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Abstract

Data-Driven approaches are becoming increasingly popular for robot control problems. In this thesis,
we present two approaches that make use of deep learning frameworks to solve classic robot control
problems.

In the first part(chapter 3), we propose a lightweight visual servoing MPC framework that generates
optimal control near real-time at a frequency of 10.52 Hz. This work utilizes the differential cross-
entropy sampling method for quick and effective control generation along with a lightweight neural
network, significantly improving the servoing frequency. We also propose a flow depth normalization
layer that ameliorates the issue of inferior predictions of two view depths from the flow network. We
conduct extensive experimentation on the Habitat simulator and show a notable decrease in servoing
time compared to other approaches that optimize over a time horizon. We achieve the right balance
between time and performance for visual servoing in six degrees of freedom (6DoF), while retaining the
advantageous MPC formulation.

In the second part(chapter 4), we present a real-time algorithm for computing the optimal sequence
and motion trajectories for a fixed-base manipulator to pick and place a set of given objects. The
optimality is defined in terms of the total execution time of the sequence or its proxy, the arc length in
the joint space. The fundamental complexity stems from the fact that the optimality metric depends on
the joint motion, but the task specification is in the end-effector space. Moreover, mapping between a
pair of end-effector positions to the shortest arc-length joint trajectory is not analytic; instead, it entails
solving a complex trajectory optimization problem. Existing works ignore this complex mapping and
use the Euclidean distance in the end-effector space to compute the sequence. In this chapter, we
overcome the reliance on the Euclidean distance heuristic by introducing a novel data-driven technique
to estimate the optimal arc-length cost in joint space (a.k.a the value function) between two given end-
effector positions. We parametrize the value function as a Neural Network and motivate a niche choice
for its architecture, inspired by the works on metric learning. The learned value function is then used as
an edge cost in a capacitated vehicle routing problem (CVRP) set-up to compute the optimal visitation
sequence. Finally, we optimize over the input space of the learned value function network to propose a
novel Inverse Kinematics (IK) algorithm that produces substantially shorter joint arc-length trajectories
than existing approaches while executing the computed optimal sequence. We show that our sequence
planner, in combination with our proposed IK contoller, offers a substantial improvement in joint arc
length over existing state-of-the-art while maintaining scalability to a large number of objects.
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Chapter 1

Introduction

Deep learning-based frameworks provide a powerful paradigm that can be applied to solve problems
across domains. Recently there has been a lot of interest in solving classical robot control problems
with data-driven function approximators. While classical robot control approaches can solve many
tasks in controlled environments with convergence guarantees, they suffer from poor generalization to
even small perturbations to scene configuration. They also often lack the ability to handle complex input
such as raw images. Deep learning-based frameworks offer the ability to generalize across scenes and
can handle complex inputs. Hence solving robot control problems is compelling.

In this thesis, we explore learning approaches for two of the central control problems in robotics.
In the first part of the thesis (Chapter3) we study visual servoing which uses a feedback information
from the vision sensor for navigating the robot to a desired goal image. This involves generating a set
of actions that move the robot in response to the observation from the camera. Traditionally, visual
servoing has relied on manually engineered features such as points, lines, and contours, as described in
previous works [12, 13, 14]. Nevertheless, the use of appearance-based features in these methods tends
to result in imprecise matching when the camera undergoes significant transformations. To address this
limitation, contemporary data-driven visual servoing methodologies have turned to utilize deep neural
features, as exemplified in recent works [1, 2]. In these initial learning-based approaches, the objective
is to acquire knowledge of the relative camera pose through supervised learning with a pair of images as
input, leading to precision within the sub-millimeter range. Nevertheless, since these techniques were
excessively trained on a single environment, it proved challenging to generalize them to new, unfamiliar
environments. Recently, a more principled approach for combining deep flow features with a classical
image-based controller was proposed in [5] to improve generalization to novel environments without
any retraining.

One of the key aspects of visual servoing is how we design the underlying controller. Katara et
al.[15] proposed an approach that employs deep flow features and proposes a kinematic model based
on flow. For solving their deep MPC formulation, they further proposed a recurrent neural network
(RNN) based optimization routine that generates velocities to optimize their flow-based loss. However,
generating control commands for an RNN-based approach is extremely time-consuming and not suit-

1
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Figure 1.1: RTVS method proposed in Chapter3 shows a significant improvement in servoing frequency

vis-à-vis other deep MPC-based visual servoing approaches in 6DoF without compromising its ability

to attain precise alignments. Our controller generates optimal control in real-time at a frequency of 66

Hz (excluding optical flow overheads) and successfully servos to its destination, while other approaches

still lag behind.

able for real-world deployment. Single-step methods are known to be faster in computing immediate
control. However, these approaches do not include the benefits of the MPC formulation. However,
these approaches do not include the benefits of the MPC optimization formulation. We aim to make
the best of both worlds by improving the control generation frequency while retaining the advantageous
MPC formulation. Fig. 1.1 showcases this boost obtained by our controller for an example scene in our
benchmark, where our controller beats the recent deep MPC-based approaches for reaching the goal.

Our contributions in Chapter 3 are summarised as follows:

• We propose a lightweight and real-time visual servoing framework, which can be trained on-the-
fly in an unsupervised fashion and improve the work of [6]. This work achieves a significant
increase in the servoing frequency, computing control near real-time at 0.095 seconds per MPC
iteration, and is around 10 times faster than existing deep MPC-based approaches.

• The decrease in time is made possible with the help of our control generator network, which uses
a slim and lightweight neural network that significantly reduces the number of iterations required
in each MPC step. We use the differential cross-entropy method [16] which helps us sample
intelligently and generate optimal control commands in 6DoF.

2



• Furthermore, we introduce a flow depth normalization layer that accounts for inferior flow pre-
dictions from FlowNetC [17], thereby reducing our network’s dependency on the accuracy of the
flow.

We then look into the problem of performing a sequence of pick and place operation which is a vital
component in a multitude of industries, including but not limited to retail and manufacturing. In this part
of the thesis (Chapter4) we focus on two main modules of the problem: the first involves obtaining the
optimal sequence in which to visit the objects and the second pertains to the execution of the optimal
sequence i.e. control of joint trajectories to execute the optimal sequence. We henceforth call it as
the Sequencer and the Executor modules and bring in novelties in both of them to move beyond the
state-of-the-art.

A fundamental challenge in computing an optimal visitation sequence for pick and place is estimating
the cost-to-go between two manipulator end-effector positions. A useful cost-to-go metric can be the
optimal (or shortest) joint space arc length between two positions. However, this cost-to-go is not known
analytically and in fact, requires one to solve a non-convex optimization problem. To see why this is
challenging, imagine that the manipulator end-effector needs to visit 4 positions and thus there are 4!

sequences possible. To estimate the cost of all the sequences, one needs to solve the same number of
optimization problems. This is obviously intractable beyond sequences for visiting a small number of
objects. Existing works [11] bypass this intractability by using the simple Euclidean distance as the
cost-to-go between two positions. However, we show in the present work that such approaches can
lead to sub-optimal performance. To be precise, the shortest Cartesian/Euclidean space trajectory that
connects two end effector positions can have an unduly long arc length in the joint space. Vice-versa,
the shortest arc-length trajectory in the joint space need not be a straight line in the end-effector space.
This is exemplified in Fig. 1.2.

Beyond the Sequencer, a successful pick and place also need an efficient Executor that can compute
the joint velocities (or simply joint angles) to realize the optimal visitation sequence. Typically, this
is done by invoking one of the many Inverse Kinematics (IK) algorithms, although more sophisticated
choices such as optimal control planners are possible. However, existing IK algorithms, either implicitly
or explicitly use the Euclidean distance heuristic to move between two given positions. Thus they are
inherently sub-optimal with respect to minimizing joint arc length and consequently pick and place
completion time.

Our contributions in Chapter 4 are summarised as follows:

• Algorithmic: This chapter overcomes the reliance on the Euclidean distance heuristic by adopting
a data-driven approach. In particular, we train a neural network in a supervised fashion to estimate
the optimal arc length/value function in joint space for a given pair of end-effector positions. 1.
This estimate can then be integrated into any off-the-shelf sequencing algorithm. For example,
in our case, we formulate pick and place sequence computation using the template of capacitated

1The estimate of the optimal cost is often referred to as the value function in optimal control literature

3



Figure 1.2: Our approach in Chapter4 shows a significant improvement in joint space arc length vis-a-vis

other approaches. At the core of our approach is a learned value function that provides an estimate of

the optimal joint space arc length between two manipulator positions. The importance of this value

function is shown in the figures. A straight-line trajectory between a start and a goal manipulator

position provides the shortest path in Euclidean space but involves rotating multiple joints. In contrast,

a trajectory that has the shortest arc length in the joint space and consequently shorter execution time

appears curved in the end-effector space. Our learned value function allows us to obtain the optimal

sequence to pick and place a given set of objects and the associated joint velocities to execute the

sequence.

vehicle routing problem (CVRP). We define the edge weight of the CVRP graph as our estimated
value function between the graph nodes. 2 We further use optimization over the input space of the
learned value function to develop a novel IK that retains real-time applicability and at the same
time results in shorter joint trajectories between two given positions.

