
Budgeted Combinatorial Multi-Armed Bandits

Thesis Proposal submitted in partial

fulfillment of the requirements of the degree of

Master of Science

in

Computer Science and Engineering

by Research

by

Debojit Das

20171129

debojit.das@research.iiit.ac.in

Advised by Dr. Sujit P Gujar

International Institute of Information Technology

Hyderabad - 500 032, INDIA

NOVEMBER, 2023

Copyright © Debojit Das, 2023

All Rights Reserved

International Institute of Information Technology

Hyderabad, India

CERTIFICATE

It is certified that thework contained in this thesis, titled “Budgeted CombinatorialMulti-ArmedBandits”

by Debojit Das, has been carried out under my supervision and is not submitted elsewhere for a degree.

Date Adviser: Prof. Sujit P Gujar

To my hard work and my parents.

Acknowledgements

I would like to express my deepest gratitude to Dr. Sujit Gujar, my advisor, for his exceptional

guidance, unwavering support, and invaluable mentorship throughout my research. His expertise,

dedication, and willingness to address my doubts have been instrumental in shaping this research. I am

also grateful for our daily post-lunch tea sessions, which provided not only a refreshing break but also a

platform for insightful discussions.

I would like to extend my heartfelt appreciation to Dr. Shweta Jain for her valuable contributions to

this work and for her guidance during my paper-writing process. Her expertise and constructive feedback

have significantly enhanced the quality of this thesis.

I would like to thank Kumar Abhishek for his early-stage mentorship, which laid a strong foundation

for my research endeavors. I am also grateful to Sambhav Solanki for our discussions on Multi-Armed

Bandits (MAB), which have broadened my understanding of the subject.

I would like to give a special shoutout to Anurag, Samhita, and Shantanu for making my time

at MLL (Machine Learning Lab) incredibly enjoyable. Our countless fruitful discussions and shared

experiences have not only enhanced my knowledge but also forged strong friendships. You guys have

been amazing! I would also like to thank Manisha, Sanjay, Sankarshan, Shaily, and Varul for casual, but

useful, discussions in the lab.

I owe a massive debt of gratitude to my roommate and best friend, Suryansh, and my other best friend,

Aashna. Without your unwavering support and companionship, I honestly don’t know how I would have

survived college. To all my extremely close friends who have been with me through thick and thin -

Aaron, Arpita, Aryan, Anushka, Devesh, Freya, Kunwar, Kripa, Priyank, Rohan, Shantanu, Shashwat,

Shreyas, Souvik, Sriven, Ujwal - you all mean so much to me.

A special mention to Atirek, my badminton partner extraordinaire. Our intense games and juice

sessions after playing have been a significant part of my college life. I couldn’t have asked for a better

partner!

v

vi

Last but certainly not least, my heartfelt thanks go to my incredible parents. Your unwavering support,

guidance, and unconditional love have been the driving force behind my success. I am forever grateful

for everything you have done for me.

Without the collective support and contributions of these individuals, this thesis would not have been

possible. I am truly fortunate to have been surrounded by such incredible mentors, friends, and family

throughout this journey.

Abstract

Multi-armed bandits (MABs) have various applications in real life, however, most of these

applications require certain variations to the classic MAB problem. In this thesis, we focus

on one such variant - budgeted combinatorial MAB (BCMAB). A BCMAB allows for multiple

arms to be pulled in each round with no restrictions on the number of arms selected per

round or the budget consumed per round, as long as the arms pulled do not exceed the total

budget. The reward structure is taken to be additive, i.e., the reward obtained on pulling a

set of arms in a round is the sum of the rewards obtained by the individual arms. We study

relevant problems and develop our solutions to BCMAB. We come up with the algorithms

CBwK-Greedy-UCB and CBwK-LP-UCB. We mathematically prove regret bound for CBwK-

LP-UCB. We experimentally analyze our algorithms and compare them with each other and

with the previous most suited algorithm.

vii

Research Papers Based on the Thesis Work

Conference Papers

1. Debojit Das, Shweta Jain and Sujit Gujar. Budgeted Combinatorial Multi-Armed Bandits. Ap-

peared in Proceedings of the 21st International Conference onAutonomousAgents andMultiAgent

Systems, AAMAS 2022 Das et al. [9]

viii

Contents

Chapter Page

1 Introduction . 1
1.1 Motivation . 1

1.1.1 Slot Machines . 1
1.1.2 Routing . 2
1.1.3 Advertising . 3
1.1.4 Drug Testing . 4
1.1.5 Sensors . 5
1.1.6 Crowdsourcing . 6

1.2 The Multi-Armed Bandit Problem . 7
1.3 Problem Addressed . 9
1.4 Contributions . 11
1.5 Organisation of the Thesis . 12

2 Background . 14
2.1 Multi-Armed Bandits . 14

2.1.1 Notation . 14
2.1.2 Setting . 15
2.1.3 Regret . 15
2.1.4 UCB1 . 16

2.2 Variations to the MAB problem . 17
2.2.1 Reward Settings . 18

2.2.1.1 Stochastic . 18
2.2.1.2 Deterministic . 18
2.2.1.3 Adversarial . 18

2.2.2 Combinatorial MAB (CMAB) . 19
2.2.2.1 Setting . 19
2.2.2.2 U-approximation Regret . 19

2.2.3 Budgeted Multi-Armed Bandits (BMAB) . 20
2.2.3.1 The Knapsack problem . 21
2.2.3.2 Setting . 22
2.2.3.3 Regret . 22
2.2.3.4 KUBE . 22
2.2.3.5 Multiple Budget Constraints . 23

2.2.4 Contextual Multi-Armed Bandits (ConMAB) 25

ix

x CONTENTS

2.2.4.1 Setting . 25
2.2.4.2 Regret . 25
2.2.4.3 S-Exp3 . 25

2.2.5 Types of feedback . 26
2.2.5.1 Full feedback . 26
2.2.5.2 Bandit feedback . 27
2.2.5.3 Semi-bandit feedback . 27

2.2.6 Important Notations . 27
2.3 The BCMAB Problem . 29
2.4 Attempting to solve BCMAB: A Look at Related Problems 29

2.4.1 Combinatorial Multi-Armed Bandit Based Unknown Worker Recruitment in
Heterogeneous Crowdsensing . 29
2.4.1.1 Problem Addressed . 29
2.4.1.2 Proposed Solution . 29

2.4.2 Efficient Budget Allocation with Accuracy Guarantees for Crowdsourcing Clas-
sification Tasks . 31
2.4.2.1 Problem Addressed . 31
2.4.2.2 Proposed Solution . 31

2.4.3 Budget-Constrained Multi-Armed Bandits with Multiple Plays 32
2.4.3.1 Problem Addressed . 32
2.4.3.2 Proposed Solution . 32

2.4.4 Combinatorial Semi-Bandits with Knapsacks 34
2.4.4.1 Problem Addressed . 34
2.4.4.2 Proposed Solution . 34

2.5 More Relevant Work . 35
2.5.1 Vanilla MAB . 35
2.5.2 Combinatorial MAB . 35
2.5.3 Budgeted MAB . 36
2.5.4 Interesting MAB Variants . 36
2.5.5 Recent MAB work . 37

2.6 A Need for New Approaches . 37

3 Designing Algorithms . 38
3.1 Preliminaries - BCMAB . 38

3.1.1 Deterministic Setting with Known ` - Greedy Approach (CBwK-Greedy) . . . 40
3.1.2 Deterministic Setting with Known ` - Modelling it as LP (CBwK-LP) 41
3.1.3 Regret . 43

3.2 Proposed Approaches - BCMAB . 43
3.2.1 CBwK-Greedy-UCB . 43
3.2.2 CBwK-LP-UCB . 45
3.2.3 Differences with SemiBwK-RRS . 47

4 Theoretical Analysis . 48
4.1 Regret Analysis of CBwK-LP-UCB . 48
4.2 Deterministic Rewards . 49
4.3 Stochastic Rewards . 51

CONTENTS xi

5 Experimental Analysis . 54
5.1 Experimental Set-up . 54
5.2 Empirical Analysis . 57

6 Conclusion . 58

List of Figures

Figure Page

1.1 Slot Machines . 2
1.2 Routing . 3
1.3 Advertisements on a website . 4
1.4 Choosing the Right Vaccine . 5
1.5 Choosing a Set of Sensors . 6
1.6 Team Selection . 7
1.7 Slot Machines as an MAB . 7

5.1 Regret with respect to �, for fixed) . 55
5.2 Regret with respect to) , for fixed � . 55
5.3 Regret with respect to) , for fixed �

)
. 56

5.4 Regret with respect to) for fixed �/) , non-i.i.d. arms 57

xii

List of Tables

Table Page

1.1 Parallels . 9

2.1 Commonly used Notations . 28

xiii

Chapter 1

Introduction

“The choice to make good choices is the best choice you can choose.

Fail to make that choice and on most choices you will lose.” – Ryan Lilly

1.1 Motivation

Imagine you’re faced with a wide array of choices every day, like where to eat, what movie to watch,

or which book to read. Making the best decision can feel overwhelming, especially when you have

limited time and a specific budget to work with. But what if you not only had to pick one option, but

also had to figure out how to combine different choices to create the ultimate experience? That’s exactly

what we’ll explore in this thesis.

We’ll dive into the fascinating world of decision-making, uncovering the secrets to optimizing our

choiceswhile dealing with budget constraints and the complexities of combining different options. Think

of it as solving a puzzle where we have to make smart decisions to get the most out of our resources.

We’ll unravel strategies and techniques that can help us navigate this puzzle and make the most of

the opportunities at hand. Get ready to embark on an exciting journey where we’ll unlock the art of

decision-making, discovering how to make the best choices in a world full of endless possibilities.

But before we dive headfirst into the meat of our thesis, let’s take a moment to explore a few more

scenarios that highlight the challenge of decision-making when time and money are in limited supply.

1.1.1 Slot Machines

All right, picture this: After months of non-stop stress, you finally score a well-deserved week off

from work. And guess what? Your awesome company decides to send you to Las Vegas as a thank-you

1

for all your hard work. Now, Vegas is famous for its slot machines, and you’ve heard stories of people

hitting the jackpot. You know that some machines give you better odds than others, and if you play your

cards right, you might just be able to say goodbye to your boring desk job forever.

But hold up, here’s the catch: All those slot machines look the same, making it impossible to tell

which ones are worth your time. And on top of that, you’ve only got a week for your vacation and

can only rely on the money you’ve saved up from your regular paycheck. How can you maximize your

chances of hitting it big, making the most of your tight budget and limited time in Vegas?

Figure 1.1: Slot Machines
Image credit: lasvegasdirect.com

1.1.2 Routing

You’ve recently moved to a new city and lucked out by finding the perfect flat in an affordable and

amazing neighborhood. The only downside? Your office is a trek away, and there are multiple routes

you can take from your flat to get there. Naturally, you want to minimize your commute time as much

as possible. But here’s the kicker – the traffic on these roads is as unpredictable as the weather, with

variables like time of day and day of the week affecting congestion levels. So, even if you stick to the

same route, you can expect different travel times.

Now, the question is: how will you select the most optimal route every single day to minimize time

wasted over the course of a year? You might think that considering factors like time and day of the week

will likely lead to better results, but it might take longer to figure out the ideal route. Of course, these

2

https://www.lasvegasdirect.com/how-to-win-at-online-slots-and-las-vegas-casino-slots/

days, we have the luxury of online maps that solve this problem. But have you ever wondered how they

approached this challenge?

Figure 1.2: Routing
Image credit: researchgate.net

1.1.3 Advertising

This time, let’s dive into the world of advertising! So, you’ve recently launched your website, and

now you need some cash to keep it up and running smoothly. Your brilliant idea? Create slots for

advertisements and charge a commission for every click those ads receive. That sounds like a win-win

situation, right? But now comes the tricky part – many clients approach you with their ads, and you need

to figure out which ones to display.

The question is: how do you determine which ads make the cut? Is it simply first-come, first-served?

Well, not exactly. You might consider various factors like relevance, user preferences, and even location

and time. After all, competing brands wouldn’t be thrilled to have their ads displayed side by side. Users

are likelier to click on an ad if they’ve interacted with similar ones. Hence there’s a bit of a strategy

involved.

3

https://www.researchgate.net/figure/Dijkstras-Shortest-Path-of-D-from-S_fig2_221252761

Figure 1.3: Advertisements on a website
Image credit: blog.ispionage.com

1.1.4 Drug Testing

Now let’s shift our focus to a critical area of concern – drug testing. Imagine youwork in the healthcare

ministry, and researchers have claimed to develop potential vaccinations for Covid-19. Exciting, right?

But here’s the catch: all these vaccines are still in their early stages, and their true potential and possible

reactions are unknown. As a responsible healthcare professional, you understand the importance of

making the best vaccine available to the public, but you also recognize the need for caution. Rushing

into widespread administration without thorough testing could have unexpected consequences on the

human body. After all, how each individual will respond to a vaccine remains fixed but unknown.

So, the question arises: how do you propose proceeding with the vaccination drive while minimizing

risks and ensuring the earliest possible availability of the vaccines? Is there a way to strike a balance?

One possible consideration is to gather context about the individuals receiving the vaccines, such as

their age, weight, and gender. Could this additional information impact the results? It’s worth exploring

whether these factors might play a role in how well the vaccine responds to each individual.

4

https://blog.ispionage.com/wp-content/uploads/2013/10/wikihow.png

Figure 1.4: Choosing the Right Vaccine
Image credit: coe.int

1.1.5 Sensors

Imagine you’ve created an app that enables users to sense and collect data. People can install this

app on their devices, allowing it to gather the required data, which is then sent to a central server for

processing. The accuracy of the sensed data heavily relies on the device’s location and type. However,

certain irregular factors like the device’s charge level and heating issues can introduce some randomness

or unpredictability into the observed data.

Now, here’s an important aspect to consider: many of these sensors will overlap in terms of their

locations. If using a sensor incurs a cost, it would be wise to select the sensors strategically to minimize

redundancy in the collected data. The question then arises: how do you decide which sensor to choose

at any given time?

