
- hence a generalized system. This is of paramount importance to autonomous driving platforms, as a
precise estimation of the states of other actors immensely boosts the performance of downstream tasks,
such as collision avoidance and over-taking manoeuvre.

In general, multibody SLAM is ill-posed (i.e., does not admit a unique solution family) in moving
monocular camera setup (see Fig. 1.1). This is because monocular reconstruction [59, 33, 44, 24] inher-

1



ently suffers from scale factor ambiguity. This makes it near-impossible to recover object trajectories in
metric units that can be directly employed in the downstream tasks mentioned earlier. Thus, monocular
cameras have so far found far fewer applications in autonomous driving stacks. In this work, we move
monocular SLAM systems one step closer to downstream modules.

Figure 1.1: Top-Left: Illustration of ill-posedness of Multibody SLAM. Triangulating a moving object
with a moving camera is impossible as the object has moved away by the time the second image is cap-
tured. Back-projected rays intersect at highly erroneous locations. While the car moves along the yellow
line, many possible trajectories (red, magenta) project to the same locations in the image. Bottom-Left
and Right: BirdSLAM operates in an orthographic view overcoming many nuisance factors like hard-
to-obtain geometric matches across vehicles, obstructions and occlusions caused by vehicles and the
(already ambiguous) scale of reconstruction drifting unexpectedly and rapidly. It also makes optimiza-
tions simpler, and thus convenient to be plugged into downstream planners. While triangulation causes
larger error margins for Multibody SLAM, BirdSLAM reduces the error margins by minimizing upon
non-linear cost functions in two dimensions (ref. 4.2.2.1) while also taking care of scale reconstruction
by taking odometric information and priors in metric scale unlike traditional SLAM like ORB where
relative scale can lead to ambiguity.

Conventional monocular SLAM systems [58, 59] detect and track sparse geometric features across
input images and produce a point cloud reconstruction of the scene. These systems are faced with a
plethora of issues when deployed in scenes with highly dynamic actors (e.g., traffic): consistent geo-
metric feature matches are hard to obtain across vehicles; the passage of vehicles suddenly obstructs
static scene regions with stable features; the (already ambiguous) scale of reconstruction drifts unex-
pectedly and rapidly. Existing approaches tackle some of these issues by assuming auxiliary inputs such

2



as optical flow [68] or depth from stereo cameras [69, 50]. Others [23, 90, 41] pose the problem as
that of factorizing multiple motions from a 3D trajectory “soup”. Recent approaches that operate on
monocular cameras are unsuitable for real-time applications [62, 96].

In this work, we propose BirdSLAM: a monocular multibody SLAM system tailored for typical
urban driving scenarios. It operates on an orthographic view (the bird’s-eye view), where the impact
of the aforementioned “nuisance factors” is low also making the optimizations simpler as there are
fewer parameters to operate upon. Further, estimates in orthographic views can be directly plugged into
downstream planners: a desirable quality (Fig. 1.1). By assuming that all relevant “actions” happen
on or close to the ground-plane, and leveraging single-view metrology cues, BirdSLAM enables scale-
unambiguous motion estimation of the ego vehicle and other traffic participants.

BirdSLAM leverages static features available from an off the shelf SLAM system [59], dynamic
features provided by modern object detectors [20, 71, 93], and single-view metrology cues [85, 81]
to formulate a scale-aware pose-graph optimization problem in bird’s-eye view. This can be solved
using off-the-shelf pose-graph optimization toolboxes [40, 11, 25]. We demonstrate that BirdSLAM
outperforms existing full 6-DoF SLAM frameworks and provide an ablation analysis to justify our
design choices.

In summary, BirdSLAM accurately estimates ego-motion and other vehicle trajectories in bird’s-
eye view over long sequences in real-time, mitigating the various nuances of traditional 6-DoF SLAM
frameworks for dynamic scenes. We observe that a 3-DoF SLAM results on an SE(2) representation of
real road plane scenarios compare well with the traditional 6-DoF SLAM results. This simplifies the
optimization parameterization thus contributing positively to reduced runtime as shown in Sec. 4.4.6.6
while not sacrificing the Absolute Translation Error(ATE).

1.1 Related Works

1.1.1 3D Object Detection

Various accurate 3D object detection approaches exist using lidar point cloud information [46, 67]
and stereo camera depth estimation [49]. However, getting 3D bounding boxes from a monocular cam-
era (single image) is challenging due to the lack of depth information. Recent monocular approaches like
OFT [71] and Mono3D [20] solve this problem. Wang et al. [93] approaches the above problem for the
monocular/stereo case by creating lidar-like representation from monocular/stereo depth maps [38, 19]
and then running lidar-based detection networks [46, 67] to get 3D bounding boxes around the objects.

1.1.2 Perspective-View and Depth Estimation

Due to scale ambiguity in monocular reconstruction, estimating depth becomes of paramount im-
portance if we want to lift vehicle trajectories to perspective view (bird’s-eye view). Various depth

3



estimation networks like MonoDepth2 [38] attempt to solve this problem. Geometrical methods as de-
scribed in Song et al. [81] and Stein et al. [85] try to solve the problem of depth estimation to ground
plane from corresponding image pixels by using known priors like the height of the mounted camera,
camera intrinsics and normal to the road plane with the assumption of a mostly flat plane.

1.1.3 Unibody SLAM Frameworks

Most popular SLAM systems [59, 33, 36, 92, 44, 24] solve for the unibody (vehicle on which camera
is mounted) SLAM problem. However, the estimation of the trajectories of vehicles around becomes
essential for autonomous driving.

1.1.4 Multibody SLAM Frameworks:

1.1.4.1 Traditional Approaches

The traditional approaches to solving the SLAM problem’s multibody counterpart are based on sep-
arating multiple motions [23, 35, 90, 41, 53] from a given set of triangulated points. Other traditional
approaches included solving for relative scale for each vehicle in the scene [78, 48, 63]. The relative
scale reconstruction in most of such approaches is not in metric scale.

1.1.4.2 Deep Learning-based Approaches

Deep learning-based methods such as Reddy et al. [69] and Li et al. [50] leverage the improvement
in object detection in deep learning approaches over traditional approaches to improve the multibody
SLAM. However, these two methods use stereo cameras, thus not facing the problem of scale ambiguity,
which is prevalent in monocular settings.

1.1.4.3 Recent Approaches

A more recent approach to the multibody SLAM problem in a monocular setting is proposed by Nair
et al. [62] which relies on batch-based pose-graph optimization in 6 DoF. The optimization framework
used in it cannot be applied in a real-time setting. Another recent framework Cubeslam [96] uses object
representations in 6 DoF to improve ego vehicle trajectories; however, the problem is not cast into a
dynamic setting, and dynamic participant’s trajectories are not shown explicitly.

1.2 Key Contributions

The key contributions of this thesis include the following:

4



1. A neural network architecture-based pipeline that provides accurate monocular scene understand-
ing in outdoor environments in real-time in bird’s-eye view.

2. BirdSLAM: A Monocular Multibody SLAM framework in bird’s-eye view that operates in real-
time leveraging the above neural network architecture-based pipeline, dynamic and static cues
from the environment and a novel pose graph optimization formulation.

1.3 Thesis Structure

The thesis is organized into three main chapters. Chapter 2 provides the necessary context and back-
ground required for understanding the major contributions made in this thesis. Chapter 3 focuses on
the first contribution - training a neural network architecture-based pipeline for real-time monocular
scene understanding. Chapter 4 goes into detail describing BirdSLAM, a real-time monocular multi-
body SLAM in bird’s-eye view that leverages the pipeline in Chapter 3 along with dynamic vehicle
localizations and a novel pose graph formulation.

5



Chapter 2

Background

The BirdSLAM framework relies on several important concepts that span mathematics, robotics,
and computer vision. Understanding these concepts as a whole would provide the reader with sufficient
background information as a base before going into the details of BirdSLAM. This section begins with
a brief description of Lie groups (Section 2.1), a key mathematical concept for rigid transformations in
computer vision problems. Further, a brief introduction of the SLAM problem, its problem statement,
and popular techniques for solving SLAM are presented in Section 2.2. Essentially, the pose graph
optimization problem plays a key role in the BirdSLAM back-end and hence is described in Section 2.3.
Lastly, Morphological techniques come in handy while dealing with segmentation problems and hence
Section 2.4 presents some common techniques used in the BirdSLAM framework.

2.1 Lie Groups

The concept of a group in mathematics was established to encapsulate the essence of symmetry. A
group is thus a collection of symmetries of any object, and every group is a collection of symmetries of
some object. Lying at the intersection of algebra and geometry, a Lie group is a group of symmetries
where the symmetries are continuous. In other words, a Lie group [29] is a topological group that is
also a smooth manifold (e.g.- circle, sphere, etc.), with some other desirable properties. Shapes/objects
with a smooth manifold such as the sphere look the same when rotated or displaced by a small amount,
thus having continuous symmetries. Due to its ability to provide a robust and coherent framework for
working with 3D transformations, the concept of Lie groups is particularly relevant for challenges in
robotics and computer vision. These transformations must be composed, differentiated, interpolated,
and inverted, something that Lie groups help with [29].

Associated with every Lie group is a Lie algebra, that is the tangent space of Lie groups at the identity.
We can build a mapping from the multiplicative structure to an analogous vector space representation
by converting Lie groups to Lie algebra [95]. Importantly, a Lie group and its Lie algebra are intimately
related, allowing calculations in one to be mapped usefully into the other. Table 2.1 presents some
common lie groups with their descriptions.

6



Group Description Dim. Matrix Representation
SO(3) 3D Rotations 3 3D Rotation Matrix
SE(3) 3D Rigid transformations 6 Linear transformation on homogeneous 4-vectors
SO(2) 2D Rotations 1 2D rotation matrix
SE(2) 2D Rigid Transformations 3 Linear transformation on homogeneous 3-vectors
Sim(3) 3D similarity transformations (rigid motion + scale) 7 Linear transformation on homogeneous 4-vectors

Table 2.1: Different Lie Groups

In this section, our focus relies on two specific Lie group families - SE(3) for 3D rigid transformations
and SE(2) for 2D rigid transformations. Subsections below gently brief on the representation of both
these lie groups, interested readers are suggested to check [29] for broad descriptions on the lie algebra
associated with these lie groups.

• SE(3): SE(3) has a 6-dimensional manifold, i.e., 6 degrees of freedom - 3 for each 3D translation
vector and 3D rotation vector [16]. 6D poses can be be represented by various methods such as
3D+YPR, 3D+Quat and 4× 4 transformation matrices. We are concerned mainly with the matrix
representation in a 3-dimensional Euclidean space defined by the structure in Equation 2.1, where

R ∈ SO(3) is a proper rotational matrix, t =
[
tx ty tz

]T
∈ R is a translation vector and

group product the standard matrix product.

T =

(
R t

01×3 1

)
(2.1)

• SE(2): Similar to the SE(3) formulation, a pose (rigid transformation) in 2-dimensional Euclidean
space can be determined by a 3×3 homogeneous matrix with the structure shown in equation 2.2
[16]. The SE(2) group has 3 dimensions corresponding to the rotation of φ radians and translation
(x, y) in the 2D plane.

T2 =

(
R2 t

01×2 1

)
(2.2)

It’s worth noting that in both SE(2) and SE(3) formulations discussed above, only R and t need to be
stored in an implementation. The remaining matrix structure can be imposed implicitly [29].