• State-of-the-art Performance: We vindicate the efficacy of the proposed Sequencer and Executor
modules by showcasing their superior performance over various baselines as well as existing state-
of-the-art (SOTA) RoboTSP[11]. We outperform the baselines stemming from different ablations
of Sequencer and Executor, where the latter could be ROS-KDL[9], PyBullet[10] IK planner,
RoboTSP[11]).

2Note that although CVRP is extensively used for sequence planning, ours is the first approach to augment it with a learned
edge cost to achieve remarkable improvements in pick and place completion time.
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1.1 Thesis Organisation

We first desribe on a high level in Chapter2 problems explored in the thesis i.e. Image Based Vi-
sual Servoing and Optimal Pick-Place Sequence Planning and relevant literature to the problems. In
Chapter3 discuss the Real Time Visual Servoing(RTVS) method for fast multi-step visual servoing. We
conduct extensive experimentation on the Habitat simulator and show a notable decrease in servoing-
time compared to other approaches that optimize over a time horizon. In Chapter4 we describe our
method for Pick-and-Place sequence planning. We show that our sequence planner, in combination with
our proposed IK, offers a substantial improvement in joint arc length over existing state-of-the-art while
maintaining scalability to a large number of objects.
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Chapter 2

Background

In this chapter, we will give a brief overview of the visual servoing and optimal pick and place
sequencing problems and relevant literurature related to the problems.

2.1 Visual Servoing

Visual Servoing is a fundamental problem in the field of robotics, which involves controlling the
motion of a robot using information obtained from a camera or vision sensor. The objective is to
achieve a final pose of the robot, specified in terms of a ’target image’, by using an ’initial image’ as a
starting point. In a standard Image Based Visual Servoing Pipeline, two key components are present:
a feature generator and a controller. The feature generator extracts relevant features from the ’target’
and ’current’ images, whereas the controller aims to minimize the difference between the extracted
features. The ultimate objective of the servoing problem is to design an effective feature extractor
and controller, enabling the agent to reach the ’target image’. A typical Image-based Visual Servoing
Pipeline is illustrated in Fig. 2.1.

2.1.1 Related Work

2.1.1.1 Feature Generation

Classically, hand-crafted features such as points [12], lines [13] and contours [14] were employed
for visual servoing. However, such appearance based features result in inaccurate matching for larger
camera transformations. To circumvent this bottleneck, recent data driven visual servoing approaches
resort to deep neural features [1, 2]. Initial learning based approaches [1, 2] aim to learn the relative
camera pose from a pair of images in a supervised fashion and as a result, they were able to achieve a sub-
millimeter precision. However, as they were over-trained on a single environment, generalisation to new
environments was difficult. Saxena et al. [3] trained their approach on multiple environments and thus,
their approach generalised to a certain extent. But such approaches still require supervision and cannot
be trained on-the-fly. Recently, a more principled approach for combining deep flow features with a
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Figure 2.1: A generic image-based visual servoing pipeline. The goal is to reach the desired pose which

is specified using the target image. A camera is mounted on an agent, and feedback from it is used to

generate the motor velocities to reach the desired image.

7



classical image based controller was proposed in [5] to improve generalisation to novel environments
without any retraining.

2.1.1.2 Controller Design

Controller design is another crucial aspect of visual servoing; classically, image based and position
based controllers were presented in the literature. However, these controllers take the action greedily
and do not consider a long term horizon, which could lead to problems such as the loss of features
from field of view, getting stuck in local minima and larger trajectory lengths. Thus, to achieve a better
controller performance, optimal control [18] and model predictive control [19] based formulations were
proposed in the visual servoing domain. Another advantage of casting visual servoing in a model pre-
dictive control is to cater for additional constraints such as robot dynamics, field of view and obstacle
avoidance. While the MPC formulations of visual servoing are lucrative, they assume accurate feature
correspondences. Furthermore, they rely on classical MPC solvers that do not scale up to high dimen-
sional features such as images or flows, which makes it difficult for classical MPC based visual servoing
approaches to be employed for modern deep features.

Recently, several deep reinforcement-based visual navigation approaches were proposed [20, 21]
that present a neural path planning framework for visual goal-reaching. By the virtue of being a model-
free reinforcement learning framework, they are sample inefficient, and do not present results in 6DoF
planning. On the other hand, deep model-based reinforcement learning frameworks [19], [22] aim to
jointly learn the controller as well as the underlying system dynamics (model) through data, thus making
it difficult to generalize for new environments.

Katara et al. [6] use an approach which employs deep flow features and propose a kinematic model
based on flow. For solving their deep MPC formulation, they further proposed a recurrent neural net-
work (RNN) based optimisation routine, that generates velocities to optimise their flow based loss. As
a baseline, they also employ a vanilla neural network instead of an RNN, for solving their MPC prob-
lem. While their proposed approach was able to solve the MPC problem on-the-fly in a receding horizon
fashion and achieve convergence, it has costly overheads with respect to the total servoing time. DeepM-
PCVS [6] requires the training of a recurrent neural network online which is computationally expensive,
narrowing down their scope of performance in real world scenarios. Single step methods like [5] are
known to be faster in computing immediate control. However, these approaches do not include the ben-
efits of the MPC optimisation formulation. We aim to make the best of both worlds, by improving the
control generation frequency while retaining the advantageous MPC formulation.

2.2 Optimal Pick and Place Sequence Planning

Performing a sequence of pick and place operation is an extricable part of many industries like retail,
manufacturing etc. Typical industrial scenarios include sorting and packing objects, assembly of parts

8



Figure 2.2: A generic pick and place sequence planning Pipeline.

in a certain order, tiding a meeting table, making a service robot for a variety of space management
work. A typical pick and place sequencing scenario is shown in Fig. 2.2 where the Franka Panda
arm maneuvers the objects on the table to reach the desired configuration from the initial one. Our
formulation, however has applicability beyond pick and place. For example, it can be used to compute
the sequence in which manipulator should drills at a set of marked positions [11].

There are two main modules of the pick-place problem: the first involves obtaining the optimal
sequence in which to visit the objects and the second pertains to the execution of the optimal sequence.
We henceforth call it as the Sequencer and the Executor modules.

2.2.1 Related Works

2.2.1.1 Task and Motion Planning for Pick and Place Operations

We begin by pointing out an extensive summary of the state-of-the-art [23] that presents an extensive
review of classical sequencing and motion planning algorithms

Pick and Place sequence planning is often seen as a subset of a larger category of manipulator task
planning problems. There are a variety of applications that surround it such as drilling [11], fruit picking
[24] or table-top rearrangement [25]. Inevitably, a Sequencer and a Executor modules are an essential
part of the solution pipeline. The Sequencer in existing works have relied on a variety of combinatorial
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optimization methods such as the regular Travelling Salesman Problem (TSP) [26], Asymmetric-TSP
(ATSP) [27] [28], Generalized TSP (GTSP), [29], Shortest Sequencing Problem (SSP++ ), [30, 11]. The
solvers used range from Branch and Bound based global optimization, Constraint Solvers, and Genetic
Algorithms. A detailed review can be seen in [23] that also explains the underlying principles behind
the TSP variants briefly. Pick and Place sequencing is also closely related to the problem of table-top
re-arrangement with overhand grasps and non-overlapping start and goal positions [31], [32].

Once the sequence is computed, the execution involves another optimization layer over multiple joint
trajectories available to reach a particular end-effector position. Authors in [11] propose a combination
of multiple IK searches along with Dijkstra shortest path planning as their Executor module. A graph
search technique is proposed in [30] while [33] uses the Probabilistic Road-Map-based planner. Authors
in [32] use Randomly Exploring Random trees as their Executor module.

All the above-cited works relied on the Euclidean distance heuristic between the start and goal posi-
tion of the object for both sequencings and in executing the sequence. Besides the very niche set-up of
a Cartesian robot in [31], such heuristics can provide misleading results for a generic manipulator. As
stated earlier, our work replaces the Euclidean heuristic with a data-driven metric.

2.2.1.2 Metric Learning

Metric learning has a rich history in the motion planning literature. A classic use of learned metrics can
be found in sampling-based motion planning. For example, authors in [34], [35] learned the distance
between two sampled nodes of Randomly Exploring Random Trees for robots with non-holonomic
kinematics. Interestingly, the motivation in these cited works is very similar to our own in the sense that
the Euclidean distance between a pair of positions provides a poor estimate of the true cost-to-go for
many robotic systems. A similar attempt can be found in [36], where the authors learn an embedding of
the state-space where the Euclidean distance will prove sufficient.

Our work is inspired by metric learning literature as we also intend the learn the true cost-to-go
between a pair of start and a goal positions. However, the difference stems from the use of structured
deep neural networks.