This decision-making process requires careful consideration. Factors such as the desired accuracy

level, the relevance of specific sensors to the data being collected, and the cost associated with using

each sensor need to be weighed. By selecting sensors in a way that reduces redundancy and optimizes

cost-effectiveness, you can maximize the efficiency and value of the collected data.

5

https://www.coe.int/en/web/bioethics/-/covid-19-and-vaccines-equitable-access-to-vaccination-must-be-ensured

Figure 1.5: Choosing a Set of Sensors

1.1.6 Crowdsourcing

So, imagine you’re not just any ordinary worker but the Founder and CEO of your very own company.

One day, a major client comes knocking with a project proposal that involves a complex task. But here’s

the twist – you need to do the task multiple times, and after each completion, the client assigns the next

one and dishes out rewards based on the quality of the work.

Naturally, the client has set a reasonable budget for the project. Now, you quickly realize that being

efficient in selecting your workers is absolutely crucial. You don’t want to overuse underperforming

team members and risk subpar results. At the same time, you can’t afford to under-spend and waste that

precious budget. After all, you only have a fixed number of tasks in the contract. Talk about a balancing

act, right?

The challenge is that you do not have a crystal ball to predict how well each worker will perform

on this particular task. All you know is that more workers would probably yield similar or even better

results. So, how are you going to strategize and assemble the dream team for each job?

But wait, there’s more! Not all workers are the same. They have different skill sets and areas of

expertise, and certain tasks may require specific know-how. Plus, there’s a possibility that the initial

team you put together is already competent enough, and adding more workers, no matter how skilled they

are individually, won’t significantly improve the outcome. How will your plans adapt to these changes?

6

Figure 1.6: Team Selection
Image credit: vectorstock.com

1.2 The Multi-Armed Bandit Problem

Figure 1.7: Slot Machines as an MAB
Image credit: primarydigit.com

7

https://www.vectorstock.com/royalty-free-vector/business-manager-hand-selection-team-appropriate-vector-23502844
http://www.primarydigit.com/blog/multi-arm-bandits-explorationexploitation-trade-off

All the six scenarios in Section 1.1 share a common characteristic: they involve multiple alternatives

or options to choose from and we must also consider certain time and budget constraints. However, since

the rewards associated with each choice are stochastic, we cannot determine their true quality until we try

them out multiple times. Our perception of an alternative’s goodness becomes more solid as we gather

more information through repeated trials. However, trying out every choice may end up not opting for

the best option far too often. This leads to the Exploration-Exploitation Dilemma. Our objective should

be to select the best possible alternative as often as possible.

The Exploration-Exploitation Dilemma is the basis for the Multi-Armed Bandit (MAB) problem. A

MAB is perhaps best explained by the scenario in Section 1.1.1. Here, a row of slot machines would

comprise the multi-armed bandit, with each machine corresponding to an arm of the bandit.

In a MAB, we have several arms, each having a fixed unknown reward value, and our goal as the

mechanism designer is to pull the arms in such a way that the total reward is maximized over a large

number of pulls. Looking back at the scenarios in Section 1.1, all of them can be modeled as MAB

problems. The parallels are given in Table 1.1.

In real-world scenarios, additional constraints or contextual factors often come into play, influencing

decision-making processes. For example, in Section 1.1.4, we may consider factors like age and weight

when selecting the appropriate drug for a person. In Section 1.1.5, we aim to choose sensors that

minimize data redundancy and resource waste. In Section 1.1.6, the availability of a limited budget

allows us to select multiple workers simultaneously. Incorporating such contextual information can lead

to interesting variations of the vanilla multi-armed bandit (MAB) problem discussed earlier.

Over the years, extensive research has been conducted on the classic MAB problem and its popular

variants. However, one relatively unexplored variation is the Budgeted Combinatorial Multi-Armed

Bandit (BCMAB), which we will focus on in this thesis. BCMAB introduces a budget constraint and

allows for the selection of multiple arms in each round, creating a combinatorial setting. By addressing

this variation, we aim to explore new challenges and opportunities in the field of MAB.

In the following section, we will delve deeper into the BCMAB problem, discussing its formulation,

existing approaches, and the specific contributions of this thesis.

8

Scenario Parallel for

arms

Number of pulls Reward

Slot Machines

(Section 1.1.1)

Each machine

is an arm

Number of pulls you can

make in one week assum-

ing a fixed rate

Maximise reward re-

ceived from the slot ma-

chines

Routing (Section

1.1.2)

Each route is

an arm

Number of times you will

go to your office

Minimise time spent on

traveling (maximize neg-

ative of time)

Advertising

(Section 1.1.3)

Each ad is an

arm

Number of time slots you

have for the ads over a

month (or any fixed du-

ration)

Maximise the commis-

sion by maximizing the

number of ads being

clicked

Drug Testing

(Section 1.1.4)

Each vaccine is

an arm

Number of people who

will take the vaccines

Maximise the safety of

the public by giving them

the best vaccine

Sensors (Section

1.1.5)

Each sensor is

an arm

Number of time slots

over a month (or any

fixed duration)

Maximise the data col-

lected

Crowdsourcing

(Section 1.1.6)

Each worker is

an arm

Number of jobs Maximise the reward you

get on completing a job

Table 1.1: Parallels

1.3 Problem Addressed

As discussed in the previous section, many real-world scenarios can be modeled as variations of

the Multi-Armed Bandit (MAB) problem. This thesis focuses on an important, intriguing, yet quite

unexplored variant known as the Budgeted Combinatorial Multi-Armed Bandit (BCMAB). This partic-

ular variant introduces a budget constraint and allows for the selection of multiple arms in each round,

creating a combinatorial setting. The objective in BCMAB is to minimize the total regret incurred on

pulling a subset of arms from the set of all available arms over a fixed and known number of rounds.

9

Regret of an algorithm is the difference in reward obtained on following the given algorithm and the

reward obtained on following the optimal algorithm. Regret can be thought of as the loss the algorithm

incurs by deviating from the optimal algorithm.

The BCMAB setting bears a strong resemblance to the scenarios presented in Sections 1.1.3 (Ad-

vertising), 1.1.5 (Sensors), 1.1.6 (Crowdsourcing),. In fact, our primary motivation for addressing

this problem stems from the need to solve the crowdsourcing scenario introduced in Section 1.1.6.

However, BCMAB tackles a more general problem encompassing a wider range of applications and

decision-making scenarios.

In the crowdsourcing scenario, for instance, we have a limited budget to allocate among a pool of

workers, and we aim to maximize the overall reward obtained by assigning multiple workers to different

tasks. Similarly, in the advertising scenario, we have a limited number of time slots for displaying ads,

and our objective is to select a combination of ads that maximizes the total commission earned through

ad clicks. In the sensors scenario, we want to choose a subset of sensors within a given time frame to

collect data efficiently and avoid redundancy.

The BCMAB problem provides a unified framework for addressing these challenges and more.

By incorporating budget constraints and the combinatorial nature of arm selection, it offers a flexible

and powerful approach to optimizing resource allocation and decision-making in various real-world

scenarios.

In the upcoming sections, we will delve deeper into the BCMAB problem, exploring its formulation,

existing approaches, and potential solutions. Through our research, we aim to contribute novel insights

and techniques to address this challenging problem and advance the field of Multi-Armed Bandits.

10

The key features of the BCMAB setting are as follows:

• The BCMAB has a set of set of arms with unknown, but fixed values

• The value of an arm can only be observed on pulling the arm

• The BCMAB is played for a given number of rounds and has a given initial budget

• Pulling an arm incurs a known cost

• There are no restrictions on the number of arms being pulled in a given round, or the budget

being consumed in a given round

• No arm can be pulled more than once in any given round

• If pulling an arm exceeds the remaining budget, that arm can not be pulled

• The objective is to maximize the reward across all rounds

• BCMAB has an additive reward structure for a round, i.e., the reward obtained on pulling

a set of arms in a round is the sum of the rewards obtained from each of those arms

The key difference between BCMAB and its submodular extension BCMAB-S is that BCMAB-S

has a monotonically non-decreasing submodular reward structure for a round, i.e., the reward

obtained on pulling a set of arms in a round is at max (and generally less than) sum of the rewards

obtained from each of those arms. Arms added to an existing set of arms produce diminishing

gains in rewards.

1.4 Contributions

Our contributions are listed as follows:

1. To the best of our knowledge, we are the first to address a combinatorial MAB setting that does

not restrict the number of arms for any round while working with an overall budget instead of a

fixed budget per round.

11

2. We proposed a greedy algorithm CBwK-Greedy (Algorithm 8) which solves the BCMAB problem

if the values of each arm were known.

3. Based on CBwK-Greedy, we proposed the algorithm CBwK-Greedy-UCB (Algorithm 9), which

solves the BCMAB problem.

4. Inspired by the existing PrimalDualBWK Badanidiyuru et al. [4] algorithm, which works for

single pull in budgeted MAB, we proposed the algorithm CBwK-LP-UCB (Algorithm 10) for our

BCMAB setting.

5. We rigorously prove that CBwK-LP-UCB achieves a regret of O(log2)) (Theorem 4.1) which is

the best so far in the area of BCMAB. Here,) is the number of rounds.

6. We experimentally show that CBwK-Greedy-UCB performs incrementally better than CBwK-LP-

UCB, and both outperform existing works in the literature.

1.5 Organisation of the Thesis

Chapter 1 serves as an introductory chapter, laying the foundation for the thesis by presenting

motivating scenarios related to the multi-armed bandit problem. It not only familiarizes readers with

the problem at hand but also outlines the specific problem that this thesis aims to address. Moreover, it

highlights the unique contributions and novel approaches proposed in this work.

In Chapter 2, the focus shifts to the fundamental concepts necessary to comprehend the addressed

problem and appreciate the contributions of this thesis. This chapter delves into the intricacies of the

basic multi-armed bandit problem, exploring its various formulations and popular variants. Additionally,

it provides an extensive survey of existing literature on these variants, further reinforcing the importance

and relevance of the proposed research.

Chapter 3 takes a deep dive into the core of the thesis, tackling the specific problem of Budgeted

Combinatorial Multi-Armed Bandit (BCMAB) and its submodular extension, BCMAB-S. It presents

a comprehensive framework for solving these problems, discussing the design considerations, method-

ologies, and algorithms developed to address them effectively. The chapter also provides detailed

explanations of the proposed algorithms, elucidating their underlying mechanisms and decision-making

strategies.

12

To establish the theoretical foundations of the proposed algorithms, Chapter 4 presents rigorous

mathematical proofs. It establishes regret bounds and optimality properties, providing theoretical

guarantees for the performance of the proposed algorithms. The chapter employsmathematical reasoning

and analysis to demonstrate the superior performance of the developed solutions in comparison to existing

approaches.

Chapter 5 moves from theory to practice, showcasing experimental results obtained from simulations

and real-world scenarios. These experiments provide empirical evidence to support the claims made

regarding the performance and effectiveness of the proposed algorithms. The chapter includes com-

prehensive analyses, statistical evaluations, and insightful interpretations of the experimental findings,

further solidifying the credibility and robustness of the proposed solutions.

Finally, Chapter 6 brings the thesis to a close by summarizing the key findings, contributions, and

implications of the research. It reflects on the journey undertaken throughout the thesis, highlighting the

advancements made in the field of multi-armed bandits and the significance of the proposed algorithms

for solving the addressed problems.

13

Chapter 2

Background

In this chapter, we start by introducing the concept of Multi-Armed Bandits (MABs). We

explain what MABs are and discuss some basic ideas about them. We also talk about

different ways MABs can be set up and different types of MABs. Next, we give a brief

overview of the main problem our thesis will focus on. We also look at a few studies that

deal with more complicated types of MABs. In the end, we discuss why the current methods

are not enough to solve our problem and why we need to come up with new methods.

2.1 Multi-Armed Bandits

We start this section by introducing the basic notations used in MAB in Section 2.1.1. Then, we

discuss the basic MAB setting in Section 2.1.2. Following that we define regret for this setting in

Section 2.1.3. In Section 2.1.4, we discuss the UCB1 algorithm which is commonly used to solve MAB

problems.

2.1.1 Notation

An MAB consists of the set of arms N = {1, 2, . . . , =}. Each arm 8 ∈ N has a fixed, but unknown,

reward distribution associated with it, with an unknown mean value of `8 ∈ [0, 1]. Over the course of)

rounds, we pull an arm in every round.

14

2.1.2 Setting

In the vanilla MAB, arms are stochastic in nature, and pulling arm 8 generates a reward -8 , which is a

Bernoulli random variable with parameter `8 , having support �8 ∈ {0, 1}. The goal is to generate high

rewards over) rounds and pull the arm with the highest mean value. Due to the stochasticity of arms,

an arm with the highest expected mean in the earlier rounds may not be the best, and it is sometimes a

good idea to pull other good arms for better exploration. However, pulling the other arms too often will

yield a lower expected reward. This leads to the Exploration-Exploitation Dilemma.

Let us explain the Exploration Exploitation Dilemma using a simple example. Take) = 1000,

N = [1, 2], `1 = 0.55 and `2 = 0.45. Let us say that we pulled arm 1 five times and the observed

rewards were 1, 0, 0, 1, 0, and we pulled arm 2 five times and the observed rewards were 1, 0, 1, 1, 0.

Now, the estimated mean of arm 1 is 0.4, and the estimated mean of arm 1 is 0.6. At this point, if we

decide to pull arm 2 for the remaining 990 rounds, it will result in a much lower reward than pulling arm

1. However, if the observed rewards were the other way around, and the estimate for arm 1 was 0.6 and

for arm 2 was 0.4, pulling arm 1 for the remaining rounds would have been optimal. We need to exploit

the information only after we have explored enough.

2.1.3 Regret

Consider a simple algorithm A1 where we pull the arms in a round-robin manner, i.e.; arms are

numbered from 1 to = and in round C, we pull the arm numbered (1 + C mod 8). Consider another

algorithm A2 where we do a round-robin for the first)/3 rounds and get an estimate of the mean

reward of each arm and play the best-estimated arm for the remaining rounds. How do we compare the

performances of A1 and A2 to each other? How do we compare their performances with any arbitrary

algorithm?