2.2 SLAM

The last two decades have witnessed substantial growth and peaks in the field of robotics and au-
tonomy. The goal was thus to develop cognitive robots capable of serving humans as assistants, or
companions and thereby replace humans in many tasks. Since then, researchers all around the world
have been paying close attention to the field of mobile robotics and autonomous systems. These two
fields of study grew in parallels, with neither having a clear definition until the last several years. A

7



robot was considered to be a machine capable of making its own decisions, which could then perform
a predefined task in a time-efficient and energy-efficient manner. As research progressed, robots were
believed to be machines capable of replicating a set of repetitive human tasks [57]. With potential
improvements in robot vision, learning, and navigation that occurred throughout time, autonomy was
seen to be inextricably linked to the notion of robots, with robots being defined as autonomous devices
capable of performing complex tasks to assist humans [83].

To accomplish tasks like navigation and motion, autonomous robots are required to be able to esti-
mate and understand their complicated spatial surroundings as they obtained mobility and manipulation
capabilities. Thus emerged the need for autonomous robots to estimate complex environments while in
motion, further prompting researchers to develop various localization and mapping techniques. While
localization refers to estimating the position of a robot located with respect to its environment, mapping
refers to the acquisition of the robot’s spatial environment to be able to construct a map. Intuitively, both
these techniques rely on one another. Thus, robot localization requires information about the environ-
ment in order to determine its position relative to the environment, and subsequently, a robot maps the
environment around it based on the robot poses. This necessitated the need for simultaneous localization
and mapping, giving rise to the term Simultaneous Localization and Mapping (SLAM). As a result, the
solution to the SLAM problem is being regarded as a major breakthrough in autonomous robotics for
self-driving car applications.

2.2.1 Problem Statement

In the context of self-driving cars and autonomous vehicles, utilizing the robot’s control signals
(physical signals) and sensor observation data as inputs, the SLAM problem attempts at constructing a
map of the environment using landmarks (stationary features in the environment that are distinguish-
able) while locating the positions of the robot in the map (robot poses). A mobile robot roaming in an
unknown environment collects information through onboard sensors[84]. Since the robot’s movement
is uncertain, it also faces difficulty in determining its current pose in global coordinates. The SLAM
problem then boils down to using this sensor information to acquire a spatial map of the environment
while simultaneously localizing the robot’s position relative to the map.

Researchers were able to build some early solutions after realizing the necessity for a probabilistic
approach to SLAM problems and understanding its consistency to be a fundamental difficulty [28]. A
probabilistic approach enables us to explicitly model the uncertainties present due to inaccurate quan-
tities. Hence, solving the SLAM problem requires us to estimate the robot trajectories and the map of
the environment, given information on control signals and sensor observations. Equation 2.3 represents
a generic SLAM equation, and Table 2.2 briefs about the terms used in this equation.

p(x0:T ,m|z1:T , u1:T ) (2.3)

8



Variable Description
xT Location and Orientation of the robot at time instant ‘T’
zT Sensor observations
m Map and feature locations
uT Control signals

Table 2.2: Terminologies

The SLAM problem can be solved either in Online mode or in a Full SLAM fashion. A full SLAM
estimates the posterior over the entire path of the robot[45] i.e., estimates the robot path over past sensor
information too. On the contrary, online SLAM estimates only the current robot path and the current
map of the environment and does not care about previous sensor data. It does so by marginalizing out the
previous poses and solving the SLAM problem recursively.Equations 2.4 and 2.5 define online SLAM
and full SLAM respectively.

p(xT ,m|z1:T , u1:T ) (2.4)

p(x1:T ,m|z1:T , u1:T ) (2.5)

2.2.2 Algorithms

There have been many approaches to solve the SLAM problem, most of which can be categorized
into two main paradigms: filtering and optimization based approaches [86]. Filtering algorithms are
further classified on the basis of type of filters - Gaussian or Particle filters. Further, graph based tech-
niques constitute a key part of modern state-of-the-art optimization problems and can be classified in
three most common graph based approaches. Figure 2.1 illustrates the resulting taxonomy of SLAM,
without claiming to be thorough and complete.

2.2.2.1 Filtering Techniques

The problem is modelled as an on-line state estimation when dealing with Bayesian filtering tech-
niques, with the state of the system consisting of the current robot position and the map. Further, the
current estimate is refined and augmented utilizing new measurements as they become available [39].
Generally, these filtering based approaches are incremental in nature and hence are also referred to as
online SLAM methods[86]. Popular filtering techniques in this category include Particle filters ([55],
[56], [32]) and Kalman Filters ([15], [31], [70]), each described below.

• Extended Kalman Filter (EKF): Derived from the original Kalman Filter (KF) used for linear
systems, EKF is commonly used for non-linear filtering systems. It introduces a step of lineariza-
tion for non linear systems, and hence is also applicable to SLAM systems by approximating the
mobile robot motion model by means of linear functions [88].

9



Figure 2.1: Classification of major SLAM algorithms

• Particle Filters: A set of particles are used in a particle filter to represent a posterior. Here,
each particle is a simple guess of the true state value and thus, the particle filter approximates
the posterior distribution by collecting many such guesses into a collection of guesses, or set of
particles [84].

2.2.2.2 Optimization techniques

Recent research has turned its focus to optimization-based approaches, which have been found to be
more efficient, adaptable, scalable, and stable than filtering-based solutions. Optimization based meth-
ods to solve the SLAM problem span across linear methods, non-linear least squares methods, relaxation
methods, etc. Generally, these optimization-based approaches consist of two parts – the front-end and
the back-end. The front-end of a SLAM solution is responsible for converting relevant observations
acquired in the form of raw sensor data into constraints, while also performing data association tasks.
Data association refers to matching sensor observations and associating them with existing map infor-
mation, i.e., each sensor observation shall be matched with a specific match feature. Additionally, the
data association block in the SLAM system consists of a short term block for associating corresponding
features in consecutive sensor measurements, as well as a long term block for associating new sen-
sor measurements to older landmarks [18]. The front-end also detects loop closures and hence helps
avoid the false positive loop closures [86]. The back-end performs inference on the pre-processed data,
optimizes them, computes the robot poses and a map of the environment. Usually the back-end also
feeds back the information to the front-end to support loop closure detection and validation[18]. Ro-
bustness issues due to incorrect data association can also be addressed in the SLAM back-end. When
dealing with graph based optimization techniques (discussed below) for solving a SLAM problem, the
back-end also relies on the front-end for constructing a topologically correct graph structure, crucial for

10



convergence. The front-end and back-end blocks of SLAM assembled together form a complete SLAM
system, visualized in Figure 2.2.

Figure 2.2: State of the art optimization based SLAM systems consist of a front-end and a back-end
block.

Graph based SLAM: Empirical evaluation and computational tractability being the key drivers of
SLAM research have enabled tremendous progress in reducing SLAM into a simpler, practical technol-
ogy [73]. Further, the SLAM problem can be modelled through different kinds of graph representations
such as Dynamic Bayesian Networks (DBNs), Factor Graphs & Markov Random Fields (MRFs). These
graph based methods have a sparse structure which makes them computationally efficient and faster
[43]. A DBN is a directed cyclic graph where as a factor graph is a bipartite un-directed graph, and a
MRF is simply a variant of the factor graph [86]. In this section, we will briefly describe factor graph op-
timization, also commonly known as graph-SLAM, full smoothing or smoothing and mapping (SAM).
Through this formulation, our focus majorly relies on a common graph SLAM variant, also known as
the pose-graph SLAM (discussed in the section 2.3). A graph based approach constructs a graph whose
nodes represent robot poses or landmarks and an edge between two nodes encodes a sensor measure-
ment that constrains the connected poses and the landmarks with the poses in its first step [39] using raw
sensor measurements. These constraints can be highly inaccurate since sensor observations are gener-
ally influenced by noise. Figure 2.7 presents a general factor graph representation of the SLAM problem
with landmarks. Once a graph has been created, the main challenge is to discover a node configuration
that is most consistent with the data through optimization. This necessitates the solution of a large-
scale error minimization issue. Thus, the graphical representation of the SLAM problem encouraged
researchers to solve the SLAM problem through non-linear sparse optimization.

2.3 Pose Graph Optimization

As compared to occupancy grids or feature maps, pose graphs are more abstract and general maps
that have recently gained a lot of interest in SLAM research. Subsequently, a variation to the SLAM
problem is the pose-graph SLAM problem, which avoids building an explicit map of the environment

11



Figure 2.3: Graph representation of a SLAM problem with landmarks: Circular nodes represent robot
poses ‘x’ (yellow) and landmarks ‘l’ (green). Edges represent three kinds of spatial constraints be-
tween the nodes - blue squares for odometric measurements ‘u’ between consecutive robot poses, violet
squares for constraints observed due to landmarks ‘z’ by the robot, and pink squares signifying loop
closures.

with the objective to estimate the trajectory of the robot given the odometry and loop-closing constraints
[43]. In addition to the advantages of graph based SLAM methods, pose slam offers ease while problem
solving since it does not build a map of the environment. However, it may fail to converge in case of a
significant number of false loop closures since it is not robust against outliers.

In this section, we will specifically focus on the optimization of pose-graph SLAM. While nodes
in a pose graph represent robot poses, edges represent spatial constraints between robot poses and can
be of two types - odometric constraints and loop closing constraints. Odometric constraints represent
edges between continuous robot poses representing information supplied by the robot odometry and the
remaining edges representing correspondences between non-continuous robot poses are known as loop
closing constraints. Typically, a pose-graph representation of the SLAM problem can be visualized by
Figure 2.4. Loop Closing constraints are key to the SLAM problem, because in absence of loop closures,
the robot would interpret the outside world as an infinite corridor. Through a loop closure event, a robot
informs itself that this corridor keeps intersecting itself, allowing it to better understand the topology of
the environment and thus find shortcuts between locations in its path [18]. It’s worth noting that explicit
landmarks or other environmental parameters aren’t included in the pose graph. Such information, on
the other hand, can be added to nodes in the graph, allowing the pose graph to describe occupancy
grids in 2D or 3D, feature maps, or any combination of those [86]. With this, the goal of pose graph
optimization reduced to minimizing the least squared error between all constraints present in the pose
graph through an optimal node configuration.

2.3.1 Non-Linear Least squares Optimization

A non linear least squares approach is used to fit a set of m observations with a model that is non-
linear in n unknown parameters (m > n) [87]. This method builds on the concept of iterative optimiza-

12



Figure 2.4: Representation of the pose-graph SLAM problem: Nodes correspond to robot poses ‘x’,
while edges correspond to spatial constraints, that is odometry ‘u’ in case of contiguous poses and loop
closures ‘y’ in all other cases. Each edge between poses xi and xj is defined with its error function eij
and the information matrix Ωij . These error terms arise as a result of the difference between the real
measurements yij and the approximated constraints y′ij .

tion, where it uses a linear approximation to estimate the model and iteratively modify the parameters.
Because an optimization problem is generally defined as finding the minimum of an objective function
F(x), we define a non-linear least squares optimization problem in equation 2.6. Here, we are not con-
cerned with the minimum value of the function F(x) but with the point x∗ where it achieves its minima.

x∗ = arg min
x

F (x) (2.6)

As mentioned in section 2.2.1, the key to solving the full SLAM problem through a pose-graph
representation is estimating the probability function described in equation 2.3. Given a set of odometry
and loop closure constraints, the solution seeks the optimal configuration of robot poses denoted by x∗.
This optimal solution is also known as maximum a posteriori or MAP estimate. The MAP estimate
attempts at evaluating the optimal pose configuration x∗ where the joint probability distribution P(x—u)
has the maximum value, hence seeking the mode of the distribution through the optimization problem
[86] visualized in equation 2.7.

x∗ = arg max
x

P (x|u) (2.7)

Intuitively, both equations 2.6 and 2.7 present the same idea despite of having different formulations.
F(x) in equation 2.6 can be defined as the sum of errors over all odometric and loop closing constraints
in the pose graph as shown in equation 2.8.

