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Abstract

As the world progresses rapidly in terms of innovation and technologies, one of the fields that has

seen a significant change in the past few years is the Internet of Things. IoT has changed the scope of

connectivity across the world. As more and more devices connect to the internet, the ease of use and

level of automation increase for those devices, leading them to use the term ’smart’ device.

Similarly, one sub-field of IoT which has been getting a lot of attention is the Internet of Vehicles

(IoV), primarily with the idea of bringing self-driven cars to reality. However, IoV, as with IoT, has its

own set of challenges, constraints, and use cases to consider. Due to the increase in connectivity and

sophisticated software, modern vehicles are able to leverage different kinds of services provided by the

environment. These services include but are not limited to, data delivery and computation offloading.

While cloud computing was initially considered to deliver these services, it was realized that communi-

cation with the cloud would require constant high bandwidth requirements and could incur high latency

issues, especially while travelling through low network regions. Thus, to solve these issues, instead of

Cloud Computing, Edge Computing was considered, as it brought the required computation units closer

to the user vehicles, thus requiring lesser bandwidth and facing low latency. This technology of using

Edge Computing to deliver services to connected vehicles while considering their dynamic network

topology is called Vehicular Edge Computing (VEC).

VEC requires the use of multiple edge nodes throughout the road network to facilitate the services

for connected vehicles. These edge nodes can also be connected to a central cloud server. However,

VEC also has its own set of challenges and constraints to consider when delivering each type of service.

Data delivery to connected vehicles would require the allocation of memory resources at the edge nodes

that the vehicle will pass through and receive and store the data from the cloud to be delivered to the

vehicle. It should also have enough bandwidth to transfer the data to the vehicle when it passes through

the coverage region of that edge node. Computation offloading would require proper scheduling of tasks

across all the edge nodes in the network so as to facilitate efficient execution of the tasks and ensure
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the results are delivered within the deadlines given the resource constraints. All these services have

to consider multiple vehicles at the same time at the coverage of an edge. Thus, resources should be

properly allocated to service the maximum number of vehicles.

This work tries to address these challenges by contributing solutions considering the vehicle flow

constraints of the network as well as resource and timing constraints when delivering data to the vehicles

or scheduling the tasks of the vehicles for computation offloading. The first solution proposes a two-

stage optimization framework for efficient data delivery to connected vehicles via edge nodes while

considering dynamic route changes. This framework optimizes the bandwidth utilized to send data from

the cloud to the edge nodes. It also prioritizes vehicles with more data to receive and fewer edge nodes

to pass through to reach their destination. The second solution proposes a Global Earliest Deadline First

(GEDF) based scheduler for scheduling offloading tasks to the edge nodes. This approach considers the

vehicle flow constraints, resource constraints, and timing constraints while assigning tasks to edge nodes

that can execute the offloaded task, while prioritizing vehicles with shorter deadlines. Both these works

have been tested on a real-world dataset (Luxembourg dataset) and compared with other approaches,

including an optimal approach with various parameters such as the number of vehicles fully serviced,

run time, etc.
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Chapter 1

Introduction

1.1 MCC and MEC

1.1.1 Mobile Cloud Computing (MCC)

There has been an explosive growth of application models such as Cloud Computing, Software as a

Service (SaaS) etc, due to the advances in the field of network based computing[31]. Cloud computing,

in essence, can be described as a variety of services provided by a group of low cost servers or Personal

Computers (PCs) hosted in some remote data centre, that can be accessed by the local machine via

internet. Cloud computing gained popularity as it provided ease of access to additional computational

resources, anywhere in the world with internet access, thus allowing the execution of computation heavy

tasks without having the infrastructure locally. Once smartphone technology rapidly advanced along

with internet connectivity, we were able to have mobile devices with computational capacity of PCs

and access to the internet, and by extension the cloud. This led to the rise of a new computing mode

combining the mobility of smartphones and the accessibility of resources offered by Cloud computing,

called Mobile Cloud Computing (MCC).

But with the advancement in technologies, it was identified that MCC has a few challenges to face.

Namely the issue concerning latency, connectivity and energy consumption. To solve these challenges,

a new paradigm called Edge Computing was introduces as a middle layer between the user devices and

the cloud. This led to the rise of Mobile Edge Computing (MEC).

1



Figure 1.1: MCC Network [30]

1.1.2 Mobile Edge Computing

The advancements in internet and connectivity technologies, led to the rise of new paradigms such as

Internet of Things(IoT) [4]. But as the number of devices connected to the internet increased, so did the

amount of large-scale data being transferred. This led to cause problems such as increased bandwidth

requirements, latency issues, privacy concerns, security concerns etc., in traditional cloud models. Thus,

as traditional Cloud computing became insufficient to handle these new technologies, a new computing

paradigm for performing calculations at the edge of the network was introduced called Edge Computing

[7]. To handle mobile smart devices and their requirements and to facilitate IoT, MCC also similarly

shifted to Mobile Edge Computing (MEC).

But MEC is too broad a paradigm, since it can consider almost any device, at the edge of the net-

work, with computational capacity that can connect to the internet as either a user device/client or as

and edge node or both. Thus, for specialized use cases, we would need a more specialized paradigm

since requirements, constraints and conditions will change depending upon the type of user device, type

of edge node considered and general environment of use. So, the scenario of considering moving ve-

hicles to be the user devices and Road Side Units (RSUs) or other vehicles to be the edge nodes in a

traffic environment, was termed as Vehicular Edge Computing (VEC). VEC considers the specialized

requirements and constraints of moving vehicles, fast entry and exit through the coverage region of the

edge nodes, limited resources of the vehicles and edge nodes etc unlike the general constraints and use

cases of MEC.

2



Figure 1.2: MEC Network [28]

3



1.2 Vehicular Edge Computing (VEC)

1.2.1 Connected Vehicles

The evolution of an automotive from a manually driven standalone platform to an intelligent platform

that interacts with its environment has been primarily realized by novel advances in software and com-

munication technologies. A connected vehicle is therefore able to communicate with other vehicles,

devices, surroundings etc and thus help facilitate better comfort, security, learning and entertainment

for the users. The connected vehicles ecosystem is a result of the rise of Internet of Vehicles (IoV)

from Internet of Things (IoT). This advancement of the connected vehicles ecosystem brings with it, a

whole new set of challenges and problems to be solved in terms of communication methods, security

requirements, energy constraints, Quality of Service requirements etc.

1.2.2 Modes of Communication

The modes of communication in the VEC framework can be broadly divided into two categories

based on the recipient of the communication from the vehicle. They are:

• V2V communication: When a vehicle is communicating with another vehicle in its vicinity, it is

known as V2V communication.

eg: A vehicle sending an accident nearby signal to other vehicles in its vicinity

• V2I communication: When a vehicle is communicating with the nearby infrastructure (buildings,

traffic signals, roadside units etc), it is known as V2I communication.

eg: Traffic lights giving priority to road segments with more vehicle density at an intersection

based on the number of signals it receives from the vehicles at each raod segment

1.2.3 Services

The connected vehicles ecosystem provides multiple services which can lead to multiple applications

which can enhance safety, security and comfort for the driver and passengers of the vehicles. These

services include but are not limited to :

• Data delivery and communication: Connected vehicles facilitate the transmission of data across

vehicles and infrastructure with the help of various protocols like DSRC (Direct Short Range

4



Figure 1.3: VEC Model

Communication). This data could be in the form of texts, requests, images, videos, signals etc.

Thus connected vehicles can request for specific data from the nearby infrastructure, nearby ve-

hicles and the cloud. This can include map data, movies etc.

• Computation Offloading: Resource intensive computational tasks can be broken up and trans-

ferred to nearby infrastructure or other vehicles to be processed and the results sent back to the

original vehicle. This process is called Computation Offloading. This service of the connected

vehicles ecosystem helps the vehicles to run heavy tasks, even with the resource constraints of

each vehicle, by utilizing the free (non-working) resources of the surroundings to run part of the

task or the whole task. This service is especially useful to run high computation tasks like image

processing tasks or natural language text recognition tasks while on the move in the vehicle.

• Smart Data Collection: IoV facilitates the collection of data from the various sensors in the vehi-

cle. This data could be terrain data, vehicle condition data, driving experience data etc. This can

help the user to know about any problems at the earliest. This collected data can also be shared

with the government for their analysis and actions in bettering road safety and maintenance, and

with insurance companies for their applications.

The rise in the connected vehicles ecosystem and the data gained from it lead to the evolution of

automated vehicles or self driving cars.

5



1.2.4 Applications

The connected vehicles ecosystem facilitates multiple applications that can enhance user experience,

safety and security. Some of these applications are:

• HD Maps: The Automotive Edge Computing Consortium (AECC) [1] recommends using High

Definition Map application [2] to obtain accurate real-time information on the streets and traffic

conditions that would help in better navigation. The request for this map data is sent to and

received from the nearby Roadside Units (RSUs) or the cloud.

• Entertainment: Connected vehicles enhance passenger experience by providing streaming ser-

vices through the internet. These vehicles are able to access content in the internet directly, thus

removing the need to use another device such as the phone or laptop while in the vehicle to watch

movies, play songs etc.

• HUD: Heads-up Display or HUD can be useful in a vehicle, where the HUD provides additional

information to what the driver can see. This can include warning signals to indicate another

vehicle, person or obstacle is approaching the trajectory of the vehicle which is very helpful in

blind spots or corners. It can also highlight pits, bumps or other such obstacles on the road, in the

trajectory of the vehicle.

• Sign board translation: Connected vehicles with cameras can take a picture of the roadside sign-

boards and use text recognition to identify its content. It can also help translate the text from

regional languages while travelling. These tasks require high computational capacity and thus

require offloading the tasks to nearby RSUs or vehicles to get the result in the required amount of

time without loss in integrity of data.