Definition 2.1 (Regret). The regret of an algorithm A is a measure of how well it performs compared

to an optimal algorithmA∗. Formally speaking, the regret of algorithmA, denoted by '46(A) is given

by

'46(A) =
)∑
C=1
(`8∗C − -8C) (2.1)

15

Here, 8C is the arm pulled by algorithmA in round C, and 8∗C is the arm pulled by the optimal algorithm

A∗ in the same round. -8C denotes the reward obtained on pulling arm 8C in round C by algorithm A.

Since the arms are stochastic, we talk about regret in expectation.

Definition 2.2 (Expected Regret). The expected regret of algorithm A is given by

E['46(A)] =
)∑
C=1
(`8∗C − `8C) (2.2)

Naturally, the lower the expected regret of an algorithm, the better it is expected to perform. Compar-

ing an algorithm A1 with the optimal algorithm A∗ gives it an absolute value in the form of expected

regret. Hence, comparing two or more algorithms becomes easier simply by looking at their expected

regret.

2.1.4 UCB1

One of the most popular algorithms that solve the MAB problem is the UCB1 algorithm (Auer et al.

[2]). The basic idea of the algorithm is to pull the arm with the highest upper confidence bound (UCB)

estimate. Pulling an arm gives us a tighter UCB estimate for the arm. However, if we have pulled an arm

for very few rounds, the confidence in its value decreases, and eventually, the UCB value for that arm

becomes high enough for it to get pulled. This technique solves the exploration-exploitation dilemma

quite well.

16

Let #8C (C) be the number of times arm 8C was pulled in the first C rounds. The algorithm is as follows:

Algorithm 1: UCB1
1: Parameter U > 0

2: for C in 1 to = do

3: Select arm 8C = C.

4: Observe reward -8C .

5: ˆ̀8C = -8C
6: end for

7: for C in = + 1 to) do

8: Select arm 8C ∈ argmax
8∈N

(
ˆ̀8C +

√
U ln)
#8C (C)

)
⊲ ˆ̀8C is the exploitation term and

√
U ln)
#8C (C)

is the exploration term.

9: Observe reward -8C .

10: Update UCB estimate for arm 8C , given by ˆ̀8C .

11: end for

Theorem 2.1. UCB1 achieves a regret of O(log)), where) is the number of rounds played.

A lot of work has been done to come up with algorithms that perform well in such a scenario.

Lai & Robbins [21] initiated the work on stochastic MABs and showed that it is possible to achieve

an asymptotic regret (defined in Section 2.1.3) of O(log)). The UCB1 algorithm by Auer et al. [2]

achieved regret of O(log)) uniformly over time. Since then, a lot of work has been done on stochastic

MABs and their variants using the ideas from the UCB1 algorithm.

2.2 Variations to the MAB problem

The setting described in Section 2.1.2 is often too simple for most practical applications. This section

will consider a few variations of this vanilla MAB. Section 2.2.1 talks about the possible reward settings.

In Section 2.2.2, we talk about Combinatorial MABs; in Section 2.2.3, we talk about Budgeted MABs;

and in Section 2.2.4, we talk about contextual MABs. Section 2.2.5 talks about the different types of

feedback we can get after every round.

17

2.2.1 Reward Settings

Until now, we have been assuming a stochastic reward setting for the MAB problem. Let us talk

about the different types of reward settings in more detail.

2.2.1.1 Stochastic

In the stochastic reward setting, each arm has a fixed unknown reward distribution, and when pulled,

it generates a reward sampled from the said distribution.

Consider this example of drug testing. Let us say that scientists have come up with = vaccines for

a particular variant of coronavirus. Each vaccine can be considered an arm of the bandit, where each

vaccine has fixed unknown effectiveness in fighting the virus. Since the vaccine may perform differently

on different individuals, a stochastic reward is observed every time a vaccine is given.

2.2.1.2 Deterministic

In the deterministic reward setting, each arm has a fixed unknown reward, and when pulled, it

generates said reward. This reward may change every round (that also applies to the stochastic reward

setting); however, it remains deterministic in that any arm will always yield the same reward no matter

how many times it is pulled as long as the reward does not change.

Consider this example of charging your mobile phone from 0 to 100. If you have = different chargers,

they will have a fixed, unknown, pre-determined time to charge a said phone from 0 to 100 under certain

conditions (say, the phone is switched off to minimize leakage). Each charger can hence be thought of as

an arm of the bandit. The time taken (which can be used to measure the reward) may, however, change

as the charger gets worse in quality over the years, but on any given day, a charger will always take the

same amount of time to charge the phone no matter how many times you repeat it.

2.2.1.3 Adversarial

In the adversarial reward setting, an adversary decides on the rewards for each arm after seeing our

policy for a round. The adversary wants to give us as low of a reward as possible.

Consider the game of rock-paper-scissors. We have three arms in the MAB, each corresponding to

an option. The adversary gets to decide what to play after they observe what we have played. We often

use randomization to reduce the adversary’s power in such cases. The adversary may observe our policy

18

to play rock, paper, or scissors randomly, but it will not be able to give us the lowest reward every round.

Henceforth, we will assume a stochastic reward setting unless specified otherwise.

2.2.2 Combinatorial MAB (CMAB)

In CMAB (Chen et al. [8]), in each round C, we select a subset of arms (BC) instead of always selecting

just one arm (8C). Before we discuss it any further, we need to introduce two important terms.

Definition 2.3 (Superarm). The subset of arms selected in a round is called a superarm.

We often treat a superarm B as a single entity, in the sense that we often talk about the reward of a

superarm instead of the individual rewards of every arm in the superarm.

Definition 2.4 (Oracle). An oracle takes the reward vector `1, `2, . . . , `= and returns an optimal

superarm.

2.2.2.1 Setting

A CMAB consists of = arms. Each arm 8 has a fixed but unknown reward distribution associated

with it, with an unknown mean value of `8 . Over the course of) rounds, we select a superarm in every

round. There is a (possibly) unknown reward function 5 , which generates a reward given a superarm. In

the vanilla MAB, we tend to converge on the optimal arm 8∗. Here, we tend to converge on the optimal

superarm, denoted by B∗, and pulling any other superarm adds to our expected regret.

For CMAB, we define the expected regret of algorithm A as follows:

E['46(A)] =
)∑
C=1
(`B∗ − `BC) (2.3)

2.2.2.2 U-approximation Regret

Sometimes, even if we know the mean value of every arm beforehand, it is still computationally hard

to find the optimal superarm. In general, it is an NP-hard problem. Therefore, instead of trying to

compute the optimal superarm, it is sometimes a good idea to use a greedy algorithm to find a superarm

that performs reasonably well.

19

Definition 2.5 (U-Approximation Oracle). An oracle that takes a reward vector `1, `2, . . . , `= and

returns a superarm that generates a reward at least U times that generated by the optimal superarm is

called an U-approximation oracle.

If that is the case, regret is defined with respect to the reward generated by the superarm returned by

the oracle instead of the optimal superarm. This gives us an U-approximate regret.

Chen et al. [8] proposed the algorithm CUCB (Algorithm 2) with computation oracle to solve CMAB

problems.

Algorithm 2: CUCB with computation oracle
1: For each arm 8, maintain: (1) variable #8 (C) as the total number of times arm 8 has played so

far till end of round C (2) variable ¯̀8 as the mean of all outcomes -8’s of arm 8 observed so

far.

2: For each arm 8, play an arbitrary super arm B ∈ S such that 8 ∈ B and update variables #8 (C)

and ¯̀8 .

3: Set C = =.
⊲ Since = rounds have already been played

4: while TRUE do

5: C = C + 1

6: For each arm 8, set ˆ̀8 = ¯̀8 +
√

3 ln C
2#8 (C) .

⊲

√
3 ln C

2#8 (C) is the exploration term when the mean value is ¯̀8

7: B = $A02;4(¯̀1, ¯̀2, . . . , ¯̀=).

⊲ B is the optimal superarm, according to the oracle, if the mean estimate of each

arm were the respective true value.

8: Play B and update all #8 (C)’s and ¯̀8’s.

9: end while

2.2.3 Budgeted Multi-Armed Bandits (BMAB)

Often, pulling an arm incurs additional costs. In a BMAB (Madani et al. [24], Tran-Thanh et al.

[32], Tran-Thanh et al. [34]), we have a spending budget, and each arm has a cost it incurs on being

pulled. In the simpler case where we know the actual value of every arm, it reduces to a knapsack

problem. Hence, it is only natural to talk about the knapsack problem before proceeding to BMAB.

20

2.2.3.1 The Knapsack problem

Problem Definition

The knapsack problem (unbounded knapsack, to be specific) states that we have a set of items, each

having a weight and value, and the objective is to select items such that their total value is as high as

possible, but their total weight should not be more than a certain pre-determined limit. Each item can

be selected as many (non-negative integer) times as required.

LP solution

Mathematically speaking, we have = items, where the 8Cℎ item has weight F8 and value E8 . The

maximum weight limit is, . The goal is to determine the number of times each item is selected. Let C8

be the number of times we select item 8. This can be found by solving the following LP:

max / =

=∑
8=1

G8E8

subject to
=∑
8=1

G8F8 ≤ ,

G8 ∈ Z+

(2.4)

Greedy algorithm

There is no known polynomial time solution for the knapsack problem. However, there is a greedy

algorithm (Algorithm 3) that gives a set of items whose total value is at least + ∗2 , where +∗ is the value

attained by an optimal algorithm.

Algorithm 3: Greedy algorithm for Unbounded Knapsack
1: Parameters: Weights F8 ∀ 8 ∈ {1, 2, . . . , =}, value E8 ∀ 8 ∈ {1, 2, . . . , =}, weight limit,

2: Sort based on non-increasing E8
F8

and renumber them as 1′, 2′, . . . , =′.

3: While not exceeding budget: pick as many items as possible, going in the order of

1′, 2′ . . . =′.

We can easily do this in $ (= log =).

21

2.2.3.2 Setting

A BMAB consists of = arms. Each arm 8 has a fixed but unknown reward distribution associated with

it, with an unknown mean value of `8 . Each arm 8 also has a cost 28 that it incurs when pulled. Over the

course of) rounds, we select an arm in every round, subject to the constraint that the cost of the selected

arm does not exceed our budget �.

2.2.3.3 Regret

In the non-budgeted version of single pull MAB, we tend to converge on the optimal arm 8∗. Here,

we do not necessarily have an optimal arm but an optimal sequence of pulls.

For BMAB, we define the expected regret of algorithm A as follows:

E['46(A)] =
)∑
C=1
(`8∗C − `8C) (2.5)

The sequence 8∗1, 8
∗
2, . . . , 8

∗
)
gives us the optimal sequence of pulls.

2.2.3.4 KUBE

One of the first approaches towards solving a BMAB problem gave the KUBE (knapsack–based upper

confidence bound exploration and exploitation) algorithm (Tran-Thanh et al. [34]) (Algorithm 4). The

key idea is to solve a knapsack problem with the UCB values at every round and randomly pull an arm

with a probability directly proportional to its count as per the knapsack solution. The knapsack problem

with UCB values is given as follows:

max =

=∑
8=1

<8,C

(
ˆ̀8,#8 (C) +

√
2 ln C
#8 (C)

)
subject to

=∑
8=1

<8,C28 ≤ �C

<8,C ∈ Z+ ∀ 8, C

(2.6)

Here, ˆ̀8,#8 (C) is the current estimate of arm 8’s expected reward (calculated as the average reward

received so far from pulling arm 8), #8 (C) is the number of pulls of arm 8 until round C, and
√

2 ln C
#8 (C) is the

22

size of the upper confidence interval. The goal, then, is to find integers <8,C such that Equation 2.6 is

maximized, with respect to the residual budget �C .

Algorithm 4: KUBE
1: Initialisation: Round C = 1, residual budget �C = �

2: while pulling is feasible do

3: if �C < min
8
28 then

4: STOP! (Pulling is not feasible)

5: end if

6: if C ≤ = then

7: Initial phase: play arm 8C = C.

8: else

9: Take �C as the residual budget and calculate <∗8,C ∀ 8 using Equation 2.6.

10: Randomly pull arm 8C with probability %(8C = 8) =
<∗
8,C∑=

9=1 <
∗
9,C

.
⊲ Explore with probability %(8C = 8) and exploit otherwise.

11: end if

12: Update the estimated upper bound of arm 8C .

13: �C+1 = �C − 28C
14: C = C + 1

15: end while

Theorem 2.2. KUBE has a $ (= log =) computational cost per time step and achieves a regret of

$ (log �).

2.2.3.5 Multiple Budget Constraints

Badanidiyuru et al. [4] proposed an interesting problem setting was proposed in the paper Bandits

with Knapsacks. They considered a setting where pulling an arm may consume multiple resources, and

each resource has a budget limitation. They consider a single pull setting (non-CMAB), and arms are

pulled as long as the budget permits.

One of their approaches to solving this problem leads to the algorithm PrimalDualBwK (Algorithm

5). The basic idea is very natural and intuitive: greedily select arms with the highest estimated “bang-

per-buck”, i.e., reward per unit of resource consumption. One of the main difficulties with this idea was

23

that there is no such thing as a known “unit of resource consumption”: there are 3 different resources,

and it is unclear how to trade off the consumption of one resource versus another. An optimal solution [∗

can be interpreted as a vector of unit costs for resources, such that for every arm, the expected reward is

less than or equal to the expected cost of resources consumed. Then the bang-per-buck ratio for a given

arm 8, with resource consumption vector �8 , can be defined as `8
[∗ ·�8 , where the denominator represents

the expected cost of pulling this arm. To estimate the bang-per-buck ratios, the algorithm learns optimal

vector [∗ in tandem with learning the latent structure `.

The algorithm uses themultiplicative weights update method to learn the optimal vector. This method

raises the cost of a resource exponentially as it is consumed, ensuring that heavily demanded resources

become costly and thereby promoting balanced resource consumption.