F (x) =
∑
〈i,j〉∈C

(eTij)(Ωij)(eij) (2.8)

The collection of index pairings between nodes i and j is denoted by C, the information matrix
between nodes i and j is represented by Ωij , eij is the nonlinear error function that describes how well

13



the poses xi and xj fulfil the constraint imposed by the measurement zij . Finally, the information matrix
Ωij and the error function eij are used to model each constraint.

Function F(x) is non-linear, that means it can not be expressed as a linear combination of two or more
elements and hence requires the application of special iterative approaches such as Gradient descent
[77], Gauss Newton [17], Newton’s method [34] and Levenberg-Marquardt [76] method. Approximat-
ing the error function with its first order Taylor function around the first initial guess is the general idea
behind each of these [43]. It is four stepped procedure that starts with fixing an initial guess xo of the
solution. Further, the objective function needs to be approximated as a convex or quasi-convex problem
for these iterative approaches to converge towards x∗ ([43], [86]). A convex optimization problem is
one in which we use iterative computations to identify a point that maximises or minimises the objec-
tive function [47]. On solving the convex optimization problem, the found solution x∗ may be a local
minima of the objective function. In order to find the global minima, these intermediate steps need to
be repeated until the point of convergence.

2.3.2 Sources of Relative Pose Measurement

The objective of a pose graph optimization is to estimate robot trajectory from relative pose mea-
surements.The relative pose measurements can be obtained through variety of methods including but
not limited to:

• Self Motion: Robotic motion in itself can be captured by on-board sensors such as wheel odome-
ters and Inertial Measurement Units (IMUs). Sensors that measure the rotation of a device’s
wheels are known as wheel odometers. Odometers are simple instruments used for measuring
distances travelled by cars, bikes, etc. Distances can be estimated by utilizing the number and
speed of wheel rotations, distances between set of two wheels and the difference in rates of both
wheel movements in simple calculations and mathematics [80]. IMU’s are self contained accel-
eration and orientation sensing electronic components and are a part of the sensor family. These
devices are typically comprised of triads of accelerometers, gyroscopes and sometimes magne-
tometers [22], enabling 6 to 9 DoFs that is it reports about 6-9 data values. Essentially, this
IMU data is related to orientation of the robot, velocity of movement & gravity, important for
navigation tasks [10].

• Scan Matching: Data association between two scans is called Scan matching [97]. In order to
solve the SLAM problem, it is important to learn rigid body transformations between robot poses
and maps - something that is enabled by scan matching algorithms. The scan matching approach
efficiently estimates the rigid transformation of the robot between two poses by matching sensor
scans acquired from distinct postures. Scanning is a fairly effective way for a mobile robot to
locate itself with respect to the given reference scans or maps since exploration sensors are typ-
ically quite precise and quick [52]. Thus, the goal of scan matching reduces to finding the best

14



estimate of a rigid body transformation (translation + rotation) given a scan and a map, or a scan
and a scan, or a map and a map [6].

• Sparse Feature Registrations: It is a method of obtaining relative pose measurements or corre-
spondences for accurate visual odometry estimation. Visual odometry plays a crucial role in the
context of SLAM since it allows detecting the position and orientation of a robot by examining
the associated camera images [64]. In this context, sparse feature registration is a technique that
allows building point correspondences between two images based on suitable features. Unlike
other methods of image registration that rely on intensity for matching image regions with suit-
able contrast, sparse feature based registrations register only high structured image regions by
establishing feature correspondences in one of the three ways - based on feature dimension &
categorization, feature correspondence definition, and on interpolation methods [51].

• Dense Point Cloud Reconstruction: 3D reconstructions from a single image are a hot topic in
Computer vision research since they not only allow identification and recognition of objects and
shapes, but also recover their full 3D shapes. Existing methods of reconstructions can be divided
into four distinct categories - Volumetric , Mesh, Point Cloud and implicit surfaces. In the context
of our Bird-SLAM approach, our focus is on point clouds since they are much more memory
efficient as compared to other techniques. Point clouds are simply a set of free data points in space
representing a 3D object or shape. Point cloud reconstructions are efficient alternatives to voxel-
based reconstructions since points are sampled on the surface of an object and thus can effectively
capture surface information in depth [54]. The general goal behind point cloud reconstructions is
predicting the underlying 3D object as 3D point cloud based on a single input image or a set of
input images.

2.4 Morphological Techniques

Thresholding is a common technique in image processing that selects an area of interest from an
image, ignoring the parts that we are not concerned with. However, the binary zones created by a basic
thresholding operation are distorted and full of noise. Thus, morphological techniques come in hand
while dealing with imperfections by taking in account the form and structure of the image.

These techniques are especially suited for binary images (and can be extended for gray-scale images
too) since they take into account relative positioning and ordering of pixels instead of their numerical
values [9]. In this context, morphological image processing is simply a set of non-linear operations that
deal with the shape or morphology of image features. Pre-requisites to understanding morphological
techniques also require a brief introduction to the structuring element. A Structuring Element is a
small binary image window used to analyze an image while applying morphological image processing
techniques. The structuring element is placed in all available locations in the image and compared to the
pixels in its immediate vicinity [9]. Structuring elements play in morphological image processing the

15



same role as convolution kernels in linear image filtering. When performing a morphological operation,
the origin of the structuring element is normally translated to each pixel position in the image, and
the points within the translated structuring element are then compared to the underlying image pixel
values [7]. The specifics of this comparison, as well as the impact of the result, are dependent on the
morphological operator used.

In this thesis, we will focus mainly on three types of morphological operations relevant to our Bird-
SLAM algorithm, namely - Opening, Closing & Hough line transform. Opening & Closing are com-
pound operations, meaning they are both derived from fundamental operations of Erosion [3] and Dila-
tion [2]. Below, we briefly describe Opening and Closing operations in simpler terms, interested readers
are recommended to read [42] for derivations and mathematical formulae.

2.4.1 Opening

It has an effect similar to that of erosion, i.e., preserving foreground regions with a similar shape to
this structuring element, or that can entirely include the structuring element while removing all other
foreground pixels areas [5]. However, the Opening operator is less damaging than erosion. Simply
put, an opening is defined as an erosion followed by a dilation, both of which are performed using the
same structuring element. As a result, the opening operator needs two inputs: an image to open and a
structural element. Since the Opening operator has removed minor specularities and texture fluctuations,
the resulting image has a more matt texture than the input image [5].

2.4.2 Closing

It is the dual of the Opening operator (simply opening performed in a reverse fashion), also derived
from the two fundamental operators mentioned above. Closing is simply dilation followed by erosion
and is similar to the dilation operator as it has the effect of preserving background regions that are
comparable in shape to this structuring element or that may entirely contain the structuring element
while removing all other background pixels areas [1]. Closing can be used to selectively fill in specific
areas of an image’s background. It is thus performed in cases where an appropriate structural element
can be located that fits well inside areas that should be retained but is not present inside regions that
need to be eliminated.

2.4.3 Hough Line Transform

Originally developed and patented by Paul V.C., the Hough transform is used to not only detect
complex straight lines in images, but can also detect specific shapes and objects in images. The Hough
concept requires understanding of four fundamental concepts - edge detection, mapping edge lines into
the Hough space, alternate representations of line, and line detection. Before we describe the four steps

16



Figure 2.5: Effect of the opening operator Figure 2.6: Effect of the closing operator

involved in the line detection process using Hough transform, it is important to understand the concept
of Hough space.

2.4.3.1 Hough Space

Lines in Cartesian coordinates are typically represented by two parameters, x & y. Equation 2.9
represents the general equation of a line in Cartesian space where a is the slope of the line, and b is its
intercept.

y = mx+ b (2.9)

Hough space, on the other hand is characterized by its slope and intercepts, both forming the hori-
zontal and vertical axes respectively. Therefore, the Hough transform uses the form in Equation 2.10,
which can be rewritten to Equation 2.11 to be similar to Equation 2.9.

r = xcosθ + ysinθ (2.10)

y = −cosθ
sinθ

x+
r

sinθ
(2.11)

Therefore, the Hough space has two dimensions and a line can be represented by a single point (r, θ)
in the Hough space.

2.4.3.2 Steps involved in line detection

We attempt at providing the readers with a brief overview to the steps involved in the detection of
complex straight lines through classical Hough transform.

• Edge detection: Edges in an image are defined as regions where the brightness or intensity of
pixels changes rapidly. Some common edge detection algorithms include Canny edge detector
[26], Sobel operator [91] and the Laplace operator [89]. The output of an edge detector is a

17



Figure 2.7: Mapping of a unique line from the Cartesian space to the Hough space.

binary image, with either 0s or 1s as pixel values also known as an edge image. This edge image
is fed as an input to the line detection algorithm.

• Mapping into the Hough Space: The Hough transform can be used to identify the parameter(s)
of a curve which best fits a set of given edge points (on an edge image). The principle is that
all lines that can pass through a point are mapped to that point [8]. One line on the edge image
produces a point on the Hough Space since a line is characterized by its slope a and intercept b.

(a) Two points po and p1 (b) All possible lines through po and p1

Figure 2.8: Transformation of two pointspo and p1 to two lines in the Hough space. The intersection of

both lines in The Hough space indicates the line passing through both points [8].

• Interpreting the accumulator: Once every edge point in the edge map is transformed to all
possible lines that could pass through that point, the areas where most Hough space lines intersect
is interpreted as true lines in the edge map. Area estimation required in this step is done via an
accumulator that covers the entire Hough space.

18



• Conversion of infinite lines to finite lines: Infinite lines are detected by interpretation of the
accumulator when all edge points has been transformed. The most basic way the detect lines is
to set some threshold for the accumulator, and interpret all values above the threshold as a line.
Since the classical Hough transform detects lines by parameters r and θ with no regards about its
length, the lines detected after thresholding are infinite lines. Several methods exist for the finite
conversion of infinite lines, interested readers are encouraged to explore the same in detail.

19



Chapter 3

Real Time Monocular Scene Understanding

Scene understanding has become an increasingly crucial task with the growth of robotics and au-
tonomous systems. As a challenging task in computer vision, modern scene understanding systems
leverage advances in context modelling, tracking, object detection, and many more [94]. The goal of
scene understanding is to give computers human-like vision, to be able to perceive precise location and
depth of objects. Monocular vision for visual scene understanding has recently gained popularity by
utilizing neural networks for direct depth estimation. Most initial works in monocular depth estimation
such as [30], implicitly learn depth cues through supervised learning, by minimizing a regression loss.
Further, point clouds come in hand to represent information regarding geometrical context of the image
and inter object occlusion in 3D for visual scene understanding. A dense point cloud is thus crucial
for tasks such as navigation and planning since it encompasses representation of smaller features and
texture details.

Point clouds are directly unattainable from monocular cameras and thus depth maps become critical
for obtaining a point cloud from monocular cameras. Depth maps simply contain pixel wise depth in-
formation, that can be extrapolated to obtain point clouds in 3D. Thus, this chapter begins by describing
the problem statement for real time scene understanding of a busy road in bird’s eye view in section. 3.1.
Through this problem statement, it introduces the major steps involved in segmentation, 3D reconstruc-
tion and refinement of point clouds. Further, sub-components of section 3.2 explain the segmentation
architecture, bird’s eye view projection, refinement of an occupancy grid, and individual point cloud
reconstruction in detail.

3.1 Problem statement

Given a sequence of monocular input images acquired from a camera mounted on top of a moving
vehicle on a road with dynamic traffic participants and static road features (for e.g. lane boundaries), the
goal is to obtain a 3D point cloud reconstruction of individual lanes in a global ego frame of reference.

1. Input: Sequence of monocular RGB images I = {I0, I2, ...It′} taken from the front camera of
ego vehicle from time t = 0 to time t = t′.