1.3 Motivation

1.3.1 VEC

The connected vehicles ecosystem has many services and applications which enhance user expe-

rience. But these services have challenges that have to resolved to get the best results. Some of these

challenges include how to handle situations where the vehicle is not connected to the internet at all times,

and another is how to resolve the computation resources constraint. These challenges can be resolved

6



to an extent by utilising VEC or Vehicular Edge Computing concept. Vehicular Edge Computing con-

siders the use of edge devices to minimize latency issues that can arise during communication between

cloud and vehicle. The edge devices can also provide extra resources for the computation purposes. The

edge devices can include mobile devices, other vehicles and even infrastructure such as RSUs. In the

following sections we will consider the edge servers/nodes that are used to be RSUs only.

1.3.2 Challenges and Solutions

• Data Delivery: One of the services of the connected vehicles ecosystem, the data delivery re-

quires internet to receive the requested data. But there will be situations where the vehicle will

not be able to access the internet for long periods of time during the journey due to loss of net-

work. This can impact data delivery if we try to send data continuously. Instead of continuous data

transmission we can utilize the edge nodes to transmit chunks of data to the vehicle when it comes

into the coverage region of that edge. Thus instead of continuous data transmission, we split the

data into multiple parts and each part is sent to the vehicle by an RSU it passes through during its

travel. But to handle this data delivery framework, we need to consider some aspects such as the

route of the vehicle, resource constraints of the edge node including bandwidth, memory etc, and

time taken to send each part of the data requested. Our work proposes an optimal data delivery

framework which takes into consideration all these aspects and is an online approach, thus able to

handle the dynamic route changes of the vehicles.

• Computation Offloading: Another service of the connected vehicles ecosystem, computation

offloading, requires the use of external edge devices which have resources that can be used for

executing the task. In this scenario we consider only task offloading to RSUs. But for efficient

utilization of all the edge nodes and their resources, we need to take into consideration the routes

of the vehicles, the amount of usable resources of each edge node, the task deadline etc. Our

proposed approach takes into consideration all these constraints and tries to schedule the tasks of

the vehicles at the various edges in an efficient manner at the shortest amount of time.

1.4 Contributions

In summary, our key contributions are:

7



1.4.1 Dynamic Data Delivery Framework

1. We propose a time slot based just in time dynamic data delivery framework.

2. We consider a vehicle flow model along with edge model and cloud network model.

3. The proposed approach is executed at each time slot and the data allocations are made to the

edge nodes based on the locations of the vehicles at the start of each time slot. Thus it is able to

handle any route changes that the vehicle makes in between its journey.

4. The proposed approach is compared with various existing optimal and heuristic approaches (us-

ing real-world data sets), thereby demonstrating its advantages.

1.4.2 Global EDF Based scheduler for Computation Offloading

1. We propose a time slot based Global EDF based scheduling algorithm

2. The proposed approach uses a priority queue to give priority to the tasks of the vehicles with the

earlier deadlines

3. The proposed approach is compared with various existing optimal and heuristic approaches (us-

ing real-world data sets), thereby demonstrating its advantages in terms of execution time or

number of vehicles serviced

1.5 Thesis Organization

The remaining thesis is organized as follows :

In Chapter 2 we have briefly reviewed previous works on applications of VEC. In Chapter 3 we

present the proposed two-stage optimization framework for data delivery to connected vehicles via

edge nodes. In Chapter 4 we present the proposed heuristic scheduler that is based on of a popular

scheduling algorithm, which incorporates the conditions and constraints of the task offloading scenario

for connected vehicles. In Chapter 5 we conclude our work and propose a couple of new problems to

consider in the Connected vehicles domain as future works.
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Chapter 2

Related Works

This chapter presents the existing literature on Vehicular Edge Computing (VEC) followed by com-

putation offloading and data delivery. This chapter then presents the existing approaches for task

scheduling that can be adopted in a VEC scenario.

2.0.1 Vehicular Edge Computing

With the advent of Mobile Edge Computing (MEC), several low-latency services and distributed

computing have become promising for data delivery and task-offloading methods. Acheampong et al.

[3] have developed an online system that can offload a task in real-time scenarios. The authors have

highlighted the improvement in the system performance with reduced computation time. Although the

work has greatly emphasized the capabilities of MECs, in a vehicular scenario, it has not considered

the wastage of allocated resources that can occur due to a change in the vehicle route. Unlike MEC,

Vehicular Edge Computing (VEC) has a directed node as RSU or Edge which can be used for data

delivery and task offloading [29].

2.0.2 Computation Offloading

Various works have emphasized the capabilities of VEC for computation offloading [29] [40][11][43].

Chen et al. [8] have proposed a three-layer end-edge-cloud architecture to assist vehicles for task compu-

tation. This work has formulated an efficient task allocation algorithm considering fairness, efficiency

in computation and is evaluated considering the dynamic nature of tasks and computation resources.

Although the proposed algorithm has improved the average time delay, a vehicular flow model is not

considered, which is a crucial requirement for task allocation to multiple edges.
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Many works have focused on energy and time delay optimization for task offloading. Sun et al.

[32] have demonstrated considerable effectiveness in energy and time delay improvements. They have

formalized a multi-stage optimization problem for predictive task offloading. Further, they have also

used a genetic algorithm to reach an optimal global value. However, this work has not considered the

effect of overlapping vehicles that can enter simultaneously for VEC services.

Tang et al. [33] have emphasized computation balance across multiple edges while optimizing the

time delay. A greedy algorithm identifies a suitable offloading path with a lesser computation load

while minimizing the timing requirements. However, it considers only static scenarios, which can differ

significantly from a real-world data offloading scenario where the vehicle route can change.

In [25], two dynamic offline algorithms are introduced that showcase significant energy-saving ca-

pabilities using experiments in a Mobile Edge Computing (MEC) network. Additionally, in [23], the

paper delves into the trade-off between reducing execution time and prolonging the battery life of mobile

devices.

There are multiple strategies to address the task offloading problem. One such approach is to use a

greedy heuristic method. A heuristic algorithm was used in [24] for task offloading to a nearby Mobile

Edge Computing (MEC) server in order to minimize the task completion time. In [39], the authors

attempted to minimize the total energy consumption for mobile devices by using a Select Maximum

Saved Energy First (SMSEF) algorithm that chooses the most energy-saving task during each iteration.

Some have introduced diverse offloading strategies with varying objectives. The algorithm intro-

duced in [26] focused on minimizing task execution time delay by using a 1-D search algorithm in

the MEC network. This approach leveraged factors such as the application buffer queue state, mobile

intelligent terminal resources, and edge computing network server capabilities to achieve the goal of

reducing execution time to a minimum.

A machine learning (ML) based approach offers a more dynamic and adaptable solution for the task

offloading problem with the drawback of increased computation costs [37]. ML models can be used

to predict network conditions, workload characteristics, and server availability, allowing for improved

decision-making regarding task offloading. In [19], a deep reinforcement learning-based joint task

offloading and bandwidth allocation was used to minimize the total delay in finishing the tasks. A deep

reinforcement learning-based task offloading in MEC was used in [36] to learn an optimal offloading

strategy for minimizing the overall latency of the tasks.
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In [42], the authors carried out a joint computation partial offloading and resource allocation algo-

rithm for latency-sensitive applications in mobile edge clouds. The algorithm optimizes task allocation

by dividing the application into two levels, cloud and edge, considering network bandwidth, computing

and storage resource constraints. However, due to the high mobility of the vehicles, the algorithm needs

to consider the information regarding the vehicle’s route and the vehicle flow parameters.

But these works focus on using MEC networks and do not consider the vehicle flow model and

vehicular constraints of VEC networks.

Multiple works have proposed different offloading policies, such as static, dynamic, and hybrid ap-

proaches, to optimize task execution in vehicular networks as seen in [34]. These studies have primarily

focused on optimizing task placement decisions without considering the deadline of the tasks.

2.0.3 Data Delivery using VEC

The work by Gangadharan et al. [13] have introduced several constraints necessary for data delivery

to connected vehicles via edges. The constraints addressed the memory and timing requirements for ef-

ficient data delivery through an optimization approach. The work considers the worst-case scenario that

all vehicles with routes passing through an edge appear simultaneously in the edge coverage region. The

work by Gupta et al.[16] have introduced several constraints necessary for data delivery to connected

vehicles via edges and proposed a heuristic for the earlier work. The constraints addressed the memory

and timing requirements for efficient data delivery through an optimization approach. Another work by

Gupta et al.[17] proposed a cost-based gradient approach to handle data delivery. Here the overlapping

vehicle set is populated to analyze the resource requirements, after which a heuristic approach is used to

minimize the overall cost gradient for the bandwidth. This work uses pre-defined routes and considers

an offline approach for data offloading and thus cannot handle dynamic route changes in real time.

Jeong et al. [21] have proposed a trajectory-based packet forwarding scheme to deliver data. The

work considers the packet delivery delay distribution and the vehicle travel delay distribution to delivery

data in a moving vehicle scenario. Wang et al. [38] have adapted an online resource allocation strategy

for computation offloading. The authors have considered arbitrary user movement and resource price

variation for efficient task offloading. Both [38] and [21] deal with a specific scenario where the vehicle’s

path is unaltered throughout its journey, allowing them to use the route information to optimize the data

offloading. However, in a general scenario, a vehicle can randomly change its route to the destination

depending on various factors.
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2.1 Task Scheduling

The work by Yang et al.[41] proposes optimal GEDF-based schedulers that allow intra-task paral-

lelism on heterogeneous multiprocessors. The work by Jiang et al[22] has adopted the GEDF approach

for scheduling parallel real time tasks with arbitrary deadlines. This work is used for real-time systems

with multi-core processors with the assumption that the task is split into multiple sub-tasks with the

dependencies given in the form of a DAG. But these works, while giving an idea on how to use GEDF

for task scheduling, do not look into using it in a distributed systems approach, and do not consider any

of the constraints that are necessary in the VEC scenario.