Algorithm 5: PrimalDualBwK
1: Initialisation:

2: In the first < rounds, pull each arm once

3: E1 = 1 ∈ [0, 1]3

4: EC is the round C estimate of the optimal solution [∗.
⊲ Interpret EC (9) as an estimate of the (fictional) unit cost of resource 9, for each

9

5: Set n =
√

ln 3
�

6: for rounds C = = + 1, = + 2, . . . , until resource budget exhausted do

7: for each arm 8 ∈ N do

8: Compute UCB estimate for the expected reward, ˆ̀8 (C) ∈ [0, 1]

9: Expected cost for one pull of arm 8 is estimated by �BC�>BC8 = �8EC

10: end for

11: Pull arm 8 = 8C ∈ N that maximizes ˆ̀8 (C)
�BC�>BC8

, the optimistic bang-per-buck ratio.

12: Update estimated unit cost for each resource 9 :

EC+1 (9) = EC (9) (1 + n)�8 (9)

13: end for

Theorem 2.3. PrimalDualBwK achieves a regret of $
(√

log) $%)√
�
+ log2)

)
.

24

2.2.4 Contextual Multi-Armed Bandits (ConMAB)

A ConMAB (Li et al. [22], Lu et al. [23],) as the name suggests, is a MAB with additional context.

Usually, we have some additional information about the arms that can be useful if used properly.

Take the example of drug testing. While we could test drugs on patients without any prior assumptions

about them and treat them uniformly, we should factor in their medical history for better-directed

treatment. Grouping patients based on the similarity in their medical history is better for more efficient

learning of how a drug interacts with a type of patient.

2.2.4.1 Setting

In ConMAB, in round C, we receive a 3-dimensional context vector GC ∈ X, where X is the context

set. Here, GC ∈ [0, 1]3 . Each arm 8 also has a 3-dimensional context vector G8 ∈ [0, 1] associated with

it.

In the case of ConMAB, we do not have a single arm that we can call optimal. However, we do have

an optimal policy.

Definition 2.6 (Policy). A policy is a mapping 6 : X → N that tells us which arm to play on seeing

context G ∈ X.

2.2.4.2 Regret

We define expected regret for algorithm A in the case of ConMAB as follows:

E['46(A)] = max
6:X→N

E[
)∑
C=1

-6 (GC)C −
)∑
C=1

-8C] (2.7)

2.2.4.3 S-Exp3

The simplest approach to solve a ConMAB problem is to run a separate instance of the �G?3

(Exponential weights algorithm for exploration and exploitation) algorithm on each context. This is

known as the (− �G?3 algorithm.

25

Exp3 algorithm is given below:

Algorithm 6: S-Exp3
1: Parameters: Exploration probability W ∈ [0, 1]

2: Initialisation: Weights F8 (1) = 1 ∀ 8 ∈ N

3: for C = 1, 2, . . . ,) do

4: Set probability of playing arm 8 as

?8 (C) = (1 − W) F8 (C)∑
8∈N F9 (9) +

W

=
∀ 8 ∈ N .

5: Play 8C randomly according to the probabilities ?1(C), ?2(C), . . . , ?= (C).

6: Receive reward -8C (C) ∈ {0, 1}.

7: for 9 ∈ N do

8: Set:

-̂ 9C =

- 9 (C)
? 9 (C) , if 9 = 8C

0, otherwise

⊲ Update only for the arm that was played and observed.

9: F 9 (C + 1) = F 9 (C) exp(W -̂ 9C=)

10: end for

11: end for

Theorem 2.4. The (− �G?3 algorithm achieves a regret of $ (
√
) |(|= log =).

2.2.5 Types of feedback

In a MAB, the reward we observe may differ from setting to setting. There are three main types of

feedback.

2.2.5.1 Full feedback

We are said to receive full feedback when you can observe the effect of every arm, regardless of the

arm (or superarm) you pull. An example is that even if a student takes 5 out of 20 courses, he can still

get to know how well all the other courses were taught at the end of the semester based on a peer review.

26

2.2.5.2 Bandit feedback

We are said to receive bandit feedback when you can only observe the effect of the played arm (or

superarm) as a whole. When taking multiple medicines for a disease, we generally see the effect of the

medicines as a whole. Thus, we only receive bandit feedback.

2.2.5.3 Semi-bandit feedback

We are said to receive semi-bandit feedback when you can observe the effect of the superarm as a

whole and certain effects of the arms in the superarm. As a manager, you will likely be able to observe

how the selected workers perform on the task and also see the results of the group as a whole.

Henceforth, we will assume semi-bandit feedback unless specified otherwise.

2.2.6 Important Notations

For ease of reference, Table 2.1 lists some important common notations used in this thesis.

27

Symbol Description

= Number of arms

[=] = {1, 2, ..., =} Set of arms

) Number of rounds

S Set of superarms

B Subset of arms

BC Subset selected in round C

8C Single arm selected in round C

-BC Reward observed for pulling subset BC in round C

-8C Reward observed for pulling arm 8C in round C

8∗C Optimal arm to play in round C

8�C Arm selected by the algorithm � to play in round C

'46C (�) Regret for Algorithm � for round C

'46(�) Regret for Algorithm � over) rounds

`8 Mean reward for arm 8

`∗ Mean reward for optimal arm

ˆ̀8 UCB estimate of arm 8

¯̀8 Emperical mean of arm 8

#8 (C) Number of times arm 8 was pulled in the first C rounds

X Context set

GC Context vector obtained in round C

G8 Context associated with arm 8

� Budget constraint

28C Cost of pulling arm 8C in round C

2
9

8C
Cost associated with the 9 Cℎ resource for pulling arm 8C in round C

Table 2.1: Commonly used Notations

28

2.3 The BCMAB Problem

The main problem setting addressed in this thesis is that of a multi-armed bandit with stochastic

reward setting (Section 2.2.1.1) having combinatorial framework (Section 2.2.2) with budget constraints

(Section 2.2.3) and with semi-bandit feedback (Section 2.2.5.3). We call this the BCMAB problem.

In the next section, we will review related papers and discuss their approaches, and see how there is

a need for new techniques to solve the BCMAB problem.

2.4 Attempting to solve BCMAB: A Look at Related Problems

In this section, we will review a few selected papers involving complex variants of MABs to see

how the subtopics from Section 2.2 interact. We will also see what their approaches lack to solve the

BCMAB problem as described in Section 2.3.

2.4.1 Combinatorial Multi-Armed Bandit Based UnknownWorker Recruitment in Het-

erogeneous Crowdsensing

2.4.1.1 Problem Addressed

In this paper Gao et al. [12], the focus is on the unknown worker recruitment problem in mobile

crowdsensing, where workers’ sensing qualities are unknown a priori. They consider the scenario of

recruiting workers to complete some continuous sensing tasks.

The whole process is divided into multiple rounds. In each round, every task may be covered by

more than one recruited worker, but its completion quality only depends on these workers’ maximum

sensing quality. Each recruited worker will incur a cost, and each task has attached a weight to indicate

its importance. The objective is to determine a recruiting strategy to maximize the total weighted

completion quality under a limited budget. They extend the problem to the case where the workers’ costs

are also unknown.

2.4.1.2 Proposed Solution

• They turn the unknown worker recruitment problem for heterogeneous Mobile CrowdSensing

systems into a -arm CMAB problem

29

• They propose an extended UCB-based arm-pulling strategy to solve the CMAB problem and

design the corresponding unknown worker recruitment online algorithm (UWR)

• They also study an extended case where both the sensing qualities and the costs of workers are

unknown and devise another algorithm (EUWR)

• They conduct extensive simulations on real-world traces to evaluate the significant performance

of the algorithms

Proposed Algorithms - UWR and EUWR

UWR

The platform selects the first options of all workers with the minimum cost to initialize several

parameters, such as #8 (C) and ¯̀8 (C) (average learned quality value for 8 until the CCℎ round). Then, the

platform selects workers according to the UCB-based qualities and the proposed selection criterion.

To meet the constraint that at most one option of a worker can be selected in a round, let PC′ denote the

set of not satisfying options. Then, the option with the largest ratio of the marginal UCB-based quality

function value and the cost is selected from the set P \ PC′. The platform decides whether to terminate

the algorithm based on the remaining budget. If the remaining budget is enough, the recruited workers

perform the corresponding tasks and send the sensing results to the platform. The platform updates the

worker profiles. The remaining budget and total achieved weighted quality are accordingly updated.

Theorem 2.5. UWR has a regret bound of O(=! 3 ln �), where ! is the number of options of each of

the workers.

EUWR

EUWR is very similar to UWR. The key difference between UWR and EUWR is that in EUWR,

the selection criterion takes the obtained quality and cost values (as a ratio of quality to cost) into

consideration simultaneously (whereas in UWR, only the quality was under consideration).

Theorem 2.6. EUWR has a regret bound of O(=! 3 ln (=)�)).

Why does the proposed solution fail for BCMAB?

They assume a fixed superarm size of CMAB, whereas BCMAB handles a more general case with

no superarm size limitations.

30

2.4.2 Efficient Budget Allocation with Accuracy Guarantees for Crowdsourcing Classi-

fication Tasks

2.4.2.1 Problem Addressed

In this paper Tran-Thanh et al. [35], the authors address the problem of budget allocation for redun-

dantly crowdsourcing a set of classification tasks where a key challenge is to find a trade-off between the

total cost and the accuracy of estimation.

2.4.2.2 Proposed Solution

• They introduce the problem of budget allocation for crowdsourcing classification tasks, in which

the goal is to minimize the error of the estimated answers for a finite number of tasks with respect

to a budget limit.

• They develop CrowdBudget, an algorithm that, combined with a fusion method, provably achieves

an efficient bound on the estimation error, which significantly advances the best-known results.

• They compare the performance of CrowdBudget with existing algorithms through extensive nu-

merical evaluations of real-world data taken from a prominent crowdsourcing system.

The CrowdBudget Algorithm

Let#C denote the number of users the agent aims to assign to task C. It first pre-sets to#C =
⌊

�

22
C

∑=
8=1

1
28

⌋
.

The agent also maintains �A that denotes the residual budget, initially set to be �. After each pre–set

of #C , �A is decreased by #C2C . where 2C is the cost that user C has to be paid. Next, if �A > 0,

the agent sequentially increases the number of allocated users for each task C by 1 until the original

budget is exceeded. This phase guarantees that the budget is fully used. Following this, the agent

redundantly submits the tasks to the system, and once it receives the responses from the users, it uses a

Majority-Voting–efficient fusion method to estimate the answers to each task.

Theorem2.7. CrowdBudget achieves atmostmax{0,)2 −$ (
√
�)} estimation errorwith high probability.

31

Why does the proposed solution fail for BCMAB?

They consider a setting where the workers are homogeneous, and a superarm gets a reward in {0, 1}.

We consider a more general setting where the workers (arms) may differ, and a superarm gets a reward

in [0, 1].

2.4.3 Budget-Constrained Multi-Armed Bandits with Multiple Plays

2.4.3.1 Problem Addressed

The paper Zhou & Tomlin [39] studies the multi-armed bandit problem with multiple plays and a

budget constraint for both the stochastic and the adversarial setting. At each round, exactly out of

= possible arms must be played. In addition to observing the individual rewards for each arm played1,

the player also learns a vector of costs which has to be covered with an a priori defined budget �. The

objective is to derive algorithms that minimize regret for these settings, given that the reward and cost

distribution of the arms is unknown.

2.4.3.2 Proposed Solution

• The authors provide an algorithm (UCB-MB) for the stochastic setting and prove its regret bound.

• They also provide an algorithm (Exp3.M.B) for the adversarial setting and prove its regret bound.

• They adjust Exp3.M.B to handle budget constraints and thereby provide algorithm Exp3.1.M.B,

and prove its regret bound.

Proposed Algorithms - UCB-MB, Exp3.M.B and Exp3.1.M.B

UCB-MB

Given a bandit with = distinct arms, each arm indexed by 8 ∈ N is associated with an unknown reward

and cost distribution with unknown mean 0 < `8 ≤ 1 and 0 < 2<8= ≤ 28 ≤ 1, respectively. Realizations

of costs 28C ∈ [2<8=, 1] and rewards `8C ∈ [0, 1] are independently and identically distributed. At each

round C, the decision maker plays exactly arms (the arms associated with the largest confidence

bounds) and subsequently observe the individual costs and rewards only for the played arms, which

corresponds to the semi-bandit setting. Before the game starts, the player is given a budget 0 < � ∈ R+
1The paper does not address how the individual rewards combine. However, the setting is semi-bandit feedback

32

to pay for the materialized costs {28C | 8 ∈ 0C }, where 0C denotes the indices of the arms played at time

C. The game terminates as soon as the sum of costs at round C, namely
∑
9∈0C 2 9C exceeds the remaining

budget.

Theorem 2.8. UCB-MB achieves a regret of O(= 4 log �).

Exp3.M.B

The adversarial case makes no assumptions on the reward and cost distributions whatsoever. They

consider the extension of the classic setting, where the decision-maker has to play exactly 1 ≤ ≤ =

arms. For each arm 8 played at round C, the player observes the reward -8C ∈ [0, 1] and, additionally

the cost 0 < 2<8= < 28C < 1. The player is given a budget � > 0 to pay for the costs incurred, and the

algorithm terminates after gA (�) rounds when the sum of materialized costs in round gA (�) exceeds

the remaining budget.

Algorithm Exp3.M.B maintains a set of time-varying weights {F8 (C)}=8=1 for all arms, from which

the probabilities for each arm being played at time C are calculated. The probabilities {?8 (C)}=8=1 sum to

 (because exactly arms need to be played), which requires the weights to be capped at a value EC > 0

such that the probabilities {?8 (C)}=8=1 are kept in the range [0, 1]. In each round, the player draws a set

of distinct arms at of cardinality |0C | = , where each arm has probability ?8 (C) of being included in 0C .

At the end of each round, the observed rewards and costs for the played arms are turned into estimates

ˆ̀8C and 2̂8C . Arms with F8 (C) < EC are updated according to (ˆ̀8C − 2̂8C), which assigns larger weights as

ˆ̀8C increases and 2̂8C decreases. Regret achieved by Exp3.M.B depends on the upper bound for $%) ,

where $%) is the optimal cumulative reward under the optimal set.

Theorem 2.9. Exp3.M.B achieves a regret of O(
√
�= log =

).