20



2. Output: Utilizing sequential images from the set I , the goal is to compute individual 3D point
clouds as P = {P1, P2, ...Pn} for each lane in the set of lanes L = {L1, L2, ...Ln}, where n
is the number of lanes in the road. Here, each point cloud Pi is made up of singular points p1i,
p2i, p3i defined by individual 3D coordinates {x, y, z}. In definition, every singular point pni =
{xni, yni, zni}.

Therefore, with the aim of obtaining 3D point cloud reconstructions of individual lanes P1, P2, ...Pn,
the framework includes tasks such as segmentation, bird’s eye view projection, refinement, processing,
etc. First, Inplace-ABN, a segmentation architecture [74] is used to obtain segmented images of the
road and lane boundaries from monocular RGB images in the first step. These segmented images
are then projected to Bird’s eye view through formula 3.1 [82] to obtain their respective occupancy
grids. Feature registrations are then applied for geometric transformations between images in order to
compare the information present in images obtained from different measurements. Further, filtering
through Opening and Closing operations enables removal of noise and refinement from the registered
images. Filtered occupancy grids are then fed as inputs to a pre-trained supervised E-Net architecture
[65] to obtain road and lane boundary point clouds in their respective occupancy grids. Finally, several
morphological post processing techniques are applied to get individual lane point clouds in the camera
frame. Figure 3.1 explains the steps involved in such a point cloud reconstruction from RGB images.

These lane point clouds are used by BirdSLAM in it’s SE(2) (Sec. 4.4.3.5) and SE(3) approach
(Sec. 4.4.3.4) to fix lateral drifts in the optimization as explained in Sec. 4.2.2.2.

Figure 3.1: Pipeline for Bird’s eye view point cloud reconstruction of individual lanes from RGB images

21



3.2 Summary of Components

3.2.1 Segmentation network

Segmentation in computer vision refers to partitioning an image down into two or more sub-groups.
Specifically, each pixel in a digital image is labelled as one of the many defined subgroups. Given an
input image of an aerial view of a road, the goal of segmentation in this study is to clearly distinguish
between road regions and lane boundaries for navigation, planning and control purposes.

Many recent efforts based on modern backbone architectures must limit training batch size to a single
batch per GPU, which is partly due to poor memory management in some deep learning frameworks.
Obviously, network depth/width significantly correlates with GPU memory needs, and given hardware
memory constraints, trade-offs must be made to balance feature extractor speed vs. application-specific
characteristics such as network output resolution or training data size. The InPlace-ABN architec-
ture [74] was thus designed to increase the efficiency of training memory for memory demanding and
time-consuming tasks such as semantic segmentation. This paper develops a computationally effective
solution for checkpointing memory management in the context of Batch Normalization layers, which
offers a potential memory throughput of up to 50% and up to 75% on semantic segmentation during
training. With images from the image set I , the output of this segmentation architecture are individual
segmented images of road and lane boundaries.

3.2.2 Bird’s eye view projection

Bird’s eye view, also known as aerial view, is observed from an elevated location from those con-
structed from an imagined bird’s perspective. Thus, projection of an image from a front camera view to
bird’s eye view requires the representation of an image in a shifted coordinate system. Thus, we are in-
terested in the information of each pixel location to relocate it to a new pixel location. This technique of
projection to the bird’s eye view can be classified under digital image processing as geometrical image
modification.

With the segmented images of road and lane boundaries obtained in the previous step, we project
these segmented images in the bird’s eye view to obtain 2D occupancy grids. Occupancy grids are
simply maps of the environment consisting of binary variables that represent the presence of obstacles
in the environment. Thus, bird’s eye view projection in its initial stage requires information of the
location of each object in an image to perform 3D object localization by estimating orientation of the
object and ground height. The camera intrinsic calibration matrix K transforms 3D camera coordinates
to 2D homogeneous image coordinates. Using this known camera height H, a road point xcp in the
image space can be back projected in the camera coordinate frame using the matrix K by equation 3.1
first proposed in [82]. Simply, this equation back-projects the bottom of a 2D bounding box xcp to 3D
through the ground plane {H, n}.

22



Xc
p =
−HK−1xcp
n̄TK−1xcp

(3.1)

3.2.3 Refinement of point clouds

E-Net [65] emerged as a promising architecture for semantic segmentation (visual scene understand-
ing) in real time on low-power mobile devices. Specifically, in this study, this architecture proves to be
helpful for refining existing occupancy grids that suffer from data loss due to occlusion and truncation
caused by dynamic objects in the scene.

Here, with the inputs as occupancy grids generated in 3.2.2, training is performed on E-Net [65] in
a fully supervised fashion on annotated lane point clouds. The output is a refined, smooth and fully
formed occupancy grid that does not suffer from any inconsistency and data loss.

While training in a fully supervised fashion, we are faced with a problem of generating and extracting
training labels from even occluded sections of the scene since we want a complete scene understanding.
Some autonomous driving benchmarks for KITTI provide semantic information along with lidar scans
to provide extra information about the scene, however our requirement was for more robust ground truth
labels for accurate training. Moreover, lidar information was also not available for all the corresponding
road points in a scene.

To generate the ground truth labels for road points, we started with raw lidar data or Monodepth2[38]
to initialize our pointclouds corresponding to the road label. The points corresponding to road label
were obtained through ground truth semantic segmentation labels wherever available. If ground truth
semantic segmentation label was not available, we used state-of-the-art semantic segmentation networks
[75] to obtain the same. We got this pointcloud corresponding to road in camera coordinate frame. To
overcome a particular frame’s occlusion, we aggregated /registered all the pointclouds over a window
of 50 frames with the help of odometry information that was available in the KITTI dataset for those
particular frames. Few different frames of the same scene over close time intervals cover many of
the occluded areas that might not have been covered in a single frame, resulting in a dense noise-free
pointcloud of road in that scene. We discarded noisy points greater than a distance of 5m from the car.

The dense pointcloud for roads that we obtained was then projected to an occupancy grid in bird’s
eye view so that it could be compared with the output from E-Net.

E-Net consists of a fast, compact encoder-decoder architecture that is optimized for fast inference
and accuracy. The typical E-Net architecture consists of an initial block, followed by several bottleneck
blocks where conv is either regular, dilated, or full convolution. Interested readers can refer to the
original paper for more details on the architecture [65].

E-Net’s superior performance is particularly driven by a few design choices that make it suitable
for real time semantic segmentation on low powered devices. Most semantic segmentation architec-
tures including the well-known U-Net architecture [72] downsample images in order to have a bigger
receptive field allowing the filter to capture more context. Since downsampling requires equally strong

23



upsampling, it becomes a computationally expensive task. Of the few approaches that have been pro-
posed to tackle this problem, E-Net relies on saving indices of elements chosen in max pooling layers
and using them to produce sparse upsampled maps in the decoder, proposed originally by the authors of
SegNet [13]. Further, E-Net’s first two blocks significantly reduce the input size using only a small set
of feature maps which enables easier and faster processing of input frames, thus optimizing the network
in its early stage. However, it is important to understand that rigorous downsampling would hinder in-
formation flow in the initial layers of the network. Therefore, an approach similar to the one presented
in VGG architectures [79] is utilized. Here, the inference time is increased by 10 times by performing
pooling operations parallelly with convolutions, and finally concatenating the resulting feature maps.

Unlike the SegNet architecture consisting of a symmetric encoder-decoder architecture, the authors
in ENet proposed to decrease the size of the decoder since its only function is upsampling and fine-
tuning. The intuition behind this design choice was also confirmed by experiments replacing all ReLUs
in the network with PReLUs, something that had a positive impact on the overall results.

3.2.4 Point cloud reconstruction of lanes

Once the occupancy grids are refined and completed by E-Net in section 3.2.3, a number of morpho-
logical post processing techniques including Opening, Closing & Hough line detection are performed.
Further, conversion of these occupancy grids to individual lane point clouds requires re-projection in the
global frame. A 3D point cloud reconstruction of these 2D occupancy grids in global view essentially
requires coordinates of the occupancy grid to first compute a 3D point cloud representation in the local
frame. Utilizing a camera transformation matrix T, it is then able to compute the point cloud in global
ego car’s frame. This camera transformation matrix is represented by equation 3.1 where K stands for
camera intrinsic parameters, R for rotation of camera in current frame with respect to the starting frame
and t for translation of camera in current frame with respect to the starting frame.

T = K[R|t] (3.2)

Suppose a sequence of images taken from the front camera of an ego vehicle are defined by I =

{I1, I2, ...Ix}. In order to reconstruct individual lane point clouds in the global frame, point clouds in
the local frame generated using coordinates of the 2D occupancy grid are utilized. with an ego start
of Ii till an ego end of Ij where i ≥ 1 and j ≤ x, the input is a set of images Iij = {Ii, Ii+1, ...Ij}.
A point cloud P ′m for the mth lane in the local frame is converted to the global frame Pm using the
transformation matrix. Equation 3.2 describes this conversion within a time duration of t = {i, j}.

Pm(i,j) = T ∗ P ′m(i,j) (3.3)

The local point cloud P ′m(i,j) is a concatenation of several point clouds obtained in the defined time
duration, i.e., between frames i and j as shown in equation 3.4.

24



P ′m(i,j) = P ′m,i + P ′m,i+1 + ...+ P ′m,j (3.4)

Finally, using individual lane points in the local frame over a sequence of images within a defined
time duration, we obtain a global point cloud for each lane represented by Pm(i,j) wherem = 1, 2, 3...n.
These individual lane point clouds represented by P1(i,j), P2(i,j), P3(i,j), ..., Pn(i,j) help in visual under-
standing of a scene captured between camera frames i and j, essential for tasks in robotics and automa-
tion.

3.3 Experiments & Results

3.3.1 Dataset

Our experiments are performed over the KITTI Tracking sequences dataset [4], one of the subsets
of the KITTI dataset [37]. KITTI Tracking sequences consists of 21 training sequences and 29 test
sequences taken from the front-view camera of a car in motion. Ground truth labels are then obtained
from the KITTI Raw dataset [] that contains annotated images that help in supervision, further avoiding
the bias.

3.3.2 Qualitative Results

Real Time Monocular Scene Understanding pipeline is a part of the overall BirdSLAM framework
that we will be exploring in Chapter 4 as described in the thesis structure. For this reason, we will
be showing mainly the Qualitative Results on how the Real Time Monocular Scene Understanding
Pipeline works and it’s extensive analysis. Quantitative results on how the overall BirdSLAM framework
compares to other state-of-the-art SLAM systems is shown in Chapter 4.

3.3.2.1 Real Time Monocular Scene Understanding Pipeline

3.3.2.1.1 Input images The KITTI dataset consists of car driving sequences, where each sequence
is made up of a number of individual frames, or RGB images. Each RGB image is fed as an input to our
real time monocular scene understanding pipeline. Figure 3.6 contains the RGB image corresponding to
frame 151 of the 18th sequence in the KITTI tracking dataset. For demonstrative purposes, each section
of this chapter will deal with results corresponding to this particular frame of the said sequence.

3.3.2.1.2 Segmented images The RGB images when fed to the segmentation network as described
in 3.2.1 outputs semantically segmented images as shown in figure 3.3. Semantic segmentation refers to
the assignment of every pixel of an image corresponding to a particular class label with the same pixel
value. Simply, it treats multiple objects of the same class as a single entity. For instance, each object

25



Figure 3.2: KITTI tracking sequences dataset: Frame 151, Sequence 18

corresponding to the class “car” is associated with dark blue pixels, “road” regions are associated with
violet pixels, “lane boundaries” with white pixels, “static signboards” with yellow pixels, and so on.