2.2.1.3 Estimating Value Function

Our Executor builds upon the connection between value function learning and model predictive control.
In particular, works like [37], and [38] show how offline computed optimal trajectories can be used to
learn a global value function, which, in turn, can be used to reduce the planning horizon of the MPC.
Our Executor minimizes the one-step value function learned from recorded data to provide real-time,
reactive motion generation with the optimal joint space arc length.
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Chapter 3

RTVS: A Lightweight Differentiable MPC Framework for Real-Time

Visual Servoing

3.1 INTRODUCTION

In this Chapter, we extend and improve the work of [6] and present a lightweight MPC frame-
work for real-time image based visual servoing (IBVS) which generates control in real-time and can be
trained online in an unsupervised fashion. We leverage the deep flow-based MPC framework proposed
in [6] and in order to make the approach faster and feasible for real-time systems, we present a novel
lightweight directional neural network which aims to encode the relative pose between the current and
final image in its parameters, thereby significantly reducing the number of iterations required in each
MPC step as explained in 3.2.2.2. Further, we utilise the differential cross entropy method (DCEM) pro-
posed in [16] for differentiable sampling of control. Our controller can attain the desired pose around
10 times faster than the recent deep multi-step ahead formulations [6], with a 74% reduction in servoing
time. This decrease in the servoing frequency leads to a significantly shorter delay between successive
control commands, leading to minimal number of jerks, which is crucial for aerial robots. We com-
pute immediate control at the same rate as single-step methods like [5], which are also fast but lack the
advantages of the MPC optimization formulation and do not optimize over a time horizon. Our pro-
posed architecture is sample-efficient and uses an optimal control generator network, which improves
the servoing rate without a heavy compromise on its performance. Furthermore, our architecture also
includes a flow normalization layer, which reduces the error in flow depth estimates, thereby accounting
for inaccurate flow predictions.

3.2 Approach

Existing deep learning based MPC approaches like [6] formulate visual servoing as an MPC opti-
misation which consider a long term horizon and can be trained on-the-fly in an unsupervised fashion.
However, [6] requires the online training of an RNN, which is computationally expensive and faces
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Approach Unsupervised? Real Time? Multi-Step 
Ahead?

Yu et al. [4]

Bateux et al. [5]

PhotoVS [13]

ServoNet [6]

DFVS [7]

DeepMPCVS [14]

RTVS [Ours]

Figure 3.1: Approaches ([1], [2], [3]), although real-time, are not multi-step ahead and require super-

vision. PhotoVS [4] and ServoNet [3] fail to converge on our benchmark, as shown in 3.5. DFVS [5]

shows strict convergence in real-time, but optimises greedily and does not consider a long term horizon.

DeepMPCVS [6] uses the advantageous MPC formulation and generates control in an unsupervised

fashion, but is computationally expensive. Our approach makes the best of all worlds: it generates con-

trol in real-time and trains on-the-fly, whilst retaining the MPC formulation.
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Figure 3.2: Left: We demonstrate our MPC based optimisation framework to perform visual servoing

in 6DoF. In each MPC optimization step, we use FlowNetC to predict the optical flow between the

current image It and goal image I∗, which acts as the target flow for control generation. The flow

computed between the current and previous image acts as a proxy for depth, which after normalisation,

is fed into the interaction matrix. Our control generator then optimises the flow loss to generate control

commands. Right: This figure depicts our control generation architecture. We sample a (β x 6) vector

from a multivariate Gaussian distribution and pass it through our Directional Neural Network. The

kinetic model generates β pseudo-flows and the flow loss is computed for each, against the target flow.

In each MPC step, we pick the top K velocities corresponding to the K least flow errors to update the

Gaussian parameters, while the mean velocity is fed to the actuator.

13



challenges for real-time systems. In order to mitigate this issue, we propose a novel lightweight control
generation architecture which effectively samples candidate velocities, leading to a significant improve-
ment in the control generation time and hence, the servoing time. Our approach achieves the right
trade-off between the servoing rate and performance (attainment of precise alignments) through an in-
telligent sampling strategy (Section 3.2.2.1) and a slim neural network architecture trained on-the-fly
(Section 3.2.2.2). We compute the scene’s depth Zt as an inverted scale representation of the magnitude
of optical flow between the current image It and previous image It−1 as in [5], and pass it through the
flow depth normalisation layer to generate effective scene-depth from optical flow, as described in (Sec-
tion 3.2.3). We illustrate our approach in Fig. 3.2 and summarise it through algorithm 1. In algorithm 1,
the steps in red signify our modifications to the MPC algorithm proposed in [6] to make it feasible for
real-time systems.

3.2.1 Problem Formulation

Given that the measurements of the robot sensor are monocular RGB images, with I∗ being the
desired image and It being the current observation at any time instant t, our aim is to generate optimal
control commands [vt, ωt], where vt is the linear velocity and ωt is the angular velocity at time step t,
in order to solve the fundamental IBVS objective of minimising the photometric error et = ∥It − I∗∥
between I∗ and It. We build our approach upon the kinetic model and MPC objective proposed in [6].
The MPC objective is given as

v∗
t = argmin

vt

∥F(It, I
∗)− F̂(vt)∥ (3.1)

where F(It, I
∗) is the target flow between It and I∗ and F̂(vt) is the pseudo-flow generated through

the predictive model:

F̂(vt+1:t+T ) =
T∑

k=1

[L(Zt)vt+k] (3.2)

where L(Zt) is the interaction matrix which relates the rate of change of features in the camera plane
to the image plane, and vt is the optimal control. The image coordinates x, y and Zt being the scene’s
depth, the interaction matrix is generated as

L(Zt) =

[
−1/Zt 0 x/Zt xy −(1 + x2) y

0 −1/Zt y/Zt 1 + y2 −xy −x

]
. (3.3)

In [6], the online trajectory optimisation exploits the additive nature of optical flow and employs a
recurrent neural network to generate velocity commands, which intuitively, tries to optimise over a fixed
time-horizon in each MPC optimisation step. The approach tries to solve each time-step individually,
exploiting the recurrence property of LSTM architectures which are computationally expensive and
data-hungry. We modify the predictive model shown in eq. 3.2 to achieve an optimal trade-off between

14



Algorithm 1 Visual Servoing MPC Framework with Fast Control Generation Optimisation.

Require: I∗, ϵ ▷ Goal Image, convergence constant

1: Initialise µ, σ2 ▷ Initialise Gaussian Distribution sampling parameters

2: while ∥I − I∗∥ ≤ ϵ do ▷ Convergence criterion

3: It := get-current-obs() ▷ Obtain the current RGB observation from sensor

4: predict-target-flow (F(It, I
∗)) ▷ Predict target flow using flow network

5: Lt := compute-interaction-matrix(F(It, It−1)) ▷ Kinetic Model Generation

6: for m = 0 → M do ▷ On the fly training for DirectionNN

7: [βi]
N
i=1 ∼ gϕ(µ, σ

2) ▷ Sampling a β x 6 vector from Gaussian Distribution

8: [vt,i]
N
i=1 = fθ([βi]

N
i=1) ▷ Predict β velocities from DirectionNN

9: [F̂(vt,i)]
N
i=1 = [Lt(Zt)vt,i]

N
i=1 ▷ Generate β pseudo-flow using predictive model

10: [Lflow]
N
i=1 := [∥F̂(vt,i)−F(It, I

∗)∥]Ni=1 ▷ Compute Flow Loss

11: θm+1 := θm − η∇Lflow ▷ Update DirectionNN parameters

12: µt+1 = 1/k
∑k

i vt,i ▷ Update mean of the Gaussian Distribution

13: σ2
t+1 = 1/k

∑k
i (µt,i − µt+1)

2 ▷ Update standard deviation of the Gaussian Distribution

14: end for

15: v̂t+1 := argminv∈V Lflow ▷ Execute control command in the environment

16: end while

15



speed and accuracy, by connecting the MPC objective (which is to minimise the error between the
predicted flow and target flow) with a differential sampling based strategy through a slim and lightweight
neural network. We introduce a horizon parameter ’h’ in order to scale the predicted flow to learn to
predict the mean optical flow, rather than predicting over a time-horizon.

F̂(vt) = h ∗ L(Zt)(vt) (3.4)

Thus, we formulate our loss function as shown in eq. 3.5 to train our control generation network
on-the-fly.

Lflow = ∥F̂(v̂t)−F(It, I
∗)∥ = ∥[L(Zt)v̂]−F(It, I

∗)∥ (3.5)

We regress the pseudo flow F̂(vt) with the target flow F(It, I
∗) using a mean squared error loss. We

summarize the adaptive sampling and network training process of our control generation architecture in
Section 3.2.2. After each MPC optimisation step, we apply the velocity to the agent and get the new
measurements from the sensor, repeating the optimisation process for each subsequent step until the
IBVS objective is met. We summarize the MPC optimisation process through Fig. 3.2.

3.2.2 Optimal Control Generation Architecture

In this section, we provide details about the differential sampling-based strategy to generate optimal
control and our lightweight neural network architecture.