Similarly other works cited in [5] such as [15],[12], [18] also look into task scheduling in Cloud

computing, which do not consider the advantages and challenges of Edge Computing network. Our

proposed approach aims to utilize the commonly used GEDF scheduling approach and modify it to

work in the VEC framework following the constraints of vehicle flow model, timing constraints etc to

schedule the computation tasks offloaded to the edge network by connected vehicles.
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Chapter 3

Dynamic Data Delivery Framework for Connected Vehicles via Edge

Nodes with Variable Routes

3.1 Introduction

The evolution of an automotive from a manually driven standalone platform to an intelligent plat-

form that interacts with its environment has been primarily realized by novel advances in software and

communication technologies. [20] These advances have enabled several applications in modern vehi-

cles that require data transmission and computation offloading to nearby infrastructure or other vehicles.

These applications are primarily used to improve the safety and driving experience of the driver. For

instance, the Automotive Edge Computing Consortium (AECC) [1] recommends using High Definition

Map application [2] to obtain accurate real-time information on the streets and traffic conditions that

would help in better navigation. However, there is a large volume of data in high-definition (HD) maps,

which need to be delivered efficiently to the vehicles requesting them. This problem is even more chal-

lenging if many vehicles in the environment are attempting to download high-definition maps for their

trip.

One common approach to facilitate such high-volume data delivery is to send the data directly from

the cloud to the vehicles. However, this can adversely affect the transmission bandwidth and latency due

to duplicate transmissions of the same HD map data to nearby vehicles, thereby affecting the quality

of the driving experience. Instead, the map data could be fetched from the cloud and stored in a few

intermediate nodes (such as roadside units (RSUs) or edge server nodes) close to the connected vehicles.

By prefetching the data to the nodes, the vehicles can receive it when they pass through its coverage

region with improved transmission latency and reduced redundant data transmissions.
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The main challenge for the realization of the aforementioned hierarchical architecture (consisting

of the cloud, edge nodes and vehicles) is to develop an optimal data delivery framework. This frame-

work allocates adequate resources (memory, bandwidth, etc.) on the intermediate edge nodes for every

vehicle requesting data while optimizing some system performance parameters such as average data

delivery time or bandwidth cost, etc. [27] Such a framework should consider the vehicle flow parame-

ters to deliver data efficiently considering realistic vehicle densities and speed values. There have been

few works that have considered data delivery mechanisms for connected vehicles via edges in various

scenarios considering vehicle flow information [17]. However, these works perform well when the ve-

hicle routes are fixed. To the best of our knowledge, there is no prior work that considers the resource

allocation problem for data delivery to vehicles via edges supporting dynamic route changes taken by

the drivers.

3.1.1 Motivation

In this work, we highlight the advantages of resource allocation for data delivery to connected vehi-

cles via edges while considering route changes. The problem setting is depicted in Fig. 3.1(a). There

are 2 vehicles (shown as V 1 and V 2), 4 edges (shown as Edge 1, Edge 2, Edge 3 and Edge 4) and the

cloud in the VEC system. The data requested by the vehicles is distributed and delivered from the cloud

to the edge nodes, as shown. The vehicles download the data from the edge nodes as they pass through

the coverage areas of the edges. For example, vehicle V 1 gets its data while it passes through the cov-

erage region of edges Edge 1, Edge 3 and Edge 4, respectively. A recent work [17] has considered

vehicle flow model to optimally deliver data to the edge nodes for each vehicle V 1 and V 2 as shown in

Fig. 3.1(a), when the route of the vehicles is fixed.

However, there is no guarantee that the vehicles always take a predetermined path. Due to vari-

ous factors, such as congestion and road construction delays, the drivers can dynamically change their

routes. This dynamic route change is shown using dotted arrows in Fig. 3.1(b), where vehicle V 1

changes its route from Edge 1 and goes to Edge 2 instead of Edge 3. If the framework does not handle

these dynamic changes and perform resource allocations accordingly, it will not be possible to serve

the data requirements of the vehicles. In this case, the offline optimization-based data delivery frame-

work [17] will allocate resources for data delivery on Edge 3 for vehicle V 1, which will eventually be

unavailable since V 1 will not pass through Edge 3. Therefore, we propose a time slot-based dynamic
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data delivery framework that considers the vehicle flow model and dynamic route changes to deliver

data to the vehicles via edges.

In this work, our contributions are as follows:

1. We propose a time slot based just in time dynamic data delivery framework. It consists of two

optimisation stages that consider a vehicle flow model while accounting for route changes.

2. The proposed approach is compared with various existing optimal and heuristic approaches (us-

ing real-world data sets), thereby demonstrating its advantages..

The chapter is further organized as follows.

The formulation of the models in the problem discussed in this paper is presented in Section 3.2.

Subsequently, we present our proposed solution approach including the two-stage optimization in Sec-

tion 3.3. The experimental setting and the results obtained are shown in Section 3.4.

3.2 Problem Formulation

In this section, we present our VEC model consisting of the cloud, edges, and vehicles. All the

RSUs/edges will try to send the requested data to the vehicles when they enter the coverage region of

those respective edges at some particular time slot/s. This data is sent to the vehicles from the cloud via

the edges. In each time slot, data is allocated to several edges from the cloud, according to the vehicle

requests

In this work, we are considering that any request by a vehicle is served across time slots through the

edges only. This requested data is delivered as chunks from the different edges it passes on its route.

The request for data by the vehicle will only contain the destination of the vehicle as metadata.

The cloud maintains a map of the entire network, can mark the possible paths between any two

points, and gets information on the location of each vehicle at the start of every time slot. Thus, the

cloud can preemptively deliver the data chunks to the relevant edges, through which a vehicle may pass

at each time slot. We model our VEC system in terms of a vehicle model, an edge model, and a cloud

network model.

Vehicle Model: Every vehicle can be described as a tuple α with its attributes including vehicle

identifier, location data, route data (origin and destination), and data requested.

α = ⟨i, locationi,t, start loci, desti,mem reqi⟩. Details of each variable are shown in Table 3.1.
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Edge Model: Every RSU/edge will have a limited amount of resources and a limited coverage

length. Each edge has the attributes edge identifier, location of the edge, coverage length of the edge,

total memory of the edge, processing memory of the edge, memory utilized by the edge for data delivery

at time slot t and bandwidth of the edge. Thus each edge can be described as a tuple

σ = ⟨j, loc edgej , l covj ,mem edgej ,mem procj ,mem utilj,t, bw edgej , ⟩. Details of each vari-

able are shown in Table 3.1.

Cloud Network Model: The cloud network maintains the status of the entire network in each time

slot. This includes the current time slot, number of vehicles and edges in the network, the time slot

period, bandwidth of the cloud, minimum number of edges across all possible paths from the edges to

the destination for each vehicle, and the set of vehicles that have a probability to pass through or stay

at a particular edge in each time slot, the length of that set of vehicles for each edge at each time slot

and the leftover data to be sent to each vehicle at each time slot. The Cloud network is represented by the

tuple ω = ⟨t,Nvehicles, Nedges, τ, bw cloud,min edge desti,j , V ec setj,t, len V ec setj,t, left memi,t⟩.

Details of the variables are shown in Table 3.1.

Contrary to other works such as [17], for which the pre-defined route of each vehicle was known

apriori, the current work focuses on the problem of handling dynamic route changes by the vehicles

during their travel, which are not in the pre-defined route. Hence, at each time slot, the network only

collects the current location of the vehicle and not the entire route that the vehicle is going to take.

Goal: Given the vehicle model α, the edge model σ and the cloud network model ω, the goal of

this paper is to solve the time slot-based data allocation problem, so as to handle the possible dynamic

route changes of vehicles and thus, try to successfully allocate data for delivery to all the vehicles that

requested data.
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Table 3.1: Model variables and their description

Variable Name Description

Nvehicles Number of Vehicles in the VEC system

i Vehicle identifier

Nedges Number of Edges in the VEC system

j Edge/RSU identifier

t Time slot identifier

start loci Starting location of vehicle i

locationi,t Current location of vehicle i at time slot t

desti Destination of vehicle i

mem reqi Data requested by vehicle i

loc edgej Location of edge j

l covj Coverage length of edge j

mem edgej Memory of edge j

mem procj Processing memory of edge j. This is the memory reserved by the edge for its

working and cannot be used for data delivery

mem utilj,t The memory reserved by edge j for delivering data to the vehicles that are in its

coverage region at time slot t

bw edgej Bandwidth of edge j

τ Time slot period/duration

bw cloud Bandwidth of the cloud to send data to the edges

min edge desti,j Minimum number of edges that vehicle i has to pass through, to reach its desti-

nation desti from edge j, when considering all possible paths/routes

V ec setj,t Set of vehicles which are nearby or at edge j in time slot t and thus have a

possibility of reaching or staying at edge j in time slot t + 1 (We call it as

Overlap set of edge j at time slot t)

len V ec setj,t Length of the set of vehicles which are nearby or at edge j in time slot t and

thus have a possibility of reaching or staying at edge j in time slot t+ 1

left memi,t Data left to be sent to vehicle i at time slot t. It is the difference of requested

data of vehicle i - sum(delivered data) to vehicle i, across the time slots
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3.3 Proposed Solution

In this section, we present our two-stage optimization framework, which will be executed in every

time slot. It consists of the optimization functions and the constraints that need to be satisfied so as to

deliver data to the vehicles from the edges in the next time slot. Of the two stages, the first stage is to

allocate data from the cloud to the edges according to the requests of the vehicles that are in proximity

to the coverage region of those edges. The second stage is to allocate the data received by each edge

to the various vehicles, which may pass through those particular edges in the next time slot. The set of

vehicles that are near/at the coverage region of an edge and thus have a possibility of coming to that

edge, or staying at that edge, in the next time slot will henceforth be called the overlap set of that edge,

as mentioned in Table 3.1. The description of additional variables used here is given in Table 3.2.

Now, we present each stage of optimization with the objective function and constraints. Given the

vehicle model α, edge model σ, and cloud network model ω, the optimization framework that will run

in each time slot t is given below.