Figure 3.3: Semantically segmented image of Frame 151, Sequence 18

3.3.2.1.3 Bird’s eye view projection Consider a dynamic scene with multiple moving cars and sta-
tionary road features as in the case of sequences recorded from the front camera of an ego car. Such a
scene experiences severe data loss due to occlusions and truncations caused by moving cars. Thus, the
real time monocular scene understanding pipeline solves the problem by reconstructing the entire scene
of the corresponding frame. It does so by utilizing the segmented images obtained in the previous sec-
tion. Here, these segmented images are projected to the Bird’s eye view to obtain 2D occupancy grids
as discussed in section 3.2.2. Figure 3.4 shows the lane boundary occupancy grids and road occupancy
grids in top view.

26



(a) Lane boundary occupancy grid (b) Road occupancy grid

Figure 3.4: Occupancy grids for frame 151, sequence 18

3.3.2.1.4 E-Net Occupancy grids obtained in the previous section undergo a number of refinement
procedures including feature registrations and filtering operations before being fed as an input to the
supervised E-Net architecture. Further, the output point cloud of this supervised E-Net undergoes mor-
phological post processing techniques for further refinement and procurement of individual lane point
clouds. Figure 3.5 shows the input and output of the E-Net architecture.

(a) Refined input to E-Net (b) Output of E-Net after post-processing

Figure 3.5: Input and Output to the E-Net architecture for frame 151, sequence 18

3.3.2.1.5 Individual lane point clouds As described in section 3.2.4, output of the E-Net is con-
verted to individual lane point clouds in the global frame using the camera transformation matrix and
equation 3.2.

27



Figure 3.6: Individual Lane Point Cloud Reconstruction for a portion of Sequence 18. The particular

frame in bird’s eye view is for frame 151 in sequence 18.

3.3.2.2 Extensive E-Net Results

Monocular Scene understanding pipeline described in this chapter utilizes the E-Net architecture to
obtain refined individual lane point clouds from distorted occupancy grids. Simply, the popular E-Net
framework here works by further refinement and completion of occupancy grids obtained after Bird’s
eye view projection. Table 3.1 shows some of the input RGB images compared with their ENet output
lane point clouds. These outputs are obtained after completion and refining by E-Net, before any post-
processing is performed.

Experimental results demonstrate the effectiveness of E-net in handling a variety of use cases, from
shadows in RGB input images 1, 4, and 5 of Table 3.1 to occlusion and varying light intensities in RGB
input image 2, 3, and 6.

28



S.No RGB input image E-Net output

1

2

3

4

5

6

Table 3.1: Extensive ENet results

29



Chapter 4

BirdSLAM

4.1 Problem Formulation

Given a sequence of monocular images Ii, i ∈ 1 · · ·N, captured from an urban driving platform,
with the camera at height H above the ground, the task of BirdSLAM is to estimate:

1. The ego motion of the vehicle Xi = (xi, zi, θi) at each time step, on the ground plane (assumed
to be the XZ plane)

2. An estimate of the motion of all other traffic participants Xj
i = (xji , z

j
i , θ

j
i ), j ∈ 1..Mi, where Mi

is the number of traffic participants detected in image Ii.

3. A mapM of the environment comprising static features on the road plane (such as lane markings
etc.).

The overall pipeline of BirdSLAM can be seen in Fig. 4.1, where the input images are first passed
through an ego motion estimation pipeline (such as an off-the-shelf SLAM system). The resulting es-
timates are scale-compensated by using single-view metrology cues. In parallel, traffic participants
and static scene points on the ground plane are mapped to bird’s-eye view by a pseudolidar representa-
tion [93]. This constitutes the frontend of BirdSLAM.

The backend of BirdSLAM comprises a novel multibody pose-graph formulation that employs con-
straints of several types (CC: camera-camera, CV: camera-vehicle, CP: camera-static map point, VV:
vehicle-vehicle) and optimises the pose-graph in real-time to obtain globally-consistent, scale-unambiguous
multibody SLAM estimates. In the following subsections, we explain each of these components in de-
tail.

30



Figure 4.1: Pipeline: The Ego Motion and Static Map Initialization block illustrates the generation of
static road points in 3D, in addition to how we obtain camera trajectory in metric scale. The Dynamic
Object Localization block illustrates our approach to obtain two independent sources of localization
of other dynamic objects in frame in Birds-Eye View (BEV). Detailed explanation, and mathematical
representation of these blocks can be found in Sec. 4.2.1.3. The Backend Pose Graph Optimization
block uses the results obtained from Ego Motion and Static Map Initialization block , lane pointclouds
obtained from Chapter 3 (the static lane pointclouds marked in pink circles in the pose graph diagram)
and the Dynamic Object Localization block to create a pose graph as illustrated. In the pose graph for-
mulation, the red, black, green, and blue arrows show the CC, VV, CV and CP constraints as described
in Sec. 4.2.2.2.

4.2 Summary of Components

4.2.1 BirdSLAM: Frontend

4.2.1.1 Static Map Initialization

Accurately localizing static features in a scene is critical to the success of a feature-based monocular
SLAM system. We use ORB features to obtain reliable candidate “stable” features, and prune all those
features that do not lie on the road (The “road” region is found by running a lightweight semantic
segmentation network [75] over the input image). Using the known camera height H , a road point xcp
in image space can be back-projected into the camera coordinate frame as follows (K ∈ R3×3 is the

31



camera intrinsic matrix, and n ∈ R3 is a unit normal to the ground-plane (y = 0))1:

Xc
p =
−HK−1xcp
nTK−1xcp

(4.1)

4.2.1.2 Scale-Unambiguous Ego-Motion Initialization

We use ego-motion estimates from an off-the-shelf SLAM system [59] to bootstrap our system.
Typically, such estimates are scale-ambiguous. However, upon performing the static map initialization
for feature points on road plane using Eqn. 4.1, we obtain map points in metric scale (since the camera
heightH is known in meters; it resolves scale-factor ambiguity). We use a moving-median filter to scale
ego-motion estimates to real-world units (typically meters). This provides us with a reliant initialisation
for ego motion which is used by the pose-graph as illustrated in Fig. 4.1 and explained in Sec. 4.2.2 to
feed the camera nodes and edges.

4.2.1.3 Dynamic Object Localization

Dynamic traffic participants are the root cause of several monocular SLAM failures. In BirdSLAM,
we explicitly account (and track!) other vehicles in the scene to provide state estimates that can be
directly fed to a downstream planning module. In particular, we employ a monocular depth estimation
network [38] and compute a pseudolidar representation [93] using the output depth map. The pseudol-
idar output is then passed to a Frustum-PointNet [67] to localize vehicles in 3D (see Fig. 4.2). We back
project these vehicles localized in 3D to bird’s-eye view using Eqn. 4.1. We also make use of Eqn. 4.1 on
the bottom-center of 2D detection of vehicles in the camera frame as a second unique source of dynamic
object localization.

The above module is used to initialize our pose-graph defined in SE(2) in Sec. 4.4.3.5. For initializa-
tions to our pose-graph in our baselines in SE(3) in Sec. 4.4.3.4, we make use of the shape-prior based
approach [61, 60, 12] for vehicle localizations in the camera’s coordinate system.

4.2.2 BirdSLAM Backend: Pose-Graph Optimization

We present a lightweight online pose-graph formulation that incorporates constraints from multiple
entities in the scene (egovehicle, other vehicles, static map features). Each of these constraints con-
tributes a cost-function to the optimization process, which we explain below.

1Flat-earth assumption: For the scope of this paper, we assume that the roads are somewhat planar, i.e., no steep/graded
roads on mountains. Consequently, we take normal vector n = [0,−1, 0] in camera frame according to KITTI’s [37] con-
ventions where positive x-axis is in right direction, positive y-axis is in downward direction and positive z-axis is in forward
direction.

32



Figure 4.2: Vehicle Localisation in bird’s-eye view: The left image shows the 3D bounding box output
and the right image shows the tight bounding boxes for the cars we obtain in bird’s-eye view in camera
frame in metric scale from the procedure described in Sec. 4.2.1.3. The camera center for the right
image is at (0,0) of XZ plane facing towards positive Z axis.

4.2.2.1 Cost Function

Following g2o terminologies, the estimate TW
S ∈ L characterizes pose for node S in global frame

W . Here, L represents the Lie Group in which the respective transformations are defined which could be
SE(2) or SE(3). The measurement TS

D ∈ L denotes a binary-edge from source node S to destination
node D effectively constraining the respective estimates. This can be represented mathematically as the
following transform:

ΥSD = (TS
D)−1(TW

S )−1(TW
D ) (4.2)

We also use unary-edges between agent node and stationary scene-landmarks p located at XW
p ∈ R3

in the global frame W . Here, the agent A could be ego-camera or the dynamic object in scene. This
does not constrain the orientation of the agent. The resultant transform between a agent node A with
translation vector trWA ∈ R3 and a world landmark p in global frame can be shown as:

ΨA = trWA −XW
p (4.3)

Our formulation also includes a positive semi-definite inverse covariance matrix or an information
matrix in each edge’s parameterization, shown as ΩE ∈ RN×N where N ∈ Z is the number of degrees
of freedom the specific edge E affects. We exploit this to convey confidence of each constraint. We do
so by scaling ΩE upto the effective information matrix ΩE by a factor λ ∈ R as:

ΩE = λΩE (4.4)

From the transforms in Eqn. 4.2 and Eqn. 4.3, we obtain es ∈ R1×N by extracting the translation
vector directly, and the yaw angle(for SE(2)) or the axis-angle rotations(for SE(3)). Given the in-
formation matrix Ωs ∈ RN×N , we obtain the final cost function for either a unary or a binary-edge
as:

33



Fs = (es)(Ωs)(es)T (4.5)

4.2.2.2 Constraints

• Exploiting dynamic cues from vehicles in the scene: We categorize our pose-graph into three

sets of relationships denoting camera motion, vehicle motion and camera-vehicle constraints.

Each of these is obtained as a camera-camera, vehicle-vehicle and camera-vehicle edge respec-

tively in consecutive time instants t − 1 and t. We obtain the final constraint for an m vehicle

scenario as:

FD = FC(t−1),C(t) +
m∑
j=1

Fj
V (t−1),V (t)

+

m∑
j=1

Fj
C(t−1),V (t−1) +

m∑
j=1

Fj
C(t),V (t)

(4.6)

• Exploiting static cues using landmarks in the environment: We also make use of static-cues

from the environment to improve agent motion by constraining with respect to the lane. We obtain

a dense point-cloud Pl for the road plane segregated for each lane based on Sec. 4.3.1. We define

a unary-edge between an agent A(Ego-camera or vehicle in scene) and each point p on the lane

as shown by Eqn. 4.3.

FS =
∑
p

FA,p∀(p ∈ Pl) (4.7)

Collectively, the final cost is obtained as the sum of the above Eqn. 4.6 and Eqn. 4.7.

F = FD + FS (4.8)

The scale of the information matrix in Eqn. 4.4 is such that higher the scaling(λ), more effective the

corresponding cost’s observation is going to be. Thus, edges with relatively more reliable observation

are given higher weights while those that bring in higher degrees of error are weighed lower. Thus, CC

and CP constraints have the highest weight of 10000 while V V constraints have the lowest of 1. The

weight initialization provided to CV constraint ranges between 1000 and 10. The applied weight is

gauged according to the depth of the vehicle from the camera. While pseudolidar [93] from Sec. 4.2.1.3

dominates at lower depths, Eqn. 4.1 to 2D vehicle detection bottom-center has an upper hand for far

away objects. If the initial ego-motion initialization from the off-the-shelf SLAM systems like ORB

34



is erroneous, the constraints with the stationary points shown above helps to improve the ego-motion

initialization.