3.2.2.1 Intelligent DCEM-based Sampling

Due to the high dimensionality of the flow representations, it becomes difficult for classical MPC
solvers to optimise the objective function in equation 3.1. The cross entropy method (CEM) [39] is
an attractive formulation to solve complex control optimisation problems involving objective functions
which are non-convex, deterministic and continuous in nature by solving the equation,

F̂ = argmin
F

Ev(F ) (3.6)

where Ev(F ) is the objective function having parameters v over the n-dimensional space. However, there
are a few shortcomings to using this approach. It is a gradient-free optimisation approach where Gaus-
sian parameters are refitted only in a single optimisation step, which does not allow adaptive sampling
over consecutive MPC steps i.e. it is unable to preserve the memory of effective sampling. Moreover,
the parameter optimisation is not based on the downstream task’s objective function which might lead
to a sub-optimal solution, which in our case would lead to an increase in the number of MPC steps,
directly affecting the servoing time. In this work, we take inspiration from the differential cross entropy
method (DCEM) [16] which parameterises the objective function Ev(F ), making it differentiable with
respect to v. We introduce non-linearity in our control generation process with the addition of a neural
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network (3.2.2.2), in order to retain information throughout all MPC steps. This connects the sampling
strategy with the objective function, making CEM an end-to-end learning process. Hence, the Gaussian
parameters are updated with subsequent MPC optimisation steps, enabling adaptive sampling over the
process based on the MPC objective. This allows us to sample from a latent-space of more reasonable
control solutions.

3.2.2.2 DirectionNN

We introduce a slim neural network called the ’DirectionNN’, whose design aims to encode a sense
of relative pose between the current image It and the goal image I∗. We keep the network lightweight
in order to achieve a high servoing rate and incorporate online learning of relative pose updates in each
MPC optimisation step. Since we execute small steps in each iteration, the network is capable of learning
the change in relative pose quickly. Moreover, the weights of the network are also retained in each MPC
iteration, which can be reused since there is a minimal change in the agent’s image measurements.

Multiplying with the horizon h (eq. 3.4) checks the merit of direction predicted by the DirectionNN
over an extended time. Hence, we can train our approach for lesser number of iterations in each MPC
step, which significantly decreases the total servoing time.

The network architecture has an input layer consisting of 6 neurons followed by 4 fully connected
hidden layers with 16, 32, 256, 64 neurons respectively and an output layer with 6 neurons, which
represents the 6DoF velocity vector. We apply ReLU activation at the output of each hidden layer and
Sigmoid activation on the last layer. We further scale the 6-D output between -1 and 1 to vectorise
it as a 6DoF velocity vector. We train the network in each MPC step. The inputs to the network are
intelligently sampled from a Gaussian distribution.

3.2.2.3 Sampling and Learning

We use the DCEM sampling strategy explained in 3.2.2.1 along with DirectionNN explained in
3.2.2.2 to generate optimal control. In each MPC optimisation step, the network samples a β (batch
size) x 6 dimensional vector from a Gaussian distribution gϕ(µ, σ

2) and carries out a forward pass,
generating β samples of 6 DoF velocity commands. We compute the pixel-wise target flow F(It, I

∗)

between It and I∗ using a pretrained FlowNetC [17] model. Moreover, we apply a kernel with a filter
size of (7x7) and a stride of 7 to the target flow F(It, I

∗) and pseudo-flow F̂(vt). The kernel K, consists
of only one non-zero value with K[0, 0] = 1.

The weights of the DirectionNN are updated through gradient descent. We use the Adam optimiser
with a learning rate of 0.005 to train our network. The sampling parameters of the Gaussian distribution
gϕ(µ, σ

2) are optimised for subsequent steps. We update (µ, σ) by the mean and variance of top K
velocities corresponding to the top K least flow errors. For our approach, we sample 8 velocities and
compute the flow loss for each, and choose the velocity corresponding to the least flow loss, which
is applied to our agent. We also multiply the horizon parameter with the generated velocity before
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computing the flow loss. The MPC optimisation steps are repeated until the convergence criteria to
reach the goal location is met.

3.2.3 Two View Depth Normalisation

We further enhance the two view depth estimation method proposed in [5] to account for inferior
flow predictions, since we use FlowNetC [17] without any retraining/fine-tuning. The magnitude of
flow values predicted by [17] has high variance from pixel to pixel due to the non-planar structure of the
scene and as a result, there are heavy outliers while using the predicted flow as a proxy for depth. These
outliers can hurt the performance of the controller, because the magnitude of velocity is very sensitive to
depth values. Hence, we require a stable flow depth to guide our approach. We use the sigmoid function
(equation 3.7) to scale and normalise the flow values before feeding them to our kinetic model - the
interaction matrix. We compare the effect of flow normalisation on the mean squared error for three
scenes, as shown in TABLE 3.1.

Zs(x, y) = ν(
1

1 + e−Z
− 0.5) (3.7)

Here, Z is the two view depth proposed in [5], ν is the scaling factor which we have selected as 0.4 and
Zs is the scaled inverse used as proxy for depth in the interaction matrix.

Scene MSE Flowdepth
MSE Normalised

Flowdepth

Quantico 160.04 49.72

Arkansaw 469.72 63.44

Ballou 508.81 122.78

Table 3.1: Comparison of effect of flow normalisation on MSE for different scenes. A significant

decrease in Mean Squared Error is observed when the flowdepth is normalised

3.3 Experiments

The motivation behind our work is to present an online control generation strategy that can generate
optimal 6DoF robot commands on-the-fly and in real-time, while not compromising on performance
in terms of convergence and alignment. We benchmark our strategy on 8 indoor 3D photo-realistic
baseline environments from the Gibson dataset [40] in the Habitat simulation engine [41] similar to [5].
These baseline environments span various levels of difficulty based on parameters such as the extent of
overlap, the amount of texture present and the rotational and translational complexities between initial
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Figure 3.3: Time Comparisons: We obtain a significant improvement in servoing rate over other deep

MPC based visual servoing approaches. Here, we show the evolution of photometric error with time on

two environments. Our approach is the fastest to achieve convergence, without any compromise on the

convergence criteria.

and desired image. We use a free-flying RGB camera as our agent, which can navigate in all six degrees
of freedom.

Through this section, we show quantitative and qualitative results to validate our approach. This work
generates control at 0.015 seconds per MPC step (excluding flow overheads) and attains photometric
convergence faster than the other methods which optimise over a time horizon. While achieving a
significant improvement in servoing rate, our approach does not compromise on performance in terms
of pose and photometric errors, which is comparable to the established baselines. Our method makes
a sacrifice on its trajectory length, but generates control in real-time and achieves precise alignments,
thereby finding the right trade-off between speed and performance.

We compare our approach with (a) DeepMPCVS [6] and (b) MPC+NN [6], both of which are MPC
formulations that optimise over a time horizon. The approach in [6] is optimal but computationally
heavy due to its bulky architecture. We achieve a significant improvement in servoing rate vis-à-vis
these baselines. Approaches like [5] are fast in computing the immediate control, but they optimise
greedily and cannot incorporate additional constraints. We achieve similar servoing rates with such
single-step approaches as well.
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3.3.1 Convergence Study and Time Comparison

We test our approach across all environments in our simulation benchmark and report the per MPC-
step time (per IBVS-step time in case of [5]) with and without overheads from flow computation, the
number of steps taken for convergence and the total time for a visual servoing run to reach the goal
image, averaged over all scenes as shown in TABLE 3.2. Our lightweight control generation architecture
and intelligent sampling strategy help achieve a per MPC-step time of 0.015 seconds (this is the time
taken for the MPC optimisation step, excluding the overheads from the flow network). We only train for
1 iteration in every MPC step (as opposed to 100 required in [6]) and retain the weights of our neural
network, since there is no substantial change in the velocities for immediate MPC steps, which helps
lower the per MPC-step time. The entire time taken for a MPC-step, after including flow overheads, is
0.095 seconds, resulting in a near real-time control generation at a frequency of 10.52 Hz. We attain
strict convergence of photometric error <500 and outperform the other multi-step ahead approaches
[6] in terms of the total servoing time. We use a Nvidia Geforce GTX 1080-Ti Pascal GPU for our
experimentation.

Approaches

Time

w.o

flow

Time

w.

flow

Total

Iters.

Total

Time

MPC+NN [6] 0.75 1.10 344.22 378*

DFVS [5] 0.001 0.21 994.88 209

DeepMPCVS [6] 0.8 1.15 569.63 655

RTVS [Ours] 0.015 0.095 1751.25 166

Table 3.2: Quantitative Comparison: We compare our approach with other deep MPC based methods

from [6] and a single-step approach [5]. Apart from MPC+NN [6], all methods attain convergence

on the simulation benchmark. We report the time per servoing iteration excluding overheads (Time

w.o. flow), the time per servoing iteration including flow computations (Time w. flow), the average

number of iterations taken to reach convergence (Total Iters.) and the average time required to servo to

the destination, including overheads (Total Time). DeepMPCVS [6] is optimal and requires the least

number of iterations, but has a costly per-iteration time overhead. Our method has a very low per

MPC-step compute time and takes the least amount of time to attain convergence, comparable to the

performance of DFVS [5]. All times are given in seconds. (* means does not converge in some scenes.)
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Figure 3.4: Left: All the important errors are being reduced concurrently. The drop in FlowLoss indi-

cates that our network can accurately predict flows as the number of MPC iterations increase. The drop

in flow errors and photometric errors indicates that the agent is able to reach near the goal. Right: The

magnitude of velocity reduces as we near the goal, resulting in a smooth and stable convergence.