Exp3.1.M.B

If no upper bound on $%) exists, Algorithm Exp3.M.B. needs to be modified. The weights have

to be updated differently. As in Algorithm Exp3.1 in Auer et al. [2], the authors use an adaptation of

AlgorithmExp3.M.B,which they call Exp3.1.M.B.AlgorithmExp3.1.M.ButilizesAlgorithmExp3.M.B

as a subroutine in each epoch until termination.

Theorem 2.10. Exp3.1.M.B achieves a regret of O(
√
=) log =

+ =−
=−1 log(=)

X
) + 2

√
=) =−

=−1 log(=)
X
))

with a probability of 1 − X.

33

Why does the proposed solution fail for BCMAB?

They assume a fixed superarm size of CMAB, whereas BCMAB handles a more general case with

no superarm size limitations.

2.4.4 Combinatorial Semi-Bandits with Knapsacks

2.4.4.1 Problem Addressed

The paper Sankararaman& Slivkins [29] unifies two prominent lines of work onmulti-armed bandits:

bandits with knapsacks (BwK) Badanidiyuru et al. [4] and combinatorial semi-bandits Gyorgy et al.

[15]. It presents a combinatorial MAB setting with budget constraints.

2.4.4.2 Proposed Solution

The authors design an algorithm SemiBwK-RRS (Algorithm 7), achieving regret rates comparable

with those for BwK and combinatorial semi-bandits.

The SemiBwK-RRS Algorithm

The algorithm builds on an arbitrary random rounding scheme (RRS) for S, where S is the set of all

possible superarms. It is parameterized by this RRS and a number n > 0. In each round C, it recomputes

the upper/lower confidence bounds and solves the following linear program:

max `+C G

subject to �−C G ≤
�(1 − n)

)
, 9 ∈ [3]

(2.8)

This linear program defines a linear relaxation of the original problem, which is optimistic in the

sense that it uses upper confidence bounds for rewards and lower confidence bounds for consumption.

The linear relaxation is also conservative in the sense that it rescales the budget by 1 − n . Essentially,

this ensures that the algorithm does not run out of budget with high probability. Parameter n will be

fixed throughout. For ease of notation, they denote �n := (1 − n)�. The LP solution G can be seen as a

probability vector over the atoms. Finally, the algorithm uses the RRS to convert the LP solution into a

feasible superarm.

34

Algorithm 7: SemiBwK-RRS
1: Input: an RRS for action set S, n > 0

2: for C = 1, 2, . . . ,) do

3: Obtain fractional solution GC ∈ [0, 1]= by solving the linear program 2.8

4: Obtain a feasible superarm BC ∈ S by invoking the RRS on vector GC

5: Semi-bandit Feedback: observe the rewards/consumption for all superarms B ∈ (C .

6: end for

Theorem 2.11. '46A4C ≤ $ (log (=3))) (
√
=) ($%)√

�
+
√
) +$%)), where 3 is the number of resources.

Theorem 2.12. The per-round running time is polynomial is =, and near-linear in = for some important

special cases.

Why does the proposed solution fail for BCMAB?

They equally distribute the budget in each round. We do not put such restrictions on our setting;

hence our BCMAB setting is more general than the setting they solve in the paper.

2.5 More Relevant Work

2.5.1 Vanilla MAB

Lai & Robbins [21] initiated the work on stochastic MABs and showed that it is possible to achieve

an asymptotic regret of O(log)), where) is the number of rounds played. The UCB1 algorithm by

Auer et al. [2] achieved regret of O(log)) uniformly over time. Since then, a lot of work has been done

on stochastic MABs and their variants using the ideas from the UCB1 algorithm.

2.5.2 Combinatorial MAB

Stochastic combinatorial multi-armed bandits (CMABs) were first introduced by Chen et al. [8]. The

authors used an (U, V)-approximation oracle that takes the distributions of arms and outputs a subset of

arms with probability V generates an U fraction of the optimal expected reward. The concept of (U, V)-

approximation oracle has been used in many CMAB related works such as Chen et al. [7]. This setting

was extended to linear rewards by Wen et al. [37]. Recently, the regret of Thompson sampling-based

35

algorithm was derived for CMAB by Wang & Chen [36]. All the above works did not work with any

constraints. A few works in the literature have considered combinatorial bandits setting with constraints

to be satisfied in each round. For example, Jain et al. [18] considers a setting where at each round the

subset of arms needs to be selected to satisfy a quality constraint. Other examples of settings that have

considered combinatorial bandits include [5, 10, 16, 30].

2.5.3 Budgeted MAB

Budgeted multi-armed bandits (BMABs) were introduced in Tran-Thanh et al. [32], and the concept

of Knapsack in BMABs was later elaborated on in Tran-Thanh et al. [34]. Works like Nhat et al. [26],

Tran-Thanh et al. [35], Zhang et al. [38], Tran-Thanh et al. [33], Jain et al. [18], Reddy et al. [28] deal

with variants of BMAB, but none of them consider the combinatorial setting. Badanidiyuru et al. [4]

provide a setting of Bandits with Knapsacks as a generalization of several models. Our work is closely

related to this, but they also consider a single pull setting as compared to our combinatorial setting.

2.5.4 Interesting MAB Variants

Lately, interesting new variants have been proposed to solve more complex problems. The solutions

to these problems often require thinking from a different perspective as the previous approaches do not

work well enough.

Smart grids are being implemented worldwide to reduce electricity consumption costs. Chandlekar

et al. [6] propose a MAB-based online algorithm to learn the rate of reduction which is then used to

design an optimal algorithm for their setting. Reddy et al. [28] propose a bounded integer min-knapsack

MAB algorithm that optimizes the loss to the distributor company.

Solanki et al. [31] address the problem of agents competing with each other in a federated learning

environment. They propose a Privacy-preserving Federated Combinatorial Bandit algorithm.

Deva et al. [10] explore CMAB under quality constraints. Sharma et al. [30] and Abhishek et al. [1]

model sponsored search as a MAB problem. Ravindranath et al. [27] model human experts as arms for

a bandit and use it for face recognition. Jain et al. [18] develop an assured accuracy bandit for binary

labeling tasks in a cost-optimal way. Ghalme et al. [14] explore the case when the set of available arms

grows over time. Bhat et al. [5] propose an algorithm for the case where we learn both the cost and the

capacity of the arms.

36

Manisha & Gujar [25] use a data-driven approach and Ghalme et al. [13] use a randomized payment

rule for designing a Thompson Sampling based MAB mechanism. These mechanisms satisfy certain

game-theoretic properties and have applications in some interesting scenarios. Jain et al. [17] develop a

deterministic MAB mechanism with logarithmic regret in social welfare that can be applied to a general

crowdsourcing setting.

2.5.5 Recent MAB work

Even though CMABs and BMABs have been explored quite intensively, not much literature exists for

both of them together. Chen et al. [7], Zhou & Tomlin [40], Gao et al. [12] provide a setting that assumes

a fixed size of super-arm. The closest work to ours is by Sankararaman & Slivkins [29]. They consider

a similar setting to BCMAB with an overall budget and no restriction on the size of superarm. However,

they distribute the budget uniformly over all rounds and incur a regret of O(
√
) log)), where) is the

number of rounds. Uniformly distributing the overall budget can result in arbitrary worst regret when

the restriction is lifted. We do not impose this restriction of consuming a uniform budget over all rounds,

and our CBwK-LP-UCB algorithm incurs a regret of O(log2)), which is a substantial improvement.

2.6 A Need for New Approaches

In Section 2.4, we saw that even though a lot of work has been done in BMABs and CMABs

with budget constraints, they do not consider the BCMAB setting which does not place any restriction

on having a fixed budget per round or fixed size of superarm per round. Assuming such restrictions

and using the previously existing approaches for our BCMAB setting can lead to arbitrarily inefficient

algorithms, as we show in Lemma 3.1 and Proposition 3.1 in the next chapter. Hence, there is a need for

new approaches to solve BCMAB.

37

Chapter 3

Designing Algorithms

This chapter commences with a detailed elaboration of the additive case as applied to our

BCMAB problem. Following this, we delve into the deterministic setting, exploring a dual-

pronged approach encompassing both a greedy technique and a Linear Programming (LP)

strategy. The latter part of this chapter shifts our attention to the stochastic setting, where

we extrapolate our previous approaches and propose relevant algorithms, thereby offering

a comprehensive understanding of the problem at hand.

3.1 Preliminaries - BCMAB

Let N = {1, 2, . . . , =} denote the set of arms, where each arm 8 has a stochastic reward with fixed

but unknown distribution with unknown mean `8 ∈ [0, 1]. We represent the vector of mean rewards as

` = {`1, `2, . . . , `=}. Each arm 8 when pulled further incurs a known cost, 28 ∈ [0, 1]. There is a total

of) rounds available along with a total budget of �. The algorithm is allowed to pull any number of

arms in any round C. For example, in a crowdsourcing setting, these arms could be workers with `8 being

the quality of worker 8 and) being the total number of tasks available. We consider the additive setting

where the reward obtained by pulling the subset of arms is additive. If the algorithm pulls a super-arm

(C ⊂ N in round C, its expected reward is
∑
8∈(C `8 . The algorithm observes reward from each arm – i.e.,

it obtains semi-bandit feedback. Let #8 (C) be the number of times arm 8 has been pulled till round C.

The goal of an algorithm �!� is to maximize the total expected reward obtained in overall rounds

within the budget. For every round C, a super-arm (C comprising of one or more arms is selected. The

super-arm (C receives an expected reward '�,�!� ((C). The problem can be formulated as an Integer

Programming as follows:

38

max
{(C })C=1

'�,�!� =

)∑
C=1

∑
8∈(C

`8

subject to
=∑
8=1

#8 ())28 ≤ �

0 ≤ #8 ()) ≤)

(3.1)

Optimization Problem in Equation 3.1 is hard even when the mean rewards `8s are known. For) = 1,

the problem reduces to a Knapsack problem. In the unknown reward setting, Sankararaman & Slivkins

[29] assumes a fixed budget per round, which approximates Optimization Problem 3.1 as) independent

Knapsack problems. However, this may perform arbitrarily badly, as we prove below.

Lemma 3.1. Let) > 1 and �!�1 be an algorithm that fixes the budget per round as �′ < �. Further,

let �!�∗ be the optimal algorithm. Then, the ratio '�,�!�∗
'�,�!�1

can be arbitrarily bad.

Proof. TakeN = {1, 2} and the costs of the arms be 21 = �
′ + n1 and 22 = n2, for some arbitrarily small

positive n1 and n2. Since the budget per round is �′, �!�1 can never select arm 1 even if arm 1 has a

much higher mean reward than arm 2. If the optimal algorithm �!�∗ selects arm 1 at least once (even if

it selects no other arm), the ratio of expected rewards '�,�!�∗
'�,�!�1

be at least `1
) `2

. As the ratio of `1
`2

can be

arbitrarily large (for `1 close to 1 and `2 close to 0), fixing the budget can perform arbitrarily bad. �

Proposition 3.1. Let) > 1 and �!�1 be an algorithm that fixes the number of arms to be pulled

upfront, independent of the problem instance. Further, let �!�∗ be the optimal algorithm. Then, the

ratio '�,�!�∗
'�,�!�1

can be arbitrarily bad.

Proof. Suppose, an algorithm decides to pull = 2 arms every round. Take N = {1, 2} and the

costs of the arms be 21 = n and 22 = 1 and mean values be such that `1 > `2. Let � =)n . Then

'�,�!�1 = (`1 + `2) �
(21+22) whereas pulling arm 1 for every round gives reward of '�,�!�∗ =

�
21
`1.

Thus, '�,�!�∗
'�,�!�1

=
`1 (21+22)
21 (`1+`2) >

1
2 (1 +

1
n
). As n can be arbitrarily small, this ratio can be arbitrarily

bad. �

Lemma 3.1 and Proposition 3.1 illustrate that fixing the budget or number of pulls at any round can

lead to arbitrary bad reward with respect to optimal, and hence show the complexity of solving the

39

Optimization Problem 3.1. Since the problem is hard even for a known reward setting, we first discuss

the algorithms that can be used for a known reward setting.

Note: Optimization Problem 3.1 can be modeled as a Dynamic Programming (DP) problem by

multiplying the costs 28 by some scaling factor B to integral values (accordingly the budget � now

becomes B�). Even though we will get an optimal solution from this, it will run in O(=�)B2), which is

fairly slow. Furthermore, in the unknown stochastic setting, this DP will have to be called after every

round, making it infeasible for practical use.

Inspired by the greedy solution of the knapsack problem, we propose a greedy approach in the next

subsection which select the arms with respect to the bangperbuck ratio.

3.1.1 Deterministic Setting with Known ` - Greedy Approach (CBwK-Greedy)

Since modeling Optimization Problem 3.1 as a DP can be very slow, we make attempts towards a greedy

approximation. When the rewards are given, we can reduce this problem to a knapsack problem where

each arm has) copies and the goal is to select a subset of these =) arms available so as to maximize the

reward subject to budget constraint. Note that this approach will not work in an online setting because

the decision has to be made at every time instance and an arm can be pulled at most once at that time

instance. We will see later how we can adapt the offline greedy algorithm to the online setting.

Let us first define the bangperbuck ratio of an arm. The bangperbuck ratio of an arm 8 is given by the

ratio of its value and cost, i.e., `8
28
. The core idea behind the greedy solution is to select arms with a higher

bangperbuck ratio the maximum number of times possible before the arms with a lower bangperbuck.

The approach is as follows. Select the arm with the highest bangperbuck ratio for as many tasks as

possible, without violating budget constraints. Then select the arm with the next highest bangperbuck

ratio for as many tasks as possible, without violating budget constraints. Continue this until we are done

with the arm with the lowest bangperbuck ratio. We present it formally in Algorithm 8.

40

Algorithm 8: CBwK-Greedy
1: Input: Number of arms =, budget �, number of rounds) and the mean values of the arms

` = {`1, . . . `=}.

Output: Allocation {#1()), #2()), . . . , #= ())}

2: Initialize budget remaining �A = �, (1 = (2 = . . . , () = q.

3: Sort the arms in non-increasing order of their bangperbuck ratios. Number them as

G1, G2, . . . , G=. Hence
`G8
2G8
≥ `G8′

2G8′
∀ pairs 8 < 8′.