3.3.1 First Stage Optimization - Data to Edge from Cloud

This optimization runs once, every time slot, at the start of the time slot. The output of this optimiza-

tion is the amount of data that is being sent to each edge by the cloud, denoted by data edgej,t. The

objective function is as shown below

minimize

Nedges∑
j=1

bwcost
j,t + wrcostj,t

s.t.

data edgej,t ≥ 0 ∀j = 1...Nedges (3.1)

data edgej,t ≤ mem freej,t ∀j = 1...Nedges (3.2)

data edgej,t ≤
∑

i∈V ec setj,t

left memi,t∀j = 1...Nedges (3.3)

data edgej,t ≤
∑

i∈V ec setj,t

Dmin
i,j,t ∀j = 1...Nedges (3.4)

Nedges∑
j=1

data edgej,t ≤ τ × bw cloud (3.5)
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Table 3.2: Solution variables and their description

Variable Name Description

adj loc edgej The adjacent or directly connected locations of the edge j

pathi The route of the vehicle i. It is a list with the location of the vehicle at each time

slot

density jam Maximum number of vehicles that can be accommodated at the coverage region

of any edge

T final The last time slot till which the algorithm will run

β The bandwidth cost factor

δ The waste ratio cost factor

mem freej,t The memory of the edge j that is available for data delivery allocation at time

slot t

Dmin
i,j,t The minimum number of bytes the vehicle i can receive from edge j at time slot

t, considering the RSU’s limited bandwidth and the density of vehicles in the

overlap set of edge j at time slot t.

bwutil
j,t Bandwidth utilized for sending data edgej to edge j from the cloud in time slot

t

bwcost
j,t Bandwidth cost incurred for sending data edgej to edge j from the cloud in

time slot t

wrcostj,t Waste ratio cost incurred by sending data edgej to edge j from the cloud in

time slot t

usagecostt Sum of the bandwidth cost and waste ratio cost incurred by sending data to all

the edges from the cloud at time slot t

data edgej,t The data that was allocated by the optimizer to be sent from the cloud to edge j

at time slot t

data vehiclei,j,t The data that was allocated by the optimizer to be sent to the vehicle i from the

edge j at time slot t
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The objective function shown is the minimization of the total usage cost considering all the edges in the

VEC system at time slot t. The total usage cost is given by:

usagecostt =

Nedges∑
j=1

bwcost
j,t + wrcostj,t (3.6)

We use a non-linear pricing model for bandwidth cost [14] given by :

bwutil
j,t =

data edgej,t
τ × bw cloud

(3.7)

bwcost
j,t = β × (1 + bwutil

j,t )2 (3.8)

We introduce a balancing variable known as the waste ratio cost, to increase the amount of data that is

being sent to the edges, thus ensuring maximum utilization or minimum wastage of resources. It is used

to balance the effect of the bandwidth cost variable, which tries to limit the amount of data being sent

to the edges, based on the limited bandwidth each edge has to send data to the vehicles that pass their

coverage region. Thus, the waste ratio cost is given by :

wrcostj,t = δ × (1− data edgej,t
mem freej,t

) (3.9)

where δ is the waste ratio cost factor. This factor is used to balance the weight of the bandwidth cost

factor. δ is multiplied with the fraction of unused memory of that edge.

Therefore, the objective function has to balance the two costs and thus tries to reduce the bandwidth

cost (reduce the amount of data sent) as well as the waste ratio cost (reduce the cost incurred for not

utilizing the available resources to the maximum, thus increasing the amount of data sent).

Eq. (3.1) sets the lower bound of the data to be sent to each edge as zero. Eqs. (3.2)(3.3)(3.4)

represent the three upper bound constraints for the data to be sent to each edge. Eq. (3.2) ensures that

data sent to each edge by the cloud does not exceed the free memory available for data allocation at that

edge at time slot t. This variable is defined as:

mem freej,t = mem edgej −mem procj −mem utilj,t (3.10)

Eq. (3.3) ensures that data sent to each edge by the cloud does not exceed the sum of the remaining

requested memory of all the vehicles present in the overlap set of the edge at time slot t. The remain-

ing/leftover requested memory of vehicle i at time slot t is the amount of data left to be received from

the VEC network by vehicle i at time slot t. Thus, it is the difference between the requested memory of
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the vehicle and the memory it received from all edges it passed through across the time slots until the

current time slot t. It is given by:

left memi,t = mem reqi −
t−1∑
k=1

Nedges∑
j=1

data vehiclei,j,k

∀locationi,k+1 = j

(3.11)

These two constraints ensure that no more resources than required are utilized. Eq. (3.4) ensures that

the data received by the edge should not exceed the minimum bytes that every vehicle in the overlap

set of that edge can receive under an equal bandwidth distribution while in the edge’s coverage area.

This is to satisfy the bandwidth schedulability constraint given in [17]. This constraint States that if the

memory allocated for a vehicle is less than this value Dmin
i,j,t , then all the allocated data for delivery can

be successfully sent to the vehicles without fear of data not being sent due to insufficient bandwidth

of the edge. This is because Dmin
i,j,t denotes the memory that will be allocated if we consider the equal

distribution of bandwidth of the edge, bw edgej , across all vehicles in the overlap set V ec setj,t. Dmin
i,j,t

is defined as:

Dmin
i,j,t =

bw edgej × τ

len V ec setj,t
(3.12)

Eq. (3.5) is to ensure the time constraint, which is that the total data sent by the cloud to all edges should

not exceed the maximum amount of data that the cloud can send with its limited bandwidth in the time

period of one time slot (τ ).

3.3.2 Second Stage Optimization - Data to Vehicles from Edge

This optimization runs for each edge at every time slot. The amount of data received by each edge,

the output of the first stage optimization, is one of the inputs for this stage. The output of this opti-

mization is the data allocation for every vehicle that is part of the overlap set of that edge denoted by

data vehiclei,j,t. The objective function is shown below:

minimize
∑

i∈V ec setj,t

(left memi,t − data vehiclei,j,t)

(left memi,t ×min edge desti,j)

s.t.

data vehiclei,j,t ≥ 0 ∀i ∈ V ec setj,t (3.13)

data vehiclei,j,t ≤ left memi,t ∀i ∈ V ec setj,t (3.14)
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data vehiclei,j,t ≤ Dmin
i,j,t ∀i ∈ V ec setj,t (3.15)

∑
i∈V ec setj,t

data vehiclei,j,t ≤ data edgej,t (3.16)

∑
i∈V ec setj,t

data vehiclei,j,t ≤ (τ × bw edgej) (3.17)

The objective function shown is to minimize the sum of leftover data across all vehicles in the overlap

set while giving priority to vehicles that have a possible path to their destination with a lesser number

of edges. For this, the cloud network maintains track of the number of edges in each path from an

edge to the destination of the vehicle and selects the minimum of that, which is stored as the variable

min edge desti,j . This is done to ensure that no matter what path a vehicle takes to its destination, it

will receive data from the edges of its path while trying to allocate more data to vehicles with lesser

edges remaining in its path at slot t.

Eq. (3.13) sets the lower bound of data to be sent to each vehicle as 0. Eqs. (3.14) and (3.15) represent

the two upper bound constraints for the data to be sent to each vehicle by that edge j. Eq. (3.14) ensures

that data sent to each vehicle by that edge does not exceed that vehicle’s leftover requested memory,

Eq. (3.11), at time slot t. Eq. (3.15) ensures that the data received by the vehicle does not exceed

Eq. (3.12), the minimum number of bytes that it can receive at the coverage area of that edge. Eq. (3.16)

ensures that the total data allocated to all the vehicles in the overlap set of that edge does not exceed the

data that the edge received from the cloud. Eq. (3.17) is to ensure the time constraint, which is that the

total data sent by the edge to all vehicles in the overlap set should not exceed the maximum amount of

data that the edge can send with its limited bandwidth in the duration of one time slot (τ ).

3.3.3 Algorithm to run the two-stage optimization framework

In Lines 1-2, we initialize the variables depicting memory utilized at edge mem utilj,t and leftover

requested memory left memi,t. Line 3 decides the current time slot. From Line 4, the whole algorithm

runs in each time slot until T final. For each time slot t, we extract the locations of the vehicles.

Lines 4 and 5 loop through each edge and vehicle respectively. The overlap set for each edge is

created by checking if the location of the vehicle is near or at the edge and if the leftover memory

requested is greater than zero. All such vehicles are added to the overlap set of that particular edge, and

its length is stored. This is done for all edges in Lines 6-11.
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Algorithm 1 Two-stage optimization framework Algorithm

Require: Dataset containing N edges, N vehicles, loc edgej , mem reqi, mem edgej , mem procj ,

bw edgej , l covj , adj loc edgej , pathi, start loci, desti, min edge desti,j , density jam,

bw cloud, τ, T final, β, δ

1: Initialise : mem utilj,t = 0 ∀j = 1...Nedges and left memi,t = mem reqi ∀ i = 1...Nvehicles

2: for t = 1 to T final do

3: for j = 1 to N edges do

4: for i = 1 to N vehicles do

5: if (((locationi,t == loc edgej) or (locationi,t ∈ adj loc edgej)) &

6: left memi,t > 0) then

7: Add vehicle i to overlap set of j in time slot t

8: Add overlap set of j to V ec set

9: Add length of overlap set of j to len V ec set

10: mem freej,t = mem edgej −mem procj −mem utilj,t

11: Add mem freej,t to mem free

12: Set mem utilj,t = 0

13: Call data to edge function

14: for j = 1 to N edges do

15: if (len V ec setj,t > 0) then

16: Call data to vehicle function

17: for i ∈ V ec setj,t do

18: if pathi,t+1 == loc edgej & t < Tfinal then

19: left memi,t− = data vehiclei,j,t

20: mem utilj,t+ = data vehiclei,j,t

21: Allocation for all time slots Finished

24



Line 12 calculates the available memory for data allocation for each edge, as mem freej,t, by

subtracting the processing memory of the edge and utilized memory of the edge from the total memory

of the edge. This available memory is added to the global list in Line 13. Line 14 then sets utilized

memory mem utilj,t as zero for the next allocation.