3.3.2 Qualitative Results

While we achieve a significant improvement in time, our approach does not compromise on photo-
metric convergence. We test out our approach across all environments in our simulation benchmark. Our
controller successfully achieves convergence and is able to servo to the desired location. The control ac-
tions are learnt unsupervised and the network is trained on-the-fly in an unsupervised fashion. We attain
a strict photometric error of strictly <500 in all scenes and report the photometric error representation
computed between the attained and the desired image, in Fig. 3.5.

3.3.3 Pose Error and Trajectory Lengths

We perform more quantitative tests and report the initial pose error, translation error(T. Error), rota-
tional error(R. Error) and trajectory length(Traj. Length) averaged out over all environments across our
simulation benchmark, as depicted in TABLE 3.3. We achieve very low pose errors which is comparable
to the other 6DoF servoing approaches. Our approach does not compromise on this and achieves pre-
cise alignments with high servoing frequency. We are able to capture a strong correlation between the
photometric error and the flow loss, and a steady decrease in the velocities, as depicted in Fig. 3.4(Left).

Our trajectory lengths are slightly inferior to [6], but shorter than single-step approaches such as [5],
which signifies the importance of our control optimization steps. We compare the trajectory followed
by our agent with other multi-step ahead approaches, as depicted in Fig. 3.6(left). Making a slight
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Environment Arkansaw Ballou Eudora Hillsdale Mesic Quantico

Initial Image

Destination Image

PhotoVS [13]

ServoNet [6]

DeepMPCVS [14]

DFVS [7]

RTVS [Ours]

Figure 3.5: Qualitative Results: Our controller successfully achieves convergence with a strict photo-

metric error of <500 across all environments. Here, we show the photometric error image representation

computed between the goal and attained images on termination for six environments in the simulation

benchmark. PhotoVS [4] and ServoNet [3] fail to converge even with large number of iterations, thus

showing large photometric errors. DFVS [5] successfully converges, but is a single-step approach that

does not consider a long term horizon. DeepMPCVS [6] also meets the photometric convergence crite-

ria, but is extremely slow since the online training of its RNN architecture is computationally expensive.

Our work achieves strict convergence with control generated in real-time at a frequency of 66 Hz (ex-

cluding flow overheads), whilst optimising over a receding horizon.
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Approaches
T. Error

(m)

R. Error

(deg.)

Traj. Length

(meters)

Initial Pose Error 1.6566 21.4166 -

MPC+NN* [6] 0.1020 2.6200 1.1600

DeepMPCVS [6] 0.1200 0.5500 1.1800

RTVS [Ours] 0.0200 0.5900 1.732

Table 3.3: Quantitative Comparison: We compare the average performance in terms of pose error and

trajectory lengths for different approaches across all environments in our benchmark.(* means does not

converge in some scenes.)

compromise on the trajectory length, we achieve superior servoing frequency as compared to other
time-consuming approaches like [6], thereby achieving the right trade-off between servoing rate and
performance.

3.3.4 Generalisation to Real-World Scenarios

We were unable to verify our approach for real-world scenarios due to Covid restrictions at our
university and inability to access lab hardware. Previous approaches like [5] which have a similar run-
time as our work and were tested on the same simulation environment [41], have shown successful
deployment on drones in the real world. We achieve similar a servoing rate as [5] and are confident
that our approach can also be deployed to real-life drones. In order to simulate a real world setup, we
perform tests with actuation noise.

Approaches
Time Per

MPC-step

MPC

Steps

Total

Time

RTVS [Noiseless] 0.095 1774.28 168.53

RTVS [Induced Noise] 0.095 1850.22 175.77

Table 3.4: Actuation Noise: We achieve convergence even in the presence of actuation noise, thereby

demonstrating the ability of our controller to adapt to a real world setup. All times are in seconds.

Robot commands are generally noisy in a real-world setup. In order to simulate such conditions, we
add a Gaussian noise with µ=0 and σ=0.1 (m/s for translational and rad/s for rotational) to the control
commands in Habitat in all six degrees of freedom, before applying it to the agent. We test this out across
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Figure 3.6: Left: We plot the trajectories for the various approaches in our benchmark. Right: Our

lightweight controller generates optimal velocity commands and is able to servo to the desired location

in the presence of FDN (flow depth normalisation), which effectively handles inaccuracies in the flow

predictions. Grid size in the plots is (0.2m X 0.2m X 0.2m).

all scenes in our benchmark and successfully achieve convergence to a photometric error of <500. Our
method adapts well and converges in an average number of 1850.21 MPC steps, which is 4.28% more
than those required in a noiseless setup as depicted in TABLE 3.4. Our approach is thus capable of
handling actuation noise and generalising in real-world experiments.

3.3.5 Evaluating Flow Depth Normalisation

Since we use FlowNetC [17] without any retraining/finetuning, using a lightweight architecture is
vulnerable to inaccuracies from the flow network. To counter this, we have proposed the flow depth
normalisation layer. As depicted in Fig. 3.6(Right), our architecture is unable to achieve convergence
and reach its destination when the flow depth is not normalised. With this layer in place, the flow is
stabilised and we achieve robust performance in the servoing rate as well as accuracy.
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Chapter 4

Learning Arc-Length Value Function for Fast Time-Optimal

Rearrangement Sequence Planning and Execution

4.1 INTRODUCTION

A fundamental challenge in computing an optimal visitation sequence for pick and place is estimating
the cost-to-go between two manipulator end-effector positions. A useful cost-to-go metric can be the
optimal (or shortest) joint space arc length between two positions. However, this cost-to-go is not known
analytically and in fact, requires one to solve a non-convex optimization problem. To see why this is
challenging, imagine that the manipulator end-effector needs to visit 4 positions and thus there are 4!

sequences possible. To estimate the cost of all the sequences, one needs to solve the same number of
optimization problems. This is obviously intractable beyond sequences for visiting a small number of
objects. Existing works [11] bypass this intractability by using the simple Euclidean distance as the
cost-to-go between two positions. However, we show in the present work that such approaches can
lead to sub-optimal performance. To be precise, the shortest Cartesian/Euclidean space trajectory that
connects two end effector positions can have an unduly long arc length in the joint space. Vice-versa,
the shortest arc-length trajectory in the joint space need not be a straight line in the end-effector space.

Beyond the Sequencer, a successful pick and place also need an efficient Executor that can compute
the joint velocities (or simply joint angles) to realize the optimal visitation sequence. Typically, this
is done by invoking one of the many Inverse Kinematics (IK) algorithms, although more sophisticated
choices such as optimal control planners are possible. However, existing IK algorithms, either implicitly
or explicitly use the Euclidean distance heuristic to move between two given positions. Thus they are
inherently sub-optimal with respect to minimizing joint arc length and consequently pick and place
completion time.

4.1.1 Layout of the Chapter and Mathematical Notations

The rest of the Chapter is divided into three parts. Section 4.2.1 presents our value function learning
approach. The results of this section are then utilized in 4.3 to develop a Sequencer and Executor for
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Figure 4.1: Pipeline for optimal pick and place sequence planning and execution. The Sequencer takes

in the object locations and the value function estimates from a learned neural network. The computed

sequence is then passed onto the Executor that again uses the value function estimates to incrementally

plan trajectories between two end-effector positions. As shown, our neural network has a special form

and has been adapted from [7]. We construct two matrices Ld, Lo whose elements are feedforward

neural networks. The matrices are summed to obtain L and the value function is represented as LLT

time-optimal pick and place motion planning. The validation of our algorithmic results is presented in
Section 4.4.

In the rest of the paper, we will use normal font lower case letters to represent scalars, while bold
font variants will represent vectors. Matrices will be represented through bold face upper-case letters.
The superscript T will be used to represent transpose of a vector or a matrix.

4.2 Value Function Learning

4.2.1 Trajectory Optimization

Given a start xi and a goal xj position, we can compute multi-step joint trajectory with the optimal
(shortest) arc-length through the following non-convex optimization problem.

q∗
ti:tj

= argmin
qti

tj∑
ti

∥qti+1
− qti

∥22 (4.1a)

gfk(qti
) = xi, gfk(qtj

) = xj (4.1b)

q̇min∆t ≤ qti+1
− qti

≤ q̇max∆t, ∀ti ∈ [ti tj ] (4.1c)
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Where, qti refers to the joint position at time ti. The cost function (4.1a) optimizes the arc length in

the joint space by minimizing the increment between two subsequent joint positions. The equality con-

straints (4.1b) ensures that the joint trajectory connects the start and goal positions of the end-effector.