4: for 8 = 1, 2, . . . , = do

5: #G8 ()) = min
{
),

⌊
�A
2G8

⌋}
⊲ #G8 ()) gives the number of times arm G8 is selected in) rounds.

6: �A = �A − 2G8#G8 ())

⊲ �A is the remaining budget.

7: end for

We have the following remarks with respect to CBwK-Greedy algorithm:

Remark 1: Since CBwK-Greedy is similar to that of the greedy algorithm of knapsack algorithm,

it can be easily modified to achieve '�,�!�∗
'�,CBwK-Greedy

= 2.

Remark 2: CBwK-Greedy runs in O(= log =), dominated by the sorting step. This is much faster

than the DP solution.

3.1.2 Deterministic Setting with Known ` - Modelling it as LP (CBwK-LP)

We can also write the optimization problem in Equation 3.1 as a linear programming problem similar

to [4]. Following their works, we propose the following reduction to their single pull setting:

The new setting has) rounds with every round consisting of = plays: on the 8Cℎ play, the algorithm

can choose whether to pull arm 8 or not to pull any arm. The setting is thus transformed into a single

pull setting with =) rounds, where it is not required to pull an arm in every round. To incorporate this

reduction, we consider = additional resources. We model each arm as a budget-constrained resource,

such that each arm can be pulled at most) times, and deterministically consumes one unit per pull.

41

Therefore, now instead of just having a cost 28 associated with each arm 8, there is a cost vector �8

associated with each arm 8. The length of the �8 vector will be = + 1, with the first = components

corresponding to = additional resource and the last one denoting the cost 28 . Note that for each arm 8,

the 8Cℎ component will be one, the last component will be 28 , and the rest will be zero.

Now, let �′ = min(�,)). We scale the costs 28 for each arm 8 as well as the costs for the additional

resources to make all budgets uniformly equal to �′. Thus, our cost matrix " , which is of the size

(= + 1) × =, can be written as:

" 98 =

28 · �′/� if 9 = # + 1

1 · �′/), if 8 = 9

0, otherwise

(3.2)

Here, " 98 indicates the cost of resource 9 if we pull arm 8. Now, we write this as a relaxed LP as

shown in Equation 3.3. We also write its dual in Equation 3.4.

max
∑
8∈N

Z8`8 , Z8 ∈ R,

s.t.
∑
8∈N

Z8" 98 ≤ �′ ∀ 9 ∈ {1, 2, . . . , = + 1}

Z8 ≥ 0, ∀8 ∈ N

(3.3)

The variables Z8 represent the fractional relaxation for the number of rounds in which a given arm 8 is

selected. This is a bounded LP, because
∑
8∈N Z8`8 ≤

∑
8∈N Z8 ≤ #) . Let, the optimal value of this LP

is denoted by $%)!% . We now present the dual formulation of the problem.

min �′
∑
9

[9 , [9 ∈ R

s.t.
∑
9

[9" 98 ≥ `8 , ∀8 ∈ N

[9 ≥ 0 ∀ 9 ∈ {1, 2, . . . , = + 1}

(3.4)

42

The dual variables [9 can be interpreted as a unit cost for the corresponding resource 9 . We refer to the

algorithm to solve the above dual as CBwK-LP and it is easy to see '�,CBwK-LP = $%)!% (due to LP

duality).

Remark: In a deterministic setting, it is fairly obvious why $%)!% ≥ '�,�!�∗ . However, it

is not as trivial when the reward from arm pulls is stochastic. We prove this in the following

Lemma.

Lemma 3.2. $%)!% is an upper bound on the value of the optimal reward: $%)!% ≥ '�,�!�∗ ,

where �!�∗ is an optimal algorithm.

Proof. Let [∗ = ([∗1, . . . , [
∗
3
) denote an optimal solution to Equation 3.4. Interpret each [∗

9
as a unit cost

for the corresponding resource 9 . By strong LP duality, we have �′
∑
9 [
∗
9
= $%)!% . Dual feasibility

implies that for each arm 8, the expected cost of resources consumedwhen 8 is pulled exceeds the expected

reward produced. Thus, if we let /C denote the sum of rewards gained in rounds 1, . . . , C of the optimal

dynamic policy, plus the cost of the remaining resource endowment after round C, then the stochastic

process /0, /1, . . . , /
′
)
is a supermartingale. Note that /0 = �

′∑
9 [
∗
9
= $%)!%, and /) ′−1 equals the

algorithm’s total payoff, plus the cost of the remaining (non-negative) resource supply at the start of

round) ′. By Doob’s optional stopping theorem, /0 ≥ � [/) ′−1] and the lemma is proved. �

3.1.3 Regret

Let the optimal algorithm for Optimization Problem 3.1 be �!�∗. Its reward is given by '�,�!�∗ .

We define regret incurred by an algorithm �!� as

'���!� (N ,), �) = '�,�!�∗ (N ,), �) − '�,�!� (N ,), �) (3.5)

3.2 Proposed Approaches - BCMAB

3.2.1 CBwK-Greedy-UCB

Our first algorithm CBwK-Greedy-UCB in unknown reward setting is presented in Algorithm 9. The

algorithm basically extends the greedy algorithm presented in section 3.1.1 so as to select a subset of

arms at each round C.

43

Algorithm 9: CBwK-Greedy-UCB
1: Input: Number of arms =, budget �, number of rounds)

Output: Subset of arms (C to be pulled for each round C.

2: Initialize remaining budget �A = �.
⊲ Initialization

3: for 8 in N do

4: if 28 ≤ �A then

5: Pull arm 8 and update UCB value of arm 8, #8 (C) = 1, and �A = �A − 28 .

6: end if

7: end for

⊲ Treat CBwK-Greedy as the oracle.

8: for rounds C = 2, 3, . . . ,) do

9: Call CBwK-Greedy(=, �A ,) − C,*��1,*��2, . . . ,*��=) to get the allocation

#1 () − C), #2 () − C), . . . , #= () − C).

10: for arm 8 in N do

11: if #8 () − C) ≥ 1 and 28 ≤ �A then

12: (C = (C ∪ {8}, �A = �A − 28
13: end if

14: end for

15: Pull all the arms in (C and update UCB values of the arms 8 and #8 (C) = #8 (C) + 1 ∀8 ∈ (C .

16: end for

Steps 3-7 correspond to the first round. In the first round, we select every arm in the super-arm as long

as they can be pulled without exceeding the budget. Steps 8-15 correspond to the remaining) −1 round.

At the start of each round, we use the greedy approach discussed in section 3.1.1 on the remaining budget

and the remaining number of tasks to get the number of times each arm should be selected if the UCB

estimates of each arm were their real mean values. Any arm that the greedy approach does not pull in

the remaining tasks is not pulled by CBwK-Greedy-UCB for the next round. All the remaining arms are

pulled as long as they can be pulled without exceeding the budget. The idea here is that if the greedy

algorithm does not select an arm even once, it either has a very low bangperbuck ratio (as per the UCB

estimate until that round) or has a higher cost than the remaining budget. In either case, it makes sense

not to select the arm for that round.

Note: We do not prove a regret bound for CBwK-Greedy-UCB as the analysis gets quite tricky since it is

not easy to estimate the size of super-arm (C selected in any round C.

44

3.2.2 CBwK-LP-UCB

The intuitive idea for the CBwK-LP-UCB algorithm is to select arms with the highest estimated bangper-

buck ratio greedily. Here, the bangperbuck ratio for a given arm 8 is defined as `8/([∗�8), where the

denominator represents the expected cost of pulling this arm. The algorithm CBwK-LP-UCB is formally

stated in Algorithm 10.

Algorithm 10: CBwK-LP-UCB
1: Input: Number of arms =, budget �, number of rounds)

Output: Allocation {(1, (2, . . . , () }

2: (C = q ∀C

3: Initialization

4: In the first round, pull arm 8 on the 8Cℎ play i.e. (1 = (1 ∪ {8}.

5: E1 = 1 ∈ [0, 1]=+1

6: Set n =
√

ln (=+1)
min (�,))

7: for rounds C = 2, 3, . . . ,) do

8: for each arm 8 ∈ N do

9: Compute UCB estimate for the expected reward, DC ,8 ∈ [0, 1]

10: Expected cost for one pull of arm 8 is estimated by �BC�>BC8 = �8 · EC
11: end for

12: for play 8 = 1, 2, . . . , = do

13: (C = (C ∪ {8} if there is enough budget remaining to pull arm 8 after all the estimated

better arms (arms with higher estimated bangperbuck) have been pulled for the

remaining rounds

14: If pulled, update the estimated unit cost for each resource 9 : EC+1(9) = EC (9) (1 + n)" 98

15: end for

16: end for

Steps 1 and 2 corresponds to the first round where we pull the 8Cℎ arm in the 8Cℎ play. Steps 3 and 4 set

the parameters. Steps 5-14 correspond to the remaining () − 1) rounds. In steps 6-9, for each arm, we

update its UCB estimate and expected cost of pulling that arm. In steps 10-14, we decide whether to

pull an arm or not by prioritizing arms with higher bangperbuck ratios. If it gets pulled, we update its

estimated cost accordingly. EC gives an estimate of [∗ after a set of rounds C.

45

CBwK-LP-UCB is inspired by PrimalDualBwK algorithm for single pull setting. Here, we list the key

differences between the two algorithms.

Key Differences between CBwK-LP-UCB and PrimalDualBwK

• The fundamental difference betweenCBwK-LP-UCB and PrimalDualBwK is that every round inCBwK-

LP-UCB has = plays whereas a round in PrimalDualBwK has only one play. CBwK-LP-UCB can also

choose to smartly not pull any arm in a play even if it is possible to, but PrimalDualBwK always pulls

an arm every round as long as budget permits.

• Themain challenge in adapting PrimalDualBwK for a combinatorial setting, and why it is not a trivial

extension with the number of rounds as =) , is as follows: Once an arm 8 is selected by PrimalDualBwK

in round C, it will once again be available for selection in round C+1. However, since several consecutive

plays fall in the same round for CBwK-LP-UCB, if arm 8 is selected in round C for play ?, it will not be

available for any other play ?′ in round C. We tackle this by smartly choosing not to pull any arm in

certain plays. An arm is considered for pull exactly once per round, and will only be selected if there

is enough budget remaining to pull it after all the estimated better arms (arms with higher estimated

bangperbuck) have been pulled for the remaining rounds.

• Another important distinction is that, in CBwK-LP-UCB, the UCB values of all the arms are updated

together at the start of every round, and they do not change with every play.

Note that, our main contribution is the reduction of our combinatorial setting into the single pull setting

provided by Badanidiyuru et al. [4] such that the generated single pull solution works in the original

setting flawlessly. CBwK-LP-UCB is a modified version of their PrimalDualBwK algorithm. With such

ingenious mapping, the regret proof becomes similar to that of [4]. We use their techniques to suit our

combinatorial setting and present the regret analysis for CBwK-LP-UCBand prove a regret bound of the

form:

$%)!% − '�,CBwK-LP-UCB ≤ 5 ($%)!%) (3.6)

where 5 (·) is a linear function that depends only on parameters (�′, =,) ′). Regret bound (3.6) implies

the claimed regret bounds relative to '�,�!�∗ because

'�,CBwK-LP-UCB ≥ $%)!% − 5 ($%)!%) ≥ '�,�!�∗ − 5 ('�,�!�∗) (3.7)

46

where the second inequality follows trivially because 6(G) = <0G(G − 5 (G), 0) is a non-decreasing

function of G for G ≥ 0 for a linear 5 (·), and $%)!% ≥ '�,�!�∗ from Lemma 3.2. From Equation 3.7

and Equation 3.5,

'��CBwK-LP-UCB = '�,�!�∗ − '�,CBwK-LP-UCB ≤ 5 ('�,�!�∗) (3.8)

3.2.3 Differences with SemiBwK-RRS

As discussed in Section 2.4.4, even though Sankararaman & Slivkins [29] also consider a budgeted

combinatorial setting with semi-bandit feedback, the key difference lies in the fact that they assume a

fixed budget per round. They solve an LP in each round which considers a pre-determined fixed budget

for every round. We have already shown in Lemma 3.1 that this can perform arbitrarily badly. We use

the budget in each round adaptively, thus leading to better regret bounds.

In the next chapter, we bound our regret and prove Equation 3.8.

47

Chapter 4

Theoretical Analysis

This chapter explores the regret analysis of our algorithm, named CBwK-LP-UCB. The most

important theory in our thesis is that the regret of CBwK-LP-UCBis O(;>62)), with) being

the total number of rounds played by the BCMAB. To start, we look at the deterministic

reward setting and prove some key points. Using these points as a basis, we then shift our

focus to the stochastic reward setting. This progression allows us to prove our main theory.

Our systematic approach helps us evaluate the effectiveness of our algorithm in different

situations.

4.1 Regret Analysis of CBwK-LP-UCB

We start this section by introducing some notations that will be used in our regret analysis. Then we

formally present our result in Theorem 4.1. For the sake of clarity in notations, let 3 = = + 1 be the

dimension of the cost vector (represented as �8 for arm 8). Take distribution HC as a vector of normalized

costs of resources, i.e., HC (9) = EC (9)∑3
9=1 EC (9)

. Let us take, as the total expected normalized cost consumed

by the algorithm after the first round (hence,, =
∑)
C=2

∑
8∈(C H

)
C �8). (C : the set of arms selected in their

respective pulls in round C. With this, we claim the regret guarantee for CBwK-LP-UCB:

Theorem 4.1. The regret of algorithm CBwK-LP-UCB with parameter n =
√

ln 3
�′ , for 3 = = + 1, satisfies

$%)!% − '�,CBwK-LP-UCB ≤ $
(√

log (=2))
) (√

= · $%)!% +$%)!%
√
=

�′

)
+$ (=) log (=2)) log ())

(4.1)

48

Proof. (Overview) Using useful result adapted from Kleinberg [19], in Lemma 4.1 (Section 4.2), we

bound the term $%)!% − 5 ($%)!%) for the deterministic (but unknown) setting. In Section 4.3, we

extend this for the unknown stochastic setting, as described in Equation 3.8, completing the proof.