With this, we close the for loop across the edges and then call the data to edge function in Line 16,

which is the first stage optimization, using the calculated values as inputs to get the allocated data for

each edge from the cloud.

Then, for each edge, if the overlap set of that edge contains one or more vehicles, we call the

data to vehicle function (Line 19), which is the second stage optimization, with the calculated val-

ues as inputs so as to allocate data to vehicles in overlap set. If the vehicle passes through that edge in

t+ 1 slot, then it will receive that allocated data data vehiclei,j,t

Thus, this algorithm is able to continuously deliver data to the vehicles based on their current location

and handle the dynamic route changes a vehicle can make in its travel.
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3.4 Experimental Setup and Results

In this section, we present the experimental setup for the optimization framework and compare its

performance with various algorithmic approaches using a dataset generated over a region in New York.

The experiments have been conducted in Matlab 2022b using SDPT3 [35] as the optimization solver.

The experiments are assessed using an Intel(R) Xeon(R) CPU E5-2640-based server, which has 20

cores, with each running at 2.6GHz. This device acts in place of the central cloud, where we assume the

whole Algorithm 1 to be running in each time slot. The experimental evaluation compares the results

obtained using our approach with three other approaches.

3.4.1 Dataset considered

3.4.1.1 Real Dataset Generation

For the real dataset, a bounding box area in the Manhattan region is considered, as shown in Fig. 3.2.

OSMnx [6], a Python module for geospatial processing of OpenStreetMap data, is used to extract road

intersections and the lanes connecting them along with their distances, as shown in Fig. 3.3 For each

unique intersection, an incremental intersection-id number is assigned. A CSV file with row elements as

start-id, end-id, and distance is populated, where each row signifies the intersections connected directly,

followed by a separation distance. The RSUs are placed randomly at any of the intersections. The CSV

gives all the paths that can be taken by a vehicle at each intersection. This CSV file is given as input to

the dataset generator.

3.4.1.2 Dataset generator

The dataset generator generates the required input information for the optimizer as a text file that

contains the vehicle paths, memory requested, destination, etc., followed by various edge parameters

such as memory capacity and cloud network data transfer values. We consider requests from the vehicles

only at the start of the scenario and not as dynamic request workloads. We set the waste ratio cost factor

δ to 8 (as it yielded the best results in comparison to other values during the various experiments.

Other values incur higher bandwidth cost or lesser resource utilization), the minimum distance between

neighbouring intersections to 100 meters, the time slot duration τ as 10 seconds, the bandwidth of the

cloud as 400 Mbps, the number of vehicles that change routes as 10% of Nvehicles and the final time
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Figure 3.2: Manhattan region considered (Google Maps)

Figure 3.3: Intersections and road network made by OSMnx using OpenStreetMap data
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slot (time slot till which the algorithms will run) as 120. Based on [17], the bandwidth cost factor β is

set to 0.36 along with similar edge and vehicular parameters.

3.4.2 Comparison Algorithms

3.4.2.1 Greedy Allocation of data considering route changes of vehicles

With the routes unknown, a natural approach to deliver data, would be to utilize the maximum

resources of the edges near the vehicle in every time slot, such that the vehicle will receive the maximum

data when they pass through the edges. This online greedy approach (greedy-dyn-route) can therefore

handle route changes and service more vehicles at the expense of increased resource utilization cost. It

is based on a similar concept to the online greedy approach in [38].

3.4.2.2 Optimal allocation for reducing bandwidth cost, which does not consider route changes

of vehicles

This is an offline global optimization algorithm where minimal bandwidth cost is incurred for data

delivery to vehicles(opt-fix-route). Here, the pre-defined route information of the vehicles is required

apriori. On changing their routes, the vehicles will not pass through the edges where data was allocated

for them by the algorithm (which only runs once) and hence will not be serviced. Therefore, it cannot

handle dynamic route changes of vehicles. It is similar to the optimal overlap scenario used in [17],

known as Base Overlap (BO), since the overlap set of vehicles at an edge is considered here too.

3.4.2.3 Ideal allocation for reducing bandwidth cost, which assumes to have the final routes of

the vehicles beforehand

Optimal bandwidth allocation with minimal bandwidth cost (clair-fix-route) is an offline algorithm

where the entire route of the vehicle, including future route changes, is known apriori. Thus, the alloca-

tion will be done to the correct edges through which the vehicle will pass. This is based on the overlap

computation used in [17] with the actual route of the vehicle as input instead of a pre-defined route.

28



3.4.2.4 Online heuristic of the two-stage optimization handling dynamic route changes of vehi-

cles

This refers to the proposed two-stage optimization framework (prop-dyn-route). This method

adapts a time-slot-based approach and needs the vehicle’s current location at each time slot. Data is

allocated to an edge when there are one or more vehicles nearby, and data delivery happens only if the

vehicle passes through the coverage region of that edge, thereby handling route changes, unlike the of-

fline approaches, which need the entire route apriori. The allocation happens in time slot t, and delivery

happens in t+ 1. Thus, the whole two-stage optimization runs within each time slot period.

3.4.3 Experimental Results - Real Dataset

The experiments on the real dataset were done by taking the CSV file generated using the map

Fig. 3.2, as mentioned earlier and by taking (60,100), (70,150), and (80,200) as the (N edges,N vehicles)

pair.

The parameters used for comparing the algorithms are:

3.4.3.1 Number of vehicles serviced

As seen in Fig. 3.4, which showcases prop-dyn-route and greedy-dyn-route to overlap with clair-fix-

route, prop-dyn-route is able to service as many vehicles as clair-fix-route (Ideal case with actual routes

known apriori) and greedy-dyn-route (sends maximum amount of data at all time slots), which are the

two approaches that will service the most vehicles. It does considerably better, around 5-10%, than

opt-fix-route (which is not able to service the vehicles that changed their routes).

3.4.3.2 Time taken to service the last vehicle

As seen in Fig. 3.5, prop-dyn-route is able to service the vehicles at almost the same time taken by

greedy-dyn-route, which is the fastest algorithm at servicing data since it sends the most data at all time

slots, at an average of 17% slower than it. But prop-dyn-route is significantly faster (avg of 2.3 times)

at servicing all the vehicles, when compared to the optimal approaches, which tends to allocate the data

to more edges, thus making the vehicles travel more to get the complete requested data.
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Figure 3.4: Comparison of total number of vehicles serviced successfully for a given number of edges

by the opt-fix-route, clair-fix-route, prop-dyn-route greedy-dyn-route approaches

Figure 3.5: Comparison of time taken to service the last vehicle by the opt-fix-route, clair-fix-route,

prop-dyn-route greedy-dyn-route approaches
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Figure 3.6: Comparison of total Memory resources of the edges used to deliver data to the vehicles by

the opt-fix-route, clair-fix-route, prop-dyn-route greedy-dyn-route approaches

3.4.3.3 Total memory resources used at the edges

As seen in Fig. 3.6, prop-dyn-route requires on average 6 times more memory than the optimal ap-

proaches. This is due to the fail-safe memory allocations that happen at various edges in the expectation

that nearby vehicles might pass through them, thus requiring more memory to handle the possible route

changes of vehicles. But this memory consumption is significantly lesser when compared to greedy-dyn

route(70% lesser) due to it wasting more memory resources to allocate more data faster.

3.5 Concluding Remarks

In this work we proposed a dynamic data delivery allocation framework for delivering data to con-

nected vehicles via edge nodes, that can handle real time route changes of the vehicles and hence does

not require the routes of the vehicles beforehand. We compare our proposed work with an optimal ap-

proach that cannot handle dynamic route changes, an idealistic optimal approach which knows the final

changed routes apriori and allocates accordingly, and a greedy approach . We generated a route dataset

over a selected region of Manhattan, using OSMnx, and used this dataset to chart the possible routes of

all the vehicles. We used this dataset along with vehicle flow models similar to the ones used in [17] as

the real dataset for testing. The proposed approach was able to almost service as many vehicles as the

idealistic optimal approach, including those which had changed their routes unlike the optimal approach

that cannot handle route changes. It was able to service the vehicles faster than the optimal approaches
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and utilises lesser memory than the greedy approach. In future, unlike the current assumption that the

algorithm 1 is completely running on the central cloud, we can split the algorithm into two parts where

the first part of allocating data to edge, is executed at the cloud, and the second part of allocation of data

to each vehicle by an edge is handled by the edges themselves individually. But this would have to solve

the synchronization challenges between cloud and edge.

In the experiments we have only considered an urban scenario. In a highway scenario, the number

of intersections will be lesser and thus the possibility of route changes is lesser. Thus, in a highway

scenario it might be more efficient, in terms of resource utilization, to use the optimal approach for

minimizing bandwidth cost than the proposed dynamic approach.
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Chapter 4

Global Earliest Deadline First Algorithm Based Scheduler for

Computation Offloading in Vehicular Edge Computing

4.1 Introduction

The Connected Vehicles ecosystem is seeing rapid growth with the advancements in software and

communication technologies. Many more consumer vehicles are now being equipped with means of

connectivity, thus spreading the Internet of Vehicles (IoV) domain across all people. These innovations

lead to better safety measures, for driver, passengers and pedestrians alike, more user assistance capa-

bilities such as the Heads-up-display (HUD), augmented reality features, terrain and local environment

analysis, etc. It also enriches passenger experience by allowing more entertainment options with better

connectivity. But many of these features are computationally heavy, and thus might not be utilised to

their full potential, with the limited in-vehicle computation capacity acting as a constraint. One of the

more commonly used solutions for this problem is Computation Offloading, which is the technique of

’offloading’ or executing a computation task outside of the source, in this case the vehicles. Compu-

tation Offloading is now possible with the advances in V2I and V2V technologies, which are based on

Direct Short Range Communication (DSRC). The offloaded task can be executed in any nearby available

computation device with enough resources. Some examples of possible offloading destinations include

Road Side Units(RSUs or edge nodes), nearby vehicles, passenger devices etc. But each of these will

have their own advantages and constraints.