The function gfk represents the forward kinematics mapping of the manipulator. The inequality con-

straint enforces the velocity limit on the optimal trajectory. We represent the optimal solution of the

trajectory optimization as q∗
ti:tj . Note that the subscript implies that joint trajectory is defined in some

time interval [ti tj ].

Definition 1 We define the optimal arc-length value function as v(xi, xj) =
∑tj

ti
∥q∗ti+1

− q∗ti∥
2
2 that

captures the shortest joint arc-length possible while moving the end-effector from xi to xj in time interval

[ti tj ].

Remark 1 Redundancy resolution is already incorporated in optimization (4.1a)-(4.1b) as among many

solutions, it automatically outputs ones that lead to the lowest arc-length trajectory in the joint space.

Remark 2 The space of self-motion, i.e joint angles that do not move the end-effector is automatically

avoided in optimization (4.1a)-(4.1b).

4.2.2 Learning Arc-length Value Function

As clear from the discussion in the last sub-section, obtaining the optimal arc-length value function

requires us to solve an optimization problem. However, this presents a critical bottleneck for pick and

place sequence planning wherein many combinations of start and goal positions need to be searched

before arriving at the optimal sequence. Solving a trajectory optimization for each possible sequence

will be computationally prohibitive. Thus, in this subsection, we present a data-driven alternative. We

hypothesize that the arc-length value function can be parameterized in the following form for some

positive semi-definite matrix H.

v(xi, xj) = (xi − xj)T H(xi, xj)(xi − xj) (4.2)

Our choice of representation for the value function is motivated by works on metric learning [34], [36],

wherein the functions like the r.h.s of (4.2) are used to quantify the distance between two features.

However, works on metric learning typically assume a constant H matrix which is, in turn, learnt from

the data. In sharp contrast, we model H as a neural network. This substantially increases the complexity

27



Figure 4.2: Gradient flow of learned value function v(xi, xj) and Euclidean heuristic. The non-linear gradient

flow lines of v(xi, xj) capture the premise that the manipulator end-effector motion lies in a Riemannian Manifold.

In contrast, the gradient flow of Euclidean distance is trivial straight lines, all converging to the goal.

of our learning problem, especially because we need to impose the structure of positive definiteness in

our learned network. We take inspiration from the network architecture proposed in [7]. The authors

in this cited work derive a network topology called Deep Lagrangian Network (DeLaN) encoding the

Euler-Lagrange equation originating from Lagrangian Mechanics. We use a simplified version of the

network proposed in [7] which is presented in Fig. 4.1 to ensure the positive definiteness of H by

construction. As shown, we model H as the following outer product.

H(xi, xj) = L(xi, xj)L(xi, xj)T (4.3)

The matrix L(xi, xj) is obtained by the summation of a diagonal matrix Ld and a lower diagonal matrix

Lo. Each non-zero element of these matrices are feed-forward neural networks with learnable parame-

ters. The elements of Lo are modeled as neural networks with linear activation function. In contrast, the

diagonal elements of Ld are constructed as neural-networks with Relu activation function at every layer.

This by-construction, ensures that the diagonal elements of Ld are always positive and consequently

leads to guaranteed positive semi-definiteness in H.

4.2.3 Network Training

We train the value function network (DeLaN) described in the previous section in a supervised manner

by regressing it against optimal ground truth arc-length computed off-line through trajectory optimiza-
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tion. The input to our network is the pair of positions xi, xj between which we need to estimate the

value function. The output of the network is the value function v(xi, xj).

To prepare the dataset, we sample multiple start and goal positions from a table task space. The x, y

and z coordinates of these points are sampled uniformly and vary between [−0.8, 0.8] , [−0.3, 0.3] and

[0.2, 0.8] respectively. We use Scipy-SLSQP [42] to solve optimization (4.1a)-(4.1b) which generates

the joint trajectory for sampled start-goal pairs. The associated arc-length traversed by the manipulator

is considered to be the ground-truth value function. However, it should be noted that our approach is

agnostic to the choice of the trajectory optimizer or even the manipulator. We sample around 13000 pairs

of training points from the confined task space and regress the network with the ground truth arc length.

The DeLaN networks have 2 hidden layers each consisting of 64 neurons. We train the network for 5000

epochs, with Adam optimizer [43] and a learning rate of 0.0001 and a batch size of 256. The testing

data consists of randomly drawn samples from the task space. Since the task space of a manipulator is

bounded, the DeLaN network generalized well on the testing data.

4.2.4 Visualizing Value Function

Fig.4.2 shows the gradient flow of our learned value function v(xi, xj) for Franka Panda arm and com-

pares it with that of the Euclidean distance metric. Unsurprisingly, the gradient flow of the Euclidean

distance metric consists of straight lines all converging to the goal. In contrast, the gradient flow of

our v(xi, xj) exhibits the expected non-linearity stemming from the fact that the end-effector motion

of a manipulator lies in a Riemannian Manifold. The nonlinearity of the gradient flow also further re-

iterates why the straight-line end-effector trajectory connecting two positions does not lead to shorter

trajectories in the joint space.

4.3 Application to Pick and Place Sequence Planning and Execution

In this section, we used the v(xi, xj) to compute the optimal pick and place sequence (we call this

DeLaN Sequencer) and at the same time develop motion plans for executing the computed sequence

(we call this the DeLaN Metric IK Executor). Our overall pipeline can be summarised using Fig. 4.1.
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Figure 4.3: The above shown figure depicts the graph formulation explained in 4.3.1 for 4 objects. The edges-α is from

the object’s initial position to its respective goal locations and the edges-β join the object ui’s goal to start locations of other

objects uj (∀ j ! = i). The manipulator, starting at Origin O picks up the fist object from U & returns back from last objects

goal location.

4.3.1 Sequencer as Capacitated Vehicle Routing Problem (CVRP) with edge-weight v(xi, xj)

Consider a task-space T containing k number of movable objects U = {u1, u2, ...., uk} and a fixed

manipulator M. We transform this task space into graph representation G = (V, E, A) where the object’s

current and goal positions are the vertices V. The edges E (edge-α’s) are directed from the object’s

current (yellow diamonds in Fig.4.3) to their respective goal positions (green hexagons in Fig.4.3). The

edges A (edge-β’s) are also directed but joins the object ui’s goal to start locations of any other objects

uj (∀ j ! = i). We further add a point of origin O ( red circle ) to this graph G where the end-effector of

the manipulator(M) starts and returns back after performing the pick and place operations.

The edge weights (E,A) of the graph G are taken from a adjacency matrix W where the element

wij represent the edge cost between two locations i & j. Fig. 4.3 represents the defined graph. The

manipulator initially is at point O and explores its options to pick up the first object, denoted by edge-β’s

in Fig. 4.3. Once the object ui is picked up from its initial position it needs to be delivered to its goal

position, this is denoted by edge-α’s. Once the manipulator has reached the goal position of an object
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ui, it will now go back to the origin O to start exploring its options to go at a start position of any other

object uj . At the end once it has placed the last object it comes back to the point Origin O.

Our graph set-up is exactly like the CVRP with capacity equal to one since only one object can be

picked up at a time. We use Google OR-TOOLS[44] to find an optimal pick-place sequence. We use the

learned v(xi, xj) as the edge-cost of our CVRP graph, i.e wij = v(xi, xj). We reiterate this is the first

of the core novelties of our work as many existing works model wij as the Euclidean distance between

the start and a goal position.

The next subsection presents our second novelty that leverages the learned value function to improve

the IK algorithm of the manipulator itself to further reduce pick and place execution time.

4.3.2 Proposed Executor: DeLaN Metric IK

Suppose the manipulator is currently at position x with joint qt and is required to move to xf . The

manipulator motion from x to xf can be planned in an incremental manner through the classical differ-

ential Inverse Kinematics (4.4-4.7), wherein J(qt) represents the manipulator Jacobian evaluated at qt,

∆t represents time interval and k is some scalar constant.

min
q̇t

∥J(qt)q̇t − ẋd∥22 + ∥q̇t∥22 (4.4)

qmin ≤ qt−1 + q̇t∆t ≤ qmax (4.5)

q̇min ≤ q̇t ≤ q̇max (4.6)

ẋd = k(x − xf ) (4.7)

The cost function (4.4) brings the end-effector velocity close to some desired velocity given by (4.7).

The constraints (4.5)-(4.6) enforces the bounds of joint angles and velocities. It is also possible to

include acceleration bounds approximated through finite difference of velocities and final orientation

constraints. We have not included it here to keep the notation and exposition simple. But our final

implementation do include orientation constraints.