�

Step 12 in Algorithm 10 uses the multiplicative weights update technique by Freund & Schapire

[11]. It is an online technique for maintaining a 3-dimensional probability vector H while observing a

sequence of 3-dimensional payoff vectors c1, . . . , cg . We use the following related result adapted from

Kleinberg [19].

Proposition 4.1. Fix any parameter n ∈ (0, 1) and any stopping time g . For any sequence of payoff

vectors c1, . . . , cg ∈ [0, 1]3 , we have

∀H ∈ Δ[3]
g∑
C=1

H)C cC ≥ (1 − n)
g∑
C=1

H) cC −
ln 3
n

(4.2)

4.2 Deterministic Rewards

In this section, we consider the setting where pulling an arm 8 deterministically generates reward `8 .

We bound the regret incurred if the arms are pulled as per the algorithm CBwK-LP-UCB.

The payoff vector in any round C > 1, is given by cC =
∑
8∈(C �8 . Take the total cost consumed by

Algorithm 10 as, =
∑)
C=2

∑
8∈(C H

)
C · �8 . We want to maximise this, .

To see why , is worth maximizing, let us relate it to the total reward collected by the algorithm in

rounds C > 1 denoted by '�,CBwK-LP-UCB =
∑)
C=2 A4FC , where A4FC is the reward collected in the round

C. We will prove in Lemma 4.1 that '�,CBwK-LP-UCB ≥ , · $%)!%�′ . For this reason, maximizing, also

helps maximize '�, .

Let Z∗ denote an optimal solution of the primal linear program (LP-primal). Then $%)!% = `) Z∗

denote the optimal value of that LP.

Claim 4.1. We claim that there exists a IC , such that

IC ∈ argmax
I∈Δ[N]

`) I

H)C "I
(4.3)

49

Proof. IC is a distribution that maximizes the bangperbuck ratio among all distributions I over arms.

Indeed, the argmax in Equation (4.3) is well-defined as that of a continuous function on a compact

set. Say it is attained by some distribution I over arms, and let d ∈ ' be the corresponding max.

By maximality of d, the linear inequality dH)C "I ≥ `) z also holds at some extremal point of the

probability simplex Δ[N], i.e. at some point-mass distribution. For any such point-mass distribution,

the corresponding arm maximizes the bang-per-buck ratio in the algorithm. �

Lemma 4.1. '�,CBwK-LP-UCB ≥ , · $%)!%�′

Proof.

H)C cC = H
)
C "IC ≤

A4FC (H)C "Z∗)
$%)!%

, ≤ 1
$%)!%

)∑
C=2

A4FC (H)C "Z∗)

=
1

$%)!%

)∑
C=2
(A4FC H)C)"Z∗

Now, let H̄ = 1
'�,CBwK-LP-UCB

∑)
C=1 A4FC · HC ∈ [0, 1]3 be the rewards weighted average of distributions

H2, . . . , H) , it follows that

, ≤
(
'�,CBwK-LP-UCB

$%)!%

)
H̄)"Z∗ ≤

(
'�,CBwK-LP-UCB

$%)!%

)
�′

The last inequality follows because all components of "Z∗ are at most �′ by the primal feasibility of Z∗.

Hence '�,CBwK-LP-UCB ≥ , · $%)!%�′
′

�

Combining Lemma 4.1 and the regret bound from Proposition 4.1, we obtain ∀H ∈ Δ[3]

'�,CBwK-LP-UCB ≥ ,
$%)!%

�′
≥

[
(1 − n)

)∑
C=2

H)"IC −
ln 3
n

]
$%)!%

�′

The algorithm stops after round) . By this round, either � (from the original setting in Optimization

Problem 3.1) has been fully comsumed, or some arm has been selected) times. Hence the consumption

of some resource 9 is at least �′. In a formula:
∑)
C=1 H

)
C "IC ≥ �′. Since the total cost for any resource

50

is at max = for C = 1,
∑)
C=2 H

)
C "IC ≥ �′ − =. Hence,

'�,CBwK-LP-UCB ≥ [(1 − n) (�′ − =) − ln 3
n
] · $%)!%

�′

≥ $%)!% − [n� + = + ln 3
n
] · $%)!%

�′

= $%)!% −$ (
√
� ln 3 + =) · $%)!%

�

where n =
√

ln 3
�′ and 3 = = + 1

4.3 Stochastic Rewards

Here, we use the techniques from the previous section and provide regret bound for the stochastic

setting (Equation 3.8).

The algorithm computes UCBs on expected rewards DC ,8 ∈ [0, 1], for each arm 8 after every round

C. The vector DC ∈ [0, 1]= represents these UCBs, where 8Cℎ component equals DC ,8 . Let " be the

resource-consumption matrix. That is, " ∈ [0, 1]3×= denotes the matrix whose (9 , 8)Cℎ entry " 98 is the

actual consumption of resource 9 if arm 8 were chosen.

As in the Section 4.2, we claim there exists a IC such that

IC ∈ argmax
I∈ΔN

D)C I

H)C "I
(4.4)

As before, IC is a distribution that maximizes the bangperbuck ratio among all distributions I over arms.

We define a confidence radius A03 (G, #) =
√
G�A03
#
+ �A03

#
, where �A03 = \ (log =3)). We adapt the

following result from Babaioff et al. [3] and Kleinberg et al. [20].

Proposition 4.2. Consider some distribution with values in [0, 1] and expectation G. Let Ĝ be the

average of # independent samples from this distribution. Then ∀�A03 > 0

%A [|G − Ḡ | ≤ A03 (Ḡ, #) ≤ 3A03 (G, #)] ≥ 1 − exp−l(�A03) (4.5)

Using Proposition 4.2 and our choice of �A03 , it holds with probability at least 1 −)−1 that the

confidence interval for every latent parameter, in every round of execution, contains the true value of

that latent parameter. We call this high-probability event a clean execution ofCBwK-LP-UCB. Our regret

guarantee will hold deterministically assuming that a clean execution takes place. The regret can be at

most) when a clean execution does not take place, and since this event has probability at most)−1 it

contributes only $ (1) to the regret. Now, we assume a clean execution of CBwK-LP-UCB.

51

Claim 4.2. In a clean execution of Algorithm PrimalDualBwKwith parameter n =
√

ln 3
�
, the algorithm’s

total reward satisfies the bound

$%)!% − '�,CBwK-LP-UCB ≤ 2 · $%)!%

(√
ln 3
�′
+ =
�

)
+ = +

�����)∑
C=2

X)C IC

����� (4.6)

where 3 = = + 1 and X)C = DC − ` for each round C.

Let Z∗ denote an optimal solution of the primal linear program given in Equation 3.3, and let

$%)!% = `
) Z∗ denote the optimal value of that LP. Let '�,*�� =

∑)
C=2 D

)
C IC denote the total payoff

the algorithm would have obtained, after its initialization phase, if the actual payoff at time C were

replaced with the upper confidence bound.

As before,
∑)
C=1 H

)
C "IC ≥ �′. Once again, since the total cost for any resource is at most = for C = 1,∑)

C=2 H
)
C "IC ≥ �′ − =

Let H̄ = 1
'�,*��

∑)
C=2(D)C IC)HC . Assuming a clean execution,

�′ ≥ H̄)"Z∗ = 1
'�,*��

)∑
C=2
(D)C IC) (HC"Z∗)

≥ 1
'�,*��

)∑
C=2
(D)C Z∗) (HC"IC)

≥ 1
'�,*��

)∑
C=2
(A) Z∗) (HC"IC)

≥ $%)!%

'�,*��

[
(1 − n)H)

(
)∑
C=2

"IC

)
− ln 3

n

]
=⇒ '�,*�� ≥

$%)!%

�′
[�′ − n�′ − = − ln 3

�
]

=⇒ '�,*�� ≥ $%)!% [1 − n −
=

�
− ln 3
n�
]

The algorithm’s actual payoff, '�,CBwK-LP-UCB =
∑)
C=1 `

) IC , satisfies the inequality

'�,CBwK-LP-UCB ≥ '�,*�� −
)∑
C=2
(DC − `)) IC

= '�,*�� −
)∑
C=2

X)C IC

We use the following proposition from Badanidiyuru et al. [4].

52

Proposition 4.3. (Badanidiyuru et al. [4]) Consider two sequences of vectors 01, . . . , 0g and 11, . . . , 1g ,

in [0, 1]=, and a vector 00 ∈ [0, 1]=. For each arm 8 and each round C > 1, let 0̄C ,8 ∈ [0, 1] be the

average observed outcome up to round C, i.e., the average outcome 0B,8 over all rounds B ≤ C in which

arm 8 has been chosen by the algorithm; let #C ,8 be the number of such rounds. Assume that for each

arm 8 and all rounds C with 1 < C <) , we have

|1C ,8 − 00,8 | ≤ 2A03 (0̄C ,8 , #C ,8) ≤ 6A03 (00,8 , #C ,8) ,

|0̄C ,8 − 00,8 | ≤ A03 (0̄C ,8 , #C ,8).

Let � =
∑)
C=1 0C ,8 be the total outcome collected by the algorithm. Then,�����)∑

C=2
(1C − 0C)) IC

����� ≤ $ (√�A03=� + �A03= log)).

Taking 0C = `, 1C = DC and vector 00 = ` in Proposition 4.3, we get�����)∑
C=2

XC IC

����� ≤ $ (√�A03='�,CBwK-LP-UCB + �A03= log)). (4.7)

We now combine the results to provide the proof for Theorem 4.1.

Proof. (Theorem 4.1) For = ≥ �′

log 3) , the bound in Claim 4.2 is trivially true. Therefore we can assume

without loss of generality that = < �′

log 3) . We observe that

$%)!%

(√
ln 3
�′
+ =

�′

)
= $

(√
= log (=3))$%)!%√

�

)
The term = on the right side of the bound in Claim 4.2 is bounded above by = log (3=)).

The theorem follows by plugging in �A03 = \ (log =3)), and 3 = =+ 1 = \ (=), in Equation 4.7, along

with Claim 4.2. �

53

Chapter 5

Experimental Analysis

This chapter centers around the practical comparison of our proposed algorithms through

experimentation. Initially, we discuss the experimental setup for our BCMAB investigation,

highlighting the procedure we’ve followed. To provide a comprehensive view, we examine

four distinct scenarios in depth. Following this, we present our findings and engage in an

empirical analysis of these results. This careful, methodical evaluation ensures a thorough

understanding of how our algorithms perform in varied circumstances.

In this chapter, we compare our proposed algorithmsCBwK-Greedy-UCB andCBwK-LP-UCBwith the

existing SemiBwK-RRS algorithm for the CBMAB problem. We begin by explaining the experimental

setting and then analyze the results obtained.

5.1 Experimental Set-up

For the simulation of arms, we generate mean values and costs as follows: ∀8 ∈ N , `8 ∼ * [0, 1], 28 ∼

* [0, 1]. We take U = 5 for CBwK-Greedy-UCB as well as SemiBwK-RRS. We take n = 0 in SemiBwK-

RRS, to maintain consistency with what Sankararaman & Slivkins [29] mentioned in their experiments.

We report the average taken over 100 randomly generated instances for each of the following experiments.

54

EXP1

Varying � = 100→ 50000 for = = 10 and) = 5000 to study the effect of the budget on regret.

Figure 5.1: Regret with respect to �, for fixed)

EXP2

We vary) = 1000→ 50000 for a fixed budget � = 80000 and = = 10 to study the effect of increased

rounds on regret.

Figure 5.2: Regret with respect to) , for fixed �

55

EXP3

We vary) = 1000 → 50000 for a fixed budget/round ratio �/) = 1.575, = = 10 to study the effect

of the increased task (with proportional budget increase) on regret.

Figure 5.3: Regret with respect to) , for fixed �
)

EXP4

For non-i.i.d. arms (Figure 5.4), we vary) = 100→ 2000 for a fixed budget/round ratio �/) = 1.575

and = = 4 to study the effect of the increased task (with proportional budget increase) on regret when

the arms’ rewards are selected as follows: `1, 21 ∼ * [0.9, 1], `2, 22 ∼ * [0.6, 0.8], `3, 23 ∼ * [0.2, 0.4],

and `4, 24 ∼ * [0, 0.1]. In practical scenarios, these arms can be seen as high, medium, low, and very

low rewarding arms.

56

Figure 5.4: Regret with respect to) for fixed �/) , non-i.i.d. arms

5.2 Empirical Analysis

As can be seen from the figures CBwK-Greedy-UCB achieves the lowest regret in all four experiments.

CBwK-LP-UCB performs almost as well as CBwK-Greedy-UCB, whereas SemiBwK-RRS performs a lot

worse. The difference in the algorithms is less evident in EXP1 and EXP2 as regret dominantly depends

on $%)!%, for all three algorithms, and $%)!% increases with an increase in � as well as) . Thus,

to study the relative performance of the algorithms as) increases, we plot regrets relative to CBwK-

Greedy-UCB (CBwK-Greedy-UCB normalized to 1) for EXP3. It clearly indicates the superiority of

our algorithms by not fixing the budget per round. We see that the regrets of CBwK-Greedy-UCB and

CBwK-LP-UCB are 35% better than that of SemiBwK-RRS in EXP1, EXP2, and EXP3, and multiple

times better in EXP4. The standard deviation for CBwK-Greedy-UCB was also not very high. For

EXP1, EXP2, and EXP3, the Coefficient of Variance for CBwK-Greedy-UCB was noted to be below

28%, whereas it reached around 42% in the worst case for SemiBwK-RRS.

Regret for High Budget

For budget values �′ >=)
∑=
8=1 28 , we get a regret of 0. It is because the optimal solution consists of

selecting every arm for every round. In both CBwK-Greedy-UCB as well as CBwK-LP-UCB, we choose to

not select an arm only when there is not enough budget to select it after the arms with higher bangperbuck

have been selected. If the budget is enough to select all arms for all rounds, that scenario will never

occur. Hence, the super-arms selected by CBwK-Greedy-UCB, CBwK-LP-UCB and optimal solution will

be exactly the same in every round.