4.3 Monocular Scene (Layout) Understanding

4.3.1 Generating Amodal Lane Point Clouds in Camera Frame

The entire process of Generating Amodal Lane Point Clouds is explained in detail in Chapter 3. A

brief summary of the pipeline explained in Chapter 3 is given below.

We initialize point clouds in the camera frame using a monocular depth estimation network [38].

Using odometry over a window of W frames, we aggregate sensor observations over time to generate a

more dense and noise-free point cloud. To tackle noise in monocular depth estimations, we pick points

up to a depth of 5m from the camera and then aggregate depths over a larger window size (≈ 40 − 50

frames) to compensate for its narrow field of view. This dense point cloud is then projected to an

occupancy grid in the bird’s eye view. We use a state-of-the-art semantic segmentation network [75]

to segment each frame and aggregate the ”road” and ”lane boundary” prediction point clouds into

separate occupancy grids (see Fig. 4.3). To achieve more robustness, we apply additional filtering on

both of the above occupancy grids by retaining only the patches with more foreground cells than a given

threshold in its m×m neighborhood.

We feed these ”road” and ”lane boundary” occupancy grids into ENet [66] to get amodal ”road”

and ”lane boundary” point clouds in their respective occupancy grids. The above method is especially

useful when occlusion from dynamic objects in the scene hinders input data generation. We further apply

morphological post-processing techniques like opening and closing, followed by hough line transform.

We get segregated amodal lane point clouds in the camera frame in an occupancy grid for each monoc-

ular image as shown in Fig. 4.3. These lane point clouds are used by our SE(2) (Sec. 4.4.3.5) and SE(3)

approach (Sec. 4.4.3.4) to fix lateral drifts in the optimization as explained in Sec. 4.2.2.2.

35



Figure 4.3: Row 1: A frame in KITTI with 3 lanes, one of the lanes being occluded due to obstructions.
Row 2, Col 1: ”Lane Boundary” occupancy grid pointcloud in bird’s-eye view. Row 2, Col 2: ”Road”
occupancy grid pointcloud in bird’s-eye view. Row 3, Col 1: Lane Pointcloud output in bird’s-eye view
without ENet. Row 3, Col 2: Amodal Lane Pointcloud in bird’s-eye view obtained after following
procedure in Sec.4.3.1.

36



Figure 4.4: Qualitative Results: Visualizations of ego (black colored camera) trajectories and car object
trajectories(red and blue color) for some of the KITTI sequences, shown along with surrounding lidar
points in metric scale. Some of the results were obtained on very challenging sequences like curved
trajectories, occluded detections etc. One such snapshot for a time instance is shown on the right for
sequence 20 which had big turns in its path and some of the tracked cars were far away and occluded.

4.4 Experiments and Results

4.4.1 Dataset

We perform experiments over several long KITTI-Tracking sequences [37]. We get ground truth

localization to vehicles from the labels available with the dataset and the ground truth ego-motion from

the GPS/IMU data given with the dataset.

4.4.2 Error Evaluation

We compute Absolute Translation Error(ATE) as the root-mean-square of error samples for each

vehicle’s individual frames, including the ego-vehicle in an SE(2) world. Even though the approaches

evaluated in Table. 4.1 and Table. 4.2 perform SLAM in SE(3), we project their estimated trajectories

onto the ground-plane and compute their error in SE(2) setting for a fair comparison with the results of

Sec. 4.4.3.5.

37



Table 4.1: Absolute Translation Error (in meters) for localised vehicles in scene in bird’s-eye view map,
computed as root-mean-square error across the 2D axes.

Absolute Translation Error (RMS) in Global Frame (meters)
Seq No. 2 3 4 5 10 18 20
Car ID 1 0 1 2 31 0 1 2 3 12 122

Nair et al. [62] 5.01 1.61 4.99 2.14 21.64 3.99 1.29 3.45 2.4 9.08 12.86

Namdev et al. [63] 6.35 13.81 11.58 11.18 4.09 10.08 3.77 5.93 3.72 25.19 23.76

Ours Sec. 4.4.3.4 6.02 2.20 2.24 1.77 1.76 3.99 1.21 2.86 1.23 8.96 13.19

CubeSLAM [96] − − − − − − 1.89 2.43 7.17 − −
Ours Sec. 4.4.3.5 2.09 2.37 2.05 2.34 1.98 3.03 1.6 2.76 1.6 8.61 10.12

4.4.3 Approaches Evaluated

4.4.3.1 Nair et al. [62]:

A monocular multibody approach in SE(3) with a batch-wise pose-graph optimization formulation

that resolves relationships with dynamic objects as a means of performing SLAM.

4.4.3.2 CubeSLAM [96]:

A monocular approach that unifies 3D object detections and multi-view object SLAM pipelines in a

way that benefits each other.

4.4.3.3 Namdev et al. [63]:

A monocular multibody VSLAM approach that obtains motion for dynamic objects and ego-camera

in a unified scale. The non tractable relative scale that exists between the moving object and camera

trajectories is resolved by imposing the restriction that the object motion is locally linear.

4.4.3.4 Batch Optimized Baseline in SE(3) with Scale-ambiguous ORB Odometry:

A monocular multibody approach in SE(3) similar to Nair et al. [62] but the camera nodes are fed

with scale-ambiguous ORB [59] initialization. We show that the optimizer itself is able to pull scale-

ambiguous odometry to metric scale without relying on any prior scale correction like Sec. 4.2.1.2. We

incorporate stationary landmarks into this pipeline in the form of a dense lane point cloud for each lane

obtained from Sec. 4.3.1 applied in a batch version to correct for the lateral drift contributed to by the

relatively erroneous ego-motion initialization.

38



Table 4.2: Absolute Translation Error (in meters) for ego motion in bird’s-eye view map, computed as
root-mean-square error across the 2D axes.

Absolute Translation Error (RMS) in Global Frame (meters)
Seq No. 2 3 4 5 10 18 20
No. of Frames 67 123 149 101 249 141 414

Nair et al. [62] 2.30 1.96 6.49 1.60 10.05 2.40 8.85

Namdev et al. [63] 6.24 11.49 11.12 4.08 10.05 3.96 24.38

Ours Sec. 4.4.3.4 2.05 1.96 1.89 2.22 3.16 2.36 9.05

CubeSLAM [96] − − − − − 2.99 −
Ours Sec. 4.4.3.5 2.25 1.78 6.60 1.58 2.99 1.60 8.81

4.4.3.5 Incremental Approach in SE(2) with Scale-Initialized Odometry:

A variant of the multibody monocular pose-graph based optimization pipeline defined in an SE(2)

world. This approach optimizes for multiple objects in each frame in an incremental manner. There

is a feedback of “optimization results” back as the input to the optimizer in the next iteration in this

approach. The parameterization of the pose-graph optimizer reduces quite considerably in this approach

when compared with Sec. 4.4.3.4 as we now function on a world governed by 3 degrees of freedom as

opposed to 6.

4.4.4 Qualitative Results

We obtain accurate localizations to vehicles in the camera’s view using Sec. 4.2.1.3. The results

have been illustrated as tight and accurate 3D bounding boxes obtained to the vehicles in Fig. 4.2.

Fig. 4.4 illustrates the trajectories obtained after pose-graph optimization led to accurate bird’s-eye view

mappings of the ego car and the dynamic vehicles localized in the scene in a stationary world frame.

Despite having to cope with a high error contributed to by the motion model predictor from Sec. 4.2.1.2,

we obtain close to ground truth bird’s-eye view mapping post-optimization.

4.4.5 Quantitative Results

Table. 4.2 and Table. 4.1 presents the quantitative performance on a comparative footing for the

ego car and the vehicles localized in the camera’s scene respectively. Our batch-version with scale-

ambiguous odometry initialization showcases a much superior performance compared with other batch-

39



version, such as Namdev et al. [63] and Nair et al. [62]. Our batch-approach beats them for all but

one vehicle shown in Table. 4.1. On the incremental version’s front, we compare our bird’s-eye view

approach with the corresponding baseline defined in SE(3) as well as CubeSLAM [96], whose errors

are computed accordingly after running the codebase released by the respective authors on the particular

sequence for which the input data and the tuned parameters(for that sequence) were made available.

While the performance is comparable between the SE(3) as well as the bird’s-eye view approach, we put

ahead a much superior performance with respect to CubeSLAM [96]. This supports the statement that

a bird’s-eye view SLAM approach can potentially perform as well as its SE(3) counterpart.

Table 4.3: Analysis over the contribution of each type of constraint to the final cost.

Seq No. Car ID
Absolute Translation Error (RMS) in Global Frame (meters)

Without CC Without CV Without VV Without CP With all

2
1 3.41 1.96 1.86 1.95 2.09

Ego 2.95 2.25 2.25 2.15 2.25

3
0 2.35 2.40 2.69 2.46 2.37
1 2.74 2.05 2.23 2.12 2.05

Ego 2.73 1.78 1.78 1.96 1.78

4
2 4.52 2.45 2.26 2.58 2.34

Ego 6.82 6.60 6.60 6.42 6.60

5
31 3.43 2.01 1.98 1.98 1.98

Ego 3.05 1.58 1.58 1.57 1.58

10
0 15.72 2.81 2.99 2.98 3.03

Ego 15.43 2.99 3.52 3.00 2.99

18

1 1.27 1.65 1.30 1.50 1.60
2 2.90 2.77 2.84 2.96 2.76
3 1.63 1.82 2.13 1.74 1.60

Ego 2.25 2.21 2.21 2.24 2.21

20
12 12.35 8.75 9.33 8.69 8.61
122 17.65 10.32 10.57 10.09 10.12
Ego 13.85 8.86 8.86 8.88 8.86

4.4.6 Ablation Studies on Real-Time Approaches

4.4.6.1 Contribution by Individual Constraints

We analyze each constraint’s contribution as summarized in Sec. 4.2.2.2 by computing the final error

after allotting zero weight to individual constraints, effectively removing its influence on the optimiza-

tion. The observations are presented in Table. 4.3. Since the CC constraints are given high weight, as

explained in Sec. 4.2.2.2, the removal of this constraint results in the deterioration of performance for

ego-motion. It can also be seen that, through the CP constraints, the stationary points help enhance

ego-motion in most cases. The CV edge that primarily utilizes the pseudolidar [93] based localization

ensures that the relation between the ego-motion and all the vehicles in its scene remains synchronized.

40



Table 4.4: Performance of the optimiser as a function of weight given to the landmark based constraints
relative to the same for ego motion [column 3 - 5]. Performance of the optimiser with respect to the
threshold set for the static feature landmarks on their depth from the camera [column 6 - 10].

Seq No. Car ID
Absolute Translation Error (RMS) in Global Frame (meters)

Weight to CP Depth Threshold T (m)
Low Medium High 12 15 18 20 ∞

2
1 2.14 2.09 3.15 2.27 2.40 2.14 2.09 2.00

Ego 2.16 2.25 2.82 2.36 2.40 2.32 2.25 2.28

3
0 2.46 2.37 2.35 2.31 2.37 2.31 2.37 2.40
1 2.12 2.05 2.76 2.05 2.10 2.14 2.05 2.07

Ego 1.96 1.78 2.76 1.80 1.82 1.80 1.78 1.87

4
2 2.17 2.34 4.67 2.54 2.34 2.36 2.34 2.26

Ego 6.42 6.60 5.72 6.59 6.42 6.58 6.60 6.45

5
31 1.98 1.98 2.05 1.98 1.98 1.98 1.98 1.90

Ego 1.60 1.58 1.67 1.58 1.57 1.58 1.58 1.60

10
0 2.99 3.03 3.30 3.09 3.11 3.03 3.03 3.18

Ego 2.96 2.99 3.19 3.01 3.00 2.99 2.99 3.07

18

1 1.50 1.60 1.28 1.59 1.59 1.65 1.60 1.68
2 2.96 2.76 2.75 2.91 2.87 2.83 2.76 2.85
3 1.74 1.60 1.80 1.74 1.66 1.62 1.60 1.66

Ego 2.24 2.21 2.15 2.45 2.26 2.25 2.21 2.25

20
12 8.70 8.61 9.38 8.72 8.74 8.68 8.61 8.64
122 10.09 10.12 10.36 10.12 10.10 10.18 10.12 10.17
Ego 8.90 8.86 9.63 8.88 8.90 8.84 8.86 8.85

Table 4.5: Impact of lane-based constraints on batch-based approach from Sec. 4.4.3.4.