The desired velocity (4.7) is in fact the scaled gradient of the Euclidean distance 1
2∥x − xf∥22. Thus,

it is clear that the classical differential IK uses the Euclidean distance as the heuristic for the cost-to-go

between x, xf . However, as discussed in section (4.1), the Euclidean heuristic can lead to a sub-optimal

performance in terms of minimizing the arc length in the joint space
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The main idea behind our proposed IK is to make the end-effector move incrementally along the true

cost-to-go or in other words the value function v(x, xj) ( recall eqn no 4.2 ). To this end, we propose the

following optimization problem as a substitute for the classical IK

min
q̇t,xnext

1

2
(xnext − xf )T H(xnext, xf )(xnext − xf ) + ∥q̇t∥22 (4.8a)

gfk(q̇t∆t+ qt−1) = xnext (4.8b)

qmin ≤ q̇t∆t+ qt−1 ≤ qmax (4.8c)

q̇min ≤ q̇t ≤ q̇max (4.8d)

The cost function seeks to compute the next possible state xnext that the manipulator with a joint velocity

q̇t will reach in time duration ∆t. Importantly, xnext is sought to be as close as possible to xf in the

metric space of H (eqn 4.3), which we recall captures the value function or true cost-to-go between

two given end-effector position (eqn. 4.2). The equality constraints (4.8b) stems from the forward

kinematics while inequalities (4.8c)-(4.8d) are the standard bounds on joint limits and velocities.

Figure 4.4: Comparison between our DeLaN Metric IK and baselines approaches for Franka Panda manipulator. Our

approach uses the learned value function to move the end-effector along a path that requires smaller joint motions. In contrast,

the baselines aim to just minimize the arc-length in the end-effector space which requires excessive joint motions.

Given a learned H (i.e weights of the neural-network fixed), (4.8a)-(4.8d) involves optimization over

the input space of neural network. Furthermore, the functional form of H over xnext can be highly

non-smooth and non-convex and thus solving (4.8a)-(4.8d) could be extremely challenging. Thus, we

now present our final simplification that leverages the positive definite characteristic of H. We replace
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the xnext in the argument of H with the current x. This in turn makes H a constant and convexifies the

cost function turning (4.8a)-(4.8d) to a smooth non-linear programming problem. The proposed novel

metric aware trajectory optimization formulation (4.8a)-(4.8d) is henceforth called DeLaN Metric IK

Executor.

4.4 Validation and Benchmarking

The objective of this section is two-fold.

• First, we benchmark our Executor: value-function-based DeLan metric IK against existing ap-

proaches for task-space control. Note that we do not consider the trajectory optimization ap-

proaches that computes the full motion plan connecting start to goal positions but are computa-

tionally expensive. Rather, we focus on one-step reactive planners that provides real-time adapt-

ability.

• Second, we perform an empirical analysis on the performance obtained by different combinations

of our Sequencer and Executor (IK) over different baselines.

Our neural network training was done in PyTorch with ADAM [43] optimizer. Our Executor was

implemented in both Python and C++. The latter was done to evaluate the best-case computational

performance.

4.4.1 Bench-marking our Executor

We compare our DeLaN Metric IK against the following baselines that differ in their methodology for

computing the joint motion needed to drive the end-effector to the specified goal position. We use the

joint space arc-length of the resulting trajectory as our metric. We performed two sets of comparisons

on Franka Panda and UR5e manipulator.

• IK-Fast with Linear Interpolation in joint-space (IK-Fast): In this baseline, we compute multiple

joint angle vectors for a given goal position using the IK-Fast algorithm [45] computes closed-

form symbolic expressions for IK. We then compute the norm of the difference of each of the

computed solutions to the current joint position and choose the one with the least norm. Sub-

sequently, we perform a linear interpolation between the current joint position and the chosen

solution to get the joint space trajectory.
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• Jacobian-based IK (Jac-IK): This is the most popular method for controlling end-effector motion.

Its mathematical formulation is described in (4.4)-4.6 and we implemented it in Python using

robotics toolbox [46] for the Jacobian Computation.

• Py-Bullet IK with Linear Cartesian Interpolation (PyBullet-IK): In this baseline, we incrementally

build a short linear end-effector trajectory from the current position towards the goal and then use

the IK-Fast algorithm to compute the joint angles necessary to reach the end of that trajectory.

This process is repeated till the end-effector reaches the goal position.

Some of the qualitative results obtained for the Franka Panda manipulator are summarized in Fig.4.4.

Unsurprisingly both Jac-IK and Pybullet-IK baselines result in shorter Cartesian space trajectories than

our DeLaN Metric IK but fare poorly in terms of arc length in the joint space. In this specific example,

the IK-Fast approach leads to poor performance in both Cartesian and joint space. We reiterate that

joint space motion is what we care about since it directly affects the task completion time. Thus, our

DeLaN Metric IK will ensure the quickest motion between two given positions if all the IK approaches

are allowed the same velocity and acceleration bounds. We further validate this in the supplementary

video (https://tinyurl.com/4u37x33r), where we perform an additional time-optimal repa-

rameterization [47] of the joint space trajectories obtained with all the baselines and our DeLaN Metric

IK. Our approach retained the quickest task completion time even under such a transformation.

Fig.4.5-4.6 provides further validation of the qualitative insights obtained above. We sampled 1000

random start and goal end-effector positions to evaluate all the baselines and our DeLaN Metric IK. For

both Franka Panda (Fig.4.5) and UR5e manipulator (Fig.4.6), our approach consistently outperformed

all the baselines in the joint space arc-length metric.

4.4.2 Benchmarking Pick and Place Arc-Lengths/Completion Time

We constructed different baselines by using alternate combinations of Sequencer and Executor to

benchmark total task completion time or its surrogate joint space arc-length for pick and place oper-

ation. For Executor, we used RoboTSP [11], Jac-IK as implemented in ROS-KDL[9], and PyBullet-IK

[10]. The latter two were already detailed in the previous section. Thus, here we just give a brief

overview of RoboTSP. It operates by first computing multiple IK solutions at each node position of

the pick and place sequence. It then uses Dijkstra algorithm to compute the shortest joint space trajec-
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NUMBER OF OBJECTS

Sequencer Executor 4 6 10 20 50

Euclidean ROS-KDL[9] 17.78 16.59 29.97 56.92 123.33

Euclidean RoboTSP[11] 18.65 24.79 40.59 78.05 178.22

Euclidean PyBullet IK[10] 51.37 73.23 128.65 231.40 567.21

Euclidean DeLaN Metric IK (ours) 11.41 15.71 23.10 38.70 90.88

Multi Layer Perceptron ROS-KDL[9] 17.52 16.59 29.33 55.81 126.15

Multi Layer Perceptron RoboTSP[11] 18.48 25.72 40.80 79.63 177.80

Multi Layer Perceptron PyBullet IK[10] 51.37 73.23 128.65 231.40 567.77

Multi Layer Perceptron DeLaN Metric IK (ours) 11.41 15.71 23.10* 38.70 90.88

DeLaN (ours) ROS-KDL[9] 16.56 16.30 27.20 55.80 120.47

DeLaN (ours) RoboTSP[11] 17.85 22.79 40.14 76.82 176.45

DeLaN (ours) PyBullet IK[10] 53.01 70.63 115.12 225.11 442.67

DeLaN (ours) DeLaN Metric IK (ours) 10.22* 11.49* 24.72 34.07* 84.45*

Table 4.1: Comparison of Mean arc-length in joint space (over 10 runs) for different combination of Sequencers and

Executors proposed in section 4.4.2 for Franka Panda arm. All the planners are successfully able to execute the sequence.

DeLaN Sequencer (on average) shows improvement in arc-length even when combined with ROS-KDL[9] , RoboTSP[11] and

PyBullet[10] IK Planners planner. Similarly, DeLaN Metric IK planner is able to significantly reduce the arc-length even when

combined with Euclidean Sequencer and Standard MLP Sequencer. Our proposed solution combining DeLaN Sequencer and

DeLaN Metric IK based planner is able to achieve least arc-length cost. The start and goal positions for each object is randomly

sampled in the table top task space. The difference becomes more pronounced as the number of objects increase.

tory connecting the IK solutions. In free-space, RoboTSP will behave very similar to IK-Fast baseline

discussed in the previous section.

The following different Sequencer were combined with each of these Executors

• Euclidean: This Sequencer uses the Euclidean distance between two end-effector positions as the

edge-weight w(xi, xj) in the CVRP algorithm for sequence planning.

• Multi-Layer Peceptron (MLP): This sequencer is conceptually similar to ours and is based on

estimating the value function between two manipulator end-effector positions. The core difference

stems from the underlying neural-network architecture. This Sequencer uses a network with an

MLP architecture while ours proposed used the specialized DeLaN network (recall Fig.4.1).

The quantitative results summarized in Table 4.1 present a clear pattern. For any given Executor,

the shortest arc-length in joint space is obtained using the DeLaN Sequencer, followed by the MLP
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NUMBER OF OBJECTS

Executor 4 6 10 20 50

DeLaN Metric IK 3.92* 4.40* 9.47* 13.05* 34.73*

ROS-KDL[9] 6.34 6.24 10.42 21.38 46.16

RoboTSP 6.84 8.73 15.38 29.43 67.43

PyBullet IK 20.30 27.06 44.11 86.25 169.60

Table 4.2: Trajectory Execution Time(in sec.): We compare the average trajectory execution time for our DeLaN Metric

IK with different approaches.