57

Chapter 6

Conclusion

In this thesis, we delved into the fascinating world of Multi-Armed Bandits (MABs) and explored

various intriguing variants of this problem. These variants included scenarios where we had to consider

budget constraints, combine different options in a combinatorial setting, and take into account contextual

information. We thoroughly examined relevant research papers that dealt with these complex variations

of MABs, highlighting their significance and challenges.

Our main focus was on a specific variant called Budgeted Combinatorial Multi-Armed Bandit

(BCMAB). We tackled this problem in both the offline setting, where arm rewards were known in

advance, and the online setting, where rewards were unknown. Through our innovative algorithms,

namely CBwK-Greedy-UCB and CBwK-LP-UCB, we achieved superior performance compared to exist-

ing approaches documented in the literature.

Furthermore, we extended our work to address more general submodular rewards setting known

as BCMAB-S. Similar to the BCMAB variant, we tackled this problem in both offline and online

settings. Our algorithms, G-EqualDistribution-UCB and G-Single-UCB, were designed to handle this

setting effectively and provided promising results.

Overall, our research made significant contributions to understanding and solving the challenging

problems posed by variants of Multi-Armed Bandits, particularly in the contexts of budget constraints,

combinatorial settings, and submodular rewards.

58

Bibliography

[1] Abhishek, Kumar, Jain, Shweta, & Gujar, Sujit. 2020. Designing Truthful Contextual Multi-Armed

Bandits Based Sponsored SearchAuctions. Page 1732–1734 of: Proceedings of the 19th International

Conference onAutonomous Agents andMultiAgent Systems. AAMAS ’20. Richland, SC: International

Foundation for Autonomous Agents and Multiagent Systems.

[2] Auer, Peter, Cesa-Bianchi, Nicolò, & Fischer, Paul. 2002. Finite-Time Analysis of the Multiarmed

Bandit Problem. Mach. Learn., 47(2–3), 235–256.

[3] Babaioff, Moshe, Dughmi, Shaddin, Kleinberg, Robert, & Slivkins, Aleksandrs. 2015. Dynamic

Pricing with Limited Supply. ACM Trans. Econ. Comput., 3(1).

[4] Badanidiyuru, Ashwinkumar, Kleinberg, Robert, & Slivkins, Aleksandrs. 2018. Bandits with

Knapsacks. J. ACM, 65(3).

[5] Bhat, Satyanath, Jain, Shweta, Gujar, Sujit, & Narahari, Yadati. 2019. An Optimal Bidimensional

Multi-Armed Bandit Auction for Multi-Unit Procurement. Annals of Mathematics and Artificial

Intelligence, 3(01).

[6] Chandlekar, Sanjay, Boroju, Arthik, Jain, Shweta, & Gujar, Sujit. 2023. A Novel Demand Response

Model andMethod for Peak Reduction in Smart Grids – PowerTAC. Page 2520–2522 of: Proceedings

of the 2023 International Conference on Autonomous Agents and Multiagent Systems. AAMAS ’23.

Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems.

[7] Chen, Lixing, Xu, Jie, & Lu, Zhuo. 2018. Contextual Combinatorial Multi-armed Bandits with

Volatile Arms and Submodular Reward. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,

Cesa-Bianchi, N., & Garnett, R. (eds), Advances in Neural Information Processing Systems, vol. 31.

Curran Associates, Inc.

59

[8] Chen, Wei, Wang, Yajun, & Yuan, Yang. 2013. Combinatorial Multi-Armed Bandit: General

Framework and Applications. Pages 151–159 of: Dasgupta, Sanjoy, & McAllester, David (eds),

Proceedings of the 30th International Conference on Machine Learning. Proceedings of Machine

Learning Research, vol. 28, no. 1. Atlanta, Georgia, USA: PMLR.

[9] Das, Debojit, Jain, Shweta, & Gujar, Sujit. 2022. Budgeted Combinatorial Multi-Armed Bandits.

Page 345–353 of: Proceedings of the 21st International Conference on Autonomous Agents and

Multiagent Systems. AAMAS ’22. Richland, SC: International Foundation for Autonomous Agents

and Multiagent Systems.

[10] Deva, Ayush, Abhishek, Kumar, & Gujar, Sujit. 2021. A Multi-Arm Bandit Approach To Subset

Selection Under Constraints. In: International Conference on Autonomous Agents and Multiagent

Systems, AAMAS 2021.

[11] Freund, Yoav, & Schapire, Robert E. 1997. A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting. J. Comput. Syst. Sci., 55(1), 119–139.

[12] Gao, Guoju, Wu, Jie, Xiao, Mingjun, & Chen, Guoliang. 2020. Combinatorial Multi-Armed

Bandit Based Unknown Worker Recruitment in Heterogeneous Crowdsensing. Pages 179–188 of:

IEEE INFOCOM 2020 - IEEE Conference on Computer Communications.

[13] Ghalme, Ganesh, Jain, Shweta, Gujar, Sujit, & Narahari, Y. 2017. Thompson Sampling Based

Mechanisms for Stochastic Multi-Armed Bandit Problems. Page 87–95 of: Proceedings of the 16th

Conference onAutonomous Agents andMultiAgent Systems. AAMAS ’17. Richland, SC: International

Foundation for Autonomous Agents and Multiagent Systems.

[14] Ghalme, Ganesh, Dhamal, Swapnil, Jain, Shweta, Gujar, Sujit, & Narahari, Y. 2021. Ballooning

multi-armed bandits. Artificial Intelligence, 296, 103485.

[15] Gyorgy, Andras, Linder, Tamas, Lugosi, Gabor, & Ottucsak, Gyorgy. 2007. The on-line shortest

path problem under partial monitoring.

[16] Jain, Shweta, & Gujar, Sujit. 2020. A Multiarmed Bandit Based Incentive Mechanism for a Subset

Selection of Customers for Demand Response in Smart Grids. Proceedings of the AAAI Conference

on Artificial Intelligence, 34(02), 2046–2053.

60

[17] Jain, Shweta, Ghalme, Ganesh, Bhat, Satyanath, Gujar, Sujit, & Narahari, Y. 2016. A Deterministic

MAB Mechanism for Crowdsourcing with Logarithmic Regret and Immediate Payments. AAMAS

’16. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems.

[18] Jain, Shweta, Gujar, Sujit, Bhat, Satyanath, Zoeter, Onno, & Narahari, Y. 2018. A quality assuring,

cost optimal multi-armed bandit mechanism for expertsourcing. Artificial Intelligence, 254, 44–63.

[19] Kleinberg, Robert. 2007. Notes from Week 2: Prediction algorithms and zero-sum games.

[20] Kleinberg, Robert, Slivkins, Aleksandrs, & Upfal, Eli. 2008. Multi-Armed Bandits in Metric

Spaces. CoRR, abs/0809.4882.

[21] Lai, T.L, & Robbins, Herbert. 1985. Asymptotically Efficient Adaptive Allocation Rules. Adv.

Appl. Math., 6(1), 4–22.

[22] Li, Lihong, Chu, Wei, Langford, John, & Schapire, Robert E. 2010. A Contextual-Bandit Approach

to Personalized News Article Recommendation. CoRR, abs/1003.0146.

[23] Lu, Tyler, Pal, David, & Pal, Martin. 2010. Contextual Multi-Armed Bandits. Pages 485–492 of:

Teh, Yee Whye, & Titterington, Mike (eds), Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9. Chia

Laguna Resort, Sardinia, Italy: PMLR.

[24] Madani, Omid, Lizotte, Daniel J., & Greiner, Russell. 2004. The Budgeted Multi-armed Bandit

Problem. Pages 643–645 of: Shawe-Taylor, John, & Singer, Yoram (eds), Learning Theory. Berlin,

Heidelberg: Springer Berlin Heidelberg.

[25] Manisha, Padala, & Gujar, Sujit. 2019. Thompson Sampling Based Multi-Armed-Bandit Mecha-

nism Using Neural Networks. Page 2111–2113 of: Proceedings of the 18th International Conference

on Autonomous Agents andMultiAgent Systems. AAMAS ’19. Richland, SC: International Foundation

for Autonomous Agents and Multiagent Systems.

[26] Nhat, Van Quoc Truong, Stein, Sebastian, Tran-Thanh, Long, & Jennings, Nick. 2019. What prize

is right? How to learn the optimal structure for crowdsourcing contests. Pages 85–97 of: Nayak,

Abhaya, & Sharma, Alok (eds), PRICAI 2019: Trends in Artificial Intelligence, vol. 1160. Springer.

61

[27] Ravindranath, Saurabh, Baburaj, Rahul, Balasubramanian, Vineeth N., Namburu, NageswaraRao,

Gujar, Sujit, & Jawahar, C. V. 2020. Human Machine Collaboration for Face Recognition. Page

10–18 of: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. CoDS COMAD 2020. New

York, NY, USA: Association for Computing Machinery.

[28] Reddy, Meghana, Singh, Akansha, Jain, Shweta, & Gujar, Sujit. 2021. Designing Bounded Min-

knapsack Bandits Algorithm for Sustainable Demand Response. In: 18th Pacific Rim International

Conference on Artificial Intelligence (PRICAI-2021).

[29] Sankararaman, Karthik Abinav, & Slivkins, Aleksandrs. 2017. Semi-Bandits with Knapsacks.

CoRR, abs/1705.08110.

[30] Sharma, Akash Das, Gujar, Sujit, & Narahari, Yadati. 2012. Truthful multi-armed bandit mecha-

nisms for multi-slot sponsored search auctions. Current Science, 1064–1077.

[31] Solanki, Sambhav, Kanaparthy, Samhita, Damle, Sankarshan, & Gujar, Sujit. 2022. Differentially

Private Federated Combinatorial Bandits with Constraints. In: In the proceedings of European

Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases

(ECML-PKDD’22).

[32] Tran-Thanh, Long, Chapman, Archie C., de Cote, Enrique Munoz, Rogers, Alex, & Jennings,

Nicholas R. 2010. Epsilon-First Policies for Budget-Limited Multi-Armed Bandits. In: AAAI.

[33] Tran-Thanh, Long, Stein, Sebastian, Rogers, Alex, & Jennings, Nicholas. 2012 (08). Efficient

crowdsourcing of unknown experts using multi-armed bandits. vol. 214.

[34] Tran-Thanh, Long, Chapman, Archie C., Rogers, Alex, & Jennings, Nicholas R. 2012. Knapsack

based Optimal Policies for Budget-Limited Multi-Armed Bandits. CoRR, abs/1204.1909.

[35] Tran-Thanh, Long, Venanzi, Matteo, Rogers, Alex, & Jennings, Nicholas R. 2013. Efficient Bud-

get Allocation with Accuracy Guarantees for Crowdsourcing Classification Tasks. Page 901–908

of: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Sys-

tems. AAMAS ’13. Richland, SC: International Foundation for Autonomous Agents and Multiagent

Systems.

[36] Wang, Siwei, & Chen, Wei. 2018. Thompson sampling for combinatorial semi-bandits. Pages

5114–5122 of: International Conference on Machine Learning. PMLR.

62

[37] Wen, Zheng, Kveton, Branislav, & Ashkan, Azin. 2015. Efficient Learning in Large-Scale Combi-

natorial Semi-Bandits. Pages 1113–1122 of: Bach, Francis, & Blei, David (eds), Proceedings of the

32nd International Conference on Machine Learning. Proceedings of Machine Learning Research,

vol. 37. Lille, France: PMLR.

[38] Zhang, Hao, Ma, Yao, & Sugiyama, Masashi. 2015. Bandit-Based Task Assignment for Heteroge-

neous Crowdsourcing. CoRR, abs/1507.05800.

[39] Zhou, Datong P., & Tomlin, Claire J. 2017a. Budget-Constrained Multi-Armed Bandits with

Multiple Plays. CoRR, abs/1711.05928.

[40] Zhou, Datong P., & Tomlin, Claire J. 2017b. Budget-Constrained Multi-Armed Bandits with

Multiple Plays.

63

	Introduction
	Motivation
	Slot Machines
	Routing
	Advertising
	Drug Testing
	Sensors
	Crowdsourcing

	The Multi-Armed Bandit Problem
	Problem Addressed
	Contributions
	Organisation of the Thesis

	Background
	Multi-Armed Bandits
	Notation
	Setting
	Regret
	UCB1

	Variations to the MAB problem
	Reward Settings
	Stochastic
	Deterministic
	Adversarial

	Combinatorial MAB (CMAB)
	Setting
	-approximation Regret

	Budgeted Multi-Armed Bandits (BMAB)
	The Knapsack problem
	Setting
	Regret
	KUBE
	Multiple Budget Constraints

	Contextual Multi-Armed Bandits (ConMAB)
	Setting
	Regret
	S-Exp3

	Types of feedback
	Full feedback
	Bandit feedback
	Semi-bandit feedback

	Important Notations

	The BCMAB Problem
	Attempting to solve BCMAB: A Look at Related Problems
	Combinatorial Multi-Armed Bandit Based Unknown Worker Recruitment in Heterogeneous Crowdsensing
	Problem Addressed
	Proposed Solution

	Efficient Budget Allocation with Accuracy Guarantees for Crowdsourcing Classification Tasks
	Problem Addressed
	Proposed Solution

	Budget-Constrained Multi-Armed Bandits with Multiple Plays
	Problem Addressed
	Proposed Solution

	Combinatorial Semi-Bandits with Knapsacks
	Problem Addressed
	Proposed Solution

	More Relevant Work
	Vanilla MAB
	Combinatorial MAB
	Budgeted MAB
	Interesting MAB Variants
	Recent MAB work

	A Need for New Approaches

	Designing Algorithms
	Preliminaries - BCMAB
	Deterministic Setting with Known - Greedy Approach (CBwK-Greedy)
	Deterministic Setting with Known - Modelling it as LP (CBwK-LP)
	Regret

	Proposed Approaches - BCMAB
	CBwK-Greedy-UCB
	CBwK-LP-UCB
	Differences with SemiBwK-RRS

	Theoretical Analysis
	Regret Analysis of CBwK-LP-UCB
	Deterministic Rewards
	Stochastic Rewards

	Experimental Analysis
	Experimental Set-up
	Empirical Analysis

	Conclusion