Absolute Translation Error (RMS) in Global Frame (meters)
Seq No. 3 4 18

Avg ErrorCar ID 0 1 Ego-car 2 Ego-car 1 2 3 Ego-car
Frame length 41 92 123 149 149 62 83 141 141

Before Lane-Constraints 2.91 2.61 2.26 2.15 4.82 1.32 3.22 1.19 2.53 2.56

After Lane-Constraints 2.20 2.24 1.96 1.77 1.89 1.21 2.86 1.23 2.36 1.97

Table 4.6: Dynamic Object Detection Method Comparison for Real-Time Approach

Seq No.
Average Precision (IoU = 0.7) for BEV [Cars] in %

Pseudolidar (mono) + Frustum PointNet Pseudolidar (mono) + AVOD OFT
2 23.5 20 9.5

3 28.3 26.8 12.03

4 34.3 30.2 15

10 30 26 14

18 26.5 24.8 11.6

41



4.4.6.2 Weight Allotted to Landmark Based Constraints

While it has been established from Sec. 4.4.6.1 that static landmarks help improve the absolute trans-

lation error of the trajectory, we analyze as to how much emphasis must be given to the CP constraint in

terms of the weight. We experiment with various levels of weights fed to the CP constraint in relation

with that of the CC edge in the formulation. Table. 4.4 summarizes our observations. While medium

weight, which is equal to that of CC constraints, beats other modes by a huge margin in a few instances,

it competes closely in all the other instances. On the whole, the performance put forth with medium

weight to CP constraints is superior to the other modes.

4.4.6.3 Threshold for Landmarks

Since point correspondences and the depth estimations to the same may be more reliable for features

closer to the camera, we place a threshold along Z-axis of the camera to shortlist landmarks to be

considered in CP constraints as mentioned in Sec. 4.2.2.2. Our experiments with various thresholds

have been reported in Table. 4.4. We find that a threshold T = 20m contributes optimally to the pose-

graph optimization step.

4.4.6.4 Impact of Lane Constraints

We show ablation studies on lane-based constraining of trajectories in our batch-based pose-graph

formulation from Sec. 4.4.3.4. These are performed on unscaled-ORB initializations. We show that

lane-constraints contribute by with substantial improvement in ATE for almost all vehicles which are

experimented with, when compared with the corresponding ATE before applying lane-based constraints.

We summarize our observations in Table. 4.5.

4.4.6.5 Impact of Dynamic Object Detection Method Comparison

We compared different dynamic object detection methods on the same sequence of KITTI datasets

to see it’s effects in a standalone fashion and on final results. Our observations are summarised in

Table 4.6. To compare our results for different object detection methods, we take Average Precision

with IoU = 0.7 for all cars in the scene in bird’s-eye view, which is a standard metric for most of the

object detection literature. We compare among three recent state-of-the-art object detection methods

in bird’s-eye view that is pseudolidar with frustum pointnet [93, 67], pseudolidar with AVOD [93, 46]

42



and OFT [71]. We observe that pseudolidar representation with frustum pointnet outperforms the other

object detection methods for the sequences of the KITTI Dataset we test on. This further justifies our

decision to use pseudolidar with frustum pointnet in Sec. 4.2.1.3.

4.4.6.6 Runtime Analysis

The incremental optimizer in Sec.4.4.3.5 takes 0.016s to solve the pose-graph optimization problem

for a 414 frame long sequence as compared to 1.9s for batch-based approach in Sec.4.4.3.4. Fig. 4.5

shows how a single and multi-object scenario fare in terms of runtime for each incoming instance.

Pose-graph optimizations (see 4.2.2) are performed on a quadcore Intel i7-5500U CPU with 2.40GHz

processor. The frontend involves gathering predictions from multiple neural networks [38, 93, 67] and

runs at around 33 Hz frequency.

Figure 4.5: Plot illustrating how number of objects in scene do not affect the time-elapsed in our opti-
mization formulation from Sec. 4.2.2

43



Chapter 5

Conclusions

Multibody SLAM in a moving monocular setup is a difficult problem to solve given its ill-posedness.

In this paper, we operate in an orthographic (bird’s-eye view) space to overcome the challenges posed by

dynamic scenes to the conventional monocular SLAM systems. Moreover, BirdSLAM operates in real-

time in bird’s-eye view space performing better than current real-time state-of-the-art multibody SLAM

systems operating in 6 DoF setup. It also performs at par with current offline multibody SLAM systems

operating under strictly more resources (time, computation, features). To the best of our knowledge,

BirdSLAM is the one of the first such system to demonstrate a solution to the multibody monocular

SLAM problem in orthographic space. An interesting future direction could be to consider cases in

which the single-view metrology cues do not hold, such as on extremely graded/steep roads. Currently,

BirdSLAM accounts for the case where ego-motion initialization from off-the-shelf SLAM systems like

ORB can be highly erroneous by constraining it with the stationary cues from the environment. Another

potentially interesting work could be to improve the fault-tolerance of the BirdSLAM system by taking

into account the case when both ego-motion initialization from off-the-shelf SLAM systems as well as

stationary points in the environment are highly erroneous.

44



Related Publications

1. Swapnil Daga, Gokul B. Nair, Anirudha Ramesh, Rahul Sajnani, Junaid Ahmed Ansari and K.

Madhava Krishna. BirdSLAM: Monocular Multibody SLAM in Bird’s-Eye View. In 16th Interna-

tional Conference on Computer Vision Theory and Applications (VISAPP) 2021. Published.

2. (Other) Gokul B. Nair, Swapnil Daga, Rahul Sajnani, Anirudha Ramesh, Junaid Ahmed Ansari,

Krishna Murthy Jatavallabula, and K. Madhava Krishna. Multi-Object Monocular SLAM for

Dynamic Environments. In 31st IEEE Intelligent Vehicles Symposium (IV) 2020. Published.

3. (Other) Kaustubh Mani, Swapnil Daga, Shubhika Garg, Sai Shankar Narasimhan, Krishna Murthy

Jatavallabhula, K. Madhava Krishna. MonoLayout: Amodal scene layout from a single image. In

The IEEE Winter Conference on Applications of Computer Vision (WACV 2020), 1689-

1697. Published.

4. (Other) Vignesh Prasad, Karmesh Yadav, Rohitashva Singh Saurabh, Swapnil Daga, Nahas Pa-

reekutty, K Madhava Krishna, Balaraman Ravindran, Brojeshwar Bhowmick. Learning to Pre-

vent Monocular SLAM Failure using Reinforcement Learning. In 11th Indian Conference on

Computer Vision, Graphics and Image Processing (ICVGIP) 2020. Published.

45



Bibliography

[1] Closing. https://homepages.inf.ed.ac.uk/rbf/HIPR2/close.htm.

[2] Dilation. https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm.

[3] Erosion. https://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm.

[4] Object tracking evaluation (2d bounding-boxes).

[5] Opening. https://homepages.inf.ed.ac.uk/rbf/HIPR2/open.htm.

[6] Scan matching. https://people.eecs.berkeley.edu/˜pabbeel/cs287-fa11/slides/

scan-matching.pdf.

[7] Structuring elements. https://homepages.inf.ed.ac.uk/rbf/HIPR2/strctel.htm.

[8] Line detection by hough transformation. https://web.ipac.caltech.edu/staff/fmasci/

home/astro_refs/HoughTrans_lines_09.pdf, 2009.

[9] Morphological image processing. https://www.cs.auckland.ac.nz/courses/

compsci773s1c/lectures/ImageProcessing-html/topic4.htm, 2012.

[10] What is an imu in robotics and hardware? https://blog.studica.com/

imu-robotics-hardware, 2019.

[11] S. Agarwal, K. Mierle, and Others. Ceres solver. http://ceres-solver.org.

[12] J. A. Ansari, S. Sharma, A. Majumdar, J. K. Murthy, and K. M. Krishna. The earth ain’t flat: Monocular

reconstruction of vehicles on steep and graded roads from a moving camera. In IROS, 2018.

[13] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12):2481–

2495, 2017.

[14] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (slam): Part ii. IEEE robotics &

automation magazine, 13(3):108–117, 2006.

[15] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot. Consistency of the ekf-slam algorithm. In 2006

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3562–3568. IEEE, 2006.

[16] J.-L. Blanco. A tutorial on se (3) transformation parameterizations and on-manifold optimization. University

of Malaga, Tech. Rep, 3:6, 2010.

[17] J. V. Burke and M. C. Ferris. A gauss—newton method for convex composite optimization. Mathematical

Programming, 71(2):179–194, 1995.

46

https://homepages.inf.ed.ac.uk/rbf/HIPR2/close.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/open.htm
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa11/slides/scan-matching.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa11/slides/scan-matching.pdf
https://homepages.inf.ed.ac.uk/rbf/HIPR2/strctel.htm
https://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/HoughTrans_lines_09.pdf
https://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/HoughTrans_lines_09.pdf
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm
https://blog.studica.com/imu-robotics-hardware
https://blog.studica.com/imu-robotics-hardware
http://ceres-solver.org


[18] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. Leonard. Past, present,

and future of simultaneous localization and mapping: Towards the robust-perception age. IEEE Transac-

tions on Robotics, 32(6):1309–1332, 2016.

[19] J.-R. Chang and Y.-S. Chen. Pyramid stereo matching network. In CVPR, 2018.

[20] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun. Monocular 3d object detection for au-

tonomous driving. In CVPR, 2016.

[21] S. O.-R. A. V. S. Committee et al. Taxonomy and definitions for terms related to driving automation systems

for on-road motor vehicles. SAE International: Warrendale, PA, USA, 2018.

[22] W. T. Conlin. Inertial measurement. arXiv preprint arXiv:1708.04325, 2017.

[23] J. Costeira and T. Kanade. A multi-body factorization method for motion analysis. In ICCV, 1995.

[24] A. J. Davison, I. D. Reid, N. Molton, and O. Stasse. Monoslam: Real-time single camera slam. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2007.

[25] F. Dellaert. Factor graphs and gtsam: A hands-on introduction. Technical report, Georgia Institute of

Technology, 2012.

[26] L. Ding and A. Goshtasby. On the canny edge detector. Pattern recognition, 34(3):721–725, 2001.

[27] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i. IEEE robotics & automa-

tion magazine, 13(2):99–110, 2006.

[28] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i. IEEE robotics & automa-

tion magazine, 13(2):99–110, 2006.

[29] E. Eade. Lie groups for 2d and 3d transformations. URL http://ethaneade. com/lie. pdf, revised Dec,

117:118, 2013.

[30] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep

network. Advances in neural information processing systems, 27, 2014.

[31] G. A. Einicke and L. B. White. Robust extended kalman filtering. IEEE transactions on Signal Processing,

47(9):2596–2599, 1999.

[32] A. I. Eliazar and R. Parr. Dp-slam 2.0. In IEEE International Conference on Robotics and Automation,

2004. Proceedings. ICRA’04. 2004, volume 2, pages 1314–1320. IEEE, 2004.

[33] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-scale direct monocular SLAM. In ECCV, 2014.