NUMBER OF OBJECTS

Network 4 6 10 20 50

DeLaN Infrencing Time 0.0024 0.0024 0.0024 0.0024 0.0024

Google OR[44] Time 0.0049 0.0107 0.0378 0.0685 0.286

Table 4.3: Sequence Planning Time(in sec.) : The above table shows the time taken by the network for arc-length

prediction and the optimization time taken by solver to find the rearrangement sequence.

and Euclidean baselines. For any given Sequencer, the most optimal Executor is our DeLaN Metric

IK, followed by ROS-KDL [9], RoboTSP [11] and PyBullet IK [10]. Hence we get the least arc-length

cost when we combine DeLaN Sequencer with DeLaN Metric IK. Fig.4.7 further validates our claim.

It shows the mean and median of the joint space arc-length cost obtained from fixed pick and place

sequence with different Executors approaches. It can be seen that the worst performance of our DeLaN

Metric IK is better than the best of all the other baselines.

We performed more quantitative tests to show the effectiveness of our approach. We report the

trajectory execution time generated by different Executors when all of them use our DeLan Sequencer

for pick and place of (4, 6, 10, 20 and 50) objects. We are able to achieve the least trajectory execution

time as evident in TABLE 4.2. Table 4.3 shows the inference time of DeLaN Network to estimate

the edge-weights of the pick and place graph and the sequence planning time achieved by open-source

Google OR-TOOLS[44].

4.4.3 Comparison with Multi Layer Perceptron

The unique structure of DeLaN network (recall Fig.4.1) is at the core of the efficiency of our Sequencer

and Executor. To further validate this, we trained a 3 layer MLP to directly predict the optimal (shortest)
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Network Train Error Test Error

Multi Layer Perceptron 0.168 0.175

DeLaN 0.0049 0.0107

Table 4.4: The above table shows the ability of DeLaN[7] to better learn the arc-length cost between any given start and goal

points. This is due to its ability to capture system dynamics by inducing a semi-positive definite structure into the network

architecture.

joint space arc-length between two end-effector positions. In contrast, we recall that our DeLaN network

predicts a positive definite matrix H that scales the Euclidean distance (recall (4.2)).

Since the MLP needs to predict a positive entity we used leaky Relu and Softplus activation in the

network to make the final prediction positive. The results are summarized in Table 4.4. The MLP

architecture leads to both higher training and testing error as compared to DeLaN architecture. The

difference in learning can be further mapped to resulting joint space arc-lengths in Table 4.1.

4.4.4 Visualization in the Latent Space

It is difficult to visualize, the optimality of joint space trajectories generated by different Executors (IK).

To get a better sense of joint space arc lengths, we used the popular T-SNE [8] algorithm to project joint

space trajectories generated by different Executors to a 2D space. The results are summarized in Fig.

4.8. Our intuition here is that joint space trajectories that have larger arc-length will have more spread-

out (high variance) clusters in the 2D space. We can see that the projection of joint space trajectories

generated by our DeLaN Metric IK results in clusters with smaller spread than the joint space trajectories

of ROS-KDL [9] and Pybullet IK [10]. These figures validate our hypothesis and also the quantitative

results shown earlier in Table 4.1.
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Figure 4.5: Statistical comparison between our DeLaN Metric IK and baseline approaches over 1000 randomly sampled

start and goal positions for Franka Panda manipulator. Our approach leverages a learned value function that captures the true

cost-to-go between two positions to produce shortest joint space trajectories.
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Figure 4.6: A similar result as Fig.4.5 but re-created for a UR5e manipulator. The superiority of DeLaN Metric IK in

producing shorter joint motions is retained here.
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Figure 4.7: Left: Median arc length cost for different Executor keeping the Sequencer fixed. Right: For large number

of objects(>20), worst arc-length obtained by DeLaN Metric IK (ours) is better than best arc-length obtained by all other

baselines.

Figure 4.8: T-SNE[8] projection of joint space trajectories: Here we project joint space trajectories obtained from differ-

ent IK (Executors) to a 2D space. Our DeLaN Metric IK is able to incorporate the cost-to-go metric and generates trajectory

with much smaller arc-length in joint space. Hence, when we project its trajectories into 2D, we get clusters with small vari-

ance(green). When we project trajectories obtained by ROS-KDL [9] and PyBullet IK [10], we get much larger cluster sizes,

indicating a larger arc-lengths in joint space.
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Chapter 5

Conclusions

In this thesis, we explored two fundamental robotic control problems using data driven approaches.

In Chapter3, we significantly improved the MPC algorithm in [6] by putting forth a lightweight and fast

model predictive control framework that generates control near real-time at a frequency of 10.52 Hz.

We have demonstrated a significant improvement in the total servoing time as compared to other visual

servoing approaches in 6DoF. We showcase the efficiency of our control generation architecture, which

uses a slim neural network architecture and an effective sampling strategy to generate optimal control

in real-time, without making a heavy compromise on its performance. Our controller’s ability to train

in an online fashion helps it generalise and adapt well to novel environments. Our work is, to the best

of our knowledge, the fastest deep MPC based approach to visual servoing in six degrees of freedom.

In Chapter4 we provided a novel approach towards pick and place sequence planning and execu-

tion. We successfully combined a data-driven methodology with model-based optimization to develop

a fast Sequencer and a Executor. At the heart of our approach lies the DeLaN neural network [7]

whose positive definite structure proved crucial in learning the optimal arc-length between two manipu-

lator end-effector positions. We showed significant performance gain over the baseline formulations and

over a neural network that does not have metric preserving properties. Specifically, the proposed method

outperforms overall joint space trajectory arc-length and trajectory execution time over the baselines.

To the best of our knowledge, this is the first method that identifies and showcases the role of learnable

metrics in the optimal sequence planning and execution. Our work has the potential to improve pick

and place operation in manufacturing pipelines dramatically, and we seek to evaluate this in the future

experimentally. We are also currently working on integrating obstacle avoidance into our DeLaN Metric

IK. We conjecture that the DeLaN value function will bias the manipulator to choose such directions

for obstacle avoidance from where it becomes easier to come back to the goal or the desired trajec-
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tory. We also aim to learn a richer class of value function that can capture optimality also in terms of

manipulability index.

The approaches described in this thesis hold significant promise for making a meaningful impact

across various industries, including medical robotics and factory pick-and-place planning. We anticipate

that these methods will stimulate further investigation into integrating contemporary neural network-

based techniques with traditional control problems, thereby contributing to the development of general-

purpose robots.
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[11] Francisco Suárez-Ruiz, Teguh Santoso Lembono, and Quang-Cuong Pham. Robotsp - a fast solu-

tion to the robotic task sequencing problem, 2017.

[12] Peter I Corke. Visual control of robot manipulators–a review. In Visual Servoing: Real-Time

Control of Robot Manipulators Based on Visual Sensory Feedback, pages 1–31. World Scientific,

1993.

[13] Nicolas Andreff, Bernard Espiau, and Radu Horaud. Visual servoing from lines. The International

Journal of Robotics Research, 21(8):679–699, 2002.

[14] Ezio Malis, Graziano Chesi, and Roberto Cipolla. 212d visual servoing with respect to planar

contours having complex and unknown shapes. The International Journal of Robotics Research,

22(10-11):841–853, 2003.

[15] Ian Lenz, Ross A. Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for

model predictive control. In Robotics: Science and Systems, 2015.

[16] Brandon Amos and Denis Yarats. The differentiable cross-entropy method, 2020.

[17] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas

Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks, 2016.

[18] Somil Bansal, Varun Tolani, Saurabh Gupta, Jitendra Malik, and Claire Tomlin. Combining op-

timal control and learning for visual navigation in novel environments. In Conference on Robot

Learning, pages 420–429. PMLR, 2020.

[19] Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion, 2016.

[20] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim, Abhinav Gupta, Li Fei-Fei, and Ali

Farhadi. Target-driven visual navigation in indoor scenes using deep reinforcement learning, 2016.

[21] Alex X Lee, Sergey Levine, and Pieter Abbeel. Learning visual servoing with deep features and

fitted q-iteration. arXiv preprint arXiv:1703.11000, 2017.

45

http://www.orocos.org/kdl
http://pybullet.org


[22] Noriaki Hirose, Fei Xia, Roberto Martı́n-Martı́n, Amir Sadeghian, and Silvio Savarese. Deep

visual mpc-policy learning for navigation. IEEE Robotics and Automation Letters, 4(4):3184–

3191, 2019.

[23] Sergey Alatartsev, Sebastian Stellmacher, and Frank Ortmeier. Robotic task sequencing problem:

A survey. Journal of Intelligent Robotic Systems, 03 2015.

[24] Y. Edan, T. Flash, U. M. Peiper, I. Shmulevich, and Y. Sarig. Near-minimum-time task planning

for fruit-picking robots. IEEE Transactions on Robotics and Automation, 7(1):48–56, 1991.
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