Considering the case of offloading computation tasks to edge nodes, it is straightforward in the case

of a single vehicle offloading a task to a nearby edge node. But the problem becomes non-trivial when it

comes to a multi vehicle multi edge node system. We will have to consider many factors such as number

of vehicles concurrent in the coverage region of an edge node at a time, the time each vehicle stays in the
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coverage region, the execution and data transfer times of the task and results, and how to utilise all the

resources efficiently so as to service the maximum number of vehicles while ensuring Quality of Service

(QoS) requirements such as executing task within the task deadline etc. We also have to consider all

the constraints across multiple edge nodes and effectively utilize most of them. Thus the problem of

scheduling the tasks across all the edge nodes in the system with all these constraints is non trivial.

Motivation: There have been several works which look at the computation offloading problem, each

focusing on a particular approach with specific constraints. But there are not many works which focus

on implementing existing task scheduling algorithms of a multi core system on a global scale, equating

each edge node to a core, while considering vehicular flow constraints and QoS constraints. We aim

to provide a distributed systems scheduler based on the popular Earliest Deadline First algorithm on a

global scale, which schedules the tasks in a global queue and assigns each of them to a particular edge

node considering the various constraints of vehicle flow and time constraints. We also compare our

proposed approach with two partitioning based approaches and an optimal approach based in bandwidth

utilized using a real world dataset and tabulate the results in terms of number of vehicles serviced and

run time of the heuristic.

The chapter is further organized as follows.

In Section 4.2 we present the formulation of the models of the problem discussed in this paper.

Subsequently, we present our proposed solution approach in Section 4.3. In Section 4.4 we present a

brief on the other approaches used for computation offloading in VEC ecosystem, which we use for

comparison with our proposed approach. The experimental setting and the results obtained are shown

in Section 4.5

4.2 Problem Formulation

In this section we present our 3 layer VEC model consisting of the cloud layer, edge node/RSU layer

and the vehicle layer. The edges will try to handle the service requests of the vehicles when they enter

the coverage region of those respective edges at some particular time slot. The decision of which edge

will handle the service request of which all vehicles in each time slot is taken by the global scheduler in

the cloud.

In this work we are considering that any request by a vehicle is served by only one edge. This

computational offloading takes place at one of the edges in the route of the vehicle. The service request

34



sent to the cloud will only contain the metadata of the task such as the requesting vehicle’s id and the

deadline of the task, execution time of the task etc.

The cloud maintains a map of the entire network, and thus knows all the edges in the route of the

vehicle as well as the nearby edges to the location of the vehicle in each time slot. Thus the cloud can

check if all the conditions necessary for successful computational offloading of the task of the vehicle

is satisfied at the edge, that is in the route of the vehicle and nearby its current location, and if so then

allocate that task to that particular edge in that time slot. We model our VEC system in terms of of

vehicle model, edge model and cloud network model.

Vehicle Model: Every vehicle can be described as a tuple α = ⟨i, di, ri, pi, exec timei, deadlinei⟩.

Here i stands for the vehicle identifier. The variable di stands for the input data of the task of vehicle i to

be sent to the edge for processing and ri is the result data of the task of vehicle i, sent to the vehicle from

the edge that processed the task. pi stands for the amount of resources (in terms of VMs) are required

for the execution of the task. exec timei is the execution time required to process the task of vehicle i.

deadlinei is the deadline for the task of vehicle i to be executed by the VEC network. Details of each

variable are shown in Table 4.1.

Edge Model: Every edge in the network can be modelled as a tuple σ = ⟨j, l covj ,mem edgej , Pj ,

bw edgej ,mem procj , ⟩. Here j stands for the edge identifier. l covj is the coverage length of the edge

j. mem edgej is the memory capacity of the edge j. Pj is the processing capacity(in terms of VMs) of

the edge j. bw edgej is the network bandwidth provided by the edge j. Some of the resources of an edge

may be already occupied. We denote mem procj as the occupied memory of the edge, reserved for the

working of the edge. Therefore the available memory for task offloading is mem edgej −mem procj .

These resources get utilized when a vehicle requests for service delivery. These variables are shown in

Table 4.1.

Cloud Network Model: The cloud network maintains the status of the entire network in each time

slot. It maintains the current time slot, number of vehicles and edges in the network, the time slot period.

The Cloud network is represented by the tuple ω = ⟨t,Nvehicles, Nedges, τ⟩. Details of the variables are

shown in Table 4.1.
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Table 4.1: Model variables and their description

Variable Name Description

Nvehicles Number of Vehicles in the VEC system

i Vehicle identifier

Nedges Number of Edges in the VEC system

j Edge/RSU identifier

t Time slot identifier

l covj Coverage length of edge j

mem edgej Memory of edge j

mem procj Processing memory of edge j. This is the memory reserved by the edge for its

working and cannot be used for data delivery

bw edgej Bandwidth of edge j

τ Time slot period/duration

di Data sent to the VEC network from the vehicle i as input data for the task

offloading

ri Data sent to vehicle i as the result, from the edge that executed its task

pi Amount of resources in terms of VMs, required for the processing of the task of

vehicle i

Pj Total number of processing units, in terms of VMs, that the edge has

exec timei Time taken by any edge to process the task of vehicle i

deadlinei The global deadline for the completion of the task of vehicle i. Used as the

priority deciding factor in the scheduler.
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4.3 GEDF based Scheduler for Service Delivery

In this section we present our proposed approach, which is the Global Earliest Deadline First algo-

rithm based scheduler for service delivery. The scheduler is executed in the form of a priority queue

which gets updated every time slot. The framework consists of the heuristic algorithm and the con-

straints to be satisfied for the successful allocation of the task to a particular edge. In each time slot

the scheduler in the cloud will first choose the tasks with the highest priority in the priority queue, and

then check the if all the constraints are satisfied for each task by a particular edge. If the conditions are

satisfied then the task is allocated to that particular edge for computational offloading, if not the task is

kept in a separate queue to be added back into the priority queue scheduler to check for allocation in the

next time slot.

Given the vehicle model α, edge model σ, and cloud network model ω, we now present the schedul-

ing framework. First we present the constraints and then the scheduling algorithm.

4.3.1 Constraints

The constraints that have to be satisfied to allocate a task to an edge are as follows:

1. Vehicle is near or at the coverage of an edge: For each time slot, we can approximate the

location of the vehicle i based on the arrival time at edge j, arr ti,j , and departure time from

edge j, dept ti,j . The arrival time can be approximated by knowing the distance of edge from

the starting point of the vehicle and the average speed of the vehicle on the road. Similarly

the departure time can also be estimated given the distance and velocity information. Thus we

assume the cloud to already have the arrival and departure times of vehicle i at all the edges it

passes through as part of its route. Therefore coverage time, as given by shown by Eq 4.1, is the

time taken for vehicle i to cover the the coverage length of edge j.

cov timei,j = arr ti,j − dept ti,j (4.1)

Using the arrival time, arr ti,j , and departure time, dept ti,j , we can check if the vehicle will

pass through the coverage region of a particular edge or not in the current time slot t using the

following condition:

t ∋ arr ti,j <= (t+ 1) ∗ τ and dept ti,j >= (t+ 1) ∗ τ (4.2)
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Eq 4.2 states that the current time slot t should be such that the arrival time of the vehicle i at edge

j should be before the start of the next time slot (t + 1), as well as the departure time from the

coverage region should be after the current time slot ends. This ensures that the vehicle considered

is present in the coverage region of that particular edge j in the current time slot t, thus making it

feasible to schedule the offloading of the task to this particular edge in this particular time slot.

2. Considered edge has enough free resources to execute the task: Each edge in the network has

a limited number of resources that can be used for service delivery. Thus in each time slot, to

schedule a task at an edge for offloading, we need to ensure that the edge has enough resources to

execute the task, which is not currently occupied with another task.

pi <= P free
j,t

(4.3)

where

P free
j,t = Pj −

N∑
i=1

pi ∗ servi,j,t (4.4)

Here servi,j,t is the binary variable which denotes whether the task of vehicle i has already been

scheduled for execution at edge j in the current time slot t. By the taking the sum of the processing

resource requirements all such task already scheduled, we get the number of occupied resources.

So the available number of resources of edge j in time slot t for service delivery, P free
j,t , is given

by the total capacity of the edge, Pj , minus the number of occupied resources. Thus the second

constraint, Eq 4.3, is that the processing units requirement of the task of vehicle i should be less

than or equal to the number of available units at the edge, in that time slot.

For an edge to process a service request, some amount of data transmission is also required be-

tween the edge and the vehicle. Namely the transfer of the input data di from the vehicle to

the edge and the transfer of the result data ri from the edge to the vehicle. Thus, there must be

enough free/available memory resources, mem freej for data transmission at the edge for the

service delivery of a particular task. This is shown by Eq 4.5.

di + ri <= mem freej,t (4.5)

where

mem freej,t = mem edgej −mem procj −
N∑
i=1

(di + ri) ∗ servi,j,t (4.6)
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Eq 4.6 states that the available memory resources at edge j in time slot t is the memory capacity

of the edge, mem edgej , minus the processing memory, mem procj , and the sum of the memory

resources used for the data transmission of the already scheduled tasks’ data.