[34] A. Fischer. A special newton-type optimization method. Optimization, 24(3-4):269–284, 1992.

[35] A. W. Fitzgibbon and A. Zisserman. Multibody structure and motion: 3-d reconstruction of independently

moving objects. In ECCV, 2000.

[36] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza. Svo: Semidirect visual odometry for

monocular and multicamera systems. IEEE Transactions on Robotics, 2017.

[37] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. IJRR, 2013.

[38] C. Godard, O. Mac Aodha, M. Firman, and G. Brostow. Digging into self-supervised monocular depth

estimation. arXiv preprint, 2018.

47



[39] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on graph-based slam. IEEE Intelligent

Transportation Systems Magazine, 2(4):31–43, 2010.

[40] G. Grisetti, R. Kümmerle, H. Strasdat, and K. Konolige. g2o: a general framework for (hyper) graph

optimization. In ICRA, 2011.

[41] M. Han and T. Kanade. Multiple motion scene reconstruction from uncalibrated views. In ICCV, 2001.

[42] R. M. Haralick, S. R. Sternberg, and X. Zhuang. Image analysis using mathematical morphology. IEEE

transactions on pattern analysis and machine intelligence, (4):532–550, 1987.

[43] A. Jurić, F. Kendeš, I. Marković, and I. Petrović. A comparison of graph optimization approaches for pose

estimation in slam. In 2021 44th International Convention on Information, Communication and Electronic

Technology (MIPRO), pages 1113–1118. IEEE, 2021.

[44] G. Klein and D. Murray. Parallel tracking and mapping on a camera phone. In 2009 8th IEEE International

Symposium on Mixed and Augmented Reality, pages 83–86. IEEE, 2009.

[45] M. Korkmaz, N. Yılmaz, and A. Durdu. Comparison of the slam algorithms: Hangar experiments. In

MATEC Web of Conferences, volume 42, page 03009. EDP Sciences, 2016.

[46] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander. Joint 3d proposal generation and object

detection from view aggregation. In 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 1–8. IEEE, 2018.

[47] A. Kumar. Convex optimization explained: Concepts amp; examples, Oct 2021.

[48] A. Kundu, K. M. Krishna, and C. Jawahar. Realtime multibody visual slam with a smoothly moving monoc-

ular camera. In ICCV, 2011.

[49] P. Li, X. Chen, and S. Shen. Stereo r-cnn based 3d object detection for autonomous driving. In CVPR, 2019.

[50] P. Li, T. Qin, et al. Stereo vision-based semantic 3d object and ego-motion tracking for autonomous driving.

In ECCV, 2018.

[51] C. Lorenz, T. Klinder, and J. v. Berg. Feature-based registration techniques. In 4D Modeling and Estimation

of Respiratory Motion for Radiation Therapy, pages 85–102. Springer, 2013.

[52] J. LV. Scan Matching and SLAM for Mobile Robot in Indoor Environment. PhD thesis, Hokkaido University,

2016.

[53] M. Machline, L. Zelnik-Manor, and M. Irani. Multi-body segmentation: Revisiting motion consistency. In

ECCV Workshop on Vision and Modeling of Dynamic Scenes, 2002.

[54] P. Mandikal and V. B. Radhakrishnan. Dense 3d point cloud reconstruction using a deep pyramid network.

In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1052–1060. IEEE,

2019.

[55] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al. Fastslam: A factored solution to the simultaneous

localization and mapping problem. Aaai/iaai, 593598, 2002.

48



[56] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al. Fastslam 2.0: An improved particle filtering

algorithm for simultaneous localization and mapping that provably converges. In IJCAI, volume 3, pages

1151–1156, 2003.

[57] H. P. Moravec. Robot.

[58] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: a versatile and accurate monocular slam

system. IEEE transactions on robotics, 31(5):1147–1163, 2015.

[59] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d

cameras. IEEE Transactions on Robotics, 2017.

[60] J. K. Murthy, G. S. Krishna, F. Chhaya, and K. M. Krishna. Reconstructing vehicles from a single image:

Shape priors for road scene understanding. In ICRA, 2017.

[61] J. K. Murthy, S. Sharma, and K. M. Krishna. Shape priors for real-time monocular object localization in

dynamic environments. In IROS, 2017.

[62] G. B. Nair, S. Daga, R. Sajnani, A. Ramesh, J. A. Ansari, and K. M. Krishna. Multi-object monocular slam

for dynamic environments. arXiv preprint, 2020.

[63] R. Namdev, K. M. Krishna, and C. V. Jawahar. Multibody vslam with relative scale solution for curvilinear

motion reconstruction. In ICRA, 2013.

[64] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In Proceedings of the 2004 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 1, pages I–I.

Ieee, 2004.

[65] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: A deep neural network architecture for real-time

semantic segmentation. arXiv preprint arXiv:1606.02147, 2016.

[66] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: A deep neural network architecture for real-time

semantic segmentation. arXiv preprint, 2016.

[67] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum pointnets for 3d object detection from rgb-d

data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 918–927,

2018.

[68] R. Ranftl, V. Vineet, Q. Chen, and V. Koltun. Dense monocular depth estimation in complex dynamic

scenes. In CVPR, 2016.

[69] N. D. Reddy, I. Abbasnejad, S. Reddy, A. K. Mondal, and V. Devalla. Incremental real-time multibody

vslam with trajectory optimization using stereo camera. In IROS, 2016.

[70] M. I. Ribeiro. Kalman and extended kalman filters: Concept, derivation and properties. Institute for Systems

and Robotics, 43:46, 2004.

[71] T. Roddick, A. Kendall, and R. Cipolla. Orthographic feature transform for monocular 3d object detection.

British Machine Vision Conference, 2019.

49



[72] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.

In International Conference on Medical image computing and computer-assisted intervention, pages 234–

241. Springer, 2015.

[73] D. M. Rosen, K. J. Doherty, A. Terán Espinoza, and J. J. Leonard. Advances in inference and representation

for simultaneous localization and mapping. Annual Review of Control, Robotics, and Autonomous Systems,

4:215–242, 2021.

[74] S. Rota Bulò, L. Porzi, and P. Kontschieder. In-place activated batchnorm for memory-optimized training

of dnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[75] S. Rota Bulò, L. Porzi, and P. Kontschieder. In-place activated batchnorm for memory-optimized training

of dnns. In CVPR, 2018.

[76] S. Roweis. Levenberg-marquardt optimization. Notes, University Of Toronto, 1996.

[77] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,

2016.

[78] K. Schindler and D. Suter. Two-view multibody structure-and-motion with outliers through model selection.

PAMI, 2006.

[79] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[80] SLAMcore. wheel odometry. https://blog.slamcore.com/wheel-odometry-blog.

[81] S. Song and M. Chandraker. Joint sfm and detection cues for monocular 3d localization in road scenes. In

CVPR, 2015.

[82] S. Song and M. Chandraker. Joint sfm and detection cues for monocular 3d localization in road scenes. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3734–3742, 2015.

[83] I. Spectrum. What is a robot?, May 2020.

[84] C. Stachniss, J. J. Leonard, and S. Thrun. Simultaneous localization and mapping. In Springer Handbook

of Robotics, pages 1153–1176. Springer, 2016.

[85] G. P. Stein, O. Mano, and A. Shashua. Vision-based acc with a single camera: bounds on range and range

rate accuracy. In IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No. 03TH8683), pages

120–125. IEEE, 2003.

[86] N. Sünderhauf. Robust optimization for simultaneous localization and mapping. PhD thesis, Technischen

Universitat Chemnitz, 2012.

[87] P. Teunissen. Nonlinear least squares. 1990.

[88] I. Ullah, X. Su, X. Zhang, and D. Choi. Simultaneous localization and mapping based on kalman filter and

extended kalman filter. Wireless Communications and Mobile Computing, 2020, 2020.

[89] L. J. Van Vliet, I. T. Young, and G. L. Beckers. A nonlinear laplace operator as edge detector in noisy

images. Computer vision, graphics, and image processing, 45(2):167–195, 1989.

[90] R. Vidal, Y. Ma, S. Soatto, and S. Sastry. Two-view multibody structure from motion. IJCV, 2006.

50

https://blog.slamcore.com/wheel-odometry-blog


[91] O. R. Vincent, O. Folorunso, et al. A descriptive algorithm for sobel image edge detection. In Proceedings

of informing science & IT education conference (InSITE), volume 40, pages 97–107, 2009.

[92] R. Wang, M. Schworer, and D. Cremers. Stereo dso: Large-scale direct sparse visual odometry with stereo

cameras. In Proceedings of the IEEE International Conference on Computer Vision, pages 3903–3911,

2017.

[93] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Weinberger. Pseudo-lidar from visual

depth estimation: Bridging the gap in 3d object detection for autonomous driving. In CVPR, 2019.

[94] C. Wojek, S. Roth, K. Schindler, and B. Schiele. Monocular 3d scene modeling and inference: Under-

standing multi-object traffic scenes. In European conference on computer vision, pages 467–481. Springer,

2010.

[95] Q. Xu and D. Ma. Applications of lie groups and lie algebra to computer vision: A brief survey. In 2012

International Conference on Systems and Informatics (ICSAI2012), pages 2024–2029. IEEE, 2012.

[96] S. Yang and S. Scherer. Cubeslam: Monocular 3-d object slam. IEEE Transactions on Robotics, 35(4):925–

938, 2019.

[97] W. Zhou, E. Shiju, Z. Cao, and Y. Dong. Review of slam data association study. In Proceedings of the 2016

International Conference on Sensor Network and Computer Engineering, Xi’an, China, pages 8–10, 2016.

51


	Introduction
	Related Works
	3D Object Detection
	Perspective-View and Depth Estimation
	Unibody SLAM Frameworks
	Multibody SLAM Frameworks:
	Traditional Approaches
	Deep Learning-based Approaches
	Recent Approaches


	Key Contributions
	Thesis Structure

	Background
	Lie Groups
	SLAM
	Problem Statement
	Algorithms
	Filtering Techniques
	Optimization techniques


	Pose Graph Optimization
	Non-Linear Least squares Optimization
	Sources of Relative Pose Measurement

	Morphological Techniques
	Opening
	Closing
	Hough Line Transform
	Hough Space
	Steps involved in line detection



	Real Time Monocular Scene Understanding
	Problem statement
	Summary of Components
	Segmentation network
	Bird's eye view projection
	Refinement of point clouds
	Point cloud reconstruction of lanes

	Experiments & Results
	Dataset
	Qualitative Results
	Real Time Monocular Scene Understanding Pipeline
	Input images
	Segmented images
	Bird's eye view projection
	E-Net
	Individual lane point clouds

	Extensive E-Net Results



	BirdSLAM
	Problem Formulation
	Summary of Components
	BirdSLAM: Frontend
	Static Map Initialization
	Scale-Unambiguous Ego-Motion Initialization
	Dynamic Object Localization

	BirdSLAM Backend: Pose-Graph Optimization
	Cost Function
	Constraints


	Monocular Scene (Layout) Understanding
	Generating Amodal Lane Point Clouds in Camera Frame

	Experiments and Results
	Dataset
	Error Evaluation
	Approaches Evaluated
	Nair et al. iv:
	CubeSLAM cubeslam:
	Namdev et al. Namdev:
	Batch Optimized Baseline in SE(3) with Scale-ambiguous ORB Odometry:
	Incremental Approach in SE(2) with Scale-Initialized Odometry:

	Qualitative Results
	Quantitative Results
	Ablation Studies on Real-Time Approaches
	Contribution by Individual Constraints
	Weight Allotted to Landmark Based Constraints
	Threshold for Landmarks
	Impact of Lane Constraints
	Impact of Dynamic Object Detection Method Comparison
	Runtime Analysis



	Conclusions
	Bibliography