3. Task can be executed and results sent back to the requesting vehicle from the edge within the

coverage time: Due to the limited amount of time the vehicle is present in the coverage region,

we need to ensure that the total time taken for the service request delivery is within the coverage

time of the vehicle. Total time for the service delivery is the sum of the data transmission time

and the execution time. Since coverage time is calculated using the arrival and departure times,

arr ti,j and dept ti,j , and execution time is already given as input, we can get the maximum

available time for data transmission as the difference between the two as shown in Eq 4.7

data trans ti,j,t <= cov timei,j − exec timei (4.7)

where

data trans ti,j,t =
(di + ri)

alloc bwi,j,t
(4.8)

As seen in Eq 4.8 data transmission time is dependent on the amount of input data di and result

data ri as well as the amount of bandwidth of the edge that is allocated, alloc bwi,j,t. Since the

bandwidth allocated may vary, we consider the pessimistic scenario of the coverage region being

filled with vehicles, also called the jam density situation and the bandwidth being split across all

the vehicles. Thus to ensure data transmission does not cross the maximum available time, given

the limited bandwidth we have the bandwidth schedulability constraint given by Eq 4.9:

di + ri <= D min servi,j (4.9)

where

D min servi,j =
bw edgej ∗ (cov timei,j − exec timei)

density jamj ∗ l covj
(4.10)

Eq 4.10 finds the maximum amount of data that can be transmitted between the vehicle i and edge

j in the coverage region of j, given the limited amount of time and bandwidth. By ensuring that

the sum of di and ri is less than this maximum, we ensure that the data can be transmitted, and

the task executed at edge j within the coverage time itself. Eq 4.10 is derived from the bandwidth

schedulability constraint given in [17].

These constraints have to be checked for each task in the priority queue at every time slot.

Further details on the variables used to form the constraints are given in Table 4.2
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Table 4.2: Constraint variables and their description

Variable Name Description

arr ti,j Arrival time of vehicle i at edge j

dept ti,j Departure time of vehicle i from edge j

cov timei,j Time taken for vehicle i to cover the coverage length of edge j

servi,j,t Binary variable (1,0) which denotes whether the task of vehicle i is being exe-

cuted by edge j at time slot t

P free
j,t Amount of free/available processing units (VMs) of edge j at time slot t

mem freej Amount of available memory of edge j at time slot t, that can be utilized for

data transmission during task offloading

data trans ti,j,t Total time taken for data transmission between vehicle i and edge j at time slot

t. This includes sending of input data to the edge and receiving the result from

the edge.

alloc bwi,j,t Allocated bandwidth of edge j for the data transmission between vehicle i and

edge j at time slot t

density jamj Max density scenario, where densityj is defined as the amount of vehicles

present in each unit length of the coverage region of edge j

D min servi,j The minimum amount of data any vehicle i can receive in the coverage region

of edge j. This is due to the consideration of the pessimistic scenario of jam

density in its calculation. It is used to satisfy the bandwidth schedulability con-

straint of [17]
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4.3.2 Scheduler

Other optimal scheduling approaches such as the one presented in [13] might offer better solutions in

terms of the number of vehicles serviced. But these optimal approaches tend to take a long time to find

the most optimal allocation. Thus we try to address this issue by proposing a faster heuristic scheduler

approach. The global scheduler in the cloud is in the form of a priority queue, with the deadline of

the task as the priority deciding factor. This queue is maintained by the cloud. The vehicles send their

service requests to the cloud. The requests include metadata such as the vehicle identifier, route of the

vehicle, task deadline etc. The task request is then added to the priority queue. This queue is reordered

at the start of every time slot. The following Algorithm 2 depicts the steps the scheduler follows to

schedule the tasks to the appropriate edges.

First we load all the input data from the dataset, including all model variables. We then create a

priority queue and add all the tasks with their respective deadlines into the queue and order it as shown

in Lines 1-2. In Line 3 we initialize the amount of free resources for each edge considering no task has

been scheduled yet at any edge as per Eq 4.4 and Eq 4.6. We also initialize two null sets to keep track

of the tasks currently running at any of the edges, and the ones that need to be added back to the priority

queue for possible scheduling in the next time slot.

Line 4 depicts each time slot starting from the first going up to T Final, to show that the scheduler

runs in each and every time slot. Line 5 shows that we run the scheduler until the priority queue is

empty using the while loop to iterate through all the tasks in the queue. We extract the element with the

highest priority in the queue, to check if it satisfies the conditions for scheduling. Line 7 denotes the

iteration over edges, since we need to check if any of the edges satisfy the conditions for scheduling that

particular task in that time slot.

Lines 8,9 and 11 are the constraints to be satisfied for successful scheduling of the task of vehicle i at

edge j. These constraints are shown in Eq 4.2,Eq 4.3, Eq 4.5 and Eq 4.9. Line 10 is for calculating

cov timei,j and D min servi,j as per Eq 4.1 and Eq 4.10. If all the three constraints are satisfied,

then we allocate that task of vehicle i to that edge j at time slot t. Therefore we reduce the amount of

required resources for task of vehicle i, from the available resources of edge j, and assign servi,j the

value 1 to indicate that edge j has been allocated to handle the execution of the task of vehicle i. Then

we add the task of vehicle i to the running set to indicate it is currently being executed, and then break

the for loop, since this particular task has already been assigned to one edge and hence we do not need
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Algorithm 2 GEDF based scheduler Algorithm

Require: Dataset containing N edges, N vehicles, τ, mem edgej , mem procj , Pj , bw edgej ,

l covj , density jamj , T final, arr ti,j , dept ti,j , di, ri, pi, exec timei, deadlinei

1: Create empty priority queue - PQ

2: Enqueue : Priority queue, PQ, with all the tasks and their deadlines, deadlinei

3: Initialize : P free
j,t as Pj , mem freej,t as (mem edgej −mem procj) for all edges, servi,j as zero

for all i, j pairs, and two null sets called running set and reassign set

4: for t = 1 to T final do

5: while PQ.size>=0 do

6: Pop the highest priority element from PQ and store its value (Vehicle identifier) as i

7: for j = 1 to N edges do

8: if arr ti,j <= (t+ 1) ∗ τ and dept ti,j >= (t+ 1) ∗ τ then

9: if pi <= P free
j,t and (di + ri) <= mem freej,t then

10: Calculate cov timei,j and D min servi,j

11: if (di + ri) <= D min servi,j then

12: P free
j,t − = pi, mem freej,t− = (di + ri) and servi,j = 1

13: Add i to running set and then break

14: if servi,j == 0 ∀ j = 1...Nedges then

15: Add task to reassign set

16: for tasks in reassign set do

17: Enqueue : PQ with that task and its respective deadline

18: for task in running set do

19: if dept ti,j <= (t ∗ τ) then

20: P free
j,t + = pi, mem freej,t+ = (di + ri),

21: Remove i from running set

22: if PQ.size <= 0 then

23: break

24: Scheduling Finished
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to check whether the allocation constraints are satisfied for any other edge.

Line 14 checks if the task of vehicle i has been assigned to any edge. If not then in Line 15, it is added

to the reassign set to be added back to PQ in the next time slot so as to be scheduled later.

Line 16, is after all the tasks have been traversed and popped from PQ. Line 16 and 17 we enqueue PQ

again with all the tasks which yet to be allocated any edge. Line 18 traverses all the tasks which are

currently running. In line 19, we check if the vehicle exits the coverage region of the allocated edge.

If so, we free up the resources allocated for that particular task since we assume the task has already

finished execution since the vehicle is leaving the coverage region. Then in line 21 we remove that task

from the running set. Line 22 and 23 is to break the time slot loop, if all the tasks have already been

scheduled. With that we finish the execution of the algorithm.

4.4 Comparison Approaches

4.4.1 Fully Partitioned Approach

The fully partitioned approach utilizes a bin packing heuristic called First Fit Decreasing Utilization

(FFDU) in conjunction with temporal deadline, vehicular flow constraints and edge bandwidth con-

straints. Given the tasks of the vehicles in a non decreasing order of execution times, we assign tasks to

the edge nodes in this order in each time frame. Assuming i−1 tasks have been scheduled, we consider

the the ith task to be scheduled at edge j if certain conditions are satisfied. The conditions are:

1. After the execution of the tasks already assigned to edge j, there is still enough time for executing

task i as well as transfer its data before the vehicle leaves the coverage region of edge j

2. Execution of tasks already assigned to edge j and the execution of task i can be done within the

current time frame

3. Edge j has enough resources (memory, bandwidth etc) to executed the tasks already assigned to

it as well as execute task i

If all these conditions are satisfied, the task i is scheduled to be executed at edge j in the current time

frame. Fully partitioned approach ensures that each task is scheduled to be executed at only one edge.
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4.4.2 Semi Partitioned Approach

The semi partitioned approach extends from the fully partitioned approach. In this approach we relax

the restrictions of fully partitioned approach, by allowing some of the tasks to be split and scheduled

across multiple edge nodes instead of being completely executed on one edge node. We first run fully

partitioned scheduling and assign all the tasks that can be scheduled completely at the edge nodes. Then

for the remaining tasks that were not scheduled, we arrange them in a non decreasing order based on the

time the leave the coverage of the last edge node in their routes. Then in each time frame, we calculate

the available time for execution of the task i at the edge j which it is currently passing in the current time

frame. Then we execute part of the task according to this available time. And then we check the next

edge node it passes through, in the same time frame and calculate its respective available time. Another

part of the task is executed at this edge node according to the available time, after reducing the required

time to transfer the intermediary data from the previous edge node to the current one (referred to as

migration policy). This keeps repeating until the task is completely executed. But the constraint is that

it should be fully executed withing one time frame. If it cannot be executed across multiple edge nodes,

in one time frame, then the task is not scheduled. This approach increases task execution efficiency

compared to the fully partitioned approach.

4.4.3 Optimal Approach

The optimal approach tries to optimize the global bandwidth incurred to execute the tasks and transfer

the required data between the edges and the vehicles. This approach is a modified version of the optimal

approach proposed in [13]. Unlike the pessimistic scenario of all the vehicles passing through an edge,

covering it at the same time, we consider the vehicles to pass at different times, and check the constraints

for each overlap set as defined in [17]. This optimal approach also considers the vehicle flow constraints,

resource constraints and timing constraints.

4.5 Experimental Setup and Results

In this section, we demonstrate the experimental setup followed by a comparison of the proposed

approach with two other scheduling approaches, namely Full Partitioning scheduling and Semi Parti-

tioning scheduling and an optimal approach which was proposed in [17].
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The experiments for the optimal approach have been conducted in Matlab 2022b using Gurobi as

the optimization solver. While the heuristic scheduling approaches were executed using Python. The

experiments are assessed using an Intel(R) Xeon(R) CPU E5-2640-based server, which has 20 cores,

with each running at 2.6GHz. The experimental evaluation compares the results obtained using our

approach with the three other approaches.

We conducted our experiments on vehicular traces from a data set of traffic traces from Luxembourg

City [9][16] that was simulated using SUMO. From this dataset, we extracted the vehicle routes, dis-

tances travelled by the vehicles, and the count of vehicles present in each road segment. The parameters

such as the execution time, coverage distance, bandwidth etc, were generated as described below due

to the unavailability of these parameters in the real data set. We defined the parameter ranges to values

that align with real-world scenarios commonly observed.

The following are the parameters and the setup used to run the experiments:

• We used different values for the number of edges, Nedges ranging from 30 up to 70.

• The routes of 400 vehicles were generated randomly such that the vehicles pass through different

edges. We use different combinations of Nedges:Nvehicles pairs for comparison

• We place the edges at random locations in the Luxembourg map region that the selected vehicles

pass through

• The vehicle density at jam (density jamj) was set as 35 for all edges.

• Coverage distance (l covj) of the edges was randomly generated using uniform distribution be-

tween 0.6 miles to 1.6 miles.

• The bandwidth of the edges (bw edgej) was randomly generated between 8 Mbps to 15 Mbps.

• Memory capacity (mem edgej) of the edges was randomly generated between 400 Mbits to 500

Mbits using uniform distribution and the occupied memory (mem procj) was randomly gener-

ated between 0 Mbits to 150 Mbits.

• The computation capacity of the edges (Pj in number of VMs) was set as 1, to make it such that

each edge can only execute one task at a time. This to ensure similar conditions for comparison

with the other scheduling approaches, which do not consider parallel execution of tasks at an

edge.
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• The vehicle’s task’s processing requirement (pi) was also set as 1 for similar reasons.

• The data that the vehicle sends (di) to the edge and the data that it receives (ri) from the edge

were randomly generated between 1 Mbits to 15 Mbits.

• The execution time of task (exec timei) was randomly generated between 1 - 10 sec.

• Deadline of the task, deadlinei was randomly generated between 500 sec and 1500 sec

• Arrival time, arr ti,j , and departure time, dept ti,j , at each edge for each vehicle were estimated

using the distances from the starting point to that edge and assuming an average velocity of 60mph

• Time slot duration, τ , is set as 10 sec.

We have compared the number of vehicles serviced and the run time complexity of the the proposed

approach vs the two partitioning approaches and the optimal approach. The results are shown in Table

4.3. The details are as follows:

4.5.1 Run-time complexity

The proposed approach significantly reduces the amount of time required to schedule the tasks at the

edges compared to the optimal approach, which takes a long time to find the optimal solution. The time

taken is reduced by as much as 250 times and is closer to the times taken by the partitioning approaches.

The proposed approach takes nearly 2-3 times the run time to schedule the tasks as compared to the

partitioning approaches. It can also be seen that as the complexity of the network increases, in terms of

number of vehicles and edges, the run time to schedule the tasks also increases.

4.5.2 Max number of tasks scheduled

For the tasks requested by the vehicles for offloading, more tasks can be scheduled with the increase

in the number of available edges as seen in the cases with 300 vehicles requesting for their tasks to be

offloaded with 40 and 50 edges in the network. In the 50 edges case, the number of tasks that were

scheduled to be offloaded increased for all approaches. The number of tasks scheduled by the proposed

approach is more than both of the partitioning approaches but not as much as the optimal approach

which is able to schedule all the vehicles.
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Table 4.3: Comparison of Proposed Partitioned Algorithms with Optimal Approach [17]

M N Partitioned Semi-Partitioned Optimal GEDF

Number

of tasks

scheduled

70 400 370 377 400 390

50
370 332 342 370 359

300 286 286 300 293

40
300 250 255 300 275

250 215 216 250 233

Run Time

(in sec)

70 400 2.495 2.507 2791 5.761

50
370 1.541 1.554 1197.7 4.371

300 0.988 0.993 751.93 2.907

40
300 1.003 1.018 602.6 2.879

250 0.707 0.716 409.31 1.972
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4.6 Concluding Remarks

In this work, we proposed a heuristic solution for scheduling offloaded computation tasks at the edge

nodes by using a popular task scheduling algorithm called Global Earliest Deadline First algorithm

(GEDF) and modifying it to suit the VEC scenario considering the distributed edge nodes, vehicle flow

constraints and timing constraints. We considered other scheduling approaches such as Fully Partitioned

Scheduling and Semi-Partitioned scheduling at the edge nodes, presented in a co-authored paper, and

an optimal approach for comparison. We tested the performance of the proposed approach against the

other approaches using a real world dataset, the Luxembourg data scenario [10]. The proposed approach

was able to service more vehicles than the partitioning approaches at the cost of slightly more run time,

and able to schedule the tasks of the vehicles much faster than the optimal approach, at the cost of slight

dip in performance, in terms of the number of tasks scheduled.
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Chapter 5

Conclusion and Future Works

In this work, we proposed a route-agnostic dynamic data delivery framework for vehicles with route

changes. The proposed approach is able to serve considerably more vehicles than other offline algorith-

mic approaches. It utilises lesser memory usage than other approaches which handle route changes,such

as the greedy approach. It demonstrated faster service time to deliver data to vehicles, unlike the exist-

ing optimal approaches, which take more time due to distributing the data across more edges, leading

the vehicle to travel for more time to get the complete data. It also illustrates the optimality of handling

dynamic vehicular route changes using a real dataset.

We also proposed a heuristic scheduler for vehicles which request for service deliveries. The pro-

posed approach is based on the Global Earliest Deadline First algorithm for scheduling. It is able to

service more vehicles compared to the partitioning algorithms for scheduling as well as giving priority

to vehicles with an earlier deadline at the cost of a slight increment in the time taken to reach this solu-

tion. It is also faster than the optimal approach and thus makes it more suitable in real world scenarios

with lots of vehicles and edges in the network.

These works while trying to propose approaches for data delivery and computation offloading, still do

not consider all real world parameters. Some of these parameters include energy consumption, network

parameters, channel loss etc. In the case of data delivery, we also abstract the type of data that is being

delivered and consider all data to be equal. But in real world, different types of data can be requested by

the vehicles. Similarly, some forms of data can be requested by multiple vehicles at the same time. This

could include map data of the region, weather data, local news etc. When the same data is requested

by multiple vehicles, especially multiple vehicles passing through the same edge, instead of utilising

more resources of the edge node to store multiple copies of the same data to be delivered to multiple

vehicles, we can cache this data once and just send this cached data to all the vehicles requesting it,
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thus efficiently utilising the memory resources of an edge. Thus one future direction to work on would

be considering the different types of data and its implications on data delivery via edges by optimizing

caching.

Another future work can consider not just road side units as the edge nodes in the VEC framework

but also the nearby vehicles as edge nodes. This would lead to the formation of an ad-hoc cloud, where

the surrounding vehicles provide the additional computation resources of the edge node. This is useful

for computational offloading in areas without much RSU infrastructure, but a lot of connected vehicles.

But these works also will have another set of challenges such as taking care of privacy and security

constraints during V2V communication, deciding which data to be cached and which to delete etc that

have to be solved.
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Appendix A

Other Works

A.1 CG Heuristic

To solve the problem of data delivery to connected vehicles via edge nodes in the VEC ecosystem,

we proposed an optimal approach for data delivery with the minimization of the bandwidth cost as the

optimal function. This approach was different from the proposed work in [13], since this approach

took into consideration the multiple overlap sets of vehicles at the coverage region of all edges, unlike

the pessimistic approach of considering all the vehicles passing through an edge, to pass the coverage

region at the same time. This approach was able to service more vehicles than the optimal approach

which did not consider vehicle overlaps at an edge, since the resource utilization at an edge, was not

as constrained as the pessimistic approach. But this optimal approach still took a long time to arrive at

the optimal solution, which would not be feasible in real world scenarios. Hence we also proposed a

Global Edge Cost-Gradient based Heuristic for fast data delivery allocation. The proposed heuristic was

able to calculate the cost gradient for allocating some amount of data m∗ to a pair of edges, and thus

extrapolate it to the global scenario. This heuristic drastically reduced the run time for the allocation

framework, compared to the optimal approach, at the cost of performance, in terms of the number of

vehicles serviced. This paper is cited as [17].
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Appendix A

Publications

A.1 Relevant Publications

1. Joseph John Cherukara, SVSLN Surya Suhas Vaddhiparthy, Deepak Gangadharan, Baek-

Gyu Kim. ”Dynamic Data Delivery Framework for Connected Vehicles via Edge Nodes with

Variable Routes” Vehicular Technology Conference (VTC) Fall 2023

2. Akshaj Gupta, Joseph John Cherukara, Deepak Gangadharan, BaekGyu Kim, Oleg Sokol-

sky, Insup Lee. ”Global Edge Bandwidth Cost Gradient-based Heuristic for Fast Data Deliv-

ery to Connected Vehicles under Vehicle Overlaps” Vehicular Technology Conference (VTC)

Spring 2022

3. Joseph John Cherukara, Tanniru Abhinav Siddharth , Kethu Sesha Sarath Reddy , Deepak

Gangadharan, BaekGyu Kim. ”Global Earliest Deadline First Algorithm Based Scheduler for

Computation Offloading in Vehicular Edge Computing” Submitted for Review

A.2 Unrelated Publications

1. SVSLN Surya Suhas Vaddhiparthy, Joseph John Cherukara, Deepak Gangadharan, Baek-

Gyu Kim. ”Collision-Aware Data Delivery Framework for Connected Vehicles via Edges” Ve-

hicular Technology Conference (VTC) Fall 2023

2. Akshaj Gupta, Joseph John Cherukara, Deepak Gangadharan, BaekGyu Kim, Oleg Sokol-

sky, Insup Lee. ”E-PODS: A Fast Heuristic for Data/Service Delivery in Vehicular Edge Com-

puting” Vehicular Technology Conference (VTC) Spring 2021
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